xgehal-device-fp.c revision 7eced415e5dd557aef2d78483b5a7785f0e13670
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright (c) 2002-2006 Neterion, Inc.
*/
#ifdef XGE_DEBUG_FP
#include "xgehal-device.h"
#endif
#include "xgehal-ring.h"
#include "xgehal-fifo.h"
/**
* xge_hal_device_bar0 - Get BAR0 mapped address.
* @hldev: HAL device handle.
*
* Returns: BAR0 address of the specified device.
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE char *
xge_hal_device_bar0(xge_hal_device_t *hldev)
{
return hldev->bar0;
}
/**
* xge_hal_device_isrbar0 - Get BAR0 mapped address.
* @hldev: HAL device handle.
*
* Returns: BAR0 address of the specified device.
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE char *
xge_hal_device_isrbar0(xge_hal_device_t *hldev)
{
return hldev->isrbar0;
}
/**
* xge_hal_device_bar1 - Get BAR1 mapped address.
* @hldev: HAL device handle.
*
* Returns: BAR1 address of the specified device.
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE char *
xge_hal_device_bar1(xge_hal_device_t *hldev)
{
return hldev->bar1;
}
/**
* xge_hal_device_bar0_set - Set BAR0 mapped address.
* @hldev: HAL device handle.
* @bar0: BAR0 mapped address.
* * Set BAR0 address in the HAL device object.
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_bar0_set(xge_hal_device_t *hldev, char *bar0)
{
xge_assert(bar0);
hldev->bar0 = bar0;
}
/**
* xge_hal_device_isrbar0_set - Set BAR0 mapped address.
* @hldev: HAL device handle.
* @isrbar0: BAR0 mapped address.
* * Set BAR0 address in the HAL device object.
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_isrbar0_set(xge_hal_device_t *hldev, char *isrbar0)
{
xge_assert(isrbar0);
hldev->isrbar0 = isrbar0;
}
/**
* xge_hal_device_bar1_set - Set BAR1 mapped address.
* @hldev: HAL device handle.
* @channelh: Channel handle.
* @bar1: BAR1 mapped address.
*
* Set BAR1 address for the given channel.
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_bar1_set(xge_hal_device_t *hldev, xge_hal_channel_h channelh,
char *bar1)
{
xge_hal_fifo_t *fifo = (xge_hal_fifo_t *)channelh;
xge_assert(bar1);
xge_assert(fifo);
/* Initializing the BAR1 address as the start of
* the FIFO queue pointer and as a location of FIFO control
* word. */
fifo->hw_pair =
(xge_hal_fifo_hw_pair_t *) (bar1 +
(fifo->channel.post_qid * XGE_HAL_FIFO_HW_PAIR_OFFSET));
hldev->bar1 = bar1;
}
/**
* xge_hal_device_rev - Get Device revision number.
* @hldev: HAL device handle.
*
* Returns: Device revision number
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE int
xge_hal_device_rev(xge_hal_device_t *hldev)
{
return hldev->revision;
}
/**
* xge_hal_device_begin_irq - Begin IRQ processing.
* @hldev: HAL device handle.
* @reason: "Reason" for the interrupt, the value of Xframe's
* general_int_status register.
*
* The function performs two actions, It first checks whether (shared IRQ) the
* interrupt was raised by the device. Next, it masks the device interrupts.
*
* Note:
* xge_hal_device_begin_irq() does not flush MMIO writes through the
* bridge. Therefore, two back-to-back interrupts are potentially possible.
* It is the responsibility of the ULD to make sure that only one
* xge_hal_device_continue_irq() runs at a time.
*
* Returns: 0, if the interrupt is not "ours" (note that in this case the
* device remain enabled).
* Otherwise, xge_hal_device_begin_irq() returns 64bit general adapter
* status.
* See also: xge_hal_device_handle_irq()
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE xge_hal_status_e
xge_hal_device_begin_irq(xge_hal_device_t *hldev, u64 *reason)
{
u64 val64;
xge_hal_pci_bar0_t *isrbar0 = (xge_hal_pci_bar0_t *)hldev->isrbar0;
hldev->stats.sw_dev_info_stats.total_intr_cnt++;
val64 = xge_os_pio_mem_read64(hldev->pdev,
hldev->regh0, &isrbar0->general_int_status);
if (xge_os_unlikely(!val64)) {
/* not Xframe interrupt */
hldev->stats.sw_dev_info_stats.not_xge_intr_cnt++;
*reason = 0;
return XGE_HAL_ERR_WRONG_IRQ;
}
if (xge_os_unlikely(val64 == XGE_HAL_ALL_FOXES)) {
u64 adapter_status =
xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&isrbar0->adapter_status);
if (adapter_status == XGE_HAL_ALL_FOXES) {
(void) xge_queue_produce(hldev->queueh,
XGE_HAL_EVENT_SLOT_FREEZE,
hldev,
1, /* critical: slot freeze */
sizeof(u64),
(void*)&adapter_status);
*reason = 0;
return XGE_HAL_ERR_CRITICAL;
}
}
*reason = val64;
/* separate fast path, i.e. no errors */
if (val64 & XGE_HAL_GEN_INTR_RXTRAFFIC) {
hldev->stats.sw_dev_info_stats.rx_traffic_intr_cnt++;
return XGE_HAL_OK;
}
if (val64 & XGE_HAL_GEN_INTR_TXTRAFFIC) {
hldev->stats.sw_dev_info_stats.tx_traffic_intr_cnt++;
return XGE_HAL_OK;
}
hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
if (xge_os_unlikely(val64 & XGE_HAL_GEN_INTR_TXPIC)) {
xge_hal_status_e status;
hldev->stats.sw_dev_info_stats.txpic_intr_cnt++;
status = __hal_device_handle_txpic(hldev, val64);
if (status != XGE_HAL_OK) {
return status;
}
}
if (xge_os_unlikely(val64 & XGE_HAL_GEN_INTR_TXDMA)) {
xge_hal_status_e status;
hldev->stats.sw_dev_info_stats.txdma_intr_cnt++;
status = __hal_device_handle_txdma(hldev, val64);
if (status != XGE_HAL_OK) {
return status;
}
}
if (xge_os_unlikely(val64 & XGE_HAL_GEN_INTR_TXMAC)) {
xge_hal_status_e status;
hldev->stats.sw_dev_info_stats.txmac_intr_cnt++;
status = __hal_device_handle_txmac(hldev, val64);
if (status != XGE_HAL_OK) {
return status;
}
}
if (xge_os_unlikely(val64 & XGE_HAL_GEN_INTR_TXXGXS)) {
xge_hal_status_e status;
hldev->stats.sw_dev_info_stats.txxgxs_intr_cnt++;
status = __hal_device_handle_txxgxs(hldev, val64);
if (status != XGE_HAL_OK) {
return status;
}
}
if (xge_os_unlikely(val64 & XGE_HAL_GEN_INTR_RXPIC)) {
xge_hal_status_e status;
hldev->stats.sw_dev_info_stats.rxpic_intr_cnt++;
status = __hal_device_handle_rxpic(hldev, val64);
if (status != XGE_HAL_OK) {
return status;
}
}
if (xge_os_unlikely(val64 & XGE_HAL_GEN_INTR_RXDMA)) {
xge_hal_status_e status;
hldev->stats.sw_dev_info_stats.rxdma_intr_cnt++;
status = __hal_device_handle_rxdma(hldev, val64);
if (status != XGE_HAL_OK) {
return status;
}
}
if (xge_os_unlikely(val64 & XGE_HAL_GEN_INTR_RXMAC)) {
xge_hal_status_e status;
hldev->stats.sw_dev_info_stats.rxmac_intr_cnt++;
status = __hal_device_handle_rxmac(hldev, val64);
if (status != XGE_HAL_OK) {
return status;
}
}
if (xge_os_unlikely(val64 & XGE_HAL_GEN_INTR_RXXGXS)) {
xge_hal_status_e status;
hldev->stats.sw_dev_info_stats.rxxgxs_intr_cnt++;
status = __hal_device_handle_rxxgxs(hldev, val64);
if (status != XGE_HAL_OK) {
return status;
}
}
if (xge_os_unlikely(val64 & XGE_HAL_GEN_INTR_MC)) {
xge_hal_status_e status;
hldev->stats.sw_dev_info_stats.mc_intr_cnt++;
status = __hal_device_handle_mc(hldev, val64);
if (status != XGE_HAL_OK) {
return status;
}
}
return XGE_HAL_OK;
}
/**
* xge_hal_device_clear_rx - Acknowledge (that is, clear) the
* condition that has caused the RX interrupt.
* @hldev: HAL device handle.
*
* Acknowledge (that is, clear) the condition that has caused
* the Rx interrupt.
* See also: xge_hal_device_begin_irq(), xge_hal_device_continue_irq(),
* xge_hal_device_clear_tx(), xge_hal_device_mask_rx().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_clear_rx(xge_hal_device_t *hldev)
{
xge_hal_pci_bar0_t *isrbar0 = (xge_hal_pci_bar0_t *)hldev->isrbar0;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
0xFFFFFFFFFFFFFFFFULL,
&isrbar0->rx_traffic_int);
}
/**
* xge_hal_device_clear_tx - Acknowledge (that is, clear) the
* condition that has caused the TX interrupt.
* @hldev: HAL device handle.
*
* Acknowledge (that is, clear) the condition that has caused
* the Tx interrupt.
* See also: xge_hal_device_begin_irq(), xge_hal_device_continue_irq(),
* xge_hal_device_clear_rx(), xge_hal_device_mask_tx().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_clear_tx(xge_hal_device_t *hldev)
{
xge_hal_pci_bar0_t *isrbar0 = (xge_hal_pci_bar0_t *)hldev->isrbar0;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
0xFFFFFFFFFFFFFFFFULL,
&isrbar0->tx_traffic_int);
}
/**
* xge_hal_device_poll_rx_channel - Poll Rx channel for completed
* descriptors and process the same.
* @channel: HAL channel.
* @got_rx: Buffer to return the flag set if receive interrupt is occured
*
* The function polls the Rx channel for the completed descriptors and calls
* the upper-layer driver (ULD) via supplied completion callback.
*
* Returns: XGE_HAL_OK, if the polling is completed successful.
* XGE_HAL_COMPLETIONS_REMAIN: There are still more completed
* descriptors available which are yet to be processed.
*
* See also: xge_hal_device_poll_tx_channel()
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE xge_hal_status_e
xge_hal_device_poll_rx_channel(xge_hal_channel_t *channel, int *got_rx)
{
xge_hal_status_e ret = XGE_HAL_OK;
xge_hal_dtr_h first_dtrh;
xge_hal_device_t *hldev = (xge_hal_device_t *)channel->devh;
u8 t_code;
int got_bytes;
/* for each opened rx channel */
got_bytes = *got_rx = 0;
((xge_hal_ring_t *)channel)->cmpl_cnt = 0;
channel->poll_bytes = 0;
if ((ret = xge_hal_ring_dtr_next_completed (channel, &first_dtrh,
&t_code)) == XGE_HAL_OK) {
if (channel->callback(channel, first_dtrh,
t_code, channel->userdata) != XGE_HAL_OK) {
(*got_rx) += ((xge_hal_ring_t *)channel)->cmpl_cnt + 1;
got_bytes += channel->poll_bytes + 1;
ret = XGE_HAL_COMPLETIONS_REMAIN;
} else {
(*got_rx) += ((xge_hal_ring_t *)channel)->cmpl_cnt + 1;
got_bytes += channel->poll_bytes + 1;
}
}
if (*got_rx) {
hldev->irq_workload_rxd[channel->post_qid] += *got_rx;
hldev->irq_workload_rxcnt[channel->post_qid] ++;
}
hldev->irq_workload_rxlen[channel->post_qid] += got_bytes;
return ret;
}
/**
* xge_hal_device_poll_tx_channel - Poll Tx channel for completed
* descriptors and process the same.
* @channel: HAL channel.
* @got_tx: Buffer to return the flag set if transmit interrupt is occured
*
* The function polls the Tx channel for the completed descriptors and calls
* the upper-layer driver (ULD) via supplied completion callback.
*
* Returns: XGE_HAL_OK, if the polling is completed successful.
* XGE_HAL_COMPLETIONS_REMAIN: There are still more completed
* descriptors available which are yet to be processed.
*
* See also: xge_hal_device_poll_rx_channel().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE xge_hal_status_e
xge_hal_device_poll_tx_channel(xge_hal_channel_t *channel, int *got_tx)
{
xge_hal_dtr_h first_dtrh;
xge_hal_device_t *hldev = (xge_hal_device_t *)channel->devh;
u8 t_code;
int got_bytes;
/* for each opened tx channel */
got_bytes = *got_tx = 0;
channel->poll_bytes = 0;
if (xge_hal_fifo_dtr_next_completed (channel, &first_dtrh,
&t_code) == XGE_HAL_OK) {
if (channel->callback(channel, first_dtrh,
t_code, channel->userdata) != XGE_HAL_OK) {
(*got_tx)++;
got_bytes += channel->poll_bytes + 1;
return XGE_HAL_COMPLETIONS_REMAIN;
}
(*got_tx)++;
got_bytes += channel->poll_bytes + 1;
}
if (*got_tx) {
hldev->irq_workload_txd[channel->post_qid] += *got_tx;
hldev->irq_workload_txcnt[channel->post_qid] ++;
}
hldev->irq_workload_txlen[channel->post_qid] += got_bytes;
return XGE_HAL_OK;
}
/**
* xge_hal_device_poll_rx_channels - Poll Rx channels for completed
* descriptors and process the same.
* @hldev: HAL device handle.
* @got_rx: Buffer to return flag set if receive is ready
*
* The function polls the Rx channels for the completed descriptors and calls
* the upper-layer driver (ULD) via supplied completion callback.
*
* Returns: XGE_HAL_OK, if the polling is completed successful.
* XGE_HAL_COMPLETIONS_REMAIN: There are still more completed
* descriptors available which are yet to be processed.
*
* See also: xge_hal_device_poll_tx_channels(), xge_hal_device_continue_irq().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE xge_hal_status_e
xge_hal_device_poll_rx_channels(xge_hal_device_t *hldev, int *got_rx)
{
xge_list_t *item;
xge_hal_channel_t *channel;
/* for each opened rx channel */
xge_list_for_each(item, &hldev->ring_channels) {
if (hldev->terminating)
return XGE_HAL_OK;
channel = xge_container_of(item, xge_hal_channel_t, item);
(void) xge_hal_device_poll_rx_channel(channel, got_rx);
}
return XGE_HAL_OK;
}
/**
* xge_hal_device_poll_tx_channels - Poll Tx channels for completed
* descriptors and process the same.
* @hldev: HAL device handle.
* @got_tx: Buffer to return flag set if transmit is ready
*
* The function polls the Tx channels for the completed descriptors and calls
* the upper-layer driver (ULD) via supplied completion callback.
*
* Returns: XGE_HAL_OK, if the polling is completed successful.
* XGE_HAL_COMPLETIONS_REMAIN: There are still more completed
* descriptors available which are yet to be processed.
*
* See also: xge_hal_device_poll_rx_channels(), xge_hal_device_continue_irq().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE xge_hal_status_e
xge_hal_device_poll_tx_channels(xge_hal_device_t *hldev, int *got_tx)
{
xge_list_t *item;
xge_hal_channel_t *channel;
/* for each opened tx channel */
xge_list_for_each(item, &hldev->fifo_channels) {
if (hldev->terminating)
return XGE_HAL_OK;
channel = xge_container_of(item, xge_hal_channel_t, item);
(void) xge_hal_device_poll_tx_channel(channel, got_tx);
}
return XGE_HAL_OK;
}
/**
* xge_hal_device_mask_tx - Mask Tx interrupts.
* @hldev: HAL device handle.
*
* Mask Tx device interrupts.
*
* See also: xge_hal_device_unmask_tx(), xge_hal_device_mask_rx(),
* xge_hal_device_clear_tx().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_mask_tx(xge_hal_device_t *hldev)
{
xge_hal_pci_bar0_t *isrbar0 = (xge_hal_pci_bar0_t *)hldev->isrbar0;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
0xFFFFFFFFFFFFFFFFULL,
&isrbar0->tx_traffic_mask);
}
/**
* xge_hal_device_mask_rx - Mask Rx interrupts.
* @hldev: HAL device handle.
*
* Mask Rx device interrupts.
*
* See also: xge_hal_device_unmask_rx(), xge_hal_device_mask_tx(),
* xge_hal_device_clear_rx().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_mask_rx(xge_hal_device_t *hldev)
{
xge_hal_pci_bar0_t *isrbar0 = (xge_hal_pci_bar0_t *)hldev->isrbar0;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
0xFFFFFFFFFFFFFFFFULL,
&isrbar0->rx_traffic_mask);
}
/**
* xge_hal_device_mask_all - Mask all device interrupts.
* @hldev: HAL device handle.
*
* Mask all device interrupts.
*
* See also: xge_hal_device_unmask_all()
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_mask_all(xge_hal_device_t *hldev)
{
xge_hal_pci_bar0_t *isrbar0 = (xge_hal_pci_bar0_t *)hldev->isrbar0;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
0xFFFFFFFFFFFFFFFFULL,
&isrbar0->general_int_mask);
}
/**
* xge_hal_device_unmask_tx - Unmask Tx interrupts.
* @hldev: HAL device handle.
*
* Unmask Tx device interrupts.
*
* See also: xge_hal_device_mask_tx(), xge_hal_device_clear_tx().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_unmask_tx(xge_hal_device_t *hldev)
{
xge_hal_pci_bar0_t *isrbar0 = (xge_hal_pci_bar0_t *)hldev->isrbar0;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
0x0ULL,
&isrbar0->tx_traffic_mask);
}
/**
* xge_hal_device_unmask_rx - Unmask Rx interrupts.
* @hldev: HAL device handle.
*
* Unmask Rx device interrupts.
*
* See also: xge_hal_device_mask_rx(), xge_hal_device_clear_rx().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_unmask_rx(xge_hal_device_t *hldev)
{
xge_hal_pci_bar0_t *isrbar0 = (xge_hal_pci_bar0_t *)hldev->isrbar0;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
0x0ULL,
&isrbar0->rx_traffic_mask);
}
/**
* xge_hal_device_unmask_all - Unmask all device interrupts.
* @hldev: HAL device handle.
*
* Unmask all device interrupts.
*
* See also: xge_hal_device_mask_all()
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE void
xge_hal_device_unmask_all(xge_hal_device_t *hldev)
{
xge_hal_pci_bar0_t *isrbar0 = (xge_hal_pci_bar0_t *)hldev->isrbar0;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
0x0ULL,
&isrbar0->general_int_mask);
}
/**
* xge_hal_device_continue_irq - Continue handling IRQ: process all
* completed descriptors.
* @hldev: HAL device handle.
*
* Process completed descriptors and unmask the device interrupts.
*
* The xge_hal_device_continue_irq() walks all open channels
* and calls upper-layer driver (ULD) via supplied completion
* callback. Note that the completion callback is specified at channel open
* time, see xge_hal_channel_open().
*
* Note that the xge_hal_device_continue_irq is part of the _fast_ path.
* To optimize the processing, the function does _not_ check for
* errors and alarms.
*
* The latter is done in a polling fashion, via xge_hal_device_poll().
*
* Returns: XGE_HAL_OK.
*
* See also: xge_hal_device_handle_irq(), xge_hal_device_poll(),
* xge_hal_ring_dtr_next_completed(),
* xge_hal_fifo_dtr_next_completed(), xge_hal_channel_callback_f{}.
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE xge_hal_status_e
xge_hal_device_continue_irq(xge_hal_device_t *hldev)
{
int got_rx = 1, got_tx = 1;
int isr_polling_cnt = hldev->config.isr_polling_cnt;
int count = 0;
do
{
if (got_rx)
(void) xge_hal_device_poll_rx_channels(hldev, &got_rx);
if (got_tx && hldev->tti_enabled)
(void) xge_hal_device_poll_tx_channels(hldev, &got_tx);
if (!got_rx && !got_tx)
break;
count += (got_rx + got_tx);
}while (isr_polling_cnt--);
if (!count)
hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
return XGE_HAL_OK;
}
/**
* xge_hal_device_handle_irq - Handle device IRQ.
* @hldev: HAL device handle.
*
* Perform the complete handling of the line interrupt. The function
* performs two calls.
* First it uses xge_hal_device_begin_irq() to check the reason for
* the interrupt and mask the device interrupts.
* Second, it calls xge_hal_device_continue_irq() to process all
* completed descriptors and re-enable the interrupts.
*
* Returns: XGE_HAL_OK - success;
* XGE_HAL_ERR_WRONG_IRQ - (shared) IRQ produced by other device.
*
* See also: xge_hal_device_begin_irq(), xge_hal_device_continue_irq().
*/
__HAL_STATIC_DEVICE __HAL_INLINE_DEVICE xge_hal_status_e
xge_hal_device_handle_irq(xge_hal_device_t *hldev)
{
u64 reason;
xge_hal_status_e status;
xge_hal_device_mask_all(hldev);
status = xge_hal_device_begin_irq(hldev, &reason);
if (status != XGE_HAL_OK) {
xge_hal_device_unmask_all(hldev);
return status;
}
if (reason & XGE_HAL_GEN_INTR_RXTRAFFIC) {
xge_hal_device_clear_rx(hldev);
}
status = xge_hal_device_continue_irq(hldev);
xge_hal_device_clear_tx(hldev);
xge_hal_device_unmask_all(hldev);
return status;
}
#if defined(XGE_HAL_CONFIG_LRO)
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL int
__hal_lro_check_for_session_match(lro_t *lro, tcplro_t *tcp, iplro_t *ip)
{
/* Match Source address field */
if ((lro->ip_hdr->saddr != ip->saddr))
return XGE_HAL_FAIL;
/* Match Destination address field */
if ((lro->ip_hdr->daddr != ip->daddr))
return XGE_HAL_FAIL;
/* Match Source Port field */
if ((lro->tcp_hdr->source != tcp->source))
return XGE_HAL_FAIL;
/* Match Destination Port field */
if ((lro->tcp_hdr->dest != tcp->dest))
return XGE_HAL_FAIL;
return XGE_HAL_OK;
}
/*
* __hal_tcp_seg_len: Find the tcp seg len.
* @ip: ip header.
* @tcp: tcp header.
* returns: Tcp seg length.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL u16
__hal_tcp_seg_len(iplro_t *ip, tcplro_t *tcp)
{
u16 ret;
ret = (xge_os_ntohs(ip->tot_len) -
((ip->version_ihl & 0x0F)<<2) -
((tcp->doff_res)>>2));
return (ret);
}
/*
* __hal_ip_lro_capable: Finds whether ip is lro capable.
* @ip: ip header.
* @ext_info: descriptor info.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
__hal_ip_lro_capable(iplro_t *ip,
xge_hal_dtr_info_t *ext_info)
{
#ifdef XGE_LL_DEBUG_DUMP_PKT
{
u16 i;
u8 ch, *iph = (u8 *)ip;
xge_debug_ring(XGE_TRACE, "Dump Ip:" );
for (i =0; i < 40; i++) {
ch = ntohs(*((u8 *)(iph + i)) );
printf("i:%d %02x, ",i,ch);
}
}
#endif
if (ip->version_ihl != IP_FAST_PATH_HDR_MASK) {
xge_debug_ring(XGE_ERR, "iphdr !=45 :%d",ip->version_ihl);
return XGE_HAL_FAIL;
}
if (ext_info->proto & XGE_HAL_FRAME_PROTO_IP_FRAGMENTED) {
xge_debug_ring(XGE_ERR, "IP fragmented");
return XGE_HAL_FAIL;
}
return XGE_HAL_OK;
}
/*
* __hal_tcp_lro_capable: Finds whether tcp is lro capable.
* @ip: ip header.
* @tcp: tcp header.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
__hal_tcp_lro_capable(iplro_t *ip, tcplro_t *tcp, lro_t *lro, int *ts_off)
{
#ifdef XGE_LL_DEBUG_DUMP_PKT
{
u8 ch;
u16 i;
xge_debug_ring(XGE_TRACE, "Dump Tcp:" );
for (i =0; i < 20; i++) {
ch = ntohs(*((u8 *)((u8 *)tcp + i)) );
xge_os_printf("i:%d %02x, ",i,ch);
}
}
#endif
if ((TCP_FAST_PATH_HDR_MASK2 != tcp->ctrl) &&
(TCP_FAST_PATH_HDR_MASK3 != tcp->ctrl))
goto _exit_fail;
*ts_off = -1;
if (TCP_FAST_PATH_HDR_MASK1 != tcp->doff_res) {
u16 tcp_hdr_len = tcp->doff_res >> 2; /* TCP header len */
u16 off = 20; /* Start of tcp options */
int i, diff;
/* Does Packet can contain time stamp */
if (tcp_hdr_len < 32) {
/*
* If the session is not opened, we can consider
* this packet for LRO
*/
if (lro == NULL)
return XGE_HAL_OK;
goto _exit_fail;
}
/* Ignore No-operation 0x1 */
while (((u8 *)tcp)[off] == 0x1)
off++;
/* Next option == Timestamp */
if (((u8 *)tcp)[off] != 0x8) {
/*
* If the session ie not opened, we can consider
* this packet for LRO
*/
if (lro == NULL)
return XGE_HAL_OK;
goto _exit_fail;
}
*ts_off = off;
if (lro == NULL)
return XGE_HAL_OK;
/*
* Now the session is opened. If the LRO frame doesn't
* have time stamp, we cannot consider current packet for
* LRO.
*/
if (lro->ts_off == -1) {
xge_debug_ring(XGE_ERR, "Pkt received with time stamp after session opened with no time stamp : %02x %02x", tcp->doff_res, tcp->ctrl);
return XGE_HAL_FAIL;
}
/*
* If the difference is greater than three, then there are
* more options possible.
* else, there are two cases:
* case 1: remaining are padding bytes.
* case 2: remaining can contain options or padding
*/
off += ((u8 *)tcp)[off+1];
diff = tcp_hdr_len - off;
if (diff > 3) {
/*
* Probably contains more options.
*/
xge_debug_ring(XGE_ERR, "tcphdr not fastpth : pkt received with tcp options in addition to time stamp after the session is opened %02x %02x ", tcp->doff_res, tcp->ctrl);
return XGE_HAL_FAIL;
}
for (i = 0; i < diff; i++) {
u8 byte = ((u8 *)tcp)[off+i];
/* Ignore No-operation 0x1 */
if ((byte == 0x0) || (byte == 0x1))
continue;
xge_debug_ring(XGE_ERR, "tcphdr not fastpth : pkt received with tcp options in addition to time stamp after the session is opened %02x %02x ", tcp->doff_res, tcp->ctrl);
return XGE_HAL_FAIL;
}
/*
* Update the time stamp of LRO frame.
*/
xge_os_memcpy(((char *)lro->tcp_hdr + lro->ts_off + 2),
(char *)((char *)tcp + (*ts_off) + 2), 8);
}
return XGE_HAL_OK;
_exit_fail:
xge_debug_ring(XGE_TRACE, "tcphdr not fastpth %02x %02x", tcp->doff_res, tcp->ctrl);
return XGE_HAL_FAIL;
}
/*
* __hal_lro_capable: Finds whether frame is lro capable.
* @buffer: Ethernet frame.
* @ip: ip frame.
* @tcp: tcp frame.
* @ext_info: Descriptor info.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
__hal_lro_capable( u8 *buffer,
iplro_t **ip,
tcplro_t **tcp,
xge_hal_dtr_info_t *ext_info)
{
u8 ip_off, ip_length;
if (!(ext_info->proto & XGE_HAL_FRAME_PROTO_TCP)) {
xge_debug_ring(XGE_ERR, "Cant do lro %d", ext_info->proto);
return XGE_HAL_FAIL;
}
if ( !*ip )
{
#ifdef XGE_LL_DEBUG_DUMP_PKT
{
u8 ch;
u16 i;
xge_os_printf("Dump Eth:" );
for (i =0; i < 60; i++) {
ch = ntohs(*((u8 *)(buffer + i)) );
xge_os_printf("i:%d %02x, ",i,ch);
}
}
#endif
switch (ext_info->frame) {
case XGE_HAL_FRAME_TYPE_DIX:
ip_off = XGE_HAL_HEADER_ETHERNET_II_802_3_SIZE;
break;
case XGE_HAL_FRAME_TYPE_LLC:
ip_off = (XGE_HAL_HEADER_ETHERNET_II_802_3_SIZE +
XGE_HAL_HEADER_802_2_SIZE);
break;
case XGE_HAL_FRAME_TYPE_SNAP:
ip_off = (XGE_HAL_HEADER_ETHERNET_II_802_3_SIZE +
XGE_HAL_HEADER_SNAP_SIZE);
break;
default: // XGE_HAL_FRAME_TYPE_IPX, etc.
return XGE_HAL_FAIL;
}
if (ext_info->proto & XGE_HAL_FRAME_PROTO_VLAN_TAGGED) {
ip_off += XGE_HAL_HEADER_VLAN_SIZE;
}
/* Grab ip, tcp headers */
*ip = (iplro_t *)((char*)buffer + ip_off);
} /* !*ip */
ip_length = (u8)((*ip)->version_ihl & 0x0F);
ip_length = ip_length <<2;
*tcp = (tcplro_t *)((char *)*ip + ip_length);
xge_debug_ring(XGE_TRACE, "ip_length:%d ip:"XGE_OS_LLXFMT
" tcp:"XGE_OS_LLXFMT"", (int)ip_length,
(unsigned long long)(ulong_t)*ip, (unsigned long long)(ulong_t)*tcp);
return XGE_HAL_OK;
}
/*
* __hal_open_lro_session: Open a new LRO session.
* @buffer: Ethernet frame.
* @ip: ip header.
* @tcp: tcp header.
* @lro: lro pointer
* @ext_info: Descriptor info.
* @hldev: Hal context.
* @ring_lro: LRO descriptor per rx ring.
* @slot: Bucket no.
* @tcp_seg_len: Length of tcp segment.
* @ts_off: time stamp offset in the packet.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL void
__hal_open_lro_session (u8 *buffer, iplro_t *ip, tcplro_t *tcp, lro_t **lro,
xge_hal_device_t *hldev, xge_hal_lro_desc_t *ring_lro, int slot,
u32 tcp_seg_len, int ts_off)
{
lro_t *lro_new = &ring_lro->lro_pool[slot];
lro_new->in_use = 1;
lro_new->ll_hdr = buffer;
lro_new->ip_hdr = ip;
lro_new->tcp_hdr = tcp;
lro_new->tcp_next_seq_num = tcp_seg_len + xge_os_ntohl(
tcp->seq);
lro_new->tcp_seq_num = tcp->seq;
lro_new->tcp_ack_num = tcp->ack_seq;
lro_new->sg_num = 1;
lro_new->total_length = xge_os_ntohs(ip->tot_len);
lro_new->frags_len = 0;
lro_new->ts_off = ts_off;
hldev->stats.sw_dev_info_stats.tot_frms_lroised++;
hldev->stats.sw_dev_info_stats.tot_lro_sessions++;
*lro = ring_lro->lro_recent = lro_new;
return;
}
/*
* __hal_lro_get_free_slot: Get a free LRO bucket.
* @ring_lro: LRO descriptor per ring.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL int
__hal_lro_get_free_slot (xge_hal_lro_desc_t *ring_lro)
{
int i;
for (i = 0; i < XGE_HAL_LRO_MAX_BUCKETS; i++) {
lro_t *lro_temp = &ring_lro->lro_pool[i];
if (!lro_temp->in_use)
return i;
}
return -1;
}
/*
* __hal_get_lro_session: Gets matching LRO session or creates one.
* @eth_hdr: Ethernet header.
* @ip: ip header.
* @tcp: tcp header.
* @lro: lro pointer
* @ext_info: Descriptor info.
* @hldev: Hal context.
* @ring_lro: LRO descriptor per rx ring
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
__hal_get_lro_session (u8 *eth_hdr,
iplro_t *ip,
tcplro_t *tcp,
lro_t **lro,
xge_hal_dtr_info_t *ext_info,
xge_hal_device_t *hldev,
xge_hal_lro_desc_t *ring_lro,
lro_t **lro_end3 /* Valid only when ret=END_3 */)
{
lro_t *lro_match;
int i, free_slot = -1;
u32 tcp_seg_len;
int ts_off = -1;
*lro = lro_match = NULL;
/*
* Compare the incoming frame with the lro session left from the
* previous call. There is a good chance that this incoming frame
* matches the lro session.
*/
if (ring_lro->lro_recent && ring_lro->lro_recent->in_use) {
if (__hal_lro_check_for_session_match(ring_lro->lro_recent,
tcp, ip)
== XGE_HAL_OK)
lro_match = ring_lro->lro_recent;
}
if (!lro_match) {
/*
* Search in the pool of LROs for the session that matches
* the incoming frame.
*/
for (i = 0; i < XGE_HAL_LRO_MAX_BUCKETS; i++) {
lro_t *lro_temp = &ring_lro->lro_pool[i];
if (!lro_temp->in_use) {
if (free_slot == -1)
free_slot = i;
continue;
}
if (__hal_lro_check_for_session_match(lro_temp, tcp,
ip) == XGE_HAL_OK) {
lro_match = lro_temp;
break;
}
}
}
if (lro_match) {
/*
* Matching LRO Session found
*/
*lro = lro_match;
if (lro_match->tcp_next_seq_num != xge_os_ntohl(tcp->seq)) {
xge_debug_ring(XGE_ERR, "**retransmit **"
"found***");
hldev->stats.sw_dev_info_stats.lro_out_of_seq_pkt_cnt++;
return XGE_HAL_INF_LRO_END_2;
}
if (XGE_HAL_OK != __hal_ip_lro_capable(ip, ext_info))
{
return XGE_HAL_INF_LRO_END_2;
}
if (XGE_HAL_OK != __hal_tcp_lro_capable(ip, tcp, lro_match,
&ts_off)) {
/*
* Close the current session and open a new
* LRO session with this packet,
* provided it has tcp payload
*/
tcp_seg_len = __hal_tcp_seg_len(ip, tcp);
if (tcp_seg_len == 0)
{
return XGE_HAL_INF_LRO_END_2;
}
/* Get a free bucket */
free_slot = __hal_lro_get_free_slot(ring_lro);
if (free_slot == -1)
{
return XGE_HAL_INF_LRO_END_2;
}
/*
* Open a new LRO session
*/
__hal_open_lro_session (eth_hdr, ip, tcp, lro_end3,
hldev, ring_lro, free_slot, tcp_seg_len,
ts_off);
return XGE_HAL_INF_LRO_END_3;
}
/*
* The frame is good, in-sequence, can be LRO-ed;
* take its (latest) ACK - unless it is a dupack.
* Note: to be exact need to check window size as well..
*/
if (lro_match->tcp_ack_num == tcp->ack_seq &&
lro_match->tcp_seq_num == tcp->seq) {
hldev->stats.sw_dev_info_stats.lro_dup_pkt_cnt++;
return XGE_HAL_INF_LRO_END_2;
}
lro_match->tcp_seq_num = tcp->seq;
lro_match->tcp_ack_num = tcp->ack_seq;
lro_match->frags_len += __hal_tcp_seg_len(ip, tcp);
ring_lro->lro_recent = lro_match;
return XGE_HAL_INF_LRO_CONT;
}
/* ********** New Session ***************/
if (free_slot == -1)
return XGE_HAL_INF_LRO_UNCAPABLE;
if (XGE_HAL_FAIL == __hal_ip_lro_capable(ip, ext_info))
return XGE_HAL_INF_LRO_UNCAPABLE;
if (XGE_HAL_FAIL == __hal_tcp_lro_capable(ip, tcp, NULL, &ts_off))
return XGE_HAL_INF_LRO_UNCAPABLE;
xge_debug_ring(XGE_TRACE, "Creating lro session.");
/*
* Open a LRO session, provided the packet contains payload.
*/
tcp_seg_len = __hal_tcp_seg_len(ip, tcp);
if (tcp_seg_len == 0)
return XGE_HAL_INF_LRO_UNCAPABLE;
__hal_open_lro_session (eth_hdr, ip, tcp, lro, hldev, ring_lro, free_slot,
tcp_seg_len, ts_off);
return XGE_HAL_INF_LRO_BEGIN;
}
/*
* __hal_lro_under_optimal_thresh: Finds whether combined session is optimal.
* @ip: ip header.
* @tcp: tcp header.
* @lro: lro pointer
* @hldev: Hal context.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
__hal_lro_under_optimal_thresh (iplro_t *ip,
tcplro_t *tcp,
lro_t *lro,
xge_hal_device_t *hldev)
{
if (!lro) return XGE_HAL_FAIL;
if ((lro->total_length + __hal_tcp_seg_len(ip, tcp) ) >
hldev->config.lro_frm_len) {
xge_debug_ring(XGE_TRACE, "Max LRO frame len exceeded:"
"max length %d ", hldev->config.lro_frm_len);
hldev->stats.sw_dev_info_stats.lro_frm_len_exceed_cnt++;
return XGE_HAL_FAIL;
}
if (lro->sg_num == hldev->config.lro_sg_size) {
xge_debug_ring(XGE_TRACE, "Max sg count exceeded:"
"max sg %d ", hldev->config.lro_sg_size);
hldev->stats.sw_dev_info_stats.lro_sg_exceed_cnt++;
return XGE_HAL_FAIL;
}
return XGE_HAL_OK;
}
/*
* __hal_collapse_ip_hdr: Collapses ip header.
* @ip: ip header.
* @tcp: tcp header.
* @lro: lro pointer
* @hldev: Hal context.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
__hal_collapse_ip_hdr ( iplro_t *ip,
tcplro_t *tcp,
lro_t *lro,
xge_hal_device_t *hldev)
{
lro->total_length += __hal_tcp_seg_len(ip, tcp);
/* May be we have to handle time stamps or more options */
return XGE_HAL_OK;
}
/*
* __hal_collapse_tcp_hdr: Collapses tcp header.
* @ip: ip header.
* @tcp: tcp header.
* @lro: lro pointer
* @hldev: Hal context.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
__hal_collapse_tcp_hdr ( iplro_t *ip,
tcplro_t *tcp,
lro_t *lro,
xge_hal_device_t *hldev)
{
lro->tcp_next_seq_num += __hal_tcp_seg_len(ip, tcp);
return XGE_HAL_OK;
}
/*
* __hal_append_lro: Appends new frame to existing LRO session.
* @ip: ip header.
* @tcp: IN tcp header, OUT tcp payload.
* @seg_len: tcp payload length.
* @lro: lro pointer
* @hldev: Hal context.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
__hal_append_lro(iplro_t *ip,
tcplro_t **tcp,
u32 *seg_len,
lro_t *lro,
xge_hal_device_t *hldev)
{
(void) __hal_collapse_ip_hdr(ip, *tcp, lro, hldev);
(void) __hal_collapse_tcp_hdr(ip, *tcp, lro, hldev);
// Update mbuf chain will be done in ll driver.
// xge_hal_accumulate_large_rx on success of appending new frame to
// lro will return to ll driver tcpdata pointer, and tcp payload length.
// along with return code lro frame appended.
lro->sg_num++;
*seg_len = __hal_tcp_seg_len(ip, *tcp);
*tcp = (tcplro_t *)((char *)*tcp + (((*tcp)->doff_res)>>2));
return XGE_HAL_OK;
}
/**
* __xge_hal_accumulate_large_rx: LRO a given frame
* frames
* @ring: rx ring number
* @eth_hdr: ethernet header.
* @ip_hdr: ip header (optional)
* @tcp: tcp header.
* @seglen: packet length.
* @p_lro: lro pointer.
* @ext_info: descriptor info, see xge_hal_dtr_info_t{}.
* @hldev: HAL device.
* @lro_end3: for lro_end3 output
*
* LRO the newly received frame, i.e. attach it (if possible) to the
* already accumulated (i.e., already LRO-ed) received frames (if any),
* to form one super-sized frame for the subsequent processing
* by the stack.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
xge_hal_lro_process_rx(int ring, u8 *eth_hdr, u8 *ip_hdr, tcplro_t **tcp,
u32 *seglen, lro_t **p_lro,
xge_hal_dtr_info_t *ext_info, xge_hal_device_t *hldev,
lro_t **lro_end3)
{
iplro_t *ip = (iplro_t *)ip_hdr;
xge_hal_status_e ret;
lro_t *lro;
xge_debug_ring(XGE_TRACE, "Entered accumu lro. ");
if (XGE_HAL_OK != __hal_lro_capable(eth_hdr, &ip, (tcplro_t **)tcp,
ext_info))
return XGE_HAL_INF_LRO_UNCAPABLE;
/*
* This function shall get matching LRO or else
* create one and return it
*/
ret = __hal_get_lro_session(eth_hdr, ip, (tcplro_t *)*tcp,
p_lro, ext_info, hldev, &hldev->lro_desc[ring],
lro_end3);
xge_debug_ring(XGE_TRACE, "ret from get_lro:%d ",ret);
lro = *p_lro;
if (XGE_HAL_INF_LRO_CONT == ret) {
if (XGE_HAL_OK == __hal_lro_under_optimal_thresh(ip,
(tcplro_t *)*tcp, lro, hldev)) {
(void) __hal_append_lro(ip,(tcplro_t **) tcp, seglen,
lro, hldev);
hldev->stats.sw_dev_info_stats.tot_frms_lroised++;
if (lro->sg_num >= hldev->config.lro_sg_size) {
hldev->stats.sw_dev_info_stats.lro_sg_exceed_cnt++;
ret = XGE_HAL_INF_LRO_END_1;
}
} else ret = XGE_HAL_INF_LRO_END_2;
}
/*
* Since its time to flush,
* update ip header so that it can be sent up
*/
if ((ret == XGE_HAL_INF_LRO_END_1) ||
(ret == XGE_HAL_INF_LRO_END_2) ||
(ret == XGE_HAL_INF_LRO_END_3)) {
lro->ip_hdr->tot_len = xge_os_htons((*p_lro)->total_length);
lro->ip_hdr->check = xge_os_htons(0);
lro->ip_hdr->check = XGE_LL_IP_FAST_CSUM(((u8 *)(lro->ip_hdr)),
(lro->ip_hdr->version_ihl & 0x0F));
lro->tcp_hdr->ack_seq = lro->tcp_ack_num;
}
return (ret);
}
/**
* xge_hal_accumulate_large_rx: LRO a given frame
* frames
* @buffer: Ethernet frame.
* @tcp: tcp header.
* @seglen: packet length.
* @p_lro: lro pointer.
* @ext_info: descriptor info, see xge_hal_dtr_info_t{}.
* @hldev: HAL device.
* @lro_end3: for lro_end3 output
*
* LRO the newly received frame, i.e. attach it (if possible) to the
* already accumulated (i.e., already LRO-ed) received frames (if any),
* to form one super-sized frame for the subsequent processing
* by the stack.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL xge_hal_status_e
xge_hal_accumulate_large_rx(u8 *buffer, tcplro_t **tcp, u32 *seglen,
lro_t **p_lro, xge_hal_dtr_info_t *ext_info, xge_hal_device_t *hldev,
lro_t **lro_end3)
{
int ring = 0;
return xge_hal_lro_process_rx(ring, buffer, NULL, tcp, seglen, p_lro,
ext_info, hldev, lro_end3);
}
/**
* xge_hal_lro_close_session: Close LRO session
* @lro: LRO Session.
* @hldev: HAL Context.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL void
xge_hal_lro_close_session (lro_t *lro)
{
lro->in_use = 0;
}
/**
* xge_hal_lro_next_session: Returns next LRO session in the list or NULL
* if none exists.
* @hldev: HAL Context.
* @ring: rx ring number.
*/
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL lro_t *
xge_hal_lro_next_session (xge_hal_device_t *hldev, int ring)
{
xge_hal_lro_desc_t *ring_lro = &hldev->lro_desc[ring];
int i;
int start_idx = ring_lro->lro_next_idx;
for(i = start_idx; i < XGE_HAL_LRO_MAX_BUCKETS; i++) {
lro_t *lro = &ring_lro->lro_pool[i];
if (!lro->in_use)
continue;
lro->ip_hdr->tot_len = xge_os_htons(lro->total_length);
lro->ip_hdr->check = xge_os_htons(0);
lro->ip_hdr->check = XGE_LL_IP_FAST_CSUM(((u8 *)(lro->ip_hdr)),
(lro->ip_hdr->version_ihl & 0x0F));
ring_lro->lro_next_idx = i + 1;
return lro;
}
ring_lro->lro_next_idx = 0;
return NULL;
}
__HAL_STATIC_CHANNEL __HAL_INLINE_CHANNEL lro_t *
xge_hal_lro_get_next_session(xge_hal_device_t *hldev)
{
int ring = 0; /* assume default ring=0 */
return xge_hal_lro_next_session(hldev, ring);
}
#endif