ddi_intr.c revision 1a5e258f5471356ca102c7176637cdce45bac147
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/note.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/avintr.h>
#include <sys/autoconf.h>
#include <sys/sunndi.h>
#include <sys/ndi_impldefs.h> /* include prototypes */
#include <sys/atomic.h>
/*
* New DDI interrupt framework
*/
/*
* ddi_intr_get_supported_types:
* Return, as a bit mask, the hardware interrupt types supported by
* both the device and by the host in the integer pointed
* to be the 'typesp' argument.
*/
int
ddi_intr_get_supported_types(dev_info_t *dip, int *typesp)
{
int ret;
ddi_intr_handle_impl_t hdl;
if (dip == NULL)
return (DDI_EINVAL);
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_supported_types: dip %p\n",
(void *)dip));
if (*typesp = i_ddi_intr_get_supported_types(dip))
return (DDI_SUCCESS);
bzero(&hdl, sizeof (ddi_intr_handle_impl_t));
hdl.ih_dip = dip;
ret = i_ddi_intr_ops(dip, dip, DDI_INTROP_SUPPORTED_TYPES, &hdl,
(void *)typesp);
if (ret != DDI_SUCCESS)
return (DDI_INTR_NOTFOUND);
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_supported_types: types %x\n",
*typesp));
return (ret);
}
/*
* ddi_intr_get_nintrs:
* Return as an integer in the integer pointed to by the argument
* *nintrsp*, the number of interrupts the device supports for the
* given interrupt type.
*/
int
ddi_intr_get_nintrs(dev_info_t *dip, int type, int *nintrsp)
{
int ret;
ddi_intr_handle_impl_t hdl;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_nintrs: dip %p, type: %d\n",
(void *)dip, type));
if ((dip == NULL) || (nintrsp == NULL) ||
!DDI_INTR_TYPE_FLAG_VALID(type) ||
!(i_ddi_intr_get_supported_types(dip) & type)) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_nintrs: "
"Invalid input args\n"));
return (DDI_EINVAL);
}
if (*nintrsp = i_ddi_intr_get_supported_nintrs(dip, type))
return (DDI_SUCCESS);
bzero(&hdl, sizeof (ddi_intr_handle_impl_t));
hdl.ih_dip = dip;
hdl.ih_type = type;
ret = i_ddi_intr_ops(dip, dip, DDI_INTROP_NINTRS, &hdl,
(void *)nintrsp);
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_nintrs:: nintrs %x\n",
*nintrsp));
return (ret);
}
/*
* ddi_intr_get_navail:
* Bus nexus driver will return availble interrupt count value for
* a given interrupt type.
*
* Return as an integer in the integer pointed to by the argument
* *navailp*, the number of interrupts currently available for the
* given interrupt type.
*/
int
ddi_intr_get_navail(dev_info_t *dip, int type, int *navailp)
{
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_navail: dip %p, type: %d\n",
(void *)dip, type));
if ((dip == NULL) || (navailp == NULL) ||
!DDI_INTR_TYPE_FLAG_VALID(type) ||
!(i_ddi_intr_get_supported_types(dip) & type)) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_navail: "
"Invalid input args\n"));
return (DDI_EINVAL);
}
if ((*navailp = i_ddi_intr_get_current_navail(dip, type)) == 0)
return (DDI_INTR_NOTFOUND);
return (DDI_SUCCESS);
}
/*
* Interrupt allocate/free functions
*/
int
ddi_intr_alloc(dev_info_t *dip, ddi_intr_handle_t *h_array, int type, int inum,
int count, int *actualp, int behavior)
{
ddi_intr_handle_impl_t *hdlp, tmp_hdl;
int i, ret, cap = 0, curr_type, nintrs;
uint_t pri, navail, curr_nintrs = 0;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: name %s dip 0x%p "
"type %x inum %x count %x behavior %x\n", ddi_driver_name(dip),
(void *)dip, type, inum, count, behavior));
/* Validate parameters */
if ((dip == NULL) || (h_array == NULL) || (inum < 0) || (count < 1) ||
(actualp == NULL) || !DDI_INTR_BEHAVIOR_FLAG_VALID(behavior)) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: "
"Invalid input args\n"));
return (DDI_EINVAL);
}
/* Validate interrupt type */
if (!DDI_INTR_TYPE_FLAG_VALID(type) ||
!(i_ddi_intr_get_supported_types(dip) & type)) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: type %x not "
"supported\n", type));
return (DDI_EINVAL);
}
/* Validate inum not previously allocated */
if ((type == DDI_INTR_TYPE_FIXED) &&
(i_ddi_get_intr_handle(dip, inum) != NULL)) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: inum %d is already "
"in use, cannot allocate again!!\n", inum));
return (DDI_EINVAL);
}
/* Get how many interrupts the device supports */
if ((nintrs = i_ddi_intr_get_supported_nintrs(dip, type)) == 0) {
if (ddi_intr_get_nintrs(dip, type, &nintrs) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: no "
"interrupts found of type %d\n", type));
return (DDI_INTR_NOTFOUND);
}
}
/* Get how many interrupts the device is already using */
if ((curr_type = i_ddi_intr_get_current_type(dip)) != 0) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: type %x "
"is already being used\n", curr_type));
curr_nintrs = i_ddi_intr_get_current_nintrs(dip);
}
/* Validate interrupt type consistency */
if ((curr_type != 0) && (type != curr_type)) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: Requested "
"interrupt type %x is different from interrupt type %x"
"already in use\n", type, curr_type));
return (DDI_EINVAL);
}
/* Validate count does not exceed what device supports */
if (count > nintrs) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: no of interrupts "
"requested %d is more than supported %d\n", count, nintrs));
return (DDI_EINVAL);
} else if ((count + curr_nintrs) > nintrs) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: count %d "
"+ intrs in use %d exceeds supported %d intrs\n",
count, curr_nintrs, nintrs));
return (DDI_EINVAL);
}
/* Validate power of 2 requirements for MSI */
if ((type == DDI_INTR_TYPE_MSI) && !ISP2(curr_nintrs + count)) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: "
"MSI count %d is not a power of two\n", count));
return (DDI_EINVAL);
}
/*
* Initialize the device's interrupt information structure,
* and establish an association with IRM if it is supported.
*
* NOTE: IRM checks minimum support, and can return DDI_EAGAIN.
*/
if (curr_nintrs == 0) {
i_ddi_intr_devi_init(dip);
if (i_ddi_irm_insert(dip, type, count) == DDI_EAGAIN) {
cmn_err(CE_WARN, "ddi_intr_alloc: "
"cannot fit into interrupt pool\n");
return (DDI_EAGAIN);
}
}
/* Synchronously adjust IRM associations for non-IRM aware drivers */
if (curr_nintrs && (i_ddi_irm_supported(dip, type) != DDI_SUCCESS))
(void) i_ddi_irm_modify(dip, count + curr_nintrs);
/* Get how many interrupts are currently available */
navail = i_ddi_intr_get_current_navail(dip, type);
/* Validate that requested number of interrupts are available */
if (curr_nintrs == navail) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: max # of intrs %d "
"already allocated\n", navail));
return (DDI_EAGAIN);
}
if ((count + curr_nintrs) > navail) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: requested # of "
"intrs %d exceeds # of available intrs %d\n", count,
navail - curr_nintrs));
if (behavior == DDI_INTR_ALLOC_STRICT) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: "
"DDI_INTR_ALLOC_STRICT flag is passed, "
"return failure\n"));
if (curr_nintrs == 0)
i_ddi_intr_devi_fini(dip);
else if (i_ddi_irm_supported(dip, type) != DDI_SUCCESS)
(void) i_ddi_irm_modify(dip, curr_nintrs);
return (DDI_EAGAIN);
}
count = navail - curr_nintrs;
}
/* Now allocate required number of interrupts */
bzero(&tmp_hdl, sizeof (ddi_intr_handle_impl_t));
tmp_hdl.ih_type = type;
tmp_hdl.ih_inum = inum;
tmp_hdl.ih_scratch1 = count;
tmp_hdl.ih_scratch2 = (void *)(uintptr_t)behavior;
tmp_hdl.ih_dip = dip;
if (i_ddi_intr_ops(dip, dip, DDI_INTROP_ALLOC,
&tmp_hdl, (void *)actualp) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: allocation "
"failed\n"));
i_ddi_intr_devi_fini(dip);
return (*actualp ? DDI_EAGAIN : DDI_INTR_NOTFOUND);
}
if ((ret = i_ddi_intr_ops(dip, dip, DDI_INTROP_GETPRI,
&tmp_hdl, (void *)&pri)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: get priority "
"failed\n"));
goto fail;
}
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: getting capability\n"));
if ((ret = i_ddi_intr_ops(dip, dip, DDI_INTROP_GETCAP,
&tmp_hdl, (void *)&cap)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: get capability "
"failed\n"));
goto fail;
}
/*
* Save current interrupt type, supported and current intr count.
*/
i_ddi_intr_set_current_type(dip, type);
i_ddi_intr_set_supported_nintrs(dip, nintrs);
i_ddi_intr_set_current_nintrs(dip,
i_ddi_intr_get_current_nintrs(dip) + *actualp);
/* Now, go and handle each "handle" */
for (i = inum; i < (inum + *actualp); i++) {
hdlp = (ddi_intr_handle_impl_t *)kmem_zalloc(
(sizeof (ddi_intr_handle_impl_t)), KM_SLEEP);
rw_init(&hdlp->ih_rwlock, NULL, RW_DRIVER, NULL);
h_array[i] = (struct __ddi_intr_handle *)hdlp;
hdlp->ih_type = type;
hdlp->ih_pri = pri;
hdlp->ih_cap = cap;
hdlp->ih_ver = DDI_INTR_VERSION;
hdlp->ih_state = DDI_IHDL_STATE_ALLOC;
hdlp->ih_dip = dip;
hdlp->ih_inum = i;
i_ddi_alloc_intr_phdl(hdlp);
if (type & DDI_INTR_TYPE_FIXED)
i_ddi_set_intr_handle(dip, hdlp->ih_inum,
(ddi_intr_handle_t)hdlp);
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_alloc: hdlp = 0x%p\n",
(void *)h_array[i]));
}
return (DDI_SUCCESS);
fail:
(void) i_ddi_intr_ops(tmp_hdl.ih_dip, tmp_hdl.ih_dip,
DDI_INTROP_FREE, &tmp_hdl, NULL);
i_ddi_intr_devi_fini(dip);
return (ret);
}
int
ddi_intr_free(ddi_intr_handle_t h)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_free: hdlp = %p\n", (void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
if (((hdlp->ih_flags & DDI_INTR_MSIX_DUP) &&
(hdlp->ih_state != DDI_IHDL_STATE_ADDED)) ||
((hdlp->ih_state != DDI_IHDL_STATE_ALLOC) &&
(!(hdlp->ih_flags & DDI_INTR_MSIX_DUP)))) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
/* Set the number of interrupts to free */
hdlp->ih_scratch1 = 1;
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_FREE, hdlp, NULL);
rw_exit(&hdlp->ih_rwlock);
if (ret == DDI_SUCCESS) {
/* This would be the dup vector */
if (hdlp->ih_flags & DDI_INTR_MSIX_DUP)
atomic_dec_32(&hdlp->ih_main->ih_dup_cnt);
else {
int n, curr_type;
n = i_ddi_intr_get_current_nintrs(hdlp->ih_dip) - 1;
curr_type = i_ddi_intr_get_current_type(hdlp->ih_dip);
i_ddi_intr_set_current_nintrs(hdlp->ih_dip, n);
if ((i_ddi_irm_supported(hdlp->ih_dip, curr_type)
!= DDI_SUCCESS) && (n > 0))
(void) i_ddi_irm_modify(hdlp->ih_dip, n);
if (hdlp->ih_type & DDI_INTR_TYPE_FIXED)
i_ddi_set_intr_handle(hdlp->ih_dip,
hdlp->ih_inum, NULL);
i_ddi_intr_devi_fini(hdlp->ih_dip);
i_ddi_free_intr_phdl(hdlp);
}
rw_destroy(&hdlp->ih_rwlock);
kmem_free(hdlp, sizeof (ddi_intr_handle_impl_t));
}
return (ret);
}
/*
* Interrupt get/set capacity functions
*
* The logic used to figure this out is shown here:
*
* Device level Platform level Intr source
* 1. Fixed interrupts
* (non-PCI)
* o Flags supported N/A Maskable/Pending/ rootnex
* No Block Enable
* o navail 1
*
* 2. PCI Fixed interrupts
* o Flags supported pending/Maskable Maskable/pending/ pci
* No Block enable
* o navail N/A 1
*
* 3. PCI MSI
* o Flags supported Maskable/Pending Maskable/Pending pci
* Block Enable (if drvr doesn't) Block Enable
* o navail N/A #vectors - #used N/A
*
* 4. PCI MSI-X
* o Flags supported Maskable/Pending Maskable/Pending pci
* Block Enable Block Enable
* o navail N/A #vectors - #used N/A
*
* where:
* #vectors - Total numbers of vectors available
* #used - Total numbers of vectors currently being used
*
* For devices complying to PCI2.3 or greater, see bit10 of Command Register
* 0 - enables assertion of INTx
* 1 - disables assertion of INTx
*
* For non MSI/X interrupts; if the IRQ is shared then all ddi_intr_set_*()
* operations return failure.
*/
int
ddi_intr_get_cap(ddi_intr_handle_t h, int *flagsp)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_cap: hdlp = %p\n",
(void *)hdlp));
*flagsp = 0;
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_READER);
if (hdlp->ih_cap) {
*flagsp = hdlp->ih_cap & ~DDI_INTR_FLAG_MSI64;
rw_exit(&hdlp->ih_rwlock);
return (DDI_SUCCESS);
}
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_GETCAP, hdlp, (void *)flagsp);
if (ret == DDI_SUCCESS) {
hdlp->ih_cap = *flagsp;
/* Mask out MSI/X 64-bit support to the consumer */
*flagsp &= ~DDI_INTR_FLAG_MSI64;
}
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
int
ddi_intr_set_cap(ddi_intr_handle_t h, int flags)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_set_cap: hdlp = %p", (void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
if (hdlp->ih_state != DDI_IHDL_STATE_ALLOC) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
/* Only DDI_INTR_FLAG_LEVEL or DDI_INTR_FLAG_EDGE are allowed */
if (!(flags & (DDI_INTR_FLAG_EDGE | DDI_INTR_FLAG_LEVEL))) {
DDI_INTR_APIDBG((CE_CONT, "%s%d: only LEVEL or EDGE capability "
"can be set\n", ddi_driver_name(hdlp->ih_dip),
ddi_get_instance(hdlp->ih_dip)));
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
/* Both level/edge flags must be currently supported */
if (!(hdlp->ih_cap & (DDI_INTR_FLAG_EDGE | DDI_INTR_FLAG_LEVEL))) {
DDI_INTR_APIDBG((CE_CONT, "%s%d: Both LEVEL and EDGE capability"
" must be supported\n", ddi_driver_name(hdlp->ih_dip),
ddi_get_instance(hdlp->ih_dip)));
rw_exit(&hdlp->ih_rwlock);
return (DDI_ENOTSUP);
}
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_SETCAP, hdlp, &flags);
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
/*
* Priority related functions
*/
/*
* ddi_intr_get_hilevel_pri:
* Returns the minimum priority level for a
* high-level interrupt on a platform.
*/
uint_t
ddi_intr_get_hilevel_pri(void)
{
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_hilevel_pri:\n"));
return (LOCK_LEVEL + 1);
}
int
ddi_intr_get_pri(ddi_intr_handle_t h, uint_t *prip)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_pri: hdlp = %p\n",
(void *)hdlp));
*prip = 0;
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_READER);
/* Already initialized, just return that */
if (hdlp->ih_pri) {
*prip = hdlp->ih_pri;
rw_exit(&hdlp->ih_rwlock);
return (DDI_SUCCESS);
}
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_GETPRI, hdlp, (void *)prip);
if (ret == DDI_SUCCESS)
hdlp->ih_pri = *prip;
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
int
ddi_intr_set_pri(ddi_intr_handle_t h, uint_t pri)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_set_pri: hdlp = %p", (void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
/* Validate priority argument */
if (pri < DDI_INTR_PRI_MIN || pri > DDI_INTR_PRI_MAX) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_set_pri: invalid priority "
"specified = %x\n", pri));
return (DDI_EINVAL);
}
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
if (hdlp->ih_state != DDI_IHDL_STATE_ALLOC) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
/* If the passed priority is same as existing priority; do nothing */
if (pri == hdlp->ih_pri) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_SUCCESS);
}
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_SETPRI, hdlp, &pri);
if (ret == DDI_SUCCESS)
hdlp->ih_pri = pri;
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
/*
* Interrupt add/duplicate/remove handlers
*/
int
ddi_intr_add_handler(ddi_intr_handle_t h, ddi_intr_handler_t inthandler,
void *arg1, void *arg2)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_add_handler: hdlp = 0x%p\n",
(void *)hdlp));
if ((hdlp == NULL) || (inthandler == NULL))
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
if (hdlp->ih_state != DDI_IHDL_STATE_ALLOC) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
hdlp->ih_cb_func = inthandler;
hdlp->ih_cb_arg1 = arg1;
hdlp->ih_cb_arg2 = arg2;
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_ADDISR, hdlp, NULL);
if (ret != DDI_SUCCESS) {
hdlp->ih_cb_func = NULL;
hdlp->ih_cb_arg1 = NULL;
hdlp->ih_cb_arg2 = NULL;
} else
hdlp->ih_state = DDI_IHDL_STATE_ADDED;
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
int
ddi_intr_dup_handler(ddi_intr_handle_t org, int dup_inum,
ddi_intr_handle_t *dup)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)org;
ddi_intr_handle_impl_t *dup_hdlp;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_dup_handler: hdlp = 0x%p\n",
(void *)hdlp));
/* Do some input argument checking ("dup" handle is not allocated) */
if ((hdlp == NULL) || (*dup != NULL) || (dup_inum < 0)) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_dup_handler: Invalid "
"input args\n"));
return (DDI_EINVAL);
}
rw_enter(&hdlp->ih_rwlock, RW_READER);
/* Do some input argument checking */
if ((hdlp->ih_state == DDI_IHDL_STATE_ALLOC) || /* intr handle alloc? */
(hdlp->ih_type != DDI_INTR_TYPE_MSIX) || /* only MSI-X allowed */
(hdlp->ih_flags & DDI_INTR_MSIX_DUP)) { /* only dup original */
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
hdlp->ih_scratch1 = dup_inum;
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_DUPVEC, hdlp, NULL);
if (ret == DDI_SUCCESS) {
dup_hdlp = (ddi_intr_handle_impl_t *)
kmem_alloc(sizeof (ddi_intr_handle_impl_t), KM_SLEEP);
atomic_inc_32(&hdlp->ih_dup_cnt);
*dup = (ddi_intr_handle_t)dup_hdlp;
bcopy(hdlp, dup_hdlp, sizeof (ddi_intr_handle_impl_t));
/* These fields are unique to each dupped msi-x vector */
rw_init(&dup_hdlp->ih_rwlock, NULL, RW_DRIVER, NULL);
dup_hdlp->ih_state = DDI_IHDL_STATE_ADDED;
dup_hdlp->ih_inum = dup_inum;
dup_hdlp->ih_flags |= DDI_INTR_MSIX_DUP;
dup_hdlp->ih_dup_cnt = 0;
/* Point back to original vector */
dup_hdlp->ih_main = hdlp;
}
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
int
ddi_intr_remove_handler(ddi_intr_handle_t h)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret = DDI_SUCCESS;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_remove_handler: hdlp = %p\n",
(void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
if (hdlp->ih_state != DDI_IHDL_STATE_ADDED) {
ret = DDI_EINVAL;
goto done;
} else if (hdlp->ih_flags & DDI_INTR_MSIX_DUP)
goto done;
ASSERT(hdlp->ih_dup_cnt == 0);
if (hdlp->ih_dup_cnt > 0) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_remove_handler: MSI-X "
"dup_cnt %d is not 0\n", hdlp->ih_dup_cnt));
ret = DDI_FAILURE;
goto done;
}
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_REMISR, hdlp, NULL);
if (ret == DDI_SUCCESS) {
hdlp->ih_state = DDI_IHDL_STATE_ALLOC;
hdlp->ih_cb_func = NULL;
hdlp->ih_cb_arg1 = NULL;
hdlp->ih_cb_arg2 = NULL;
}
done:
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
/*
* Interrupt enable/disable/block_enable/block_disable handlers
*/
int
ddi_intr_enable(ddi_intr_handle_t h)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_enable: hdlp = %p\n",
(void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
if ((hdlp->ih_state != DDI_IHDL_STATE_ADDED) ||
((hdlp->ih_type == DDI_INTR_TYPE_MSI) &&
(hdlp->ih_cap & DDI_INTR_FLAG_BLOCK))) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
I_DDI_VERIFY_MSIX_HANDLE(hdlp);
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_ENABLE, hdlp, NULL);
if (ret == DDI_SUCCESS) {
hdlp->ih_state = DDI_IHDL_STATE_ENABLE;
i_ddi_intr_set_current_nenables(hdlp->ih_dip,
i_ddi_intr_get_current_nenables(hdlp->ih_dip) + 1);
}
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
int
ddi_intr_disable(ddi_intr_handle_t h)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_disable: hdlp = %p\n",
(void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
if ((hdlp->ih_state != DDI_IHDL_STATE_ENABLE) ||
((hdlp->ih_type == DDI_INTR_TYPE_MSI) &&
(hdlp->ih_cap & DDI_INTR_FLAG_BLOCK))) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
I_DDI_VERIFY_MSIX_HANDLE(hdlp);
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_DISABLE, hdlp, NULL);
if (ret == DDI_SUCCESS) {
hdlp->ih_state = DDI_IHDL_STATE_ADDED;
i_ddi_intr_set_current_nenables(hdlp->ih_dip,
i_ddi_intr_get_current_nenables(hdlp->ih_dip) - 1);
}
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
int
ddi_intr_block_enable(ddi_intr_handle_t *h_array, int count)
{
ddi_intr_handle_impl_t *hdlp;
int i, ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_block_enable: h_array = %p\n",
(void *)h_array));
if (h_array == NULL)
return (DDI_EINVAL);
for (i = 0; i < count; i++) {
hdlp = (ddi_intr_handle_impl_t *)h_array[i];
rw_enter(&hdlp->ih_rwlock, RW_READER);
if (hdlp->ih_state != DDI_IHDL_STATE_ADDED ||
hdlp->ih_type != DDI_INTR_TYPE_MSI ||
!(hdlp->ih_cap & DDI_INTR_FLAG_BLOCK)) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
rw_exit(&hdlp->ih_rwlock);
}
hdlp = (ddi_intr_handle_impl_t *)h_array[0];
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
hdlp->ih_scratch1 = count;
hdlp->ih_scratch2 = (void *)h_array;
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_BLOCKENABLE, hdlp, NULL);
rw_exit(&hdlp->ih_rwlock);
if (ret == DDI_SUCCESS) {
for (i = 0; i < count; i++) {
hdlp = (ddi_intr_handle_impl_t *)h_array[i];
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
hdlp->ih_state = DDI_IHDL_STATE_ENABLE;
rw_exit(&hdlp->ih_rwlock);
}
i_ddi_intr_set_current_nenables(hdlp->ih_dip, 1);
}
return (ret);
}
int
ddi_intr_block_disable(ddi_intr_handle_t *h_array, int count)
{
ddi_intr_handle_impl_t *hdlp;
int i, ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_block_disable: h_array = %p\n",
(void *)h_array));
if (h_array == NULL)
return (DDI_EINVAL);
for (i = 0; i < count; i++) {
hdlp = (ddi_intr_handle_impl_t *)h_array[i];
rw_enter(&hdlp->ih_rwlock, RW_READER);
if (hdlp->ih_state != DDI_IHDL_STATE_ENABLE ||
hdlp->ih_type != DDI_INTR_TYPE_MSI ||
!(hdlp->ih_cap & DDI_INTR_FLAG_BLOCK)) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
rw_exit(&hdlp->ih_rwlock);
}
hdlp = (ddi_intr_handle_impl_t *)h_array[0];
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
hdlp->ih_scratch1 = count;
hdlp->ih_scratch2 = (void *)h_array;
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_BLOCKDISABLE, hdlp, NULL);
rw_exit(&hdlp->ih_rwlock);
if (ret == DDI_SUCCESS) {
for (i = 0; i < count; i++) {
hdlp = (ddi_intr_handle_impl_t *)h_array[i];
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
hdlp->ih_state = DDI_IHDL_STATE_ADDED;
rw_exit(&hdlp->ih_rwlock);
}
i_ddi_intr_set_current_nenables(hdlp->ih_dip, 0);
}
return (ret);
}
/*
* Interrupt set/clr mask handlers
*/
int
ddi_intr_set_mask(ddi_intr_handle_t h)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_set_mask: hdlp = %p\n",
(void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
if ((hdlp->ih_state != DDI_IHDL_STATE_ENABLE) ||
(!(hdlp->ih_cap & DDI_INTR_FLAG_MASKABLE))) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_SETMASK, hdlp, NULL);
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
int
ddi_intr_clr_mask(ddi_intr_handle_t h)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_clr_mask: hdlp = %p\n",
(void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
if ((hdlp->ih_state != DDI_IHDL_STATE_ENABLE) ||
(!(hdlp->ih_cap & DDI_INTR_FLAG_MASKABLE))) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_CLRMASK, hdlp, NULL);
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
/*
* Interrupt get_pending handler
*/
int
ddi_intr_get_pending(ddi_intr_handle_t h, int *pendingp)
{
ddi_intr_handle_impl_t *hdlp = (ddi_intr_handle_impl_t *)h;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_pending: hdlp = %p\n",
(void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_READER);
if (!(hdlp->ih_cap & DDI_INTR_FLAG_PENDING)) {
rw_exit(&hdlp->ih_rwlock);
return (DDI_EINVAL);
}
ret = i_ddi_intr_ops(hdlp->ih_dip, hdlp->ih_dip,
DDI_INTROP_GETPENDING, hdlp, (void *)pendingp);
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
/*
* Set the number of interrupts requested from IRM
*/
int
ddi_intr_set_nreq(dev_info_t *dip, int nreq)
{
int curr_type, nintrs;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_set_nreq: dip %p, nreq %d\n",
(void *)dip, nreq));
ASSERT(dip != NULL);
ASSERT(nreq > 0);
/* Sanity check inputs */
if ((dip == NULL) || (nreq < 1))
return (DDI_EINVAL);
curr_type = i_ddi_intr_get_current_type(dip);
/* Only valid for IRM drivers actively using interrupts */
if ((curr_type == 0) ||
(i_ddi_irm_supported(dip, curr_type) != DDI_SUCCESS))
return (DDI_ENOTSUP);
/* Range check */
if (ddi_intr_get_nintrs(dip, curr_type, &nintrs) != DDI_SUCCESS)
return (DDI_FAILURE);
if (nreq > nintrs)
return (DDI_EINVAL);
return (i_ddi_irm_modify(dip, nreq));
}
/*
* Soft interrupt handlers
*/
/*
* Add a soft interrupt and register its handler
*/
/* ARGSUSED */
int
ddi_intr_add_softint(dev_info_t *dip, ddi_softint_handle_t *h_p, int soft_pri,
ddi_intr_handler_t handler, void *arg1)
{
ddi_softint_hdl_impl_t *hdlp;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_add_softint: dip = %p, "
"softpri = 0x%x\n", (void *)dip, soft_pri));
if ((dip == NULL) || (h_p == NULL) || (handler == NULL)) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_add_softint: "
"invalid arguments"));
return (DDI_EINVAL);
}
/* Validate input arguments */
if (soft_pri < DDI_INTR_SOFTPRI_MIN ||
soft_pri > DDI_INTR_SOFTPRI_MAX) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_add_softint: invalid "
"soft_pri input given = %x\n", soft_pri));
return (DDI_EINVAL);
}
hdlp = (ddi_softint_hdl_impl_t *)kmem_zalloc(
sizeof (ddi_softint_hdl_impl_t), KM_SLEEP);
/* fill up internally */
rw_init(&hdlp->ih_rwlock, NULL, RW_DRIVER, NULL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
hdlp->ih_pri = soft_pri;
hdlp->ih_dip = dip;
hdlp->ih_cb_func = handler;
hdlp->ih_cb_arg1 = arg1;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_add_softint: hdlp = %p\n",
(void *)hdlp));
/* do the platform specific calls */
if ((ret = i_ddi_add_softint(hdlp)) != DDI_SUCCESS) {
rw_exit(&hdlp->ih_rwlock);
rw_destroy(&hdlp->ih_rwlock);
kmem_free(hdlp, sizeof (ddi_softint_hdl_impl_t));
return (ret);
}
*h_p = (ddi_softint_handle_t)hdlp;
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
/*
* Remove the soft interrupt
*/
int
ddi_intr_remove_softint(ddi_softint_handle_t h)
{
ddi_softint_hdl_impl_t *hdlp = (ddi_softint_hdl_impl_t *)h;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_remove_softint: hdlp = %p\n",
(void *)hdlp));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
i_ddi_remove_softint(hdlp);
rw_exit(&hdlp->ih_rwlock);
rw_destroy(&hdlp->ih_rwlock);
/* kmem_free the hdl impl_t structure allocated earlier */
kmem_free(hdlp, sizeof (ddi_softint_hdl_impl_t));
return (DDI_SUCCESS);
}
/*
* Trigger a soft interrupt
*/
int
ddi_intr_trigger_softint(ddi_softint_handle_t h, void *arg2)
{
ddi_softint_hdl_impl_t *hdlp = (ddi_softint_hdl_impl_t *)h;
int ret;
if (hdlp == NULL)
return (DDI_EINVAL);
if ((ret = i_ddi_trigger_softint(hdlp, arg2)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_trigger_softint: failed, "
" ret 0%x\n", ret));
return (ret);
}
hdlp->ih_cb_arg2 = arg2;
return (DDI_SUCCESS);
}
/*
* Get the soft interrupt priority
*/
int
ddi_intr_get_softint_pri(ddi_softint_handle_t h, uint_t *soft_prip)
{
ddi_softint_hdl_impl_t *hdlp = (ddi_softint_hdl_impl_t *)h;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_get_softint_pri: h = %p\n",
(void *)h));
if (hdlp == NULL)
return (DDI_EINVAL);
rw_enter(&hdlp->ih_rwlock, RW_READER);
*soft_prip = hdlp->ih_pri;
rw_exit(&hdlp->ih_rwlock);
return (DDI_SUCCESS);
}
/*
* Set the soft interrupt priority
*/
int
ddi_intr_set_softint_pri(ddi_softint_handle_t h, uint_t soft_pri)
{
ddi_softint_hdl_impl_t *hdlp = (ddi_softint_hdl_impl_t *)h;
int ret;
uint_t orig_soft_pri;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_set_softint_pri: h = %p\n",
(void *)h));
if (hdlp == NULL)
return (DDI_EINVAL);
/* Validate priority argument */
if (soft_pri < DDI_INTR_SOFTPRI_MIN ||
soft_pri > DDI_INTR_SOFTPRI_MAX) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_set_softint_pri: invalid "
"soft_pri input given = %x\n", soft_pri));
return (DDI_EINVAL);
}
rw_enter(&hdlp->ih_rwlock, RW_WRITER);
orig_soft_pri = hdlp->ih_pri;
hdlp->ih_pri = soft_pri;
if ((ret = i_ddi_set_softint_pri(hdlp, orig_soft_pri)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_set_softint_pri: failed, "
" ret 0%x\n", ret));
hdlp->ih_pri = orig_soft_pri;
}
rw_exit(&hdlp->ih_rwlock);
return (ret);
}
/*
* Old DDI interrupt framework
*
* The following DDI interrupt interfaces are obsolete.
* Use the above new DDI interrupt interfaces instead.
*/
int
ddi_intr_hilevel(dev_info_t *dip, uint_t inumber)
{
ddi_intr_handle_t hdl;
ddi_intr_handle_t *hdl_p;
size_t hdl_sz = 0;
int actual, ret;
uint_t high_pri, pri;
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_hilevel: name=%s%d dip=0x%p "
"inum=0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip),
(void *)dip, inumber));
/*
* The device driver may have already registed with the
* framework. If so, first try to get the existing interrupt handle
* for that given inumber and use that handle.
*/
if ((hdl = i_ddi_get_intr_handle(dip, inumber)) == NULL) {
hdl_sz = sizeof (ddi_intr_handle_t) * (inumber + 1);
hdl_p = kmem_zalloc(hdl_sz, KM_SLEEP);
if ((ret = ddi_intr_alloc(dip, hdl_p, DDI_INTR_TYPE_FIXED,
inumber, 1, &actual,
DDI_INTR_ALLOC_NORMAL)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_hilevel: "
"ddi_intr_alloc failed, ret 0x%x\n", ret));
kmem_free(hdl_p, hdl_sz);
return (0);
}
hdl = hdl_p[inumber];
}
if ((ret = ddi_intr_get_pri(hdl, &pri)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_hilevel: "
"ddi_intr_get_pri failed, ret 0x%x\n", ret));
(void) ddi_intr_free(hdl);
if (hdl_sz)
kmem_free(hdl_p, hdl_sz);
return (0);
}
high_pri = ddi_intr_get_hilevel_pri();
DDI_INTR_APIDBG((CE_CONT, "ddi_intr_hilevel: pri = %x, "
"high_pri = %x\n", pri, high_pri));
/* Free the handle allocated here only if no existing handle exists */
if (hdl_sz) {
(void) ddi_intr_free(hdl);
kmem_free(hdl_p, hdl_sz);
}
return (pri >= high_pri);
}
int
ddi_dev_nintrs(dev_info_t *dip, int *result)
{
DDI_INTR_APIDBG((CE_CONT, "ddi_dev_nintrs: name=%s%d dip=0x%p\n",
ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip));
if (ddi_intr_get_nintrs(dip, DDI_INTR_TYPE_FIXED,
result) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_dev_nintrs: "
"ddi_intr_get_nintrs failed\n"));
*result = 0;
}
return (DDI_SUCCESS);
}
int
ddi_get_iblock_cookie(dev_info_t *dip, uint_t inumber,
ddi_iblock_cookie_t *iblock_cookiep)
{
ddi_intr_handle_t hdl;
ddi_intr_handle_t *hdl_p;
size_t hdl_sz = 0;
int actual, ret;
uint_t pri;
DDI_INTR_APIDBG((CE_CONT, "ddi_get_iblock_cookie: name=%s%d dip=0x%p "
"inum=0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip),
(void *)dip, inumber));
ASSERT(iblock_cookiep != NULL);
/*
* The device driver may have already registed with the
* framework. If so, first try to get the existing interrupt handle
* for that given inumber and use that handle.
*/
if ((hdl = i_ddi_get_intr_handle(dip, inumber)) == NULL) {
hdl_sz = sizeof (ddi_intr_handle_t) * (inumber + 1);
hdl_p = kmem_zalloc(hdl_sz, KM_SLEEP);
if ((ret = ddi_intr_alloc(dip, hdl_p,
DDI_INTR_TYPE_FIXED, inumber, 1, &actual,
DDI_INTR_ALLOC_NORMAL)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_get_iblock_cookie: "
"ddi_intr_alloc failed, ret 0x%x\n", ret));
kmem_free(hdl_p, hdl_sz);
return (DDI_INTR_NOTFOUND);
}
hdl = hdl_p[inumber];
}
if ((ret = ddi_intr_get_pri(hdl, &pri)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_get_iblock_cookie: "
"ddi_intr_get_pri failed, ret 0x%x\n", ret));
(void) ddi_intr_free(hdl);
if (hdl_sz)
kmem_free(hdl_p, hdl_sz);
return (DDI_FAILURE);
}
*iblock_cookiep = (ddi_iblock_cookie_t)(uintptr_t)pri;
/* Free the handle allocated here only if no existing handle exists */
if (hdl_sz) {
(void) ddi_intr_free(hdl);
kmem_free(hdl_p, hdl_sz);
}
return (DDI_SUCCESS);
}
int
ddi_add_intr(dev_info_t *dip, uint_t inumber,
ddi_iblock_cookie_t *iblock_cookiep,
ddi_idevice_cookie_t *idevice_cookiep,
uint_t (*int_handler)(caddr_t int_handler_arg),
caddr_t int_handler_arg)
{
ddi_intr_handle_t *hdl_p;
size_t hdl_sz;
int actual, ret;
uint_t pri;
DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: name=%s%d dip=0x%p "
"inum=0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip),
(void *)dip, inumber));
hdl_sz = sizeof (ddi_intr_handle_t) * (inumber + 1);
hdl_p = kmem_zalloc(hdl_sz, KM_SLEEP);
if ((ret = ddi_intr_alloc(dip, hdl_p, DDI_INTR_TYPE_FIXED,
inumber, 1, &actual, DDI_INTR_ALLOC_NORMAL)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: "
"ddi_intr_alloc failed, ret 0x%x\n", ret));
kmem_free(hdl_p, hdl_sz);
return (DDI_INTR_NOTFOUND);
}
if ((ret = ddi_intr_get_pri(hdl_p[inumber], &pri)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: "
"ddi_intr_get_pri failed, ret 0x%x\n", ret));
(void) ddi_intr_free(hdl_p[inumber]);
kmem_free(hdl_p, hdl_sz);
return (DDI_FAILURE);
}
if ((ret = ddi_intr_add_handler(hdl_p[inumber], (ddi_intr_handler_t *)
int_handler, int_handler_arg, NULL)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: "
"ddi_intr_add_handler failed, ret 0x%x\n", ret));
(void) ddi_intr_free(hdl_p[inumber]);
kmem_free(hdl_p, hdl_sz);
return (DDI_FAILURE);
}
if ((ret = ddi_intr_enable(hdl_p[inumber])) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: "
"ddi_intr_enable failed, ret 0x%x\n", ret));
(void) ddi_intr_remove_handler(hdl_p[inumber]);
(void) ddi_intr_free(hdl_p[inumber]);
kmem_free(hdl_p, hdl_sz);
return (DDI_FAILURE);
}
if (iblock_cookiep)
*iblock_cookiep = (ddi_iblock_cookie_t)(uintptr_t)pri;
if (idevice_cookiep) {
idevice_cookiep->idev_vector = 0;
idevice_cookiep->idev_priority = pri;
}
kmem_free(hdl_p, hdl_sz);
return (DDI_SUCCESS);
}
/* ARGSUSED */
int
ddi_add_fastintr(dev_info_t *dip, uint_t inumber,
ddi_iblock_cookie_t *iblock_cookiep,
ddi_idevice_cookie_t *idevice_cookiep,
uint_t (*hi_int_handler)(void))
{
DDI_INTR_APIDBG((CE_CONT, "ddi_add_fastintr: name=%s%d dip=0x%p "
"inum=0x%x: Not supported, return failure\n", ddi_driver_name(dip),
ddi_get_instance(dip), (void *)dip, inumber));
return (DDI_FAILURE);
}
/* ARGSUSED */
void
ddi_remove_intr(dev_info_t *dip, uint_t inum, ddi_iblock_cookie_t iblock_cookie)
{
ddi_intr_handle_t hdl;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_remove_intr: name=%s%d dip=0x%p "
"inum=0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip),
(void *)dip, inum));
if ((hdl = i_ddi_get_intr_handle(dip, inum)) == NULL) {
DDI_INTR_APIDBG((CE_CONT, "ddi_remove_intr: no handle "
"found\n"));
return;
}
if ((ret = ddi_intr_disable(hdl)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_remove_intr: "
"ddi_intr_disable failed, ret 0x%x\n", ret));
return;
}
if ((ret = ddi_intr_remove_handler(hdl)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_remove_intr: "
"ddi_intr_remove_handler failed, ret 0x%x\n", ret));
return;
}
if ((ret = ddi_intr_free(hdl)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_remove_intr: "
"ddi_intr_free failed, ret 0x%x\n", ret));
return;
}
}
/* ARGSUSED */
int
ddi_get_soft_iblock_cookie(dev_info_t *dip, int preference,
ddi_iblock_cookie_t *iblock_cookiep)
{
DDI_INTR_APIDBG((CE_CONT, "ddi_get_soft_iblock_cookie: name=%s%d "
"dip=0x%p pref=0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip),
(void *)dip, preference));
ASSERT(iblock_cookiep != NULL);
if (preference == DDI_SOFTINT_FIXED)
return (DDI_FAILURE);
*iblock_cookiep = (ddi_iblock_cookie_t)((uintptr_t)
((preference > DDI_SOFTINT_MED) ? DDI_SOFT_INTR_PRI_H :
DDI_SOFT_INTR_PRI_M));
return (DDI_SUCCESS);
}
int
ddi_add_softintr(dev_info_t *dip, int preference, ddi_softintr_t *idp,
ddi_iblock_cookie_t *iblock_cookiep,
ddi_idevice_cookie_t *idevice_cookiep,
uint_t (*int_handler)(caddr_t int_handler_arg),
caddr_t int_handler_arg)
{
ddi_softint_handle_t *hdl_p;
uint64_t softpri;
int ret;
DDI_INTR_APIDBG((CE_CONT, "ddi_add_softintr: name=%s%d dip=0x%p "
"pref=0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip),
(void *)dip, preference));
if ((idp == NULL) || ((preference == DDI_SOFTINT_FIXED) &&
(iblock_cookiep == NULL)))
return (DDI_FAILURE);
/* Translate the priority preference */
if (preference == DDI_SOFTINT_FIXED) {
softpri = (uint64_t)(uintptr_t)*iblock_cookiep;
softpri = MIN(softpri, DDI_SOFT_INTR_PRI_H);
} else {
softpri = (uint64_t)((preference > DDI_SOFTINT_MED) ?
DDI_SOFT_INTR_PRI_H : DDI_SOFT_INTR_PRI_M);
}
DDI_INTR_APIDBG((CE_CONT, "ddi_add_softintr: preference 0x%x "
"softpri 0x%lx\n", preference, (long)softpri));
hdl_p = kmem_zalloc(sizeof (ddi_softint_handle_t), KM_SLEEP);
if ((ret = ddi_intr_add_softint(dip, hdl_p, softpri,
(ddi_intr_handler_t *)int_handler, int_handler_arg)) !=
DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_add_softintr: "
"ddi_intr_add_softint failed, ret 0x%x\n", ret));
kmem_free(hdl_p, sizeof (ddi_softint_handle_t));
return (DDI_FAILURE);
}
if (iblock_cookiep)
*iblock_cookiep = (ddi_iblock_cookie_t)(uintptr_t)softpri;
if (idevice_cookiep) {
idevice_cookiep->idev_vector = 0;
idevice_cookiep->idev_priority = softpri;
}
*idp = (ddi_softintr_t)hdl_p;
DDI_INTR_APIDBG((CE_CONT, "ddi_add_softintr: dip = 0x%p, "
"idp = 0x%p, ret = %x\n", (void *)dip, (void *)*idp, ret));
return (DDI_SUCCESS);
}
void
ddi_remove_softintr(ddi_softintr_t id)
{
ddi_softint_handle_t *h_p = (ddi_softint_handle_t *)id;
DDI_INTR_APIDBG((CE_CONT, "ddi_remove_softintr: id=0x%p\n",
(void *)id));
if (h_p == NULL)
return;
DDI_INTR_APIDBG((CE_CONT, "ddi_remove_softintr: handle 0x%p\n",
(void *)h_p));
(void) ddi_intr_remove_softint(*h_p);
kmem_free(h_p, sizeof (ddi_softint_handle_t));
}
void
ddi_trigger_softintr(ddi_softintr_t id)
{
ddi_softint_handle_t *h_p = (ddi_softint_handle_t *)id;
int ret;
if (h_p == NULL)
return;
if ((ret = ddi_intr_trigger_softint(*h_p, NULL)) != DDI_SUCCESS) {
DDI_INTR_APIDBG((CE_CONT, "ddi_trigger_softintr: "
"ddi_intr_trigger_softint failed, hdlp 0x%p "
"ret 0x%x\n", (void *)h_p, ret));
}
}