uath.c revision 0dc2366f7b9f9f36e10909b1e95edbf2a261c2ac
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2006 Sam Leffler, Errno Consulting
* Copyright (c) 2008-2009 Weongyo Jeong <weongyo@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
/*
* This driver is distantly derived from a driver of the same name
* by Damien Bergamini. The original copyright is included below:
*
* Copyright (c) 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <sys/cmn_err.h>
#include <sys/strsubr.h>
#include <sys/strsun.h>
#include <sys/modctl.h>
#include <sys/devops.h>
#include <sys/byteorder.h>
#include <sys/mac_provider.h>
#include <sys/mac_wifi.h>
#include <sys/net80211.h>
#define USBDRV_MAJOR_VER 2
#define USBDRV_MINOR_VER 0
#include <sys/usb/usba.h>
#include <sys/usb/usba/usba_types.h>
#include "uath_reg.h"
#include "uath_var.h"
static void *uath_soft_state_p = NULL;
/*
* Bit flags in the ral_dbg_flags
*/
#define UATH_DBG_MSG 0x000001
#define UATH_DBG_ERR 0x000002
#define UATH_DBG_USB 0x000004
#define UATH_DBG_TX 0x000008
#define UATH_DBG_RX 0x000010
#define UATH_DBG_FW 0x000020
#define UATH_DBG_TX_CMD 0x000040
#define UATH_DBG_RX_CMD 0x000080
#define UATH_DBG_ALL 0x000fff
uint32_t uath_dbg_flags = 0;
#ifdef DEBUG
#define UATH_DEBUG \
uath_debug
#else
#define UATH_DEBUG
#endif
/*
* Various supported device vendors/products.
* UB51: AR5005UG 802.11b/g, UB52: AR5005UX 802.11b/g
*/
#define UATH_FLAG_PRE_FIRMWARE (1 << 0)
#define UATH_FLAG_ABG (1 << 1)
#define UATH_FLAG_ERR (1 << 2)
#define UATH_DEV(v, p, f) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) }, \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p##_NF }, \
(f) | UATH_FLAG_PRE_FIRMWARE }
#define UATH_DEV_UG(v, p) UATH_DEV(v, p, 0)
#define UATH_DEV_UX(v, p) UATH_DEV(v, p, UATH_FLAG_ABG)
struct uath_devno {
uint16_t vendor_id;
uint16_t product_id;
};
static const struct uath_type {
struct uath_devno dev;
uint8_t flags;
} uath_devs[] = {
UATH_DEV_UG(ACCTON, SMCWUSBTG2),
UATH_DEV_UG(ATHEROS, AR5523),
UATH_DEV_UG(ATHEROS2, AR5523_1),
UATH_DEV_UG(ATHEROS2, AR5523_2),
UATH_DEV_UX(ATHEROS2, AR5523_3),
UATH_DEV_UG(CONCEPTRONIC, AR5523_1),
UATH_DEV_UX(CONCEPTRONIC, AR5523_2),
UATH_DEV_UX(DLINK, DWLAG122),
UATH_DEV_UX(DLINK, DWLAG132),
UATH_DEV_UG(DLINK, DWLG132),
UATH_DEV_UG(GIGASET, AR5523),
UATH_DEV_UG(GIGASET, SMCWUSBTG),
UATH_DEV_UG(GLOBALSUN, AR5523_1),
UATH_DEV_UX(GLOBALSUN, AR5523_2),
UATH_DEV_UG(IODATA, USBWNG54US),
UATH_DEV_UG(MELCO, WLIU2KAMG54),
UATH_DEV_UX(NETGEAR, WG111U),
UATH_DEV_UG(NETGEAR3, WG111T),
UATH_DEV_UG(NETGEAR3, WPN111),
UATH_DEV_UG(PHILIPS, SNU6500),
UATH_DEV_UX(UMEDIA, AR5523_2),
UATH_DEV_UG(UMEDIA, TEW444UBEU),
UATH_DEV_UG(WISTRONNEWEB, AR5523_1),
UATH_DEV_UX(WISTRONNEWEB, AR5523_2),
UATH_DEV_UG(ZCOM, AR5523)
};
static char uath_fwmod[] = "uathfw";
static char uath_binmod[] = "uathbin";
/*
* Supported rates for 802.11b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset uath_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset uath_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
/*
* device operations
*/
static int uath_attach(dev_info_t *, ddi_attach_cmd_t);
static int uath_detach(dev_info_t *, ddi_detach_cmd_t);
/*
* Module Loading Data & Entry Points
*/
DDI_DEFINE_STREAM_OPS(uath_dev_ops, nulldev, nulldev, uath_attach,
uath_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_needed);
static struct modldrv uath_modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
"Atheros AR5523 USB Driver v1.1", /* short description */
&uath_dev_ops /* driver specific ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&uath_modldrv,
NULL
};
static int uath_m_stat(void *, uint_t, uint64_t *);
static int uath_m_start(void *);
static void uath_m_stop(void *);
static int uath_m_promisc(void *, boolean_t);
static int uath_m_multicst(void *, boolean_t, const uint8_t *);
static int uath_m_unicst(void *, const uint8_t *);
static mblk_t *uath_m_tx(void *, mblk_t *);
static void uath_m_ioctl(void *, queue_t *, mblk_t *);
static int uath_m_setprop(void *, const char *, mac_prop_id_t,
uint_t, const void *);
static int uath_m_getprop(void *, const char *, mac_prop_id_t,
uint_t, void *);
static void uath_m_propinfo(void *, const char *, mac_prop_id_t,
mac_prop_info_handle_t);
static mac_callbacks_t uath_m_callbacks = {
MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
uath_m_stat,
uath_m_start,
uath_m_stop,
uath_m_promisc,
uath_m_multicst,
uath_m_unicst,
uath_m_tx,
NULL,
uath_m_ioctl,
NULL,
NULL,
NULL,
uath_m_setprop,
uath_m_getprop,
uath_m_propinfo
};
static usb_alt_if_data_t *
uath_lookup_alt_if(usb_client_dev_data_t *,
uint_t, uint_t, uint_t);
static usb_ep_data_t *
uath_lookup_ep_data(dev_info_t *,
usb_client_dev_data_t *, uint_t, uint_t, uint8_t, uint8_t);
static const char *
uath_codename(int code);
static uint_t uath_lookup(uint16_t, uint16_t);
static void uath_list_all_eps(usb_alt_if_data_t *);
static int uath_open_pipes(struct uath_softc *);
static void uath_close_pipes(struct uath_softc *);
static int uath_fw_send(struct uath_softc *,
usb_pipe_handle_t, const void *, size_t);
static int uath_fw_ack(struct uath_softc *, int);
static int uath_loadsym(ddi_modhandle_t, char *, char **, size_t *);
static int uath_loadfirmware(struct uath_softc *);
static int uath_alloc_cmd_list(struct uath_softc *,
struct uath_cmd *, int, int);
static int uath_init_cmd_list(struct uath_softc *);
static void uath_free_cmd_list(struct uath_cmd *, int);
static int uath_host_available(struct uath_softc *);
static void uath_get_capability(struct uath_softc *, uint32_t, uint32_t *);
static int uath_get_devcap(struct uath_softc *);
static int uath_get_devstatus(struct uath_softc *, uint8_t *);
static int uath_get_status(struct uath_softc *, uint32_t, void *, int);
static void uath_cmd_lock_init(struct uath_cmd_lock *);
static void uath_cmd_lock_destroy(struct uath_cmd_lock *);
static int uath_cmd_lock_wait(struct uath_cmd_lock *, clock_t);
static void uath_cmd_lock_signal(struct uath_cmd_lock *);
static int uath_cmd_read(struct uath_softc *, uint32_t, const void *,
int, void *, int, int);
static int uath_cmd_write(struct uath_softc *, uint32_t, const void *,
int, int);
static int uath_cmdsend(struct uath_softc *, uint32_t,
const void *, int, void *, int, int);
static int uath_rx_cmd_xfer(struct uath_softc *);
static int uath_tx_cmd_xfer(struct uath_softc *,
usb_pipe_handle_t, const void *, uint_t);
static void uath_cmd_txeof(usb_pipe_handle_t, struct usb_bulk_req *);
static void uath_cmd_rxeof(usb_pipe_handle_t, usb_bulk_req_t *);
static void uath_cmdeof(struct uath_softc *, struct uath_cmd *);
static void uath_init_data_queue(struct uath_softc *);
static int uath_rx_data_xfer(struct uath_softc *sc);
static int uath_tx_data_xfer(struct uath_softc *, mblk_t *);
static void uath_data_txeof(usb_pipe_handle_t, usb_bulk_req_t *);
static void uath_data_rxeof(usb_pipe_handle_t, usb_bulk_req_t *);
static int uath_create_connection(struct uath_softc *, uint32_t);
static int uath_set_rates(struct uath_softc *,
const struct ieee80211_rateset *);
static int uath_write_associd(struct uath_softc *);
static int uath_set_ledsteady(struct uath_softc *, int, int);
static int uath_set_ledblink(struct uath_softc *, int, int, int, int);
static void uath_update_rxstat(struct uath_softc *, uint32_t);
static int uath_send(ieee80211com_t *, mblk_t *, uint8_t);
static int uath_reconnect(dev_info_t *);
static int uath_disconnect(dev_info_t *);
static int uath_newstate(struct ieee80211com *, enum ieee80211_state, int);
static int uath_dataflush(struct uath_softc *);
static int uath_cmdflush(struct uath_softc *);
static int uath_flush(struct uath_softc *);
static int uath_set_ledstate(struct uath_softc *, int);
static int uath_set_chan(struct uath_softc *, struct ieee80211_channel *);
static int uath_reset_tx_queues(struct uath_softc *);
static int uath_wme_init(struct uath_softc *);
static int uath_config_multi(struct uath_softc *,
uint32_t, const void *, int);
static void uath_config(struct uath_softc *, uint32_t, uint32_t);
static int uath_switch_channel(struct uath_softc *,
struct ieee80211_channel *);
static int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t);
static int uath_init_locked(void *);
static void uath_stop_locked(void *);
static int uath_init(struct uath_softc *);
static void uath_stop(struct uath_softc *);
static void uath_resume(struct uath_softc *);
static void
uath_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
{
va_list args;
if (dbg_flags & uath_dbg_flags) {
va_start(args, fmt);
vcmn_err(CE_CONT, fmt, args);
va_end(args);
}
}
static uint_t
uath_lookup(uint16_t vendor_id, uint16_t product_id)
{
int i, size;
size = sizeof (uath_devs) / sizeof (struct uath_type);
for (i = 0; i < size; i++) {
if ((vendor_id == uath_devs[i].dev.vendor_id) &&
(product_id == uath_devs[i].dev.product_id))
return (uath_devs[i].flags);
}
return (UATH_FLAG_ERR);
}
/*
* Return a specific alt_if from the device descriptor tree.
*/
static usb_alt_if_data_t *
uath_lookup_alt_if(usb_client_dev_data_t *dev_data, uint_t config,
uint_t interface, uint_t alt)
{
usb_cfg_data_t *cfg_data;
usb_if_data_t *if_data;
usb_alt_if_data_t *if_alt_data;
/*
* Assume everything is in the tree for now,
* (USB_PARSE_LVL_ALL)
* so we can directly index the array.
*/
/* Descend to configuration, configs are 1-based */
if (config < 1 || config > dev_data->dev_n_cfg)
return (NULL);
cfg_data = &dev_data->dev_cfg[config - 1];
/* Descend to interface */
if (interface > cfg_data->cfg_n_if - 1)
return (NULL);
if_data = &cfg_data->cfg_if[interface];
/* Descend to alt */
if (alt > if_data->if_n_alt - 1)
return (NULL);
if_alt_data = &if_data->if_alt[alt];
return (if_alt_data);
}
/*
* Print all endpoints of an alt_if.
*/
static void
uath_list_all_eps(usb_alt_if_data_t *ifalt)
{
usb_ep_data_t *ep_data;
usb_ep_descr_t *ep_descr;
int i;
for (i = 0; i < ifalt->altif_n_ep; i++) {
ep_data = &ifalt->altif_ep[i];
ep_descr = &ep_data->ep_descr;
UATH_DEBUG(UATH_DBG_USB,
"uath: uath_list_all_endpoint: "
"ep addresa[%x] is %x",
i, ep_descr->bEndpointAddress);
}
}
static usb_ep_data_t *
uath_lookup_ep_data(dev_info_t *dip,
usb_client_dev_data_t *dev_datap,
uint_t interface,
uint_t alternate,
uint8_t address,
uint8_t type)
{
usb_alt_if_data_t *altif_data;
int i;
if ((dip == NULL) || (dev_datap == NULL))
return (NULL);
altif_data = &dev_datap->dev_curr_cfg->
cfg_if[interface].if_alt[alternate];
for (i = 0; i < altif_data->altif_n_ep; i++) {
usb_ep_descr_t *ept = &altif_data->altif_ep[i].ep_descr;
uint8_t ept_type = ept->bmAttributes & USB_EP_ATTR_MASK;
uint8_t ept_address = ept->bEndpointAddress;
if (ept->bLength == 0)
continue;
if ((ept_type == type) &&
((type == USB_EP_ATTR_CONTROL) || (address == ept_address)))
return (&altif_data->altif_ep[i]);
}
return (NULL);
}
/*
* Open communication pipes.
* The following pipes are used by the AR5523:
* ep0: 0x81 IN Rx cmd
* ep1: 0x01 OUT Tx cmd
* ep2: 0x82 IN Rx data
* ep3: 0x02 OUT Tx data
*/
static int
uath_open_pipes(struct uath_softc *sc)
{
usb_ep_data_t *ep_node;
usb_ep_descr_t *ep_descr;
usb_pipe_policy_t policy;
int err;
#ifdef DEBUG
usb_alt_if_data_t *altif_data;
altif_data = uath_lookup_alt_if(sc->sc_udev, UATH_CONFIG_NO,
UATH_IFACE_INDEX, UATH_ALT_IF_INDEX);
if (altif_data == NULL) {
UATH_DEBUG(UATH_DBG_ERR, "alt_if not found");
return (USB_FAILURE);
}
uath_list_all_eps(altif_data);
#endif
/*
* XXX pipes numbers are hardcoded because we don't have any way
* to distinguish the data pipes from the firmware command pipes
* (both are bulk pipes) using the endpoints descriptors.
*/
ep_node = uath_lookup_ep_data(sc->sc_dev, sc->sc_udev,
0, 0, 0x81, USB_EP_ATTR_BULK);
ep_descr = &ep_node->ep_descr;
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_open_pipes(): "
"find pipe %x\n", ep_descr->bEndpointAddress);
bzero(&policy, sizeof (usb_pipe_policy_t));
policy.pp_max_async_reqs = UATH_CMD_LIST_COUNT;
err = usb_pipe_open(sc->sc_dev, &ep_node->ep_descr,
&policy, USB_FLAGS_SLEEP, &sc->rx_cmd_pipe);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_open_pipes(): "
"failed to open rx data pipe, err = %x\n",
err);
goto fail;
}
ep_node = uath_lookup_ep_data(sc->sc_dev, sc->sc_udev,
0, 0, 0x01, USB_EP_ATTR_BULK);
ep_descr = &ep_node->ep_descr;
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_open_pipes(): "
"find pipe %x\n",
ep_descr->bEndpointAddress);
bzero(&policy, sizeof (usb_pipe_policy_t));
policy.pp_max_async_reqs = UATH_CMD_LIST_COUNT;
err = usb_pipe_open(sc->sc_dev, &ep_node->ep_descr,
&policy, USB_FLAGS_SLEEP, &sc->tx_cmd_pipe);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_open_pipes(): "
"failed to open tx command pipe, err = %x\n",
err);
goto fail;
}
ep_node = uath_lookup_ep_data(sc->sc_dev, sc->sc_udev,
0, 0, 0x82, USB_EP_ATTR_BULK);
ep_descr = &ep_node->ep_descr;
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_open_pipes(): "
"find pipe %x\n",
ep_descr->bEndpointAddress);
bzero(&policy, sizeof (usb_pipe_policy_t));
policy.pp_max_async_reqs = UATH_RX_DATA_LIST_COUNT;
err = usb_pipe_open(sc->sc_dev, &ep_node->ep_descr,
&policy, USB_FLAGS_SLEEP, &sc->rx_data_pipe);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_open_pipes(): "
"failed to open tx pipe, err = %x\n",
err);
goto fail;
}
ep_node = uath_lookup_ep_data(sc->sc_dev, sc->sc_udev,
0, 0, 0x02, USB_EP_ATTR_BULK);
ep_descr = &ep_node->ep_descr;
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_open_pipes(): "
"find pipe %x\n",
ep_descr->bEndpointAddress);
bzero(&policy, sizeof (usb_pipe_policy_t));
policy.pp_max_async_reqs = UATH_TX_DATA_LIST_COUNT;
err = usb_pipe_open(sc->sc_dev, &ep_node->ep_descr,
&policy, USB_FLAGS_SLEEP, &sc->tx_data_pipe);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_open_pipes(): "
"failed to open rx command pipe, err = %x\n",
err);
goto fail;
}
return (UATH_SUCCESS);
fail:
uath_close_pipes(sc);
return (err);
}
static void
uath_close_pipes(struct uath_softc *sc)
{
usb_flags_t flags = USB_FLAGS_SLEEP;
if (sc->rx_cmd_pipe != NULL) {
usb_pipe_reset(sc->sc_dev, sc->rx_cmd_pipe, flags, NULL, 0);
usb_pipe_close(sc->sc_dev, sc->rx_cmd_pipe, flags, NULL, 0);
sc->rx_cmd_pipe = NULL;
}
if (sc->tx_cmd_pipe != NULL) {
usb_pipe_reset(sc->sc_dev, sc->tx_cmd_pipe, flags, NULL, 0);
usb_pipe_close(sc->sc_dev, sc->tx_cmd_pipe, flags, NULL, 0);
sc->tx_cmd_pipe = NULL;
}
if (sc->rx_data_pipe != NULL) {
usb_pipe_reset(sc->sc_dev, sc->rx_data_pipe, flags, NULL, 0);
usb_pipe_close(sc->sc_dev, sc->rx_data_pipe, flags, NULL, 0);
sc->rx_data_pipe = NULL;
}
if (sc->tx_data_pipe != NULL) {
usb_pipe_reset(sc->sc_dev, sc->tx_data_pipe, flags, NULL, 0);
usb_pipe_close(sc->sc_dev, sc->tx_data_pipe, flags, NULL, 0);
sc->tx_data_pipe = NULL;
}
}
static const char *
uath_codename(int code)
{
#define N(a) (sizeof (a)/sizeof (a[0]))
static const char *names[] = {
"0x00",
"HOST_AVAILABLE",
"BIND",
"TARGET_RESET",
"TARGET_GET_CAPABILITY",
"TARGET_SET_CONFIG",
"TARGET_GET_STATUS",
"TARGET_GET_STATS",
"TARGET_START",
"TARGET_STOP",
"TARGET_ENABLE",
"TARGET_DISABLE",
"CREATE_CONNECTION",
"UPDATE_CONNECT_ATTR",
"DELETE_CONNECT",
"SEND",
"FLUSH",
"STATS_UPDATE",
"BMISS",
"DEVICE_AVAIL",
"SEND_COMPLETE",
"DATA_AVAIL",
"SET_PWR_MODE",
"BMISS_ACK",
"SET_LED_STEADY",
"SET_LED_BLINK",
"SETUP_BEACON_DESC",
"BEACON_INIT",
"RESET_KEY_CACHE",
"RESET_KEY_CACHE_ENTRY",
"SET_KEY_CACHE_ENTRY",
"SET_DECOMP_MASK",
"SET_REGULATORY_DOMAIN",
"SET_LED_STATE",
"WRITE_ASSOCID",
"SET_STA_BEACON_TIMERS",
"GET_TSF",
"RESET_TSF",
"SET_ADHOC_MODE",
"SET_BASIC_RATE",
"MIB_CONTROL",
"GET_CHANNEL_DATA",
"GET_CUR_RSSI",
"SET_ANTENNA_SWITCH",
"0x2c", "0x2d", "0x2e",
"USE_SHORT_SLOT_TIME",
"SET_POWER_MODE",
"SETUP_PSPOLL_DESC",
"SET_RX_MULTICAST_FILTER",
"RX_FILTER",
"PER_CALIBRATION",
"RESET",
"DISABLE",
"PHY_DISABLE",
"SET_TX_POWER_LIMIT",
"SET_TX_QUEUE_PARAMS",
"SETUP_TX_QUEUE",
"RELEASE_TX_QUEUE",
};
static char buf[8];
if (code < N(names))
return (names[code]);
if (code == WDCMSG_SET_DEFAULT_KEY)
return ("SET_DEFAULT_KEY");
(void) snprintf(buf, sizeof (buf), "0x%02x", code);
return (buf);
#undef N
}
static int
uath_fw_send(struct uath_softc *sc, usb_pipe_handle_t pipe,
const void *data, size_t len)
{
usb_bulk_req_t *send_req;
mblk_t *mblk;
int res;
send_req = usb_alloc_bulk_req(sc->sc_dev, len, USB_FLAGS_SLEEP);
send_req->bulk_len = (int)len;
send_req->bulk_attributes = USB_ATTRS_AUTOCLEARING;
send_req->bulk_timeout = UATH_CMD_TIMEOUT;
mblk = send_req->bulk_data;
bcopy(data, mblk->b_wptr, len);
mblk->b_wptr += len;
res = usb_pipe_bulk_xfer(pipe, send_req, USB_FLAGS_SLEEP);
if (res != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_FW, "uath: uath_fw_send(): "
"Error %x writing data to bulk/out pipe", res);
return (UATH_FAILURE);
}
usb_free_bulk_req(send_req);
return (UATH_SUCCESS);
}
static int
uath_fw_ack(struct uath_softc *sc, int len)
{
struct uath_fwblock *rxblock;
usb_bulk_req_t *req;
mblk_t *mp;
int err;
req = usb_alloc_bulk_req(sc->sc_dev, len, USB_FLAGS_SLEEP);
if (req == NULL) {
UATH_DEBUG(UATH_DBG_FW,
"uath: uath_fw_ack(): "
"uath_rx_transfer(): failed to allocate req");
return (UATH_FAILURE);
}
req->bulk_len = len;
req->bulk_client_private = (usb_opaque_t)sc;
req->bulk_timeout = 0;
req->bulk_attributes = USB_ATTRS_SHORT_XFER_OK
| USB_ATTRS_AUTOCLEARING;
err = usb_pipe_bulk_xfer(sc->rx_cmd_pipe, req, USB_FLAGS_SLEEP);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_FW, "uath: uath_fw_ack(): "
"failed to do rx xfer, %d", err);
usb_free_bulk_req(req);
return (UATH_FAILURE);
}
mp = req->bulk_data;
req->bulk_data = NULL;
rxblock = (struct uath_fwblock *)mp->b_rptr;
UATH_DEBUG(UATH_DBG_FW, "uath: uath_fw_ack() "
"rxblock flags=0x%x total=%d\n",
BE_32(rxblock->flags), BE_32(rxblock->rxtotal));
freemsg(mp);
usb_free_bulk_req(req);
return (UATH_SUCCESS);
}
/*
* find uath firmware module's "_start" "_end" symbols
* and get its size.
*/
static int
uath_loadsym(ddi_modhandle_t modp, char *sym, char **start, size_t *len)
{
char start_sym[64];
char end_sym[64];
char *p, *end;
int rv;
size_t n;
(void) snprintf(start_sym, sizeof (start_sym), "%s_start", sym);
(void) snprintf(end_sym, sizeof (end_sym), "%s_end", sym);
p = (char *)ddi_modsym(modp, start_sym, &rv);
if (p == NULL || rv != 0) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_loadsym(): "
"mod %s: symbol %s not found\n", uath_fwmod, start_sym);
return (UATH_FAILURE);
}
end = (char *)ddi_modsym(modp, end_sym, &rv);
if (end == NULL || rv != 0) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_loadsym(): "
"mod %s: symbol %s not found\n", uath_fwmod, end_sym);
return (UATH_FAILURE);
}
n = _PTRDIFF(end, p);
*start = p;
*len = n;
return (UATH_SUCCESS);
}
/*
* Load the MIPS R4000 microcode into the device. Once the image is loaded,
* the device will detach itself from the bus and reattach later with a new
* product Id (a la ezusb). XXX this could also be implemented in userland
* through /dev/ugen.
*/
static int
uath_loadfirmware(struct uath_softc *sc)
{
struct uath_fwblock txblock;
ddi_modhandle_t modp;
char *fw_index, *fw_image = NULL;
size_t fw_size, len;
int err = DDI_SUCCESS, rv = 0;
modp = ddi_modopen(uath_fwmod, KRTLD_MODE_FIRST, &rv);
if (modp == NULL) {
cmn_err(CE_WARN, "uath: uath_loadfirmware(): "
"module %s not found\n", uath_fwmod);
goto label;
}
err = uath_loadsym(modp, uath_binmod, &fw_index, &fw_size);
if (err != UATH_SUCCESS) {
cmn_err(CE_WARN, "uath: uath_loadfirmware(): "
"could not get firmware\n");
goto label;
}
fw_image = (char *)kmem_alloc(fw_size, KM_SLEEP);
if (fw_image == NULL) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_loadfirmware(): "
"failed to alloc firmware memory\n");
err = UATH_FAILURE;
goto label;
}
(void) memcpy(fw_image, fw_index, fw_size);
fw_index = fw_image;
len = fw_size;
UATH_DEBUG(UATH_DBG_MSG, "loading firmware size = %lu\n", fw_size);
/* bzero(txblock, sizeof (struct uath_fwblock)); */
txblock.flags = BE_32(UATH_WRITE_BLOCK);
txblock.total = BE_32(fw_size);
while (len > 0) {
size_t mlen = min(len, UATH_MAX_FWBLOCK_SIZE);
txblock.remain = BE_32(len - mlen);
txblock.len = BE_32(mlen);
UATH_DEBUG(UATH_DBG_FW, "uath: uath_loadfirmware(): "
"sending firmware block: %d bytes sending\n", mlen);
UATH_DEBUG(UATH_DBG_FW, "uath: uath_loadfirmware(): "
"sending firmware block: %d bytes remaining\n",
len - mlen);
/* send firmware block meta-data */
err = uath_fw_send(sc, sc->tx_cmd_pipe, &txblock,
sizeof (struct uath_fwblock));
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_FW, "uath: uath_loadfirmware(): "
"send block meta-data error");
goto label;
}
/* send firmware block data */
err = uath_fw_send(sc, sc->tx_data_pipe, fw_index, mlen);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_FW, "uath: uath_loadfirmware() "
"send block data err");
goto label;
}
/* wait for ack from firmware */
err = uath_fw_ack(sc, sizeof (struct uath_fwblock));
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_FW, "uath: uath_loadfirmware() "
"rx block ack err");
goto label;
}
fw_index += mlen;
len -= mlen;
}
label:
if (fw_image != NULL)
kmem_free(fw_image, fw_size);
fw_image = fw_index = NULL;
if (modp != NULL)
(void) ddi_modclose(modp);
return (err);
}
static int
uath_alloc_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[],
int ncmd, int maxsz)
{
int i, err;
for (i = 0; i < ncmd; i++) {
struct uath_cmd *cmd = &cmds[i];
cmd->sc = sc; /* backpointer for callbacks */
cmd->msgid = i;
cmd->buf = kmem_zalloc(maxsz, KM_NOSLEEP);
if (cmd->buf == NULL) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_alloc_cmd_list(): "
"could not allocate xfer buffer\n");
err = DDI_ENOMEM;
goto fail;
}
}
return (UATH_SUCCESS);
fail:
uath_free_cmd_list(cmds, ncmd);
return (err);
}
static int
uath_init_cmd_list(struct uath_softc *sc)
{
int i;
sc->sc_cmdid = sc->rx_cmd_queued = sc->tx_cmd_queued = 0;
for (i = 0; i < UATH_CMD_LIST_COUNT; i++) {
if (uath_rx_cmd_xfer(sc) != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_init_cmd_list(): "
"failed to init cmd list %x\n", i);
return (UATH_FAILURE);
}
}
return (UATH_SUCCESS);
}
static void
uath_free_cmd_list(struct uath_cmd cmds[], int ncmd)
{
int i;
for (i = 0; i < ncmd; i++)
if (cmds[i].buf != NULL) {
kmem_free(cmds[i].buf, UATH_MAX_CMDSZ);
cmds[i].buf = NULL;
}
}
static int
uath_host_available(struct uath_softc *sc)
{
struct uath_cmd_host_available setup;
/* inform target the host is available */
setup.sw_ver_major = BE_32(ATH_SW_VER_MAJOR);
setup.sw_ver_minor = BE_32(ATH_SW_VER_MINOR);
setup.sw_ver_patch = BE_32(ATH_SW_VER_PATCH);
setup.sw_ver_build = BE_32(ATH_SW_VER_BUILD);
return (uath_cmd_read(sc, WDCMSG_HOST_AVAILABLE,
&setup, sizeof (setup), NULL, 0, 0));
}
static void
uath_get_capability(struct uath_softc *sc, uint32_t cap, uint32_t *val)
{
int err;
cap = BE_32(cap);
err = uath_cmd_read(sc, WDCMSG_TARGET_GET_CAPABILITY, &cap,
sizeof (cap), val, sizeof (uint32_t), UATH_CMD_FLAG_MAGIC);
if (err == UATH_SUCCESS)
*val = BE_32(*val);
else
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_get_capability(): "
"could not read capability %u\n", BE_32(cap));
}
static int
uath_get_devcap(struct uath_softc *sc)
{
struct uath_devcap *cap = &sc->sc_devcap;
/* collect device capabilities */
uath_get_capability(sc, CAP_TARGET_VERSION,
&cap->targetVersion);
uath_get_capability(sc, CAP_TARGET_REVISION,
&cap->targetRevision);
uath_get_capability(sc, CAP_MAC_VERSION,
&cap->macVersion);
uath_get_capability(sc, CAP_MAC_REVISION,
&cap->macRevision);
uath_get_capability(sc, CAP_PHY_REVISION,
&cap->phyRevision);
uath_get_capability(sc, CAP_ANALOG_5GHz_REVISION,
&cap->analog5GhzRevision);
uath_get_capability(sc, CAP_ANALOG_2GHz_REVISION,
&cap->analog2GhzRevision);
uath_get_capability(sc, CAP_REG_DOMAIN,
&cap->regDomain);
uath_get_capability(sc, CAP_REG_CAP_BITS,
&cap->regCapBits);
/* NB: not supported in rev 1.5 */
/* uath_get_capability(sc, CAP_COUNTRY_CODE, cap->countryCode); */
uath_get_capability(sc, CAP_WIRELESS_MODES,
&cap->wirelessModes);
uath_get_capability(sc, CAP_CHAN_SPREAD_SUPPORT,
&cap->chanSpreadSupport);
uath_get_capability(sc, CAP_COMPRESS_SUPPORT,
&cap->compressSupport);
uath_get_capability(sc, CAP_BURST_SUPPORT,
&cap->burstSupport);
uath_get_capability(sc, CAP_FAST_FRAMES_SUPPORT,
&cap->fastFramesSupport);
uath_get_capability(sc, CAP_CHAP_TUNING_SUPPORT,
&cap->chapTuningSupport);
uath_get_capability(sc, CAP_TURBOG_SUPPORT,
&cap->turboGSupport);
uath_get_capability(sc, CAP_TURBO_PRIME_SUPPORT,
&cap->turboPrimeSupport);
uath_get_capability(sc, CAP_DEVICE_TYPE,
&cap->deviceType);
uath_get_capability(sc, CAP_WME_SUPPORT,
&cap->wmeSupport);
uath_get_capability(sc, CAP_TOTAL_QUEUES,
&cap->numTxQueues);
uath_get_capability(sc, CAP_CONNECTION_ID_MAX,
&cap->connectionIdMax);
uath_get_capability(sc, CAP_LOW_5GHZ_CHAN,
&cap->low5GhzChan);
uath_get_capability(sc, CAP_HIGH_5GHZ_CHAN,
&cap->high5GhzChan);
uath_get_capability(sc, CAP_LOW_2GHZ_CHAN,
&cap->low2GhzChan);
uath_get_capability(sc, CAP_HIGH_2GHZ_CHAN,
&cap->high2GhzChan);
uath_get_capability(sc, CAP_TWICE_ANTENNAGAIN_5G,
&cap->twiceAntennaGain5G);
uath_get_capability(sc, CAP_TWICE_ANTENNAGAIN_2G,
&cap->twiceAntennaGain2G);
uath_get_capability(sc, CAP_CIPHER_AES_CCM,
&cap->supportCipherAES_CCM);
uath_get_capability(sc, CAP_CIPHER_TKIP,
&cap->supportCipherTKIP);
uath_get_capability(sc, CAP_MIC_TKIP,
&cap->supportMicTKIP);
cap->supportCipherWEP = 1; /* NB: always available */
return (UATH_SUCCESS);
}
static int
uath_get_status(struct uath_softc *sc, uint32_t which, void *odata, int olen)
{
int err;
which = BE_32(which);
err = uath_cmd_read(sc, WDCMSG_TARGET_GET_STATUS,
&which, sizeof (which), odata, olen, UATH_CMD_FLAG_MAGIC);
if (err != UATH_SUCCESS)
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_get_status(): "
"could not read EEPROM offset 0x%02x\n", BE_32(which));
return (err);
}
static int
uath_get_devstatus(struct uath_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
{
int err;
/* retrieve MAC address */
err = uath_get_status(sc, ST_MAC_ADDR, macaddr, IEEE80211_ADDR_LEN);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_get_devstatus(): "
"could not read MAC address\n");
return (err);
}
err = uath_get_status(sc, ST_SERIAL_NUMBER,
&sc->sc_serial[0], sizeof (sc->sc_serial));
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_get_devstatus(): "
"could not read device serial number\n");
return (err);
}
return (UATH_SUCCESS);
}
/*
* uath_cmd_lock: a special signal structure that is used for notification
* that a callback function has been called.
*/
/* Initializes the uath_cmd_lock structure. */
static void
uath_cmd_lock_init(struct uath_cmd_lock *lock)
{
ASSERT(lock != NULL);
mutex_init(&lock->mutex, NULL, MUTEX_DRIVER, NULL);
cv_init(&lock->cv, NULL, CV_DRIVER, NULL);
lock->done = B_FALSE;
}
/* Deinitalizes the uath_cb_lock structure. */
void
uath_cmd_lock_destroy(struct uath_cmd_lock *lock)
{
ASSERT(lock != NULL);
mutex_destroy(&lock->mutex);
cv_destroy(&lock->cv);
}
/*
* Wait on lock until someone calls the "signal" function or the timeout
* expires. Note: timeout is in microseconds.
*/
static int
uath_cmd_lock_wait(struct uath_cmd_lock *lock, clock_t timeout)
{
int res, cv_res;
clock_t etime;
ASSERT(lock != NULL);
mutex_enter(&lock->mutex);
if (timeout < 0) {
/* no timeout - wait as long as needed */
while (lock->done == B_FALSE)
cv_wait(&lock->cv, &lock->mutex);
} else {
/* wait with timeout (given in usec) */
etime = ddi_get_lbolt() + drv_usectohz(timeout);
while (lock->done == B_FALSE) {
cv_res = cv_timedwait_sig(&lock->cv,
&lock->mutex, etime);
if (cv_res <= 0) break;
}
}
res = (lock->done == B_TRUE) ? UATH_SUCCESS : UATH_FAILURE;
mutex_exit(&lock->mutex);
return (res);
}
/* Signal that the job (eg. callback) is done and unblock anyone who waits. */
static void
uath_cmd_lock_signal(struct uath_cmd_lock *lock)
{
ASSERT(lock != NULL);
mutex_enter(&lock->mutex);
lock->done = B_TRUE;
cv_broadcast(&lock->cv);
mutex_exit(&lock->mutex);
}
static int
uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata,
int ilen, void *odata, int olen, int flags)
{
flags |= UATH_CMD_FLAG_READ;
return (uath_cmdsend(sc, code, idata, ilen, odata, olen, flags));
}
static int
uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data,
int len, int flags)
{
flags &= ~UATH_CMD_FLAG_READ;
return (uath_cmdsend(sc, code, data, len, NULL, 0, flags));
}
/*
* Low-level function to send read or write commands to the firmware.
*/
static int
uath_cmdsend(struct uath_softc *sc, uint32_t code, const void *idata, int ilen,
void *odata, int olen, int flags)
{
struct uath_cmd_hdr *hdr;
struct uath_cmd *cmd;
int err;
/* grab a xfer */
cmd = &sc->sc_cmd[sc->sc_cmdid];
cmd->flags = flags;
/* always bulk-out a multiple of 4 bytes */
cmd->buflen = (sizeof (struct uath_cmd_hdr) + ilen + 3) & ~3;
hdr = (struct uath_cmd_hdr *)cmd->buf;
bzero(hdr, sizeof (struct uath_cmd_hdr));
hdr->len = BE_32(cmd->buflen);
hdr->code = BE_32(code);
hdr->msgid = cmd->msgid; /* don't care about endianness */
hdr->magic = BE_32((cmd->flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0);
bcopy(idata, (uint8_t *)(hdr + 1), ilen);
UATH_DEBUG(UATH_DBG_TX_CMD, "uath: uath_cmdsend(): "
"queue %x send %s [flags 0x%x] olen %d\n",
cmd->msgid, uath_codename(code), cmd->flags, olen);
cmd->odata = odata;
if (odata == NULL)
UATH_DEBUG(UATH_DBG_TX_CMD, "uath: uath_cmdsend(): "
"warning - odata is NULL\n");
else if (olen < UATH_MAX_CMDSZ - sizeof (*hdr) + sizeof (uint32_t))
UATH_DEBUG(UATH_DBG_TX_CMD, "uath: uath_cmdsend(): "
"warning - olen %x is short\n, olen");
cmd->olen = olen;
err = uath_tx_cmd_xfer(sc, sc->tx_cmd_pipe, cmd->buf, cmd->buflen);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_cmdsend(): "
"Error writing command\n");
return (UATH_FAILURE);
}
sc->sc_cmdid = (sc->sc_cmdid + 1) % UATH_CMD_LIST_COUNT;
if (cmd->flags & UATH_CMD_FLAG_READ) {
/* wait at most two seconds for command reply */
uath_cmd_lock_init(&sc->rlock);
err = uath_cmd_lock_wait(&sc->rlock, 2000000);
cmd->odata = NULL; /* in case reply comes too late */
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_cmdsend(): "
"timeout waiting for reply, "
"to cmd 0x%x (%u), queue %x\n",
code, code, cmd->msgid);
err = UATH_FAILURE;
} else if (cmd->olen != olen) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_cmdsend(): "
"unexpected reply data count "
"to cmd 0x%x (%x), got %u, expected %u\n",
code, cmd->msgid, cmd->olen, olen);
err = UATH_FAILURE;
}
uath_cmd_lock_destroy(&sc->rlock);
return (err);
}
return (UATH_SUCCESS);
}
/* ARGSUSED */
static void
uath_cmd_txeof(usb_pipe_handle_t pipe, struct usb_bulk_req *req)
{
struct uath_softc *sc = (struct uath_softc *)req->bulk_client_private;
UATH_DEBUG(UATH_DBG_TX_CMD, "uath: uath_cmd_txeof(): "
"cr:%s(%d), flags:0x%x, tx queued %d\n",
usb_str_cr(req->bulk_completion_reason),
req->bulk_completion_reason,
req->bulk_cb_flags,
sc->tx_cmd_queued);
if (req->bulk_completion_reason != USB_CR_OK)
sc->sc_tx_err++;
mutex_enter(&sc->sc_txlock_cmd);
sc->tx_cmd_queued--;
mutex_exit(&sc->sc_txlock_cmd);
usb_free_bulk_req(req);
}
static int
uath_tx_cmd_xfer(struct uath_softc *sc,
usb_pipe_handle_t pipe, const void *data, uint_t len)
{
usb_bulk_req_t *send_req;
mblk_t *mblk;
int res;
send_req = usb_alloc_bulk_req(sc->sc_dev, len, USB_FLAGS_SLEEP);
send_req->bulk_client_private = (usb_opaque_t)sc;
send_req->bulk_len = (int)len;
send_req->bulk_attributes = USB_ATTRS_AUTOCLEARING;
send_req->bulk_timeout = UATH_CMD_TIMEOUT;
send_req->bulk_cb = uath_cmd_txeof;
send_req->bulk_exc_cb = uath_cmd_txeof;
send_req->bulk_completion_reason = 0;
send_req->bulk_cb_flags = 0;
mblk = send_req->bulk_data;
bcopy(data, mblk->b_rptr, len);
mblk->b_wptr += len;
res = usb_pipe_bulk_xfer(pipe, send_req, USB_FLAGS_NOSLEEP);
if (res != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_tx_cmd_xfer(): "
"Error %x writing cmd to bulk/out pipe", res);
return (UATH_FAILURE);
}
mutex_enter(&sc->sc_txlock_cmd);
sc->tx_cmd_queued++;
mutex_exit(&sc->sc_txlock_cmd);
return (UATH_SUCCESS);
}
static void
uath_cmdeof(struct uath_softc *sc, struct uath_cmd *cmd)
{
struct uath_cmd_hdr *hdr;
int dlen;
hdr = (struct uath_cmd_hdr *)cmd->buf;
hdr->code = BE_32(hdr->code);
hdr->len = BE_32(hdr->len);
hdr->magic = BE_32(hdr->magic); /* target status on return */
/* NB: msgid is passed thru w/o byte swapping */
UATH_DEBUG(UATH_DBG_RX_CMD, "uath: uath_cmdeof(): "
"%s: [ix %x] len=%x status %x\n",
uath_codename(hdr->code),
hdr->msgid,
hdr->len,
hdr->magic);
switch (hdr->code & 0xff) {
/* reply to a read command */
default:
dlen = hdr->len - sizeof (*hdr);
UATH_DEBUG(UATH_DBG_RX_CMD, "uath: uath_cmdeof(): "
"code %x data len %u\n",
hdr->code & 0xff, dlen);
/*
* The first response from the target after the
* HOST_AVAILABLE has an invalid msgid so we must
* treat it specially.
*/
if ((hdr->msgid < UATH_CMD_LIST_COUNT) && (hdr->code != 0x13)) {
uint32_t *rp = (uint32_t *)(hdr + 1);
uint_t olen;
if (!(sizeof (*hdr) <= hdr->len &&
hdr->len < UATH_MAX_CMDSZ)) {
UATH_DEBUG(UATH_DBG_RX_CMD,
"uath: uath_cmdeof(): "
"invalid WDC msg length %u; "
"msg ignored\n",
hdr->len);
return;
}
/*
* Calculate return/receive payload size; the
* first word, if present, always gives the
* number of bytes--unless it's 0 in which
* case a single 32-bit word should be present.
*/
if (dlen >= sizeof (uint32_t)) {
olen = BE_32(rp[0]);
dlen -= sizeof (uint32_t);
if (olen == 0) {
/* convention is 0 =>'s one word */
olen = sizeof (uint32_t);
/* XXX KASSERT(olen == dlen ) */
}
} else
olen = 0;
if (cmd->odata != NULL) {
/* NB: cmd->olen validated in uath_cmd */
if (olen > cmd->olen) {
/* XXX complain? */
UATH_DEBUG(UATH_DBG_RX_CMD,
"uath: uath_cmdeof(): "
"cmd 0x%x olen %u cmd olen %u\n",
hdr->code, olen, cmd->olen);
olen = cmd->olen;
}
if (olen > dlen) {
/* XXX complain, shouldn't happen */
UATH_DEBUG(UATH_DBG_RX_CMD,
"uath: uath_cmdeof(): "
"cmd 0x%x olen %u dlen %u\n",
hdr->code, olen, dlen);
olen = dlen;
}
/* XXX have submitter do this */
/* copy answer into caller's supplied buffer */
bcopy(&rp[1], cmd->odata, olen);
cmd->olen = olen;
}
}
/* Just signal that something happened */
uath_cmd_lock_signal(&sc->rlock);
break;
case WDCMSG_TARGET_START:
UATH_DEBUG(UATH_DBG_RX_CMD, "uath: uath_cmdeof(): "
"receive TARGET STAERT\n");
if (hdr->msgid >= UATH_CMD_LIST_COUNT) {
/* XXX */
return;
}
dlen = hdr->len - sizeof (*hdr);
if (dlen != sizeof (uint32_t)) {
/* XXX something wrong */
return;
}
/* XXX have submitter do this */
/* copy answer into caller's supplied buffer */
bcopy(hdr + 1, cmd->odata, sizeof (uint32_t));
cmd->olen = sizeof (uint32_t);
/* wake up caller */
uath_cmd_lock_signal(&sc->rlock);
break;
case WDCMSG_SEND_COMPLETE:
/* this notification is sent when UATH_TX_NOTIFY is set */
UATH_DEBUG(UATH_DBG_RX_CMD, "uath: uath_cmdeof(): "
"receive Tx notification\n");
break;
case WDCMSG_TARGET_GET_STATS:
UATH_DEBUG(UATH_DBG_RX_CMD, "uath: uath_cmdeof(): "
"received device statistics\n");
break;
}
}
/* ARGSUSED */
static void
uath_cmd_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
{
struct uath_softc *sc = (struct uath_softc *)req->bulk_client_private;
struct uath_cmd_hdr *hdr;
struct uath_cmd *cmd;
mblk_t *m, *mp;
int len;
UATH_DEBUG(UATH_DBG_RX_CMD, "uath: uath_cmd_rxeof(): "
"cr:%s(%d), flags:0x%x, rx queued %d\n",
usb_str_cr(req->bulk_completion_reason),
req->bulk_completion_reason,
req->bulk_cb_flags,
sc->rx_cmd_queued);
m = req->bulk_data;
req->bulk_data = NULL;
if (req->bulk_completion_reason != USB_CR_OK) {
UATH_DEBUG(UATH_DBG_RX_CMD, "uath: uath_cmd_rxeof(): "
"USB CR is not OK\n");
goto fail;
}
if (m->b_cont != NULL) {
/* Fragmented message, concatenate */
mp = msgpullup(m, -1);
freemsg(m);
m = mp;
mp = NULL;
}
len = msgdsize(m);
if (len < sizeof (struct uath_cmd_hdr)) {
UATH_DEBUG(UATH_DBG_RX_CMD, "uath: uath_rx_cmdeof(): "
"short xfer error\n");
goto fail;
}
hdr = (struct uath_cmd_hdr *)m->b_rptr;
if (BE_32(hdr->code) == 0x13)
cmd = &sc->sc_cmd[0];
else
cmd = &sc->sc_cmd[hdr->msgid];
bcopy(m->b_rptr, cmd->buf, len);
uath_cmdeof(sc, cmd);
(void) uath_rx_cmd_xfer(sc);
fail:
mutex_enter(&sc->sc_rxlock_cmd);
sc->rx_cmd_queued--;
mutex_exit(&sc->sc_rxlock_cmd);
if (m) freemsg(m);
usb_free_bulk_req(req);
}
static int
uath_rx_cmd_xfer(struct uath_softc *sc)
{
usb_bulk_req_t *req;
int err;
req = usb_alloc_bulk_req(sc->sc_dev, UATH_MAX_CMDSZ, USB_FLAGS_SLEEP);
if (req == NULL) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_rx_cmd_xfer(): "
"failed to allocate req");
return (UATH_FAILURE);
}
req->bulk_len = UATH_MAX_CMDSZ;
req->bulk_client_private = (usb_opaque_t)sc;
req->bulk_cb = uath_cmd_rxeof;
req->bulk_exc_cb = uath_cmd_rxeof;
req->bulk_timeout = 0;
req->bulk_completion_reason = 0;
req->bulk_cb_flags = 0;
req->bulk_attributes = USB_ATTRS_SHORT_XFER_OK
| USB_ATTRS_AUTOCLEARING;
err = usb_pipe_bulk_xfer(sc->rx_cmd_pipe, req, USB_FLAGS_NOSLEEP);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_rx_cmd_xfer(): "
"failed to do rx xfer, %d", err);
usb_free_bulk_req(req);
return (UATH_FAILURE);
}
mutex_enter(&sc->sc_rxlock_cmd);
sc->rx_cmd_queued++;
mutex_exit(&sc->sc_rxlock_cmd);
return (UATH_SUCCESS);
}
static void
uath_init_data_queue(struct uath_softc *sc)
{
sc->tx_data_queued = sc->rx_data_queued = 0;
}
/* ARGSUSED */
static void
uath_data_txeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
{
struct uath_softc *sc = (struct uath_softc *)req->bulk_client_private;
struct ieee80211com *ic = &sc->sc_ic;
UATH_DEBUG(UATH_DBG_TX, "uath: uath_data_txeof(): "
"uath_txeof(): cr:%s(%d), flags:0x%x, tx_data_queued %d\n",
usb_str_cr(req->bulk_completion_reason),
req->bulk_completion_reason,
req->bulk_cb_flags,
sc->tx_data_queued);
if (req->bulk_completion_reason != USB_CR_OK)
sc->sc_tx_err++;
mutex_enter(&sc->sc_txlock_data);
sc->tx_data_queued--;
if (sc->sc_need_sched) {
sc->sc_need_sched = 0;
mac_tx_update(ic->ic_mach);
}
mutex_exit(&sc->sc_txlock_data);
usb_free_bulk_req(req);
}
static int
uath_tx_data_xfer(struct uath_softc *sc, mblk_t *mp)
{
usb_bulk_req_t *req;
int err;
req = usb_alloc_bulk_req(sc->sc_dev, 0, USB_FLAGS_SLEEP);
if (req == NULL) {
UATH_DEBUG(UATH_DBG_TX, "uath: uath_tx_data_xfer(): "
"uath_tx_data_xfer(): failed to allocate req");
freemsg(mp);
return (UATH_FAILURE);
}
req->bulk_len = msgdsize(mp);
req->bulk_data = mp;
req->bulk_client_private = (usb_opaque_t)sc;
req->bulk_timeout = UATH_DATA_TIMEOUT;
req->bulk_attributes = USB_ATTRS_AUTOCLEARING;
req->bulk_cb = uath_data_txeof;
req->bulk_exc_cb = uath_data_txeof;
req->bulk_completion_reason = 0;
req->bulk_cb_flags = 0;
if ((err = usb_pipe_bulk_xfer(sc->tx_data_pipe, req, 0)) !=
USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_TX, "uath: uath_tx_data_xfer(): "
"failed to do tx xfer, %d", err);
usb_free_bulk_req(req);
return (UATH_FAILURE);
}
sc->tx_data_queued++;
return (UATH_SUCCESS);
}
/* ARGSUSED */
static void
uath_data_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
{
struct uath_softc *sc = (struct uath_softc *)req->bulk_client_private;
struct ieee80211com *ic = &sc->sc_ic;
struct uath_chunk *chunk;
struct uath_rx_desc *desc;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
mblk_t *m, *mp;
uint8_t *rxbuf;
int actlen, pktlen;
mutex_enter(&sc->sc_rxlock_data);
UATH_DEBUG(UATH_DBG_RX, "uath: uath_data_rxeof(): "
"cr:%s(%d), flags:0x%x, rx_data_queued %d\n",
usb_str_cr(req->bulk_completion_reason),
req->bulk_completion_reason,
req->bulk_cb_flags,
sc->rx_data_queued);
mp = req->bulk_data;
req->bulk_data = NULL;
if (req->bulk_completion_reason != USB_CR_OK) {
UATH_DEBUG(UATH_DBG_RX, "uath: uath_data_rxeof(): "
"USB CR is not OK\n");
sc->sc_rx_err++;
goto fail;
}
rxbuf = (uint8_t *)mp->b_rptr;
actlen = (uintptr_t)mp->b_wptr - (uintptr_t)mp->b_rptr;
if (actlen < UATH_MIN_RXBUFSZ) {
UATH_DEBUG(UATH_DBG_RX, "uath_data_rxeof(): "
"wrong recv size %d\n", actlen);
sc->sc_rx_err++;
goto fail;
}
chunk = (struct uath_chunk *)rxbuf;
if (chunk->seqnum == 0 && chunk->flags == 0 && chunk->length == 0) {
UATH_DEBUG(UATH_DBG_RX, "uath: uath_data_rxeof(): "
"strange response\n");
UATH_RESET_INTRX(sc);
sc->sc_rx_err++;
goto fail;
}
if (chunk->seqnum != sc->sc_intrx_nextnum) {
UATH_DEBUG(UATH_DBG_RX, "uath: uath_data_rxeof(): "
"invalid seqnum %d, expected %d\n",
chunk->seqnum, sc->sc_intrx_nextnum);
UATH_STAT_INC(sc, st_badchunkseqnum);
UATH_RESET_INTRX(sc);
sc->sc_rx_err++;
goto fail;
}
/* check multi-chunk frames */
if ((chunk->seqnum == 0 && !(chunk->flags & UATH_CFLAGS_FINAL)) ||
(chunk->seqnum != 0 && (chunk->flags & UATH_CFLAGS_FINAL)) ||
chunk->flags & UATH_CFLAGS_RXMSG) {
UATH_DEBUG(UATH_DBG_RX, "uath: uath_data_rxeof(): "
"receive multi-chunk frames "
"chunk seqnum %x, flags %x, length %u\n",
chunk->seqnum, chunk->flags, BE_16(chunk->length));
UATH_STAT_INC(sc, st_multichunk);
}
/* if the frame is not final continue the transfer */
if (!(chunk->flags & UATH_CFLAGS_FINAL))
sc->sc_intrx_nextnum++;
/*
* if the frame is not set UATH_CFLAGS_RXMSG, then rx descriptor is
* located at the end, 32-bit aligned
*/
desc = (chunk->flags & UATH_CFLAGS_RXMSG) ?
(struct uath_rx_desc *)(chunk + 1) :
(struct uath_rx_desc *)(((uint8_t *)chunk) +
sizeof (struct uath_chunk) + BE_16(chunk->length) -
sizeof (struct uath_rx_desc));
UATH_DEBUG(UATH_DBG_RX, "uath: uath_data_rxeof(): "
"frame len %u code %u status %u rate %u antenna %u "
"rssi %d channel %u phyerror %u connix %u "
"decrypterror %u keycachemiss %u\n",
BE_32(desc->framelen), BE_32(desc->code), BE_32(desc->status),
BE_32(desc->rate), BE_32(desc->antenna), BE_32(desc->rssi),
BE_32(desc->channel), BE_32(desc->phyerror), BE_32(desc->connix),
BE_32(desc->decrypterror), BE_32(desc->keycachemiss));
if (BE_32(desc->len) > IEEE80211_MAX_LEN) {
UATH_DEBUG(UATH_DBG_RX, "uath: uath_data_rxeof(): "
"bad descriptor (len=%d)\n", BE_32(desc->len));
UATH_STAT_INC(sc, st_toobigrxpkt);
goto fail;
}
uath_update_rxstat(sc, BE_32(desc->status));
pktlen = BE_32(desc->framelen) - UATH_RX_DUMMYSIZE;
if ((m = allocb(pktlen, BPRI_MED)) == NULL) {
UATH_DEBUG(UATH_DBG_RX, "uath: uath_data_rxeof(): "
"allocate mblk failed.\n");
sc->sc_rx_nobuf++;
goto fail;
}
bcopy((rxbuf + sizeof (struct uath_chunk)), m->b_rptr, pktlen);
m->b_wptr = m->b_rptr + pktlen;
wh = (struct ieee80211_frame *)m->b_rptr;
ni = ieee80211_find_rxnode(ic, wh);
/* send the frame to the 802.11 layer */
(void) ieee80211_input(ic, m, ni, (int)BE_32(desc->rssi), 0);
/* node is no longer needed */
ieee80211_free_node(ni);
fail:
sc->rx_data_queued--;
if (mp) freemsg(mp);
usb_free_bulk_req(req);
mutex_exit(&sc->sc_rxlock_data);
if (UATH_IS_RUNNING(sc) && !UATH_IS_SUSPEND(sc)) {
(void) uath_rx_data_xfer(sc);
}
}
static int
uath_rx_data_xfer(struct uath_softc *sc)
{
usb_bulk_req_t *req;
int err;
req = usb_alloc_bulk_req(sc->sc_dev,
IEEE80211_MAX_LEN, USB_FLAGS_SLEEP);
if (req == NULL) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_rx_data_xfer(): "
"failed to allocate req");
return (UATH_SUCCESS);
}
req->bulk_len = IEEE80211_MAX_LEN;
req->bulk_cb = uath_data_rxeof;
req->bulk_exc_cb = uath_data_rxeof;
req->bulk_client_private = (usb_opaque_t)sc;
req->bulk_timeout = 0;
req->bulk_completion_reason = 0;
req->bulk_cb_flags = 0;
req->bulk_attributes = USB_ATTRS_SHORT_XFER_OK
| USB_ATTRS_AUTOCLEARING;
err = usb_pipe_bulk_xfer(sc->rx_data_pipe, req, 0);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_rx_data_xfer(): "
"failed to do rx xfer, %d", err);
usb_free_bulk_req(req);
return (UATH_FAILURE);
}
mutex_enter(&sc->sc_rxlock_data);
sc->rx_data_queued++;
mutex_exit(&sc->sc_rxlock_data);
return (UATH_SUCCESS);
}
static void
uath_update_rxstat(struct uath_softc *sc, uint32_t status)
{
switch (status) {
case UATH_STATUS_STOP_IN_PROGRESS:
UATH_STAT_INC(sc, st_stopinprogress);
break;
case UATH_STATUS_CRC_ERR:
UATH_STAT_INC(sc, st_crcerr);
break;
case UATH_STATUS_PHY_ERR:
UATH_STAT_INC(sc, st_phyerr);
break;
case UATH_STATUS_DECRYPT_CRC_ERR:
UATH_STAT_INC(sc, st_decrypt_crcerr);
break;
case UATH_STATUS_DECRYPT_MIC_ERR:
UATH_STAT_INC(sc, st_decrypt_micerr);
break;
case UATH_STATUS_DECOMP_ERR:
UATH_STAT_INC(sc, st_decomperr);
break;
case UATH_STATUS_KEY_ERR:
UATH_STAT_INC(sc, st_keyerr);
break;
case UATH_STATUS_ERR:
UATH_STAT_INC(sc, st_err);
break;
default:
break;
}
}
static void
uath_next_scan(void *arg)
{
struct uath_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
sc->sc_scan_id = 0;
}
static int
uath_create_connection(struct uath_softc *sc, uint32_t connid)
{
const struct ieee80211_rateset *rs;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct uath_cmd_create_connection create;
int err;
bzero(&create, sizeof (create));
create.connid = BE_32(connid);
create.bssid = BE_32(0);
/* XXX packed or not? */
create.size = BE_32(sizeof (struct uath_cmd_rateset));
rs = &ni->in_rates;
create.connattr.rateset.length = rs->ir_nrates;
bcopy(rs->ir_rates, &create.connattr.rateset.set[0],
rs->ir_nrates);
/* XXX turbo */
if (UATH_IS_CHAN_A(ni->in_chan))
create.connattr.wlanmode = BE_32(WLAN_MODE_11a);
else if (UATH_IS_CHAN_ANYG(ni->in_chan))
create.connattr.wlanmode = BE_32(WLAN_MODE_11g);
else
create.connattr.wlanmode = BE_32(WLAN_MODE_11b);
err = uath_cmd_write(sc, WDCMSG_CREATE_CONNECTION, &create,
sizeof (create), 0);
return (err);
}
static int
uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs)
{
struct uath_cmd_rates rates;
int err;
bzero(&rates, sizeof (rates));
rates.connid = BE_32(UATH_ID_BSS); /* XXX */
rates.size = BE_32(sizeof (struct uath_cmd_rateset));
/* XXX bounds check rs->rs_nrates */
rates.rateset.length = rs->ir_nrates;
bcopy(rs->ir_rates, &rates.rateset.set[0], rs->ir_nrates);
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_set_rates(): "
"setting supported rates nrates=%d\n", rs->ir_nrates);
err = uath_cmd_write(sc, WDCMSG_SET_BASIC_RATE,
&rates, sizeof (rates), 0);
return (err);
}
static int
uath_write_associd(struct uath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct uath_cmd_set_associd associd;
int err;
bzero(&associd, sizeof (associd));
associd.defaultrateix = BE_32(1); /* XXX */
associd.associd = BE_32(ni->in_associd);
associd.timoffset = BE_32(0x3b); /* XXX */
IEEE80211_ADDR_COPY(associd.bssid, ni->in_bssid);
err = uath_cmd_write(sc, WDCMSG_WRITE_ASSOCID, &associd,
sizeof (associd), 0);
return (err);
}
static int
uath_set_ledsteady(struct uath_softc *sc, int lednum, int ledmode)
{
struct uath_cmd_ledsteady led;
int err;
led.lednum = BE_32(lednum);
led.ledmode = BE_32(ledmode);
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_set_ledsteady(): "
"set %s led %s (steady)\n",
(lednum == UATH_LED_LINK) ? "link" : "activity",
ledmode ? "on" : "off");
err = uath_cmd_write(sc, WDCMSG_SET_LED_STEADY, &led, sizeof (led), 0);
return (err);
}
static int
uath_set_ledblink(struct uath_softc *sc, int lednum, int ledmode,
int blinkrate, int slowmode)
{
struct uath_cmd_ledblink led;
int err;
led.lednum = BE_32(lednum);
led.ledmode = BE_32(ledmode);
led.blinkrate = BE_32(blinkrate);
led.slowmode = BE_32(slowmode);
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_set_ledblink(): "
"set %s led %s (blink)\n",
(lednum == UATH_LED_LINK) ? "link" : "activity",
ledmode ? "on" : "off");
err = uath_cmd_write(sc, WDCMSG_SET_LED_BLINK,
&led, sizeof (led), 0);
return (err);
}
static int
uath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct uath_softc *sc = (struct uath_softc *)ic;
struct ieee80211_node *ni = ic->ic_bss;
enum ieee80211_state ostate;
int err;
ostate = ic->ic_state;
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_newstate(): "
"%d -> %d\n", ostate, nstate);
if (sc->sc_scan_id != 0) {
(void) untimeout(sc->sc_scan_id);
sc->sc_scan_id = 0;
}
UATH_LOCK(sc);
if (UATH_IS_DISCONNECT(sc) && (nstate != IEEE80211_S_INIT)) {
UATH_UNLOCK(sc);
return (DDI_SUCCESS);
}
if (UATH_IS_SUSPEND(sc) && (nstate != IEEE80211_S_INIT)) {
UATH_UNLOCK(sc);
return (DDI_SUCCESS);
}
switch (nstate) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* turn link and activity LEDs off */
(void) uath_set_ledstate(sc, 0);
}
break;
case IEEE80211_S_SCAN:
if (uath_switch_channel(sc, ic->ic_curchan) != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_newstate(): "
"could not switch channel\n");
break;
}
sc->sc_scan_id = timeout(uath_next_scan, (void *)sc,
drv_usectohz(250000));
break;
case IEEE80211_S_AUTH:
/* XXX good place? set RTS threshold */
uath_config(sc, CFG_USER_RTS_THRESHOLD, ic->ic_rtsthreshold);
if (uath_switch_channel(sc, ni->in_chan) != 0) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_newstate(): "
"could not switch channel\n");
break;
}
if (uath_create_connection(sc, UATH_ID_BSS) != 0) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_newstate(): "
"could not create connection\n");
break;
}
break;
case IEEE80211_S_ASSOC:
if (uath_set_rates(sc, &ni->in_rates) != 0) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_newstate(): "
"could not set negotiated rate set\n");
break;
}
break;
case IEEE80211_S_RUN:
/* XXX monitor mode doesn't be supported */
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
(void) uath_set_ledstate(sc, 1);
break;
}
/*
* Tx rate is controlled by firmware, report the maximum
* negotiated rate in ifconfig output.
*/
ni->in_txrate = ni->in_rates.ir_nrates - 1;
if (uath_write_associd(sc) != 0) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_newstate(): "
"could not write association id\n");
break;
}
/* turn link LED on */
(void) uath_set_ledsteady(sc, UATH_LED_LINK, UATH_LED_ON);
/* make activity LED blink */
(void) uath_set_ledblink(sc, UATH_LED_ACTIVITY,
UATH_LED_ON, 1, 2);
/* set state to associated */
(void) uath_set_ledstate(sc, 1);
break;
}
UATH_UNLOCK(sc);
err = sc->sc_newstate(ic, nstate, arg);
return (err);
}
static int
uath_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
{
struct uath_softc *sc = (struct uath_softc *)ic;
struct uath_chunk *chunk;
struct uath_tx_desc *desc;
struct ieee80211_frame *wh;
struct ieee80211_node *ni = NULL;
struct ieee80211_key *k;
mblk_t *m, *m0;
int err, off, mblen;
int pktlen, framelen, msglen;
err = UATH_SUCCESS;
mutex_enter(&sc->sc_txlock_data);
if (UATH_IS_SUSPEND(sc)) {
err = 0;
goto fail;
}
if (sc->tx_data_queued > UATH_TX_DATA_LIST_COUNT) {
UATH_DEBUG(UATH_DBG_TX, "uath: uath_send(): "
"no TX buffer available!\n");
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) {
sc->sc_need_sched = 1;
}
sc->sc_tx_nobuf++;
err = ENOMEM;
goto fail;
}
m = allocb(UATH_MAX_TXBUFSZ, BPRI_MED);
if (m == NULL) {
UATH_DEBUG(UATH_DBG_TX, "uath: uath_send(): "
"can't alloc mblk.\n");
err = DDI_FAILURE;
goto fail;
}
/* skip TX descriptor */
m->b_rptr += sizeof (struct uath_chunk) + sizeof (struct uath_tx_desc);
m->b_wptr += sizeof (struct uath_chunk) + sizeof (struct uath_tx_desc);
for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
mblen = (uintptr_t)m0->b_wptr - (uintptr_t)m0->b_rptr;
(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
off += mblen;
}
m->b_wptr += off;
wh = (struct ieee80211_frame *)m->b_rptr;
ni = ieee80211_find_txnode(ic, wh->i_addr1);
if (ni == NULL) {
err = DDI_FAILURE;
freemsg(m);
goto fail;
}
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) {
(void) ieee80211_encap(ic, m, ni);
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, m);
if (k == NULL) {
freemsg(m);
err = DDI_FAILURE;
goto fail;
}
/* packet header may have moved, reset our local pointer */
wh = (struct ieee80211_frame *)m->b_rptr;
}
pktlen = (uintptr_t)m->b_wptr - (uintptr_t)m->b_rptr;
framelen = pktlen + IEEE80211_CRC_LEN;
msglen = framelen + sizeof (struct uath_tx_desc);
m->b_rptr -= sizeof (struct uath_chunk) + sizeof (struct uath_tx_desc);
chunk = (struct uath_chunk *)m->b_rptr;
desc = (struct uath_tx_desc *)(chunk + 1);
/* one chunk only for now */
chunk->seqnum = 0;
chunk->flags = UATH_CFLAGS_FINAL;
chunk->length = BE_16(msglen);
/* fill Tx descriptor */
desc->msglen = BE_32(msglen);
/* NB: to get UATH_TX_NOTIFY reply, `msgid' must be larger than 0 */
desc->msgid = sc->sc_msgid; /* don't care about endianness */
desc->type = BE_32(WDCMSG_SEND);
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_CTL:
case IEEE80211_FC0_TYPE_MGT:
/* NB: force all management frames to highest queue */
if (ni->in_flags & UATH_NODE_QOS) {
/* NB: force all management frames to highest queue */
desc->txqid = BE_32(WME_AC_VO | UATH_TXQID_MINRATE);
} else
desc->txqid = BE_32(WME_AC_BE | UATH_TXQID_MINRATE);
break;
case IEEE80211_FC0_TYPE_DATA:
/* XXX multicast frames should honor mcastrate */
desc->txqid = BE_32(WME_AC_BE);
break;
default:
UATH_DEBUG(UATH_DBG_TX, "uath: uath_send(): "
"bogus frame type 0x%x (%s)\n",
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
err = EIO;
goto fail;
}
if (ic->ic_state == IEEE80211_S_AUTH ||
ic->ic_state == IEEE80211_S_ASSOC ||
ic->ic_state == IEEE80211_S_RUN)
desc->connid = BE_32(UATH_ID_BSS);
else
desc->connid = BE_32(UATH_ID_INVALID);
desc->flags = BE_32(0 /* no UATH_TX_NOTIFY */);
desc->buflen = BE_32(pktlen);
(void) uath_tx_data_xfer(sc, m);
sc->sc_msgid = (sc->sc_msgid + 1) % UATH_TX_DATA_LIST_COUNT;
ic->ic_stats.is_tx_frags++;
ic->ic_stats.is_tx_bytes += pktlen;
fail:
if (ni != NULL)
ieee80211_free_node(ni);
if ((mp) &&
((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
err == 0)) {
freemsg(mp);
}
mutex_exit(&sc->sc_txlock_data);
return (err);
}
static int
uath_reconnect(dev_info_t *devinfo)
{
struct uath_softc *sc;
struct ieee80211com *ic;
int err;
uint16_t vendor_id, product_id;
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_reconnect(): "
"uath online\n");
sc = ddi_get_soft_state(uath_soft_state_p, ddi_get_instance(devinfo));
ASSERT(sc != NULL);
ic = (struct ieee80211com *)&sc->sc_ic;
if (!UATH_IS_RECONNECT(sc)) {
err = uath_open_pipes(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"could not open pipes\n");
return (DDI_FAILURE);
}
err = uath_loadfirmware(sc);
if (err != DDI_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"could not download firmware\n");
return (DDI_FAILURE);
}
uath_close_pipes(sc);
usb_client_detach(sc->sc_dev, sc->sc_udev);
/* reset device */
err = usb_reset_device(sc->sc_dev, USB_RESET_LVL_DEFAULT);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"could not reset device %x\n", err);
}
err = usb_client_attach(devinfo, USBDRV_VERSION, 0);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"usb_client_attach failed\n");
}
err = usb_get_dev_data(devinfo, &sc->sc_udev,
USB_PARSE_LVL_ALL, 0);
if (err != USB_SUCCESS) {
sc->sc_udev = NULL;
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"usb_get_dev_data failed\n");
}
vendor_id = sc->sc_udev->dev_descr->idVendor;
product_id = sc->sc_udev->dev_descr->idProduct;
sc->dev_flags = uath_lookup(vendor_id, product_id);
if (sc->dev_flags == UATH_FLAG_ERR) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"HW does not match\n");
}
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_reconnect(): "
"vendorId = %x,deviceID = %x, flags = %x\n",
vendor_id, product_id, sc->dev_flags);
UATH_LOCK(sc);
sc->sc_flags |= UATH_FLAG_RECONNECT;
UATH_UNLOCK(sc);
} else {
err = uath_open_pipes(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"could not open pipes\n");
return (DDI_FAILURE);
}
/*
* Allocate xfers for firmware commands.
*/
err = uath_alloc_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT,
UATH_MAX_CMDSZ);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"could not allocate Tx command list\n");
return (DDI_FAILURE);
}
err = uath_init_cmd_list(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"could not init RX command list\n");
return (DDI_FAILURE);
}
/*
* We're now ready to send+receive firmware commands.
*/
err = uath_host_available(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"could not initialize adapter\n");
return (DDI_FAILURE);
}
err = uath_get_devcap(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"could not get device capabilities\n");
return (DDI_FAILURE);
}
err = uath_get_devstatus(sc, ic->ic_macaddr);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"could not get dev status\n");
return (DDI_FAILURE);
}
err = usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1,
USB_CHK_BASIC, NULL);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"different device connected %x\n", err);
return (DDI_FAILURE);
}
err = uath_init(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_reconnect(): "
"device re-connect failed\n");
return (DDI_FAILURE);
}
UATH_LOCK(sc);
sc->sc_flags &= ~UATH_FLAG_RECONNECT;
sc->sc_flags &= ~UATH_FLAG_DISCONNECT;
sc->sc_flags |= UATH_FLAG_RUNNING;
UATH_UNLOCK(sc);
}
return (DDI_SUCCESS);
}
static int
uath_disconnect(dev_info_t *devinfo)
{
struct uath_softc *sc;
struct ieee80211com *ic;
/*
* We can't call uath_stop() here, since the hardware is removed,
* we can't access the register anymore.
*/
sc = ddi_get_soft_state(uath_soft_state_p, ddi_get_instance(devinfo));
ASSERT(sc != NULL);
if (sc->sc_flags & UATH_FLAG_RECONNECT) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_disconnect(): "
"stage 0 in re-connect\n");
uath_close_pipes(sc);
return (DDI_SUCCESS);
}
UATH_LOCK(sc);
sc->sc_flags |= UATH_FLAG_DISCONNECT;
UATH_UNLOCK(sc);
ic = (struct ieee80211com *)&sc->sc_ic;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
UATH_LOCK(sc);
sc->sc_flags &= ~UATH_FLAG_RUNNING; /* STOP */
UATH_UNLOCK(sc);
/* abort and free xfers */
uath_free_cmd_list(sc->sc_cmd, UATH_CMD_LIST_COUNT);
/* close Tx/Rx pipes */
uath_close_pipes(sc);
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_disconnect(): "
"offline success\n");
return (DDI_SUCCESS);
}
static int
uath_dataflush(struct uath_softc *sc)
{
struct uath_chunk *chunk;
struct uath_tx_desc *desc;
uint8_t *buf;
int err;
buf = kmem_alloc(UATH_MAX_TXBUFSZ, KM_NOSLEEP);
if (buf == NULL) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_dataflush(): "
"no bufs\n");
return (ENOBUFS);
}
chunk = (struct uath_chunk *)buf;
desc = (struct uath_tx_desc *)(chunk + 1);
/* one chunk only */
chunk->seqnum = 0;
chunk->flags = UATH_CFLAGS_FINAL;
chunk->length = BE_16(sizeof (struct uath_tx_desc));
bzero(desc, sizeof (struct uath_tx_desc));
desc->msglen = BE_32(sizeof (struct uath_tx_desc));
desc->msgid = sc->sc_msgid; /* don't care about endianness */
desc->type = BE_32(WDCMSG_FLUSH);
desc->txqid = BE_32(0);
desc->connid = BE_32(0);
desc->flags = BE_32(0);
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_dataflush(): "
"send flush ix %d\n", desc->msgid);
err = uath_fw_send(sc, sc->tx_data_pipe, buf,
sizeof (struct uath_chunk) + sizeof (struct uath_tx_desc));
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_dataflush(): "
"data flush error");
return (UATH_FAILURE);
}
kmem_free(buf, UATH_MAX_TXBUFSZ);
sc->sc_msgid = (sc->sc_msgid + 1) % UATH_TX_DATA_LIST_COUNT;
return (UATH_SUCCESS);
}
static int
uath_cmdflush(struct uath_softc *sc)
{
return (uath_cmd_write(sc, WDCMSG_FLUSH, NULL, 0, 0));
}
static int
uath_flush(struct uath_softc *sc)
{
int err;
err = uath_dataflush(sc);
if (err != UATH_SUCCESS)
goto failed;
err = uath_cmdflush(sc);
if (err != UATH_SUCCESS)
goto failed;
return (UATH_SUCCESS);
failed:
return (err);
}
static int
uath_set_ledstate(struct uath_softc *sc, int connected)
{
int err;
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_set_ledstate(): "
"set led state %sconnected\n", connected ? "" : "!");
connected = BE_32(connected);
err = uath_cmd_write(sc, WDCMSG_SET_LED_STATE,
&connected, sizeof (connected), 0);
return (err);
}
static int
uath_config_multi(struct uath_softc *sc, uint32_t reg, const void *data,
int len)
{
struct uath_write_mac write;
int err;
write.reg = BE_32(reg);
write.len = BE_32(len);
bcopy(data, write.data, len);
/* properly handle the case where len is zero (reset) */
err = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write,
(len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_config_multi(): "
"could not write %d bytes to register 0x%02x\n", len, reg);
}
return (err);
}
static void
uath_config(struct uath_softc *sc, uint32_t reg, uint32_t val)
{
struct uath_write_mac write;
int err;
write.reg = BE_32(reg);
write.len = BE_32(0); /* 0 = single write */
*(uint32_t *)write.data = BE_32(val);
err = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write,
3 * sizeof (uint32_t), 0);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_config(): "
"could not write register 0x%02x\n",
reg);
}
}
static int
uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c)
{
int err;
/* set radio frequency */
err = uath_set_chan(sc, c);
if (err) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_switch_channel(): "
"could not set channel\n");
goto failed;
}
/* reset Tx rings */
err = uath_reset_tx_queues(sc);
if (err) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_switch_channel(): "
"could not reset Tx queues\n");
goto failed;
}
/* set Tx rings WME properties */
err = uath_wme_init(sc);
if (err) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_switch_channel(): "
"could not init Tx queues\n");
goto failed;
}
err = uath_set_ledstate(sc, 0);
if (err) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_switch_channel(): "
"could not set led state\n");
goto failed;
}
err = uath_flush(sc);
if (err) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_switch_channel(): "
"could not flush pipes\n");
goto failed;
}
failed:
return (err);
}
static int
uath_set_rxfilter(struct uath_softc *sc, uint32_t bits, uint32_t op)
{
struct uath_cmd_rx_filter rxfilter;
rxfilter.bits = BE_32(bits);
rxfilter.op = BE_32(op);
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_set_rxfilter(): "
"setting Rx filter=0x%x flags=0x%x\n", bits, op);
return ((uath_cmd_write(sc, WDCMSG_RX_FILTER, &rxfilter,
sizeof (rxfilter), 0)));
}
static int
uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
struct uath_cmd_reset reset;
bzero(&reset, sizeof (reset));
if (IEEE80211_IS_CHAN_2GHZ(c))
reset.flags |= BE_32(UATH_CHAN_2GHZ);
if (IEEE80211_IS_CHAN_5GHZ(c))
reset.flags |= BE_32(UATH_CHAN_5GHZ);
/* NB: 11g =>'s 11b so don't specify both OFDM and CCK */
if (UATH_IS_CHAN_OFDM(c))
reset.flags |= BE_32(UATH_CHAN_OFDM);
else if (UATH_IS_CHAN_CCK(c))
reset.flags |= BE_32(UATH_CHAN_CCK);
/* turbo can be used in either 2GHz or 5GHz */
if (c->ich_flags & IEEE80211_CHAN_TURBO)
reset.flags |= BE_32(UATH_CHAN_TURBO);
reset.freq = BE_32(c->ich_freq);
reset.maxrdpower = BE_32(50); /* XXX */
reset.channelchange = BE_32(1);
reset.keeprccontent = BE_32(0);
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_set_chan(): "
"set channel %d, flags 0x%x freq %u\n",
ieee80211_chan2ieee(ic, c),
BE_32(reset.flags), BE_32(reset.freq));
return (uath_cmd_write(sc, WDCMSG_RESET, &reset, sizeof (reset), 0));
}
static int
uath_reset_tx_queues(struct uath_softc *sc)
{
int ac, err;
for (ac = 0; ac < 4; ac++) {
const uint32_t qid = BE_32(ac);
err = uath_cmd_write(sc, WDCMSG_RELEASE_TX_QUEUE, &qid,
sizeof (qid), 0);
if (err != UATH_SUCCESS)
break;
}
return (err);
}
static int
uath_wme_init(struct uath_softc *sc)
{
/* XXX get from net80211 */
static const struct uath_wme_settings uath_wme_11g[4] = {
{ 7, 4, 10, 0, 0 }, /* Background */
{ 3, 4, 10, 0, 0 }, /* Best-Effort */
{ 3, 3, 4, 26, 0 }, /* Video */
{ 2, 2, 3, 47, 0 } /* Voice */
};
struct uath_cmd_txq_setup qinfo;
int ac, err;
for (ac = 0; ac < 4; ac++) {
qinfo.qid = BE_32(ac);
qinfo.len = BE_32(sizeof (qinfo.attr));
qinfo.attr.priority = BE_32(ac); /* XXX */
qinfo.attr.aifs = BE_32(uath_wme_11g[ac].aifsn);
qinfo.attr.logcwmin = BE_32(uath_wme_11g[ac].logcwmin);
qinfo.attr.logcwmax = BE_32(uath_wme_11g[ac].logcwmax);
qinfo.attr.mode = BE_32(uath_wme_11g[ac].acm);
qinfo.attr.qflags = BE_32(1);
qinfo.attr.bursttime =
BE_32(UATH_TXOP_TO_US(uath_wme_11g[ac].txop));
err = uath_cmd_write(sc, WDCMSG_SETUP_TX_QUEUE, &qinfo,
sizeof (qinfo), 0);
if (err != UATH_SUCCESS)
break;
}
return (err);
}
static void
uath_stop_locked(void *arg)
{
struct uath_softc *sc = (struct uath_softc *)arg;
/* flush data & control requests into the target */
(void) uath_flush(sc);
/* set a LED status to the disconnected. */
(void) uath_set_ledstate(sc, 0);
/* stop the target */
(void) uath_cmd_write(sc, WDCMSG_TARGET_STOP, NULL, 0, 0);
/* abort any pending transfers */
usb_pipe_reset(sc->sc_dev, sc->rx_data_pipe, USB_FLAGS_SLEEP, NULL, 0);
usb_pipe_reset(sc->sc_dev, sc->tx_data_pipe, USB_FLAGS_SLEEP, NULL, 0);
usb_pipe_reset(sc->sc_dev, sc->tx_cmd_pipe, USB_FLAGS_SLEEP, NULL, 0);
}
static int
uath_init_locked(void *arg)
{
struct uath_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t val;
int i, err;
if (UATH_IS_RUNNING(sc))
uath_stop_locked(sc);
uath_init_data_queue(sc);
/* reset variables */
sc->sc_intrx_nextnum = sc->sc_msgid = 0;
val = BE_32(0);
(void) uath_cmd_write(sc, WDCMSG_BIND, &val, sizeof (val), 0);
/* set MAC address */
(void) uath_config_multi(sc, CFG_MAC_ADDR,
ic->ic_macaddr, IEEE80211_ADDR_LEN);
/* XXX honor net80211 state */
uath_config(sc, CFG_RATE_CONTROL_ENABLE, 0x00000001);
uath_config(sc, CFG_DIVERSITY_CTL, 0x00000001);
uath_config(sc, CFG_ABOLT, 0x0000003f);
uath_config(sc, CFG_WME_ENABLED, 0x00000001);
uath_config(sc, CFG_SERVICE_TYPE, 1);
uath_config(sc, CFG_TP_SCALE, 0x00000000);
uath_config(sc, CFG_TPC_HALF_DBM5, 0x0000003c);
uath_config(sc, CFG_TPC_HALF_DBM2, 0x0000003c);
uath_config(sc, CFG_OVERRD_TX_POWER, 0x00000000);
uath_config(sc, CFG_GMODE_PROTECTION, 0x00000000);
uath_config(sc, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003);
uath_config(sc, CFG_PROTECTION_TYPE, 0x00000000);
uath_config(sc, CFG_MODE_CTS, 0x00000002);
err = uath_cmd_read(sc, WDCMSG_TARGET_START, NULL, 0,
&val, sizeof (val), UATH_CMD_FLAG_MAGIC);
if (err) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_init_locked(): "
"could not start target\n");
goto fail;
}
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_init_locked(): "
"%s returns handle: 0x%x\n",
uath_codename(WDCMSG_TARGET_START), BE_32(val));
/* set default channel */
err = uath_switch_channel(sc, ic->ic_curchan);
if (err) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_init_locked(): "
"could not switch channel, error %d\n", err);
goto fail;
}
val = BE_32(TARGET_DEVICE_AWAKE);
(void) uath_cmd_write(sc, WDCMSG_SET_PWR_MODE, &val, sizeof (val), 0);
/* XXX? check */
(void) uath_cmd_write(sc, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0);
for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
err = uath_rx_data_xfer(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_init_locked(): "
"could not alloc rx xfer %x\n", i);
goto fail;
}
}
/* enable Rx */
(void) uath_set_rxfilter(sc, 0x0, UATH_FILTER_OP_INIT);
(void) uath_set_rxfilter(sc,
UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST |
UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON,
UATH_FILTER_OP_SET);
return (UATH_SUCCESS);
fail:
uath_stop_locked(sc);
return (err);
}
static int
uath_init(struct uath_softc *sc)
{
int err;
UATH_LOCK(sc);
err = uath_init_locked(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_init(): "
"failed to initialize uath hardware\n");
UATH_UNLOCK(sc);
return (DDI_FAILURE);
}
UATH_UNLOCK(sc);
return (DDI_SUCCESS);
}
static void
uath_stop(struct uath_softc *sc)
{
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_stop(): "
"uath stop now\n");
UATH_LOCK(sc);
uath_stop_locked(sc);
UATH_UNLOCK(sc);
}
static void
uath_resume(struct uath_softc *sc)
{
int err;
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_resume(): "
"uath resume now\n");
/* check device changes after suspend */
if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1,
USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_resume: "
"no or different device connected\n");
return;
}
/*
* initialize hardware
*/
err = uath_init_cmd_list(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_resume(): "
"could not init RX command list\n");
return;
}
err = uath_init(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_resume(): "
"hardware init failed\n");
uath_stop(sc);
return;
}
ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
UATH_LOCK(sc);
sc->sc_flags &= ~UATH_FLAG_SUSPEND;
sc->sc_flags |= UATH_FLAG_RUNNING;
UATH_UNLOCK(sc);
}
static int
uath_m_start(void *arg)
{
struct uath_softc *sc = (struct uath_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
int err;
/*
* initialize hardware
*/
err = uath_init(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_m_start(): "
"device configuration failed\n");
uath_stop(sc);
return (err);
}
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
UATH_LOCK(sc);
sc->sc_flags |= UATH_FLAG_RUNNING;
UATH_UNLOCK(sc);
return (DDI_SUCCESS);
}
static void
uath_m_stop(void *arg)
{
struct uath_softc *sc = (struct uath_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
if (!UATH_IS_DISCONNECT(sc))
uath_stop(sc);
UATH_LOCK(sc);
sc->sc_flags &= ~UATH_FLAG_RUNNING;
UATH_UNLOCK(sc);
}
static void
uath_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
{
struct uath_softc *sc = (struct uath_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
int err;
err = ieee80211_ioctl(ic, wq, mp);
UATH_LOCK(sc);
if (err == ENETRESET) {
if (ic->ic_des_esslen) {
if (UATH_IS_RUNNING(sc)) {
UATH_UNLOCK(sc);
(void) uath_init(sc);
(void) ieee80211_new_state(ic,
IEEE80211_S_SCAN, -1);
UATH_LOCK(sc);
}
}
}
UATH_UNLOCK(sc);
}
/*ARGSUSED*/
static int
uath_m_unicst(void *arg, const uint8_t *macaddr)
{
return (0);
}
/*ARGSUSED*/
static int
uath_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
{
return (0);
}
/*ARGSUSED*/
static int
uath_m_promisc(void *arg, boolean_t on)
{
return (0);
}
/*
* callback functions for /get/set properties
*/
static int
uath_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, const void *wldp_buf)
{
struct uath_softc *sc = (struct uath_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
int err;
err = ieee80211_setprop(ic, pr_name, wldp_pr_num,
wldp_length, wldp_buf);
UATH_LOCK(sc);
if (err == ENETRESET) {
if (ic->ic_des_esslen && UATH_IS_RUNNING(sc)) {
UATH_UNLOCK(sc);
(void) uath_init(sc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
UATH_LOCK(sc);
}
err = 0;
}
UATH_UNLOCK(sc);
return (err);
}
static int
uath_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, void *wldp_buf)
{
struct uath_softc *sc = (struct uath_softc *)arg;
int err;
err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
wldp_length, wldp_buf);
return (err);
}
static void
uath_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
mac_prop_info_handle_t prh)
{
struct uath_softc *sc = (struct uath_softc *)arg;
ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh);
}
static int
uath_m_stat(void *arg, uint_t stat, uint64_t *val)
{
struct uath_softc *sc = (struct uath_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = NULL;
struct ieee80211_rateset *rs = NULL;
UATH_LOCK(sc);
switch (stat) {
case MAC_STAT_IFSPEED:
ni = ic->ic_bss;
rs = &ni->in_rates;
*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
(rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
: ic->ic_fixed_rate) * 5000000ull;
break;
case MAC_STAT_NOXMTBUF:
*val = sc->sc_tx_nobuf;
break;
case MAC_STAT_NORCVBUF:
*val = sc->sc_rx_nobuf;
break;
case MAC_STAT_IERRORS:
*val = sc->sc_rx_err;
break;
case MAC_STAT_RBYTES:
*val = ic->ic_stats.is_rx_bytes;
break;
case MAC_STAT_IPACKETS:
*val = ic->ic_stats.is_rx_frags;
break;
case MAC_STAT_OBYTES:
*val = ic->ic_stats.is_tx_bytes;
break;
case MAC_STAT_OPACKETS:
*val = ic->ic_stats.is_tx_frags;
break;
case MAC_STAT_OERRORS:
case WIFI_STAT_TX_FAILED:
*val = sc->sc_tx_err;
break;
case WIFI_STAT_TX_RETRANS:
*val = sc->sc_tx_retries;
break;
case WIFI_STAT_FCS_ERRORS:
case WIFI_STAT_WEP_ERRORS:
case WIFI_STAT_TX_FRAGS:
case WIFI_STAT_MCAST_TX:
case WIFI_STAT_RTS_SUCCESS:
case WIFI_STAT_RTS_FAILURE:
case WIFI_STAT_ACK_FAILURE:
case WIFI_STAT_RX_FRAGS:
case WIFI_STAT_MCAST_RX:
case WIFI_STAT_RX_DUPS:
UATH_UNLOCK(sc);
return (ieee80211_stat(ic, stat, val));
default:
UATH_UNLOCK(sc);
return (ENOTSUP);
}
UATH_UNLOCK(sc);
return (0);
}
static mblk_t *
uath_m_tx(void *arg, mblk_t *mp)
{
struct uath_softc *sc = (struct uath_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
mblk_t *next;
/*
* No data frames go out unless we're associated; this
* should not happen as the 802.11 layer does not enable
* the xmit queue until we enter the RUN state.
*/
if ((ic->ic_state != IEEE80211_S_RUN) ||
UATH_IS_SUSPEND(sc)) {
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_m_tx(): "
"discard, state %u\n", ic->ic_state);
freemsgchain(mp);
return (NULL);
}
while (mp != NULL) {
next = mp->b_next;
mp->b_next = NULL;
if (uath_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != DDI_SUCCESS) {
mp->b_next = next;
break;
}
mp = next;
}
return (mp);
}
static int
uath_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
{
struct uath_softc *sc;
struct ieee80211com *ic;
int i, err, instance;
char strbuf[32];
uint16_t vendor_id, product_id;
wifi_data_t wd = { 0 };
mac_register_t *macp;
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
sc = ddi_get_soft_state(uath_soft_state_p,
ddi_get_instance(devinfo));
ASSERT(sc != NULL);
uath_resume(sc);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
instance = ddi_get_instance(devinfo);
err = ddi_soft_state_zalloc(uath_soft_state_p, instance);
if (err != DDI_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"ddi_soft_state_zalloc failed\n");
return (DDI_FAILURE);
}
sc = ddi_get_soft_state(uath_soft_state_p, instance);
ic = (ieee80211com_t *)&sc->sc_ic;
sc->sc_dev = devinfo;
err = usb_client_attach(devinfo, USBDRV_VERSION, 0);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"usb_client_attach failed\n");
goto fail1;
}
err = usb_get_dev_data(devinfo, &sc->sc_udev, USB_PARSE_LVL_ALL, 0);
if (err != USB_SUCCESS) {
sc->sc_udev = NULL;
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"usb_get_dev_data failed\n");
goto fail2;
}
vendor_id = sc->sc_udev->dev_descr->idVendor;
product_id = sc->sc_udev->dev_descr->idProduct;
sc->dev_flags = uath_lookup(vendor_id, product_id);
if (sc->dev_flags == UATH_FLAG_ERR) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"HW does not match\n");
goto fail2;
}
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_attach(): "
"vendorId = %x,deviceID = %x, flags = %x\n",
vendor_id, product_id, sc->dev_flags);
/*
* We must open the pipes early because they're used to upload the
* firmware (pre-firmware devices) or to send firmware commands.
*/
err = uath_open_pipes(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"could not open pipes\n");
goto fail3;
}
if (sc->dev_flags & UATH_FLAG_PRE_FIRMWARE) {
err = uath_loadfirmware(sc);
if (err != DDI_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"could not read firmware %s, err %d\n",
"uath-ar5523", err);
goto fail3;
}
uath_close_pipes(sc);
usb_client_detach(sc->sc_dev, sc->sc_udev);
err = usb_reset_device(devinfo, USB_RESET_LVL_REATTACH);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"could not re-attach, err %d\n", err);
goto fail1;
}
return (DDI_SUCCESS);
}
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_attach(): "
"firmware download and re-attach successfully\n");
/*
* Only post-firmware devices here.
*/
mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->sc_rxlock_cmd, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->sc_txlock_cmd, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->sc_rxlock_data, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->sc_txlock_data, NULL, MUTEX_DRIVER, NULL);
/*
* Allocate xfers for firmware commands.
*/
err = uath_alloc_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT,
UATH_MAX_CMDSZ);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"could not allocate Tx command list\n");
goto fail4;
}
err = uath_init_cmd_list(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"could not init RX command list\n");
goto fail5;
}
/*
* We're now ready to send+receive firmware commands.
*/
err = uath_host_available(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"could not initialize adapter\n");
goto fail5;
}
err = uath_get_devcap(sc);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"could not get device capabilities\n");
goto fail5;
}
err = uath_get_devstatus(sc, ic->ic_macaddr);
if (err != UATH_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"could not get dev status\n");
goto fail5;
}
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_attach(): "
"MAC address is: %x:%x:%x:%x:%x:%x\n",
ic->ic_macaddr[0], ic->ic_macaddr[1], ic->ic_macaddr[2],
ic->ic_macaddr[3], ic->ic_macaddr[4], ic->ic_macaddr[5]);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
ic->ic_maxrssi = 40;
ic->ic_xmit = uath_send;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT; /* short slot time supported */
ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = uath_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = uath_rateset_11g;
/* set supported .11b and .11g channels (1 through 11) */
for (i = 1; i <= 11; i++) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_sup_channels[i].ich_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ieee80211_attach(ic);
/* register WPA door */
ieee80211_register_door(ic, ddi_driver_name(devinfo),
ddi_get_instance(devinfo));
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = uath_newstate;
ieee80211_media_init(ic);
ic->ic_def_txkey = 0;
sc->sc_flags = 0;
/*
* Provide initial settings for the WiFi plugin; whenever this
* information changes, we need to call mac_plugindata_update()
*/
wd.wd_opmode = ic->ic_opmode;
wd.wd_secalloc = WIFI_SEC_NONE;
IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
UATH_DEBUG(UATH_DBG_ERR, "uath_attach(): "
"MAC version mismatch\n");
goto fail5;
}
macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
macp->m_driver = sc;
macp->m_dip = devinfo;
macp->m_src_addr = ic->ic_macaddr;
macp->m_callbacks = &uath_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = IEEE80211_MTU;
macp->m_pdata = &wd;
macp->m_pdata_size = sizeof (wd);
err = mac_register(macp, &ic->ic_mach);
mac_free(macp);
if (err != 0) {
UATH_DEBUG(UATH_DBG_ERR, "uath_attach(): "
"mac_register() error %x\n", err);
goto fail5;
};
err = usb_register_hotplug_cbs(devinfo,
uath_disconnect, uath_reconnect);
if (err != USB_SUCCESS) {
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"failed to register events\n");
goto fail6;
}
/*
* Create minor node of type DDI_NT_NET_WIFI
*/
(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
"uath", instance);
err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
instance + 1, DDI_NT_NET_WIFI, 0);
if (err != DDI_SUCCESS)
UATH_DEBUG(UATH_DBG_ERR, "uath: uath_attach(): "
"ddi_create_minor_node() failed\n");
/*
* Notify link is down now
*/
mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
UATH_DEBUG(UATH_DBG_MSG, "uath: uath_attach(): "
"attach success\n");
return (DDI_SUCCESS);
fail6:
(void) mac_unregister(ic->ic_mach);
fail5:
uath_free_cmd_list(sc->sc_cmd, UATH_CMD_LIST_COUNT);
fail4:
mutex_destroy(&sc->sc_genlock);
mutex_destroy(&sc->sc_rxlock_cmd);
mutex_destroy(&sc->sc_rxlock_data);
mutex_destroy(&sc->sc_txlock_cmd);
mutex_destroy(&sc->sc_txlock_data);
fail3:
uath_close_pipes(sc);
fail2:
usb_client_detach(sc->sc_dev, sc->sc_udev);
fail1:
ddi_soft_state_free(uath_soft_state_p, ddi_get_instance(devinfo));
return (DDI_FAILURE);
}
static int
uath_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
{
struct uath_softc *sc;
sc = ddi_get_soft_state(uath_soft_state_p, ddi_get_instance(devinfo));
ASSERT(sc != NULL);
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
if (UATH_IS_RUNNING(sc)) {
ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
uath_stop(sc);
}
UATH_LOCK(sc);
sc->sc_flags &= ~UATH_FLAG_RUNNING;
sc->sc_flags |= UATH_FLAG_SUSPEND;
UATH_UNLOCK(sc);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
if (sc->dev_flags & UATH_FLAG_PRE_FIRMWARE) {
ddi_soft_state_free(uath_soft_state_p,
ddi_get_instance(devinfo));
return (DDI_SUCCESS);
}
if (!UATH_IS_DISCONNECT(sc) && UATH_IS_RUNNING(sc))
uath_stop(sc);
uath_free_cmd_list(sc->sc_cmd, UATH_CMD_LIST_COUNT);
if (mac_disable(sc->sc_ic.ic_mach) != 0)
return (DDI_FAILURE);
/*
* Unregister from the MAC layer subsystem
*/
if (mac_unregister(sc->sc_ic.ic_mach) != 0)
return (DDI_FAILURE);
/*
* detach ieee80211 layer
*/
ieee80211_detach(&sc->sc_ic);
/* close Tx/Rx pipes */
uath_close_pipes(sc);
usb_unregister_hotplug_cbs(devinfo);
mutex_destroy(&sc->sc_genlock);
mutex_destroy(&sc->sc_rxlock_cmd);
mutex_destroy(&sc->sc_rxlock_data);
mutex_destroy(&sc->sc_txlock_cmd);
mutex_destroy(&sc->sc_txlock_data);
/* pipes will be close in uath_stop() */
usb_client_detach(devinfo, sc->sc_udev);
sc->sc_udev = NULL;
ddi_remove_minor_node(devinfo, NULL);
ddi_soft_state_free(uath_soft_state_p, ddi_get_instance(devinfo));
return (DDI_SUCCESS);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_init(void)
{
int status;
status = ddi_soft_state_init(&uath_soft_state_p,
sizeof (struct uath_softc), 1);
if (status != 0)
return (status);
mac_init_ops(&uath_dev_ops, "uath");
status = mod_install(&modlinkage);
if (status != 0) {
mac_fini_ops(&uath_dev_ops);
ddi_soft_state_fini(&uath_soft_state_p);
}
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&modlinkage);
if (status == 0) {
mac_fini_ops(&uath_dev_ops);
ddi_soft_state_fini(&uath_soft_state_p);
}
return (status);
}