yge.c revision 837c1ac4e72b7d86278cca88b1075af557f7d161
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* This driver was derived from the FreeBSD if_msk.c driver, which
* bears the following copyright attributions and licenses.
*/
/*
*
* LICENSE:
* Copyright (C) Marvell International Ltd. and/or its affiliates
*
* The computer program files contained in this folder ("Files")
* are provided to you under the BSD-type license terms provided
* below, and any use of such Files and any derivative works
* thereof created by you shall be governed by the following terms
* and conditions:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* - Neither the name of Marvell nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* /LICENSE
*
*/
/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/varargs.h>
#include <sys/types.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/cmn_err.h>
#include <sys/ethernet.h>
#include <sys/kmem.h>
#include <sys/time.h>
#include <sys/pci.h>
#include <sys/mii.h>
#include <sys/miiregs.h>
#include <sys/mac.h>
#include <sys/mac_ether.h>
#include <sys/mac_provider.h>
#include <sys/debug.h>
#include <sys/note.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/vlan.h>
#include "yge.h"
static struct ddi_device_acc_attr yge_regs_attr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC
};
static struct ddi_device_acc_attr yge_ring_attr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC
};
static struct ddi_device_acc_attr yge_buf_attr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC
};
#define DESC_ALIGN 0x1000
static ddi_dma_attr_t yge_ring_dma_attr = {
DMA_ATTR_V0, /* dma_attr_version */
0, /* dma_attr_addr_lo */
0x00000000ffffffffull, /* dma_attr_addr_hi */
0x00000000ffffffffull, /* dma_attr_count_max */
DESC_ALIGN, /* dma_attr_align */
0x000007fc, /* dma_attr_burstsizes */
1, /* dma_attr_minxfer */
0x00000000ffffffffull, /* dma_attr_maxxfer */
0x00000000ffffffffull, /* dma_attr_seg */
1, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0 /* dma_attr_flags */
};
static ddi_dma_attr_t yge_buf_dma_attr = {
DMA_ATTR_V0, /* dma_attr_version */
0, /* dma_attr_addr_lo */
0x00000000ffffffffull, /* dma_attr_addr_hi */
0x00000000ffffffffull, /* dma_attr_count_max */
1, /* dma_attr_align */
0x0000fffc, /* dma_attr_burstsizes */
1, /* dma_attr_minxfer */
0x000000000000ffffull, /* dma_attr_maxxfer */
0x00000000ffffffffull, /* dma_attr_seg */
8, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0 /* dma_attr_flags */
};
static int yge_attach(yge_dev_t *);
static void yge_detach(yge_dev_t *);
static int yge_suspend(yge_dev_t *);
static int yge_resume(yge_dev_t *);
static void yge_reset(yge_dev_t *);
static void yge_setup_rambuffer(yge_dev_t *);
static int yge_init_port(yge_port_t *);
static void yge_uninit_port(yge_port_t *);
static int yge_register_port(yge_port_t *);
static int yge_unregister_port(yge_port_t *);
static void yge_tick(void *);
static uint_t yge_intr(caddr_t, caddr_t);
static int yge_intr_gmac(yge_port_t *);
static void yge_intr_enable(yge_dev_t *);
static void yge_intr_disable(yge_dev_t *);
static boolean_t yge_handle_events(yge_dev_t *, mblk_t **, mblk_t **, int *);
static void yge_handle_hwerr(yge_port_t *, uint32_t);
static void yge_intr_hwerr(yge_dev_t *);
static mblk_t *yge_rxeof(yge_port_t *, uint32_t, int);
static void yge_txeof(yge_port_t *, int);
static boolean_t yge_send(yge_port_t *, mblk_t *);
static void yge_set_prefetch(yge_dev_t *, int, yge_ring_t *);
static void yge_set_rambuffer(yge_port_t *);
static void yge_start_port(yge_port_t *);
static void yge_stop_port(yge_port_t *);
static void yge_phy_power(yge_dev_t *, boolean_t);
static int yge_alloc_ring(yge_port_t *, yge_dev_t *, yge_ring_t *, uint32_t);
static void yge_free_ring(yge_ring_t *);
static uint8_t yge_find_capability(yge_dev_t *, uint8_t);
static int yge_txrx_dma_alloc(yge_port_t *);
static void yge_txrx_dma_free(yge_port_t *);
static void yge_init_rx_ring(yge_port_t *);
static void yge_init_tx_ring(yge_port_t *);
static uint16_t yge_mii_readreg(yge_port_t *, uint8_t, uint8_t);
static void yge_mii_writereg(yge_port_t *, uint8_t, uint8_t, uint16_t);
static uint16_t yge_mii_read(void *, uint8_t, uint8_t);
static void yge_mii_write(void *, uint8_t, uint8_t, uint16_t);
static void yge_mii_notify(void *, link_state_t);
static void yge_setrxfilt(yge_port_t *);
static void yge_restart_task(yge_dev_t *);
static void yge_task(void *);
static void yge_dispatch(yge_dev_t *, int);
static void yge_stats_clear(yge_port_t *);
static void yge_stats_update(yge_port_t *);
static uint32_t yge_hashbit(const uint8_t *);
static int yge_m_unicst(void *, const uint8_t *);
static int yge_m_multicst(void *, boolean_t, const uint8_t *);
static int yge_m_promisc(void *, boolean_t);
static mblk_t *yge_m_tx(void *, mblk_t *);
static int yge_m_stat(void *, uint_t, uint64_t *);
static int yge_m_start(void *);
static void yge_m_stop(void *);
static int yge_m_getprop(void *, const char *, mac_prop_id_t, uint_t,
uint_t, void *, uint_t *);
static int yge_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
const void *);
static void yge_m_ioctl(void *, queue_t *, mblk_t *);
void yge_error(yge_dev_t *, yge_port_t *, char *, ...);
extern void yge_phys_update(yge_port_t *);
extern int yge_phys_restart(yge_port_t *, boolean_t);
extern int yge_phys_init(yge_port_t *, phy_readreg_t, phy_writereg_t);
static mac_callbacks_t yge_m_callbacks = {
MC_IOCTL | MC_SETPROP | MC_GETPROP,
yge_m_stat,
yge_m_start,
yge_m_stop,
yge_m_promisc,
yge_m_multicst,
yge_m_unicst,
yge_m_tx,
yge_m_ioctl,
NULL, /* mc_getcapab */
NULL, /* mc_open */
NULL, /* mc_close */
yge_m_setprop,
yge_m_getprop,
};
static mii_ops_t yge_mii_ops = {
MII_OPS_VERSION,
yge_mii_read,
yge_mii_write,
yge_mii_notify,
NULL /* reset */
};
/*
* This is the low level interface routine to read from the PHY
* MII registers. There is multiple steps to these accesses. First
* the register number is written to an address register. Then after
* a specified delay status is checked until the data is present.
*/
static uint16_t
yge_mii_readreg(yge_port_t *port, uint8_t phy, uint8_t reg)
{
yge_dev_t *dev = port->p_dev;
int pnum = port->p_port;
uint16_t val;
GMAC_WRITE_2(dev, pnum, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (int i = 0; i < YGE_TIMEOUT; i += 10) {
drv_usecwait(10);
val = GMAC_READ_2(dev, pnum, GM_SMI_CTRL);
if ((val & GM_SMI_CT_RD_VAL) != 0) {
val = GMAC_READ_2(dev, pnum, GM_SMI_DATA);
return (val);
}
}
return (0xffff);
}
/*
* This is the low level interface routine to write to the PHY
* MII registers. There is multiple steps to these accesses. The
* data and the target registers address are written to the PHY.
* Then the PHY is polled until it is done with the write. Note
* that the delays are specified and required!
*/
static void
yge_mii_writereg(yge_port_t *port, uint8_t phy, uint8_t reg, uint16_t val)
{
yge_dev_t *dev = port->p_dev;
int pnum = port->p_port;
GMAC_WRITE_2(dev, pnum, GM_SMI_DATA, val);
GMAC_WRITE_2(dev, pnum, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
for (int i = 0; i < YGE_TIMEOUT; i += 10) {
drv_usecwait(10);
if ((GMAC_READ_2(dev, pnum, GM_SMI_CTRL) & GM_SMI_CT_BUSY) == 0)
return;
}
yge_error(NULL, port, "phy write timeout");
}
static uint16_t
yge_mii_read(void *arg, uint8_t phy, uint8_t reg)
{
yge_port_t *port = arg;
uint16_t rv;
PHY_LOCK(port->p_dev);
rv = yge_mii_readreg(port, phy, reg);
PHY_UNLOCK(port->p_dev);
return (rv);
}
static void
yge_mii_write(void *arg, uint8_t phy, uint8_t reg, uint16_t val)
{
yge_port_t *port = arg;
PHY_LOCK(port->p_dev);
yge_mii_writereg(port, phy, reg, val);
PHY_UNLOCK(port->p_dev);
}
/*
* The MII common code calls this function to let the MAC driver
* know when there has been a change in status.
*/
void
yge_mii_notify(void *arg, link_state_t link)
{
yge_port_t *port = arg;
yge_dev_t *dev = port->p_dev;
uint32_t gmac;
uint32_t gpcr;
link_flowctrl_t fc;
link_duplex_t duplex;
int speed;
fc = mii_get_flowctrl(port->p_mii);
duplex = mii_get_duplex(port->p_mii);
speed = mii_get_speed(port->p_mii);
DEV_LOCK(dev);
if (link == LINK_STATE_UP) {
/* Enable Tx FIFO Underrun. */
CSR_WRITE_1(dev, MR_ADDR(port->p_port, GMAC_IRQ_MSK),
GM_IS_TX_FF_UR | /* TX FIFO underflow */
GM_IS_RX_FF_OR); /* RX FIFO overflow */
gpcr = GM_GPCR_AU_ALL_DIS;
switch (fc) {
case LINK_FLOWCTRL_BI:
gmac = GMC_PAUSE_ON;
gpcr &= ~(GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS);
break;
case LINK_FLOWCTRL_TX:
gmac = GMC_PAUSE_ON;
gpcr |= GM_GPCR_FC_RX_DIS;
break;
case LINK_FLOWCTRL_RX:
gmac = GMC_PAUSE_ON;
gpcr |= GM_GPCR_FC_TX_DIS;
break;
case LINK_FLOWCTRL_NONE:
default:
gmac = GMC_PAUSE_OFF;
gpcr |= GM_GPCR_FC_RX_DIS;
gpcr |= GM_GPCR_FC_TX_DIS;
break;
}
gpcr &= ~((GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100));
switch (speed) {
case 1000:
gpcr |= GM_GPCR_SPEED_1000;
break;
case 100:
gpcr |= GM_GPCR_SPEED_100;
break;
case 10:
default:
break;
}
if (duplex == LINK_DUPLEX_FULL) {
gpcr |= GM_GPCR_DUP_FULL;
} else {
gpcr &= ~(GM_GPCR_DUP_FULL);
gmac = GMC_PAUSE_OFF;
gpcr |= GM_GPCR_FC_RX_DIS;
gpcr |= GM_GPCR_FC_TX_DIS;
}
gpcr |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
GMAC_WRITE_2(dev, port->p_port, GM_GP_CTRL, gpcr);
/* Read again to ensure writing. */
(void) GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
/* write out the flow control gmac setting */
CSR_WRITE_4(dev, MR_ADDR(port->p_port, GMAC_CTRL), gmac);
} else {
/* Disable Rx/Tx MAC. */
gpcr = GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
gpcr &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
GMAC_WRITE_2(dev, port->p_port, GM_GP_CTRL, gpcr);
/* Read again to ensure writing. */
(void) GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
}
DEV_UNLOCK(dev);
mac_link_update(port->p_mh, link);
if (port->p_running && (link == LINK_STATE_UP)) {
mac_tx_update(port->p_mh);
}
}
static void
yge_setrxfilt(yge_port_t *port)
{
yge_dev_t *dev;
uint16_t mode;
uint8_t *ea;
uint32_t *mchash;
int pnum;
dev = port->p_dev;
pnum = port->p_port;
ea = port->p_curraddr;
mchash = port->p_mchash;
if (dev->d_suspended)
return;
/* Set station address. */
for (int i = 0; i < (ETHERADDRL / 2); i++) {
GMAC_WRITE_2(dev, pnum, GM_SRC_ADDR_1L + i * 4,
((uint16_t)ea[i * 2] | ((uint16_t)ea[(i * 2) + 1] << 8)));
}
for (int i = 0; i < (ETHERADDRL / 2); i++) {
GMAC_WRITE_2(dev, pnum, GM_SRC_ADDR_2L + i * 4,
((uint16_t)ea[i * 2] | ((uint16_t)ea[(i * 2) + 1] << 8)));
}
/* Figure out receive filtering mode. */
mode = GMAC_READ_2(dev, pnum, GM_RX_CTRL);
if (port->p_promisc) {
mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
} else {
mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}
/* Write the multicast filter. */
GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H1, mchash[0] & 0xffff);
GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H2, (mchash[0] >> 16) & 0xffff);
GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H3, mchash[1] & 0xffff);
GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H4, (mchash[1] >> 16) & 0xffff);
/* Write the receive filtering mode. */
GMAC_WRITE_2(dev, pnum, GM_RX_CTRL, mode);
}
static void
yge_init_rx_ring(yge_port_t *port)
{
yge_buf_t *rxb;
yge_ring_t *ring;
int prod;
port->p_rx_cons = 0;
port->p_rx_putwm = YGE_PUT_WM;
ring = &port->p_rx_ring;
/* ala bzero, but uses safer acch access */
CLEARRING(ring);
for (prod = 0; prod < YGE_RX_RING_CNT; prod++) {
/* Hang out receive buffers. */
rxb = &port->p_rx_buf[prod];
PUTADDR(ring, prod, rxb->b_paddr);
PUTCTRL(ring, prod, port->p_framesize | OP_PACKET | HW_OWNER);
}
SYNCRING(ring, DDI_DMA_SYNC_FORDEV);
yge_set_prefetch(port->p_dev, port->p_rxq, ring);
/* Update prefetch unit. */
CSR_WRITE_2(port->p_dev,
Y2_PREF_Q_ADDR(port->p_rxq, PREF_UNIT_PUT_IDX_REG),
YGE_RX_RING_CNT - 1);
}
static void
yge_init_tx_ring(yge_port_t *port)
{
yge_ring_t *ring = &port->p_tx_ring;
port->p_tx_prod = 0;
port->p_tx_cons = 0;
port->p_tx_cnt = 0;
CLEARRING(ring);
SYNCRING(ring, DDI_DMA_SYNC_FORDEV);
yge_set_prefetch(port->p_dev, port->p_txq, ring);
}
static void
yge_setup_rambuffer(yge_dev_t *dev)
{
int next;
int i;
/* Get adapter SRAM size. */
dev->d_ramsize = CSR_READ_1(dev, B2_E_0) * 4;
if (dev->d_ramsize == 0)
return;
dev->d_pflags |= PORT_FLAG_RAMBUF;
/*
* Give receiver 2/3 of memory and round down to the multiple
* of 1024. Tx/Rx RAM buffer size of Yukon 2 should be multiple
* of 1024.
*/
dev->d_rxqsize = (((dev->d_ramsize * 1024 * 2) / 3) & ~(1024 - 1));
dev->d_txqsize = (dev->d_ramsize * 1024) - dev->d_rxqsize;
for (i = 0, next = 0; i < dev->d_num_port; i++) {
dev->d_rxqstart[i] = next;
dev->d_rxqend[i] = next + dev->d_rxqsize - 1;
next = dev->d_rxqend[i] + 1;
dev->d_txqstart[i] = next;
dev->d_txqend[i] = next + dev->d_txqsize - 1;
next = dev->d_txqend[i] + 1;
}
}
static void
yge_phy_power(yge_dev_t *dev, boolean_t powerup)
{
uint32_t val;
int i;
if (powerup) {
/* Switch power to VCC (WA for VAUX problem). */
CSR_WRITE_1(dev, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* Disable Core Clock Division, set Clock Select to 0. */
CSR_WRITE_4(dev, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
val = 0;
if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
/* Enable bits are inverted. */
val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
}
/*
* Enable PCI & Core Clock, enable clock gating for both Links.
*/
CSR_WRITE_1(dev, B2_Y2_CLK_GATE, val);
val = pci_config_get32(dev->d_pcih, PCI_OUR_REG_1);
val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
/* Deassert Low Power for 1st PHY. */
val |= PCI_Y2_PHY1_COMA;
if (dev->d_num_port > 1)
val |= PCI_Y2_PHY2_COMA;
}
/* Release PHY from PowerDown/COMA mode. */
pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, val);
switch (dev->d_hw_id) {
case CHIP_ID_YUKON_EC_U:
case CHIP_ID_YUKON_EX:
case CHIP_ID_YUKON_FE_P: {
uint32_t our;
CSR_WRITE_2(dev, B0_CTST, Y2_HW_WOL_OFF);
/* Enable all clocks. */
pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
our = pci_config_get32(dev->d_pcih, PCI_OUR_REG_4);
our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
/* Set all bits to 0 except bits 15..12. */
pci_config_put32(dev->d_pcih, PCI_OUR_REG_4, our);
/* Set to default value. */
our = pci_config_get32(dev->d_pcih, PCI_OUR_REG_5);
our &= P_CTL_TIM_VMAIN_AV_MSK;
pci_config_put32(dev->d_pcih, PCI_OUR_REG_5, our);
pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, 0);
/*
* Enable workaround for dev 4.107 on Yukon-Ultra
* and Extreme
*/
our = CSR_READ_4(dev, B2_GP_IO);
our |= GLB_GPIO_STAT_RACE_DIS;
CSR_WRITE_4(dev, B2_GP_IO, our);
(void) CSR_READ_4(dev, B2_GP_IO);
break;
}
default:
break;
}
for (i = 0; i < dev->d_num_port; i++) {
CSR_WRITE_2(dev, MR_ADDR(i, GMAC_LINK_CTRL),
GMLC_RST_SET);
CSR_WRITE_2(dev, MR_ADDR(i, GMAC_LINK_CTRL),
GMLC_RST_CLR);
}
} else {
val = pci_config_get32(dev->d_pcih, PCI_OUR_REG_1);
if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
val &= ~PCI_Y2_PHY1_COMA;
if (dev->d_num_port > 1)
val &= ~PCI_Y2_PHY2_COMA;
val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
} else {
val |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
}
pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, val);
val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
/* Enable bits are inverted. */
val = 0;
}
/*
* Disable PCI & Core Clock, disable clock gating for
* both Links.
*/
CSR_WRITE_1(dev, B2_Y2_CLK_GATE, val);
CSR_WRITE_1(dev, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
}
}
static void
yge_reset(yge_dev_t *dev)
{
uint64_t addr;
uint16_t status;
uint32_t val;
int i;
ddi_acc_handle_t pcih = dev->d_pcih;
/* Turn off ASF */
if (dev->d_hw_id == CHIP_ID_YUKON_EX) {
status = CSR_READ_2(dev, B28_Y2_ASF_STAT_CMD);
/* Clear AHB bridge & microcontroller reset */
status &= ~Y2_ASF_CPU_MODE;
status &= ~Y2_ASF_AHB_RST;
/* Clear ASF microcontroller state */
status &= ~Y2_ASF_STAT_MSK;
CSR_WRITE_2(dev, B28_Y2_ASF_STAT_CMD, status);
} else {
CSR_WRITE_1(dev, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
}
CSR_WRITE_2(dev, B0_CTST, Y2_ASF_DISABLE);
/*
* Since we disabled ASF, S/W reset is required for Power Management.
*/
CSR_WRITE_1(dev, B0_CTST, CS_RST_SET);
CSR_WRITE_1(dev, B0_CTST, CS_RST_CLR);
/* Allow writes to PCI config space */
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
/* Clear all error bits in the PCI status register. */
status = pci_config_get16(pcih, PCI_CONF_STAT);
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
status |= (PCI_STAT_S_PERROR | PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB |
PCI_STAT_R_TARG_AB | PCI_STAT_PERROR);
pci_config_put16(pcih, PCI_CONF_STAT, status);
CSR_WRITE_1(dev, B0_CTST, CS_MRST_CLR);
switch (dev->d_bustype) {
case PEX_BUS:
/* Clear all PEX errors. */
CSR_PCI_WRITE_4(dev, Y2_CFG_AER + AER_UNCOR_ERR, 0xffffffff);
/* is error bit status stuck? */
val = CSR_PCI_READ_4(dev, PEX_UNC_ERR_STAT);
if ((val & PEX_RX_OV) != 0) {
dev->d_intrmask &= ~Y2_IS_HW_ERR;
dev->d_intrhwemask &= ~Y2_IS_PCI_EXP;
}
break;
case PCI_BUS:
/* Set Cache Line Size to 2 (8 bytes) if configured to 0. */
if (pci_config_get8(pcih, PCI_CONF_CACHE_LINESZ) == 0)
pci_config_put16(pcih, PCI_CONF_CACHE_LINESZ, 2);
break;
case PCIX_BUS:
/* Set Cache Line Size to 2 (8 bytes) if configured to 0. */
if (pci_config_get8(pcih, PCI_CONF_CACHE_LINESZ) == 0)
pci_config_put16(pcih, PCI_CONF_CACHE_LINESZ, 2);
/* Set Cache Line Size opt. */
val = pci_config_get32(pcih, PCI_OUR_REG_1);
val |= PCI_CLS_OPT;
pci_config_put32(pcih, PCI_OUR_REG_1, val);
break;
}
/* Set PHY power state. */
yge_phy_power(dev, B_TRUE);
/* Reset GPHY/GMAC Control */
for (i = 0; i < dev->d_num_port; i++) {
/* GPHY Control reset. */
CSR_WRITE_4(dev, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
CSR_WRITE_4(dev, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
/* GMAC Control reset. */
CSR_WRITE_4(dev, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
CSR_WRITE_4(dev, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
if (dev->d_hw_id == CHIP_ID_YUKON_EX ||
dev->d_hw_id == CHIP_ID_YUKON_SUPR) {
CSR_WRITE_2(dev, MR_ADDR(i, GMAC_CTRL),
(GMC_BYP_RETR_ON | GMC_BYP_MACSECRX_ON |
GMC_BYP_MACSECTX_ON));
}
CSR_WRITE_2(dev, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
}
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* LED On. */
CSR_WRITE_2(dev, B0_CTST, Y2_LED_STAT_ON);
/* Clear TWSI IRQ. */
CSR_WRITE_4(dev, B2_I2C_IRQ, I2C_CLR_IRQ);
/* Turn off hardware timer. */
CSR_WRITE_1(dev, B2_TI_CTRL, TIM_STOP);
CSR_WRITE_1(dev, B2_TI_CTRL, TIM_CLR_IRQ);
/* Turn off descriptor polling. */
CSR_WRITE_1(dev, B28_DPT_CTRL, DPT_STOP);
/* Turn off time stamps. */
CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_STOP);
CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
/* Don't permit config space writing */
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* enable TX Arbiters */
for (i = 0; i < dev->d_num_port; i++)
CSR_WRITE_1(dev, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB);
/* Configure timeout values. */
for (i = 0; i < dev->d_num_port; i++) {
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), RI_TO_53);
CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), RI_TO_53);
}
/* Disable all interrupts. */
CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
(void) CSR_READ_4(dev, B0_HWE_IMSK);
CSR_WRITE_4(dev, B0_IMSK, 0);
(void) CSR_READ_4(dev, B0_IMSK);
/*
* On dual port PCI-X card, there is an problem where status
* can be received out of order due to split transactions.
*/
if (dev->d_bustype == PCIX_BUS && dev->d_num_port > 1) {
int pcix;
uint16_t pcix_cmd;
if ((pcix = yge_find_capability(dev, PCI_CAP_ID_PCIX)) != 0) {
pcix_cmd = pci_config_get16(pcih, pcix + 2);
/* Clear Max Outstanding Split Transactions. */
pcix_cmd &= ~0x70;
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_config_put16(pcih, pcix + 2, pcix_cmd);
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
}
if (dev->d_bustype == PEX_BUS) {
uint16_t v, width;
v = pci_config_get16(pcih, PEX_DEV_CTRL);
/* Change Max. Read Request Size to 4096 bytes. */
v &= ~PEX_DC_MAX_RRS_MSK;
v |= PEX_DC_MAX_RD_RQ_SIZE(5);
pci_config_put16(pcih, PEX_DEV_CTRL, v);
width = pci_config_get16(pcih, PEX_LNK_STAT);
width = (width & PEX_LS_LINK_WI_MSK) >> 4;
v = pci_config_get16(pcih, PEX_LNK_CAP);
v = (v & PEX_LS_LINK_WI_MSK) >> 4;
if (v != width)
yge_error(dev, NULL,
"Negotiated width of PCIe link(x%d) != "
"max. width of link(x%d)\n", width, v);
}
/* Clear status list. */
CLEARRING(&dev->d_status_ring);
SYNCRING(&dev->d_status_ring, DDI_DMA_SYNC_FORDEV);
dev->d_stat_cons = 0;
CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_RST_SET);
CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_RST_CLR);
/* Set the status list base address. */
addr = dev->d_status_ring.r_paddr;
CSR_WRITE_4(dev, STAT_LIST_ADDR_LO, YGE_ADDR_LO(addr));
CSR_WRITE_4(dev, STAT_LIST_ADDR_HI, YGE_ADDR_HI(addr));
/* Set the status list last index. */
CSR_WRITE_2(dev, STAT_LAST_IDX, YGE_STAT_RING_CNT - 1);
CSR_WRITE_2(dev, STAT_PUT_IDX, 0);
if (dev->d_hw_id == CHIP_ID_YUKON_EC &&
dev->d_hw_rev == CHIP_REV_YU_EC_A1) {
/* WA for dev. #4.3 */
CSR_WRITE_2(dev, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
/* WA for dev #4.18 */
CSR_WRITE_1(dev, STAT_FIFO_WM, 0x21);
CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 7);
} else {
CSR_WRITE_2(dev, STAT_TX_IDX_TH, 10);
CSR_WRITE_1(dev, STAT_FIFO_WM, 16);
/* ISR status FIFO watermark */
if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
dev->d_hw_rev == CHIP_REV_YU_XL_A0)
CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 4);
else
CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 16);
CSR_WRITE_4(dev, STAT_ISR_TIMER_INI, 0x0190);
}
/*
* Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
*/
CSR_WRITE_4(dev, STAT_TX_TIMER_INI, YGE_USECS(dev, 1000));
/* Enable status unit. */
CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_OP_ON);
CSR_WRITE_1(dev, STAT_TX_TIMER_CTRL, TIM_START);
CSR_WRITE_1(dev, STAT_LEV_TIMER_CTRL, TIM_START);
CSR_WRITE_1(dev, STAT_ISR_TIMER_CTRL, TIM_START);
}
static int
yge_init_port(yge_port_t *port)
{
yge_dev_t *dev = port->p_dev;
int i;
mac_register_t *macp;
port->p_flags = dev->d_pflags;
port->p_ppa = ddi_get_instance(dev->d_dip) + (port->p_port * 100);
port->p_tx_buf = kmem_zalloc(sizeof (yge_buf_t) * YGE_TX_RING_CNT,
KM_SLEEP);
port->p_rx_buf = kmem_zalloc(sizeof (yge_buf_t) * YGE_RX_RING_CNT,
KM_SLEEP);
/* Setup Tx/Rx queue register offsets. */
if (port->p_port == YGE_PORT_A) {
port->p_txq = Q_XA1;
port->p_txsq = Q_XS1;
port->p_rxq = Q_R1;
} else {
port->p_txq = Q_XA2;
port->p_txsq = Q_XS2;
port->p_rxq = Q_R2;
}
/* Disable jumbo frame for Yukon FE. */
if (dev->d_hw_id == CHIP_ID_YUKON_FE)
port->p_flags |= PORT_FLAG_NOJUMBO;
/*
* Start out assuming a regular MTU. Users can change this
* with dladm. The dladm daemon is supposed to issue commands
* to change the default MTU using m_setprop during early boot
* (before the interface is plumbed) if the user has so
* requested.
*/
port->p_mtu = ETHERMTU;
port->p_mii = mii_alloc(port, dev->d_dip, &yge_mii_ops);
if (port->p_mii == NULL) {
yge_error(NULL, port, "MII handle allocation failed");
return (DDI_FAILURE);
}
/* We assume all parts support asymmetric pause */
mii_set_pauseable(port->p_mii, B_TRUE, B_TRUE);
/*
* Get station address for this interface. Note that
* dual port cards actually come with three station
* addresses: one for each port, plus an extra. The
* extra one is used by the SysKonnect driver software
* as a 'virtual' station address for when both ports
* are operating in failover mode. Currently we don't
* use this extra address.
*/
for (i = 0; i < ETHERADDRL; i++) {
port->p_curraddr[i] =
CSR_READ_1(dev, B2_MAC_1 + (port->p_port * 8) + i);
}
/* Register with Nemo. */
if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
yge_error(NULL, port, "MAC handle allocation failed");
return (DDI_FAILURE);
}
macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
macp->m_driver = port;
macp->m_dip = dev->d_dip;
macp->m_src_addr = port->p_curraddr;
macp->m_callbacks = &yge_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = port->p_mtu;
macp->m_instance = port->p_ppa;
macp->m_margin = VLAN_TAGSZ;
port->p_mreg = macp;
return (DDI_SUCCESS);
}
static int
yge_add_intr(yge_dev_t *dev, int intr_type)
{
dev_info_t *dip;
int count;
int actual;
int rv;
int i, j;
dip = dev->d_dip;
rv = ddi_intr_get_nintrs(dip, intr_type, &count);
if ((rv != DDI_SUCCESS) || (count == 0)) {
yge_error(dev, NULL,
"ddi_intr_get_nintrs failed, rv %d, count %d", rv, count);
return (DDI_FAILURE);
}
/*
* Allocate the interrupt. Note that we only bother with a single
* interrupt. One could argue that for MSI devices with dual ports,
* it would be nice to have a separate interrupt per port. But right
* now I don't know how to configure that, so we'll just settle for
* a single interrupt.
*/
dev->d_intrcnt = 1;
dev->d_intrsize = count * sizeof (ddi_intr_handle_t);
dev->d_intrh = kmem_zalloc(dev->d_intrsize, KM_SLEEP);
if (dev->d_intrh == NULL) {
yge_error(dev, NULL, "Unable to allocate interrupt handle");
return (DDI_FAILURE);
}
rv = ddi_intr_alloc(dip, dev->d_intrh, intr_type, 0, dev->d_intrcnt,
&actual, DDI_INTR_ALLOC_STRICT);
if ((rv != DDI_SUCCESS) || (actual == 0)) {
yge_error(dev, NULL,
"Unable to allocate interrupt, %d, count %d",
rv, actual);
kmem_free(dev->d_intrh, dev->d_intrsize);
return (DDI_FAILURE);
}
if ((rv = ddi_intr_get_pri(dev->d_intrh[0], &dev->d_intrpri)) !=
DDI_SUCCESS) {
for (i = 0; i < dev->d_intrcnt; i++)
(void) ddi_intr_free(dev->d_intrh[i]);
yge_error(dev, NULL,
"Unable to get interrupt priority, %d", rv);
kmem_free(dev->d_intrh, dev->d_intrsize);
return (DDI_FAILURE);
}
if ((rv = ddi_intr_get_cap(dev->d_intrh[0], &dev->d_intrcap)) !=
DDI_SUCCESS) {
yge_error(dev, NULL,
"Unable to get interrupt capabilities, %d", rv);
for (i = 0; i < dev->d_intrcnt; i++)
(void) ddi_intr_free(dev->d_intrh[i]);
kmem_free(dev->d_intrh, dev->d_intrsize);
return (DDI_FAILURE);
}
/* register interrupt handler to kernel */
for (i = 0; i < dev->d_intrcnt; i++) {
if ((rv = ddi_intr_add_handler(dev->d_intrh[i], yge_intr,
dev, NULL)) != DDI_SUCCESS) {
yge_error(dev, NULL,
"Unable to add interrupt handler, %d", rv);
for (j = 0; j < i; j++)
(void) ddi_intr_remove_handler(dev->d_intrh[j]);
for (i = 0; i < dev->d_intrcnt; i++)
(void) ddi_intr_free(dev->d_intrh[i]);
kmem_free(dev->d_intrh, dev->d_intrsize);
return (DDI_FAILURE);
}
}
mutex_init(&dev->d_rxlock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(dev->d_intrpri));
mutex_init(&dev->d_txlock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(dev->d_intrpri));
mutex_init(&dev->d_phylock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(dev->d_intrpri));
mutex_init(&dev->d_task_mtx, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(dev->d_intrpri));
return (DDI_SUCCESS);
}
static int
yge_attach_intr(yge_dev_t *dev)
{
dev_info_t *dip = dev->d_dip;
int intr_types;
int rv;
/* Allocate IRQ resources. */
rv = ddi_intr_get_supported_types(dip, &intr_types);
if (rv != DDI_SUCCESS) {
yge_error(dev, NULL,
"Unable to determine supported interrupt types, %d", rv);
return (DDI_FAILURE);
}
/*
* We default to not supporting MSI. We've found some device
* and motherboard combinations don't always work well with
* MSI interrupts. Users may override this if they choose.
*/
if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "msi_enable", 0) == 0) {
/* If msi disable property present, disable both msix/msi. */
if (intr_types & DDI_INTR_TYPE_FIXED) {
intr_types &= ~(DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX);
}
}
if (intr_types & DDI_INTR_TYPE_MSIX) {
if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_MSIX)) ==
DDI_SUCCESS)
return (DDI_SUCCESS);
}
if (intr_types & DDI_INTR_TYPE_MSI) {
if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_MSI)) ==
DDI_SUCCESS)
return (DDI_SUCCESS);
}
if (intr_types & DDI_INTR_TYPE_FIXED) {
if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_FIXED)) ==
DDI_SUCCESS)
return (DDI_SUCCESS);
}
yge_error(dev, NULL, "Unable to configure any interrupts");
return (DDI_FAILURE);
}
static void
yge_intr_enable(yge_dev_t *dev)
{
int i;
if (dev->d_intrcap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_enable() for MSI interrupts */
(void) ddi_intr_block_enable(dev->d_intrh, dev->d_intrcnt);
} else {
/* Call ddi_intr_enable for FIXED interrupts */
for (i = 0; i < dev->d_intrcnt; i++)
(void) ddi_intr_enable(dev->d_intrh[i]);
}
}
void
yge_intr_disable(yge_dev_t *dev)
{
int i;
if (dev->d_intrcap & DDI_INTR_FLAG_BLOCK) {
(void) ddi_intr_block_disable(dev->d_intrh, dev->d_intrcnt);
} else {
for (i = 0; i < dev->d_intrcnt; i++)
(void) ddi_intr_disable(dev->d_intrh[i]);
}
}
static uint8_t
yge_find_capability(yge_dev_t *dev, uint8_t cap)
{
uint8_t ptr;
uint16_t capit;
ddi_acc_handle_t pcih = dev->d_pcih;
if ((pci_config_get16(pcih, PCI_CONF_STAT) & PCI_STAT_CAP) == 0) {
return (0);
}
/* This assumes PCI, and not CardBus. */
ptr = pci_config_get8(pcih, PCI_CONF_CAP_PTR);
while (ptr != 0) {
capit = pci_config_get8(pcih, ptr + PCI_CAP_ID);
if (capit == cap) {
return (ptr);
}
ptr = pci_config_get8(pcih, ptr + PCI_CAP_NEXT_PTR);
}
return (0);
}
static int
yge_attach(yge_dev_t *dev)
{
dev_info_t *dip = dev->d_dip;
int rv;
int nattached;
uint8_t pm_cap;
if (pci_config_setup(dip, &dev->d_pcih) != DDI_SUCCESS) {
yge_error(dev, NULL, "Unable to map PCI configuration space");
goto fail;
}
/*
* Map control/status registers.
*/
/* ensure the pmcsr status is D0 state */
pm_cap = yge_find_capability(dev, PCI_CAP_ID_PM);
if (pm_cap != 0) {
uint16_t pmcsr;
pmcsr = pci_config_get16(dev->d_pcih, pm_cap + PCI_PMCSR);
pmcsr &= ~PCI_PMCSR_STATE_MASK;
pci_config_put16(dev->d_pcih, pm_cap + PCI_PMCSR,
pmcsr | PCI_PMCSR_D0);
}
/* Enable PCI access and bus master. */
pci_config_put16(dev->d_pcih, PCI_CONF_COMM,
pci_config_get16(dev->d_pcih, PCI_CONF_COMM) |
PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME);
/* Allocate I/O resource */
rv = ddi_regs_map_setup(dip, 1, &dev->d_regs, 0, 0, &yge_regs_attr,
&dev->d_regsh);
if (rv != DDI_SUCCESS) {
yge_error(dev, NULL, "Unable to map device registers");
goto fail;
}
/* Enable all clocks. */
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
CSR_WRITE_2(dev, B0_CTST, CS_RST_CLR);
dev->d_hw_id = CSR_READ_1(dev, B2_CHIP_ID);
dev->d_hw_rev = (CSR_READ_1(dev, B2_MAC_CFG) >> 4) & 0x0f;
/*
* Bail out if chip is not recognized. Note that we only enforce
* this in production builds. The Ultra-2 (88e8057) has a problem
* right now where TX works fine, but RX seems not to. So we've
* disabled that for now.
*/
if (dev->d_hw_id < CHIP_ID_YUKON_XL ||
dev->d_hw_id >= CHIP_ID_YUKON_UL_2) {
yge_error(dev, NULL, "Unknown device: id=0x%02x, rev=0x%02x",
dev->d_hw_id, dev->d_hw_rev);
#ifndef DEBUG
goto fail;
#endif
}
/* Soft reset. */
CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
CSR_WRITE_2(dev, B0_CTST, CS_RST_CLR);
dev->d_pmd = CSR_READ_1(dev, B2_PMD_TYP);
if (dev->d_pmd == 'L' || dev->d_pmd == 'S' || dev->d_pmd == 'P')
dev->d_coppertype = 0;
else
dev->d_coppertype = 1;
/* Check number of MACs. */
dev->d_num_port = 1;
if ((CSR_READ_1(dev, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
CFG_DUAL_MAC_MSK) {
if (!(CSR_READ_1(dev, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
dev->d_num_port++;
}
/* Check bus type. */
if (yge_find_capability(dev, PCI_CAP_ID_PCI_E) != 0) {
dev->d_bustype = PEX_BUS;
} else if (yge_find_capability(dev, PCI_CAP_ID_PCIX) != 0) {
dev->d_bustype = PCIX_BUS;
} else {
dev->d_bustype = PCI_BUS;
}
switch (dev->d_hw_id) {
case CHIP_ID_YUKON_EC:
dev->d_clock = 125; /* 125 Mhz */
break;
case CHIP_ID_YUKON_UL_2:
dev->d_clock = 125; /* 125 Mhz */
break;
case CHIP_ID_YUKON_SUPR:
dev->d_clock = 125; /* 125 Mhz */
break;
case CHIP_ID_YUKON_EC_U:
dev->d_clock = 125; /* 125 Mhz */
break;
case CHIP_ID_YUKON_EX:
dev->d_clock = 125; /* 125 Mhz */
break;
case CHIP_ID_YUKON_FE:
dev->d_clock = 100; /* 100 Mhz */
break;
case CHIP_ID_YUKON_FE_P:
dev->d_clock = 50; /* 50 Mhz */
break;
case CHIP_ID_YUKON_XL:
dev->d_clock = 156; /* 156 Mhz */
break;
default:
dev->d_clock = 156; /* 156 Mhz */
break;
}
dev->d_process_limit = YGE_RX_RING_CNT/2;
rv = yge_alloc_ring(NULL, dev, &dev->d_status_ring, YGE_STAT_RING_CNT);
if (rv != DDI_SUCCESS)
goto fail;
/* Setup event taskq. */
dev->d_task_q = ddi_taskq_create(dip, "tq", 1, TASKQ_DEFAULTPRI, 0);
if (dev->d_task_q == NULL) {
yge_error(dev, NULL, "failed to create taskq");
goto fail;
}
/* Init the condition variable */
cv_init(&dev->d_task_cv, NULL, CV_DRIVER, NULL);
/* Allocate IRQ resources. */
if ((rv = yge_attach_intr(dev)) != DDI_SUCCESS) {
goto fail;
}
/* Set base interrupt mask. */
dev->d_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
dev->d_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
/* Reset the adapter. */
yge_reset(dev);
yge_setup_rambuffer(dev);
nattached = 0;
for (int i = 0; i < dev->d_num_port; i++) {
yge_port_t *port = dev->d_port[i];
if (yge_init_port(port) != DDI_SUCCESS) {
goto fail;
}
}
yge_intr_enable(dev);
/* set up the periodic to run once per second */
dev->d_periodic = ddi_periodic_add(yge_tick, dev, 1000000000, 0);
for (int i = 0; i < dev->d_num_port; i++) {
yge_port_t *port = dev->d_port[i];
if (yge_register_port(port) == DDI_SUCCESS) {
nattached++;
}
}
if (nattached == 0) {
goto fail;
}
/* Dispatch the taskq */
if (ddi_taskq_dispatch(dev->d_task_q, yge_task, dev, DDI_SLEEP) !=
DDI_SUCCESS) {
yge_error(dev, NULL, "failed to start taskq");
goto fail;
}
ddi_report_dev(dip);
return (DDI_SUCCESS);
fail:
yge_detach(dev);
return (DDI_FAILURE);
}
static int
yge_register_port(yge_port_t *port)
{
if (mac_register(port->p_mreg, &port->p_mh) != DDI_SUCCESS) {
yge_error(NULL, port, "MAC registration failed");
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
static int
yge_unregister_port(yge_port_t *port)
{
if ((port->p_mh) && (mac_unregister(port->p_mh) != 0)) {
return (DDI_FAILURE);
}
port->p_mh = NULL;
return (DDI_SUCCESS);
}
/*
* Free up port specific resources. This is called only when the
* port is not registered (and hence not running).
*/
static void
yge_uninit_port(yge_port_t *port)
{
ASSERT(!port->p_running);
if (port->p_mreg)
mac_free(port->p_mreg);
if (port->p_mii)
mii_free(port->p_mii);
yge_txrx_dma_free(port);
if (port->p_tx_buf)
kmem_free(port->p_tx_buf,
sizeof (yge_buf_t) * YGE_TX_RING_CNT);
if (port->p_rx_buf)
kmem_free(port->p_rx_buf,
sizeof (yge_buf_t) * YGE_RX_RING_CNT);
}
static void
yge_detach(yge_dev_t *dev)
{
/*
* Turn off the periodic.
*/
if (dev->d_periodic)
ddi_periodic_delete(dev->d_periodic);
for (int i = 0; i < dev->d_num_port; i++) {
yge_uninit_port(dev->d_port[i]);
}
/*
* Make sure all interrupts are disabled.
*/
CSR_WRITE_4(dev, B0_IMSK, 0);
(void) CSR_READ_4(dev, B0_IMSK);
CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
(void) CSR_READ_4(dev, B0_HWE_IMSK);
/* LED Off. */
CSR_WRITE_2(dev, B0_CTST, Y2_LED_STAT_OFF);
/* Put hardware reset. */
CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
yge_free_ring(&dev->d_status_ring);
if (dev->d_task_q != NULL) {
yge_dispatch(dev, YGE_TASK_EXIT);
ddi_taskq_destroy(dev->d_task_q);
dev->d_task_q = NULL;
}
cv_destroy(&dev->d_task_cv);
yge_intr_disable(dev);
if (dev->d_intrh != NULL) {
for (int i = 0; i < dev->d_intrcnt; i++) {
(void) ddi_intr_remove_handler(dev->d_intrh[i]);
(void) ddi_intr_free(dev->d_intrh[i]);
}
kmem_free(dev->d_intrh, dev->d_intrsize);
mutex_destroy(&dev->d_phylock);
mutex_destroy(&dev->d_txlock);
mutex_destroy(&dev->d_rxlock);
mutex_destroy(&dev->d_task_mtx);
}
if (dev->d_regsh != NULL)
ddi_regs_map_free(&dev->d_regsh);
if (dev->d_pcih != NULL)
pci_config_teardown(&dev->d_pcih);
}
static int
yge_alloc_ring(yge_port_t *port, yge_dev_t *dev, yge_ring_t *ring, uint32_t num)
{
dev_info_t *dip;
caddr_t kaddr;
size_t len;
int rv;
ddi_dma_cookie_t dmac;
unsigned ndmac;
if (port && !dev)
dev = port->p_dev;
dip = dev->d_dip;
ring->r_num = num;
rv = ddi_dma_alloc_handle(dip, &yge_ring_dma_attr, DDI_DMA_DONTWAIT,
NULL, &ring->r_dmah);
if (rv != DDI_SUCCESS) {
yge_error(dev, port, "Unable to allocate ring DMA handle");
return (DDI_FAILURE);
}
rv = ddi_dma_mem_alloc(ring->r_dmah, num * sizeof (yge_desc_t),
&yge_ring_attr, DDI_DMA_CONSISTENT, DDI_DMA_DONTWAIT, NULL,
&kaddr, &len, &ring->r_acch);
if (rv != DDI_SUCCESS) {
yge_error(dev, port, "Unable to allocate ring DMA memory");
return (DDI_FAILURE);
}
ring->r_size = len;
ring->r_kaddr = (void *)kaddr;
bzero(kaddr, len);
rv = ddi_dma_addr_bind_handle(ring->r_dmah, NULL, kaddr,
len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
&dmac, &ndmac);
if (rv != DDI_DMA_MAPPED) {
yge_error(dev, port, "Unable to bind ring DMA handle");
return (DDI_FAILURE);
}
ASSERT(ndmac == 1);
ring->r_paddr = dmac.dmac_address;
return (DDI_SUCCESS);
}
static void
yge_free_ring(yge_ring_t *ring)
{
if (ring->r_paddr)
(void) ddi_dma_unbind_handle(ring->r_dmah);
ring->r_paddr = 0;
if (ring->r_acch)
ddi_dma_mem_free(&ring->r_acch);
ring->r_kaddr = NULL;
ring->r_acch = NULL;
if (ring->r_dmah)
ddi_dma_free_handle(&ring->r_dmah);
ring->r_dmah = NULL;
}
static int
yge_alloc_buf(yge_port_t *port, yge_buf_t *b, size_t bufsz, int flag)
{
yge_dev_t *dev = port->p_dev;
size_t l;
int sflag;
int rv;
ddi_dma_cookie_t dmac;
unsigned ndmac;
sflag = flag & (DDI_DMA_STREAMING | DDI_DMA_CONSISTENT);
/* Now allocate Tx buffers. */
rv = ddi_dma_alloc_handle(dev->d_dip, &yge_buf_dma_attr,
DDI_DMA_DONTWAIT, NULL, &b->b_dmah);
if (rv != DDI_SUCCESS) {
yge_error(NULL, port, "Unable to alloc DMA handle for buffer");
return (DDI_FAILURE);
}
rv = ddi_dma_mem_alloc(b->b_dmah, bufsz, &yge_buf_attr,
sflag, DDI_DMA_DONTWAIT, NULL, &b->b_buf, &l, &b->b_acch);
if (rv != DDI_SUCCESS) {
yge_error(NULL, port, "Unable to alloc DMA memory for buffer");
return (DDI_FAILURE);
}
rv = ddi_dma_addr_bind_handle(b->b_dmah, NULL, b->b_buf, l, flag,
DDI_DMA_DONTWAIT, NULL, &dmac, &ndmac);
if (rv != DDI_DMA_MAPPED) {
yge_error(NULL, port, "Unable to bind DMA handle for buffer");
return (DDI_FAILURE);
}
ASSERT(ndmac == 1);
b->b_paddr = dmac.dmac_address;
return (DDI_SUCCESS);
}
static void
yge_free_buf(yge_buf_t *b)
{
if (b->b_paddr)
(void) ddi_dma_unbind_handle(b->b_dmah);
b->b_paddr = 0;
if (b->b_acch)
ddi_dma_mem_free(&b->b_acch);
b->b_buf = NULL;
b->b_acch = NULL;
if (b->b_dmah)
ddi_dma_free_handle(&b->b_dmah);
b->b_dmah = NULL;
}
static int
yge_txrx_dma_alloc(yge_port_t *port)
{
uint32_t bufsz;
int rv;
int i;
yge_buf_t *b;
/*
* It seems that Yukon II supports full 64 bit DMA operations.
* But we limit it to 32 bits only for now. The 64 bit
* operation would require substantially more complex
* descriptor handling, since in such a case we would need two
* LEs to represent a single physical address.
*
* If we find that this is limiting us, then we should go back
* and re-examine it.
*/
/* Note our preferred buffer size. */
bufsz = port->p_mtu;
/* Allocate Tx ring. */
rv = yge_alloc_ring(port, NULL, &port->p_tx_ring, YGE_TX_RING_CNT);
if (rv != DDI_SUCCESS) {
return (DDI_FAILURE);
}
/* Now allocate Tx buffers. */
b = port->p_tx_buf;
for (i = 0; i < YGE_TX_RING_CNT; i++) {
rv = yge_alloc_buf(port, b, bufsz,
DDI_DMA_STREAMING | DDI_DMA_WRITE);
if (rv != DDI_SUCCESS) {
return (DDI_FAILURE);
}
b++;
}
/* Allocate Rx ring. */
rv = yge_alloc_ring(port, NULL, &port->p_rx_ring, YGE_RX_RING_CNT);
if (rv != DDI_SUCCESS) {
return (DDI_FAILURE);
}
/* Now allocate Rx buffers. */
b = port->p_rx_buf;
for (i = 0; i < YGE_RX_RING_CNT; i++) {
rv = yge_alloc_buf(port, b, bufsz,
DDI_DMA_STREAMING | DDI_DMA_READ);
if (rv != DDI_SUCCESS) {
return (DDI_FAILURE);
}
b++;
}
return (DDI_SUCCESS);
}
static void
yge_txrx_dma_free(yge_port_t *port)
{
yge_buf_t *b;
/* Tx ring. */
yge_free_ring(&port->p_tx_ring);
/* Rx ring. */
yge_free_ring(&port->p_rx_ring);
/* Tx buffers. */
b = port->p_tx_buf;
for (int i = 0; i < YGE_TX_RING_CNT; i++, b++) {
yge_free_buf(b);
}
/* Rx buffers. */
b = port->p_rx_buf;
for (int i = 0; i < YGE_RX_RING_CNT; i++, b++) {
yge_free_buf(b);
}
}
boolean_t
yge_send(yge_port_t *port, mblk_t *mp)
{
yge_ring_t *ring = &port->p_tx_ring;
yge_buf_t *txb;
int16_t prod;
size_t len;
/*
* For now we're not going to support checksum offload or LSO.
*/
len = msgsize(mp);
if (len > port->p_framesize) {
/* too big! */
freemsg(mp);
return (B_TRUE);
}
/* Check number of available descriptors. */
if (port->p_tx_cnt + 1 >=
(YGE_TX_RING_CNT - YGE_RESERVED_TX_DESC_CNT)) {
port->p_wantw = B_TRUE;
return (B_FALSE);
}
prod = port->p_tx_prod;
txb = &port->p_tx_buf[prod];
mcopymsg(mp, txb->b_buf);
SYNCBUF(txb, DDI_DMA_SYNC_FORDEV);
PUTADDR(ring, prod, txb->b_paddr);
PUTCTRL(ring, prod, len | OP_PACKET | HW_OWNER | EOP);
SYNCENTRY(ring, prod, DDI_DMA_SYNC_FORDEV);
port->p_tx_cnt++;
YGE_INC(prod, YGE_TX_RING_CNT);
/* Update producer index. */
port->p_tx_prod = prod;
return (B_TRUE);
}
static int
yge_suspend(yge_dev_t *dev)
{
for (int i = 0; i < dev->d_num_port; i++) {
yge_port_t *port = dev->d_port[i];
mii_suspend(port->p_mii);
}
DEV_LOCK(dev);
for (int i = 0; i < dev->d_num_port; i++) {
yge_port_t *port = dev->d_port[i];
if (port->p_running) {
yge_stop_port(port);
}
}
/* Disable all interrupts. */
CSR_WRITE_4(dev, B0_IMSK, 0);
(void) CSR_READ_4(dev, B0_IMSK);
CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
(void) CSR_READ_4(dev, B0_HWE_IMSK);
yge_phy_power(dev, B_FALSE);
/* Put hardware reset. */
CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
dev->d_suspended = B_TRUE;
DEV_UNLOCK(dev);
return (DDI_SUCCESS);
}
static int
yge_resume(yge_dev_t *dev)
{
uint8_t pm_cap;
DEV_LOCK(dev);
/* ensure the pmcsr status is D0 state */
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
if ((pm_cap = yge_find_capability(dev, PCI_CAP_ID_PM)) != 0) {
uint16_t pmcsr;
pmcsr = pci_config_get16(dev->d_pcih, pm_cap + PCI_PMCSR);
pmcsr &= ~PCI_PMCSR_STATE_MASK;
pci_config_put16(dev->d_pcih, pm_cap + PCI_PMCSR,
pmcsr | PCI_PMCSR_D0);
}
/* Enable PCI access and bus master. */
pci_config_put16(dev->d_pcih, PCI_CONF_COMM,
pci_config_get16(dev->d_pcih, PCI_CONF_COMM) |
PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME);
/* Enable all clocks. */
switch (dev->d_hw_id) {
case CHIP_ID_YUKON_EX:
case CHIP_ID_YUKON_EC_U:
case CHIP_ID_YUKON_FE_P:
pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
break;
}
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
yge_reset(dev);
/* Make sure interrupts are reenabled */
CSR_WRITE_4(dev, B0_IMSK, 0);
CSR_WRITE_4(dev, B0_IMSK, Y2_IS_HW_ERR | Y2_IS_STAT_BMU);
CSR_WRITE_4(dev, B0_HWE_IMSK,
Y2_IS_TIST_OV | Y2_IS_MST_ERR |
Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP);
for (int i = 0; i < dev->d_num_port; i++) {
yge_port_t *port = dev->d_port[i];
if (port != NULL && port->p_running) {
yge_start_port(port);
}
}
dev->d_suspended = B_FALSE;
DEV_UNLOCK(dev);
/* Reset MII layer */
for (int i = 0; i < dev->d_num_port; i++) {
yge_port_t *port = dev->d_port[i];
if (port->p_running) {
mii_resume(port->p_mii);
mac_tx_update(port->p_mh);
}
}
return (DDI_SUCCESS);
}
static mblk_t *
yge_rxeof(yge_port_t *port, uint32_t status, int len)
{
yge_dev_t *dev = port->p_dev;
mblk_t *mp;
int cons, rxlen;
yge_buf_t *rxb;
yge_ring_t *ring;
ASSERT(mutex_owned(&dev->d_rxlock));
if (!port->p_running)
return (NULL);
ring = &port->p_rx_ring;
cons = port->p_rx_cons;
rxlen = status >> 16;
rxb = &port->p_rx_buf[cons];
mp = NULL;
if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
(dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
/*
* Apparently the status for this chip is not reliable.
* Only perform minimal consistency checking; the MAC
* and upper protocols will have to filter any garbage.
*/
if ((len > port->p_framesize) || (rxlen != len)) {
goto bad;
}
} else {
if ((len > port->p_framesize) || (rxlen != len) ||
((status & GMR_FS_ANY_ERR) != 0) ||
((status & GMR_FS_RX_OK) == 0)) {
goto bad;
}
}
if ((mp = allocb(len + YGE_HEADROOM, BPRI_HI)) != NULL) {
/* good packet - yay */
mp->b_rptr += YGE_HEADROOM;
SYNCBUF(rxb, DDI_DMA_SYNC_FORKERNEL);
bcopy(rxb->b_buf, mp->b_rptr, len);
mp->b_wptr = mp->b_rptr + len;
} else {
port->p_stats.rx_nobuf++;
}
bad:
PUTCTRL(ring, cons, port->p_framesize | OP_PACKET | HW_OWNER);
SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORDEV);
CSR_WRITE_2(dev,
Y2_PREF_Q_ADDR(port->p_rxq, PREF_UNIT_PUT_IDX_REG),
cons);
YGE_INC(port->p_rx_cons, YGE_RX_RING_CNT);
return (mp);
}
static boolean_t
yge_txeof_locked(yge_port_t *port, int idx)
{
int prog;
int16_t cons;
boolean_t resched;
if (!port->p_running) {
return (B_FALSE);
}
cons = port->p_tx_cons;
prog = 0;
for (; cons != idx; YGE_INC(cons, YGE_TX_RING_CNT)) {
if (port->p_tx_cnt <= 0)
break;
prog++;
port->p_tx_cnt--;
/* No need to sync LEs as we didn't update LEs. */
}
port->p_tx_cons = cons;
if (prog > 0) {
resched = port->p_wantw;
port->p_tx_wdog = 0;
port->p_wantw = B_FALSE;
return (resched);
} else {
return (B_FALSE);
}
}
static void
yge_txeof(yge_port_t *port, int idx)
{
boolean_t resched;
TX_LOCK(port->p_dev);
resched = yge_txeof_locked(port, idx);
TX_UNLOCK(port->p_dev);
if (resched && port->p_running) {
mac_tx_update(port->p_mh);
}
}
static void
yge_restart_task(yge_dev_t *dev)
{
yge_port_t *port;
DEV_LOCK(dev);
/* Cancel pending I/O and free all Rx/Tx buffers. */
for (int i = 0; i < dev->d_num_port; i++) {
port = dev->d_port[i];
if (port->p_running)
yge_stop_port(dev->d_port[i]);
}
yge_reset(dev);
for (int i = 0; i < dev->d_num_port; i++) {
port = dev->d_port[i];
if (port->p_running)
yge_start_port(port);
}
DEV_UNLOCK(dev);
for (int i = 0; i < dev->d_num_port; i++) {
port = dev->d_port[i];
mii_reset(port->p_mii);
if (port->p_running)
mac_tx_update(port->p_mh);
}
}
static void
yge_tick(void *arg)
{
yge_dev_t *dev = arg;
yge_port_t *port;
boolean_t restart = B_FALSE;
boolean_t resched = B_FALSE;
int idx;
DEV_LOCK(dev);
if (dev->d_suspended) {
DEV_UNLOCK(dev);
return;
}
for (int i = 0; i < dev->d_num_port; i++) {
port = dev->d_port[i];
if (!port->p_running)
continue;
if (port->p_tx_cnt) {
uint32_t ridx;
/*
* Reclaim first as there is a possibility of losing
* Tx completion interrupts.
*/
ridx = port->p_port == YGE_PORT_A ?
STAT_TXA1_RIDX : STAT_TXA2_RIDX;
idx = CSR_READ_2(dev, ridx);
if (port->p_tx_cons != idx) {
resched = yge_txeof_locked(port, idx);
} else {
/* detect TX hang */
port->p_tx_wdog++;
if (port->p_tx_wdog > YGE_TX_TIMEOUT) {
port->p_tx_wdog = 0;
yge_error(NULL, port,
"TX hang detected!");
restart = B_TRUE;
}
}
}
}
DEV_UNLOCK(dev);
if (restart) {
yge_dispatch(dev, YGE_TASK_RESTART);
} else {
if (resched) {
for (int i = 0; i < dev->d_num_port; i++) {
port = dev->d_port[i];
if (port->p_running)
mac_tx_update(port->p_mh);
}
}
}
}
static int
yge_intr_gmac(yge_port_t *port)
{
yge_dev_t *dev = port->p_dev;
int pnum = port->p_port;
uint8_t status;
int dispatch_wrk = 0;
status = CSR_READ_1(dev, MR_ADDR(pnum, GMAC_IRQ_SRC));
/* GMAC Rx FIFO overrun. */
if ((status & GM_IS_RX_FF_OR) != 0) {
CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
yge_error(NULL, port, "Rx FIFO overrun!");
dispatch_wrk |= YGE_TASK_RESTART;
}
/* GMAC Tx FIFO underrun. */
if ((status & GM_IS_TX_FF_UR) != 0) {
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
yge_error(NULL, port, "Tx FIFO underrun!");
/*
* In case of Tx underrun, we may need to flush/reset
* Tx MAC but that would also require
* resynchronization with status LEs. Reinitializing
* status LEs would affect the other port in dual MAC
* configuration so it should be avoided if we can.
* Due to lack of documentation it's all vague guess
* but it needs more investigation.
*/
}
return (dispatch_wrk);
}
static void
yge_handle_hwerr(yge_port_t *port, uint32_t status)
{
yge_dev_t *dev = port->p_dev;
if ((status & Y2_IS_PAR_RD1) != 0) {
yge_error(NULL, port, "RAM buffer read parity error");
/* Clear IRQ. */
CSR_WRITE_2(dev, SELECT_RAM_BUFFER(port->p_port, B3_RI_CTRL),
RI_CLR_RD_PERR);
}
if ((status & Y2_IS_PAR_WR1) != 0) {
yge_error(NULL, port, "RAM buffer write parity error");
/* Clear IRQ. */
CSR_WRITE_2(dev, SELECT_RAM_BUFFER(port->p_port, B3_RI_CTRL),
RI_CLR_WR_PERR);
}
if ((status & Y2_IS_PAR_MAC1) != 0) {
yge_error(NULL, port, "Tx MAC parity error");
/* Clear IRQ. */
CSR_WRITE_4(dev, MR_ADDR(port->p_port, TX_GMF_CTRL_T),
GMF_CLI_TX_PE);
}
if ((status & Y2_IS_PAR_RX1) != 0) {
yge_error(NULL, port, "Rx parity error");
/* Clear IRQ. */
CSR_WRITE_4(dev, Q_ADDR(port->p_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
}
if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
yge_error(NULL, port, "TCP segmentation error");
/* Clear IRQ. */
CSR_WRITE_4(dev, Q_ADDR(port->p_txq, Q_CSR), BMU_CLR_IRQ_TCP);
}
}
static void
yge_intr_hwerr(yge_dev_t *dev)
{
uint32_t status;
uint32_t tlphead[4];
status = CSR_READ_4(dev, B0_HWE_ISRC);
/* Time Stamp timer overflow. */
if ((status & Y2_IS_TIST_OV) != 0)
CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
if ((status & Y2_IS_PCI_NEXP) != 0) {
/*
* PCI Express Error occurred which is not described in PEX
* spec.
* This error is also mapped either to Master Abort(
* Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
* can only be cleared there.
*/
yge_error(dev, NULL, "PCI Express protocol violation error");
}
if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
uint16_t v16;
if ((status & Y2_IS_IRQ_STAT) != 0)
yge_error(dev, NULL, "Unexpected IRQ Status error");
if ((status & Y2_IS_MST_ERR) != 0)
yge_error(dev, NULL, "Unexpected IRQ Master error");
/* Reset all bits in the PCI status register. */
v16 = pci_config_get16(dev->d_pcih, PCI_CONF_STAT);
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_config_put16(dev->d_pcih, PCI_CONF_STAT, v16 |
PCI_STAT_S_PERROR | PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB |
PCI_STAT_R_TARG_AB | PCI_STAT_PERROR);
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
/* Check for PCI Express Uncorrectable Error. */
if ((status & Y2_IS_PCI_EXP) != 0) {
uint32_t v32;
/*
* On PCI Express bus bridges are called root complexes (RC).
* PCI Express errors are recognized by the root complex too,
* which requests the system to handle the problem. After
* error occurrence it may be that no access to the adapter
* may be performed any longer.
*/
v32 = CSR_PCI_READ_4(dev, PEX_UNC_ERR_STAT);
if ((v32 & PEX_UNSUP_REQ) != 0) {
/* Ignore unsupported request error. */
yge_error(dev, NULL,
"Uncorrectable PCI Express error");
}
if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
int i;
/* Get TLP header form Log Registers. */
for (i = 0; i < 4; i++)
tlphead[i] = CSR_PCI_READ_4(dev,
PEX_HEADER_LOG + i * 4);
/* Check for vendor defined broadcast message. */
if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
dev->d_intrhwemask &= ~Y2_IS_PCI_EXP;
CSR_WRITE_4(dev, B0_HWE_IMSK,
dev->d_intrhwemask);
(void) CSR_READ_4(dev, B0_HWE_IMSK);
}
}
/* Clear the interrupt. */
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
CSR_PCI_WRITE_4(dev, PEX_UNC_ERR_STAT, 0xffffffff);
CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
if ((status & Y2_HWE_L1_MASK) != 0 && dev->d_port[YGE_PORT_A] != NULL)
yge_handle_hwerr(dev->d_port[YGE_PORT_A], status);
if ((status & Y2_HWE_L2_MASK) != 0 && dev->d_port[YGE_PORT_B] != NULL)
yge_handle_hwerr(dev->d_port[YGE_PORT_B], status >> 8);
}
/*
* Returns B_TRUE if there is potentially more work to do.
*/
static boolean_t
yge_handle_events(yge_dev_t *dev, mblk_t **heads, mblk_t **tails, int *txindex)
{
yge_port_t *port;
yge_ring_t *ring;
uint32_t control, status;
int cons, idx, len, pnum;
mblk_t *mp;
uint32_t rxprogs[2];
rxprogs[0] = rxprogs[1] = 0;
idx = CSR_READ_2(dev, STAT_PUT_IDX);
if (idx == dev->d_stat_cons) {
return (B_FALSE);
}
ring = &dev->d_status_ring;
for (cons = dev->d_stat_cons; cons != idx; ) {
/* Sync status LE. */
SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORKERNEL);
control = GETCTRL(ring, cons);
if ((control & HW_OWNER) == 0) {
yge_error(dev, NULL, "Status descriptor error: "
"index %d, control %x", cons, control);
break;
}
status = GETSTAT(ring, cons);
control &= ~HW_OWNER;
len = control & STLE_LEN_MASK;
pnum = ((control >> 16) & 0x01);
port = dev->d_port[pnum];
if (port == NULL) {
yge_error(dev, NULL, "Invalid port opcode: 0x%08x",
control & STLE_OP_MASK);
goto finish;
}
switch (control & STLE_OP_MASK) {
case OP_RXSTAT:
mp = yge_rxeof(port, status, len);
if (mp != NULL) {
if (heads[pnum] == NULL)
heads[pnum] = mp;
else
tails[pnum]->b_next = mp;
tails[pnum] = mp;
}
rxprogs[pnum]++;
break;
case OP_TXINDEXLE:
txindex[0] = status & STLE_TXA1_MSKL;
txindex[1] =
((status & STLE_TXA2_MSKL) >> STLE_TXA2_SHIFTL) |
((len & STLE_TXA2_MSKH) << STLE_TXA2_SHIFTH);
break;
default:
yge_error(dev, NULL, "Unhandled opcode: 0x%08x",
control & STLE_OP_MASK);
break;
}
finish:
/* Give it back to HW. */
PUTCTRL(ring, cons, control);
SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORDEV);
YGE_INC(cons, YGE_STAT_RING_CNT);
if (rxprogs[pnum] > dev->d_process_limit) {
break;
}
}
dev->d_stat_cons = cons;
if (dev->d_stat_cons != CSR_READ_2(dev, STAT_PUT_IDX))
return (B_TRUE);
else
return (B_FALSE);
}
/*ARGSUSED1*/
static uint_t
yge_intr(caddr_t arg1, caddr_t arg2)
{
yge_dev_t *dev;
yge_port_t *port1;
yge_port_t *port2;
uint32_t status;
mblk_t *heads[2], *tails[2];
int txindex[2];
int dispatch_wrk;
dev = (void *)arg1;
heads[0] = heads[1] = NULL;
tails[0] = tails[1] = NULL;
txindex[0] = txindex[1] = -1;
dispatch_wrk = 0;
port1 = dev->d_port[YGE_PORT_A];
port2 = dev->d_port[YGE_PORT_B];
RX_LOCK(dev);
if (dev->d_suspended) {
RX_UNLOCK(dev);
return (DDI_INTR_UNCLAIMED);
}
/* Get interrupt source. */
status = CSR_READ_4(dev, B0_Y2_SP_ISRC2);
if (status == 0 || status == 0xffffffff ||
(status & dev->d_intrmask) == 0) { /* Stray interrupt ? */
/* Reenable interrupts. */
CSR_WRITE_4(dev, B0_Y2_SP_ICR, 2);
RX_UNLOCK(dev);
return (DDI_INTR_UNCLAIMED);
}
if ((status & Y2_IS_HW_ERR) != 0) {
yge_intr_hwerr(dev);
}
if (status & Y2_IS_IRQ_MAC1) {
dispatch_wrk |= yge_intr_gmac(port1);
}
if (status & Y2_IS_IRQ_MAC2) {
dispatch_wrk |= yge_intr_gmac(port2);
}
if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
yge_error(NULL, status & Y2_IS_CHK_RX1 ? port1 : port2,
"Rx descriptor error");
dev->d_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
(void) CSR_READ_4(dev, B0_IMSK);
}
if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
yge_error(NULL, status & Y2_IS_CHK_TXA1 ? port1 : port2,
"Tx descriptor error");
dev->d_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
(void) CSR_READ_4(dev, B0_IMSK);
}
/* handle events until it returns false */
while (yge_handle_events(dev, heads, tails, txindex))
/* NOP */;
/* Do receive/transmit events */
if ((status & Y2_IS_STAT_BMU)) {
CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_CLR_IRQ);
}
/* Reenable interrupts. */
CSR_WRITE_4(dev, B0_Y2_SP_ICR, 2);
RX_UNLOCK(dev);
if (dispatch_wrk) {
yge_dispatch(dev, dispatch_wrk);
}
if (port1->p_running) {
if (txindex[0] >= 0) {
yge_txeof(port1, txindex[0]);
}
if (heads[0])
mac_rx(port1->p_mh, NULL, heads[0]);
} else {
if (heads[0]) {
mblk_t *mp;
while ((mp = heads[0]) != NULL) {
heads[0] = mp->b_next;
freemsg(mp);
}
}
}
if (port2->p_running) {
if (txindex[1] >= 0) {
yge_txeof(port2, txindex[1]);
}
if (heads[1])
mac_rx(port2->p_mh, NULL, heads[1]);
} else {
if (heads[1]) {
mblk_t *mp;
while ((mp = heads[1]) != NULL) {
heads[1] = mp->b_next;
freemsg(mp);
}
}
}
return (DDI_INTR_CLAIMED);
}
static void
yge_set_tx_stfwd(yge_port_t *port)
{
yge_dev_t *dev = port->p_dev;
int pnum = port->p_port;
switch (dev->d_hw_id) {
case CHIP_ID_YUKON_EX:
if (dev->d_hw_rev == CHIP_REV_YU_EX_A0)
goto yukon_ex_workaround;
if (port->p_mtu > ETHERMTU)
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
TX_JUMBO_ENA | TX_STFW_ENA);
else
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
TX_JUMBO_DIS | TX_STFW_ENA);
break;
default:
yukon_ex_workaround:
if (port->p_mtu > ETHERMTU) {
/* Set Tx GMAC FIFO Almost Empty Threshold. */
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_AE_THR),
MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
/* Disable Store & Forward mode for Tx. */
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
TX_JUMBO_ENA | TX_STFW_DIS);
} else {
/* Enable Store & Forward mode for Tx. */
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
TX_JUMBO_DIS | TX_STFW_ENA);
}
break;
}
}
static void
yge_start_port(yge_port_t *port)
{
yge_dev_t *dev = port->p_dev;
uint16_t gmac;
int32_t pnum;
int32_t rxq;
int32_t txq;
uint32_t reg;
pnum = port->p_port;
txq = port->p_txq;
rxq = port->p_rxq;
if (port->p_mtu < ETHERMTU)
port->p_framesize = ETHERMTU;
else
port->p_framesize = port->p_mtu;
port->p_framesize += sizeof (struct ether_vlan_header);
/*
* Note for the future, if we enable offloads:
* In Yukon EC Ultra, TSO & checksum offload is not
* supported for jumbo frame.
*/
/* GMAC Control reset */
CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_RST_SET);
CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_RST_CLR);
CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_F_LOOPB_OFF);
if (dev->d_hw_id == CHIP_ID_YUKON_EX)
CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL),
GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
GMC_BYP_RETR_ON);
/*
* Initialize GMAC first such that speed/duplex/flow-control
* parameters are renegotiated with the interface is brought up.
*/
GMAC_WRITE_2(dev, pnum, GM_GP_CTRL, 0);
/* Dummy read the Interrupt Source Register. */
(void) CSR_READ_1(dev, MR_ADDR(pnum, GMAC_IRQ_SRC));
/* Clear MIB stats. */
yge_stats_clear(port);
/* Disable FCS. */
GMAC_WRITE_2(dev, pnum, GM_RX_CTRL, GM_RXCR_CRC_DIS);
/* Setup Transmit Control Register. */
GMAC_WRITE_2(dev, pnum, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* Setup Transmit Flow Control Register. */
GMAC_WRITE_2(dev, pnum, GM_TX_FLOW_CTRL, 0xffff);
/* Setup Transmit Parameter Register. */
GMAC_WRITE_2(dev, pnum, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (port->p_mtu > ETHERMTU)
gmac |= GM_SMOD_JUMBO_ENA;
GMAC_WRITE_2(dev, pnum, GM_SERIAL_MODE, gmac);
/* Disable interrupts for counter overflows. */
GMAC_WRITE_2(dev, pnum, GM_TX_IRQ_MSK, 0);
GMAC_WRITE_2(dev, pnum, GM_RX_IRQ_MSK, 0);
GMAC_WRITE_2(dev, pnum, GM_TR_IRQ_MSK, 0);
/* Configure Rx MAC FIFO. */
CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_SET);
CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_CLR);
reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
if (dev->d_hw_id == CHIP_ID_YUKON_FE_P ||
dev->d_hw_id == CHIP_ID_YUKON_EX)
reg |= GMF_RX_OVER_ON;
CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), reg);
/* Set receive filter. */
yge_setrxfilt(port);
/* Flush Rx MAC FIFO on any flow control or error. */
CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
/*
* Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
* due to hardware hang on receipt of pause frames.
*/
reg = RX_GMF_FL_THR_DEF + 1;
/* FE+ magic */
if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
(dev->d_hw_rev == CHIP_REV_YU_FE2_A0))
reg = 0x178;
CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_FL_THR), reg);
/* Configure Tx MAC FIFO. */
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_SET);
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_CLR);
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_OPER_ON);
/* Disable hardware VLAN tag insertion/stripping. */
CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
if ((port->p_flags & PORT_FLAG_RAMBUF) == 0) {
/* Set Rx Pause threshold. */
if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
(dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_LP_THR),
MSK_ECU_LLPP);
CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_UP_THR),
MSK_FEP_ULPP);
} else {
CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_LP_THR),
MSK_ECU_LLPP);
CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_UP_THR),
MSK_ECU_ULPP);
}
/* Configure store-and-forward for TX */
yge_set_tx_stfwd(port);
}
if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
(dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
/* Disable dynamic watermark */
reg = CSR_READ_4(dev, MR_ADDR(pnum, TX_GMF_EA));
reg &= ~TX_DYN_WM_ENA;
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_EA), reg);
}
/*
* Disable Force Sync bit and Alloc bit in Tx RAM interface
* arbiter as we don't use Sync Tx queue.
*/
CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Enable the RAM Interface Arbiter. */
CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL), TXA_ENA_ARB);
/* Setup RAM buffer. */
yge_set_rambuffer(port);
/* Disable Tx sync Queue. */
CSR_WRITE_1(dev, RB_ADDR(port->p_txsq, RB_CTRL), RB_RST_SET);
/* Setup Tx Queue Bus Memory Interface. */
CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_CLR_RESET);
CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_OPER_INIT);
CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_FIFO_OP_ON);
CSR_WRITE_2(dev, Q_ADDR(txq, Q_WM), MSK_BMU_TX_WM);
switch (dev->d_hw_id) {
case CHIP_ID_YUKON_EC_U:
if (dev->d_hw_rev == CHIP_REV_YU_EC_U_A0) {
/* Fix for Yukon-EC Ultra: set BMU FIFO level */
CSR_WRITE_2(dev, Q_ADDR(txq, Q_AL), MSK_ECU_TXFF_LEV);
}
break;
case CHIP_ID_YUKON_EX:
/*
* Yukon Extreme seems to have silicon bug for
* automatic Tx checksum calculation capability.
*/
if (dev->d_hw_rev == CHIP_REV_YU_EX_B0)
CSR_WRITE_4(dev, Q_ADDR(txq, Q_F), F_TX_CHK_AUTO_OFF);
break;
}
/* Setup Rx Queue Bus Memory Interface. */
CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_CLR_RESET);
CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_OPER_INIT);
CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_FIFO_OP_ON);
if (dev->d_bustype == PEX_BUS) {
CSR_WRITE_2(dev, Q_ADDR(rxq, Q_WM), 0x80);
} else {
CSR_WRITE_2(dev, Q_ADDR(rxq, Q_WM), MSK_BMU_RX_WM);
}
if (dev->d_hw_id == CHIP_ID_YUKON_EC_U &&
dev->d_hw_rev >= CHIP_REV_YU_EC_U_A1) {
/* MAC Rx RAM Read is controlled by hardware. */
CSR_WRITE_4(dev, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
}
yge_init_tx_ring(port);
/* Disable Rx checksum offload and RSS hash. */
CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR),
BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
yge_init_rx_ring(port);
/* Configure interrupt handling. */
if (port == dev->d_port[YGE_PORT_A]) {
dev->d_intrmask |= Y2_IS_PORT_A;
dev->d_intrhwemask |= Y2_HWE_L1_MASK;
} else if (port == dev->d_port[YGE_PORT_B]) {
dev->d_intrmask |= Y2_IS_PORT_B;
dev->d_intrhwemask |= Y2_HWE_L2_MASK;
}
CSR_WRITE_4(dev, B0_HWE_IMSK, dev->d_intrhwemask);
(void) CSR_READ_4(dev, B0_HWE_IMSK);
CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
(void) CSR_READ_4(dev, B0_IMSK);
/* Enable RX/TX GMAC */
gmac = GMAC_READ_2(dev, pnum, GM_GP_CTRL);
gmac |= (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
GMAC_WRITE_2(port->p_dev, port->p_port, GM_GP_CTRL, gmac);
/* Read again to ensure writing. */
(void) GMAC_READ_2(dev, pnum, GM_GP_CTRL);
/* Reset TX timer */
port->p_tx_wdog = 0;
}
static void
yge_set_rambuffer(yge_port_t *port)
{
yge_dev_t *dev;
int ltpp, utpp;
int pnum;
uint32_t rxq;
uint32_t txq;
dev = port->p_dev;
pnum = port->p_port;
rxq = port->p_rxq;
txq = port->p_txq;
if ((port->p_flags & PORT_FLAG_RAMBUF) == 0)
return;
/* Setup Rx Queue. */
CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_RST_CLR);
CSR_WRITE_4(dev, RB_ADDR(rxq, RB_START), dev->d_rxqstart[pnum] / 8);
CSR_WRITE_4(dev, RB_ADDR(rxq, RB_END), dev->d_rxqend[pnum] / 8);
CSR_WRITE_4(dev, RB_ADDR(rxq, RB_WP), dev->d_rxqstart[pnum] / 8);
CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RP), dev->d_rxqstart[pnum] / 8);
utpp =
(dev->d_rxqend[pnum] + 1 - dev->d_rxqstart[pnum] - RB_ULPP) / 8;
ltpp =
(dev->d_rxqend[pnum] + 1 - dev->d_rxqstart[pnum] - RB_LLPP_B) / 8;
if (dev->d_rxqsize < MSK_MIN_RXQ_SIZE)
ltpp += (RB_LLPP_B - RB_LLPP_S) / 8;
CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RX_UTPP), utpp);
CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RX_LTPP), ltpp);
/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_ENA_OP_MD);
(void) CSR_READ_1(dev, RB_ADDR(rxq, RB_CTRL));
/* Setup Tx Queue. */
CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_CLR);
CSR_WRITE_4(dev, RB_ADDR(txq, RB_START), dev->d_txqstart[pnum] / 8);
CSR_WRITE_4(dev, RB_ADDR(txq, RB_END), dev->d_txqend[pnum] / 8);
CSR_WRITE_4(dev, RB_ADDR(txq, RB_WP), dev->d_txqstart[pnum] / 8);
CSR_WRITE_4(dev, RB_ADDR(txq, RB_RP), dev->d_txqstart[pnum] / 8);
/* Enable Store & Forward for Tx side. */
CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_ENA_STFWD);
CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_ENA_OP_MD);
(void) CSR_READ_1(dev, RB_ADDR(txq, RB_CTRL));
}
static void
yge_set_prefetch(yge_dev_t *dev, int qaddr, yge_ring_t *ring)
{
/* Reset the prefetch unit. */
CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_SET);
CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_CLR);
/* Set LE base address. */
CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
YGE_ADDR_LO(ring->r_paddr));
CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
YGE_ADDR_HI(ring->r_paddr));
/* Set the list last index. */
CSR_WRITE_2(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
ring->r_num - 1);
/* Turn on prefetch unit. */
CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
PREF_UNIT_OP_ON);
/* Dummy read to ensure write. */
(void) CSR_READ_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
}
static void
yge_stop_port(yge_port_t *port)
{
yge_dev_t *dev = port->p_dev;
int pnum = port->p_port;
uint32_t txq = port->p_txq;
uint32_t rxq = port->p_rxq;
uint32_t val;
int i;
dev = port->p_dev;
/*
* shutdown timeout
*/
port->p_tx_wdog = 0;
/* Disable interrupts. */
if (pnum == YGE_PORT_A) {
dev->d_intrmask &= ~Y2_IS_PORT_A;
dev->d_intrhwemask &= ~Y2_HWE_L1_MASK;
} else {
dev->d_intrmask &= ~Y2_IS_PORT_B;
dev->d_intrhwemask &= ~Y2_HWE_L2_MASK;
}
CSR_WRITE_4(dev, B0_HWE_IMSK, dev->d_intrhwemask);
(void) CSR_READ_4(dev, B0_HWE_IMSK);
CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
(void) CSR_READ_4(dev, B0_IMSK);
/* Disable Tx/Rx MAC. */
val = GMAC_READ_2(dev, pnum, GM_GP_CTRL);
val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
GMAC_WRITE_2(dev, pnum, GM_GP_CTRL, val);
/* Read again to ensure writing. */
(void) GMAC_READ_2(dev, pnum, GM_GP_CTRL);
/* Update stats and clear counters. */
yge_stats_update(port);
/* Stop Tx BMU. */
CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_STOP);
val = CSR_READ_4(dev, Q_ADDR(txq, Q_CSR));
for (i = 0; i < YGE_TIMEOUT; i += 10) {
if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_STOP);
val = CSR_READ_4(dev, Q_ADDR(txq, Q_CSR));
} else
break;
drv_usecwait(10);
}
/* This is probably fairly catastrophic. */
if ((val & (BMU_STOP | BMU_IDLE)) == 0)
yge_error(NULL, port, "Tx BMU stop failed");
CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_SET | RB_DIS_OP_MD);
/* Disable all GMAC interrupt. */
CSR_WRITE_1(dev, MR_ADDR(pnum, GMAC_IRQ_MSK), 0);
/* Disable the RAM Interface Arbiter. */
CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL), TXA_DIS_ARB);
/* Reset the PCI FIFO of the async Tx queue */
CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Tx prefetch units. */
CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(txq, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_SET);
/* Reset the RAM Buffer async Tx queue. */
CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_SET);
/* Reset Tx MAC FIFO. */
CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_SET);
/* Set Pause Off. */
CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_PAUSE_OFF);
/*
* The Rx Stop command will not work for Yukon-2 if the BMU does not
* reach the end of packet and since we can't make sure that we have
* incoming data, we must reset the BMU while it is not during a DMA
* transfer. Since it is possible that the Rx path is still active,
* the Rx RAM buffer will be stopped first, so any possible incoming
* data will not trigger a DMA. After the RAM buffer is stopped, the
* BMU is polled until any DMA in progress is ended and only then it
* will be reset.
*/
/* Disable the RAM Buffer receive queue. */
CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
for (i = 0; i < YGE_TIMEOUT; i += 10) {
if (CSR_READ_1(dev, RB_ADDR(rxq, Q_RSL)) ==
CSR_READ_1(dev, RB_ADDR(rxq, Q_RL)))
break;
drv_usecwait(10);
}
/* This is probably nearly a fatal error. */
if (i == YGE_TIMEOUT)
yge_error(NULL, port, "Rx BMU stop failed");
CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Rx prefetch unit. */
CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(rxq, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_SET);
/* Reset the RAM Buffer receive queue. */
CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_RST_SET);
/* Reset Rx MAC FIFO. */
CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_SET);
}
/*
* When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
* counter clears high 16 bits of the counter such that accessing
* lower 16 bits should be the last operation.
*/
#define YGE_READ_MIB32(x, y) \
GMAC_READ_4(dev, x, y)
#define YGE_READ_MIB64(x, y) \
((((uint64_t)YGE_READ_MIB32(x, (y) + 8)) << 32) + \
(uint64_t)YGE_READ_MIB32(x, y))
static void
yge_stats_clear(yge_port_t *port)
{
yge_dev_t *dev;
uint16_t gmac;
int32_t pnum;
pnum = port->p_port;
dev = port->p_dev;
/* Set MIB Clear Counter Mode. */
gmac = GMAC_READ_2(dev, pnum, GM_PHY_ADDR);
GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
/* Read all MIB Counters with Clear Mode set. */
for (int i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += 4)
(void) YGE_READ_MIB32(pnum, i);
/* Clear MIB Clear Counter Mode. */
gmac &= ~GM_PAR_MIB_CLR;
GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac);
}
static void
yge_stats_update(yge_port_t *port)
{
yge_dev_t *dev;
struct yge_hw_stats *stats;
uint16_t gmac;
int32_t pnum;
dev = port->p_dev;
pnum = port->p_port;
if (dev->d_suspended || !port->p_running) {
return;
}
stats = &port->p_stats;
/* Set MIB Clear Counter Mode. */
gmac = GMAC_READ_2(dev, pnum, GM_PHY_ADDR);
GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
/* Rx stats. */
stats->rx_ucast_frames += YGE_READ_MIB32(pnum, GM_RXF_UC_OK);
stats->rx_bcast_frames += YGE_READ_MIB32(pnum, GM_RXF_BC_OK);
stats->rx_pause_frames += YGE_READ_MIB32(pnum, GM_RXF_MPAUSE);
stats->rx_mcast_frames += YGE_READ_MIB32(pnum, GM_RXF_MC_OK);
stats->rx_crc_errs += YGE_READ_MIB32(pnum, GM_RXF_FCS_ERR);
(void) YGE_READ_MIB32(pnum, GM_RXF_SPARE1);
stats->rx_good_octets += YGE_READ_MIB64(pnum, GM_RXO_OK_LO);
stats->rx_bad_octets += YGE_READ_MIB64(pnum, GM_RXO_ERR_LO);
stats->rx_runts += YGE_READ_MIB32(pnum, GM_RXF_SHT);
stats->rx_runt_errs += YGE_READ_MIB32(pnum, GM_RXE_FRAG);
stats->rx_pkts_64 += YGE_READ_MIB32(pnum, GM_RXF_64B);
stats->rx_pkts_65_127 += YGE_READ_MIB32(pnum, GM_RXF_127B);
stats->rx_pkts_128_255 += YGE_READ_MIB32(pnum, GM_RXF_255B);
stats->rx_pkts_256_511 += YGE_READ_MIB32(pnum, GM_RXF_511B);
stats->rx_pkts_512_1023 += YGE_READ_MIB32(pnum, GM_RXF_1023B);
stats->rx_pkts_1024_1518 += YGE_READ_MIB32(pnum, GM_RXF_1518B);
stats->rx_pkts_1519_max += YGE_READ_MIB32(pnum, GM_RXF_MAX_SZ);
stats->rx_pkts_too_long += YGE_READ_MIB32(pnum, GM_RXF_LNG_ERR);
stats->rx_pkts_jabbers += YGE_READ_MIB32(pnum, GM_RXF_JAB_PKT);
(void) YGE_READ_MIB32(pnum, GM_RXF_SPARE2);
stats->rx_fifo_oflows += YGE_READ_MIB32(pnum, GM_RXE_FIFO_OV);
(void) YGE_READ_MIB32(pnum, GM_RXF_SPARE3);
/* Tx stats. */
stats->tx_ucast_frames += YGE_READ_MIB32(pnum, GM_TXF_UC_OK);
stats->tx_bcast_frames += YGE_READ_MIB32(pnum, GM_TXF_BC_OK);
stats->tx_pause_frames += YGE_READ_MIB32(pnum, GM_TXF_MPAUSE);
stats->tx_mcast_frames += YGE_READ_MIB32(pnum, GM_TXF_MC_OK);
stats->tx_octets += YGE_READ_MIB64(pnum, GM_TXO_OK_LO);
stats->tx_pkts_64 += YGE_READ_MIB32(pnum, GM_TXF_64B);
stats->tx_pkts_65_127 += YGE_READ_MIB32(pnum, GM_TXF_127B);
stats->tx_pkts_128_255 += YGE_READ_MIB32(pnum, GM_TXF_255B);
stats->tx_pkts_256_511 += YGE_READ_MIB32(pnum, GM_TXF_511B);
stats->tx_pkts_512_1023 += YGE_READ_MIB32(pnum, GM_TXF_1023B);
stats->tx_pkts_1024_1518 += YGE_READ_MIB32(pnum, GM_TXF_1518B);
stats->tx_pkts_1519_max += YGE_READ_MIB32(pnum, GM_TXF_MAX_SZ);
(void) YGE_READ_MIB32(pnum, GM_TXF_SPARE1);
stats->tx_colls += YGE_READ_MIB32(pnum, GM_TXF_COL);
stats->tx_late_colls += YGE_READ_MIB32(pnum, GM_TXF_LAT_COL);
stats->tx_excess_colls += YGE_READ_MIB32(pnum, GM_TXF_ABO_COL);
stats->tx_multi_colls += YGE_READ_MIB32(pnum, GM_TXF_MUL_COL);
stats->tx_single_colls += YGE_READ_MIB32(pnum, GM_TXF_SNG_COL);
stats->tx_underflows += YGE_READ_MIB32(pnum, GM_TXE_FIFO_UR);
/* Clear MIB Clear Counter Mode. */
gmac &= ~GM_PAR_MIB_CLR;
GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac);
}
#undef YGE_READ_MIB32
#undef YGE_READ_MIB64
uint32_t
yge_hashbit(const uint8_t *addr)
{
int idx;
int bit;
uint_t data;
uint32_t crc;
#define POLY_BE 0x04c11db7
crc = 0xffffffff;
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
crc = (crc << 1)
^ ((((crc >> 31) ^ data) & 1) ? POLY_BE : 0);
}
}
#undef POLY_BE
return (crc % 64);
}
int
yge_m_stat(void *arg, uint_t stat, uint64_t *val)
{
yge_port_t *port = arg;
struct yge_hw_stats *stats = &port->p_stats;
if (stat == MAC_STAT_IFSPEED) {
/*
* This is the first stat we are asked about. We update only
* for this stat, to avoid paying the hefty cost of the update
* once for each stat.
*/
DEV_LOCK(port->p_dev);
yge_stats_update(port);
DEV_UNLOCK(port->p_dev);
}
if (mii_m_getstat(port->p_mii, stat, val) == 0) {
return (0);
}
switch (stat) {
case MAC_STAT_MULTIRCV:
*val = stats->rx_mcast_frames;
break;
case MAC_STAT_BRDCSTRCV:
*val = stats->rx_bcast_frames;
break;
case MAC_STAT_MULTIXMT:
*val = stats->tx_mcast_frames;
break;
case MAC_STAT_BRDCSTXMT:
*val = stats->tx_bcast_frames;
break;
case MAC_STAT_IPACKETS:
*val = stats->rx_ucast_frames;
break;
case MAC_STAT_RBYTES:
*val = stats->rx_good_octets;
break;
case MAC_STAT_OPACKETS:
*val = stats->tx_ucast_frames;
break;
case MAC_STAT_OBYTES:
*val = stats->tx_octets;
break;
case MAC_STAT_NORCVBUF:
*val = stats->rx_nobuf;
break;
case MAC_STAT_COLLISIONS:
*val = stats->tx_colls;
break;
case ETHER_STAT_ALIGN_ERRORS:
*val = stats->rx_runt_errs;
break;
case ETHER_STAT_FCS_ERRORS:
*val = stats->rx_crc_errs;
break;
case ETHER_STAT_FIRST_COLLISIONS:
*val = stats->tx_single_colls;
break;
case ETHER_STAT_MULTI_COLLISIONS:
*val = stats->tx_multi_colls;
break;
case ETHER_STAT_TX_LATE_COLLISIONS:
*val = stats->tx_late_colls;
break;
case ETHER_STAT_EX_COLLISIONS:
*val = stats->tx_excess_colls;
break;
case ETHER_STAT_TOOLONG_ERRORS:
*val = stats->rx_pkts_too_long;
break;
case MAC_STAT_OVERFLOWS:
*val = stats->rx_fifo_oflows;
break;
case MAC_STAT_UNDERFLOWS:
*val = stats->tx_underflows;
break;
case ETHER_STAT_TOOSHORT_ERRORS:
*val = stats->rx_runts;
break;
case ETHER_STAT_JABBER_ERRORS:
*val = stats->rx_pkts_jabbers;
break;
default:
return (ENOTSUP);
}
return (0);
}
int
yge_m_start(void *arg)
{
yge_port_t *port = arg;
DEV_LOCK(port->p_dev);
/*
* We defer resource allocation to this point, because we
* don't want to waste DMA resources that might better be used
* elsewhere, if the port is not actually being used.
*
* Furthermore, this gives us a more graceful handling of dynamic
* MTU modification.
*/
if (yge_txrx_dma_alloc(port) != DDI_SUCCESS) {
/* Make sure we free up partially allocated resources. */
yge_txrx_dma_free(port);
DEV_UNLOCK(port->p_dev);
return (ENOMEM);
}
if (!port->p_dev->d_suspended)
yge_start_port(port);
port->p_running = B_TRUE;
DEV_UNLOCK(port->p_dev);
mii_start(port->p_mii);
return (0);
}
void
yge_m_stop(void *arg)
{
yge_port_t *port = arg;
yge_dev_t *dev = port->p_dev;
DEV_LOCK(dev);
if (!dev->d_suspended)
yge_stop_port(port);
port->p_running = B_FALSE;
/* Release resources we don't need */
yge_txrx_dma_free(port);
DEV_UNLOCK(dev);
}
int
yge_m_promisc(void *arg, boolean_t on)
{
yge_port_t *port = arg;
DEV_LOCK(port->p_dev);
/* Save current promiscuous mode. */
port->p_promisc = on;
yge_setrxfilt(port);
DEV_UNLOCK(port->p_dev);
return (0);
}
int
yge_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
{
yge_port_t *port = arg;
int bit;
boolean_t update;
bit = yge_hashbit(addr);
ASSERT(bit < 64);
DEV_LOCK(port->p_dev);
if (add) {
if (port->p_mccount[bit] == 0) {
/* Set the corresponding bit in the hash table. */
port->p_mchash[bit / 32] |= (1 << (bit % 32));
update = B_TRUE;
}
port->p_mccount[bit]++;
} else {
ASSERT(port->p_mccount[bit] > 0);
port->p_mccount[bit]--;
if (port->p_mccount[bit] == 0) {
port->p_mchash[bit / 32] &= ~(1 << (bit % 32));
update = B_TRUE;
}
}
if (update) {
yge_setrxfilt(port);
}
DEV_UNLOCK(port->p_dev);
return (0);
}
int
yge_m_unicst(void *arg, const uint8_t *macaddr)
{
yge_port_t *port = arg;
DEV_LOCK(port->p_dev);
bcopy(macaddr, port->p_curraddr, ETHERADDRL);
yge_setrxfilt(port);
DEV_UNLOCK(port->p_dev);
return (0);
}
mblk_t *
yge_m_tx(void *arg, mblk_t *mp)
{
yge_port_t *port = arg;
mblk_t *nmp;
int enq = 0;
uint32_t ridx;
int idx;
boolean_t resched = B_FALSE;
TX_LOCK(port->p_dev);
if (port->p_dev->d_suspended) {
TX_UNLOCK(port->p_dev);
while ((nmp = mp) != NULL) {
/* carrier_errors++; */
mp = mp->b_next;
freemsg(nmp);
}
return (NULL);
}
/* attempt a reclaim */
ridx = port->p_port == YGE_PORT_A ?
STAT_TXA1_RIDX : STAT_TXA2_RIDX;
idx = CSR_READ_2(port->p_dev, ridx);
if (port->p_tx_cons != idx)
resched = yge_txeof_locked(port, idx);
while (mp != NULL) {
nmp = mp->b_next;
mp->b_next = NULL;
if (!yge_send(port, mp)) {
mp->b_next = nmp;
break;
}
enq++;
mp = nmp;
}
if (enq > 0) {
/* Transmit */
CSR_WRITE_2(port->p_dev,
Y2_PREF_Q_ADDR(port->p_txq, PREF_UNIT_PUT_IDX_REG),
port->p_tx_prod);
}
TX_UNLOCK(port->p_dev);
if (resched)
mac_tx_update(port->p_mh);
return (mp);
}
void
yge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
{
#ifdef YGE_MII_LOOPBACK
/* LINTED E_FUNC_SET_NOT_USED */
yge_port_t *port = arg;
/*
* Right now, the MII common layer does not properly handle
* loopback on these PHYs. Fixing this should be done at some
* point in the future.
*/
if (mii_m_loop_ioctl(port->p_mii, wq, mp))
return;
#else
_NOTE(ARGUNUSED(arg));
#endif
miocnak(wq, mp, 0, EINVAL);
}
int
yge_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
uint_t pr_valsize, const void *pr_val)
{
yge_port_t *port = arg;
uint32_t new_mtu;
int err = 0;
err = mii_m_setprop(port->p_mii, pr_name, pr_num, pr_valsize, pr_val);
if (err != ENOTSUP) {
return (err);
}
DEV_LOCK(port->p_dev);
switch (pr_num) {
case MAC_PROP_MTU:
if (pr_valsize < sizeof (new_mtu)) {
err = EINVAL;
break;
}
bcopy(pr_val, &new_mtu, sizeof (new_mtu));
if (new_mtu == port->p_mtu) {
/* no change */
err = 0;
break;
}
if (new_mtu < ETHERMTU) {
yge_error(NULL, port,
"Maximum MTU size too small: %d", new_mtu);
err = EINVAL;
break;
}
if (new_mtu > (port->p_flags & PORT_FLAG_NOJUMBO ?
ETHERMTU : YGE_JUMBO_MTU)) {
yge_error(NULL, port,
"Maximum MTU size too big: %d", new_mtu);
err = EINVAL;
break;
}
if (port->p_running) {
yge_error(NULL, port,
"Unable to change maximum MTU while running");
err = EBUSY;
break;
}
/*
* NB: It would probably be better not to hold the
* DEVLOCK, but releasing it creates a potential race
* if m_start is called concurrently.
*
* It turns out that the MAC layer guarantees safety
* for us here by using a cut out for this kind of
* notification call back anyway.
*
* See R8. and R14. in mac.c locking comments, which read
* as follows:
*
* R8. Since it is not guaranteed (see R14) that
* drivers won't hold locks across mac driver
* interfaces, the MAC layer must provide a cut out
* for control interfaces like upcall notifications
* and start them in a separate thread.
*
* R14. It would be preferable if MAC drivers don't
* hold any locks across any mac call. However at a
* minimum they must not hold any locks across data
* upcalls. They must also make sure that all
* references to mac data structures are cleaned up
* and that it is single threaded at mac_unregister
* time.
*/
err = mac_maxsdu_update(port->p_mh, new_mtu);
if (err != 0) {
/* This should never occur! */
yge_error(NULL, port,
"Failed notifying GLDv3 of new maximum MTU");
} else {
port->p_mtu = new_mtu;
}
break;
default:
err = ENOTSUP;
break;
}
err:
DEV_UNLOCK(port->p_dev);
return (err);
}
int
yge_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
{
yge_port_t *port = arg;
mac_propval_range_t range;
int err;
err = mii_m_getprop(port->p_mii, pr_name, pr_num, pr_flags,
pr_valsize, pr_val, perm);
if (err != ENOTSUP) {
return (err);
}
if (pr_valsize == 0)
return (EINVAL);
bzero(pr_val, pr_valsize);
*perm = MAC_PROP_PERM_RW;
switch (pr_num) {
case MAC_PROP_MTU:
if (!(pr_flags & MAC_PROP_POSSIBLE)) {
err = ENOTSUP;
break;
}
if (pr_valsize < sizeof (mac_propval_range_t))
return (EINVAL);
range.mpr_count = 1;
range.mpr_type = MAC_PROPVAL_UINT32;
range.range_uint32[0].mpur_min = ETHERMTU;
range.range_uint32[0].mpur_max =
port->p_flags & PORT_FLAG_NOJUMBO ?
ETHERMTU : YGE_JUMBO_MTU;
bcopy(&range, pr_val, sizeof (range));
err = 0;
break;
default:
err = ENOTSUP;
break;
}
return (err);
}
void
yge_dispatch(yge_dev_t *dev, int flag)
{
TASK_LOCK(dev);
dev->d_task_flags |= flag;
TASK_SIGNAL(dev);
TASK_UNLOCK(dev);
}
void
yge_task(void *arg)
{
yge_dev_t *dev = arg;
int flags;
for (;;) {
TASK_LOCK(dev);
while ((flags = dev->d_task_flags) == 0)
TASK_WAIT(dev);
dev->d_task_flags = 0;
TASK_UNLOCK(dev);
/*
* This should be the first thing after the sleep so if we are
* requested to exit we do that and not waste time doing work
* we will then abandone.
*/
if (flags & YGE_TASK_EXIT)
break;
/* all processing done without holding locks */
if (flags & YGE_TASK_RESTART)
yge_restart_task(dev);
}
}
void
yge_error(yge_dev_t *dev, yge_port_t *port, char *fmt, ...)
{
va_list ap;
char buf[256];
dev_info_t *dip;
va_start(ap, fmt);
(void) vsnprintf(buf, sizeof (buf), fmt, ap);
va_end(ap);
if (dev == NULL)
dev = port->p_dev;
dip = dev->d_dip;
cmn_err(CE_WARN, "%s%d: %s",
ddi_driver_name(dip),
ddi_get_instance(dip) + port ? port->p_ppa : 0,
buf);
}
static int
yge_ddi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
yge_dev_t *dev;
int rv;
switch (cmd) {
case DDI_ATTACH:
dev = kmem_zalloc(sizeof (*dev), KM_SLEEP);
dev->d_port[0] = kmem_zalloc(sizeof (yge_port_t), KM_SLEEP);
dev->d_port[1] = kmem_zalloc(sizeof (yge_port_t), KM_SLEEP);
dev->d_dip = dip;
ddi_set_driver_private(dip, dev);
dev->d_port[0]->p_port = 0;
dev->d_port[0]->p_dev = dev;
dev->d_port[1]->p_port = 0;
dev->d_port[1]->p_dev = dev;
rv = yge_attach(dev);
if (rv != DDI_SUCCESS) {
ddi_set_driver_private(dip, 0);
kmem_free(dev->d_port[1], sizeof (yge_port_t));
kmem_free(dev->d_port[0], sizeof (yge_port_t));
kmem_free(dev, sizeof (*dev));
}
return (rv);
case DDI_RESUME:
dev = ddi_get_driver_private(dip);
ASSERT(dev != NULL);
return (yge_resume(dev));
default:
return (DDI_FAILURE);
}
}
static int
yge_ddi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
yge_dev_t *dev;
int rv;
switch (cmd) {
case DDI_DETACH:
dev = ddi_get_driver_private(dip);
/* attempt to unregister MACs from Nemo */
for (int i = 0; i < dev->d_num_port; i++) {
rv = yge_unregister_port(dev->d_port[i]);
if (rv != DDI_SUCCESS) {
return (DDI_FAILURE);
}
}
ASSERT(dip == dev->d_dip);
yge_detach(dev);
ddi_set_driver_private(dip, 0);
kmem_free(dev->d_port[1], sizeof (yge_port_t));
kmem_free(dev->d_port[0], sizeof (yge_port_t));
kmem_free(dev, sizeof (*dev));
return (DDI_SUCCESS);
case DDI_SUSPEND:
dev = ddi_get_driver_private(dip);
ASSERT(dev != NULL);
return (yge_suspend(dev));
default:
return (DDI_FAILURE);
}
}
static int
yge_quiesce(dev_info_t *dip)
{
yge_dev_t *dev;
dev = ddi_get_driver_private(dip);
ASSERT(dev != NULL);
/* NB: No locking! We are called in single threaded context */
for (int i = 0; i < dev->d_num_port; i++) {
yge_port_t *port = dev->d_port[i];
if (port->p_running)
yge_stop_port(port);
}
/* Disable all interrupts. */
CSR_WRITE_4(dev, B0_IMSK, 0);
(void) CSR_READ_4(dev, B0_IMSK);
CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
(void) CSR_READ_4(dev, B0_HWE_IMSK);
/* Put hardware into reset. */
CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
return (DDI_SUCCESS);
}
/*
* Stream information
*/
DDI_DEFINE_STREAM_OPS(yge_devops, nulldev, nulldev, yge_ddi_attach,
yge_ddi_detach, nodev, NULL, D_MP, NULL, yge_quiesce);
/*
* Module linkage information.
*/
static struct modldrv yge_modldrv = {
&mod_driverops, /* drv_modops */
"Yukon 2 Ethernet", /* drv_linkinfo */
&yge_devops /* drv_dev_ops */
};
static struct modlinkage yge_modlinkage = {
MODREV_1, /* ml_rev */
&yge_modldrv, /* ml_linkage */
NULL
};
/*
* DDI entry points.
*/
int
_init(void)
{
int rv;
mac_init_ops(&yge_devops, "yge");
if ((rv = mod_install(&yge_modlinkage)) != DDI_SUCCESS) {
mac_fini_ops(&yge_devops);
}
return (rv);
}
int
_fini(void)
{
int rv;
if ((rv = mod_remove(&yge_modlinkage)) == DDI_SUCCESS) {
mac_fini_ops(&yge_devops);
}
return (rv);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&yge_modlinkage, modinfop));
}