ural.c revision da14cebe459d3275048785f25bd869cb09b5307f
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2005, 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Ralink Technology RT2500USB chipset driver
* http://www.ralinktech.com/
*/
#include <sys/types.h>
#include <sys/byteorder.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/strsubr.h>
#include <sys/ethernet.h>
#include <inet/common.h>
#include <inet/nd.h>
#include <inet/mi.h>
#include <sys/note.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/modctl.h>
#include <sys/devops.h>
#include <sys/dlpi.h>
#include <sys/mac_provider.h>
#include <sys/mac_wifi.h>
#include <sys/net80211.h>
#include <sys/net80211_proto.h>
#include <sys/varargs.h>
#include <sys/policy.h>
#include <sys/pci.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <inet/wifi_ioctl.h>
#define USBDRV_MAJOR_VER 2
#define USBDRV_MINOR_VER 0
#include <sys/usb/usba.h>
#include "ural_reg.h"
#include "ural_var.h"
static void *ural_soft_state_p = NULL;
#define RAL_TXBUF_SIZE (IEEE80211_MAX_LEN)
#define RAL_RXBUF_SIZE (IEEE80211_MAX_LEN)
/* quickly determine if a given rate is CCK or OFDM */
#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
#define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
#define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
#define RAL_SIFS 10 /* us */
#define RAL_RXTX_TURNAROUND 5 /* us */
#define URAL_N(a) (sizeof (a) / sizeof ((a)[0]))
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset ural_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset ural_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset ural_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
/*
* Default values for MAC registers; values taken from the reference driver.
*/
static const struct {
uint16_t reg;
uint16_t val;
} ural_def_mac[] = {
{ RAL_TXRX_CSR5, 0x8c8d },
{ RAL_TXRX_CSR6, 0x8b8a },
{ RAL_TXRX_CSR7, 0x8687 },
{ RAL_TXRX_CSR8, 0x0085 },
{ RAL_MAC_CSR13, 0x1111 },
{ RAL_MAC_CSR14, 0x1e11 },
{ RAL_TXRX_CSR21, 0xe78f },
{ RAL_MAC_CSR9, 0xff1d },
{ RAL_MAC_CSR11, 0x0002 },
{ RAL_MAC_CSR22, 0x0053 },
{ RAL_MAC_CSR15, 0x0000 },
{ RAL_MAC_CSR8, 0x0780 },
{ RAL_TXRX_CSR19, 0x0000 },
{ RAL_TXRX_CSR18, 0x005a },
{ RAL_PHY_CSR2, 0x0000 },
{ RAL_TXRX_CSR0, 0x1ec0 },
{ RAL_PHY_CSR4, 0x000f }
};
/*
* Default values for BBP registers; values taken from the reference driver.
*/
static const struct {
uint8_t reg;
uint8_t val;
} ural_def_bbp[] = {
{ 3, 0x02 },
{ 4, 0x19 },
{ 14, 0x1c },
{ 15, 0x30 },
{ 16, 0xac },
{ 17, 0x48 },
{ 18, 0x18 },
{ 19, 0xff },
{ 20, 0x1e },
{ 21, 0x08 },
{ 22, 0x08 },
{ 23, 0x08 },
{ 24, 0x80 },
{ 25, 0x50 },
{ 26, 0x08 },
{ 27, 0x23 },
{ 30, 0x10 },
{ 31, 0x2b },
{ 32, 0xb9 },
{ 34, 0x12 },
{ 35, 0x50 },
{ 39, 0xc4 },
{ 40, 0x02 },
{ 41, 0x60 },
{ 53, 0x10 },
{ 54, 0x18 },
{ 56, 0x08 },
{ 57, 0x10 },
{ 58, 0x08 },
{ 61, 0x60 },
{ 62, 0x10 },
{ 75, 0xff }
};
/*
* Default values for RF register R2 indexed by channel numbers.
*/
static const uint32_t ural_rf2522_r2[] = {
0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
};
static const uint32_t ural_rf2523_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ural_rf2524_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ural_rf2525_r2[] = {
0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
};
static const uint32_t ural_rf2525_hi_r2[] = {
0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
};
static const uint32_t ural_rf2525e_r2[] = {
0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
};
static const uint32_t ural_rf2526_hi_r2[] = {
0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
};
static const uint32_t ural_rf2526_r2[] = {
0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
};
/*
* For dual-band RF, RF registers R1 and R4 also depend on channel number;
* values taken from the reference driver.
*/
static const struct {
uint8_t chan;
uint32_t r1;
uint32_t r2;
uint32_t r4;
} ural_rf5222[] = {
{ 1, 0x08808, 0x0044d, 0x00282 },
{ 2, 0x08808, 0x0044e, 0x00282 },
{ 3, 0x08808, 0x0044f, 0x00282 },
{ 4, 0x08808, 0x00460, 0x00282 },
{ 5, 0x08808, 0x00461, 0x00282 },
{ 6, 0x08808, 0x00462, 0x00282 },
{ 7, 0x08808, 0x00463, 0x00282 },
{ 8, 0x08808, 0x00464, 0x00282 },
{ 9, 0x08808, 0x00465, 0x00282 },
{ 10, 0x08808, 0x00466, 0x00282 },
{ 11, 0x08808, 0x00467, 0x00282 },
{ 12, 0x08808, 0x00468, 0x00282 },
{ 13, 0x08808, 0x00469, 0x00282 },
{ 14, 0x08808, 0x0046b, 0x00286 },
{ 36, 0x08804, 0x06225, 0x00287 },
{ 40, 0x08804, 0x06226, 0x00287 },
{ 44, 0x08804, 0x06227, 0x00287 },
{ 48, 0x08804, 0x06228, 0x00287 },
{ 52, 0x08804, 0x06229, 0x00287 },
{ 56, 0x08804, 0x0622a, 0x00287 },
{ 60, 0x08804, 0x0622b, 0x00287 },
{ 64, 0x08804, 0x0622c, 0x00287 },
{ 100, 0x08804, 0x02200, 0x00283 },
{ 104, 0x08804, 0x02201, 0x00283 },
{ 108, 0x08804, 0x02202, 0x00283 },
{ 112, 0x08804, 0x02203, 0x00283 },
{ 116, 0x08804, 0x02204, 0x00283 },
{ 120, 0x08804, 0x02205, 0x00283 },
{ 124, 0x08804, 0x02206, 0x00283 },
{ 128, 0x08804, 0x02207, 0x00283 },
{ 132, 0x08804, 0x02208, 0x00283 },
{ 136, 0x08804, 0x02209, 0x00283 },
{ 140, 0x08804, 0x0220a, 0x00283 },
{ 149, 0x08808, 0x02429, 0x00281 },
{ 153, 0x08808, 0x0242b, 0x00281 },
{ 157, 0x08808, 0x0242d, 0x00281 },
{ 161, 0x08808, 0x0242f, 0x00281 }
};
/*
* device operations
*/
static int ural_attach(dev_info_t *, ddi_attach_cmd_t);
static int ural_detach(dev_info_t *, ddi_detach_cmd_t);
/*
* Module Loading Data & Entry Points
*/
DDI_DEFINE_STREAM_OPS(ural_dev_ops, nulldev, nulldev, ural_attach,
ural_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_needed);
static struct modldrv ural_modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
"ural driver v1.3", /* short description */
&ural_dev_ops /* driver specific ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&ural_modldrv,
NULL
};
static int ural_m_stat(void *, uint_t, uint64_t *);
static int ural_m_start(void *);
static void ural_m_stop(void *);
static int ural_m_promisc(void *, boolean_t);
static int ural_m_multicst(void *, boolean_t, const uint8_t *);
static int ural_m_unicst(void *, const uint8_t *);
static mblk_t *ural_m_tx(void *, mblk_t *);
static void ural_m_ioctl(void *, queue_t *, mblk_t *);
static int ural_m_setprop(void *, const char *, mac_prop_id_t,
uint_t, const void *);
static int ural_m_getprop(void *, const char *, mac_prop_id_t,
uint_t, uint_t, void *, uint_t *);
static mac_callbacks_t ural_m_callbacks = {
MC_IOCTL | MC_SETPROP | MC_GETPROP,
ural_m_stat,
ural_m_start,
ural_m_stop,
ural_m_promisc,
ural_m_multicst,
ural_m_unicst,
ural_m_tx,
ural_m_ioctl,
NULL, /* mc_getcapab */
NULL,
NULL,
ural_m_setprop,
ural_m_getprop
};
extern const char *usb_str_cr(int);
static void ural_amrr_start(struct ural_softc *, struct ieee80211_node *);
static int ural_tx_trigger(struct ural_softc *, mblk_t *);
static int ural_rx_trigger(struct ural_softc *);
uint32_t ural_dbg_flags = 0;
#ifdef DEBUG
void
ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
{
va_list args;
if (dbg_flags & ural_dbg_flags) {
va_start(args, fmt);
vcmn_err(CE_CONT, fmt, args);
va_end(args);
}
}
#endif
static uint16_t
ural_read(struct ural_softc *sc, uint16_t reg)
{
usb_ctrl_setup_t req;
usb_cr_t cr;
usb_cb_flags_t cf;
mblk_t *mp;
int err;
uint16_t val;
bzero(&req, sizeof (req));
req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
req.bRequest = RAL_READ_MAC;
req.wValue = 0;
req.wIndex = reg;
req.wLength = sizeof (uint16_t);
mp = NULL;
err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
&cr, &cf, 0);
if (err != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_read(): could not read MAC register:"
" cr:%s(%d), cf:(%x)\n",
usb_str_cr(cr), cr, cf);
return (0);
}
bcopy(mp->b_rptr, &val, sizeof (uint16_t));
if (mp)
freemsg(mp);
return (LE_16(val));
}
static void
ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
{
usb_ctrl_setup_t req;
usb_cr_t cr;
usb_cb_flags_t cf;
mblk_t *mp;
int err;
bzero(&req, sizeof (req));
req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
req.bRequest = RAL_READ_MULTI_MAC;
req.wValue = 0;
req.wIndex = reg;
req.wLength = (uint16_t)len;
req.attrs = USB_ATTRS_AUTOCLEARING;
mp = NULL;
err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
&cr, &cf, 0);
if (err != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_read_multi(): could not read MAC register:"
"cr:%s(%d), cf:(%x)\n",
usb_str_cr(cr), cr, cf);
return;
}
bcopy(mp->b_rptr, buf, len);
if (mp)
freemsg(mp);
}
static void
ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
{
usb_ctrl_setup_t req;
usb_cr_t cr;
usb_cb_flags_t cf;
int err;
bzero(&req, sizeof (req));
req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
req.bRequest = RAL_WRITE_MAC;
req.wValue = val;
req.wIndex = reg;
req.wLength = 0;
req.attrs = USB_ATTRS_NONE;
err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL,
&cr, &cf, 0);
if (err != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_write(): could not write MAC register:"
"cr:%s(%d), cf:(%x)\n",
usb_str_cr(cr), cr, cf);
}
}
/* ARGSUSED */
static void
ural_txeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
{
struct ural_softc *sc = (struct ural_softc *)req->bulk_client_private;
struct ieee80211com *ic = &sc->sc_ic;
RAL_DEBUG(RAL_DBG_TX,
"ural_txeof(): cr:%s(%d), flags:0x%x, tx_queued:%d",
usb_str_cr(req->bulk_completion_reason),
req->bulk_completion_reason,
req->bulk_cb_flags,
sc->tx_queued);
if (req->bulk_completion_reason != USB_CR_OK)
sc->sc_tx_err++;
mutex_enter(&sc->tx_lock);
sc->tx_queued--;
sc->sc_tx_timer = 0;
if (sc->sc_need_sched) {
sc->sc_need_sched = 0;
mac_tx_update(ic->ic_mach);
}
mutex_exit(&sc->tx_lock);
usb_free_bulk_req(req);
}
/* ARGSUSED */
static void
ural_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
{
struct ural_softc *sc = (struct ural_softc *)req->bulk_client_private;
struct ieee80211com *ic = &sc->sc_ic;
struct ural_rx_desc *desc;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
mblk_t *m, *mp;
int len, pktlen;
char *rxbuf;
mp = req->bulk_data;
req->bulk_data = NULL;
RAL_DEBUG(RAL_DBG_RX,
"ural_rxeof(): cr:%s(%d), flags:0x%x, rx_queued:%d",
usb_str_cr(req->bulk_completion_reason),
req->bulk_completion_reason,
req->bulk_cb_flags,
sc->rx_queued);
if (req->bulk_completion_reason != USB_CR_OK) {
sc->sc_rx_err++;
goto fail;
}
len = (uintptr_t)mp->b_wptr - (uintptr_t)mp->b_rptr;
rxbuf = (char *)mp->b_rptr;
if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_rxeof(): xfer too short %d\n", len);
sc->sc_rx_err++;
goto fail;
}
/* rx descriptor is located at the end */
desc = (struct ural_rx_desc *)(rxbuf + len - RAL_RX_DESC_SIZE);
if ((LE_32(desc->flags) & RAL_RX_PHY_ERROR) ||
(LE_32(desc->flags) & RAL_RX_CRC_ERROR)) {
/*
* This should not happen since we did not request to receive
* those frames when we filled RAL_TXRX_CSR2.
*/
RAL_DEBUG(RAL_DBG_ERR, "PHY or CRC error\n");
sc->sc_rx_err++;
goto fail;
}
pktlen = (LE_32(desc->flags) >> 16) & 0xfff;
if (pktlen > (len - RAL_RX_DESC_SIZE)) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_rxeof(): pktlen mismatch <%d, %d>.\n", pktlen, len);
goto fail;
}
/* Strip trailing 802.11 MAC FCS. */
pktlen -= IEEE80211_CRC_LEN;
if ((m = allocb(pktlen, BPRI_MED)) == NULL) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_rxeof(): allocate mblk failed.\n");
sc->sc_rx_nobuf++;
goto fail;
}
bcopy(rxbuf, m->b_rptr, pktlen);
m->b_wptr += pktlen;
wh = (struct ieee80211_frame *)m->b_rptr;
ni = ieee80211_find_rxnode(ic, wh);
/* send the frame to the 802.11 layer */
(void) ieee80211_input(ic, m, ni, desc->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
fail:
mutex_enter(&sc->rx_lock);
sc->rx_queued--;
mutex_exit(&sc->rx_lock);
freemsg(mp);
usb_free_bulk_req(req);
if (RAL_IS_RUNNING(sc))
(void) ural_rx_trigger(sc);
}
/*
* Return the expected ack rate for a frame transmitted at rate `rate'.
* this should depend on the destination node basic rate set.
*/
static int
ural_ack_rate(struct ieee80211com *ic, int rate)
{
switch (rate) {
/* CCK rates */
case 2:
return (2);
case 4:
case 11:
case 22:
return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate);
/* OFDM rates */
case 12:
case 18:
return (12);
case 24:
case 36:
return (24);
case 48:
case 72:
case 96:
case 108:
return (48);
}
/* default to 1Mbps */
return (2);
}
/*
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
* The function automatically determines the operating mode depending on the
* given rate. `flags' indicates whether short preamble is in use or not.
*/
static uint16_t
ural_txtime(int len, int rate, uint32_t flags)
{
uint16_t txtime;
if (RAL_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11a-1999, pp. 37 */
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
txtime = 16 + 4 + 4 * txtime + 6;
} else {
/* IEEE Std 802.11b-1999, pp. 28 */
txtime = (16 * len + rate - 1) / rate;
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
}
return (txtime);
}
static uint8_t
ural_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return (0x0);
case 4: return (0x1);
case 11: return (0x2);
case 22: return (0x3);
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return (0xb);
case 18: return (0xf);
case 24: return (0xa);
case 36: return (0xe);
case 48: return (0x9);
case 72: return (0xd);
case 96: return (0x8);
case 108: return (0xc);
/* unsupported rates (should not get there) */
default: return (0xff);
}
}
static void
ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
uint32_t flags, int len, int rate)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t plcp_length;
int remainder;
desc->flags = LE_32(flags);
desc->flags |= LE_32(RAL_TX_NEWSEQ);
desc->flags |= LE_32(len << 16);
desc->wme = LE_16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
desc->wme |= LE_16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
/* setup PLCP fields */
desc->plcp_signal = ural_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (RAL_RATE_IS_OFDM(rate)) {
desc->flags |= LE_32(RAL_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RAL_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
desc->iv = 0;
desc->eiv = 0;
}
#define RAL_TX_TIMEOUT 5
static int
ural_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
{
struct ural_softc *sc = (struct ural_softc *)ic;
struct ural_tx_desc *desc;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint16_t dur;
uint32_t flags = 0;
int rate, err = DDI_SUCCESS;
struct ieee80211_node *ni = NULL;
mblk_t *m, *m0;
int off, mblen, pktlen, xferlen;
mutex_enter(&sc->tx_lock);
if (sc->tx_queued > RAL_TX_LIST_COUNT) {
RAL_DEBUG(RAL_DBG_TX, "ural_send(): "
"no TX buffer available!\n");
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) {
sc->sc_need_sched = 1;
}
sc->sc_tx_nobuf++;
err = ENOMEM;
goto fail;
}
m = allocb(RAL_TXBUF_SIZE + RAL_TX_DESC_SIZE, BPRI_MED);
if (m == NULL) {
RAL_DEBUG(RAL_DBG_ERR, "ural_send(): can't alloc mblk.\n");
err = DDI_FAILURE;
goto fail;
}
m->b_rptr += RAL_TX_DESC_SIZE; /* skip TX descriptor */
m->b_wptr += RAL_TX_DESC_SIZE;
for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
mblen = (uintptr_t)m0->b_wptr - (uintptr_t)m0->b_rptr;
(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
off += mblen;
}
m->b_wptr += off;
wh = (struct ieee80211_frame *)m->b_rptr;
ni = ieee80211_find_txnode(ic, wh->i_addr1);
if (ni == NULL) {
err = DDI_FAILURE;
sc->sc_tx_err++;
freemsg(m);
goto fail;
}
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) {
(void) ieee80211_encap(ic, m, ni);
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, m);
if (k == NULL) {
sc->sc_tx_err++;
freemsg(m);
err = DDI_FAILURE;
goto fail;
}
/* packet header may have moved, reset our local pointer */
wh = (struct ieee80211_frame *)m->b_rptr;
}
m->b_rptr -= RAL_TX_DESC_SIZE; /* restore */
desc = (struct ural_tx_desc *)m->b_rptr;
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) { /* DATA */
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
rate = ic->ic_bss->in_rates.ir_rates[ic->ic_fixed_rate];
else
rate = ni->in_rates.ir_rates[ni->in_txrate];
rate &= IEEE80211_RATE_VAL;
if (rate <= 0) {
rate = 2; /* basic rate */
}
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RAL_TX_ACK;
flags |= RAL_TX_RETRY(7);
dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
ic->ic_flags) + RAL_SIFS;
*(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
}
} else { /* MGMT */
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RAL_TX_ACK;
dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags)
+ RAL_SIFS;
*(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= RAL_TX_TIMESTAMP;
}
}
pktlen = (uintptr_t)m->b_wptr - (uintptr_t)m->b_rptr - RAL_TX_DESC_SIZE;
ural_setup_tx_desc(sc, desc, flags, pktlen, rate);
/* align end on a 2-bytes boundary */
xferlen = (RAL_TX_DESC_SIZE + pktlen + 1) & ~1;
/*
* No space left in the last URB to store the extra 2 bytes, force
* sending of another URB.
*/
if ((xferlen % 64) == 0)
xferlen += 2;
m->b_wptr = m->b_rptr + xferlen;
RAL_DEBUG(RAL_DBG_TX, "sending data frame len=%u rate=%u xfer len=%u\n",
pktlen, rate, xferlen);
(void) ural_tx_trigger(sc, m);
ic->ic_stats.is_tx_frags++;
ic->ic_stats.is_tx_bytes += pktlen;
fail:
if (ni != NULL)
ieee80211_free_node(ni);
if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
err == 0) {
freemsg(mp);
}
mutex_exit(&sc->tx_lock);
return (err);
}
static mblk_t *
ural_m_tx(void *arg, mblk_t *mp)
{
struct ural_softc *sc = (struct ural_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
mblk_t *next;
/*
* No data frames go out unless we're associated; this
* should not happen as the 802.11 layer does not enable
* the xmit queue until we enter the RUN state.
*/
if (ic->ic_state != IEEE80211_S_RUN) {
RAL_DEBUG(RAL_DBG_ERR, "ural_m_tx(): "
"discard, state %u\n", ic->ic_state);
freemsgchain(mp);
return (NULL);
}
while (mp != NULL) {
next = mp->b_next;
mp->b_next = NULL;
if (ural_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != DDI_SUCCESS) {
mp->b_next = next;
freemsgchain(mp);
return (NULL);
}
mp = next;
}
return (mp);
}
static void
ural_set_testmode(struct ural_softc *sc)
{
usb_ctrl_setup_t req;
usb_cr_t cr;
usb_cb_flags_t cf;
int err;
bzero(&req, sizeof (req));
req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
req.bRequest = RAL_VENDOR_REQUEST;
req.wValue = 4;
req.wIndex = 1;
req.wLength = 0;
req.attrs = USB_ATTRS_NONE;
err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL,
&cr, &cf, 0);
if (err != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_USB,
"ural_set_testmode(): could not set test mode:"
"cr:%s(%d), cf:%(x)\n",
usb_str_cr(cr), cr, cf);
}
}
static void
ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
{
usb_ctrl_setup_t req;
usb_cr_t cr;
usb_cb_flags_t cf;
mblk_t *mp;
int err;
bzero(&req, sizeof (req));
req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
req.bRequest = RAL_READ_EEPROM;
req.wValue = 0;
req.wIndex = addr;
req.wLength = (uint16_t)len;
mp = NULL;
err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
&cr, &cf, 0);
if (err != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_USB,
"ural_eeprom_read(): could not read EEPROM:"
"cr:%s(%d), cf:(%x)\n",
usb_str_cr(cr), cr, cf);
return;
}
bcopy(mp->b_rptr, buf, len);
if (mp)
freemsg(mp);
}
static void
ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
{
uint16_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
break;
}
if (ntries == 5) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_bbp_write(): could not write to BBP\n");
return;
}
tmp = reg << 8 | val;
ural_write(sc, RAL_PHY_CSR7, tmp);
}
static uint8_t
ural_bbp_read(struct ural_softc *sc, uint8_t reg)
{
uint16_t val;
int ntries;
val = RAL_BBP_WRITE | reg << 8;
ural_write(sc, RAL_PHY_CSR7, val);
for (ntries = 0; ntries < 5; ntries++) {
if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
break;
}
if (ntries == 5) {
RAL_DEBUG(RAL_DBG_ERR, "ural_bbp_read(): could not read BBP\n");
return (0);
}
return (ural_read(sc, RAL_PHY_CSR7) & 0xff);
}
static void
ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
break;
}
if (ntries == 5) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_rf_write(): could not write to RF\n");
return;
}
tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xffff) << 2 | (reg & 0x3);
ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
RAL_DEBUG(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
}
/*
* Disable RF auto-tuning.
*/
static void
ural_disable_rf_tune(struct ural_softc *sc)
{
uint32_t tmp;
if (sc->rf_rev != RAL_RF_2523) {
tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
ural_rf_write(sc, RAL_RF1, tmp);
}
tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
ural_rf_write(sc, RAL_RF3, tmp);
RAL_DEBUG(RAL_DBG_HW, "disabling RF autotune\n");
}
static void
ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t power, tmp;
uint_t i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
if (IEEE80211_IS_CHAN_2GHZ(c))
power = min(sc->txpow[chan - 1], 31);
else
power = 31;
/* adjust txpower using ifconfig settings */
power -= (100 - ic->ic_txpowlimit) / 8;
RAL_DEBUG(RAL_DBG_HW, "setting channel to %u, txpower to %u\n",
chan, power);
switch (sc->rf_rev) {
case RAL_RF_2522:
ural_rf_write(sc, RAL_RF1, 0x00814);
ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
break;
case RAL_RF_2523:
ural_rf_write(sc, RAL_RF1, 0x08804);
ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2524:
ural_rf_write(sc, RAL_RF1, 0x0c808);
ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525:
ural_rf_write(sc, RAL_RF1, 0x08808);
ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
ural_rf_write(sc, RAL_RF1, 0x08808);
ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525E:
ural_rf_write(sc, RAL_RF1, 0x08808);
ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
break;
case RAL_RF_2526:
ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
ural_rf_write(sc, RAL_RF1, 0x08804);
ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
break;
/* dual-band RF */
case RAL_RF_5222:
for (i = 0; ural_rf5222[i].chan != chan; i++) {
if (i > URAL_N(ural_rf5222)) break;
}
ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
break;
}
if (ic->ic_opmode != IEEE80211_M_MONITOR &&
ic->ic_state != IEEE80211_S_SCAN) {
/* set Japan filter bit for channel 14 */
tmp = ural_bbp_read(sc, 70);
tmp &= ~RAL_JAPAN_FILTER;
if (chan == 14)
tmp |= RAL_JAPAN_FILTER;
ural_bbp_write(sc, 70, tmp);
/* clear CRC errs */
(void) ural_read(sc, RAL_STA_CSR0);
drv_usecwait(10000);
ural_disable_rf_tune(sc);
}
}
/*
* Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
* synchronization.
*/
static void
ural_enable_tsf_sync(struct ural_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t logcwmin, preload, tmp;
/* first, disable TSF synchronization */
ural_write(sc, RAL_TXRX_CSR19, 0);
tmp = (16 * ic->ic_bss->in_intval) << 4;
ural_write(sc, RAL_TXRX_CSR18, tmp);
logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
tmp = logcwmin << 12 | preload;
ural_write(sc, RAL_TXRX_CSR20, tmp);
/* finally, enable TSF synchronization */
tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RAL_ENABLE_TSF_SYNC(1);
else
tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
ural_write(sc, RAL_TXRX_CSR19, tmp);
RAL_DEBUG(RAL_DBG_HW, "enabling TSF synchronization\n");
}
/*
* This function can be called by ieee80211_set_shortslottime(). Refer to
* IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
*/
/* ARGSUSED */
static void
ural_update_slot(struct ieee80211com *ic, int onoff)
{
struct ural_softc *sc = (struct ural_softc *)ic;
uint16_t slottime, sifs, eifs;
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
/* slottime = (onoff ? 9 : 20); */
/*
* These settings may sound a bit inconsistent but this is what the
* reference driver does.
*/
if (ic->ic_curmode == IEEE80211_MODE_11B) {
sifs = 16 - RAL_RXTX_TURNAROUND;
eifs = 364;
} else {
sifs = 10 - RAL_RXTX_TURNAROUND;
eifs = 64;
}
ural_write(sc, RAL_MAC_CSR10, slottime);
ural_write(sc, RAL_MAC_CSR11, sifs);
ural_write(sc, RAL_MAC_CSR12, eifs);
}
static void
ural_set_txpreamble(struct ural_softc *sc)
{
uint16_t tmp;
tmp = ural_read(sc, RAL_TXRX_CSR10);
tmp &= ~RAL_SHORT_PREAMBLE;
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RAL_SHORT_PREAMBLE;
ural_write(sc, RAL_TXRX_CSR10, tmp);
}
static void
ural_set_basicrates(struct ural_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* update basic rate set */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
/* 11b basic rates: 1, 2Mbps */
ural_write(sc, RAL_TXRX_CSR11, 0x3);
} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->in_chan)) {
/* 11a basic rates: 6, 12, 24Mbps */
ural_write(sc, RAL_TXRX_CSR11, 0x150);
} else {
/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
ural_write(sc, RAL_TXRX_CSR11, 0x15f);
}
}
static void
ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
{
uint16_t tmp;
tmp = bssid[0] | bssid[1] << 8;
ural_write(sc, RAL_MAC_CSR5, tmp);
tmp = bssid[2] | bssid[3] << 8;
ural_write(sc, RAL_MAC_CSR6, tmp);
tmp = bssid[4] | bssid[5] << 8;
ural_write(sc, RAL_MAC_CSR7, tmp);
RAL_DEBUG(RAL_DBG_HW, "setting BSSID to " MACSTR "\n", MAC2STR(bssid));
}
static void
ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
{
uint16_t tmp;
tmp = addr[0] | addr[1] << 8;
ural_write(sc, RAL_MAC_CSR2, tmp);
tmp = addr[2] | addr[3] << 8;
ural_write(sc, RAL_MAC_CSR3, tmp);
tmp = addr[4] | addr[5] << 8;
ural_write(sc, RAL_MAC_CSR4, tmp);
RAL_DEBUG(RAL_DBG_HW,
"setting MAC address to " MACSTR "\n", MAC2STR(addr));
}
static void
ural_update_promisc(struct ural_softc *sc)
{
uint32_t tmp;
tmp = ural_read(sc, RAL_TXRX_CSR2);
tmp &= ~RAL_DROP_NOT_TO_ME;
if (!(sc->sc_rcr & RAL_RCR_PROMISC))
tmp |= RAL_DROP_NOT_TO_ME;
ural_write(sc, RAL_TXRX_CSR2, tmp);
RAL_DEBUG(RAL_DBG_HW, "%s promiscuous mode\n",
(sc->sc_rcr & RAL_RCR_PROMISC) ? "entering" : "leaving");
}
static const char *
ural_get_rf(int rev)
{
switch (rev) {
case RAL_RF_2522: return ("RT2522");
case RAL_RF_2523: return ("RT2523");
case RAL_RF_2524: return ("RT2524");
case RAL_RF_2525: return ("RT2525");
case RAL_RF_2525E: return ("RT2525e");
case RAL_RF_2526: return ("RT2526");
case RAL_RF_5222: return ("RT5222");
default: return ("unknown");
}
}
static void
ural_read_eeprom(struct ural_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
val = LE_16(val);
sc->rf_rev = (val >> 11) & 0x7;
sc->hw_radio = (val >> 10) & 0x1;
sc->led_mode = (val >> 6) & 0x7;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
/* read MAC address */
ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
/* read default values for BBP registers */
ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
/* read Tx power for all b/g channels */
ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
}
static int
ural_bbp_init(struct ural_softc *sc)
{
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
break;
drv_usecwait(1000);
}
if (ntries == 100) {
RAL_DEBUG(RAL_DBG_ERR, "timeout waiting for BBP\n");
return (EIO);
}
/* initialize BBP registers to default values */
for (i = 0; i < URAL_N(ural_def_bbp); i++)
ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
return (0);
}
static void
ural_set_txantenna(struct ural_softc *sc, int antenna)
{
uint16_t tmp;
uint8_t tx;
tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
tx |= RAL_BBP_ANTA;
else if (antenna == 2)
tx |= RAL_BBP_ANTB;
else
tx |= RAL_BBP_DIVERSITY;
/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
sc->rf_rev == RAL_RF_5222)
tx |= RAL_BBP_FLIPIQ;
ural_bbp_write(sc, RAL_BBP_TX, tx);
/* update values in PHY_CSR5 and PHY_CSR6 */
tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
}
static void
ural_set_rxantenna(struct ural_softc *sc, int antenna)
{
uint8_t rx;
rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
rx |= RAL_BBP_ANTA;
else if (antenna == 2)
rx |= RAL_BBP_ANTB;
else
rx |= RAL_BBP_DIVERSITY;
/* need to force no I/Q flip for RF 2525e and 2526 */
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
rx &= ~RAL_BBP_FLIPIQ;
ural_bbp_write(sc, RAL_BBP_RX, rx);
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
static void
ural_next_scan(void *arg)
{
struct ural_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
}
static int
ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ural_softc *sc = (struct ural_softc *)ic;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
int err;
RAL_LOCK(sc);
ostate = ic->ic_state;
if (sc->sc_scan_id != 0) {
(void) untimeout(sc->sc_scan_id);
sc->sc_scan_id = 0;
}
if (sc->sc_amrr_id != 0) {
(void) untimeout(sc->sc_amrr_id);
sc->sc_amrr_id = 0;
}
switch (nstate) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
ural_write(sc, RAL_TXRX_CSR19, 0);
/* force tx led to stop blinking */
ural_write(sc, RAL_MAC_CSR20, 0);
}
break;
case IEEE80211_S_SCAN:
ural_set_chan(sc, ic->ic_curchan);
sc->sc_scan_id = timeout(ural_next_scan, (void *)sc,
drv_usectohz(sc->dwelltime * 1000));
break;
case IEEE80211_S_AUTH:
RAL_DEBUG(RAL_DBG_MSG, "-> IEEE80211_S_AUTH ...\n");
ural_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_ASSOC:
RAL_DEBUG(RAL_DBG_MSG, "-> IEEE80211_S_ASSOC ...\n");
ural_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
RAL_DEBUG(RAL_DBG_MSG, "-> IEEE80211_S_RUN ...\n");
ural_set_chan(sc, ic->ic_curchan);
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
ural_update_slot(ic, 1);
ural_set_txpreamble(sc);
ural_set_basicrates(sc);
ural_set_bssid(sc, ni->in_bssid);
}
/* make tx led blink on tx (controlled by ASIC) */
ural_write(sc, RAL_MAC_CSR20, 1);
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ural_enable_tsf_sync(sc);
/* enable automatic rate adaptation in STA mode */
if (ic->ic_opmode == IEEE80211_M_STA &&
ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
ural_amrr_start(sc, ni);
break;
}
RAL_UNLOCK(sc);
err = sc->sc_newstate(ic, nstate, arg);
/*
* Finally, start any timers.
*/
if (nstate == IEEE80211_S_RUN)
ieee80211_start_watchdog(ic, 1);
return (err);
}
static void
ural_close_pipes(struct ural_softc *sc)
{
usb_flags_t flags = USB_FLAGS_SLEEP;
if (sc->sc_rx_pipeh != NULL) {
usb_pipe_reset(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
sc->sc_rx_pipeh = NULL;
}
if (sc->sc_tx_pipeh != NULL) {
usb_pipe_reset(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
sc->sc_tx_pipeh = NULL;
}
}
static int
ural_open_pipes(struct ural_softc *sc)
{
usb_ep_data_t *ep_node;
usb_pipe_policy_t policy;
int err;
ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
USB_EP_ATTR_BULK, USB_EP_DIR_OUT);
bzero(&policy, sizeof (usb_pipe_policy_t));
policy.pp_max_async_reqs = RAL_TX_LIST_COUNT;
if ((err = usb_pipe_open(sc->sc_dev,
&ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
&sc->sc_tx_pipeh)) != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_open_pipes(): %x failed to open tx pipe\n", err);
goto fail;
}
RAL_DEBUG(RAL_DBG_MSG, "tx pipe opened\n");
ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
USB_EP_ATTR_BULK, USB_EP_DIR_IN);
bzero(&policy, sizeof (usb_pipe_policy_t));
policy.pp_max_async_reqs = RAL_RX_LIST_COUNT + 32;
if ((err = usb_pipe_open(sc->sc_dev,
&ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
&sc->sc_rx_pipeh)) != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_open_pipes(): %x failed to open rx pipe\n", err);
goto fail;
}
RAL_DEBUG(RAL_DBG_MSG, "rx pipe opened\n");
return (USB_SUCCESS);
fail:
if (sc->sc_rx_pipeh != NULL) {
usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh,
USB_FLAGS_SLEEP, NULL, 0);
sc->sc_rx_pipeh = NULL;
}
if (sc->sc_tx_pipeh != NULL) {
usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh,
USB_FLAGS_SLEEP, NULL, 0);
sc->sc_tx_pipeh = NULL;
}
return (USB_FAILURE);
}
static int
ural_tx_trigger(struct ural_softc *sc, mblk_t *mp)
{
usb_bulk_req_t *req;
int err;
sc->sc_tx_timer = RAL_TX_TIMEOUT;
req = usb_alloc_bulk_req(sc->sc_dev, 0, USB_FLAGS_SLEEP);
if (req == NULL) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_tx_trigger(): failed to allocate req");
freemsg(mp);
return (-1);
}
req->bulk_len = (uintptr_t)mp->b_wptr - (uintptr_t)mp->b_rptr;
req->bulk_data = mp;
req->bulk_client_private = (usb_opaque_t)sc;
req->bulk_timeout = RAL_TX_TIMEOUT;
req->bulk_attributes = USB_ATTRS_AUTOCLEARING;
req->bulk_cb = ural_txeof;
req->bulk_exc_cb = ural_txeof;
req->bulk_completion_reason = 0;
req->bulk_cb_flags = 0;
if ((err = usb_pipe_bulk_xfer(sc->sc_tx_pipeh, req, 0))
!= USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR, "ural_tx_trigger(): "
"failed to do tx xfer, %d", err);
usb_free_bulk_req(req);
return (-1);
}
sc->tx_queued++;
return (0);
}
static int
ural_rx_trigger(struct ural_softc *sc)
{
usb_bulk_req_t *req;
int err;
req = usb_alloc_bulk_req(sc->sc_dev, RAL_RXBUF_SIZE, USB_FLAGS_SLEEP);
if (req == NULL) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_rx_trigger(): failed to allocate req");
return (-1);
}
req->bulk_len = RAL_RXBUF_SIZE;
req->bulk_client_private = (usb_opaque_t)sc;
req->bulk_timeout = 0;
req->bulk_attributes = USB_ATTRS_SHORT_XFER_OK
| USB_ATTRS_AUTOCLEARING;
req->bulk_cb = ural_rxeof;
req->bulk_exc_cb = ural_rxeof;
req->bulk_completion_reason = 0;
req->bulk_cb_flags = 0;
err = usb_pipe_bulk_xfer(sc->sc_rx_pipeh, req, 0);
if (err != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR, "ural_rx_trigger(): "
"failed to do rx xfer, %d", err);
usb_free_bulk_req(req);
return (-1);
}
mutex_enter(&sc->rx_lock);
sc->rx_queued++;
mutex_exit(&sc->rx_lock);
return (0);
}
static void
ural_init_tx_queue(struct ural_softc *sc)
{
sc->tx_queued = 0;
}
static int
ural_init_rx_queue(struct ural_softc *sc)
{
int i;
sc->rx_queued = 0;
for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
if (ural_rx_trigger(sc) != 0) {
return (USB_FAILURE);
}
}
return (USB_SUCCESS);
}
static void
ural_stop(struct ural_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
ieee80211_stop_watchdog(ic); /* stop the watchdog */
RAL_LOCK(sc);
sc->sc_tx_timer = 0;
sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
/* disable Rx */
ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
/* reset ASIC and BBP (but won't reset MAC registers!) */
ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
ural_write(sc, RAL_MAC_CSR1, 0);
ural_close_pipes(sc);
RAL_UNLOCK(sc);
}
static int
ural_init(struct ural_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t tmp;
int i, ntries;
ural_set_testmode(sc);
ural_write(sc, 0x308, 0x00f0); /* magic */
ural_stop(sc);
/* initialize MAC registers to default values */
for (i = 0; i < URAL_N(ural_def_mac); i++)
ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
/* wait for BBP and RF to wake up (this can take a long time!) */
for (ntries = 0; ntries < 100; ntries++) {
tmp = ural_read(sc, RAL_MAC_CSR17);
if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
(RAL_BBP_AWAKE | RAL_RF_AWAKE))
break;
drv_usecwait(1000);
}
if (ntries == 100) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_init(): timeout waiting for BBP/RF to wakeup\n");
goto fail;
}
/* we're ready! */
ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
/* set basic rate set (will be updated later) */
ural_write(sc, RAL_TXRX_CSR11, 0x15f);
if (ural_bbp_init(sc) != 0)
goto fail;
/* set default BSS channel */
ural_set_chan(sc, ic->ic_curchan);
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof (sc->sta));
ural_set_txantenna(sc, sc->tx_ant);
ural_set_rxantenna(sc, sc->rx_ant);
ural_set_macaddr(sc, ic->ic_macaddr);
if (ural_open_pipes(sc) != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR, "ural_init(): "
"could not open pipes.\n");
goto fail;
}
ural_init_tx_queue(sc);
if (ural_init_rx_queue(sc) != USB_SUCCESS)
goto fail;
/* kick Rx */
tmp = RAL_DROP_PHY | RAL_DROP_CRC;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RAL_DROP_TODS;
if (!(sc->sc_rcr & RAL_RCR_PROMISC))
tmp |= RAL_DROP_NOT_TO_ME;
}
ural_write(sc, RAL_TXRX_CSR2, tmp);
sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */
return (DDI_SUCCESS);
fail:
ural_stop(sc);
return (EIO);
}
static int
ural_offline(dev_info_t *devinfo)
{
struct ural_softc *sc;
struct ieee80211com *ic;
RAL_DEBUG(RAL_DBG_MSG, "ural_offline()\n");
/*
* We can't call ural_stop() here, since the hardware is removed,
* we can't access the register anymore.
*/
sc = ddi_get_soft_state(ural_soft_state_p, ddi_get_instance(devinfo));
ic = &sc->sc_ic;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
ieee80211_stop_watchdog(ic); /* stop the watchdog */
RAL_LOCK(sc);
sc->sc_tx_timer = 0;
sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
ural_close_pipes(sc);
RAL_UNLOCK(sc);
return (DDI_SUCCESS);
}
static int
ural_online(dev_info_t *devinfo)
{
struct ural_softc *sc;
int err;
RAL_DEBUG(RAL_DBG_MSG, "ural_online()\n");
sc = ddi_get_soft_state(ural_soft_state_p, ddi_get_instance(devinfo));
err = ural_init(sc);
return (err);
}
#define URAL_AMRR_MIN_SUCCESS_THRESHOLD 1
#define URAL_AMRR_MAX_SUCCESS_THRESHOLD 10
/*
* Naive implementation of the Adaptive Multi Rate Retry algorithm:
* "IEEE 802.11 Rate Adaptation: A Practical Approach"
* Mathieu Lacage, Hossein Manshaei, Thierry Turletti
* INRIA Sophia - Projet Planete
* http://www-sop.inria.fr/rapports/sophia/RR-5208.html
*
* This algorithm is particularly well suited for ural since it does not
* require per-frame retry statistics. Note however that since h/w does
* not provide per-frame stats, we can't do per-node rate adaptation and
* thus automatic rate adaptation is only enabled in STA operating mode.
*/
#define is_success(amrr) \
((amrr)->retrycnt < (amrr)->txcnt / 10)
#define is_failure(amrr) \
((amrr)->retrycnt > (amrr)->txcnt / 3)
#define is_enough(amrr) \
((amrr)->txcnt > 10)
#define is_min_rate(ni) \
((ni)->in_txrate == 0)
#define is_max_rate(ni) \
((ni)->in_txrate == (ni)->in_rates.ir_nrates - 1)
#define increase_rate(ni) \
((ni)->in_txrate++)
#define decrease_rate(ni) \
((ni)->in_txrate--)
#define reset_cnt(amrr) do { \
(amrr)->txcnt = (amrr)->retrycnt = 0; \
_NOTE(CONSTCOND) \
} while (/* CONSTCOND */0)
static void
ural_ratectl(struct ural_amrr *amrr, struct ieee80211_node *ni)
{
int need_change = 0;
if (is_success(amrr) && is_enough(amrr)) {
amrr->success++;
if (amrr->success >= amrr->success_threshold &&
!is_max_rate(ni)) {
amrr->recovery = 1;
amrr->success = 0;
increase_rate(ni);
need_change = 1;
} else {
amrr->recovery = 0;
}
} else if (is_failure(amrr)) {
amrr->success = 0;
if (!is_min_rate(ni)) {
if (amrr->recovery) {
amrr->success_threshold *= 2;
if (amrr->success_threshold >
URAL_AMRR_MAX_SUCCESS_THRESHOLD)
amrr->success_threshold =
URAL_AMRR_MAX_SUCCESS_THRESHOLD;
} else {
amrr->success_threshold =
URAL_AMRR_MIN_SUCCESS_THRESHOLD;
}
decrease_rate(ni);
need_change = 1;
}
amrr->recovery = 0; /* original paper was incorrect */
}
if (is_enough(amrr) || need_change)
reset_cnt(amrr);
}
static void
ural_amrr_timeout(void *arg)
{
struct ural_softc *sc = (struct ural_softc *)arg;
struct ural_amrr *amrr = &sc->amrr;
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof (sc->sta));
/* count TX retry-fail as Tx errors */
sc->sc_tx_err += sc->sta[9];
sc->sc_tx_retries += (sc->sta[7] + sc->sta[8]);
amrr->retrycnt =
sc->sta[7] + /* TX one-retry ok count */
sc->sta[8] + /* TX more-retry ok count */
sc->sta[9]; /* TX retry-fail count */
amrr->txcnt =
amrr->retrycnt +
sc->sta[6]; /* TX no-retry ok count */
ural_ratectl(amrr, sc->sc_ic.ic_bss);
sc->sc_amrr_id = timeout(ural_amrr_timeout, (void *)sc,
drv_usectohz(1000 * 1000)); /* 1 second */
}
static void
ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
{
struct ural_amrr *amrr = &sc->amrr;
int i;
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof (sc->sta));
amrr->success = 0;
amrr->recovery = 0;
amrr->txcnt = amrr->retrycnt = 0;
amrr->success_threshold = URAL_AMRR_MIN_SUCCESS_THRESHOLD;
/* set rate to some reasonable initial value */
for (i = ni->in_rates.ir_nrates - 1;
i > 0 && (ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL) > 72;
i--) {
}
ni->in_txrate = i;
sc->sc_amrr_id = timeout(ural_amrr_timeout, (void *)sc,
drv_usectohz(1000 * 1000)); /* 1 second */
}
void
ural_watchdog(void *arg)
{
struct ural_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int ntimer = 0;
RAL_LOCK(sc);
ic->ic_watchdog_timer = 0;
if (!RAL_IS_RUNNING(sc)) {
RAL_UNLOCK(sc);
return;
}
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
RAL_DEBUG(RAL_DBG_ERR, "tx timer timeout\n");
RAL_UNLOCK(sc);
(void) ural_init(sc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return;
}
}
if (ic->ic_state == IEEE80211_S_RUN)
ntimer = 1;
RAL_UNLOCK(sc);
ieee80211_watchdog(ic);
if (ntimer)
ieee80211_start_watchdog(ic, ntimer);
}
static int
ural_m_start(void *arg)
{
struct ural_softc *sc = (struct ural_softc *)arg;
crypto_mech_type_t type;
int err;
type = crypto_mech2id(SUN_CKM_RC4); /* load rc4 module into kernel */
RAL_DEBUG(RAL_DBG_MSG, "ural_m_start(%d)\n", type);
/*
* initialize RT2500USB hardware
*/
err = ural_init(sc);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR, "device configuration failed\n");
goto fail;
}
sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */
return (err);
fail:
ural_stop(sc);
return (err);
}
static void
ural_m_stop(void *arg)
{
struct ural_softc *sc = (struct ural_softc *)arg;
RAL_DEBUG(RAL_DBG_MSG, "ural_m_stop()\n");
(void) ural_stop(sc);
sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
}
static int
ural_m_unicst(void *arg, const uint8_t *macaddr)
{
struct ural_softc *sc = (struct ural_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
RAL_DEBUG(RAL_DBG_MSG, "ural_m_unicst(): " MACSTR "\n",
MAC2STR(macaddr));
IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
(void) ural_set_macaddr(sc, (uint8_t *)macaddr);
(void) ural_init(sc);
return (0);
}
/*ARGSUSED*/
static int
ural_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
{
return (0);
}
static int
ural_m_promisc(void *arg, boolean_t on)
{
struct ural_softc *sc = (struct ural_softc *)arg;
RAL_DEBUG(RAL_DBG_MSG, "ural_m_promisc()\n");
if (on) {
sc->sc_rcr |= RAL_RCR_PROMISC;
sc->sc_rcr |= RAL_RCR_MULTI;
} else {
sc->sc_rcr &= ~RAL_RCR_PROMISC;
sc->sc_rcr &= ~RAL_RCR_PROMISC;
}
ural_update_promisc(sc);
return (0);
}
/*
* callback functions for /get/set properties
*/
static int
ural_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, const void *wldp_buf)
{
struct ural_softc *sc = (struct ural_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
int err;
err = ieee80211_setprop(ic, pr_name, wldp_pr_num,
wldp_length, wldp_buf);
RAL_LOCK(sc);
if (err == ENETRESET) {
if (RAL_IS_RUNNING(sc)) {
RAL_UNLOCK(sc);
(void) ural_init(sc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
RAL_LOCK(sc);
}
err = 0;
}
RAL_UNLOCK(sc);
return (err);
}
static int
ural_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
{
struct ural_softc *sc = (struct ural_softc *)arg;
int err;
err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
pr_flags, wldp_length, wldp_buf, perm);
return (err);
}
static void
ural_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
{
struct ural_softc *sc = (struct ural_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
int err;
err = ieee80211_ioctl(ic, wq, mp);
RAL_LOCK(sc);
if (err == ENETRESET) {
if (RAL_IS_RUNNING(sc)) {
RAL_UNLOCK(sc);
(void) ural_init(sc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
RAL_LOCK(sc);
}
}
RAL_UNLOCK(sc);
}
static int
ural_m_stat(void *arg, uint_t stat, uint64_t *val)
{
struct ural_softc *sc = (struct ural_softc *)arg;
ieee80211com_t *ic = &sc->sc_ic;
ieee80211_node_t *ni = ic->ic_bss;
struct ieee80211_rateset *rs = &ni->in_rates;
RAL_LOCK(sc);
switch (stat) {
case MAC_STAT_IFSPEED:
*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
(rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
: ic->ic_fixed_rate) / 2 * 1000000;
break;
case MAC_STAT_NOXMTBUF:
*val = sc->sc_tx_nobuf;
break;
case MAC_STAT_NORCVBUF:
*val = sc->sc_rx_nobuf;
break;
case MAC_STAT_IERRORS:
*val = sc->sc_rx_err;
break;
case MAC_STAT_RBYTES:
*val = ic->ic_stats.is_rx_bytes;
break;
case MAC_STAT_IPACKETS:
*val = ic->ic_stats.is_rx_frags;
break;
case MAC_STAT_OBYTES:
*val = ic->ic_stats.is_tx_bytes;
break;
case MAC_STAT_OPACKETS:
*val = ic->ic_stats.is_tx_frags;
break;
case MAC_STAT_OERRORS:
case WIFI_STAT_TX_FAILED:
*val = sc->sc_tx_err;
break;
case WIFI_STAT_TX_RETRANS:
*val = sc->sc_tx_retries;
break;
case WIFI_STAT_FCS_ERRORS:
case WIFI_STAT_WEP_ERRORS:
case WIFI_STAT_TX_FRAGS:
case WIFI_STAT_MCAST_TX:
case WIFI_STAT_RTS_SUCCESS:
case WIFI_STAT_RTS_FAILURE:
case WIFI_STAT_ACK_FAILURE:
case WIFI_STAT_RX_FRAGS:
case WIFI_STAT_MCAST_RX:
case WIFI_STAT_RX_DUPS:
RAL_UNLOCK(sc);
return (ieee80211_stat(ic, stat, val));
default:
RAL_UNLOCK(sc);
return (ENOTSUP);
}
RAL_UNLOCK(sc);
return (0);
}
static int
ural_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
{
struct ural_softc *sc;
struct ieee80211com *ic;
int err, i;
int instance;
char strbuf[32];
wifi_data_t wd = { 0 };
mac_register_t *macp;
RAL_DEBUG(RAL_DBG_MSG, "ural_attach()\n");
if (cmd != DDI_ATTACH)
return (DDI_FAILURE);
instance = ddi_get_instance(devinfo);
if (ddi_soft_state_zalloc(ural_soft_state_p, instance) != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_MSG, "ural_attach(): "
"unable to alloc soft_state_p\n");
return (DDI_FAILURE);
}
sc = ddi_get_soft_state(ural_soft_state_p, instance);
ic = (ieee80211com_t *)&sc->sc_ic;
sc->sc_dev = devinfo;
if (usb_client_attach(devinfo, USBDRV_VERSION, 0) != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR,
"ural_attach(): usb_client_attach failed\n");
goto fail1;
}
if (usb_get_dev_data(devinfo, &sc->sc_udev,
USB_PARSE_LVL_ALL, 0) != USB_SUCCESS) {
sc->sc_udev = NULL;
goto fail2;
}
mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->tx_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->rx_lock, NULL, MUTEX_DRIVER, NULL);
/* retrieve RT2570 rev. no */
sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
/* retrieve MAC address and various other things from EEPROM */
ural_read_eeprom(sc);
RAL_DEBUG(RAL_DBG_MSG, "ural: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
sc->asic_rev, ural_get_rf(sc->rf_rev));
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
ic->ic_maxrssi = 63;
ic->ic_set_shortslot = ural_update_slot;
ic->ic_xmit = ural_send;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT; /* short slot time supported */
ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
#define IEEE80211_CHAN_A \
(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
if (sc->rf_rev == RAL_RF_5222) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
for (i = 100; i <= 140; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 161; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_sup_channels[i].ich_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ieee80211_attach(ic);
/* register WPA door */
ieee80211_register_door(ic, ddi_driver_name(devinfo),
ddi_get_instance(devinfo));
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = ural_newstate;
ic->ic_watchdog = ural_watchdog;
ieee80211_media_init(ic);
ic->ic_def_txkey = 0;
sc->sc_rcr = 0;
sc->dwelltime = 300;
sc->sc_flags &= ~RAL_FLAG_RUNNING;
/*
* Provide initial settings for the WiFi plugin; whenever this
* information changes, we need to call mac_plugindata_update()
*/
wd.wd_opmode = ic->ic_opmode;
wd.wd_secalloc = WIFI_SEC_NONE;
IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
RAL_DEBUG(RAL_DBG_ERR, "ural_attach(): "
"MAC version mismatch\n");
goto fail3;
}
macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
macp->m_driver = sc;
macp->m_dip = devinfo;
macp->m_src_addr = ic->ic_macaddr;
macp->m_callbacks = &ural_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = IEEE80211_MTU;
macp->m_pdata = &wd;
macp->m_pdata_size = sizeof (wd);
err = mac_register(macp, &ic->ic_mach);
mac_free(macp);
if (err != 0) {
RAL_DEBUG(RAL_DBG_ERR, "ural_attach(): "
"mac_register() err %x\n", err);
goto fail3;
}
if (usb_register_hotplug_cbs(devinfo, ural_offline,
ural_online) != USB_SUCCESS) {
RAL_DEBUG(RAL_DBG_ERR,
"ural: ural_attach() failed to register events");
goto fail4;
}
/*
* Create minor node of type DDI_NT_NET_WIFI
*/
(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
"ural", instance);
err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
instance + 1, DDI_NT_NET_WIFI, 0);
if (err != DDI_SUCCESS)
RAL_DEBUG(RAL_DBG_ERR, "ddi_create_minor_node() failed\n");
/*
* Notify link is down now
*/
mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
RAL_DEBUG(RAL_DBG_MSG, "ural_attach() done successfully.\n");
return (DDI_SUCCESS);
fail4:
(void) mac_unregister(ic->ic_mach);
fail3:
mutex_destroy(&sc->sc_genlock);
mutex_destroy(&sc->tx_lock);
mutex_destroy(&sc->rx_lock);
fail2:
usb_client_detach(sc->sc_dev, sc->sc_udev);
fail1:
ddi_soft_state_free(ural_soft_state_p, ddi_get_instance(devinfo));
return (DDI_FAILURE);
}
static int
ural_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
{
struct ural_softc *sc;
RAL_DEBUG(RAL_DBG_MSG, "ural_detach()\n");
sc = ddi_get_soft_state(ural_soft_state_p, ddi_get_instance(devinfo));
if (cmd != DDI_DETACH)
return (DDI_FAILURE);
if (mac_disable(sc->sc_ic.ic_mach) != 0)
return (DDI_FAILURE);
ural_stop(sc);
usb_unregister_hotplug_cbs(devinfo);
/*
* Unregister from the MAC layer subsystem
*/
(void) mac_unregister(sc->sc_ic.ic_mach);
/*
* detach ieee80211 layer
*/
ieee80211_detach(&sc->sc_ic);
mutex_destroy(&sc->sc_genlock);
mutex_destroy(&sc->tx_lock);
mutex_destroy(&sc->rx_lock);
/* pipes will be close in ural_stop() */
usb_client_detach(devinfo, sc->sc_udev);
sc->sc_udev = NULL;
ddi_remove_minor_node(devinfo, NULL);
ddi_soft_state_free(ural_soft_state_p, ddi_get_instance(devinfo));
return (DDI_SUCCESS);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_init(void)
{
int status;
status = ddi_soft_state_init(&ural_soft_state_p,
sizeof (struct ural_softc), 1);
if (status != 0)
return (status);
mac_init_ops(&ural_dev_ops, "ural");
status = mod_install(&modlinkage);
if (status != 0) {
mac_fini_ops(&ural_dev_ops);
ddi_soft_state_fini(&ural_soft_state_p);
}
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&modlinkage);
if (status == 0) {
mac_fini_ops(&ural_dev_ops);
ddi_soft_state_fini(&ural_soft_state_p);
}
return (status);
}