zcons.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Zone Console Driver.
*
* This driver, derived from the pts/ptm drivers, is the pseudo console driver
* for system zones. Its implementation is straightforward. Each instance
* of the driver represents a global-zone/local-zone pair (this maps in a
* straightforward way to the commonly used terminal notion of "master side"
* and "slave side", and we use that terminology throughout).
*
* Instances of zcons are onlined as children of /pseudo/zconsnex@1/
* by zoneadmd in userland, using the devctl framework; thus the driver
* does not need to maintain any sort of "admin" node.
*
* The driver shuttles I/O from master side to slave side and back. In a break
* from the pts/ptm semantics, if one side is not open, I/O directed towards
* it will simply be discarded. This is so that if zoneadmd is not holding
* the master side console open (i.e. it has died somehow), processes in
* the zone do not experience any errors and I/O to the console does not
* hang.
*
* TODO: we may want to revisit the other direction; i.e. we may want
* zoneadmd to be able to detect whether no zone processes are holding the
* console open, an unusual situation.
*/
#include <sys/types.h>
#include <sys/cmn_err.h>
#include <sys/conf.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/debug.h>
#include <sys/devops.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/modctl.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/strsun.h>
#include <sys/sunddi.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/zcons.h>
static int zc_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int zc_attach(dev_info_t *, ddi_attach_cmd_t);
static int zc_detach(dev_info_t *, ddi_detach_cmd_t);
static int zc_open(queue_t *, dev_t *, int, int, cred_t *);
static int zc_close(queue_t *, int, cred_t *);
static void zc_wput(queue_t *, mblk_t *);
static void zc_rsrv(queue_t *);
static void zc_wsrv(queue_t *);
/*
* The instance number is encoded in the dev_t in the minor number; the lowest
* bit of the minor number is used to track the master vs. slave side of the
* virtual console. The rest of the bits in the minor number are the instance.
*/
#define ZC_MASTER_MINOR 0
#define ZC_SLAVE_MINOR 1
#define ZC_INSTANCE(x) (getminor((x)) >> 1)
#define ZC_NODE(x) (getminor((x)) & 0x01)
int zcons_debug = 0;
#define DBG(a) if (zcons_debug) cmn_err(CE_NOTE, a)
#define DBG1(a, b) if (zcons_debug) cmn_err(CE_NOTE, a, b)
/*
* Zone Console Pseudo Terminal Module: stream data structure definitions
*/
static struct module_info zc_info = {
31337, /* c0z we r hAx0rs */
"zcons",
0,
INFPSZ,
2048,
128
};
static struct qinit zc_rinit = {
NULL,
(int (*)()) zc_rsrv,
zc_open,
zc_close,
NULL,
&zc_info,
NULL
};
static struct qinit zc_winit = {
(int (*)()) zc_wput,
(int (*)()) zc_wsrv,
NULL,
NULL,
NULL,
&zc_info,
NULL
};
static struct streamtab zc_tab_info = {
&zc_rinit,
&zc_winit,
NULL,
NULL
};
#define ZC_CONF_FLAG (D_MP | D_MTQPAIR | D_MTOUTPERIM | D_MTOCEXCL)
/*
* this will define (struct cb_ops cb_zc_ops) and (struct dev_ops zc_ops)
*/
DDI_DEFINE_STREAM_OPS(zc_ops, nulldev, nulldev, zc_attach, zc_detach, nodev, \
zc_getinfo, ZC_CONF_FLAG, &zc_tab_info);
/*
* Module linkage information for the kernel.
*/
static struct modldrv modldrv = {
&mod_driverops, /* Type of module. This one is a pseudo driver */
"Zone console driver 'zcons' %I%",
&zc_ops /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL
};
typedef struct zc_state {
dev_info_t *zc_devinfo;
queue_t *zc_master_rdq;
queue_t *zc_slave_rdq;
int zc_state;
} zc_state_t;
#define ZC_STATE_MOPEN 0x01
#define ZC_STATE_SOPEN 0x02
static void *zc_soft_state;
int
_init(void)
{
int err;
if ((err = ddi_soft_state_init(&zc_soft_state,
sizeof (zc_state_t), 0)) != 0) {
return (err);
}
if ((err = mod_install(&modlinkage)) != 0)
ddi_soft_state_fini(zc_soft_state);
return (err);
}
int
_fini(void)
{
int err;
if ((err = mod_remove(&modlinkage)) != 0) {
return (err);
}
ddi_soft_state_fini(&zc_soft_state);
return (0);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
static int
zc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
zc_state_t *zcs;
int instance;
if (cmd != DDI_ATTACH)
return (DDI_FAILURE);
instance = ddi_get_instance(dip);
if (ddi_soft_state_zalloc(zc_soft_state, instance) != DDI_SUCCESS)
return (DDI_FAILURE);
if ((ddi_create_minor_node(dip, ZCONS_SLAVE_NAME, S_IFCHR,
instance << 1 | ZC_SLAVE_MINOR, DDI_PSEUDO, 0) == DDI_FAILURE) ||
(ddi_create_minor_node(dip, ZCONS_MASTER_NAME, S_IFCHR,
instance << 1 | ZC_MASTER_MINOR, DDI_PSEUDO, 0) == DDI_FAILURE)) {
ddi_remove_minor_node(dip, NULL);
ddi_soft_state_free(zc_soft_state, instance);
return (DDI_FAILURE);
}
if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL) {
ddi_remove_minor_node(dip, NULL);
ddi_soft_state_free(zc_soft_state, instance);
return (DDI_FAILURE);
}
zcs->zc_devinfo = dip;
return (DDI_SUCCESS);
}
static int
zc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
zc_state_t *zcs;
int instance;
if (cmd != DDI_DETACH)
return (DDI_FAILURE);
instance = ddi_get_instance(dip);
if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL)
return (DDI_FAILURE);
if ((zcs->zc_state & ZC_STATE_MOPEN) ||
(zcs->zc_state & ZC_STATE_SOPEN)) {
DBG1("zc_detach: device (dip=%p) still open\n", (void *)dip);
return (DDI_FAILURE);
}
ddi_remove_minor_node(dip, NULL);
ddi_soft_state_free(zc_soft_state, instance);
return (DDI_SUCCESS);
}
/*
* zc_getinfo()
* getinfo(9e) entrypoint.
*/
/*ARGSUSED*/
static int
zc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
zc_state_t *zcs;
int instance = ZC_INSTANCE((dev_t)arg);
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL)
return (DDI_FAILURE);
*result = zcs->zc_devinfo;
return (DDI_SUCCESS);
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)(uintptr_t)instance;
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
/*
* Return the equivalent queue from the other side of the relationship.
* e.g.: given the slave's write queue, return the master's write queue.
*/
static queue_t *
zc_switch(queue_t *qp)
{
zc_state_t *zcs = qp->q_ptr;
ASSERT(zcs != NULL);
if (qp == zcs->zc_master_rdq)
return (zcs->zc_slave_rdq);
else if (OTHERQ(qp) == zcs->zc_master_rdq && zcs->zc_slave_rdq != NULL)
return (OTHERQ(zcs->zc_slave_rdq));
else if (qp == zcs->zc_slave_rdq)
return (zcs->zc_master_rdq);
else if (OTHERQ(qp) == zcs->zc_slave_rdq && zcs->zc_master_rdq != NULL)
return (OTHERQ(zcs->zc_master_rdq));
else
return (NULL);
}
/*
* For debugging and outputting messages. Returns the name of the side of
* the relationship associated with this queue.
*/
static const char *
zc_side(queue_t *qp)
{
zc_state_t *zcs = qp->q_ptr;
ASSERT(zcs != NULL);
if (qp == zcs->zc_master_rdq ||
OTHERQ(qp) == zcs->zc_master_rdq) {
return ("master");
}
ASSERT(qp == zcs->zc_slave_rdq || OTHERQ(qp) == zcs->zc_slave_rdq);
return ("slave");
}
/*ARGSUSED*/
static int
zc_master_open(zc_state_t *zcs,
queue_t *rqp, /* pointer to the read side queue */
dev_t *devp, /* pointer to stream tail's dev */
int oflag, /* the user open(2) supplied flags */
int sflag, /* open state flag */
cred_t *credp) /* credentials */
{
mblk_t *mop;
struct stroptions *sop;
/*
* Enforce exclusivity on the master side; the only consumer should
* be the zoneadmd for the zone.
*/
if ((zcs->zc_state & ZC_STATE_MOPEN) != 0)
return (EBUSY);
if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
DBG("zc_master_open(): mop allocation failed\n");
return (ENOMEM);
}
zcs->zc_state |= ZC_STATE_MOPEN;
/*
* q_ptr stores driver private data; stash the soft state data on both
* read and write sides of the queue.
*/
WR(rqp)->q_ptr = rqp->q_ptr = zcs;
qprocson(rqp);
/*
* Following qprocson(), the master side is fully plumbed into the
* STREAM and may send/receive messages. Setting zcs->zc_master_rdq
* will allow the slave to send messages to us (the master).
* This cannot occur before qprocson() because the master is not
* ready to process them until that point.
*/
zcs->zc_master_rdq = rqp;
/*
* set up hi/lo water marks on stream head read queue and add
* controlling tty as needed.
*/
mop->b_datap->db_type = M_SETOPTS;
mop->b_wptr += sizeof (struct stroptions);
sop = (struct stroptions *)mop->b_rptr;
if (oflag & FNOCTTY)
sop->so_flags = SO_HIWAT | SO_LOWAT;
else
sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
sop->so_hiwat = 512;
sop->so_lowat = 256;
putnext(rqp, mop);
return (0);
}
/*ARGSUSED*/
static int
zc_slave_open(zc_state_t *zcs,
queue_t *rqp, /* pointer to the read side queue */
dev_t *devp, /* pointer to stream tail's dev */
int oflag, /* the user open(2) supplied flags */
int sflag, /* open state flag */
cred_t *credp) /* credentials */
{
mblk_t *mop;
struct stroptions *sop;
/*
* The slave side can be opened as many times as needed.
*/
if ((zcs->zc_state & ZC_STATE_SOPEN) != 0) {
ASSERT((rqp != NULL) && (WR(rqp)->q_ptr == zcs));
return (0);
}
if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
DBG("zc_slave_open(): mop allocation failed\n");
return (ENOMEM);
}
zcs->zc_state |= ZC_STATE_SOPEN;
/*
* q_ptr stores driver private data; stash the soft state data on both
* read and write sides of the queue.
*/
WR(rqp)->q_ptr = rqp->q_ptr = zcs;
qprocson(rqp);
/*
* Must follow qprocson(), since we aren't ready to process until then.
*/
zcs->zc_slave_rdq = rqp;
/*
* set up hi/lo water marks on stream head read queue and add
* controlling tty as needed.
*/
mop->b_datap->db_type = M_SETOPTS;
mop->b_wptr += sizeof (struct stroptions);
sop = (struct stroptions *)mop->b_rptr;
sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
sop->so_hiwat = 512;
sop->so_lowat = 256;
putnext(rqp, mop);
return (0);
}
/*
* open(9e) entrypoint; checks sflag, and rejects anything unordinary.
*/
static int
zc_open(queue_t *rqp, /* pointer to the read side queue */
dev_t *devp, /* pointer to stream tail's dev */
int oflag, /* the user open(2) supplied flags */
int sflag, /* open state flag */
cred_t *credp) /* credentials */
{
int instance = ZC_INSTANCE(*devp);
int ret;
zc_state_t *zcs;
if (sflag != 0)
return (EINVAL);
if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL)
return (ENXIO);
switch (ZC_NODE(*devp)) {
case ZC_MASTER_MINOR:
ret = zc_master_open(zcs, rqp, devp, oflag, sflag, credp);
break;
case ZC_SLAVE_MINOR:
ret = zc_slave_open(zcs, rqp, devp, oflag, sflag, credp);
break;
default:
ret = ENXIO;
break;
}
return (ret);
}
/*
* close(9e) entrypoint.
*/
/*ARGSUSED1*/
static int
zc_close(queue_t *rqp, int flag, cred_t *credp)
{
queue_t *wqp;
mblk_t *bp;
zc_state_t *zcs;
zcs = (zc_state_t *)rqp->q_ptr;
if (rqp == zcs->zc_master_rdq) {
DBG("Closing master side");
zcs->zc_master_rdq = NULL;
zcs->zc_state &= ~ZC_STATE_MOPEN;
/*
* qenable slave side write queue so that it can flush
* its messages as master's read queue is going away
*/
if (zcs->zc_slave_rdq != NULL) {
qenable(WR(zcs->zc_slave_rdq));
}
qprocsoff(rqp);
WR(rqp)->q_ptr = rqp->q_ptr = NULL;
} else if (rqp == zcs->zc_slave_rdq) {
DBG("Closing slave side");
zcs->zc_state &= ~ZC_STATE_SOPEN;
zcs->zc_slave_rdq = NULL;
wqp = WR(rqp);
while ((bp = getq(wqp)) != NULL) {
if (zcs->zc_master_rdq != NULL)
putnext(zcs->zc_master_rdq, bp);
else if (bp->b_datap->db_type == M_IOCTL)
miocnak(wqp, bp, 0, 0);
else
freemsg(bp);
}
/*
* Qenable master side write queue so that it can flush its
* messages as slaves's read queue is going away.
*/
if (zcs->zc_master_rdq != NULL)
qenable(WR(zcs->zc_master_rdq));
qprocsoff(rqp);
WR(rqp)->q_ptr = rqp->q_ptr = NULL;
}
return (0);
}
static void
handle_mflush(queue_t *qp, mblk_t *mp)
{
mblk_t *nmp;
DBG1("M_FLUSH on %s side", zc_side(qp));
if (*mp->b_rptr & FLUSHW) {
DBG1("M_FLUSH, FLUSHW, %s side", zc_side(qp));
flushq(qp, FLUSHDATA);
*mp->b_rptr &= ~FLUSHW;
if ((*mp->b_rptr & FLUSHR) == 0) {
/*
* FLUSHW only. Change to FLUSHR and putnext other side,
* then we are done.
*/
*mp->b_rptr |= FLUSHR;
if (zc_switch(RD(qp)) != NULL) {
putnext(zc_switch(RD(qp)), mp);
return;
}
} else if ((zc_switch(RD(qp)) != NULL) &&
(nmp = copyb(mp)) != NULL) {
/*
* It is a FLUSHRW; we copy the mblk and send
* it to the other side, since we still need to use
* the mblk in FLUSHR processing, below.
*/
putnext(zc_switch(RD(qp)), nmp);
}
}
if (*mp->b_rptr & FLUSHR) {
DBG("qreply(qp) turning FLUSHR around\n");
qreply(qp, mp);
return;
}
freemsg(mp);
}
/*
* wput(9E) is symmetric for master and slave sides, so this handles both
* without splitting the codepath.
*
* zc_wput() looks at the other side; if there is no process holding that
* side open, it frees the message. This prevents processes from hanging
* if no one is holding open the console. Otherwise, it putnext's high
* priority messages, putnext's normal messages if possible, and otherwise
* enqueues the messages; in the case that something is enqueued, wsrv(9E)
* will take care of eventually shuttling I/O to the other side.
*/
static void
zc_wput(queue_t *qp, mblk_t *mp)
{
unsigned char type = mp->b_datap->db_type;
ASSERT(qp->q_ptr);
DBG1("entering zc_wput, %s side", zc_side(qp));
if (zc_switch(RD(qp)) == NULL) {
DBG1("wput to %s side (no one listening)", zc_side(qp));
switch (type) {
case M_FLUSH:
handle_mflush(qp, mp);
break;
case M_IOCTL:
miocnak(qp, mp, 0, 0);
break;
default:
freemsg(mp);
break;
}
return;
}
if (type >= QPCTL) {
DBG1("(hipri) wput, %s side", zc_side(qp));
switch (type) {
case M_READ: /* supposedly from ldterm? */
DBG("zc_wput: tossing M_READ\n");
freemsg(mp);
break;
case M_FLUSH:
handle_mflush(qp, mp);
break;
default:
/*
* Put this to the other side.
*/
ASSERT(zc_switch(RD(qp)) != NULL);
putnext(zc_switch(RD(qp)), mp);
break;
}
DBG1("done (hipri) wput, %s side", zc_side(qp));
return;
}
/*
* Only putnext if there isn't already something in the queue.
* otherwise things would wind up out of order.
*/
if (qp->q_first == NULL && bcanputnext(RD(zc_switch(qp)), mp->b_band)) {
DBG("wput: putting message to other side\n");
putnext(RD(zc_switch(qp)), mp);
} else {
DBG("wput: putting msg onto queue\n");
(void) putq(qp, mp);
}
DBG1("done wput, %s side", zc_side(qp));
}
/*
* rsrv(9E) is symmetric for master and slave, so zc_rsrv() handles both
* without splitting up the codepath.
*
* Enable the write side of the partner. This triggers the partner to send
* messages queued on its write side to this queue's read side.
*/
static void
zc_rsrv(queue_t *qp)
{
zc_state_t *zcs;
zcs = (zc_state_t *)qp->q_ptr;
/*
* Care must be taken here, as either of the master or slave side
* qptr could be NULL.
*/
ASSERT(qp == zcs->zc_master_rdq || qp == zcs->zc_slave_rdq);
if (zc_switch(qp) == NULL) {
DBG("zc_rsrv: other side isn't listening\n");
return;
}
qenable(WR(zc_switch(qp)));
}
/*
* This routine is symmetric for master and slave, so it handles both without
* splitting up the codepath.
*
* If there are messages on this queue that can be sent to the other, send
* them via putnext(). Else, if queued messages cannot be sent, leave them
* on this queue.
*/
static void
zc_wsrv(queue_t *qp)
{
mblk_t *mp;
DBG1("zc_wsrv master (%s) side", zc_side(qp));
/*
* Partner has no read queue, so take the data, and throw it away.
*/
if (zc_switch(RD(qp)) == NULL) {
DBG("zc_wsrv: other side isn't listening");
while ((mp = getq(qp)) != NULL) {
if (mp->b_datap->db_type == M_IOCTL)
miocnak(qp, mp, 0, 0);
else
freemsg(mp);
}
flushq(qp, FLUSHALL);
return;
}
/*
* while there are messages on this write queue...
*/
while ((mp = getq(qp)) != NULL) {
/*
* Due to the way zc_wput is implemented, we should never
* see a control message here.
*/
ASSERT(mp->b_datap->db_type < QPCTL);
if (bcanputnext(RD(zc_switch(qp)), mp->b_band)) {
DBG("wsrv: send message to other side\n");
putnext(RD(zc_switch(qp)), mp);
} else {
DBG("wsrv: putting msg back on queue\n");
(void) putbq(qp, mp);
break;
}
}
}