scsi_hba.c revision 4f1e984d138bad36944f2e8fea0b9860ac603f61
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/note.h>
/*
* Generic SCSI Host Bus Adapter interface implementation
*/
#include <sys/scsi/scsi.h>
#include <sys/scsi/generic/sas.h>
#include <sys/file.h>
#include <sys/disp.h> /* for minclsyspri */
#include <sys/ddi_impldefs.h>
#include <sys/ndi_impldefs.h>
#include <sys/sunndi.h>
#include <sys/ddi.h>
#include <sys/sunmdi.h>
#include <sys/mdi_impldefs.h>
#include <sys/callb.h>
#include <sys/epm.h>
#include <sys/damap.h>
#include <sys/time.h>
#include <sys/sunldi.h>
extern struct scsi_pkt *scsi_init_cache_pkt(struct scsi_address *,
struct scsi_pkt *, struct buf *, int, int, int, int,
int (*)(caddr_t), caddr_t);
extern void scsi_free_cache_pkt(struct scsi_address *, struct scsi_pkt *);
extern void scsi_cache_dmafree(struct scsi_address *, struct scsi_pkt *);
extern void scsi_sync_cache_pkt(struct scsi_address *, struct scsi_pkt *);
extern int modrootloaded;
/*
* Round up all allocations so that we can guarantee
* long-long alignment. This is the same alignment
* provided by kmem_alloc().
*/
#define ROUNDUP(x) (((x) + 0x07) & ~0x07)
/* Magic number to track correct allocations in wrappers */
#define PKT_WRAPPER_MAGIC 0xa110ced /* alloced correctly */
kmutex_t scsi_flag_nointr_mutex;
kcondvar_t scsi_flag_nointr_cv;
kmutex_t scsi_log_mutex;
/* asynchronous probe barrier deletion data structures */
static kmutex_t scsi_hba_barrier_mutex;
static kcondvar_t scsi_hba_barrier_cv;
static struct scsi_hba_barrier {
struct scsi_hba_barrier *barrier_next;
clock_t barrier_endtime;
dev_info_t *barrier_probe;
} *scsi_hba_barrier_list;
static int scsi_hba_devi_is_barrier(dev_info_t *probe);
static void scsi_hba_barrier_tran_tgt_free(dev_info_t *probe);
static void scsi_hba_barrier_add(dev_info_t *probe, int seconds);
static int scsi_hba_remove_node(dev_info_t *child);
static void scsi_hba_barrier_daemon(void *arg);
/* LUN-change ASC/ASCQ processing data structures (stage1 and stage2) */
static kmutex_t scsi_lunchg1_mutex;
static kcondvar_t scsi_lunchg1_cv;
static struct scsi_pkt *scsi_lunchg1_list;
static void scsi_lunchg1_daemon(void *arg);
static kmutex_t scsi_lunchg2_mutex;
static kcondvar_t scsi_lunchg2_cv;
static struct scsi_lunchg2 {
struct scsi_lunchg2 *lunchg2_next;
char *lunchg2_path;
} *scsi_lunchg2_list;
static void scsi_lunchg2_daemon(void *arg);
static int scsi_findchild(dev_info_t *self, char *name, char *addr,
int init, dev_info_t **dchildp, mdi_pathinfo_t **pchildp, int *ppi);
/* return value defines for scsi_findchild */
#define CHILD_TYPE_NONE 0
#define CHILD_TYPE_DEVINFO 1
#define CHILD_TYPE_PATHINFO 2
/*
* Enumeration code path currently being followed. SE_BUSCONFIG results in
* DEVI_SID_NODEID, and SE_HP (hotplug) results in DEVI_SID_HP_NODEID.
*
* Since hotplug enumeration is based on information obtained from hardware
* (tgtmap/report_lun) the type/severity of enumeration error messages is
* sometimes based SE_HP (indirectly via ndi_dev_is_hotplug_node()). By
* convention, these messages are all produced by scsi_enumeration_failed().
*/
typedef enum { SE_BUSCONFIG = 0, SE_HP = 1 } scsi_enum_t;
/* compatible properties of driver to use during probe/enumeration operations */
static char *compatible_probe = "scsa,probe";
static char *compatible_nodev = "scsa,nodev";
static char *scsi_probe_ascii[] = SCSIPROBE_ASCII;
/* number of LUNs we attempt to get on the first SCMD_REPORT_LUNS command */
int scsi_lunrpt_default_max = 256;
int scsi_lunrpt_timeout = 3; /* seconds */
/*
* Only enumerate one lun if reportluns fails on a SCSI_VERSION_3 device
* (tunable based on calling context).
*/
int scsi_lunrpt_failed_do1lun = (1 << SE_HP);
/* 'scsi-binding-set' value for legacy enumerated 'spi' transports */
char *scsi_binding_set_spi = "spi";
/* enable NDI_DEVI_DEBUG for bus_[un]config operations */
int scsi_hba_busconfig_debug = 0;
/* number of probe serilization messages */
int scsi_hba_wait_msg = 5;
/*
* Establish the timeout used to cache (in the probe node) the fact that the
* device does not exist. This replaces the target specific probe cache.
*/
int scsi_hba_barrier_timeout = (60); /* seconds */
/*
* Structure for scsi_hba_tgtmap_* implementation.
*
* Every call to scsi_hba_tgtmap_set_begin will increment tgtmap_reports,
* and a call to scsi_hba_tgtmap_set_end will reset tgtmap_reports to zero.
* If, in scsi_hba_tgtmap_set_begin, we detect a tgtmap_reports value of
* scsi_hba_tgtmap_reports_max we produce a message to indicate that
* the caller is never completing an observation (i.e. we are not making
* any forward progress). If this message occurs, it indicates that the
* solaris hotplug ramifications at the target and lun level are no longer
* tracking.
*
* NOTE: LUNMAPSIZE OK for now, but should be dynamic in reportlun code.
*/
typedef struct impl_scsi_tgtmap {
scsi_hba_tran_t *tgtmap_tran;
int tgtmap_reports; /* _begin without _end */
int tgtmap_noisy;
scsi_tgt_activate_cb_t tgtmap_activate_cb;
scsi_tgt_deactivate_cb_t tgtmap_deactivate_cb;
void *tgtmap_mappriv;
damap_t *tgtmap_dam[SCSI_TGT_NTYPES];
} impl_scsi_tgtmap_t;
#define LUNMAPSIZE 256 /* 256 LUNs/target */
/* Produce warning if number of begins without an end exceed this value */
int scsi_hba_tgtmap_reports_max = 256;
/* Prototype for static dev_ops devo_*() functions */
static int scsi_hba_info(
dev_info_t *self,
ddi_info_cmd_t infocmd,
void *arg,
void **result);
/* Prototypes for static bus_ops bus_*() functions */
static int scsi_hba_bus_ctl(
dev_info_t *self,
dev_info_t *child,
ddi_ctl_enum_t op,
void *arg,
void *result);
static int scsi_hba_map_fault(
dev_info_t *self,
dev_info_t *child,
struct hat *hat,
struct seg *seg,
caddr_t addr,
struct devpage *dp,
pfn_t pfn,
uint_t prot,
uint_t lock);
static int scsi_hba_get_eventcookie(
dev_info_t *self,
dev_info_t *child,
char *name,
ddi_eventcookie_t *eventp);
static int scsi_hba_add_eventcall(
dev_info_t *self,
dev_info_t *child,
ddi_eventcookie_t event,
void (*callback)(
dev_info_t *dip,
ddi_eventcookie_t event,
void *arg,
void *bus_impldata),
void *arg,
ddi_callback_id_t *cb_id);
static int scsi_hba_remove_eventcall(
dev_info_t *self,
ddi_callback_id_t id);
static int scsi_hba_post_event(
dev_info_t *self,
dev_info_t *child,
ddi_eventcookie_t event,
void *bus_impldata);
static int scsi_hba_bus_config(
dev_info_t *self,
uint_t flags,
ddi_bus_config_op_t op,
void *arg,
dev_info_t **childp);
static int scsi_hba_bus_unconfig(
dev_info_t *self,
uint_t flags,
ddi_bus_config_op_t op,
void *arg);
static int scsi_hba_fm_init_child(
dev_info_t *self,
dev_info_t *child,
int cap,
ddi_iblock_cookie_t *ibc);
static int scsi_hba_bus_power(
dev_info_t *self,
void *impl_arg,
pm_bus_power_op_t op,
void *arg,
void *result);
/* bus_ops vector for SCSI HBA's. */
static struct bus_ops scsi_hba_busops = {
BUSO_REV,
nullbusmap, /* bus_map */
NULL, /* bus_get_intrspec */
NULL, /* bus_add_intrspec */
NULL, /* bus_remove_intrspec */
scsi_hba_map_fault, /* bus_map_fault */
ddi_dma_map, /* bus_dma_map */
ddi_dma_allochdl, /* bus_dma_allochdl */
ddi_dma_freehdl, /* bus_dma_freehdl */
ddi_dma_bindhdl, /* bus_dma_bindhdl */
ddi_dma_unbindhdl, /* bus_unbindhdl */
ddi_dma_flush, /* bus_dma_flush */
ddi_dma_win, /* bus_dma_win */
ddi_dma_mctl, /* bus_dma_ctl */
scsi_hba_bus_ctl, /* bus_ctl */
ddi_bus_prop_op, /* bus_prop_op */
scsi_hba_get_eventcookie, /* bus_get_eventcookie */
scsi_hba_add_eventcall, /* bus_add_eventcall */
scsi_hba_remove_eventcall, /* bus_remove_eventcall */
scsi_hba_post_event, /* bus_post_event */
NULL, /* bus_intr_ctl */
scsi_hba_bus_config, /* bus_config */
scsi_hba_bus_unconfig, /* bus_unconfig */
scsi_hba_fm_init_child, /* bus_fm_init */
NULL, /* bus_fm_fini */
NULL, /* bus_fm_access_enter */
NULL, /* bus_fm_access_exit */
scsi_hba_bus_power /* bus_power */
};
/* cb_ops for hotplug :devctl and :scsi support */
static struct cb_ops scsi_hba_cbops = {
scsi_hba_open,
scsi_hba_close,
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
scsi_hba_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* prop_op */
NULL, /* stream */
D_NEW|D_MP|D_HOTPLUG, /* cb_flag */
CB_REV, /* rev */
nodev, /* int (*cb_aread)() */
nodev /* int (*cb_awrite)() */
};
/* Prototypes for static scsi_hba.c/SCSA private lunmap interfaces */
static int scsi_lunmap_create(
dev_info_t *self,
impl_scsi_tgtmap_t *tgtmap,
char *tgt_addr);
static void scsi_lunmap_destroy(
dev_info_t *self,
impl_scsi_tgtmap_t *tgtmap,
char *tgt_addr);
static void scsi_lunmap_set_begin(
dev_info_t *self,
damap_t *lundam);
static int scsi_lunmap_set_add(
dev_info_t *self,
damap_t *lundam,
char *taddr,
scsi_lun64_t lun_num,
int lun_sfunc);
static void scsi_lunmap_set_end(
dev_info_t *self,
damap_t *lundam);
/* Prototypes for static misc. scsi_hba.c private bus_config interfaces */
static int scsi_hba_bus_config_iports(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp);
static int scsi_hba_bus_config_spi(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp);
static dev_info_t *scsi_hba_bus_config_port(dev_info_t *self,
char *nameaddr, scsi_enum_t se);
#ifdef sparc
static int scsi_hba_bus_config_prom_node(dev_info_t *self, uint_t flags,
void *arg, dev_info_t **childp);
#endif /* sparc */
/*
* SCSI_HBA_LOG is used for all messages. A logging level is specified when
* generating a message. Some levels correspond directly to cmn_err levels,
* some are associated with increasing levels diagnostic/debug output (LOG1-4),
* and others are associated with specific levels of interface (LOGMAP).
* For _LOG() messages, a __func__ prefix will identify the function origin
* of the message. For _LOG_NF messages, there is no function prefix or
* self/child context. Filtering of messages is provided based on logging
* level, but messages with cmn_err logging level and messages generated
* generated with _LOG_NF() are never filtered.
*
* For debugging, more complete information can be displayed with each message
* (full device path and pointer values) by adjusting scsi_hba_log_info.
*/
/* logging levels */
#define SCSI_HBA_LOGCONT CE_CONT
#define SCSI_HBA_LOGNOTE CE_NOTE
#define SCSI_HBA_LOGWARN CE_WARN
#define SCSI_HBA_LOGPANIC CE_PANIC
#define SCSI_HBA_LOGIGNORE CE_IGNORE
#define SCSI_HBA_LOG_CE_MASK 0x0000000F /* no filter for these levels */
#define SCSI_HBA_LOG1 0x00000010 /* DIAG1 level enable */
#define SCSI_HBA_LOG2 0x00000020 /* DIAG2 level enable */
#define SCSI_HBA_LOG3 0x00000040 /* DIAG3 level enable */
#define SCSI_HBA_LOG4 0x00000080 /* DIAG4 level enable */
#define SCSI_HBA_LOGMAPPHY 0x00000100 /* MAPPHY level enable */
#define SCSI_HBA_LOGMAPIPT 0x00000200 /* MAPIPT level enable */
#define SCSI_HBA_LOGMAPTGT 0x00000400 /* MAPTGT level enable */
#define SCSI_HBA_LOGMAPLUN 0x00000800 /* MAPLUN level enable */
#define SCSI_HBA_LOGMAPCFG 0x00001000 /* MAPCFG level enable */
#define SCSI_HBA_LOGMAPUNCFG 0x00002000 /* MAPUNCFG level enable */
#define SCSI_HBA_LOGTRACE 0x00010000 /* TRACE enable */
#if (CE_CONT | CE_NOTE | CE_WARN | CE_PANIC | CE_IGNORE) > SCSI_HBA_LOG_CE_MASK
Error, problem with CE_ definitions
#endif
/*
* Tunable log message augmentation and filters: filters do not apply to
* SCSI_HBA_LOG_CE_MASK level messages or LOG_NF() messages.
*
* An example set of /etc/system tunings to simplify debug a SCSA pHCI HBA
* driver called "pmcs", including "scsi_vhci" operation, by capturing
* log information in the system log might be:
*
* echo "set scsi:scsi_hba_log_filter_level=0x3ff0" >> /etc/system
* echo "set scsi:scsi_hba_log_filter_phci=\"pmcs\"" >> /etc/system
* echo "set scsi:scsi_hba_log_filter_vhci=\"scsi_vhci\"" >> /etc/system
*
* To capture information on just HBA-SCSAv3 *map operation, use
* echo "set scsi:scsi_hba_log_filter_level=0x3f10" >> /etc/system
*
* For debugging an HBA driver, you may also want to set:
*
* echo "set scsi:scsi_hba_log_align=1" >> /etc/system
* echo "set scsi:scsi_hba_log_mt_disable=0x6" >> /etc/system
* echo "set mtc_off=1" >> /etc/system
* echo "set mdi_mtc_off=1" >> /etc/system
* echo "set scsi:scsi_hba_log_fcif=0" >> /etc/system
*/
int scsi_hba_log_filter_level =
SCSI_HBA_LOG1 |
0;
char *scsi_hba_log_filter_phci = "\0\0\0\0\0\0\0\0\0\0\0\0";
char *scsi_hba_log_filter_vhci = "\0\0\0\0\0\0\0\0\0\0\0\0";
int scsi_hba_log_align = 0; /* NOTE: will not cause truncation */
int scsi_hba_log_fcif = '!'; /* "^!?" first char in format */
/* NOTE: iff level > SCSI_HBA_LOG1 */
/* '\0'0x00 -> console and system log */
/* '^' 0x5e -> console_only */
/* '!' 0x21 -> system log only */
/* '?' 0x2F -> See cmn_err(9F) */
int scsi_hba_log_info = /* augmentation: extra info output */
(0 << 0) | /* 0x0001: process information */
(0 << 1) | /* 0x0002: full /devices path */
(0 << 2); /* 0x0004: devinfo pointer */
int scsi_hba_log_mt_disable =
/* SCSI_ENUMERATION_MT_LUN_DISABLE | (ie 0x02) */
/* SCSI_ENUMERATION_MT_TARGET_DISABLE | (ie 0x04) */
0;
/* static data for HBA logging subsystem */
static kmutex_t scsi_hba_log_mutex;
static char scsi_hba_log_i[512];
static char scsi_hba_log_buf[512];
static char scsi_hba_fmt[512];
/* Macros to use in scsi_hba.c source code below */
#define SCSI_HBA_LOG(x) scsi_hba_log x
#define _LOG(level) SCSI_HBA_LOG##level, __func__
#define _MAP(map) SCSI_HBA_LOGMAP##map, __func__
#define _LOG_NF(level) SCSI_HBA_LOG##level, NULL, NULL, NULL
#define _LOG_TRACE _LOG(TRACE)
#define _LOGLUN _MAP(LUN)
#define _LOGTGT _MAP(TGT)
#define _LOGIPT _MAP(IPT)
#define _LOGPHY _MAP(PHY)
#define _LOGCFG _MAP(CFG)
#define _LOGUNCFG _MAP(UNCFG)
/*PRINTFLIKE5*/
static void
scsi_hba_log(int level, const char *func, dev_info_t *self, dev_info_t *child,
const char *fmt, ...)
{
va_list ap;
int clevel;
int align;
char *info;
char *f;
char *ua;
/* derive self from child's parent */
if ((self == NULL) && child)
self = ddi_get_parent(child);
/* no filtering of SCSI_HBA_LOG_CE_MASK or LOG_NF messages */
if (((level & SCSI_HBA_LOG_CE_MASK) != level) && (func != NULL)) {
/* scsi_hba_log_filter_level: filter on level as bitmask */
if ((level & scsi_hba_log_filter_level) == 0)
return;
/* scsi_hba_log_filter_phci/vhci: on name of driver */
if (*scsi_hba_log_filter_phci &&
((self == NULL) ||
(ddi_driver_name(self) == NULL) ||
strcmp(ddi_driver_name(self), scsi_hba_log_filter_phci))) {
/* does not match pHCI, check vHCI */
if (*scsi_hba_log_filter_vhci &&
((self == NULL) ||
(ddi_driver_name(self) == NULL) ||
strcmp(ddi_driver_name(self),
scsi_hba_log_filter_vhci))) {
/* does not match vHCI */
return;
}
}
/* passed filters, determine align */
align = scsi_hba_log_align;
/* shorten func for filtered output */
if (strncmp(func, "scsi_hba_", 9) == 0)
func += 9;
if (strncmp(func, "scsi_", 5) == 0)
func += 5;
} else {
/* don't align output that is never filtered */
align = 0;
}
/* determine the cmn_err form from the level */
clevel = ((level & SCSI_HBA_LOG_CE_MASK) == level) ? level : CE_CONT;
/* protect common buffers used to format output */
mutex_enter(&scsi_hba_log_mutex);
/* skip special first characters, we add them back below */
f = (char *)fmt;
if (*f && strchr("^!?", *f))
f++;
va_start(ap, fmt);
(void) vsprintf(scsi_hba_log_buf, f, ap);
va_end(ap);
/* augment message with 'information' */
info = scsi_hba_log_i;
*info = '\0';
if ((scsi_hba_log_info & 0x0001) && curproc && PTOU(curproc)->u_comm) {
(void) sprintf(info, "%s[%d]%p ",
PTOU(curproc)->u_comm, curproc->p_pid, (void *)curthread);
info += strlen(info);
}
if (self) {
if ((scsi_hba_log_info & 0x0004) && (child || self)) {
(void) sprintf(info, "%p ",
(void *)(child ? child : self));
info += strlen(info);
}
if (scsi_hba_log_info & 0x0002) {
(void) ddi_pathname(child ? child : self, info);
(void) strcat(info, " ");
info += strlen(info);
}
/* always provide 'default' information about self &child */
(void) sprintf(info, "%s%d ", ddi_driver_name(self),
ddi_get_instance(self));
info += strlen(info);
if (child) {
ua = ddi_get_name_addr(child);
(void) sprintf(info, "%s@%s ",
ddi_node_name(child), (ua && *ua) ? ua : "");
info += strlen(info);
}
}
/* turn off alignment if truncation would occur */
if (align && ((strlen(func) > 18) || (strlen(scsi_hba_log_i) > 36)))
align = 0;
/* adjust for aligned output */
if (align) {
if (func == NULL)
func = "";
/* remove trailing blank with align output */
if ((info != scsi_hba_log_i) && (*(info -1) == '\b'))
*(info - 1) = '\0';
}
/* special "first character in format" must be in format itself */
f = scsi_hba_fmt;
if (fmt[0] && strchr("^!?", fmt[0]))
*f++ = fmt[0];
else if (scsi_hba_log_fcif && (level > SCSI_HBA_LOG1))
*f++ = (char)scsi_hba_log_fcif; /* add global fcif */
if (align)
(void) sprintf(f, "%s", "%-18.18s: %36.36s: %s%s");
else
(void) sprintf(f, "%s", func ? "%s: %s%s%s" : "%s%s%s");
if (func)
cmn_err(clevel, scsi_hba_fmt, func, scsi_hba_log_i,
scsi_hba_log_buf, clevel == CE_CONT ? "\n" : "");
else
cmn_err(clevel, scsi_hba_fmt, scsi_hba_log_i,
scsi_hba_log_buf, clevel == CE_CONT ? "\n" : "");
mutex_exit(&scsi_hba_log_mutex);
}
static int scsi_enumeration_failed_panic = 0;
static int scsi_enumeration_failed_hotplug = 1;
static void
scsi_enumeration_failed(dev_info_t *child, scsi_enum_t se,
char *arg, char *when)
{
/* If 'se' is -1 the 'se' value comes from child. */
if (se == -1) {
ASSERT(child);
se = ndi_dev_is_hotplug_node(child) ? SE_HP : SE_BUSCONFIG;
}
if (scsi_enumeration_failed_panic) {
/* set scsi_enumeration_failed_panic to debug */
SCSI_HBA_LOG((_LOG(PANIC), NULL, child,
"%s%senumeration failed during %s",
arg ? arg : "", arg ? " " : "", when));
} else if (scsi_enumeration_failed_hotplug && (se == SE_HP)) {
/* set scsi_enumeration_failed_hotplug for console messages */
SCSI_HBA_LOG((_LOG(WARN), NULL, child,
"%s%senumeration failed during %s",
arg ? arg : "", arg ? " " : "", when));
} else {
/* default */
SCSI_HBA_LOG((_LOG(2), NULL, child,
"%s%senumeration failed during %s",
arg ? arg : "", arg ? " " : "", when));
}
}
/*
* scsi_hba version of [nm]di_devi_enter/[nm]di_devi_exit that detects if HBA
* is a PHCI, and chooses mdi/ndi locking implementation.
*/
static void
scsi_hba_devi_enter(dev_info_t *self, int *circp)
{
if (MDI_PHCI(self))
mdi_devi_enter(self, circp);
else
ndi_devi_enter(self, circp);
}
static int
scsi_hba_devi_tryenter(dev_info_t *self, int *circp)
{
if (MDI_PHCI(self))
return (mdi_devi_tryenter(self, circp));
else
return (ndi_devi_tryenter(self, circp));
}
static void
scsi_hba_devi_exit(dev_info_t *self, int circ)
{
if (MDI_PHCI(self))
mdi_devi_exit(self, circ);
else
ndi_devi_exit(self, circ);
}
static void
scsi_hba_devi_enter_phci(dev_info_t *self, int *circp)
{
if (MDI_PHCI(self))
mdi_devi_enter_phci(self, circp);
}
static void
scsi_hba_devi_exit_phci(dev_info_t *self, int circ)
{
if (MDI_PHCI(self))
mdi_devi_exit_phci(self, circ);
}
static int
scsi_hba_dev_is_sid(dev_info_t *child)
{
/*
* Use ndi_dev_is_persistent_node instead of ddi_dev_is_sid to avoid
* any possible locking issues in mixed nexus devctl code (like usb).
*/
return (ndi_dev_is_persistent_node(child));
}
/*
* Called from _init() when loading "scsi" module
*/
void
scsi_initialize_hba_interface()
{
SCSI_HBA_LOG((_LOG_TRACE, NULL, NULL, __func__));
/* We need "scsiprobe" and "scsinodev" as an alias or a driver. */
if (ddi_name_to_major(compatible_probe) == DDI_MAJOR_T_NONE) {
SCSI_HBA_LOG((_LOG_NF(WARN), "failed to resolve '%s' "
"driver alias, defaulting to 'nulldriver'",
compatible_probe));
/* If no "nulldriver" driver nothing will work... */
compatible_probe = "nulldriver";
if (ddi_name_to_major(compatible_probe) == DDI_MAJOR_T_NONE)
SCSI_HBA_LOG((_LOG_NF(WARN), "no probe '%s' driver, "
"system misconfigured", compatible_probe));
}
if (ddi_name_to_major(compatible_nodev) == DDI_MAJOR_T_NONE) {
SCSI_HBA_LOG((_LOG_NF(WARN), "failed to resolve '%s' "
"driver alias, defaulting to 'nulldriver'",
compatible_nodev));
/* If no "nulldriver" driver nothing will work... */
compatible_nodev = "nulldriver";
if (ddi_name_to_major(compatible_nodev) == DDI_MAJOR_T_NONE)
SCSI_HBA_LOG((_LOG_NF(WARN), "no nodev '%s' driver, "
"system misconfigured", compatible_nodev));
}
/*
* Verify our special node name "probe" will not be used in other ways.
* Don't expect things to work if they are.
*/
if (ddi_major_to_name(ddi_name_to_major("probe")))
SCSI_HBA_LOG((_LOG_NF(WARN),
"driver already using special node name 'probe'"));
mutex_init(&scsi_log_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&scsi_flag_nointr_mutex, NULL, MUTEX_DRIVER, NULL);
cv_init(&scsi_flag_nointr_cv, NULL, CV_DRIVER, NULL);
mutex_init(&scsi_hba_log_mutex, NULL, MUTEX_DRIVER, NULL);
/* initialize the asynchronous barrier deletion daemon */
mutex_init(&scsi_hba_barrier_mutex, NULL, MUTEX_DRIVER, NULL);
cv_init(&scsi_hba_barrier_cv, NULL, CV_DRIVER, NULL);
(void) thread_create(NULL, 0,
(void (*)())scsi_hba_barrier_daemon, NULL,
0, &p0, TS_RUN, minclsyspri);
/* initialize lun change ASC/ASCQ processing daemon (stage1 & stage2) */
mutex_init(&scsi_lunchg1_mutex, NULL, MUTEX_DRIVER, NULL);
cv_init(&scsi_lunchg1_cv, NULL, CV_DRIVER, NULL);
(void) thread_create(NULL, 0,
(void (*)())scsi_lunchg1_daemon, NULL,
0, &p0, TS_RUN, minclsyspri);
mutex_init(&scsi_lunchg2_mutex, NULL, MUTEX_DRIVER, NULL);
cv_init(&scsi_lunchg2_cv, NULL, CV_DRIVER, NULL);
(void) thread_create(NULL, 0,
(void (*)())scsi_lunchg2_daemon, NULL,
0, &p0, TS_RUN, minclsyspri);
}
int
scsi_hba_pkt_constructor(void *buf, void *arg, int kmflag)
{
struct scsi_pkt_cache_wrapper *pktw;
struct scsi_pkt *pkt;
scsi_hba_tran_t *tran = (scsi_hba_tran_t *)arg;
int pkt_len;
char *ptr;
/*
* allocate a chunk of memory for the following:
* scsi_pkt
* pcw_* fields
* pkt_ha_private
* pkt_cdbp, if needed
* (pkt_private always null)
* pkt_scbp, if needed
*/
pkt_len = tran->tran_hba_len + sizeof (struct scsi_pkt_cache_wrapper);
if (tran->tran_hba_flags & SCSI_HBA_TRAN_CDB)
pkt_len += DEFAULT_CDBLEN;
if (tran->tran_hba_flags & SCSI_HBA_TRAN_SCB)
pkt_len += DEFAULT_SCBLEN;
bzero(buf, pkt_len);
ptr = buf;
pktw = buf;
ptr += sizeof (struct scsi_pkt_cache_wrapper);
pkt = &(pktw->pcw_pkt);
pkt->pkt_ha_private = (opaque_t)ptr;
pktw->pcw_magic = PKT_WRAPPER_MAGIC; /* alloced correctly */
/*
* keep track of the granularity at the time this handle was
* allocated
*/
pktw->pcw_granular = tran->tran_dma_attr.dma_attr_granular;
if (ddi_dma_alloc_handle(tran->tran_hba_dip, &tran->tran_dma_attr,
kmflag == KM_SLEEP ? SLEEP_FUNC: NULL_FUNC, NULL,
&pkt->pkt_handle) != DDI_SUCCESS) {
return (-1);
}
ptr += tran->tran_hba_len;
if (tran->tran_hba_flags & SCSI_HBA_TRAN_CDB) {
pkt->pkt_cdbp = (opaque_t)ptr;
ptr += DEFAULT_CDBLEN;
}
pkt->pkt_private = NULL;
if (tran->tran_hba_flags & SCSI_HBA_TRAN_SCB)
pkt->pkt_scbp = (opaque_t)ptr;
if (tran->tran_pkt_constructor)
return ((*tran->tran_pkt_constructor)(pkt, arg, kmflag));
else
return (0);
}
#define P_TO_TRAN(pkt) ((pkt)->pkt_address.a_hba_tran)
void
scsi_hba_pkt_destructor(void *buf, void *arg)
{
struct scsi_pkt_cache_wrapper *pktw = buf;
struct scsi_pkt *pkt = &(pktw->pcw_pkt);
scsi_hba_tran_t *tran = (scsi_hba_tran_t *)arg;
ASSERT(pktw->pcw_magic == PKT_WRAPPER_MAGIC);
ASSERT((pktw->pcw_flags & PCW_BOUND) == 0);
if (tran->tran_pkt_destructor)
(*tran->tran_pkt_destructor)(pkt, arg);
/* make sure nobody messed with our pointers */
ASSERT(pkt->pkt_ha_private == (opaque_t)((char *)pkt +
sizeof (struct scsi_pkt_cache_wrapper)));
ASSERT(((tran->tran_hba_flags & SCSI_HBA_TRAN_SCB) == 0) ||
(pkt->pkt_scbp == (opaque_t)((char *)pkt +
tran->tran_hba_len +
(((tran->tran_hba_flags & SCSI_HBA_TRAN_CDB) == 0) ?
0 : DEFAULT_CDBLEN) +
DEFAULT_PRIVLEN + sizeof (struct scsi_pkt_cache_wrapper))));
ASSERT(((tran->tran_hba_flags & SCSI_HBA_TRAN_CDB) == 0) ||
(pkt->pkt_cdbp == (opaque_t)((char *)pkt +
tran->tran_hba_len +
sizeof (struct scsi_pkt_cache_wrapper))));
ASSERT(pkt->pkt_handle);
ddi_dma_free_handle(&pkt->pkt_handle);
pkt->pkt_handle = NULL;
pkt->pkt_numcookies = 0;
pktw->pcw_total_xfer = 0;
pktw->pcw_totalwin = 0;
pktw->pcw_curwin = 0;
}
/*
* Called by an HBA from _init() to plumb in common SCSA bus_ops and
* cb_ops for the HBA's :devctl and :scsi minor nodes.
*/
int
scsi_hba_init(struct modlinkage *modlp)
{
struct dev_ops *hba_dev_ops;
SCSI_HBA_LOG((_LOG_TRACE, NULL, NULL, __func__));
/*
* Get a pointer to the dev_ops structure of the HBA and plumb our
* bus_ops vector into the HBA's dev_ops structure.
*/
hba_dev_ops = ((struct modldrv *)(modlp->ml_linkage[0]))->drv_dev_ops;
ASSERT(hba_dev_ops->devo_bus_ops == NULL);
hba_dev_ops->devo_bus_ops = &scsi_hba_busops;
/*
* Plumb our cb_ops vector into the HBA's dev_ops structure to
* provide getinfo and hotplugging ioctl support if the HBA driver
* does not already provide this support.
*/
if (hba_dev_ops->devo_cb_ops == NULL) {
hba_dev_ops->devo_cb_ops = &scsi_hba_cbops;
}
if (hba_dev_ops->devo_cb_ops->cb_open == scsi_hba_open) {
ASSERT(hba_dev_ops->devo_cb_ops->cb_close == scsi_hba_close);
hba_dev_ops->devo_getinfo = scsi_hba_info;
}
return (0);
}
/*
* Called by an HBA attach(9E) to allocate a scsi_hba_tran(9S) structure. An
* HBA driver will then initialize the structure and then call
* scsi_hba_attach_setup(9F).
*/
/*ARGSUSED*/
scsi_hba_tran_t *
scsi_hba_tran_alloc(
dev_info_t *self,
int flags)
{
scsi_hba_tran_t *tran;
SCSI_HBA_LOG((_LOG_TRACE, self, NULL, __func__));
/* allocate SCSA flavors for self */
ndi_flavorv_alloc(self, SCSA_NFLAVORS);
tran = kmem_zalloc(sizeof (scsi_hba_tran_t),
(flags & SCSI_HBA_CANSLEEP) ? KM_SLEEP : KM_NOSLEEP);
if (tran) {
tran->tran_interconnect_type = INTERCONNECT_PARALLEL;
/*
* HBA driver called scsi_hba_tran_alloc(), so tran structure
* is proper size and unused/newer fields are zero.
*
* NOTE: We use SCSA_HBA_SCSA_TA as an obtuse form of
* versioning to detect old HBA drivers that do not use
* scsi_hba_tran_alloc, and would present garbage data
* (instead of valid/zero data) for newer tran fields.
*/
tran->tran_hba_flags |= SCSI_HBA_SCSA_TA;
}
return (tran);
}
/*
* Called by an HBA to free a scsi_hba_tran structure
*/
void
scsi_hba_tran_free(
scsi_hba_tran_t *tran)
{
SCSI_HBA_LOG((_LOG_TRACE, tran->tran_hba_dip, NULL, __func__));
kmem_free(tran, sizeof (scsi_hba_tran_t));
}
int
scsi_tran_ext_alloc(
scsi_hba_tran_t *tran,
size_t length,
int flags)
{
void *tran_ext;
int ret = DDI_FAILURE;
tran_ext = kmem_zalloc(length,
(flags & SCSI_HBA_CANSLEEP) ? KM_SLEEP : KM_NOSLEEP);
if (tran_ext != NULL) {
tran->tran_extension = tran_ext;
ret = DDI_SUCCESS;
}
return (ret);
}
void
scsi_tran_ext_free(
scsi_hba_tran_t *tran,
size_t length)
{
if (tran->tran_extension != NULL) {
kmem_free(tran->tran_extension, length);
tran->tran_extension = NULL;
}
}
/*
* Obsolete: Called by an HBA to attach an instance of the driver
* Implement this older interface in terms of the new.
*/
/*ARGSUSED*/
int
scsi_hba_attach(
dev_info_t *self,
ddi_dma_lim_t *hba_lim,
scsi_hba_tran_t *tran,
int flags,
void *hba_options)
{
ddi_dma_attr_t hba_dma_attr;
bzero(&hba_dma_attr, sizeof (ddi_dma_attr_t));
hba_dma_attr.dma_attr_burstsizes = hba_lim->dlim_burstsizes;
hba_dma_attr.dma_attr_minxfer = hba_lim->dlim_minxfer;
return (scsi_hba_attach_setup(self, &hba_dma_attr, tran, flags));
}
/*
* Common nexus teardown code: used by both scsi_hba_detach() on SCSA HBA node
* and iport_postdetach_tran_scsi_device() on a SCSA HBA iport node (and for
* failure cleanup). Undo scsa_nexus_setup in reverse order.
*
* NOTE: Since we are in the Solaris IO framework, we can depend on
* undocumented cleanup operations performed by other parts of the framework:
* like detach_node() calling ddi_prop_remove_all() and
* ddi_remove_minor_node(,NULL).
*/
static void
scsa_nexus_teardown(dev_info_t *self, scsi_hba_tran_t *tran)
{
/* Teardown FMA. */
if (tran->tran_hba_flags & SCSI_HBA_SCSA_FM) {
ddi_fm_fini(self);
tran->tran_hba_flags &= ~SCSI_HBA_SCSA_FM;
}
}
/*
* Common nexus setup code: used by both scsi_hba_attach_setup() on SCSA HBA
* node and iport_preattach_tran_scsi_device() on a SCSA HBA iport node.
*
* This code makes no assumptions about tran use by scsi_device children.
*/
static int
scsa_nexus_setup(dev_info_t *self, scsi_hba_tran_t *tran)
{
int capable;
int scsa_minor;
/*
* NOTE: SCSA maintains an 'fm-capable' domain, in tran_fm_capable,
* that is not dependent (limited by) the capabilities of its parents.
* For example a devinfo node in a branch that is not
* DDI_FM_EREPORT_CAPABLE may report as capable, via tran_fm_capable,
* to its scsi_device children.
*
* Get 'fm-capable' property from driver.conf, if present. If not
* present, default to the scsi_fm_capable global (which has
* DDI_FM_EREPORT_CAPABLE set by default).
*/
if (tran->tran_fm_capable == DDI_FM_NOT_CAPABLE)
tran->tran_fm_capable = ddi_prop_get_int(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
"fm-capable", scsi_fm_capable);
/*
* If an HBA is *not* doing its own fma support by calling
* ddi_fm_init() prior to scsi_hba_attach_setup(), we provide a minimal
* common SCSA implementation so that scsi_device children can generate
* ereports via scsi_fm_ereport_post(). We use ddi_fm_capable() to
* detect an HBA calling ddi_fm_init() prior to scsi_hba_attach_setup().
*/
if (tran->tran_fm_capable &&
(ddi_fm_capable(self) == DDI_FM_NOT_CAPABLE)) {
/*
* We are capable of something, pass our capabilities up the
* tree, but use a local variable so our parent can't limit
* our capabilities (we don't want our parent to clear
* DDI_FM_EREPORT_CAPABLE).
*
* NOTE: iblock cookies are not important because scsi HBAs
* always interrupt below LOCK_LEVEL.
*/
capable = tran->tran_fm_capable;
ddi_fm_init(self, &capable, NULL);
/*
* Set SCSI_HBA_SCSA_FM bit to mark us as using the common
* minimal SCSA fm implementation - we called ddi_fm_init(),
* so we are responsible for calling ddi_fm_fini() in
* scsi_hba_detach().
*
* NOTE: if ddi_fm_init fails to establish handle, SKIP cleanup.
*/
if (DEVI(self)->devi_fmhdl)
tran->tran_hba_flags |= SCSI_HBA_SCSA_FM;
}
/* If SCSA responsible for for minor nodes, create :devctl minor. */
scsa_minor = (ddi_get_driver(self)->devo_cb_ops->cb_open ==
scsi_hba_open) ? 1 : 0;
if (scsa_minor && ((ddi_create_minor_node(self, "devctl", S_IFCHR,
INST2DEVCTL(ddi_get_instance(self)), DDI_NT_SCSI_NEXUS, 0) !=
DDI_SUCCESS))) {
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"can't create :devctl minor node"));
goto fail;
}
return (DDI_SUCCESS);
fail: scsa_nexus_teardown(self, tran);
return (DDI_FAILURE);
}
/*
* Common tran teardown code: used by iport_postdetach_tran_scsi_device() on a
* SCSA HBA iport node and (possibly) by scsi_hba_detach() on SCSA HBA node
* (and for failure cleanup). Undo scsa_tran_setup in reverse order.
*
* NOTE: Since we are in the Solaris IO framework, we can depend on
* undocumented cleanup operations performed by other parts of the framework:
* like detach_node() calling ddi_prop_remove_all() and
* ddi_remove_minor_node(,NULL).
*/
static void
scsa_tran_teardown(dev_info_t *self, scsi_hba_tran_t *tran)
{
tran->tran_iport_dip = NULL;
/* Teardown pHCI registration */
if (tran->tran_hba_flags & SCSI_HBA_SCSA_PHCI) {
(void) mdi_phci_unregister(self, 0);
tran->tran_hba_flags &= ~SCSI_HBA_SCSA_PHCI;
}
}
/*
* Common tran setup code: used by iport_preattach_tran_scsi_device() on a
* SCSA HBA iport node and (possibly) by scsi_hba_attach_setup() on SCSA HBA
* node.
*/
static int
scsa_tran_setup(dev_info_t *self, scsi_hba_tran_t *tran)
{
int scsa_minor;
int id;
char *scsi_binding_set;
static const char *interconnect[] = INTERCONNECT_TYPE_ASCII;
SCSI_HBA_LOG((_LOG_TRACE, self, NULL, __func__));
/* If SCSA responsible for for minor nodes, create ":scsi" */
scsa_minor = (ddi_get_driver(self)->devo_cb_ops->cb_open ==
scsi_hba_open) ? 1 : 0;
if (scsa_minor && (ddi_create_minor_node(self, "scsi", S_IFCHR,
INST2SCSI(ddi_get_instance(self)),
DDI_NT_SCSI_ATTACHMENT_POINT, 0) != DDI_SUCCESS)) {
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"can't create :scsi minor node"));
goto fail;
}
/*
* If the property does not already exist on self then see if we can
* pull it from further up the tree and define it on self. If the
* property does not exist above (including options.conf) then use the
* default value specified (global variable). We pull things down from
* above for faster "DDI_PROP_NOTPROM | DDI_PROP_DONTPASS" runtime
* access.
*
* Future: Should we avoid creating properties when value == global?
*/
#define CONFIG_INT_PROP(s, p, dv) { \
if ((ddi_prop_exists(DDI_DEV_T_ANY, s, \
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, p) == 0) && \
(ndi_prop_update_int(DDI_DEV_T_NONE, s, p, \
ddi_prop_get_int(DDI_DEV_T_ANY, ddi_get_parent(s), \
DDI_PROP_NOTPROM, p, dv)) != DDI_PROP_SUCCESS)) \
SCSI_HBA_LOG((_LOG(WARN), NULL, s, \
"can't create property '%s'", p)); \
}
/* Decorate with scsi configuration properties */
CONFIG_INT_PROP(self, "scsi-enumeration", scsi_enumeration);
CONFIG_INT_PROP(self, "scsi-options", scsi_options);
CONFIG_INT_PROP(self, "scsi-reset-delay", scsi_reset_delay);
CONFIG_INT_PROP(self, "scsi-watchdog-tick", scsi_watchdog_tick);
CONFIG_INT_PROP(self, "scsi-selection-timeout", scsi_selection_timeout);
CONFIG_INT_PROP(self, "scsi-tag-age-limit", scsi_tag_age_limit);
/*
* Pull down the scsi-initiator-id from further up the tree, or as
* defined by OBP. Place on node for faster access. NOTE: there is
* some confusion about what the name of the property should be.
*/
id = ddi_prop_get_int(DDI_DEV_T_ANY, self, 0, "initiator-id", -1);
if (id == -1)
id = ddi_prop_get_int(DDI_DEV_T_ANY, self, 0,
"scsi-initiator-id", -1);
if (id != -1)
CONFIG_INT_PROP(self, "scsi-initiator-id", id);
/*
* If we are responsible for tran allocation, establish
* 'initiator-interconnect-type'.
*/
if ((tran->tran_hba_flags & SCSI_HBA_SCSA_TA) &&
(tran->tran_interconnect_type > 0) &&
(tran->tran_interconnect_type < INTERCONNECT_MAX)) {
if (ndi_prop_update_string(DDI_DEV_T_NONE, self,
"initiator-interconnect-type",
(char *)interconnect[tran->tran_interconnect_type])
!= DDI_PROP_SUCCESS) {
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"failed to establish "
"'initiator-interconnect-type'"));
goto fail;
}
}
/*
* The 'scsi-binding-set' property can be defined in driver.conf
* files of legacy drivers on an as-needed basis. If 'scsi-binding-set'
* is not driver.conf defined, and the HBA is not implementing its own
* private bus_config, we define scsi-binding-set to the default
* 'spi' legacy value.
*
* NOTE: This default 'spi' value will be deleted if an HBA driver
* ends up using the scsi_hba_tgtmap_create() enumeration services.
*
* NOTE: If we were ever to decide to derive 'scsi-binding-set' from
* the IEEE-1275 'device_type' property then this is where that code
* should go - there is not enough consistency in 'device_type' to do
* this correctly at this point in time.
*/
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-binding-set",
&scsi_binding_set) == DDI_PROP_SUCCESS) {
SCSI_HBA_LOG((_LOG(2), NULL, self,
"external 'scsi-binding-set' \"%s\"", scsi_binding_set));
ddi_prop_free(scsi_binding_set);
} else if (scsi_binding_set_spi &&
((tran->tran_bus_config == NULL) ||
(tran->tran_bus_config == scsi_hba_bus_config_spi))) {
if (ndi_prop_update_string(DDI_DEV_T_NONE, self,
"scsi-binding-set", scsi_binding_set_spi) !=
DDI_PROP_SUCCESS) {
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"failed to establish 'scsi_binding_set' default"));
goto fail;
}
SCSI_HBA_LOG((_LOG(2), NULL, self,
"default 'scsi-binding-set' \"%s\"", scsi_binding_set_spi));
} else
SCSI_HBA_LOG((_LOG(2), NULL, self,
"no 'scsi-binding-set'"));
/*
* If SCSI_HBA_TRAN_PHCI is set, take care of pHCI registration of the
* initiator.
*/
if ((tran->tran_hba_flags & SCSI_HBA_TRAN_PHCI) &&
(mdi_phci_register(MDI_HCI_CLASS_SCSI, self, 0) == MDI_SUCCESS))
tran->tran_hba_flags |= SCSI_HBA_SCSA_PHCI;
/* NOTE: tran_hba_dip is for DMA operation at the HBA node level */
tran->tran_iport_dip = self; /* for iport association */
return (DDI_SUCCESS);
fail: scsa_tran_teardown(self, tran);
return (DDI_FAILURE);
}
/*
* Called by a SCSA HBA driver to attach an instance of the driver to
* SCSA HBA node enumerated by PCI.
*/
int
scsi_hba_attach_setup(
dev_info_t *self,
ddi_dma_attr_t *hba_dma_attr,
scsi_hba_tran_t *tran,
int flags)
{
int len;
char cache_name[96];
SCSI_HBA_LOG((_LOG_TRACE, self, NULL, __func__));
/*
* Verify that we are a driver so other code does not need to
* check for NULL ddi_get_driver() result.
*/
if (ddi_get_driver(self) == NULL)
return (DDI_FAILURE);
/*
* Verify that we are called on a SCSA HBA node (function enumerated
* by PCI), not on an iport node.
*/
ASSERT(scsi_hba_iport_unit_address(self) == NULL);
if (scsi_hba_iport_unit_address(self))
return (DDI_FAILURE); /* self can't be an iport */
/* Caller must provide the tran. */
ASSERT(tran);
if (tran == NULL)
return (DDI_FAILURE);
/*
* Verify correct scsi_hba_tran_t form:
*
* o Both or none of tran_get_name/tran_get_addr.
* NOTE: Older SCSA HBA drivers for SCSI transports with addressing
* that did not fit the SPI "struct scsi_address" model were required
* to implement tran_get_name and tran_get_addr. This is no longer
* true - modern transport drivers should now use common SCSA
* enumeration services. The SCSA enumeration code will represent
* the unit-address using well-known address properties
* (SCSI_ADDR_PROP_TARGET_PORT, SCSI_ADDR_PROP_LUN64) during
* devinfo/pathinfo node creation. The HBA driver can obtain values
* using scsi_device_prop_lookup_*() from its tran_tgt_init(9E).
*
*/
if ((tran->tran_get_name == NULL) ^ (tran->tran_get_bus_addr == NULL)) {
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"should support both or neither: "
"tran_get_name, tran_get_bus_addr"));
return (DDI_FAILURE);
}
/*
* Establish the devinfo context of this tran structure, preserving
* knowledge of how the tran was allocated.
*/
tran->tran_hba_dip = self; /* for DMA */
tran->tran_hba_flags = (flags & ~SCSI_HBA_SCSA_TA) |
(tran->tran_hba_flags & SCSI_HBA_SCSA_TA);
/* Establish flavor of transport (and ddi_get_driver_private()) */
ndi_flavorv_set(self, SCSA_FLAVOR_SCSI_DEVICE, tran);
/*
* Note: We only need dma_attr_minxfer and dma_attr_burstsizes
* from the DMA attributes. scsi_hba_attach(9f) only guarantees
* that these two fields are initialized properly. If this
* changes, be sure to revisit the implementation of
* scsi_hba_attach(9F).
*/
(void) memcpy(&tran->tran_dma_attr, hba_dma_attr,
sizeof (ddi_dma_attr_t));
/* Create tran_setup_pkt(9E) kmem_cache. */
if (tran->tran_setup_pkt) {
ASSERT(tran->tran_init_pkt == NULL);
ASSERT(tran->tran_destroy_pkt == NULL);
if (tran->tran_init_pkt || tran->tran_destroy_pkt)
goto fail;
tran->tran_init_pkt = scsi_init_cache_pkt;
tran->tran_destroy_pkt = scsi_free_cache_pkt;
tran->tran_sync_pkt = scsi_sync_cache_pkt;
tran->tran_dmafree = scsi_cache_dmafree;
len = sizeof (struct scsi_pkt_cache_wrapper);
len += ROUNDUP(tran->tran_hba_len);
if (tran->tran_hba_flags & SCSI_HBA_TRAN_CDB)
len += ROUNDUP(DEFAULT_CDBLEN);
if (tran->tran_hba_flags & SCSI_HBA_TRAN_SCB)
len += ROUNDUP(DEFAULT_SCBLEN);
(void) snprintf(cache_name, sizeof (cache_name),
"pkt_cache_%s_%d", ddi_driver_name(self),
ddi_get_instance(self));
tran->tran_pkt_cache_ptr = kmem_cache_create(
cache_name, len, 8, scsi_hba_pkt_constructor,
scsi_hba_pkt_destructor, NULL, tran, NULL, 0);
}
/* Perform node setup independent of initiator role */
if (scsa_nexus_setup(self, tran) != DDI_SUCCESS)
goto fail;
/*
* The SCSI_HBA_HBA flag is passed to scsi_hba_attach_setup when the
* HBA driver knows that *all* children of the SCSA HBA node will be
* 'iports'. If the SCSA HBA node can have iport children and also
* function as an initiator for xxx_device children then it should
* not specify SCSI_HBA_HBA in its scsi_hba_attach_setup call. An
* HBA driver that does not manage iports should not set SCSA_HBA_HBA.
*/
if (tran->tran_hba_flags & SCSI_HBA_HBA) {
/*
* Set the 'ddi-config-driver-node' property on the nexus
* node that notify attach_driver_nodes() to configure all
* immediate children so that nodes which bind to the
* same driver as parent are able to be added into per-driver
* list.
*/
if (ndi_prop_create_boolean(DDI_DEV_T_NONE,
self, "ddi-config-driver-node") != DDI_PROP_SUCCESS)
goto fail;
} else {
if (scsa_tran_setup(self, tran) != DDI_SUCCESS)
goto fail;
}
return (DDI_SUCCESS);
fail: (void) scsi_hba_detach(self);
return (DDI_FAILURE);
}
/*
* Called by an HBA to detach an instance of the driver. This may be called
* for SCSA HBA nodes and for SCSA iport nodes.
*/
int
scsi_hba_detach(dev_info_t *self)
{
scsi_hba_tran_t *tran;
ASSERT(scsi_hba_iport_unit_address(self) == NULL);
if (scsi_hba_iport_unit_address(self))
return (DDI_FAILURE); /* self can't be an iport */
/* Check all error return conditions upfront */
tran = ndi_flavorv_get(self, SCSA_FLAVOR_SCSI_DEVICE);
ASSERT(tran);
if (tran == NULL)
return (DDI_FAILURE);
ASSERT(tran->tran_open_flag == 0);
if (tran->tran_open_flag)
return (DDI_FAILURE);
if (!(tran->tran_hba_flags & SCSI_HBA_HBA))
scsa_tran_teardown(self, tran);
scsa_nexus_teardown(self, tran);
/* Teardown tran_setup_pkt(9E) kmem_cache. */
if (tran->tran_pkt_cache_ptr) {
kmem_cache_destroy(tran->tran_pkt_cache_ptr);
tran->tran_pkt_cache_ptr = NULL;
}
(void) memset(&tran->tran_dma_attr, 0, sizeof (ddi_dma_attr_t));
/* Teardown flavor of transport (and ddi_get_driver_private()) */
ndi_flavorv_set(self, SCSA_FLAVOR_SCSI_DEVICE, NULL);
tran->tran_hba_dip = NULL;
return (DDI_SUCCESS);
}
/*
* Called by an HBA from _fini()
*/
void
scsi_hba_fini(struct modlinkage *modlp)
{
struct dev_ops *hba_dev_ops;
SCSI_HBA_LOG((_LOG_TRACE, NULL, NULL, __func__));
/* Get the devops structure of this module and clear bus_ops vector. */
hba_dev_ops = ((struct modldrv *)(modlp->ml_linkage[0]))->drv_dev_ops;
if (hba_dev_ops->devo_cb_ops == &scsi_hba_cbops)
hba_dev_ops->devo_cb_ops = NULL;
if (hba_dev_ops->devo_getinfo == scsi_hba_info)
hba_dev_ops->devo_getinfo = NULL;
hba_dev_ops->devo_bus_ops = (struct bus_ops *)NULL;
}
/*
* SAS specific functions
*/
smp_hba_tran_t *
smp_hba_tran_alloc(dev_info_t *self)
{
/* allocate SCSA flavors for self */
ndi_flavorv_alloc(self, SCSA_NFLAVORS);
return (kmem_zalloc(sizeof (smp_hba_tran_t), KM_SLEEP));
}
void
smp_hba_tran_free(smp_hba_tran_t *tran)
{
kmem_free(tran, sizeof (smp_hba_tran_t));
}
int
smp_hba_attach_setup(
dev_info_t *self,
smp_hba_tran_t *tran)
{
ASSERT(scsi_hba_iport_unit_address(self) == NULL);
if (scsi_hba_iport_unit_address(self))
return (DDI_FAILURE); /* self can't be an iport */
/*
* The owner of the this devinfo_t was responsible
* for informing the framework already about
* additional flavors.
*/
ndi_flavorv_set(self, SCSA_FLAVOR_SMP, tran);
return (DDI_SUCCESS);
}
int
smp_hba_detach(dev_info_t *self)
{
ASSERT(scsi_hba_iport_unit_address(self) == NULL);
if (scsi_hba_iport_unit_address(self))
return (DDI_FAILURE); /* self can't be an iport */
ndi_flavorv_set(self, SCSA_FLAVOR_SMP, NULL);
return (DDI_SUCCESS);
}
/*
* SMP child flavored functions
*/
static int
smp_busctl_ua(dev_info_t *child, char *addr, int maxlen)
{
char *tport;
char *wwn;
/* limit ndi_devi_findchild_by_callback to expected flavor */
if (ndi_flavor_get(child) != SCSA_FLAVOR_SMP)
return (DDI_FAILURE);
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SCSI_ADDR_PROP_TARGET_PORT, &tport) == DDI_SUCCESS) {
(void) snprintf(addr, maxlen, "%s", tport);
ddi_prop_free(tport);
return (DDI_SUCCESS);
}
/*
* NOTE: the following code should be deleted when mpt is changed to
* use SCSI_ADDR_PROP_TARGET_PORT instead of SMP_WWN.
*/
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SMP_WWN, &wwn) == DDI_SUCCESS) {
(void) snprintf(addr, maxlen, "w%s", wwn);
ddi_prop_free(wwn);
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
static int
smp_busctl_reportdev(dev_info_t *child)
{
dev_info_t *self = ddi_get_parent(child);
char *tport;
char *wwn;
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SCSI_ADDR_PROP_TARGET_PORT, &tport) == DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(CONT), "?%s%d at %s%d: target-port %s",
ddi_driver_name(child), ddi_get_instance(child),
ddi_driver_name(self), ddi_get_instance(self), tport));
ddi_prop_free(tport);
return (DDI_SUCCESS);
}
/*
* NOTE: the following code should be deleted when mpt is changed to
* use SCSI_ADDR_PROP_TARGET_PORT instead of SMP_WWN.
*/
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SMP_WWN, &wwn) == DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(CONT), "?%s%d at %s%d: wwn %s",
ddi_driver_name(child), ddi_get_instance(child),
ddi_driver_name(self), ddi_get_instance(self), wwn));
ddi_prop_free(wwn);
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
static int
smp_busctl_initchild(dev_info_t *child)
{
dev_info_t *self = ddi_get_parent(child);
smp_hba_tran_t *tran;
dev_info_t *dup;
char addr[SCSI_MAXNAMELEN];
struct smp_device *smp_sd;
uint64_t wwn;
tran = ndi_flavorv_get(self, SCSA_FLAVOR_SMP);
ASSERT(tran);
if (tran == NULL)
return (DDI_FAILURE);
if (smp_busctl_ua(child, addr, sizeof (addr)) != DDI_SUCCESS)
return (DDI_NOT_WELL_FORMED);
if (scsi_wwnstr_to_wwn(addr, &wwn))
return (DDI_NOT_WELL_FORMED);
/* Prevent duplicate nodes. */
dup = ndi_devi_findchild_by_callback(self, ddi_node_name(child), addr,
smp_busctl_ua);
if (dup) {
ASSERT(ndi_flavor_get(dup) == SCSA_FLAVOR_SMP);
if (ndi_flavor_get(dup) != SCSA_FLAVOR_SMP) {
SCSI_HBA_LOG((_LOG(1), NULL, child,
"init failed: %s@%s: not SMP flavored",
ddi_node_name(child), addr));
return (DDI_FAILURE);
}
if (dup != child) {
SCSI_HBA_LOG((_LOG(4), NULL, child,
"init failed: %s@%s: detected duplicate %p",
ddi_node_name(child), addr, (void *)dup));
return (DDI_FAILURE);
}
}
/* set the node @addr string */
ddi_set_name_addr(child, addr);
/* Allocate and initialize smp_device. */
smp_sd = kmem_zalloc(sizeof (struct smp_device), KM_SLEEP);
smp_sd->smp_sd_dev = child;
smp_sd->smp_sd_address.smp_a_hba_tran = tran;
bcopy(&wwn, smp_sd->smp_sd_address.smp_a_wwn, SAS_WWN_BYTE_SIZE);
ddi_set_driver_private(child, smp_sd);
if (tran->smp_tran_init && ((*tran->smp_tran_init)(self, child,
tran, smp_sd) != DDI_SUCCESS)) {
kmem_free(smp_sd, sizeof (struct smp_device));
scsi_enumeration_failed(child, -1, NULL, "smp_tran_init");
ddi_set_driver_private(child, NULL);
ddi_set_name_addr(child, NULL);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static int
smp_busctl_uninitchild(dev_info_t *child)
{
dev_info_t *self = ddi_get_parent(child);
struct smp_device *smp_sd = ddi_get_driver_private(child);
smp_hba_tran_t *tran;
tran = ndi_flavorv_get(self, SCSA_FLAVOR_SMP);
ASSERT(smp_sd && tran);
if ((smp_sd == NULL) || (tran == NULL))
return (DDI_FAILURE);
if (tran->smp_tran_free)
(*tran->smp_tran_free) (self, child, tran, smp_sd);
kmem_free(smp_sd, sizeof (*smp_sd));
ddi_set_driver_private(child, NULL);
ddi_set_name_addr(child, NULL);
return (DDI_SUCCESS);
}
/* Find an "smp" child at the specified address. */
static dev_info_t *
smp_findchild(dev_info_t *self, char *addr)
{
dev_info_t *child;
/* Search "smp" devinfo child at specified address. */
ASSERT(self && DEVI_BUSY_OWNED(self) && addr);
for (child = ddi_get_child(self); child;
child = ddi_get_next_sibling(child)) {
/* skip non-"smp" nodes */
if (ndi_flavor_get(child) != SCSA_FLAVOR_SMP)
continue;
/* Attempt initchild to establish unit-address */
if (i_ddi_node_state(child) < DS_INITIALIZED)
(void) ddi_initchild(self, child);
/* Verify state and non-NULL unit-address. */
if ((i_ddi_node_state(child) < DS_INITIALIZED) ||
(ddi_get_name_addr(child) == NULL))
continue;
/* Return "smp" child if unit-address matches. */
if (strcmp(ddi_get_name_addr(child), addr) == 0)
return (child);
}
return (NULL);
}
/*
* Search for "smp" child of self at the specified address. If found, online
* and return with a hold. Unlike general SCSI configuration, we can assume
* the the device is actually there when we are called (i.e., device is
* created by hotplug, not by bus_config).
*/
int
smp_hba_bus_config(dev_info_t *self, char *addr, dev_info_t **childp)
{
dev_info_t *child;
int circ;
ASSERT(self && addr && childp);
*childp = NULL;
/* Search for "smp" child. */
scsi_hba_devi_enter(self, &circ);
if ((child = smp_findchild(self, addr)) == NULL) {
scsi_hba_devi_exit(self, circ);
return (NDI_FAILURE);
}
/* Attempt online. */
if (ndi_devi_online(child, 0) != NDI_SUCCESS) {
scsi_hba_devi_exit(self, circ);
return (NDI_FAILURE);
}
/* On success, return with active hold. */
ndi_hold_devi(child);
scsi_hba_devi_exit(self, circ);
*childp = child;
return (NDI_SUCCESS);
}
/* Create "smp" child devinfo node at specified unit-address. */
int
smp_hba_bus_config_taddr(dev_info_t *self, char *addr)
{
dev_info_t *child;
int circ;
/*
* NOTE: If we ever uses a generic node name (.vs. a driver name)
* or define a 'compatible' property, this code will need to use
* a 'probe' node (ala scsi_device support) to obtain identity
* information from the device.
*/
/* Search for "smp" child. */
scsi_hba_devi_enter(self, &circ);
child = smp_findchild(self, addr);
if (child) {
/* Child exists, note if this was a new reinsert. */
if (ndi_devi_device_insert(child))
SCSI_HBA_LOG((_LOGCFG, self, NULL,
"devinfo smp@%s device_reinsert", addr));
scsi_hba_devi_exit(self, circ);
return (NDI_SUCCESS);
}
/* Allocate "smp" child devinfo node and establish flavor of child. */
ndi_devi_alloc_sleep(self, "smp", DEVI_SID_HP_NODEID, &child);
ASSERT(child);
ndi_flavor_set(child, SCSA_FLAVOR_SMP);
/* Add unit-address property to child. */
if (ndi_prop_update_string(DDI_DEV_T_NONE, child,
SCSI_ADDR_PROP_TARGET_PORT, addr) != DDI_PROP_SUCCESS) {
(void) ndi_devi_free(child);
scsi_hba_devi_exit(self, circ);
return (NDI_FAILURE);
}
/* Attempt to online the new "smp" node. */
(void) ndi_devi_online(child, 0);
scsi_hba_devi_exit(self, circ);
return (NDI_SUCCESS);
}
/*
* Wrapper to scsi_ua_get which takes a devinfo argument instead of a
* scsi_device structure.
*/
static int
scsi_busctl_ua(dev_info_t *child, char *addr, int maxlen)
{
struct scsi_device *sd;
/* limit ndi_devi_findchild_by_callback to expected flavor */
if (ndi_flavor_get(child) != SCSA_FLAVOR_SCSI_DEVICE)
return (DDI_FAILURE);
/* nodes are named by tran_get_name or default "tgt,lun" */
sd = ddi_get_driver_private(child);
if (sd && (scsi_ua_get(sd, addr, maxlen) == 1))
return (DDI_SUCCESS);
return (DDI_FAILURE);
}
static int
scsi_busctl_reportdev(dev_info_t *child)
{
dev_info_t *self = ddi_get_parent(child);
struct scsi_device *sd = ddi_get_driver_private(child);
scsi_hba_tran_t *tran;
char ua[SCSI_MAXNAMELEN];
char ra[SCSI_MAXNAMELEN];
SCSI_HBA_LOG((_LOG_TRACE, NULL, child, __func__));
tran = ndi_flavorv_get(self, SCSA_FLAVOR_SCSI_DEVICE);
ASSERT(tran && sd);
if ((tran == NULL) || (sd == NULL))
return (DDI_FAILURE);
/* get the unit_address and bus_addr information */
if ((scsi_ua_get(sd, ua, sizeof (ua)) == 0) ||
(scsi_ua_get_reportdev(sd, ra, sizeof (ra)) == 0)) {
SCSI_HBA_LOG((_LOG(WARN), NULL, child, "REPORTDEV failure"));
return (DDI_FAILURE);
}
if (tran->tran_get_name == NULL)
SCSI_HBA_LOG((_LOG_NF(CONT), "?%s%d at %s%d: %s",
ddi_driver_name(child), ddi_get_instance(child),
ddi_driver_name(self), ddi_get_instance(self), ra));
else if (*ra)
SCSI_HBA_LOG((_LOG_NF(CONT),
"?%s%d at %s%d: unit-address %s: %s",
ddi_driver_name(child), ddi_get_instance(child),
ddi_driver_name(self), ddi_get_instance(self), ua, ra));
else
SCSI_HBA_LOG((_LOG_NF(CONT),
"?%s%d at %s%d: unit-address %s",
ddi_driver_name(child), ddi_get_instance(child),
ddi_driver_name(self), ddi_get_instance(self), ua));
return (DDI_SUCCESS);
}
/*
* scsi_busctl_initchild is called to initialize the SCSA transport for
* communication with a particular child scsi target device. Successful
* initialization requires properties on the node which describe the address
* of the target device. If the address of the target device can't be
* determined from properties then DDI_NOT_WELL_FORMED is returned. Nodes that
* are DDI_NOT_WELL_FORMED are considered an implementation artifact and
* are hidden from devinfo snapshots by calling ndi_devi_set_hidden().
* The child may be one of the following types of devinfo nodes:
*
* OBP node:
* OBP does not enumerate target devices attached a SCSI bus. These
* template/stub/wild-card nodes are a legacy artifact for support of old
* driver loading methods. Since they have no properties,
* DDI_NOT_WELL_FORMED will be returned.
*
* SID node:
* The node may be either a:
* o probe/barrier SID node
* o a dynamic SID target node
*
* driver.conf node: The situation for this nexus is different than most.
* Typically a driver.conf node definition is used to either define a
* new child devinfo node or to further decorate (via merge) a SID
* child with properties. In our case we use the nodes for *both*
* purposes.
*
* In both the SID node and driver.conf node cases we must form the nodes
* "@addr" from the well-known scsi(9P) device unit-address properties on
* the node.
*
* For HBA drivers that implement the deprecated tran_get_name interface,
* "@addr" construction involves having that driver interpret properties via
* scsi_busctl_ua -> scsi_ua_get -> tran_get_name: there is no
* requirement for the property names to be well-known.
*
* NOTE: We don't currently support "merge". When this support is added a
* specific property, like "unit-address", should *always* identify a
* driver.conf node that needs to be merged into a specific SID node. When
* enumeration is enabled, a .conf node without the "unit-address" property
* should be ignored. The best way to establish the "unit-address" property
* would be to have the system assign parent= and unit-address= from an
* instance=# driver.conf entry (by using the instance tree).
*/
static int
scsi_busctl_initchild(dev_info_t *child)
{
dev_info_t *self = ddi_get_parent(child);
dev_info_t *dup;
scsi_hba_tran_t *tran;
struct scsi_device *sd;
scsi_hba_tran_t *tran_clone;
char *class;
int tgt;
int lun;
int sfunc;
int err = DDI_FAILURE;
char addr[SCSI_MAXNAMELEN];
ASSERT(DEVI_BUSY_OWNED(self));
SCSI_HBA_LOG((_LOG(4), NULL, child, "init begin"));
/*
* For a driver like fp with multiple upper-layer-protocols
* it is possible for scsi_hba_init in _init to plumb SCSA
* and have the load of fcp (which does scsi_hba_attach_setup)
* to fail. In this case we may get here with a NULL hba.
*/
tran = ndi_flavorv_get(self, SCSA_FLAVOR_SCSI_DEVICE);
if (tran == NULL)
return (DDI_NOT_WELL_FORMED);
/*
* OBP may create template/stub/wild-card nodes for legacy driver
* loading methods. These nodes have no properties, so we lack the
* addressing properties to initchild them. Hide the node and return
* DDI_NOT_WELL_FORMED.
*
* Future: define/use a ndi_devi_has_properties(dip) type interface.
*
* NOTE: It would be nice if we could delete these ill formed nodes by
* implementing a DDI_NOT_WELL_FORMED_DELETE return code. This can't
* be done until leadville debug code removes its dependencies
* on the devinfo still being present after a failed ndi_devi_online.
*/
if ((DEVI(child)->devi_hw_prop_ptr == NULL) &&
(DEVI(child)->devi_drv_prop_ptr == NULL) &&
(DEVI(child)->devi_sys_prop_ptr == NULL)) {
SCSI_HBA_LOG((_LOG(4), NULL, child,
"init failed: no properties"));
ndi_devi_set_hidden(child);
return (DDI_NOT_WELL_FORMED);
}
/* get legacy SPI addressing properties */
if ((tgt = ddi_prop_get_int(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SCSI_ADDR_PROP_TARGET, -1)) == -1) {
tgt = 0;
/*
* A driver.conf node for merging always has a target= property,
* even if it is just a dummy that does not contain the real
* target address. However drivers that register devids may
* create stub driver.conf nodes without a target= property so
* that pathological devid resolution works. Hide the stub
* node and return DDI_NOT_WELL_FORMED.
*/
if (!scsi_hba_dev_is_sid(child)) {
SCSI_HBA_LOG((_LOG(4), NULL, child,
"init failed: stub .conf node"));
ndi_devi_set_hidden(child);
return (DDI_NOT_WELL_FORMED);
}
}
lun = ddi_prop_get_int(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SCSI_ADDR_PROP_LUN, 0);
sfunc = ddi_prop_get_int(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SCSI_ADDR_PROP_SFUNC, -1);
/*
* The scsi_address structure may not specify all the addressing
* information. For an old HBA that doesn't support tran_get_name
* (most pre-SCSI-3 HBAs) the scsi_address structure is still used,
* so the target property must exist and the LUN must be < 256.
*/
if ((tran->tran_get_name == NULL) &&
((tgt >= USHRT_MAX) || (lun >= 256))) {
SCSI_HBA_LOG((_LOG(1), NULL, child,
"init failed: illegal/missing properties"));
ndi_devi_set_hidden(child);
return (DDI_NOT_WELL_FORMED);
}
/*
* We need to initialize a fair amount of our environment to invoke
* tran_get_name (via scsi_busctl_ua and scsi_ua_get) to
* produce the "@addr" name from addressing properties. Allocate and
* initialize scsi device structure.
*/
sd = kmem_zalloc(sizeof (struct scsi_device), KM_SLEEP);
mutex_init(&sd->sd_mutex, NULL, MUTEX_DRIVER, NULL);
sd->sd_dev = child;
sd->sd_pathinfo = NULL;
sd->sd_uninit_prevent = 0;
ddi_set_driver_private(child, sd);
if (tran->tran_hba_flags & SCSI_HBA_ADDR_COMPLEX) {
/*
* For a SCSI_HBA_ADDR_COMPLEX transport we store a pointer to
* scsi_device in the scsi_address structure. This allows an
* HBA driver to find its per-scsi_device private data
* (accessible to the HBA given just the scsi_address by using
* scsi_address_device(9F)/scsi_device_hba_private_get(9F)).
*/
sd->sd_address.a.a_sd = sd;
tran_clone = NULL;
} else {
/*
* Initialize the scsi_address so that a SCSI-2 target driver
* talking to a SCSI-2 device on a SCSI-3 bus (spi) continues
* to work. We skew the secondary function value so that we
* can tell from the address structure if we are processing
* a secondary function request.
*/
sd->sd_address.a_target = (ushort_t)tgt;
sd->sd_address.a_lun = (uchar_t)lun;
if (sfunc == -1)
sd->sd_address.a_sublun = (uchar_t)0;
else
sd->sd_address.a_sublun = (uchar_t)sfunc + 1;
/*
* NOTE: Don't limit LUNs to scsi_options value because a
* scsi_device discovered via SPI dynamic enumeration might
* still support SCMD_REPORT_LUNS.
*/
/*
* Deprecated: Use SCSI_HBA_ADDR_COMPLEX:
* Clone transport structure if requested. Cloning allows
* an HBA to maintain target-specific information if
* necessary, such as target addressing information that
* does not adhere to the scsi_address structure format.
*/
if (tran->tran_hba_flags & SCSI_HBA_TRAN_CLONE) {
tran_clone = kmem_alloc(
sizeof (scsi_hba_tran_t), KM_SLEEP);
bcopy((caddr_t)tran,
(caddr_t)tran_clone, sizeof (scsi_hba_tran_t));
tran = tran_clone;
tran->tran_sd = sd;
} else {
tran_clone = NULL;
ASSERT(tran->tran_sd == NULL);
}
}
/* establish scsi_address pointer to the HBA's tran structure */
sd->sd_address.a_hba_tran = tran;
/*
* This is a grotty hack that allows direct-access (non-scsa) drivers
* (like chs, ata, and mlx which all make cmdk children) to put its
* own vector in the 'a_hba_tran' field. When all the drivers that do
* this are fixed, please remove this hack.
*
* NOTE: This hack is also shows up in the DEVP_TO_TRAN implementation
* in scsi_confsubr.c.
*/
sd->sd_tran_safe = tran;
/*
* If the class property is not already established, set it to "scsi".
* This is done so that parent= driver.conf nodes have class.
*/
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "class",
&class) == DDI_PROP_SUCCESS) {
ddi_prop_free(class);
} else if (ndi_prop_update_string(DDI_DEV_T_NONE, child,
"class", "scsi") != DDI_PROP_SUCCESS) {
SCSI_HBA_LOG((_LOG(2), NULL, child, "init failed: class"));
ndi_devi_set_hidden(child);
err = DDI_NOT_WELL_FORMED;
goto failure;
}
/* Establish the @addr name of the child. */
*addr = '\0';
if (scsi_busctl_ua(child, addr, sizeof (addr)) != DDI_SUCCESS) {
/*
* Some driver.conf files add bogus target properties (relative
* to their nexus representation of target) to their stub
* nodes, causing the check above to not filter them.
*/
SCSI_HBA_LOG((_LOG(3), NULL, child,
"init failed: scsi_busctl_ua call"));
ndi_devi_set_hidden(child);
err = DDI_NOT_WELL_FORMED;
goto failure;
}
if (*addr == '\0') {
SCSI_HBA_LOG((_LOG(2), NULL, child, "init failed: ua"));
ndi_devi_set_hidden(child);
err = DDI_NOT_WELL_FORMED;
goto failure;
}
/* Prevent duplicate nodes. */
dup = ndi_devi_findchild_by_callback(self, ddi_node_name(child), addr,
scsi_busctl_ua);
if (dup) {
ASSERT(ndi_flavor_get(dup) == SCSA_FLAVOR_SCSI_DEVICE);
if (ndi_flavor_get(dup) != SCSA_FLAVOR_SCSI_DEVICE) {
SCSI_HBA_LOG((_LOG(1), NULL, child,
"init failed: %s@%s: not SCSI_DEVICE flavored",
ddi_node_name(child), addr));
goto failure;
}
if (dup != child) {
SCSI_HBA_LOG((_LOG(4), NULL, child,
"init failed: %s@%s: detected duplicate %p",
ddi_node_name(child), addr, (void *)dup));
goto failure;
}
}
/* set the node @addr string */
ddi_set_name_addr(child, addr);
/* call HBA's target init entry point if it exists */
if (tran->tran_tgt_init != NULL) {
SCSI_HBA_LOG((_LOG(4), NULL, child, "init tran_tgt_init"));
sd->sd_tran_tgt_free_done = 0;
if ((*tran->tran_tgt_init)
(self, child, tran, sd) != DDI_SUCCESS) {
scsi_enumeration_failed(child, -1, NULL,
"tran_tgt_init");
goto failure;
}
}
SCSI_HBA_LOG((_LOG(3), NULL, child, "init successful"));
return (DDI_SUCCESS);
failure:
if (tran_clone)
kmem_free(tran_clone, sizeof (scsi_hba_tran_t));
mutex_destroy(&sd->sd_mutex);
kmem_free(sd, sizeof (*sd));
ddi_set_driver_private(child, NULL);
ddi_set_name_addr(child, NULL);
return (err); /* remove the node */
}
static int
scsi_busctl_uninitchild(dev_info_t *child)
{
dev_info_t *self = ddi_get_parent(child);
struct scsi_device *sd = ddi_get_driver_private(child);
scsi_hba_tran_t *tran;
scsi_hba_tran_t *tran_clone;
ASSERT(DEVI_BUSY_OWNED(self));
tran = ndi_flavorv_get(self, SCSA_FLAVOR_SCSI_DEVICE);
ASSERT(tran && sd);
if ((tran == NULL) || (sd == NULL))
return (DDI_FAILURE);
/*
* We use sd_uninit_prevent to avoid uninitializing barrier/probe
* nodes that are still in use. Since barrier/probe nodes are not
* attached we can't prevent their state demotion via ndi_hold_devi.
*/
if (sd->sd_uninit_prevent) {
SCSI_HBA_LOG((_LOG(2), NULL, child, "uninit prevented"));
return (DDI_FAILURE);
}
/*
* Don't uninitialize a client node if it still has paths.
*/
if (MDI_CLIENT(child) && mdi_client_get_path_count(child)) {
SCSI_HBA_LOG((_LOG(2), NULL, child,
"uninit prevented, client has paths"));
return (DDI_FAILURE);
}
SCSI_HBA_LOG((_LOG(3), NULL, child, "uninit begin"));
if (tran->tran_hba_flags & SCSI_HBA_TRAN_CLONE) {
tran_clone = sd->sd_address.a_hba_tran;
/* ... grotty hack, involving sd_tran_safe, continued. */
if (tran_clone != sd->sd_tran_safe) {
tran_clone = sd->sd_tran_safe;
#ifdef DEBUG
/*
* Complain so things get fixed and hack can, at
* some point in time, be removed.
*/
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"'%s' is corrupting a_hba_tran", sd->sd_dev ?
ddi_driver_name(sd->sd_dev) : "unknown_driver"));
#endif /* DEBUG */
}
ASSERT(tran_clone->tran_hba_flags & SCSI_HBA_TRAN_CLONE);
ASSERT(tran_clone->tran_sd == sd);
tran = tran_clone;
} else {
tran_clone = NULL;
ASSERT(tran->tran_sd == NULL);
}
/*
* To simplify host adapter drivers we guarantee that multiple
* tran_tgt_init(9E) calls of the same unit address are never
* active at the same time. This requires that we always call
* tran_tgt_free on probe/barrier nodes directly prior to
* uninitchild.
*
* NOTE: To correctly support SCSI_HBA_TRAN_CLONE, we must use
* the (possibly cloned) hba_tran pointer from the scsi_device
* instead of hba_tran.
*/
if (tran->tran_tgt_free) {
if (!sd->sd_tran_tgt_free_done) {
SCSI_HBA_LOG((_LOG(4), NULL, child,
"uninit tran_tgt_free"));
(*tran->tran_tgt_free) (self, child, tran, sd);
sd->sd_tran_tgt_free_done = 1;
} else {
SCSI_HBA_LOG((_LOG(4), NULL, child,
"uninit tran_tgt_free already done"));
}
}
/*
* If a inquiry data is still allocated (by scsi_probe()) we
* free the allocation here. This keeps scsi_inq valid for the
* same duration as the corresponding inquiry properties. It
* also allows a tran_tgt_init() implementation that establishes
* sd_inq to deal with deallocation in its tran_tgt_free
* (setting sd_inq back to NULL) without upsetting the
* framework. Moving the inquiry free here also allows setting
* of sd_uninit_prevent to preserve the data for lun0 based
* scsi_get_device_type_scsi_options() calls.
*/
if (sd->sd_inq) {
kmem_free(sd->sd_inq, SUN_INQSIZE);
sd->sd_inq = (struct scsi_inquiry *)NULL;
}
mutex_destroy(&sd->sd_mutex);
if (tran_clone)
kmem_free(tran_clone, sizeof (scsi_hba_tran_t));
kmem_free(sd, sizeof (*sd));
ddi_set_driver_private(child, NULL);
SCSI_HBA_LOG((_LOG(3), NULL, child, "uninit complete"));
ddi_set_name_addr(child, NULL);
return (DDI_SUCCESS);
}
static int
iport_busctl_ua(dev_info_t *child, char *addr, int maxlen)
{
char *iport_ua;
/* limit ndi_devi_findchild_by_callback to expected flavor */
if (ndi_flavor_get(child) != SCSA_FLAVOR_IPORT)
return (DDI_FAILURE);
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SCSI_ADDR_PROP_IPORTUA, &iport_ua) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
(void) snprintf(addr, maxlen, "%s", iport_ua);
ddi_prop_free(iport_ua);
return (DDI_SUCCESS);
}
static int
iport_busctl_reportdev(dev_info_t *child)
{
dev_info_t *self = ddi_get_parent(child);
char *iport_ua;
char *initiator_port = NULL;
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SCSI_ADDR_PROP_IPORTUA, &iport_ua) != DDI_SUCCESS)
return (DDI_FAILURE);
(void) ddi_prop_lookup_string(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SCSI_ADDR_PROP_INITIATOR_PORT, &initiator_port);
if (initiator_port) {
SCSI_HBA_LOG((_LOG_NF(CONT),
"?%s%d at %s%d: %s %s %s %s",
ddi_driver_name(child), ddi_get_instance(child),
ddi_driver_name(self), ddi_get_instance(self),
SCSI_ADDR_PROP_INITIATOR_PORT, initiator_port,
SCSI_ADDR_PROP_IPORTUA, iport_ua));
ddi_prop_free(initiator_port);
} else {
SCSI_HBA_LOG((_LOG_NF(CONT), "?%s%d at %s%d: %s %s",
ddi_driver_name(child), ddi_get_instance(child),
ddi_driver_name(self), ddi_get_instance(self),
SCSI_ADDR_PROP_IPORTUA, iport_ua));
}
ddi_prop_free(iport_ua);
return (DDI_SUCCESS);
}
/* initchild SCSA iport 'child' node */
static int
iport_busctl_initchild(dev_info_t *child)
{
dev_info_t *self = ddi_get_parent(child);
dev_info_t *dup = NULL;
char addr[SCSI_MAXNAMELEN];
if (iport_busctl_ua(child, addr, sizeof (addr)) != DDI_SUCCESS)
return (DDI_NOT_WELL_FORMED);
/* Prevent duplicate nodes. */
dup = ndi_devi_findchild_by_callback(self, ddi_node_name(child), addr,
iport_busctl_ua);
if (dup) {
ASSERT(ndi_flavor_get(dup) == SCSA_FLAVOR_IPORT);
if (ndi_flavor_get(dup) != SCSA_FLAVOR_IPORT) {
SCSI_HBA_LOG((_LOG(1), NULL, child,
"init failed: %s@%s: not IPORT flavored",
ddi_node_name(child), addr));
return (DDI_FAILURE);
}
if (dup != child) {
SCSI_HBA_LOG((_LOG(4), NULL, child,
"init failed: %s@%s: detected duplicate %p",
ddi_node_name(child), addr, (void *)dup));
return (DDI_FAILURE);
}
}
/* set the node @addr string */
ddi_set_name_addr(child, addr);
return (DDI_SUCCESS);
}
/* uninitchild SCSA iport 'child' node */
static int
iport_busctl_uninitchild(dev_info_t *child)
{
ddi_set_name_addr(child, NULL);
return (DDI_SUCCESS);
}
/* Uninitialize scsi_device flavor of transport on SCSA iport 'child' node. */
static void
iport_postdetach_tran_scsi_device(dev_info_t *child)
{
scsi_hba_tran_t *tran;
tran = ndi_flavorv_get(child, SCSA_FLAVOR_SCSI_DEVICE);
if (tran == NULL)
return;
scsa_tran_teardown(child, tran);
scsa_nexus_teardown(child, tran);
ndi_flavorv_set(child, SCSA_FLAVOR_SCSI_DEVICE, NULL);
scsi_hba_tran_free(tran);
}
/* Initialize scsi_device flavor of transport on SCSA iport 'child' node. */
static void
iport_preattach_tran_scsi_device(dev_info_t *child)
{
dev_info_t *hba = ddi_get_parent(child);
scsi_hba_tran_t *htran;
scsi_hba_tran_t *tran;
/* parent HBA node scsi_device tran is required */
htran = ndi_flavorv_get(hba, SCSA_FLAVOR_SCSI_DEVICE);
ASSERT(htran);
/* Allocate iport child's scsi_device transport vector */
tran = scsi_hba_tran_alloc(child, SCSI_HBA_CANSLEEP);
ASSERT(tran);
/* Structure-copy scsi_device transport of HBA to iport. */
*tran = *htran;
/*
* Reset scsi_device transport fields not shared with the
* parent, and not established below.
*/
tran->tran_open_flag = 0;
tran->tran_hba_private = NULL;
/* Establish the devinfo context of this tran structure. */
tran->tran_iport_dip = child;
/* Clear SCSI_HBA_SCSA flags (except TA) */
tran->tran_hba_flags &=
~(SCSI_HBA_SCSA_FM | SCSI_HBA_SCSA_PHCI); /* clear parent state */
tran->tran_hba_flags |= SCSI_HBA_SCSA_TA; /* always TA */
tran->tran_hba_flags &= ~SCSI_HBA_HBA; /* never HBA */
/* Establish flavor of transport (and ddi_get_driver_private()) */
ndi_flavorv_set(child, SCSA_FLAVOR_SCSI_DEVICE, tran);
/* Setup iport node */
if ((scsa_nexus_setup(child, tran) != DDI_SUCCESS) ||
(scsa_tran_setup(child, tran) != DDI_SUCCESS))
iport_postdetach_tran_scsi_device(child);
}
/* Uninitialize smp_device flavor of transport on SCSA iport 'child' node. */
static void
iport_postdetach_tran_smp_device(dev_info_t *child)
{
smp_hba_tran_t *tran;
tran = ndi_flavorv_get(child, SCSA_FLAVOR_SMP);
if (tran == NULL)
return;
ndi_flavorv_set(child, SCSA_FLAVOR_SMP, NULL);
smp_hba_tran_free(tran);
}
/* Initialize smp_device flavor of transport on SCSA iport 'child' node. */
static void
iport_preattach_tran_smp_device(dev_info_t *child)
{
dev_info_t *hba = ddi_get_parent(child);
smp_hba_tran_t *htran;
smp_hba_tran_t *tran;
/* parent HBA node smp_device tran is optional */
htran = ndi_flavorv_get(hba, SCSA_FLAVOR_SMP);
if (htran == NULL) {
ndi_flavorv_set(child, SCSA_FLAVOR_SMP, NULL);
return;
}
/* Allocate iport child's smp_device transport vector */
tran = smp_hba_tran_alloc(child);
/* Structure-copy smp_device transport of HBA to iport. */
*tran = *htran;
/* Establish flavor of transport */
ndi_flavorv_set(child, SCSA_FLAVOR_SMP, tran);
}
/*
* Generic bus_ctl operations for SCSI HBA's,
* hiding the busctl interface from the HBA.
*/
/*ARGSUSED*/
static int
scsi_hba_bus_ctl(
dev_info_t *self,
dev_info_t *child,
ddi_ctl_enum_t op,
void *arg,
void *result)
{
int child_flavor = 0;
int val;
ddi_dma_attr_t *attr;
scsi_hba_tran_t *tran;
struct attachspec *as;
struct detachspec *ds;
/* For some ops, child is 'arg'. */
if ((op == DDI_CTLOPS_INITCHILD) || (op == DDI_CTLOPS_UNINITCHILD))
child = (dev_info_t *)arg;
/* Determine the flavor of the child: scsi, smp, iport */
child_flavor = ndi_flavor_get(child);
switch (op) {
case DDI_CTLOPS_INITCHILD:
switch (child_flavor) {
case SCSA_FLAVOR_SCSI_DEVICE:
return (scsi_busctl_initchild(child));
case SCSA_FLAVOR_SMP:
return (smp_busctl_initchild(child));
case SCSA_FLAVOR_IPORT:
return (iport_busctl_initchild(child));
default:
return (DDI_FAILURE);
}
/* NOTREACHED */
case DDI_CTLOPS_UNINITCHILD:
switch (child_flavor) {
case SCSA_FLAVOR_SCSI_DEVICE:
return (scsi_busctl_uninitchild(child));
case SCSA_FLAVOR_SMP:
return (smp_busctl_uninitchild(child));
case SCSA_FLAVOR_IPORT:
return (iport_busctl_uninitchild(child));
default:
return (DDI_FAILURE);
}
/* NOTREACHED */
case DDI_CTLOPS_REPORTDEV:
switch (child_flavor) {
case SCSA_FLAVOR_SCSI_DEVICE:
return (scsi_busctl_reportdev(child));
case SCSA_FLAVOR_SMP:
return (smp_busctl_reportdev(child));
case SCSA_FLAVOR_IPORT:
return (iport_busctl_reportdev(child));
default:
return (DDI_FAILURE);
}
/* NOTREACHED */
case DDI_CTLOPS_ATTACH:
as = (struct attachspec *)arg;
if (child_flavor != SCSA_FLAVOR_IPORT)
return (DDI_SUCCESS);
/* iport processing */
if (as->when == DDI_PRE) {
/* setup pre attach(9E) */
iport_preattach_tran_scsi_device(child);
iport_preattach_tran_smp_device(child);
} else if ((as->when == DDI_POST) &&
(as->result != DDI_SUCCESS)) {
/* cleanup if attach(9E) failed */
iport_postdetach_tran_scsi_device(child);
iport_postdetach_tran_smp_device(child);
}
return (DDI_SUCCESS);
case DDI_CTLOPS_DETACH:
ds = (struct detachspec *)arg;
if (child_flavor != SCSA_FLAVOR_IPORT)
return (DDI_SUCCESS);
/* iport processing */
if ((ds->when == DDI_POST) &&
(ds->result == DDI_SUCCESS)) {
/* cleanup if detach(9E) was successful */
iport_postdetach_tran_scsi_device(child);
iport_postdetach_tran_smp_device(child);
}
return (DDI_SUCCESS);
case DDI_CTLOPS_IOMIN:
tran = ddi_get_driver_private(self);
ASSERT(tran);
if (tran == NULL)
return (DDI_FAILURE);
/*
* The 'arg' value of nonzero indicates 'streaming'
* mode. If in streaming mode, pick the largest
* of our burstsizes available and say that that
* is our minimum value (modulo what minxfer is).
*/
attr = &tran->tran_dma_attr;
val = *((int *)result);
val = maxbit(val, attr->dma_attr_minxfer);
*((int *)result) = maxbit(val, ((intptr_t)arg ?
(1<<ddi_ffs(attr->dma_attr_burstsizes)-1) :
(1<<(ddi_fls(attr->dma_attr_burstsizes)-1))));
return (ddi_ctlops(self, child, op, arg, result));
case DDI_CTLOPS_SIDDEV:
return (ndi_dev_is_persistent_node(child) ?
DDI_SUCCESS : DDI_FAILURE);
case DDI_CTLOPS_POWER:
return (DDI_SUCCESS);
/*
* These ops correspond to functions that "shouldn't" be called
* by a SCSI target driver. So we whine when we're called.
*/
case DDI_CTLOPS_DMAPMAPC:
case DDI_CTLOPS_REPORTINT:
case DDI_CTLOPS_REGSIZE:
case DDI_CTLOPS_NREGS:
case DDI_CTLOPS_SLAVEONLY:
case DDI_CTLOPS_AFFINITY:
case DDI_CTLOPS_POKE:
case DDI_CTLOPS_PEEK:
SCSI_HBA_LOG((_LOG(WARN), self, NULL, "invalid op (%d)", op));
return (DDI_FAILURE);
/* Everything else we pass up */
case DDI_CTLOPS_PTOB:
case DDI_CTLOPS_BTOP:
case DDI_CTLOPS_BTOPR:
case DDI_CTLOPS_DVMAPAGESIZE:
default:
return (ddi_ctlops(self, child, op, arg, result));
}
/* NOTREACHED */
}
/*
* Private wrapper for scsi_pkt's allocated via scsi_hba_pkt_alloc()
*/
struct scsi_pkt_wrapper {
struct scsi_pkt scsi_pkt;
int pkt_wrapper_magic;
int pkt_wrapper_len;
};
#if !defined(lint)
_NOTE(SCHEME_PROTECTS_DATA("unique per thread", scsi_pkt_wrapper))
_NOTE(SCHEME_PROTECTS_DATA("Unshared Data", dev_ops))
#endif
/*
* Called by an HBA to allocate a scsi_pkt
*/
/*ARGSUSED*/
struct scsi_pkt *
scsi_hba_pkt_alloc(
dev_info_t *self,
struct scsi_address *ap,
int cmdlen,
int statuslen,
int tgtlen,
int hbalen,
int (*callback)(caddr_t arg),
caddr_t arg)
{
struct scsi_pkt *pkt;
struct scsi_pkt_wrapper *hba_pkt;
caddr_t p;
int acmdlen, astatuslen, atgtlen, ahbalen;
int pktlen;
/* Sanity check */
if (callback != SLEEP_FUNC && callback != NULL_FUNC)
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"callback must be SLEEP_FUNC or NULL_FUNC"));
/*
* Round up so everything gets allocated on long-word boundaries
*/
acmdlen = ROUNDUP(cmdlen);
astatuslen = ROUNDUP(statuslen);
atgtlen = ROUNDUP(tgtlen);
ahbalen = ROUNDUP(hbalen);
pktlen = sizeof (struct scsi_pkt_wrapper) +
acmdlen + astatuslen + atgtlen + ahbalen;
hba_pkt = kmem_zalloc(pktlen,
(callback == SLEEP_FUNC) ? KM_SLEEP : KM_NOSLEEP);
if (hba_pkt == NULL) {
ASSERT(callback == NULL_FUNC);
return (NULL);
}
/*
* Set up our private info on this pkt
*/
hba_pkt->pkt_wrapper_len = pktlen;
hba_pkt->pkt_wrapper_magic = PKT_WRAPPER_MAGIC; /* alloced correctly */
pkt = &hba_pkt->scsi_pkt;
/*
* Set up pointers to private data areas, cdb, and status.
*/
p = (caddr_t)(hba_pkt + 1);
if (hbalen > 0) {
pkt->pkt_ha_private = (opaque_t)p;
p += ahbalen;
}
if (tgtlen > 0) {
pkt->pkt_private = (opaque_t)p;
p += atgtlen;
}
if (statuslen > 0) {
pkt->pkt_scbp = (uchar_t *)p;
p += astatuslen;
}
if (cmdlen > 0) {
pkt->pkt_cdbp = (uchar_t *)p;
}
/*
* Initialize the pkt's scsi_address
*/
pkt->pkt_address = *ap;
/*
* NB: It may not be safe for drivers, esp target drivers, to depend
* on the following fields being set until all the scsi_pkt
* allocation violations discussed in scsi_pkt.h are all resolved.
*/
pkt->pkt_cdblen = cmdlen;
pkt->pkt_tgtlen = tgtlen;
pkt->pkt_scblen = statuslen;
return (pkt);
}
/*
* Called by an HBA to free a scsi_pkt
*/
/*ARGSUSED*/
void
scsi_hba_pkt_free(
struct scsi_address *ap,
struct scsi_pkt *pkt)
{
kmem_free(pkt, ((struct scsi_pkt_wrapper *)pkt)->pkt_wrapper_len);
}
/*
* Return 1 if the scsi_pkt used a proper allocator.
*
* The DDI does not allow a driver to allocate it's own scsi_pkt(9S), a
* driver should not have *any* compiled in dependencies on "sizeof (struct
* scsi_pkt)". While this has been the case for many years, a number of
* drivers have still not been fixed. This function can be used to detect
* improperly allocated scsi_pkt structures, and produce messages identifying
* drivers that need to be fixed.
*
* While drivers in violation are being fixed, this function can also
* be used by the framework to detect packets that violated allocation
* rules.
*
* NB: It is possible, but very unlikely, for this code to return a false
* positive (finding correct magic, but for wrong reasons). Careful
* consideration is needed for callers using this interface to condition
* access to newer scsi_pkt fields (those after pkt_reason).
*
* NB: As an aid to minimizing the amount of work involved in 'fixing' legacy
* drivers that violate scsi_*(9S) allocation rules, private
* scsi_pkt_size()/scsi_size_clean() functions are available (see their
* implementation for details).
*
* *** Non-legacy use of scsi_pkt_size() is discouraged. ***
*
* NB: When supporting broken HBA drivers is not longer a concern, this
* code should be removed.
*/
int
scsi_pkt_allocated_correctly(struct scsi_pkt *pkt)
{
struct scsi_pkt_wrapper *hba_pkt = (struct scsi_pkt_wrapper *)pkt;
int magic;
major_t major;
#ifdef DEBUG
int *pspwm, *pspcwm;
/*
* We are getting scsi packets from two 'correct' wrapper schemes,
* make sure we are looking at the same place in both to detect
* proper allocation.
*/
pspwm = &((struct scsi_pkt_wrapper *)0)->pkt_wrapper_magic;
pspcwm = &((struct scsi_pkt_cache_wrapper *)0)->pcw_magic;
ASSERT(pspwm == pspcwm);
#endif /* DEBUG */
/*
* Check to see if driver is scsi_size_clean(), assume it
* is using the scsi_pkt_size() interface everywhere it needs to
* if the driver indicates it is scsi_size_clean().
*/
major = ddi_driver_major(P_TO_TRAN(pkt)->tran_hba_dip);
if (devnamesp[major].dn_flags & DN_SCSI_SIZE_CLEAN)
return (1); /* ok */
/*
* Special case crossing a page boundary. If the scsi_pkt was not
* allocated correctly, then across a page boundary we have a
* fault hazard.
*/
if ((((uintptr_t)(&hba_pkt->scsi_pkt)) & MMU_PAGEMASK) ==
(((uintptr_t)(&hba_pkt->pkt_wrapper_magic)) & MMU_PAGEMASK)) {
/* fastpath, no cross-page hazard */
magic = hba_pkt->pkt_wrapper_magic;
} else {
/* add protection for cross-page hazard */
if (ddi_peek32((dev_info_t *)NULL,
&hba_pkt->pkt_wrapper_magic, &magic) == DDI_FAILURE) {
return (0); /* violation */
}
}
/* properly allocated packet always has correct magic */
return ((magic == PKT_WRAPPER_MAGIC) ? 1 : 0);
}
/*
* Private interfaces to simplify conversion of legacy drivers so they don't
* depend on scsi_*(9S) size. Instead of using these private interface, HBA
* drivers should use DDI sanctioned allocation methods:
*
* scsi_pkt Use scsi_hba_pkt_alloc(9F), or implement
* tran_setup_pkt(9E).
*
* scsi_device You are doing something strange/special, a scsi_device
* structure should only be allocated by scsi_hba.c
* initchild code or scsi_vhci.c code.
*
* scsi_hba_tran Use scsi_hba_tran_alloc(9F).
*/
size_t
scsi_pkt_size()
{
return (sizeof (struct scsi_pkt));
}
size_t
scsi_hba_tran_size()
{
return (sizeof (scsi_hba_tran_t));
}
size_t
scsi_device_size()
{
return (sizeof (struct scsi_device));
}
/*
* Legacy compliance to scsi_pkt(9S) allocation rules through use of
* scsi_pkt_size() is detected by the 'scsi-size-clean' driver.conf property
* or an HBA driver calling to scsi_size_clean() from attach(9E). A driver
* developer should only indicate that a legacy driver is clean after using
* SCSI_SIZE_CLEAN_VERIFY to ensure compliance (see scsi_pkt.h).
*/
void
scsi_size_clean(dev_info_t *self)
{
major_t major;
struct devnames *dnp;
ASSERT(self);
major = ddi_driver_major(self);
ASSERT(major < devcnt);
if (major >= devcnt) {
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"scsi_pkt_size: bogus major: %d", major));
return;
}
/* Set DN_SCSI_SIZE_CLEAN flag in dn_flags. */
dnp = &devnamesp[major];
if ((dnp->dn_flags & DN_SCSI_SIZE_CLEAN) == 0) {
LOCK_DEV_OPS(&dnp->dn_lock);
dnp->dn_flags |= DN_SCSI_SIZE_CLEAN;
UNLOCK_DEV_OPS(&dnp->dn_lock);
}
}
/*
* Called by an HBA to map strings to capability indices
*/
int
scsi_hba_lookup_capstr(
char *capstr)
{
/*
* Capability strings: only add entries to mask the legacy
* '_' vs. '-' misery. All new capabilities should use '-',
* and be captured be added to SCSI_CAP_ASCII.
*/
static struct cap_strings {
char *cap_string;
int cap_index;
} cap_strings[] = {
{ "dma_max", SCSI_CAP_DMA_MAX },
{ "msg_out", SCSI_CAP_MSG_OUT },
{ "wide_xfer", SCSI_CAP_WIDE_XFER },
{ NULL, 0 }
};
static char *cap_ascii[] = SCSI_CAP_ASCII;
char **cap;
int i;
struct cap_strings *cp;
for (cap = cap_ascii, i = 0; *cap != NULL; cap++, i++)
if (strcmp(*cap, capstr) == 0)
return (i);
for (cp = cap_strings; cp->cap_string != NULL; cp++)
if (strcmp(cp->cap_string, capstr) == 0)
return (cp->cap_index);
return (-1);
}
/*
* Called by an HBA to determine if the system is in 'panic' state.
*/
int
scsi_hba_in_panic()
{
return (panicstr != NULL);
}
/*
* If a SCSI target driver attempts to mmap memory,
* the buck stops here.
*/
/*ARGSUSED*/
static int
scsi_hba_map_fault(
dev_info_t *self,
dev_info_t *child,
struct hat *hat,
struct seg *seg,
caddr_t addr,
struct devpage *dp,
pfn_t pfn,
uint_t prot,
uint_t lock)
{
return (DDI_FAILURE);
}
static int
scsi_hba_get_eventcookie(
dev_info_t *self,
dev_info_t *child,
char *name,
ddi_eventcookie_t *eventp)
{
scsi_hba_tran_t *tran;
tran = ddi_get_driver_private(self);
if (tran->tran_get_eventcookie &&
((*tran->tran_get_eventcookie)(self,
child, name, eventp) == DDI_SUCCESS)) {
return (DDI_SUCCESS);
}
return (ndi_busop_get_eventcookie(self, child, name, eventp));
}
static int
scsi_hba_add_eventcall(
dev_info_t *self,
dev_info_t *child,
ddi_eventcookie_t event,
void (*callback)(
dev_info_t *self,
ddi_eventcookie_t event,
void *arg,
void *bus_impldata),
void *arg,
ddi_callback_id_t *cb_id)
{
scsi_hba_tran_t *tran;
tran = ddi_get_driver_private(self);
if (tran->tran_add_eventcall &&
((*tran->tran_add_eventcall)(self, child,
event, callback, arg, cb_id) == DDI_SUCCESS)) {
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
static int
scsi_hba_remove_eventcall(dev_info_t *self, ddi_callback_id_t cb_id)
{
scsi_hba_tran_t *tran;
ASSERT(cb_id);
tran = ddi_get_driver_private(self);
if (tran->tran_remove_eventcall &&
((*tran->tran_remove_eventcall)(
self, cb_id) == DDI_SUCCESS)) {
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
static int
scsi_hba_post_event(
dev_info_t *self,
dev_info_t *child,
ddi_eventcookie_t event,
void *bus_impldata)
{
scsi_hba_tran_t *tran;
tran = ddi_get_driver_private(self);
if (tran->tran_post_event &&
((*tran->tran_post_event)(self,
child, event, bus_impldata) == DDI_SUCCESS)) {
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
/*
* Default getinfo(9e) for scsi_hba
*/
/* ARGSUSED */
static int
scsi_hba_info(dev_info_t *self, ddi_info_cmd_t infocmd, void *arg,
void **result)
{
int error = DDI_SUCCESS;
switch (infocmd) {
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)(intptr_t)(MINOR2INST(getminor((dev_t)arg)));
break;
default:
error = DDI_FAILURE;
}
return (error);
}
/*
* Default open and close routine for scsi_hba
*/
/* ARGSUSED */
int
scsi_hba_open(dev_t *devp, int flags, int otyp, cred_t *credp)
{
dev_info_t *self;
scsi_hba_tran_t *tran;
int rv = 0;
if (otyp != OTYP_CHR)
return (EINVAL);
if ((self = e_ddi_hold_devi_by_dev(*devp, 0)) == NULL)
return (ENXIO);
tran = ddi_get_driver_private(self);
if (tran == NULL) {
ddi_release_devi(self);
return (ENXIO);
}
/*
* tran_open_flag bit field:
* 0: closed
* 1: shared open by minor at bit position
* 1 at 31st bit: exclusive open
*/
mutex_enter(&(tran->tran_open_lock));
if (flags & FEXCL) {
if (tran->tran_open_flag != 0) {
rv = EBUSY; /* already open */
} else {
tran->tran_open_flag = TRAN_OPEN_EXCL;
}
} else {
if (tran->tran_open_flag == TRAN_OPEN_EXCL) {
rv = EBUSY; /* already excl. open */
} else {
int minor = getminor(*devp) & TRAN_MINOR_MASK;
tran->tran_open_flag |= (1 << minor);
/*
* Ensure that the last framework reserved minor
* is unused. Otherwise, the exclusive open
* mechanism may break.
*/
ASSERT(minor != 31);
}
}
mutex_exit(&(tran->tran_open_lock));
ddi_release_devi(self);
return (rv);
}
/* ARGSUSED */
int
scsi_hba_close(dev_t dev, int flag, int otyp, cred_t *credp)
{
dev_info_t *self;
scsi_hba_tran_t *tran;
if (otyp != OTYP_CHR)
return (EINVAL);
if ((self = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
return (ENXIO);
tran = ddi_get_driver_private(self);
if (tran == NULL) {
ddi_release_devi(self);
return (ENXIO);
}
mutex_enter(&(tran->tran_open_lock));
if (tran->tran_open_flag == TRAN_OPEN_EXCL) {
tran->tran_open_flag = 0;
} else {
int minor = getminor(dev) & TRAN_MINOR_MASK;
tran->tran_open_flag &= ~(1 << minor);
}
mutex_exit(&(tran->tran_open_lock));
ddi_release_devi(self);
return (0);
}
/*
* standard ioctl commands for SCSI hotplugging
*/
/* ARGSUSED */
int
scsi_hba_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
dev_info_t *self;
struct devctl_iocdata *dcp = NULL;
dev_info_t *child = NULL;
mdi_pathinfo_t *path = NULL;
struct scsi_device *sd;
scsi_hba_tran_t *tran;
uint_t bus_state;
int rv = 0;
int circ;
char *name;
char *addr;
self = e_ddi_hold_devi_by_dev(dev, 0);
if (self == NULL) {
rv = ENXIO;
goto out;
}
tran = ddi_get_driver_private(self);
if (tran == NULL) {
rv = ENXIO;
goto out;
}
/* Ioctls for which the generic implementation suffices. */
switch (cmd) {
case DEVCTL_BUS_GETSTATE:
rv = ndi_devctl_ioctl(self, cmd, arg, mode, 0);
goto out;
}
/* read devctl ioctl data */
if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS) {
rv = EFAULT;
goto out;
}
/* Ioctls that require child identification */
switch (cmd) {
case DEVCTL_DEVICE_GETSTATE:
case DEVCTL_DEVICE_ONLINE:
case DEVCTL_DEVICE_OFFLINE:
case DEVCTL_DEVICE_REMOVE:
case DEVCTL_DEVICE_RESET:
name = ndi_dc_getname(dcp);
addr = ndi_dc_getaddr(dcp);
if ((name == NULL) || (addr == NULL)) {
rv = EINVAL;
goto out;
}
/*
* Find child with name@addr - might find a devinfo
* child (child), a pathinfo child (path), or nothing.
*/
scsi_hba_devi_enter(self, &circ);
(void) scsi_findchild(self, name, addr, 1, &child, &path, NULL);
if (path) {
/* Found a pathinfo */
ASSERT(path && (child == NULL));
mdi_hold_path(path);
scsi_hba_devi_exit_phci(self, circ);
sd = NULL;
} else if (child) {
/* Found a devinfo */
ASSERT(child && (path == NULL));
/* verify scsi_device of child */
if (ndi_flavor_get(child) == SCSA_FLAVOR_SCSI_DEVICE)
sd = ddi_get_driver_private(child);
else
sd = NULL;
} else {
ASSERT((path == NULL) && (child == NULL));
scsi_hba_devi_exit(self, circ);
rv = ENXIO; /* found nothing */
goto out;
}
break;
case DEVCTL_BUS_RESETALL: /* ioctl that operate on any child */
/*
* Find a child's scsi_address so we can invoke tran_reset.
*
* Future: If no child exists, we could fake a child. This will
* be a enhancement for the future - for now, we fall back to
* BUS_RESET.
*/
scsi_hba_devi_enter(self, &circ);
child = ddi_get_child(self);
sd = NULL;
while (child) {
/* verify scsi_device of child */
if (ndi_flavor_get(child) == SCSA_FLAVOR_SCSI_DEVICE)
sd = ddi_get_driver_private(child);
if (sd != NULL) {
/*
* NOTE: node has a scsi_device structure, so
* it must be initialized.
*/
ndi_hold_devi(child);
break;
}
child = ddi_get_next_sibling(child);
}
scsi_hba_devi_exit(self, circ);
break;
}
switch (cmd) {
case DEVCTL_DEVICE_GETSTATE:
if (path) {
if (mdi_dc_return_dev_state(path, dcp) != MDI_SUCCESS)
rv = EFAULT;
} else if (child) {
if (ndi_dc_return_dev_state(child, dcp) != NDI_SUCCESS)
rv = EFAULT;
} else {
rv = ENXIO;
}
break;
case DEVCTL_DEVICE_RESET:
if (sd == NULL) {
rv = ENOTTY;
break;
}
if (tran->tran_reset == NULL) {
rv = ENOTSUP;
break;
}
/* Start with the small stick */
if (scsi_reset(&sd->sd_address, RESET_LUN) == 1)
break; /* LUN reset worked */
if (scsi_reset(&sd->sd_address, RESET_TARGET) != 1)
rv = EIO; /* Target reset failed */
break;
case DEVCTL_BUS_QUIESCE:
if ((ndi_get_bus_state(self, &bus_state) == NDI_SUCCESS) &&
(bus_state == BUS_QUIESCED))
rv = EALREADY;
else if (tran->tran_quiesce == NULL)
rv = ENOTSUP; /* man ioctl(7I) says ENOTTY */
else if (tran->tran_quiesce(self) != 0)
rv = EIO;
else if (ndi_set_bus_state(self, BUS_QUIESCED) != NDI_SUCCESS)
rv = EIO;
break;
case DEVCTL_BUS_UNQUIESCE:
if ((ndi_get_bus_state(self, &bus_state) == NDI_SUCCESS) &&
(bus_state == BUS_ACTIVE))
rv = EALREADY;
else if (tran->tran_unquiesce == NULL)
rv = ENOTSUP; /* man ioctl(7I) says ENOTTY */
else if (tran->tran_unquiesce(self) != 0)
rv = EIO;
else if (ndi_set_bus_state(self, BUS_ACTIVE) != NDI_SUCCESS)
rv = EIO;
break;
case DEVCTL_BUS_RESET:
if (tran->tran_bus_reset == NULL)
rv = ENOTSUP; /* man ioctl(7I) says ENOTTY */
else if (tran->tran_bus_reset(self, RESET_BUS) != 1)
rv = EIO;
break;
case DEVCTL_BUS_RESETALL:
if ((sd != NULL) &&
(scsi_reset(&sd->sd_address, RESET_ALL) == 1)) {
break; /* reset all worked */
}
if (tran->tran_bus_reset == NULL) {
rv = ENOTSUP; /* man ioctl(7I) says ENOTTY */
break;
}
if (tran->tran_bus_reset(self, RESET_BUS) != 1)
rv = EIO; /* bus reset failed */
break;
case DEVCTL_BUS_CONFIGURE:
if (ndi_devi_config(self, NDI_DEVFS_CLEAN | NDI_DEVI_PERSIST |
NDI_CONFIG_REPROBE) != NDI_SUCCESS) {
rv = EIO;
}
break;
case DEVCTL_BUS_UNCONFIGURE:
if (ndi_devi_unconfig(self,
NDI_DEVFS_CLEAN | NDI_DEVI_REMOVE) != NDI_SUCCESS) {
rv = EBUSY;
}
break;
case DEVCTL_DEVICE_ONLINE:
ASSERT(child || path);
if (path) {
if (mdi_pi_online(path, NDI_USER_REQ) != MDI_SUCCESS)
rv = EIO;
} else {
if (ndi_devi_online(child, 0) != NDI_SUCCESS)
rv = EIO;
}
break;
case DEVCTL_DEVICE_OFFLINE:
ASSERT(child || path);
if (sd != NULL)
(void) scsi_clear_task_set(&sd->sd_address);
if (path) {
if (mdi_pi_offline(path, NDI_USER_REQ) != MDI_SUCCESS)
rv = EIO;
} else {
if (ndi_devi_offline(child,
NDI_DEVFS_CLEAN) != NDI_SUCCESS)
rv = EIO;
}
break;
case DEVCTL_DEVICE_REMOVE:
ASSERT(child || path);
if (sd != NULL)
(void) scsi_clear_task_set(&sd->sd_address);
if (path) {
/* NOTE: don't pass NDI_DEVI_REMOVE to mdi_pi_offline */
if (mdi_pi_offline(path, NDI_USER_REQ) == MDI_SUCCESS) {
scsi_hba_devi_enter_phci(self, &circ);
mdi_rele_path(path);
/* ... here is the DEVICE_REMOVE part. */
(void) mdi_pi_free(path, 0);
path = NULL;
} else {
rv = EIO;
}
} else {
if (ndi_devi_offline(child,
NDI_DEVFS_CLEAN | NDI_DEVI_REMOVE) != NDI_SUCCESS)
rv = EIO;
}
break;
default:
ASSERT(dcp != NULL);
rv = ENOTTY;
break;
}
/* all done -- clean up and return */
out:
/* release hold on what we found */
if (path) {
scsi_hba_devi_enter_phci(self, &circ);
mdi_rele_path(path);
}
if (path || child)
scsi_hba_devi_exit(self, circ);
if (dcp)
ndi_dc_freehdl(dcp);
if (self)
ddi_release_devi(self);
*rvalp = rv;
return (rv);
}
/*ARGSUSED*/
static int
scsi_hba_fm_init_child(dev_info_t *self, dev_info_t *child, int cap,
ddi_iblock_cookie_t *ibc)
{
scsi_hba_tran_t *tran = ddi_get_driver_private(self);
return (tran ? tran->tran_fm_capable : scsi_fm_capable);
}
static int
scsi_hba_bus_power(dev_info_t *self, void *impl_arg, pm_bus_power_op_t op,
void *arg, void *result)
{
scsi_hba_tran_t *tran;
tran = ddi_get_driver_private(self);
if (tran && tran->tran_bus_power) {
return (tran->tran_bus_power(self, impl_arg,
op, arg, result));
}
return (pm_busop_bus_power(self, impl_arg, op, arg, result));
}
/*
* Return the lun64 value from a address string: "addr,lun[,sfunc]". Either
* the lun is after the first ',' or the entire address string is the lun.
* Return SCSI_LUN64_ILLEGAL if the format is incorrect. A lun64 is at most
* 16 hex digits long.
*
* If the address string specified has incorrect syntax (busconfig one of
* bogus /devices path) then scsi_addr_to_lun64 can return SCSI_LUN64_ILLEGAL.
*/
static scsi_lun64_t
scsi_addr_to_lun64(char *addr)
{
scsi_lun64_t lun64;
char *s;
int i;
if (addr) {
s = strchr(addr, ','); /* "addr,lun" */
if (s)
s++; /* skip ',', at lun */
else
s = addr; /* "lun" */
for (lun64 = 0, i = 0; *s && (i < 16); s++, i++) {
if (*s >= '0' && *s <= '9')
lun64 = (lun64 << 4) + (*s - '0');
else if (*s >= 'A' && *s <= 'F')
lun64 = (lun64 << 4) + 10 + (*s - 'A');
else if (*s >= 'a' && *s <= 'f')
lun64 = (lun64 << 4) + 10 + (*s - 'a');
else
break;
}
if (*s && (*s != ',')) /* [,sfunc] is OK */
lun64 = SCSI_LUN64_ILLEGAL;
} else
lun64 = SCSI_LUN64_ILLEGAL;
if (lun64 == SCSI_LUN64_ILLEGAL)
SCSI_HBA_LOG((_LOG(2), NULL, NULL,
"addr_to_lun64 %s lun %" PRIlun64,
addr ? addr : "NULL", lun64));
return (lun64);
}
/*
* Return the sfunc value from a address string: "addr,lun[,sfunc]". Either the
* sfunc is after the second ',' or the entire address string is the sfunc.
* Return -1 if there is only one ',' in the address string or the string is
* invalid. An sfunc is at most two hex digits long.
*/
static int
scsi_addr_to_sfunc(char *addr)
{
int sfunc;
char *s;
int i;
if (addr) {
s = strchr(addr, ','); /* "addr,lun" */
if (s) {
s++; /* skip ',', at lun */
s = strchr(s, ','); /* "lun,sfunc]" */
if (s == NULL)
return (-1); /* no ",sfunc" */
s++; /* skip ',', at sfunc */
} else
s = addr; /* "sfunc" */
for (sfunc = 0, i = 0; *s && (i < 2); s++, i++) {
if (*s >= '0' && *s <= '9')
sfunc = (sfunc << 4) + (*s - '0');
else if (*s >= 'A' && *s <= 'F')
sfunc = (sfunc << 4) + 10 + (*s - 'A');
else if (*s >= 'a' && *s <= 'f')
sfunc = (sfunc << 4) + 10 + (*s - 'a');
else
break;
}
if (*s)
sfunc = -1; /* illegal */
} else
sfunc = -1;
return (sfunc);
}
/*
* Convert scsi ascii string data to NULL terminated (semi) legal IEEE 1275
* "compatible" (name) property form.
*
* For ASCII INQUIRY data, a one-way conversion algorithm is needed to take
* SCSI_ASCII (20h - 7Eh) to a 1275-like compatible form. The 1275 spec allows
* letters, digits, one ",", and ". _ + -", all limited by a maximum 31
* character length. Since ", ." are used as separators in the compatible
* string itself, they are converted to "_". All SCSI_ASCII characters that
* are illegal in 1275, as well as any illegal SCSI_ASCII characters
* encountered, are converted to "_". To reduce length, trailing blanks are
* trimmed from SCSI_ASCII fields prior to conversion.
*
* Example: SCSI_ASCII "ST32550W SUN2.1G" -> "ST32550W_SUN2_1G"
*
* NOTE: the 1275 string form is always less than or equal to the scsi form.
*/
static char *
string_scsi_to_1275(char *s_1275, char *s_scsi, int len)
{
(void) strncpy(s_1275, s_scsi, len);
s_1275[len--] = '\0';
while (len >= 0) {
if (s_1275[len] == ' ')
s_1275[len--] = '\0'; /* trim trailing " " */
else
break;
}
while (len >= 0) {
if (((s_1275[len] >= 'a') && (s_1275[len] <= 'z')) ||
((s_1275[len] >= 'A') && (s_1275[len] <= 'Z')) ||
((s_1275[len] >= '0') && (s_1275[len] <= '9')) ||
(s_1275[len] == '_') ||
(s_1275[len] == '+') ||
(s_1275[len] == '-'))
len--; /* legal 1275 */
else
s_1275[len--] = '_'; /* illegal SCSI_ASCII | 1275 */
}
return (s_1275);
}
/*
* Given the inquiry data, binding_set, and dtype_node for a scsi device,
* return the nodename and compatible property for the device. The "compatible"
* concept comes from IEEE-1275. The compatible information is returned is in
* the correct form for direct use defining the "compatible" string array
* property. Internally, "compatible" is also used to determine the nodename
* to return.
*
* This function is provided as a separate entry point for use by drivers that
* currently issue their own non-SCSA inquiry command and perform their own
* node creation based their own private compiled in tables. Converting these
* drivers to use this interface provides a quick easy way of obtaining
* consistency as well as the flexibility associated with the 1275 techniques.
*
* The dtype_node is passed as a separate argument (instead of having the
* implementation use inq_dtype). It indicates that information about
* a secondary function embedded service should be produced.
*
* Callers must always use scsi_hba_nodename_compatible_free, even if
* *nodenamep is null, to free the nodename and compatible information
* when done.
*
* If a nodename can't be determined then **compatiblep will point to a
* diagnostic string containing all the compatible forms.
*
* NOTE: some compatible strings may violate the 31 character restriction
* imposed by IEEE-1275. This is not a problem because Solaris does not care
* about this 31 character limit.
*
* Each compatible form belongs to a form-group. The form-groups currently
* defined are generic ("scsiclass"), binding-set ("scsa.b"), and failover
* ("scsa.f").
*
* The following compatible forms, in high to low precedence
* order, are defined for SCSI target device nodes.
*
* scsiclass,DDEEFFF.vVVVVVVVV.pPPPPPPPPPPPPPPPP.rRRRR (1 *1&2)
* scsiclass,DDEE.vVVVVVVVV.pPPPPPPPPPPPPPPPP.rRRRR (2 *1)
* scsiclass,DDFFF.vVVVVVVVV.pPPPPPPPPPPPPPPPP.rRRRR (3 *2)
* scsiclass,DD.vVVVVVVVV.pPPPPPPPPPPPPPPPP.rRRRR (4)
* scsiclass,DDEEFFF.vVVVVVVVV.pPPPPPPPPPPPPPPPP (5 *1&2)
* scsiclass,DDEE.vVVVVVVVV.pPPPPPPPPPPPPPPPP (6 *1)
* scsiclass,DDFFF.vVVVVVVVV.pPPPPPPPPPPPPPPPP (7 *2)
* scsiclass,DD.vVVVVVVVV.pPPPPPPPPPPPPPPPP (8)
* scsa,DD.bBBBBBBBB (8.5 *3)
* scsiclass,DDEEFFF (9 *1&2)
* scsiclass,DDEE (10 *1)
* scsiclass,DDFFF (11 *2)
* scsiclass,DD (12)
* scsa.fFFF (12.5 *4)
* scsiclass (13)
*
* *1 only produced on a secondary function node
* *2 only produced when generic form-group flags exist.
* *3 only produced when binding-set form-group legacy support is needed
* *4 only produced when failover form-group flags exist.
*
* where:
*
* v is the letter 'v'. Denotest the
* beginning of VVVVVVVV.
*
* VVVVVVVV Translated scsi_vendor.
*
* p is the letter 'p'. Denotes the
* beginning of PPPPPPPPPPPPPPPP.
*
* PPPPPPPPPPPPPPPP Translated scsi_product.
*
* r is the letter 'r'. Denotes the
* beginning of RRRR.
*
* RRRR Translated scsi_revision.
*
* DD is a two digit ASCII hexadecimal
* number. The value of the two digits is
* based one the SCSI "Peripheral device
* type" command set associated with the
* node. On a primary node this is the
* scsi_dtype of the primary command set,
* on a secondary node this is the
* scsi_dtype associated with the secondary
* function embedded command set.
*
* EE Same encoding used for DD. This form is
* only generated on secondary function
* nodes. The DD secondary function is embedded
* in an EE device.
*
* FFF Concatenation, in alphabetical order,
* of the flag characters within a form-group.
* For a given form-group, the following
* flags are defined.
*
* scsiclass: (generic form-group):
* R Removable_Media: Used when
* inq_rmb is set.
* S SAF-TE device: Used when
* inquiry information indicates
* SAF-TE devices.
*
* scsa.f: (failover form-group):
* E Explicit Target_Port_Group: Used
* when inq_tpgse is set and 'G' is
* alse present.
* G GUID: Used when a GUID can be
* generated for the device.
* I Implicit Target_Port_Group: Used
* when inq_tpgs is set and 'G' is
* also present.
*
* Forms using FFF are only be generated
* if there are applicable flag
* characters.
*
* b is the letter 'b'. Denotes the
* beginning of BBBBBBBB.
*
* BBBBBBBB Binding-set. Operating System Specific:
* scsi-binding-set property of HBA.
*/
#define NCOMPAT (1 + (13 + 2) + 1)
#define COMPAT_LONGEST (strlen( \
"scsiclass,DDEEFFF.vVVVVVVVV.pPPPPPPPPPPPPPPPP.rRRRR" + 1))
/*
* Private version with extra device 'identity' arguments to allow code
* to determine GUID FFF support.
*/
static void
scsi_hba_ident_nodename_compatible_get(struct scsi_inquiry *inq,
uchar_t *inq80, size_t inq80len, uchar_t *inq83, size_t inq83len,
char *binding_set, int dtype_node, char *compat0,
char **nodenamep, char **drivernamep,
char ***compatiblep, int *ncompatiblep)
{
char vid[sizeof (inq->inq_vid) + 1 ];
char pid[sizeof (inq->inq_pid) + 1];
char rev[sizeof (inq->inq_revision) + 1];
char gf[sizeof ("RS\0")];
char ff[sizeof ("EGI\0")];
int dtype_device;
int ncompat; /* number of compatible */
char **compatp; /* compatible ptrs */
int i;
char *nname; /* nodename */
char *dname; /* driver name */
char **csp;
char *p;
int tlen;
int len;
major_t major;
ddi_devid_t devid;
char *guid;
uchar_t *iqd = (uchar_t *)inq;
/*
* Nodename_aliases: This table was originally designed to be
* implemented via a new nodename_aliases file - a peer to the
* driver_aliases that selects a nodename based on compatible
* forms in much the same say driver_aliases is used to select
* driver bindings from compatible forms. Each compatible form
* is an 'alias'. Until a more general need for a
* nodename_aliases file exists, which may never occur, the
* scsi mappings are described here via a compiled in table.
*
* This table contains nodename mappings for self-identifying
* scsi devices enumerated by the Solaris kernel. For a given
* device, the highest precedence "compatible" form with a
* mapping is used to select the nodename for the device. This
* will typically be a generic nodename, however in some legacy
* compatibility cases a driver nodename mapping may be selected.
*
* Because of possible breakage associated with switching SCSI
* target devices from driver nodenames to generic nodenames,
* we are currently unable to support generic nodenames for all
* SCSI devices (binding-sets). Although /devices paths are
* defined as unstable, avoiding possible breakage is
* important. Some of the newer SCSI transports (USB) already
* use generic nodenames. All new SCSI transports and target
* devices should use generic nodenames. At times this decision
* may be architecture dependent (sparc .vs. intel) based on when
* a transport was supported on a particular architecture.
*
* We provide a base set of generic nodename mappings based on
* scsiclass dtype and higher-precedence driver nodename
* mappings based on scsa "binding-set" to cover legacy
* issues. The binding-set is typically associated with
* "scsi-binding-set" property value of the HBA. The legacy
* mappings are provided independent of whether the driver they
* refer to is installed. This allows a correctly named node
* be created at discovery time, and binding to occur when/if
* an add_drv of the legacy driver occurs.
*
* We also have mappings for legacy SUN hardware that
* misidentifies itself (enclosure services which identify
* themselves as processors). All future hardware should use
* the correct dtype.
*
* As SCSI HBAs are modified to use the SCSA interfaces for
* self-identifying SCSI target devices (PSARC/2004/116) the
* nodename_aliases table (PSARC/2004/420) should be augmented
* with legacy mappings in order to maintain compatibility with
* existing /devices paths, especially for devices that house
* an OS. Failure to do this may cause upgrade problems.
* Additions for new target devices or transports should not
* add scsa binding-set compatible mappings.
*/
static struct nodename_aliases {
char *na_nodename; /* nodename */
char *na_alias; /* compatible form match */
} na[] = {
/* # mapping to generic nodenames based on scsi dtype */
{"disk", "scsiclass,00"},
{"tape", "scsiclass,01"},
{"printer", "scsiclass,02"},
{"processor", "scsiclass,03"},
{"worm", "scsiclass,04"},
{"cdrom", "scsiclass,05"},
{"scanner", "scsiclass,06"},
{"optical-disk", "scsiclass,07"},
{"medium-changer", "scsiclass,08"},
{"obsolete", "scsiclass,09"},
{"prepress-a", "scsiclass,0a"},
{"prepress-b", "scsiclass,0b"},
{"array-controller", "scsiclass,0c"},
{"enclosure", "scsiclass,0d"},
{"disk", "scsiclass,0e"},
{"card-reader", "scsiclass,0f"},
{"bridge", "scsiclass,10"},
{"object-store", "scsiclass,11"},
{"reserved", "scsiclass,12"},
{"reserved", "scsiclass,13"},
{"reserved", "scsiclass,14"},
{"reserved", "scsiclass,15"},
{"reserved", "scsiclass,16"},
{"reserved", "scsiclass,17"},
{"reserved", "scsiclass,18"},
{"reserved", "scsiclass,19"},
{"reserved", "scsiclass,1a"},
{"reserved", "scsiclass,1b"},
{"reserved", "scsiclass,1c"},
{"reserved", "scsiclass,1d"},
{"well-known-lun", "scsiclass,1e"},
{"unknown", "scsiclass,1f"},
#ifdef sparc
/* # legacy mapping to driver nodenames for fcp binding-set */
{"ssd", "scsa,00.bfcp"},
{"st", "scsa,01.bfcp"},
{"sgen", "scsa,08.bfcp"},
{"ses", "scsa,0d.bfcp"},
/* # legacy mapping to driver nodenames for vhci binding-set */
{"ssd", "scsa,00.bvhci"},
{"st", "scsa,01.bvhci"},
{"sgen", "scsa,08.bvhci"},
{"ses", "scsa,0d.bvhci"},
#else /* sparc */
/* # for x86 fcp and vhci use generic nodenames */
#endif /* sparc */
/* # legacy mapping to driver nodenames for spi binding-set */
{"sd", "scsa,00.bspi"},
{"sd", "scsa,05.bspi"},
{"sd", "scsa,07.bspi"},
{"st", "scsa,01.bspi"},
{"ses", "scsa,0d.bspi"},
/* # SUN misidentified spi hardware */
{"ses", "scsiclass,03.vSUN.pD2"},
{"ses", "scsiclass,03.vSYMBIOS.pD1000"},
/* # legacy mapping to driver nodenames for atapi binding-set */
{"sd", "scsa,00.batapi"},
{"sd", "scsa,05.batapi"},
{"sd", "scsa,07.batapi"},
{"st", "scsa,01.batapi"},
{"unknown", "scsa,0d.batapi"},
/* # legacy mapping to generic nodenames for usb binding-set */
{"disk", "scsa,05.busb"},
{"disk", "scsa,07.busb"},
{"changer", "scsa,08.busb"},
{"comm", "scsa,09.busb"},
{"array_ctlr", "scsa,0c.busb"},
{"esi", "scsa,0d.busb"},
/*
* mapping nodenames for mpt based on scsi dtype
* for being compatible with the original node names
* under mpt controller
*/
{"sd", "scsa,00.bmpt"},
{"sd", "scsa,05.bmpt"},
{"sd", "scsa,07.bmpt"},
{"st", "scsa,01.bmpt"},
{"ses", "scsa,0d.bmpt"},
{"sgen", "scsa,08.bmpt"},
{NULL, NULL}
};
struct nodename_aliases *nap;
/* NOTE: drivernamep can be NULL */
ASSERT(nodenamep && compatiblep && ncompatiblep &&
(binding_set == NULL || (strlen(binding_set) <= 8)));
if ((nodenamep == NULL) || (compatiblep == NULL) ||
(ncompatiblep == NULL))
return;
/*
* In order to reduce runtime we allocate one block of memory that
* contains both the NULL terminated array of pointers to compatible
* forms and the individual compatible strings. This block is
* somewhat larger than needed, but is short lived - it only exists
* until the caller can transfer the information into the "compatible"
* string array property and call scsi_hba_nodename_compatible_free.
*/
tlen = NCOMPAT * COMPAT_LONGEST;
compatp = kmem_alloc((NCOMPAT * sizeof (char *)) + tlen, KM_SLEEP);
/* convert inquiry data from SCSI ASCII to 1275 string */
(void) string_scsi_to_1275(vid, inq->inq_vid,
sizeof (inq->inq_vid));
(void) string_scsi_to_1275(pid, inq->inq_pid,
sizeof (inq->inq_pid));
(void) string_scsi_to_1275(rev, inq->inq_revision,
sizeof (inq->inq_revision));
ASSERT((strlen(vid) <= sizeof (inq->inq_vid)) &&
(strlen(pid) <= sizeof (inq->inq_pid)) &&
(strlen(rev) <= sizeof (inq->inq_revision)));
/*
* Form flags in ***ALPHABETICAL*** order within form-group:
*
* NOTE: When adding a new flag to an existing form-group, careful
* consideration must be given to not breaking existing bindings
* based on that form-group.
*/
/*
* generic form-group flags
* R removable:
* Set when inq_rmb is set and for well known scsi dtypes. For a
* bus where the entire device is removable (like USB), we expect
* the HBA to intercept the inquiry data and set inq_rmb.
* Since OBP does not distinguish removable media in its generic
* name selection we avoid setting the 'R' flag if the root is not
* yet mounted.
* S SAF-TE device
* Set when the device type is SAT-TE.
*/
i = 0;
dtype_device = inq->inq_dtype & DTYPE_MASK;
if (modrootloaded && (inq->inq_rmb ||
(dtype_device == DTYPE_WORM) ||
(dtype_device == DTYPE_RODIRECT) ||
(dtype_device == DTYPE_OPTICAL)))
gf[i++] = 'R'; /* removable */
gf[i] = '\0';
if (modrootloaded &&
(dtype_device == DTYPE_PROCESSOR) &&
(strncmp((char *)&iqd[44], "SAF-TE", 4) == 0))
gf[i++] = 'S';
gf[i] = '\0';
/*
* failover form-group flags
* E Explicit Target_Port_Group_Supported:
* Set for a device that has a GUID if inq_tpgse also set.
* G GUID:
* Set when we have identity information, can determine a devid
* from the identity information, and can generate a guid from
* that devid.
* I Implicit Target_Port_Group_Supported:
* Set for a device that has a GUID if inq_tpgs also set.
*/
i = 0;
if ((inq80 || inq83) &&
(ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, NULL,
(uchar_t *)inq, sizeof (*inq), inq80, inq80len, inq83, inq83len,
&devid) == DDI_SUCCESS)) {
guid = ddi_devid_to_guid(devid);
ddi_devid_free(devid);
} else
guid = NULL;
if (guid && (inq->inq_tpgs & TPGS_FAILOVER_EXPLICIT))
ff[i++] = 'E'; /* EXPLICIT TPGS */
if (guid)
ff[i++] = 'G'; /* GUID */
if (guid && (inq->inq_tpgs & TPGS_FAILOVER_IMPLICIT))
ff[i++] = 'I'; /* IMPLICIT TPGS */
ff[i] = '\0';
if (guid)
ddi_devid_free_guid(guid);
/*
* Construct all applicable compatible forms. See comment at the
* head of the function for a description of the compatible forms.
*/
csp = compatp;
p = (char *)(compatp + NCOMPAT);
/* ( 0) driver (optional, not documented in scsi(4)) */
if (compat0) {
*csp++ = p;
(void) snprintf(p, tlen, "%s", compat0);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* ( 1) scsiclass,DDEEFFF.vV.pP.rR */
if ((dtype_device != dtype_node) && *gf && *vid && *pid && *rev) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x%02x%s.v%s.p%s.r%s",
dtype_node, dtype_device, gf, vid, pid, rev);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* ( 2) scsiclass,DDEE.vV.pP.rR */
if ((dtype_device != dtype_node) && *vid && *pid && *rev) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x%02x.v%s.p%s.r%s",
dtype_node, dtype_device, vid, pid, rev);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* ( 3) scsiclass,DDFFF.vV.pP.rR */
if (*gf && *vid && *pid && *rev) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x%s.v%s.p%s.r%s",
dtype_node, gf, vid, pid, rev);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* ( 4) scsiclass,DD.vV.pP.rR */
if (*vid && *pid && rev) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x.v%s.p%s.r%s",
dtype_node, vid, pid, rev);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* ( 5) scsiclass,DDEEFFF.vV.pP */
if ((dtype_device != dtype_node) && *gf && *vid && *pid) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x%02x%s.v%s.p%s",
dtype_node, dtype_device, gf, vid, pid);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* ( 6) scsiclass,DDEE.vV.pP */
if ((dtype_device != dtype_node) && *vid && *pid) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x%02x.v%s.p%s",
dtype_node, dtype_device, vid, pid);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* ( 7) scsiclass,DDFFF.vV.pP */
if (*gf && *vid && *pid) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x%s.v%s.p%s",
dtype_node, gf, vid, pid);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* ( 8) scsiclass,DD.vV.pP */
if (*vid && *pid) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x.v%s.p%s",
dtype_node, vid, pid);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* (8.5) scsa,DD.bB (not documented in scsi(4)) */
if (binding_set) {
*csp++ = p;
(void) snprintf(p, tlen, "scsa,%02x.b%s",
dtype_node, binding_set);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* ( 9) scsiclass,DDEEFFF */
if ((dtype_device != dtype_node) && *gf) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x%02x%s",
dtype_node, dtype_device, gf);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* (10) scsiclass,DDEE */
if (dtype_device != dtype_node) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x%02x",
dtype_node, dtype_device);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* (11) scsiclass,DDFFF */
if (*gf) {
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x%s",
dtype_node, gf);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* (12) scsiclass,DD */
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass,%02x", dtype_node);
len = strlen(p) + 1;
p += len;
tlen -= len;
/* (12.5) scsa.fFFF */
if (*ff) {
*csp++ = p;
(void) snprintf(p, tlen, "scsa.f%s", ff);
len = strlen(p) + 1;
p += len;
tlen -= len;
}
/* (13) scsiclass */
*csp++ = p;
(void) snprintf(p, tlen, "scsiclass");
len = strlen(p) + 1;
p += len;
tlen -= len;
ASSERT(tlen >= 0);
*csp = NULL; /* NULL terminate array of pointers */
ncompat = csp - compatp;
/*
* When determining a nodename, a nodename_aliases specified
* mapping has precedence over using a driver_aliases specified
* driver binding as a nodename.
*
* See if any of the compatible forms have a nodename_aliases
* specified nodename. These mappings are described by
* nodename_aliases entries like:
*
* disk "scsiclass,00"
* enclosure "scsiclass,03.vSYMBIOS.pD1000"
* ssd "scsa,00.bfcp"
*
* All nodename_aliases mappings should idealy be to generic
* names, however a higher precedence legacy mapping to a
* driver name may exist. The highest precedence mapping
* provides the nodename, so legacy driver nodename mappings
* (if they exist) take precedence over generic nodename
* mappings.
*/
for (nname = NULL, csp = compatp; (nname == NULL) && *csp; csp++) {
for (nap = na; nap->na_nodename; nap++) {
if (strcmp(*csp, nap->na_alias) == 0) {
nname = nap->na_nodename;
break;
}
}
}
/*
* Determine the driver name based on compatible (which may
* have the passed in compat0 as the first item). The driver_aliases
* file has entries like
*
* sd "scsiclass,00"
*
* that map compatible forms to specific drivers. These entries are
* established by add_drv/update_drv. We use the most specific
* driver binding as the nodename. This matches the eventual
* ddi_driver_compatible_major() binding that will be
* established by bind_node()
*/
for (dname = NULL, csp = compatp; *csp; csp++) {
major = ddi_name_to_major(*csp);
if ((major == DDI_MAJOR_T_NONE) ||
(devnamesp[major].dn_flags & DN_DRIVER_REMOVED))
continue;
if (dname = ddi_major_to_name(major))
break;
}
/*
* If no nodename_aliases mapping exists then use the
* driver_aliases specified driver binding as a nodename.
*/
if (nname == NULL)
nname = dname;
/* return results */
if (nname) {
*nodenamep = kmem_alloc(strlen(nname) + 1, KM_SLEEP);
(void) strcpy(*nodenamep, nname);
} else {
*nodenamep = NULL;
/*
* If no nodename could be determined return a special
* 'compatible' to be used for a diagnostic message. This
* compatible contains all compatible forms concatenated
* into a single string pointed to by the first element.
*/
for (csp = compatp; *(csp + 1); csp++)
*((*csp) + strlen(*csp)) = ' ';
*(compatp + 1) = NULL;
ncompat = 1;
}
if (drivernamep) {
if (dname) {
*drivernamep = kmem_alloc(strlen(dname) + 1, KM_SLEEP);
(void) strcpy(*drivernamep, dname);
} else
*drivernamep = NULL;
}
*compatiblep = compatp;
*ncompatiblep = ncompat;
}
/*
* Free allocations associated with scsi_hba_ident_nodename_compatible_get.
*/
static void
scsi_hba_ident_nodename_compatible_free(char *nodename, char *drivername,
char **compatible)
{
if (nodename)
kmem_free(nodename, strlen(nodename) + 1);
if (drivername)
kmem_free(drivername, strlen(drivername) + 1);
if (compatible)
kmem_free(compatible, (NCOMPAT * sizeof (char *)) +
(NCOMPAT * COMPAT_LONGEST));
}
void
scsi_hba_nodename_compatible_get(struct scsi_inquiry *inq,
char *binding_set, int dtype_node, char *compat0,
char **nodenamep, char ***compatiblep, int *ncompatiblep)
{
scsi_hba_ident_nodename_compatible_get(inq,
NULL, 0, NULL, 0, binding_set, dtype_node, compat0, nodenamep,
NULL, compatiblep, ncompatiblep);
}
void
scsi_hba_nodename_compatible_free(char *nodename, char **compatible)
{
scsi_hba_ident_nodename_compatible_free(nodename, NULL, compatible);
}
/* return the unit_address associated with a scsi_device */
char *
scsi_device_unit_address(struct scsi_device *sd)
{
mdi_pathinfo_t *pip;
ASSERT(sd && sd->sd_dev);
if ((sd == NULL) || (sd->sd_dev == NULL))
return (NULL);
pip = (mdi_pathinfo_t *)sd->sd_pathinfo;
if (pip)
return (mdi_pi_get_addr(pip));
else
return (ddi_get_name_addr(sd->sd_dev));
}
/* scsi_device property interfaces */
#define _TYPE_DEFINED(flags) \
(((flags & SCSI_DEVICE_PROP_TYPE_MSK) == SCSI_DEVICE_PROP_PATH) || \
((flags & SCSI_DEVICE_PROP_TYPE_MSK) == SCSI_DEVICE_PROP_DEVICE))
#define _DEVICE_PIP(sd, flags) \
((((flags & SCSI_DEVICE_PROP_TYPE_MSK) == SCSI_DEVICE_PROP_PATH) && \
sd->sd_pathinfo) ? (mdi_pathinfo_t *)sd->sd_pathinfo : NULL)
int
scsi_device_prop_get_int(struct scsi_device *sd, uint_t flags,
char *name, int defval)
{
mdi_pathinfo_t *pip;
int v = defval;
int data;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (v);
pip = _DEVICE_PIP(sd, flags);
if (pip) {
rv = mdi_prop_lookup_int(pip, name, &data);
if (rv == DDI_PROP_SUCCESS)
v = data;
} else
v = ddi_prop_get_int(DDI_DEV_T_ANY, sd->sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, name, v);
return (v);
}
int64_t
scsi_device_prop_get_int64(struct scsi_device *sd, uint_t flags,
char *name, int64_t defval)
{
mdi_pathinfo_t *pip;
int64_t v = defval;
int64_t data;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (v);
pip = _DEVICE_PIP(sd, flags);
if (pip) {
rv = mdi_prop_lookup_int64(pip, name, &data);
if (rv == DDI_PROP_SUCCESS)
v = data;
} else
v = ddi_prop_get_int64(DDI_DEV_T_ANY, sd->sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, name, v);
return (v);
}
int
scsi_device_prop_lookup_byte_array(struct scsi_device *sd, uint_t flags,
char *name, uchar_t **data, uint_t *nelements)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_lookup_byte_array(pip, name, data, nelements);
else
rv = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, sd->sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
name, data, nelements);
return (rv);
}
int
scsi_device_prop_lookup_int_array(struct scsi_device *sd, uint_t flags,
char *name, int **data, uint_t *nelements)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_lookup_int_array(pip, name, data, nelements);
else
rv = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, sd->sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
name, data, nelements);
return (rv);
}
int
scsi_device_prop_lookup_string(struct scsi_device *sd, uint_t flags,
char *name, char **data)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_lookup_string(pip, name, data);
else
rv = ddi_prop_lookup_string(DDI_DEV_T_ANY, sd->sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
name, data);
return (rv);
}
int
scsi_device_prop_lookup_string_array(struct scsi_device *sd, uint_t flags,
char *name, char ***data, uint_t *nelements)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_lookup_string_array(pip, name, data, nelements);
else
rv = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, sd->sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
name, data, nelements);
return (rv);
}
int
scsi_device_prop_update_byte_array(struct scsi_device *sd, uint_t flags,
char *name, uchar_t *data, uint_t nelements)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_update_byte_array(pip, name, data, nelements);
else
rv = ndi_prop_update_byte_array(DDI_DEV_T_NONE, sd->sd_dev,
name, data, nelements);
return (rv);
}
int
scsi_device_prop_update_int(struct scsi_device *sd, uint_t flags,
char *name, int data)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_update_int(pip, name, data);
else
rv = ndi_prop_update_int(DDI_DEV_T_NONE, sd->sd_dev,
name, data);
return (rv);
}
int
scsi_device_prop_update_int64(struct scsi_device *sd, uint_t flags,
char *name, int64_t data)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_update_int64(pip, name, data);
else
rv = ndi_prop_update_int64(DDI_DEV_T_NONE, sd->sd_dev,
name, data);
return (rv);
}
int
scsi_device_prop_update_int_array(struct scsi_device *sd, uint_t flags,
char *name, int *data, uint_t nelements)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_update_int_array(pip, name, data, nelements);
else
rv = ndi_prop_update_int_array(DDI_DEV_T_NONE, sd->sd_dev,
name, data, nelements);
return (rv);
}
int
scsi_device_prop_update_string(struct scsi_device *sd, uint_t flags,
char *name, char *data)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_update_string(pip, name, data);
else
rv = ndi_prop_update_string(DDI_DEV_T_NONE, sd->sd_dev,
name, data);
return (rv);
}
int
scsi_device_prop_update_string_array(struct scsi_device *sd, uint_t flags,
char *name, char **data, uint_t nelements)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_update_string_array(pip, name, data, nelements);
else
rv = ndi_prop_update_string_array(DDI_DEV_T_NONE, sd->sd_dev,
name, data, nelements);
return (rv);
}
int
scsi_device_prop_remove(struct scsi_device *sd, uint_t flags, char *name)
{
mdi_pathinfo_t *pip;
int rv;
ASSERT(sd && name && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (name == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return (DDI_PROP_INVAL_ARG);
pip = _DEVICE_PIP(sd, flags);
if (pip)
rv = mdi_prop_remove(pip, name);
else
rv = ndi_prop_remove(DDI_DEV_T_NONE, sd->sd_dev, name);
return (rv);
}
void
scsi_device_prop_free(struct scsi_device *sd, uint_t flags, void *data)
{
mdi_pathinfo_t *pip;
ASSERT(sd && data && sd->sd_dev && _TYPE_DEFINED(flags));
if ((sd == NULL) || (data == NULL) || (sd->sd_dev == NULL) ||
!_TYPE_DEFINED(flags))
return;
pip = _DEVICE_PIP(sd, flags);
if (pip)
(void) mdi_prop_free(data);
else
ddi_prop_free(data);
}
/* SMP device property interfaces */
int
smp_device_prop_get_int(struct smp_device *smp_sd, char *name, int defval)
{
int v = defval;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (v);
v = ddi_prop_get_int(DDI_DEV_T_ANY, smp_sd->smp_sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, name, v);
return (v);
}
int64_t
smp_device_prop_get_int64(struct smp_device *smp_sd, char *name, int64_t defval)
{
int64_t v = defval;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (v);
v = ddi_prop_get_int64(DDI_DEV_T_ANY, smp_sd->smp_sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, name, v);
return (v);
}
int
smp_device_prop_lookup_byte_array(struct smp_device *smp_sd, char *name,
uchar_t **data, uint_t *nelements)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, smp_sd->smp_sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
name, data, nelements);
return (rv);
}
int
smp_device_prop_lookup_int_array(struct smp_device *smp_sd, char *name,
int **data, uint_t *nelements)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, smp_sd->smp_sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
name, data, nelements);
return (rv);
}
int
smp_device_prop_lookup_string(struct smp_device *smp_sd, char *name,
char **data)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ddi_prop_lookup_string(DDI_DEV_T_ANY, smp_sd->smp_sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
name, data);
return (rv);
}
int
smp_device_prop_lookup_string_array(struct smp_device *smp_sd, char *name,
char ***data, uint_t *nelements)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, smp_sd->smp_sd_dev,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
name, data, nelements);
return (rv);
}
int
smp_device_prop_update_byte_array(struct smp_device *smp_sd, char *name,
uchar_t *data, uint_t nelements)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ndi_prop_update_byte_array(DDI_DEV_T_NONE, smp_sd->smp_sd_dev,
name, data, nelements);
return (rv);
}
int
smp_device_prop_update_int(struct smp_device *smp_sd, char *name, int data)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ndi_prop_update_int(DDI_DEV_T_NONE, smp_sd->smp_sd_dev,
name, data);
return (rv);
}
int
smp_device_prop_update_int64(struct smp_device *smp_sd, char *name,
int64_t data)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ndi_prop_update_int64(DDI_DEV_T_NONE, smp_sd->smp_sd_dev,
name, data);
return (rv);
}
int
smp_device_prop_update_int_array(struct smp_device *smp_sd, char *name,
int *data, uint_t nelements)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ndi_prop_update_int_array(DDI_DEV_T_NONE, smp_sd->smp_sd_dev,
name, data, nelements);
return (rv);
}
int
smp_device_prop_update_string(struct smp_device *smp_sd, char *name, char *data)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ndi_prop_update_string(DDI_DEV_T_NONE, smp_sd->smp_sd_dev,
name, data);
return (rv);
}
int
smp_device_prop_update_string_array(struct smp_device *smp_sd, char *name,
char **data, uint_t nelements)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ndi_prop_update_string_array(DDI_DEV_T_NONE, smp_sd->smp_sd_dev,
name, data, nelements);
return (rv);
}
int
smp_device_prop_remove(struct smp_device *smp_sd, char *name)
{
int rv;
ASSERT(smp_sd && name && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (name == NULL) || (smp_sd->smp_sd_dev == NULL))
return (DDI_PROP_INVAL_ARG);
rv = ndi_prop_remove(DDI_DEV_T_NONE, smp_sd->smp_sd_dev, name);
return (rv);
}
void
smp_device_prop_free(struct smp_device *smp_sd, void *data)
{
ASSERT(smp_sd && data && smp_sd->smp_sd_dev);
if ((smp_sd == NULL) || (data == NULL) || (smp_sd->smp_sd_dev == NULL))
return;
ddi_prop_free(data);
}
/*
* scsi_hba_ua_set: given "unit-address" string, set properties.
*
* Function to set the properties on a devinfo or pathinfo node from
* the "unit-address" part of a "name@unit-address" /devices path 'name'
* string.
*
* This function works in conjunction with scsi_ua_get()/scsi_hba_ua_get()
* (and possibly with an HBA driver's tran_tgt_init() implementation).
*/
static int
scsi_hba_ua_set(char *ua, dev_info_t *dchild, mdi_pathinfo_t *pchild)
{
char *p;
int tgt;
char *tgt_port_end;
char *tgt_port;
int tgt_port_len;
int sfunc;
scsi_lun64_t lun64;
/* Caller must choose to decorate devinfo *or* pathinfo */
ASSERT((dchild != NULL) ^ (pchild != NULL));
if (dchild && pchild)
return (0);
/*
* generic implementation based on "tgt,lun[,sfunc]" address form.
* parse hex "tgt" part of "tgt,lun[,sfunc]"
*/
p = ua;
tgt_port_end = NULL;
for (tgt = 0; *p && *p != ','; p++) {
if (*p >= '0' && *p <= '9')
tgt = (tgt << 4) + (*p - '0');
else if (*p >= 'a' && *p <= 'f')
tgt = (tgt << 4) + 10 + (*p - 'a');
else
tgt = -1; /* non-numeric */
/*
* if non-numeric or our of range set tgt to -1 and
* skip forward
*/
if (tgt < 0) {
tgt = -1;
for (; *p && *p != ','; p++)
;
break;
}
}
tgt_port_end = p;
/* parse hex ",lun" part of "tgt,lun[,sfunc]" */
if (*p)
p++;
for (lun64 = 0; *p && *p != ','; p++) {
if (*p >= '0' && *p <= '9')
lun64 = (lun64 << 4) + (*p - '0');
else if (*p >= 'a' && *p <= 'f')
lun64 = (lun64 << 4) + 10 + (*p - 'a');
else
return (0);
}
/* parse hex ",sfunc" part of "tgt,lun[,sfunc]" */
if (*p) {
p++;
for (sfunc = 0; *p; p++) {
if (*p >= '0' && *p <= '9')
sfunc = (sfunc << 4) + (*p - '0');
else if (*p >= 'a' && *p <= 'f')
sfunc = (sfunc << 4) + 10 + (*p - 'a');
else
return (0);
}
} else
sfunc = -1;
if (dchild) {
/*
* Decorate a devinfo node with unit address properties.
* This adds the the addressing properties needed to
* DDI_CTLOPS_UNINITCHILD the devinfo node (i.e. perform
* the reverse operation - form unit address from properties).
*/
if ((tgt != -1) && (ndi_prop_update_int(DDI_DEV_T_NONE, dchild,
SCSI_ADDR_PROP_TARGET, tgt) != DDI_PROP_SUCCESS))
return (0);
if (tgt_port_end) {
tgt_port_len = tgt_port_end - ua + 1;
tgt_port = kmem_alloc(tgt_port_len, KM_SLEEP);
(void) strlcpy(tgt_port, ua, tgt_port_len);
if (ndi_prop_update_string(DDI_DEV_T_NONE, dchild,
SCSI_ADDR_PROP_TARGET_PORT, tgt_port) !=
DDI_PROP_SUCCESS) {
kmem_free(tgt_port, tgt_port_len);
return (0);
}
kmem_free(tgt_port, tgt_port_len);
}
/* Set the appropriate lun properties. */
if (lun64 < SCSI_32LUNS_PER_TARGET) {
if (ndi_prop_update_int(DDI_DEV_T_NONE, dchild,
SCSI_ADDR_PROP_LUN, (int)lun64) != DDI_PROP_SUCCESS)
return (0);
}
if (ndi_prop_update_int64(DDI_DEV_T_NONE, dchild,
SCSI_ADDR_PROP_LUN64, lun64) != DDI_PROP_SUCCESS)
return (0);
/* Set the sfunc property */
if ((sfunc != -1) &&
(ndi_prop_update_int(DDI_DEV_T_NONE, dchild,
SCSI_ADDR_PROP_SFUNC, (int)sfunc) != DDI_PROP_SUCCESS))
return (0);
} else if (pchild) {
/*
* Decorate a pathinfo node with unit address properties.
*/
if ((tgt != -1) && (mdi_prop_update_int(pchild,
SCSI_ADDR_PROP_TARGET, tgt) != DDI_PROP_SUCCESS))
return (0);
if (tgt_port_end) {
tgt_port_len = tgt_port_end - ua + 1;
tgt_port = kmem_alloc(tgt_port_len, KM_SLEEP);
(void) strlcpy(tgt_port, ua, tgt_port_len);
if (mdi_prop_update_string(pchild,
SCSI_ADDR_PROP_TARGET_PORT, tgt_port) !=
DDI_PROP_SUCCESS) {
kmem_free(tgt_port, tgt_port_len);
return (0);
}
kmem_free(tgt_port, tgt_port_len);
}
/* Set the appropriate lun properties */
if (lun64 < SCSI_32LUNS_PER_TARGET) {
if (mdi_prop_update_int(pchild, SCSI_ADDR_PROP_LUN,
(int)lun64) != DDI_PROP_SUCCESS)
return (0);
}
if (mdi_prop_update_int64(pchild, SCSI_ADDR_PROP_LUN64,
lun64) != DDI_PROP_SUCCESS)
return (0);
/* Set the sfunc property */
if ((sfunc != -1) &&
(mdi_prop_update_int(pchild,
SCSI_ADDR_PROP_SFUNC, (int)sfunc) != DDI_PROP_SUCCESS))
return (0);
}
return (1);
}
/*
* Private ndi_devi_find/mdi_pi_find implementation - find the child
* dev_info/path_info of self whose phci name matches "name@caddr".
* We have our own implementation because we need to search with both
* forms of sibling lists (dev_info and path_info) and we need to be able
* to search with a NULL name in order to find siblings already associated
* with a given unit-address (same @addr). NOTE: NULL name search will never
* return probe node.
*
* If pchildp is NULL and we find a pathinfo child, we return the client
* devinfo node in *dchildp.
*
* The init flag argument should be clear when called from places where
* recursion could occur (like scsi_busctl_initchild) and when the caller
* has already performed a search for name@addr with init set (performance).
*
* Future: Integrate ndi_devi_findchild_by_callback into scsi_findchild.
*/
static int
scsi_findchild(dev_info_t *self, char *name, char *addr, int init,
dev_info_t **dchildp, mdi_pathinfo_t **pchildp, int *ppi)
{
dev_info_t *dchild; /* devinfo child */
mdi_pathinfo_t *pchild; /* pathinfo child */
int found = CHILD_TYPE_NONE;
char *daddr;
ASSERT(self && DEVI_BUSY_OWNED(self));
ASSERT(addr && dchildp);
if ((self == NULL) || (addr == NULL) || (dchildp == NULL))
return (CHILD_TYPE_NONE);
*dchildp = NULL;
if (pchildp)
*pchildp = NULL;
if (ppi)
*ppi = 0;
/* Walk devinfo child list to find a match */
for (dchild = ddi_get_child(self); dchild;
dchild = ddi_get_next_sibling(dchild)) {
if (i_ddi_node_state(dchild) < DS_INITIALIZED)
continue;
daddr = ddi_get_name_addr(dchild);
if (daddr && (strcmp(addr, daddr) == 0) &&
((name == NULL) ||
(strcmp(name, DEVI(dchild)->devi_node_name) == 0))) {
/*
* If we are asked to find "anything" at a given
* unit-address (name == NULL), we don't realy want
* to find the 'probe' node. The existance of
* a probe node on a 'name == NULL' search should
* fail. This will trigger slow-path code where
* we explicity look for, and synchronize against,
* a node named "probe" at the unit-address.
*/
if ((name == NULL) &&
scsi_hba_devi_is_barrier(dchild)) {
SCSI_HBA_LOG((_LOG(4), NULL, dchild,
"%s@%s 'probe' devinfo found, skip",
name ? name : "", addr));
continue;
}
/* We have found a match. */
found |= CHILD_TYPE_DEVINFO;
SCSI_HBA_LOG((_LOG(4), NULL, dchild,
"%s@%s devinfo found", name ? name : "", addr));
*dchildp = dchild; /* devinfo found */
break;
}
}
/*
* Walk pathinfo child list to find a match.
*
* NOTE: Unlike devinfo nodes, pathinfo nodes have a string searchable
* unit-address from creation - so there is no need for an 'init'
* search block of code for pathinfo nodes below.
*/
pchild = mdi_pi_find(self, NULL, addr);
if (pchild) {
/*
* NOTE: If name specified and we match a pathinfo unit
* address, we don't check the client node name.
*/
if (ppi)
*ppi = mdi_pi_get_path_instance(pchild);
found |= CHILD_TYPE_PATHINFO;
if (pchildp) {
SCSI_HBA_LOG((_LOG(4), self, NULL,
"%s pathinfo found", mdi_pi_spathname(pchild)));
*pchildp = pchild; /* pathinfo found */
} else if (*dchildp == NULL) {
/*
* Did not find a devinfo node, found a pathinfo node,
* but caller did not ask us to return a pathinfo node:
* we return the 'client' devinfo node instead (but
* with CHILD_TYPE_PATHINFO 'found' return value).
*/
dchild = mdi_pi_get_client(pchild);
SCSI_HBA_LOG((_LOG(4), NULL, dchild,
"%s pathinfo found, client switch",
mdi_pi_spathname(pchild)));
/*
* A pathinfo node always has a 'client' devinfo node,
* but we need to ensure that the 'client' is
* initialized and has a scsi_device structure too.
*/
ASSERT(dchild);
if (i_ddi_node_state(dchild) < DS_INITIALIZED) {
SCSI_HBA_LOG((_LOG(4), NULL, dchild,
"%s found client, initchild",
mdi_pi_spathname(pchild)));
(void) ddi_initchild(ddi_get_parent(dchild),
dchild);
}
if (i_ddi_node_state(dchild) >= DS_INITIALIZED) {
/* client found and initialized */
*dchildp = dchild;
} else {
SCSI_HBA_LOG((_LOG(4), NULL, dchild,
"%s found client, but failed initchild",
mdi_pi_spathname(pchild)));
}
}
}
/* Try devinfo again with initchild of uninitialized nodes */
if ((found == CHILD_TYPE_NONE) && init) {
for (dchild = ddi_get_child(self); dchild;
dchild = ddi_get_next_sibling(dchild)) {
/* skip if checked above */
if (i_ddi_node_state(dchild) >= DS_INITIALIZED)
continue;
/* attempt initchild to establish unit-address */
(void) ddi_initchild(self, dchild);
if (i_ddi_node_state(dchild) < DS_INITIALIZED)
continue;
daddr = ddi_get_name_addr(dchild);
if (daddr &&
((name == NULL) || (strcmp(name,
DEVI(dchild)->devi_node_name) == 0)) &&
(strcmp(addr, daddr) == 0)) {
found |= CHILD_TYPE_DEVINFO;
SCSI_HBA_LOG((_LOG(4), NULL, dchild,
"%s@%s devinfo found post initchild",
name ? name : "", addr));
*dchildp = dchild; /* devinfo found */
break; /* node found */
}
}
}
/*
* We should never find devinfo and pathinfo at the same
* unit-address.
*/
ASSERT(found != (CHILD_TYPE_DEVINFO | CHILD_TYPE_PATHINFO));
if (found == (CHILD_TYPE_DEVINFO | CHILD_TYPE_PATHINFO)) {
found = CHILD_TYPE_NONE;
*dchildp = NULL;
*pchildp = NULL;
}
return (found);
}
/*
* Given information about a child device (contained on probe node) construct
* and return a pointer to the dynamic SID devinfo node associated with the
* device. In the creation of this SID node a compatible property for the
* device is formed and used to establish a nodename (via
* /etc/nodename_aliases) and to bind a driver (via /etc/driver_aliases).
*
* If this routine is called then we got a response from a device and
* obtained the inquiry data from the device. Some inquiry results indicate
* that the specific LUN we addressed does not exist, and we don't want to
* bind a standard target driver to the node we create. Even though the
* specific LUN is not usable, the framework may still want to bind a
* target driver to the device for internal communication with the device -
* an example would be issuing a report_lun to enumerate other LUNs under a
* DPQ_NEVER LUN0. Another example would be wanting to known that the
* DPQ_NEVER LUN0 device exists in BUS_CONFIG_ONE for non-existent LUN
* caching optimizations. To support this we let the caller specify a
* compatible property (or driver). If LUN0 inquiry data indicates that the
* LUN does not exist then we establish compat0 as the highest precedence(0)
* compatible form. If used, this compat0 driver will never be called on to
* issue external commands to the device.
*
* If no driver binds to the device using driver_alias we establish the driver
* passed in as the node name.
*/
static int
scsi_device_createchild(dev_info_t *self, char *addr, scsi_enum_t se,
struct scsi_device *sdprobe, dev_info_t **dchildp, mdi_pathinfo_t **pchildp)
{
scsi_lun64_t lun64;
int dtype;
int dpq;
int dpq_vu;
int dtype_node;
int lunexists;
char *compat0;
char *nname;
char **compat = NULL;
int ncompat;
dev_info_t *dchild = NULL;
mdi_pathinfo_t *pchild = NULL;
dev_info_t *probe = sdprobe->sd_dev;
struct scsi_inquiry *inq = sdprobe->sd_inq;
uchar_t *inq80 = NULL;
uchar_t *inq83 = NULL;
uint_t inq80len, inq83len;
char *binding_set = NULL;
char *dname = NULL;
ddi_devid_t devid;
int have_devid = 0;
ddi_devid_t cdevid;
int have_cdevid = 0;
char *devid_str;
char *guid = NULL;
ASSERT(self && addr && *addr && DEVI_BUSY_OWNED(self));
ASSERT(dchildp && pchildp);
/*
* Determine the lun and whether the lun exists. We may need to create
* a node for LUN0 (with compat0 driver binding) even if the lun does
* not exist - so we can run report_lun to find additional LUNs.
*/
lun64 = scsi_addr_to_lun64(addr);
dtype = inq->inq_dtype & DTYPE_MASK; /* device */
dpq = inq->inq_dtype & DPQ_MASK;
dpq_vu = inq->inq_dtype & DPQ_VUNIQ ? 1 : 0;
dtype_node = scsi_addr_to_sfunc(addr); /* secondary function */
if (dtype_node == -1)
dtype_node = dtype; /* node for device */
lunexists = (dtype != dtype_node) || /* override */
((dpq_vu == 0) && (dpq == DPQ_POSSIBLE)) || /* ANSII */
(dpq_vu && (lun64 == 0)); /* VU LUN0 */
if (dtype == DTYPE_UNKNOWN)
lunexists = 0;
SCSI_HBA_LOG((_LOG(4), self, NULL,
"@%s dtype %x %x dpq_vu %d dpq %x: %d",
addr, dtype, dtype_node, dpq_vu, dpq, lunexists));
/* A non-existent LUN0 uses compatible_nodev. */
if (lunexists) {
compat0 = NULL; /* compat0 not needed */
} else if (lun64 == 0) {
compat0 = compatible_nodev;
SCSI_HBA_LOG((_LOG(2), self, NULL,
"@%s lun 0 with compat0 %s", addr, compat0));
} else
goto out; /* no node created */
/* Obtain identity information from probe node. */
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, probe,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "inquiry-page-80",
&inq80, &inq80len) != DDI_PROP_SUCCESS)
inq80 = NULL;
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, probe,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "inquiry-page-83",
&inq83, &inq83len) != DDI_PROP_SUCCESS)
inq83 = NULL;
/* Get "scsi-binding-set" property (if there is one). */
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
"scsi-binding-set", &binding_set) == DDI_PROP_SUCCESS)
SCSI_HBA_LOG((_LOG(2), NULL, probe,
"binding_set '%s'", binding_set));
/* determine the node name and compatible information */
scsi_hba_ident_nodename_compatible_get(inq,
inq80, inq80len, inq83, inq83len, binding_set, dtype_node,
compat0, &nname, &dname, &compat, &ncompat);
if (nname == NULL) {
/*
* We will not be able to create a node because we could not
* determine a node name. Print out a NODRIVER level warning
* message with the compatible forms for the device. Note that
* there may be a driver.conf node that attaches to the device,
* which is why we only produce this warning message for debug
* kernels.
*/
SCSI_HBA_LOG((_LOG(1), NULL, self,
"no node_name for device @%s:\n compatible: %s",
addr, *compat));
goto out;
}
/*
* FUTURE: some day we may want an accurate "compatible" on the probe
* node so that vhci_is_dev_supported() in scsi_vhci could, at
* least in part, determine/configure based on "compatible".
*
* if (ndi_prop_update_string_array(DDI_DEV_T_NONE, probe,
* "compatible", compat, ncompat) != DDI_PROP_SUCCESS) {
* SCSI_HBA_LOG((_LOG(3), self, NULL,
* "%s@%s failed probe compatible decoration",
* nname, addr));
* goto out;
* }
*/
/* Encode devid from identity information. */
if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, dname,
(uchar_t *)inq, sizeof (*inq), inq80, inq80len, inq83, inq83len,
&devid) == DDI_SUCCESS) {
have_devid = 1;
/* Attempt to form guid from devid. */
guid = ddi_devid_to_guid(devid);
/* Produce string devid for debug. */
devid_str = ddi_devid_str_encode(devid, NULL);
SCSI_HBA_LOG((_LOG(3), self, probe, "devid '%s' guid '%s'",
devid_str ? devid_str : "NULL", guid ? guid : "NULL"));
ddi_devid_str_free(devid_str);
}
/*
* Determine if the device should be enumerated as under the vHCI
* (client node) or under the pHCI. By convention scsi_vhci expects
* the "cinfo" argument identity information to be represented as a
* devinfo node with the needed information (i.e. the pHCI probe node).
*/
if ((guid == NULL) ||
(mdi_is_dev_supported(MDI_HCI_CLASS_SCSI, self, sdprobe) !=
MDI_SUCCESS)) {
SCSI_HBA_LOG((_LOG(3), self, probe, "==> devinfo"));
/*
* Enumerate under pHCI:
*
* Create dynamic SID dchild node. No attempt is made to
* transfer information (except the addressing and identity
* information) from the probe node to the dynamic node since
* there may be HBA specific side effects that the framework
* does not known how to transfer.
*/
ndi_devi_alloc_sleep(self, nname,
(se == SE_HP) ? DEVI_SID_HP_NODEID : DEVI_SID_NODEID,
&dchild);
ASSERT(dchild);
ndi_flavor_set(dchild, SCSA_FLAVOR_SCSI_DEVICE);
/*
* Decorate new node with addressing properties (via
* scsi_hba_ua_set()), compatible, identity information, and
* class.
*/
if ((scsi_hba_ua_set(addr, dchild, NULL) == 0) ||
(ndi_prop_update_string_array(DDI_DEV_T_NONE, dchild,
"compatible", compat, ncompat) != DDI_PROP_SUCCESS) ||
(inq80 && (ndi_prop_update_byte_array(DDI_DEV_T_NONE,
dchild, "inquiry-page-80", inq80, inq80len) !=
DDI_PROP_SUCCESS)) ||
(inq83 && (ndi_prop_update_byte_array(DDI_DEV_T_NONE,
dchild, "inquiry-page-83", inq83, inq83len) !=
DDI_PROP_SUCCESS)) ||
(ndi_prop_update_string(DDI_DEV_T_NONE, dchild,
"class", "scsi") != DDI_PROP_SUCCESS)) {
SCSI_HBA_LOG((_LOG(2), self, NULL,
"devinfo @%s failed decoration", addr));
(void) scsi_hba_remove_node(dchild);
dchild = NULL;
goto out;
}
/* Bind the driver */
if (ndi_devi_bind_driver(dchild, 0) != NDI_SUCCESS) {
/* need to bind in order to register a devid */
SCSI_HBA_LOG((_LOGCFG, NULL, dchild,
"devinfo @%s created, no driver-> "
"no devid_register", addr));
goto out;
}
/* Register devid */
if (have_devid) {
if (ddi_devid_register(dchild, devid) == DDI_FAILURE)
SCSI_HBA_LOG((_LOG(1), NULL, dchild,
"devinfo @%s created, "
"devid register failed", addr));
else
SCSI_HBA_LOG((_LOG(2), NULL, dchild,
"devinfo @%s created with devid", addr));
} else
SCSI_HBA_LOG((_LOG(2), NULL, dchild,
"devinfo @%s created, no devid", addr));
} else {
/*
* Enumerate under vHCI:
*
* Create a pathinfo pchild node.
*/
SCSI_HBA_LOG((_LOG(3), self, probe, "==>pathinfo"));
if (mdi_pi_alloc_compatible(self, nname, guid, addr, compat,
ncompat, 0, &pchild) != MDI_SUCCESS) {
SCSI_HBA_LOG((_LOG(2), self, probe,
"pathinfo alloc failed"));
goto out;
}
ASSERT(pchild);
dchild = mdi_pi_get_client(pchild);
ASSERT(dchild);
ndi_flavor_set(dchild, SCSA_FLAVOR_SCSI_DEVICE);
/*
* Decorate new node with addressing properties via
* scsi_hba_ua_set().
*/
if (scsi_hba_ua_set(addr, NULL, pchild) == 0) {
SCSI_HBA_LOG((_LOG(1), self, NULL,
"pathinfo %s decoration failed",
mdi_pi_spathname(pchild)));
(void) mdi_pi_free(pchild, 0);
pchild = NULL;
goto out;
}
/* Bind the driver */
if (ndi_devi_bind_driver(dchild, 0) != NDI_SUCCESS) {
/* need to bind in order to register a devid */
SCSI_HBA_LOG((_LOGCFG, self, NULL,
"pathinfo %s created, no client driver-> "
"no devid_register", mdi_pi_spathname(pchild)));
goto out;
}
/* Watch out for inconsistancies in devids. */
if (ddi_devid_get(dchild, &cdevid) == DDI_SUCCESS)
have_cdevid = 1;
if (have_devid && !have_cdevid) {
/* Client does not yet have devid, register ours. */
if (ddi_devid_register(dchild, devid) == DDI_FAILURE)
SCSI_HBA_LOG((_LOG(1), self, NULL,
"pathinfo %s created, "
"devid register failed",
mdi_pi_spathname(pchild)));
else
SCSI_HBA_LOG((_LOG(2), self, NULL,
"pathinfo %s created with devid",
mdi_pi_spathname(pchild)));
} else if (have_devid && have_cdevid) {
/*
* We have devid and client already has devid:
* they must be the same.
*/
if (ddi_devid_compare(cdevid, devid) != 0) {
SCSI_HBA_LOG((_LOG(WARN), NULL, dchild,
"mismatched devid on path %s",
mdi_pi_spathname(pchild)));
}
} else if (!have_devid && have_cdevid) {
/*
* Client already has a devid, but we don't:
* we should not have missing devids.
*/
SCSI_HBA_LOG((_LOG(WARN), NULL, dchild,
"missing devid on path %s",
mdi_pi_spathname(pchild)));
} else if (!have_cdevid && !have_devid) {
/* devid not supported */
SCSI_HBA_LOG((_LOG(2), self, NULL,
"pathinfo %s created, no devid",
mdi_pi_spathname(pchild)));
}
}
/* free the node name and compatible information */
out: if (have_devid)
ddi_devid_free(devid);
if (have_cdevid)
ddi_devid_free(cdevid);
if (guid)
ddi_devid_free_guid(guid);
if (compat)
scsi_hba_ident_nodename_compatible_free(nname, dname, compat);
if (inq80)
ddi_prop_free(inq80);
if (inq83)
ddi_prop_free(inq83);
if (binding_set)
ddi_prop_free(binding_set);
/* return child_type results */
if (pchild) {
*dchildp = NULL;
*pchildp = pchild;
return (CHILD_TYPE_PATHINFO);
} else if (dchild) {
*dchildp = dchild;
*pchildp = NULL;
return (CHILD_TYPE_DEVINFO);
}
return (CHILD_TYPE_NONE);
}
/*
* Call scsi_device_createchild and then initchild the new node.
*/
static dev_info_t *
scsi_device_configchild(dev_info_t *self, char *addr, scsi_enum_t se,
struct scsi_device *sdprobe, int *circp, int *ppi)
{
int child_type;
dev_info_t *dchild;
mdi_pathinfo_t *pchild;
dev_info_t *child;
int rval;
ASSERT(self && addr && *addr && DEVI_BUSY_OWNED(self));
if (ppi)
*ppi = 0;
child_type = scsi_device_createchild(self, addr, se, sdprobe,
&dchild, &pchild);
/*
* Prevent multiple initialized (tran_tgt_init) nodes associated with
* the same @addr at the same time by calling tran_tgt_free() on the
* probe node prior to promotion of the 'real' node. After the call
* to scsi_hba_barrier_tran_tgt_free(), the HBA no longer has any
* probe node context.
*/
scsi_hba_barrier_tran_tgt_free(sdprobe->sd_dev);
switch (child_type) {
case CHILD_TYPE_NONE:
child = NULL;
break;
case CHILD_TYPE_PATHINFO:
/*
* Online pathinfo: Hold the path and exit the pHCI while
* calling mdi_pi_online() to avoid deadlock with power
* management of pHCI.
*/
ASSERT(MDI_PHCI(self));
mdi_hold_path(pchild);
scsi_hba_devi_exit_phci(self, *circp);
rval = mdi_pi_online(pchild, 0);
scsi_hba_devi_enter_phci(self, circp);
mdi_rele_path(pchild);
if (rval != MDI_SUCCESS) {
/* pathinfo form of "failed during tran_tgt_init" */
scsi_enumeration_failed(NULL, se,
mdi_pi_spathname(pchild), "path online");
(void) mdi_pi_free(pchild, 0);
return (NULL);
}
/*
* Return the path_instance of the pathinfo node.
*
* NOTE: We assume that sd_inq is not path-specific.
*/
if (ppi)
*ppi = mdi_pi_get_path_instance(pchild);
/*
* Fallthrough into CHILD_TYPE_DEVINFO code to promote
* the 'client' devinfo node as a dchild.
*/
dchild = mdi_pi_get_client(pchild);
SCSI_HBA_LOG((_LOG(4), NULL, dchild,
"pathinfo online successful"));
/* FALLTHROUGH */
case CHILD_TYPE_DEVINFO:
/*
* For now, we ndi_devi_online() the child because some other
* parts of the IO framework, like degenerate devid code,
* depend on bus_config driving nodes to DS_ATTACHED. At some
* point in the future, to keep things light-weight, we would
* like to change the ndi_devi_online call below to be
*
* if (ddi_initchild(self, dchild) != DDI_SUCCESS)
*
* This would promote the node so that framework code could
* find the child with an @addr search, but does not incur
* attach(9E) overhead for BUS_CONFIG_ALL cases where the
* framework is not interested in attach of the node.
*
* NOTE: If the addr specified has incorrect syntax (busconfig
* one of bogus /devices path) then call below can fail.
*/
if (ndi_devi_online(dchild, 0) != NDI_SUCCESS) {
SCSI_HBA_LOG((_LOG(2), NULL, dchild,
"devinfo online failed"));
/* failed online does not remove the node */
(void) scsi_hba_remove_node(dchild);
return (NULL);
}
SCSI_HBA_LOG((_LOG(4), NULL, dchild,
"devinfo initchild successful"));
child = dchild;
break;
}
return (child);
}
void
scsi_hba_pkt_comp(struct scsi_pkt *pkt)
{
scsi_hba_tran_t *tran;
uint8_t *sensep;
ASSERT(pkt);
/*
* Catch second call on the same packet before doing anything else.
*/
if (pkt->pkt_flags & FLAG_PKT_COMP_CALLED) {
cmn_err(
#ifdef DEBUG
CE_PANIC,
#else
CE_WARN,
#endif
"%s duplicate scsi_hba_pkt_comp(9F) on same scsi_pkt(9S)",
mod_containing_pc(caller()));
}
pkt->pkt_flags |= FLAG_PKT_COMP_CALLED;
if (pkt->pkt_comp == NULL)
return;
/*
* For HBA drivers that implement tran_setup_pkt(9E), if we are
* completing a 'consistent' mode DMA operation then we must
* perform dma_sync prior to calling pkt_comp to ensure that
* the target driver sees the correct data in memory.
*/
ASSERT((pkt->pkt_flags & FLAG_NOINTR) == 0);
if (((pkt->pkt_dma_flags & DDI_DMA_CONSISTENT) &&
(pkt->pkt_dma_flags & DDI_DMA_READ)) &&
((P_TO_TRAN(pkt)->tran_setup_pkt) != NULL)) {
scsi_sync_pkt(pkt);
}
/*
* If the HBA driver is using SCSAv3 scsi_hba_tgtmap_create enumeration
* then we detect the special ASC/ASCQ completion codes that indicate
* that the lun configuration of a target has changed. Since we need to
* be determine scsi_device given scsi_address enbedded in
* scsi_pkt (via scsi_address_device(9F)), we also require use of
* SCSI_HBA_ADDR_COMPLEX.
*/
tran = pkt->pkt_address.a_hba_tran;
ASSERT(tran);
if ((tran->tran_tgtmap == NULL) ||
!(tran->tran_hba_flags & SCSI_HBA_ADDR_COMPLEX))
goto comp; /* not using tgtmap */
/*
* Check for lun-change notification and queue the scsi_pkt for
* lunchg1 processing. The 'pkt_comp' call to the target driver
* is part of lunchg1 processing.
*/
if ((pkt->pkt_reason == CMD_CMPLT) &&
(((*pkt->pkt_scbp) & STATUS_MASK) == STATUS_CHECK) &&
(pkt->pkt_state & STATE_ARQ_DONE)) {
sensep = (uint8_t *)&(((struct scsi_arq_status *)(uintptr_t)
(pkt->pkt_scbp))->sts_sensedata);
if (((scsi_sense_key(sensep) == KEY_UNIT_ATTENTION) &&
(scsi_sense_asc(sensep) == 0x3f) &&
(scsi_sense_ascq(sensep) == 0x0e)) ||
((scsi_sense_key(sensep) == KEY_UNIT_ATTENTION) &&
(scsi_sense_asc(sensep) == 0x25) &&
(scsi_sense_ascq(sensep) == 0x00))) {
/*
* The host adaptor is done with the packet, we use
* pkt_stmp stage-temporary to link the packet for
* lunchg1 processing.
*
* NOTE: pkt_ha_private is not available since its use
* extends to tran_teardown_pkt.
*/
mutex_enter(&scsi_lunchg1_mutex);
pkt->pkt_stmp = scsi_lunchg1_list;
scsi_lunchg1_list = pkt;
if (pkt->pkt_stmp == NULL)
(void) cv_signal(&scsi_lunchg1_cv);
mutex_exit(&scsi_lunchg1_mutex);
return;
}
}
comp: (*pkt->pkt_comp)(pkt);
}
/*
* return 1 if the specified node is a barrier/probe node
*/
static int
scsi_hba_devi_is_barrier(dev_info_t *probe)
{
if (probe && (strcmp(ddi_node_name(probe), "probe") == 0))
return (1);
return (0);
}
/*
* A host adapter driver is easier to write if we prevent multiple initialized
* (tran_tgt_init) scsi_device structures to the same unit-address at the same
* time. We prevent this from occurring all the time during the barrier/probe
* node to real child hand-off by calling scsi_hba_barrier_tran_tgt_free
* on the probe node prior to ddi_inichild of the 'real' node. As part of
* this early tran_tgt_free implementation, we must also call this function
* as we put a probe node on the scsi_hba_barrier_list.
*/
static void
scsi_hba_barrier_tran_tgt_free(dev_info_t *probe)
{
struct scsi_device *sdprobe;
dev_info_t *self;
scsi_hba_tran_t *tran;
ASSERT(probe && scsi_hba_devi_is_barrier(probe));
/* Return if we never called tran_tgt_init(9E). */
if (i_ddi_node_state(probe) < DS_INITIALIZED)
return;
sdprobe = ddi_get_driver_private(probe);
self = ddi_get_parent(probe);
ASSERT(sdprobe && self);
tran = ddi_get_driver_private(self);
ASSERT(tran);
if (tran->tran_tgt_free) {
/*
* To correctly support TRAN_CLONE, we need to use the same
* cloned scsi_hba_tran(9S) structure for both tran_tgt_init(9E)
* and tran_tgt_free(9E).
*/
if (tran->tran_hba_flags & SCSI_HBA_TRAN_CLONE)
tran = sdprobe->sd_address.a_hba_tran;
if (!sdprobe->sd_tran_tgt_free_done) {
SCSI_HBA_LOG((_LOG(4), NULL, probe,
"tran_tgt_free EARLY"));
(*tran->tran_tgt_free) (self, probe, tran, sdprobe);
sdprobe->sd_tran_tgt_free_done = 1;
} else {
SCSI_HBA_LOG((_LOG(4), NULL, probe,
"tran_tgt_free EARLY already done"));
}
}
}
/*
* Add an entry to the list of barrier nodes to be asynchronously deleted by
* the scsi_hba_barrier_daemon after the specified timeout. Nodes on
* the barrier list are used to implement the bus_config probe cache
* of non-existent devices. The nodes are at DS_INITIALIZED, so their
* @addr is established for searching. Since devi_ref of a DS_INITIALIZED
* node will *not* prevent demotion, demotion is prevented by setting
* sd_uninit_prevent. Devinfo snapshots attempt to attach probe cache
* nodes, and on failure attempt to demote the node (without the participation
* of bus_unconfig) to DS_BOUND - this demotion is prevented via
* sd_uninit_prevent causing any attempted DDI_CTLOPS_UNINITCHILD to fail.
* Probe nodes are bound to nulldriver. The list is sorted by
* expiration time.
*
* NOTE: If we drove a probe node to DS_ATTACHED, we could use ndi_hold_devi()
* to prevent demotion (instead of sd_uninit_prevent).
*/
static void
scsi_hba_barrier_add(dev_info_t *probe, int seconds)
{
struct scsi_hba_barrier *nb;
struct scsi_hba_barrier *b;
struct scsi_hba_barrier **bp;
clock_t endtime;
ASSERT(scsi_hba_devi_is_barrier(probe));
/* HBA is no longer responsible for nodes on the barrier list. */
scsi_hba_barrier_tran_tgt_free(probe);
nb = kmem_alloc(sizeof (struct scsi_hba_barrier), KM_SLEEP);
mutex_enter(&scsi_hba_barrier_mutex);
endtime = ddi_get_lbolt() + drv_usectohz(seconds * MICROSEC);
for (bp = &scsi_hba_barrier_list; (b = *bp) != NULL;
bp = &b->barrier_next)
if (b->barrier_endtime > endtime)
break;
nb->barrier_next = *bp;
nb->barrier_endtime = endtime;
nb->barrier_probe = probe;
*bp = nb;
if (bp == &scsi_hba_barrier_list)
(void) cv_signal(&scsi_hba_barrier_cv);
mutex_exit(&scsi_hba_barrier_mutex);
}
/*
* Attempt to remove devinfo node node, return 1 if removed. We
* don't try to remove barrier nodes that have sd_uninit_prevent set
* (even though they should fail device_uninitchild).
*/
static int
scsi_hba_remove_node(dev_info_t *child)
{
dev_info_t *self = ddi_get_parent(child);
struct scsi_device *sd;
int circ;
int remove = 1;
int ret = 0;
char na[SCSI_MAXNAMELEN];
scsi_hba_devi_enter(self, &circ);
/* Honor sd_uninit_prevent on barrier nodes */
if (scsi_hba_devi_is_barrier(child)) {
sd = ddi_get_driver_private(child);
if (sd && sd->sd_uninit_prevent)
remove = 0;
}
if (remove) {
(void) ddi_deviname(child, na);
if (ddi_remove_child(child, 0) != DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG(2), NULL, child,
"remove_node failed"));
} else {
child = NULL; /* child is gone */
SCSI_HBA_LOG((_LOG(4), self, NULL,
"remove_node removed %s", *na ? &na[1] : na));
ret = 1;
}
} else {
SCSI_HBA_LOG((_LOG(4), NULL, child, "remove_node prevented"));
}
scsi_hba_devi_exit(self, circ);
return (ret);
}
/*
* The asynchronous barrier deletion daemon. Waits for a barrier timeout
* to expire, then deletes the barrier (removes it as a child).
*/
/*ARGSUSED*/
static void
scsi_hba_barrier_daemon(void *arg)
{
struct scsi_hba_barrier *b;
dev_info_t *probe;
callb_cpr_t cprinfo;
int circ;
dev_info_t *self;
CALLB_CPR_INIT(&cprinfo, &scsi_hba_barrier_mutex,
callb_generic_cpr, "scsi_hba_barrier_daemon");
again: mutex_enter(&scsi_hba_barrier_mutex);
for (;;) {
b = scsi_hba_barrier_list;
if (b == NULL) {
/* all barriers expired, wait for barrier_add */
CALLB_CPR_SAFE_BEGIN(&cprinfo);
(void) cv_wait(&scsi_hba_barrier_cv,
&scsi_hba_barrier_mutex);
CALLB_CPR_SAFE_END(&cprinfo, &scsi_hba_barrier_mutex);
} else {
if (ddi_get_lbolt() >= b->barrier_endtime) {
/*
* Drop and retry if ordering issue. Do this
* before calling scsi_hba_remove_node() and
* deadlocking.
*/
probe = b->barrier_probe;
self = ddi_get_parent(probe);
if (scsi_hba_devi_tryenter(self, &circ) == 0) {
delay: mutex_exit(&scsi_hba_barrier_mutex);
delay_random(5);
goto again;
}
/* process expired barrier */
if (!scsi_hba_remove_node(probe)) {
/* remove failed, delay and retry */
SCSI_HBA_LOG((_LOG(4), NULL, probe,
"delay expire"));
scsi_hba_devi_exit(self, circ);
goto delay;
}
scsi_hba_barrier_list = b->barrier_next;
kmem_free(b, sizeof (struct scsi_hba_barrier));
scsi_hba_devi_exit(self, circ);
} else {
/* establish timeout for next barrier expire */
(void) cv_timedwait(&scsi_hba_barrier_cv,
&scsi_hba_barrier_mutex,
b->barrier_endtime);
}
}
}
}
/*
* Remove all barriers associated with the specified HBA. This is called
* from from the bus_unconfig implementation to remove probe nodes associated
* with the specified HBA (self) so that probe nodes that have not expired
* will not prevent DR of the HBA.
*/
static void
scsi_hba_barrier_purge(dev_info_t *self)
{
struct scsi_hba_barrier **bp;
struct scsi_hba_barrier *b;
mutex_enter(&scsi_hba_barrier_mutex);
for (bp = &scsi_hba_barrier_list; (b = *bp) != NULL; ) {
if (ddi_get_parent(b->barrier_probe) == self) {
if (scsi_hba_remove_node(b->barrier_probe)) {
*bp = b->barrier_next;
kmem_free(b, sizeof (struct scsi_hba_barrier));
} else {
SCSI_HBA_LOG((_LOG(4), NULL, b->barrier_probe,
"skip purge"));
}
} else
bp = &b->barrier_next;
}
mutex_exit(&scsi_hba_barrier_mutex);
}
/*
* LUN-change processing daemons: processing occurs in two stages:
*
* Stage 1: Daemon waits for a lunchg1 queued scsi_pkt, dequeues the pkt,
* forms the path, completes the scsi_pkt (pkt_comp), and
* queues the path for stage 2 processing. The use of stage 1
* avoids issues related to memory allocation in interrupt context
* (scsi_hba_pkt_comp()). We delay the pkt_comp completion until
* after lunchg1 processing forms the path for stage 2 - this is
* done to prevent the target driver from detaching until the
* path formation is complete (driver with outstanding commands
* should not detach).
*
* Stage 2: Daemon waits for a lunchg2 queued request, dequeues the
* request, and opens the path using ldi_open_by_name(). The
* path opened uses a special "@taddr,*" unit address that will
* trigger lun enumeration in scsi_hba_bus_configone(). We
* trigger lun enumeration in stage 2 to avoid problems when
* initial ASC/ASCQ trigger occurs during discovery.
*/
/*ARGSUSED*/
static void
scsi_lunchg1_daemon(void *arg)
{
callb_cpr_t cprinfo;
struct scsi_pkt *pkt;
scsi_hba_tran_t *tran;
dev_info_t *self;
struct scsi_device *sd;
char *ua, *p;
char taddr[SCSI_MAXNAMELEN];
char path[MAXPATHLEN];
struct scsi_lunchg2 *lunchg2;
CALLB_CPR_INIT(&cprinfo, &scsi_lunchg1_mutex,
callb_generic_cpr, "scsi_lunchg1_daemon");
mutex_enter(&scsi_lunchg1_mutex);
for (;;) {
pkt = scsi_lunchg1_list;
if (pkt == NULL) {
/* All lunchg1 processing requests serviced, wait. */
CALLB_CPR_SAFE_BEGIN(&cprinfo);
(void) cv_wait(&scsi_lunchg1_cv,
&scsi_lunchg1_mutex);
CALLB_CPR_SAFE_END(&cprinfo, &scsi_lunchg1_mutex);
continue;
}
/* Unlink and perform lunchg1 processing on pkt. */
scsi_lunchg1_list = pkt->pkt_stmp;
/* Determine initiator port (self) from the pkt_address. */
tran = pkt->pkt_address.a_hba_tran;
ASSERT(tran && tran->tran_tgtmap && tran->tran_iport_dip);
self = tran->tran_iport_dip;
/*
* Determine scsi_devie from pkt_address (depends on
* SCSI_HBA_ADDR_COMPLEX).
*/
sd = scsi_address_device(&(pkt->pkt_address));
ASSERT(sd);
if (sd == NULL) {
(*pkt->pkt_comp)(pkt);
continue;
}
/* Determine unit-address from scsi_device. */
ua = scsi_device_unit_address(sd);
/* Extract taddr from the unit-address. */
for (p = taddr; (*ua != ',') && (*ua != '\0'); )
*p++ = *ua++;
*p = '\0'; /* NULL terminate taddr */
/*
* Form path using special "@taddr,*" notation to trigger
* lun enumeration.
*/
(void) ddi_pathname(self, path);
(void) strcat(path, "/luns@");
(void) strcat(path, taddr);
(void) strcat(path, ",*");
/*
* Now that we have the path, complete the pkt that
* triggered lunchg1 processing.
*/
(*pkt->pkt_comp)(pkt);
/* Allocate element for stage2 processing queue. */
lunchg2 = kmem_alloc(sizeof (*lunchg2), KM_SLEEP);
lunchg2->lunchg2_path = strdup(path);
/* Queue and dispatch to stage 2. */
SCSI_HBA_LOG((_LOG(2), self, NULL,
"lunchg stage1: queue %s", lunchg2->lunchg2_path));
mutex_enter(&scsi_lunchg2_mutex);
lunchg2->lunchg2_next = scsi_lunchg2_list;
scsi_lunchg2_list = lunchg2;
if (lunchg2->lunchg2_next == NULL)
(void) cv_signal(&scsi_lunchg2_cv);
mutex_exit(&scsi_lunchg2_mutex);
}
}
/*ARGSUSED*/
static void
scsi_lunchg2_daemon(void *arg)
{
callb_cpr_t cprinfo;
struct scsi_lunchg2 *lunchg2;
ldi_ident_t li;
ldi_handle_t lh;
CALLB_CPR_INIT(&cprinfo, &scsi_lunchg2_mutex,
callb_generic_cpr, "scsi_lunchg2_daemon");
li = ldi_ident_from_anon();
mutex_enter(&scsi_lunchg2_mutex);
for (;;) {
lunchg2 = scsi_lunchg2_list;
if (lunchg2 == NULL) {
/* All lunchg2 processing requests serviced, wait. */
CALLB_CPR_SAFE_BEGIN(&cprinfo);
(void) cv_wait(&scsi_lunchg2_cv,
&scsi_lunchg2_mutex);
CALLB_CPR_SAFE_END(&cprinfo, &scsi_lunchg2_mutex);
continue;
}
/* Unlink and perform lunchg2 processing on pkt. */
scsi_lunchg2_list = lunchg2->lunchg2_next;
/*
* Open and close the path to trigger lun enumeration. We
* don't expect the open to succeed, but we do expect code in
* scsi_hba_bus_configone() to trigger lun enumeration.
*/
SCSI_HBA_LOG((_LOG(2), NULL, NULL,
"lunchg stage2: open %s", lunchg2->lunchg2_path));
if (ldi_open_by_name(lunchg2->lunchg2_path,
FREAD, kcred, &lh, li) == 0)
(void) ldi_close(lh, FREAD, kcred);
/* Free path and linked element. */
strfree(lunchg2->lunchg2_path);
kmem_free(lunchg2, sizeof (*lunchg2));
}
}
/*
* Enumerate a child at the specified @addr. If a device exists @addr then
* ensure that we have the appropriately named devinfo node for it. Name is
* NULL in the bus_config_all case. This routine has no knowledge of the
* format of an @addr string or associated addressing properties.
*
* The caller must guarantee that there is an open scsi_hba_devi_enter on the
* parent. We return the scsi_device structure for the child device. This
* scsi_device structure is valid until the caller scsi_hba_devi_exit the
* parent. The caller can add do ndi_hold_devi of the child prior to the
* scsi_hba_devi_exit to extend the validity of the child.
*
* In some cases the returned scsi_device structure may be used to drive
* additional SCMD_REPORT_LUNS operations by bus_config_all callers.
*
* The first operation performed is to see if there is a dynamic SID nodes
* already attached at the specified "name@addr". This is the fastpath
* case for resolving a reference to a node that has already been created.
* All other references are serialized for a given @addr prior to probing
* to determine the type of device, if any, at the specified @addr.
* If no device is present then NDI_FAILURE is returned. The fact that a
* device does not exist may be determined via the barrier/probe cache,
* minimizing the probes of non-existent devices.
*
* When there is a device present the dynamic SID node is created based on
* the device found. If a driver.conf node exists for the same @addr it
* will either merge into the dynamic SID node (if the SID node bound to
* that driver), or exist independently. To prevent the actions of one driver
* causing side effects in another, code prevents multiple SID nodes from
* binding to the same "@addr" at the same time. There is autodetach code
* to allow one device to be replaced with another at the same @addr for
* slot addressed SCSI bus implementations (SPI). For compatibility with
* legacy driver.conf behavior, the code does not prevent multiple driver.conf
* nodes from attaching to the same @addr at the same time.
*
* This routine may have the side effect of creating nodes for devices other
* than the one being sought. It is possible that there is a different type of
* target device at that target/lun address than we were asking for. In that
* It is the caller's responsibility to determine whether the device we found,
* if any, at the specified address, is the one it really wanted.
*/
static struct scsi_device *
scsi_device_config(dev_info_t *self, char *name, char *addr, scsi_enum_t se,
int *circp, int *ppi)
{
dev_info_t *child = NULL;
dev_info_t *probe = NULL;
struct scsi_device *sdchild;
struct scsi_device *sdprobe;
dev_info_t *dsearch;
mdi_pathinfo_t *psearch;
major_t major;
int sp;
int pi = 0;
int wait_msg = scsi_hba_wait_msg;
int chg;
ASSERT(self && addr && DEVI_BUSY_OWNED(self));
SCSI_HBA_LOG((_LOG(4), self, NULL, "%s@%s wanted",
name ? name : "", addr));
/* playing with "probe" node name is dangerous */
if (name && (strcmp(name, "probe") == 0))
return (NULL);
/*
* NOTE: use 'goto done;' or 'goto fail;'. There should only be one
* 'return' statement from here to the end of the function - the one
* on the last line of the function.
*/
/*
* Fastpath: search to see if we are requesting a named SID node that
* already exists (we already created) - probe node does not count.
* scsi_findchild() does not hold the returned devinfo node, but
* this is OK since the caller has a scsi_hba_devi_enter on the
* attached parent HBA (self). The caller is responsible for attaching
* and placing a hold on the child (directly via ndi_hold_devi or
* indirectly via ndi_busop_bus_config) before doing an
* scsi_hba_devi_exit on the parent.
*
* NOTE: This fastpath prevents detecting a driver binding change
* (autodetach) if the same nodename is used for old and new binding.
*/
/* first call is with init set */
(void) scsi_findchild(self, name, addr, 1, &dsearch, NULL, &pi);
if (dsearch && scsi_hba_dev_is_sid(dsearch) &&
!scsi_hba_devi_is_barrier(dsearch)) {
SCSI_HBA_LOG((_LOG(4), NULL, dsearch,
"%s@%s devinfo fastpath", name ? name : "", addr));
child = dsearch;
goto done;
}
/*
* Create a barrier devinfo node used to "probe" the device with. We
* need to drive this node to DS_INITIALIZED so that the
* DDI_CTLOPS_INITCHILD has occurred, bringing the SCSA transport to
* a state useable state for issuing our "probe" commands. We establish
* this barrier node with a node name of "probe" and compatible
* property of "scsiprobe". The compatible property must be associated
* in /etc/driver_aliases with a scsi target driver available in the
* root file system (sd).
*
* The "probe" that we perform on the barrier node, after it is
* DS_INITIALIZED, is used to find the information needed to create a
* dynamic devinfo (SID) node. This "probe" is separate from the
* probe(9E) call associated with the transition of a node from
* DS_INITIALIZED to DS_PROBED. The probe(9E) call that eventually
* occurs against the created SID node should find ddi_dev_is_sid and
* just return DDI_PROBE_DONTCARE.
*
* Trying to avoid the use of a barrier node is not a good idea
* because we may have an HBA driver that uses generic bus_config
* (this code) but implements its own DDI_CTLOPS_INITCHILD with side
* effects that we can't duplicate (such as the ATA nexus driver).
*
* The probe/barrier node plays an integral part of the locking scheme.
* The objective is to single thread probes of the same device (same
* @addr) while allowing parallelism for probes of different devices
* with the same parent. At this point we are serialized on our self.
* For parallelism we will need to release our self. Prior to release
* we construct a barrier for probes of the same device to serialize
* against. The "probe@addr" node acts as this barrier. An entering
* thread must wait until the probe node does not exist - it can then
* create and link the probe node - dropping the HBA (self) lock after
* the node is linked and visible (after ddi_initchild). A side effect
* of this is that transports should not "go over the wire" (i.e. do
* things that incur significant delays) until after tran_target_init.
* This means that the first "over the wire" operation should occur
* at tran_target_probe time - when things are running in parallel
* again.
*
* If the probe node exists then another probe with the same @addr is
* in progress, we must wait until there is no probe in progress
* before proceeding, and when we proceed we must continue to hold the
* HBA (self) until we have linked a new probe node as a barrier.
*
* When a device is found to *not* exist, its probe/barrier node may be
* marked with DEVICE_REMOVED with node deletion scheduled for some
* future time (seconds). This asynchronous deletion allows the
* framework to detect repeated requests to the same non-existent
* device and avoid overhead associated with contacting a non-existent
* device again and again.
*/
for (;;) {
/*
* Search for probe node - they should only exist as devinfo
* nodes.
*/
(void) scsi_findchild(self, "probe", addr,
0, &probe, &psearch, NULL);
if (probe == NULL) {
if (psearch)
SCSI_HBA_LOG((_LOG(2), self,
mdi_pi_get_client(psearch),
"???? @%s 'probe' search found "
"pathinfo: %p", addr, (void *)psearch));
break;
}
/*
* The barrier node may cache the non-existence of a device
* by leaving the barrier node in place (with
* DEVI_DEVICE_REMOVED flag set ) for some amount of time after
* the failure of a probe. This flag is used to fail
* additional probes until the barrier probe node is deleted,
* which will occur from a timeout some time after a failed
* probe. The failed probe will use DEVI_SET_DEVICE_REMOVED
* and schedule probe node deletion from a timeout. The callers
* scsi_hba_devi_exit on the way out of the first failure will
* do the cv_broadcast associated with the cv_wait below - this
* handles threads that wait prior to DEVI_DEVICE_REMOVED being
* set.
*/
if (DEVI_IS_DEVICE_REMOVED(probe)) {
SCSI_HBA_LOG((_LOG(3), NULL, probe,
"detected probe DEVICE_REMOVED"));
probe = NULL; /* deletion already scheduled */
goto fail;
}
/*
* Drop the lock on the HBA (self) and wait until the probe in
* progress has completed. A changes in the sibling list from
* removing the probe node will cause cv_wait to return
* (scsi_hba_devi_exit does the cv_broadcast).
*/
if (wait_msg) {
wait_msg--;
SCSI_HBA_LOG((_LOG(2), NULL, probe,
"exists, probe already in progress: %s", wait_msg ?
"waiting..." : "last msg, but still waiting..."));
}
/*
* NOTE: we could avoid rare case of one second delay by
* implementing scsi_hba_devi_exit_and_wait based on
* ndi/mdi_devi_exit_and_wait (and consider switching devcfg.c
* code to use these ndi/mdi interfaces too).
*/
scsi_hba_devi_exit(self, *circp);
mutex_enter(&DEVI(self)->devi_lock);
(void) cv_timedwait(&DEVI(self)->devi_cv,
&DEVI(self)->devi_lock,
ddi_get_lbolt() + drv_usectohz(MICROSEC));
mutex_exit(&DEVI(self)->devi_lock);
scsi_hba_devi_enter(self, circp);
}
ASSERT(probe == NULL);
/*
* Search to see if we are requesting a SID node that already exists.
* We hold the HBA (self) and there is not another probe in progress at
* the same @addr. scsi_findchild() does not hold the returned
* devinfo node but this is OK since we hold the HBA (self).
*/
if (name) {
(void) scsi_findchild(self, name, addr, 1, &dsearch, NULL, &pi);
if (dsearch && scsi_hba_dev_is_sid(dsearch)) {
SCSI_HBA_LOG((_LOG(4), NULL, dsearch,
"%s@%s probe devinfo fastpath",
name ? name : "", addr));
child = dsearch;
goto done;
}
}
/*
* We are looking for a SID node that does not exist or a driver.conf
* node.
*
* To avoid probe side effects, before we probe the device at the
* specified address we need to check to see if there is already an
* initialized child "@addr".
*
* o If we find an initialized SID child and name is NULL or matches
* the name or the name of the attached driver then we return the
* existing node.
*
* o If we find a non-matching SID node, we will attempt to autodetach
* and remove the node in preference to our new node.
*
* o If SID node found does not match and can't be autodetached, we
* fail: we only allow one SID node at an address.
*
* NOTE: This code depends on SID nodes showing up prior to
* driver.conf nodes in the sibling list.
*/
for (;;) {
/* first NULL name call is with init set */
(void) scsi_findchild(self, NULL, addr, 1, &dsearch, NULL, &pi);
if (dsearch == NULL)
break;
ASSERT(!scsi_hba_devi_is_barrier(dsearch));
/*
* To detect changes in driver binding that should attempt
* autodetach we determine the major number of the driver
* that should currently be associated with the device based
* on the compatible property.
*/
major = DDI_MAJOR_T_NONE;
if (scsi_hba_dev_is_sid(dsearch))
major = ddi_compatible_driver_major(dsearch, NULL);
if ((major == DDI_MAJOR_T_NONE) && (name == NULL))
major = ddi_driver_major(dsearch);
if ((scsi_hba_dev_is_sid(dsearch) ||
(i_ddi_node_state(dsearch) >= DS_INITIALIZED)) &&
((name == NULL) ||
(strcmp(ddi_node_name(dsearch), name) == 0) ||
(strcmp(ddi_driver_name(dsearch), name) == 0)) &&
(major == ddi_driver_major(dsearch))) {
SCSI_HBA_LOG((_LOG(3), NULL, dsearch,
"already attached @addr"));
child = dsearch;
goto done;
}
if (!scsi_hba_dev_is_sid(dsearch))
break; /* driver.conf node */
/*
* Implement autodetach of SID node for situations like a
* previously "scsinodev" LUN0 coming into existence (or a
* disk/tape on an SPI transport at same addr but never both
* powered on at the same time). Try to autodetach the existing
* SID node @addr. If that works, search again - otherwise fail.
*/
SCSI_HBA_LOG((_LOG(2), NULL, dsearch,
"looking for %s@%s: SID @addr exists, autodetach",
name ? name : "", addr));
if (!scsi_hba_remove_node(dsearch)) {
SCSI_HBA_LOG((_LOG(2), NULL, dsearch,
"autodetach @%s failed: fail %s@%s",
addr, name ? name : "", addr));
goto fail;
}
SCSI_HBA_LOG((_LOG(2), self, NULL, "autodetach @%s OK", addr));
}
/*
* We will be creating a new SID node, allocate probe node
* used to find out information about the device located @addr.
* The probe node also acts as a barrier against additional
* configuration at the same address, and in the case of non-existent
* devices it will (for some amount of time) avoid re-learning that
* the device does not exist on every reference. Once the probe
* node is DS_LINKED we can drop the HBA (self).
*
* The probe node is allocated as a hidden node so that it does not
* show up in devinfo snapshots.
*/
ndi_devi_alloc_sleep(self, "probe",
(se == SE_HP) ? DEVI_SID_HP_HIDDEN_NODEID : DEVI_SID_HIDDEN_NODEID,
&probe);
ASSERT(probe);
ndi_flavor_set(probe, SCSA_FLAVOR_SCSI_DEVICE);
/*
* Decorate the probe node with the property representation of @addr
* unit-address string prior to initchild so that initchild can
* construct the name of the node from properties and tran_tgt_init
* implementation can determine what LUN is being referenced.
*
* If the addr specified has incorrect syntax (busconfig one of bogus
* /devices path) then scsi_hba_ua_set can fail. If the address
* is not understood by the SCSA HBA driver then this operation will
* work, but tran_tgt_init may still fail (for example the HBA
* driver may not support secondary functions).
*/
if (scsi_hba_ua_set(addr, probe, NULL) == 0) {
SCSI_HBA_LOG((_LOG(2), NULL, probe,
"@%s failed scsi_hba_ua_set", addr));
goto fail;
}
/*
* Set the class property to "scsi". This is sufficient to distinguish
* the node for HBAs that have multiple classes of children (like uata
* - which has "dada" class for ATA children and "scsi" class for
* ATAPI children) and may not use our scsi_busctl_initchild()
* implementation. We also add a "compatible" property of "scsiprobe"
* to select the probe driver.
*/
if ((ndi_prop_update_string(DDI_DEV_T_NONE, probe,
"class", "scsi") != DDI_PROP_SUCCESS) ||
(ndi_prop_update_string_array(DDI_DEV_T_NONE, probe,
"compatible", &compatible_probe, 1) != DDI_PROP_SUCCESS)) {
SCSI_HBA_LOG((_LOG(1), NULL, probe,
"@%s failed node decoration", addr));
goto fail;
}
/*
* Promote probe node to DS_INITIALIZED so that transport can be used
* for scsi_probe. After this the node is linked and visible as a
* barrier for serialization of other @addr operations.
*
* NOTE: If we attached the probe node, we could get rid of
* uninit_prevent.
*/
if (ddi_initchild(self, probe) != DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG(2), NULL, probe,
"@%s failed initchild", addr));
/* probe node will be removed in fail exit path */
goto fail;
}
/* get the scsi_device structure of the probe node */
sdprobe = ddi_get_driver_private(probe);
ASSERT(sdprobe);
/*
* Do scsi_probe. The probe node is linked and visible as a barrier.
* We prevent uninitialization of the probe node and drop our HBA (self)
* while we run scsi_probe() of this "@addr". This allows the framework
* to support multiple scsi_probes for different devices attached to
* the same HBA (self) in parallel. We prevent node demotion of the
* probe node from DS_INITIALIZED by setting sd_uninit_prevent. The
* probe node can not be successfully demoted below DS_INITIALIZED
* (scsi_busctl_uninitchild will fail) until we zero sd_uninit_prevent
* as we are freeing the node via scsi_hba_remove_node(probe).
*/
sdprobe->sd_uninit_prevent++;
scsi_hba_devi_exit(self, *circp);
sp = scsi_probe(sdprobe, SLEEP_FUNC);
/* Introduce a small delay here to increase parallelism. */
delay_random(5);
if (sp == SCSIPROBE_EXISTS) {
/*
* For a device that exists, while still running in parallel,
* also get identity information from device. This is done
* separate from scsi_probe/tran_tgt_probe/scsi_hba_probe
* since the probe code path may still be used for HBAs
* that don't use common bus_config services (we don't want
* to expose that code path to a behavior change). This
* operation is called 'identity' to avoid confusion with
* deprecated identify(9E).
*
* Future: We may eventually want to allow HBA customization via
* scsi_identity/tran_tgt_identity/scsi_device_identity, but for
* now we just scsi_device_identity.
*
* The identity operation will establish additional properties
* on the probe node related to device identity:
*
* "inquiry-page-80" byte array of SCSI page 80
* "inquiry-page-83" byte array of SCSI page 83
*
* These properties will be used to generate a devid
* (ddi_devid_scsi_encode) and guid - and to register
* (ddi_devid_register) a devid for the device.
*
* If identify fails (non-zero return), the we had allocation
* problems or the device returned inconsistent results then
* we pretend that device does not exist.
*/
if (scsi_device_identity(sdprobe, SLEEP_FUNC)) {
scsi_enumeration_failed(probe, -1, NULL, "identify");
sp = SCSIPROBE_FAILURE;
}
/*
* Future: Is there anything more we can do here to help avoid
* serialization on iport parent during scsi_device attach(9E)?
*/
}
scsi_hba_devi_enter(self, circp);
sdprobe->sd_uninit_prevent--;
if (sp != SCSIPROBE_EXISTS) {
scsi_enumeration_failed(probe, -1, NULL, "probe");
if ((se != SE_HP) && scsi_hba_barrier_timeout) {
/*
* Target does not exist. Mark the barrier probe node
* as DEVICE_REMOVED and schedule an asynchronous
* deletion of the node in scsi_hba_barrier_timeout
* seconds. We keep our hold on the probe node
* until we are ready perform the asynchronous node
* deletion.
*/
SCSI_HBA_LOG((_LOG(3), NULL, probe,
"set probe DEVICE_REMOVED"));
mutex_enter(&DEVI(probe)->devi_lock);
DEVI_SET_DEVICE_REMOVED(probe);
mutex_exit(&DEVI(probe)->devi_lock);
scsi_hba_barrier_add(probe, scsi_hba_barrier_timeout);
probe = NULL;
}
goto fail;
}
/* Create the child node from the inquiry data in the probe node. */
if ((child = scsi_device_configchild(self, addr, se, sdprobe,
circp, &pi)) == NULL) {
/*
* This may fail because there was no driver binding identified
* via driver_alias. We may still have a conf node.
*/
if (name) {
(void) scsi_findchild(self, name, addr,
0, &child, NULL, &pi);
if (child)
SCSI_HBA_LOG((_LOG(2), NULL, child,
"using driver.conf driver binding"));
}
if (child == NULL) {
SCSI_HBA_LOG((_LOG(2), NULL, probe,
"device not configured"));
goto fail;
}
}
/*
* Transfer the inquiry data from the probe node to the child
* SID node to avoid an extra scsi_probe. Callers depend on
* established inquiry data for the returned scsi_device.
*/
sdchild = ddi_get_driver_private(child);
if (sdchild && (sdchild->sd_inq == NULL)) {
sdchild->sd_inq = sdprobe->sd_inq;
sdprobe->sd_inq = NULL;
}
/*
* If we are doing a bus_configone and the node we created has the
* wrong node and driver name then switch the return result to a
* driver.conf node with the correct name - if such a node exists.
*/
if (name && (strcmp(ddi_node_name(child), name) != 0) &&
(strcmp(ddi_driver_name(child), name) != 0)) {
(void) scsi_findchild(self, name, addr,
0, &dsearch, NULL, &pi);
if (dsearch == NULL) {
SCSI_HBA_LOG((_LOG(2), NULL, child,
"wrong device configured %s@%s", name, addr));
/*
* We can't remove when modrootloaded == 0 in case
* boot-device a uses generic name and
* scsi_hba_nodename_compatible_get() returned a
* legacy binding-set driver oriented name.
*/
if (modrootloaded) {
(void) scsi_hba_remove_node(child);
child = NULL;
goto fail;
}
} else {
SCSI_HBA_LOG((_LOG(2), NULL, dsearch,
"device configured, but switching to driver.conf"));
child = dsearch;
}
}
/* get the scsi_device structure from the node */
SCSI_HBA_LOG((_LOG(3), NULL, child, "device configured"));
if (child) {
done: ASSERT(child);
sdchild = ddi_get_driver_private(child);
ASSERT(sdchild);
/*
* We may have ended up here after promotion of a previously
* demoted node, where demotion deleted sd_inq data in
* scsi_busctl_uninitchild. We redo the scsi_probe() to
* reestablish sd_inq. We also want to redo the scsi_probe
* for devices are currently device_isremove in order to
* detect new device_insert.
*/
if ((sdchild->sd_inq == NULL) ||
ndi_devi_device_isremoved(child)) {
/* hotplug_node can only be revived via hotplug. */
if ((se == SE_HP) || !ndi_dev_is_hotplug_node(child)) {
SCSI_HBA_LOG((_LOG(3), NULL, child,
"scsi_probe() demoted devinfo"));
sp = scsi_probe(sdchild, SLEEP_FUNC);
if (sp == SCSIPROBE_EXISTS) {
ASSERT(sdchild->sd_inq);
/*
* Devinfo child exists and we are
* talking to the device, report
* reinsert and note if this was a
* new reinsert.
*/
chg = ndi_devi_device_insert(child);
SCSI_HBA_LOG((_LOGCFG, self, NULL,
"devinfo %s@%s device_reinsert%s",
name ? name : "", addr,
chg ? "" : "ed already"));
} else {
scsi_enumeration_failed(child, se,
NULL, "reprobe");
chg = ndi_devi_device_remove(child);
SCSI_HBA_LOG((_LOG(2), NULL, child,
"%s device_remove%s",
(sp > (sizeof (scsi_probe_ascii) /
sizeof (scsi_probe_ascii[0]))) ?
"UNKNOWN" : scsi_probe_ascii[sp],
chg ? "" : "ed already"));
child = NULL;
sdchild = NULL;
}
} else {
SCSI_HBA_LOG((_LOG(2), NULL, child,
"no reprobe"));
child = NULL;
sdchild = NULL;
}
}
} else {
fail: ASSERT(child == NULL);
sdchild = NULL;
}
if (probe) {
/*
* Clean up probe node, destroying node if uninit_prevent
* it is going to zero. Destroying the probe node (deleting
* from the sibling list) will wake up any people waiting on
* the probe node barrier.
*/
SCSI_HBA_LOG((_LOG(4), NULL, probe, "remove probe"));
if (!scsi_hba_remove_node(probe)) {
/*
* Probe node removal should not fail, but if it
* does we hand that responsibility over to the
* async barrier deletion thread - other references
* to the same unit-address can hang until the
* probe node delete completes.
*/
SCSI_HBA_LOG((_LOG(4), NULL, probe,
"remove probe failed, go async"));
scsi_hba_barrier_add(probe, 1);
}
probe = NULL;
}
/*
* If we successfully resolved via a pathinfo node, we need to find
* the pathinfo node and ensure that it is online (if possible). This
* is done for the case where the device was open when
* scsi_device_unconfig occurred, so mdi_pi_free did not occur. If the
* device has now been reinserted, we want the path back online.
* NOTE: This needs to occur after destruction of the probe node to
* avoid ASSERT related to two nodes at the same unit-address.
*/
if (sdchild && pi && (probe == NULL)) {
ASSERT(MDI_PHCI(self));
(void) scsi_findchild(self, NULL, addr,
0, &dsearch, &psearch, NULL);
ASSERT((psearch == NULL) ||
(mdi_pi_get_client(psearch) == child));
if (psearch && mdi_pi_device_isremoved(psearch)) {
/*
* Verify that we can talk to the device, and if
* so note if this is a new device_insert.
*
* NOTE: We depend on mdi_path_select(), when given
* a specific path_instance, to select that path
* even if the path is offline.
*
* NOTE: A Client node is not ndi_dev_is_hotplug_node().
*/
if (se == SE_HP) {
SCSI_HBA_LOG((_LOG(3), NULL, child,
"%s scsi_probe() demoted pathinfo",
mdi_pi_spathname(psearch)));
sp = scsi_hba_probe_pi(sdchild, SLEEP_FUNC, pi);
if (sp == SCSIPROBE_EXISTS) {
/*
* Pathinfo child exists and we are
* talking to the device, report
* reinsert and note if this
* was a new reinsert.
*/
chg = mdi_pi_device_insert(psearch);
SCSI_HBA_LOG((_LOGCFG, self, NULL,
"pathinfo %s device_reinsert%s",
mdi_pi_spathname(psearch),
chg ? "" : "ed already"));
if (chg)
(void) mdi_pi_online(psearch,
0);
} else {
scsi_enumeration_failed(child, se,
mdi_pi_spathname(psearch),
"reprobe");
child = NULL;
sdchild = NULL;
}
} else {
SCSI_HBA_LOG((_LOG(2), NULL, child,
"%s no reprobe",
mdi_pi_spathname(psearch)));
child = NULL;
sdchild = NULL;
}
}
}
/* If asked for path_instance, return it. */
if (ppi)
*ppi = pi;
return (sdchild);
}
static void
scsi_device_unconfig(dev_info_t *self, char *name, char *addr, int *circp)
{
dev_info_t *child = NULL;
mdi_pathinfo_t *path = NULL;
char *spathname;
int rval;
ASSERT(self && addr && DEVI_BUSY_OWNED(self));
/*
* We have a catch-22. We may have a demoted node that we need to find
* and offline/remove. To find the node it it isn't demoted, we
* use scsi_findchild. If it's demoted, we then use
* ndi_devi_findchild_by_callback.
*/
(void) scsi_findchild(self, name, addr, 0, &child, &path, NULL);
if ((child == NULL) && (path == NULL)) {
child = ndi_devi_findchild_by_callback(self, name, addr,
scsi_busctl_ua);
if (child) {
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"devinfo %s@%s found by callback",
name ? name : "", addr));
ASSERT(ndi_flavor_get(child) ==
SCSA_FLAVOR_SCSI_DEVICE);
if (ndi_flavor_get(child) != SCSA_FLAVOR_SCSI_DEVICE) {
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"devinfo %s@%s not SCSI_DEVICE flavored",
name ? name : "", addr));
child = NULL;
}
}
}
if (child) {
ASSERT(child && (path == NULL));
/* Don't unconfig probe nodes. */
if (scsi_hba_devi_is_barrier(child)) {
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"devinfo %s@%s is_barrier, skip",
name ? name : "", addr));
return;
}
/* Attempt to offline/remove the devinfo node */
if (ndi_devi_offline(child,
NDI_DEVFS_CLEAN | NDI_DEVI_REMOVE) == DDI_SUCCESS) {
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"devinfo %s@%s offlined and removed",
name ? name : "", addr));
} else if (ndi_devi_device_remove(child)) {
/* Offline/remove failed, note new device_remove */
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"devinfo %s@%s offline failed, device_remove",
name ? name : "", addr));
}
} else if (path) {
ASSERT(path && (child == NULL));
/*
* Attempt to offline/remove the pathinfo node.
*
* NOTE: mdi_pi_offline of last path will fail if the
* device is open (i.e. the client can't be offlined).
*
* NOTE: For mdi there is no REMOVE flag for mdi_pi_offline().
* When mdi_pi_offline returns MDI_SUCCESS, we are responsible
* for remove via mdi_pi_free().
*/
mdi_hold_path(path);
spathname = mdi_pi_spathname(path); /* valid after free */
scsi_hba_devi_exit_phci(self, *circp);
rval = mdi_pi_offline(path, 0);
scsi_hba_devi_enter_phci(self, circp);
if (rval == MDI_SUCCESS) {
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"pathinfo %s offlined and removed", spathname));
} else if (mdi_pi_device_remove(path)) {
/* Offline/remove failed, note new device_remove */
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"pathinfo %s offline failed, "
"device_remove", spathname));
}
mdi_rele_path(path);
if ((rval == MDI_SUCCESS) &&
(mdi_pi_free(path, 0) != MDI_SUCCESS)) { /* REMOVE */
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"pathinfo %s mdi_pi_free failed, "
"device_remove", spathname));
(void) mdi_pi_device_remove(path);
}
} else {
ASSERT((path == NULL) && (child == NULL));
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"%s@%s not found", name ? name : "", addr));
}
}
/*
* configure the device at the specified "@addr" address.
*/
static struct scsi_device *
scsi_hba_bus_configone_addr(dev_info_t *self, char *addr, scsi_enum_t se)
{
int circ;
struct scsi_device *sd;
scsi_hba_devi_enter(self, &circ);
sd = scsi_device_config(self, NULL, addr, se, &circ, NULL);
scsi_hba_devi_exit(self, circ);
return (sd);
}
/*
* unconfigure the device at the specified "@addr" address.
*/
static void
scsi_hba_bus_unconfigone_addr(dev_info_t *self, char *addr)
{
int circ;
scsi_hba_devi_enter(self, &circ);
(void) scsi_device_unconfig(self, NULL, addr, &circ);
scsi_hba_devi_exit(self, circ);
}
/*
* The bus_config_all operations are multi-threaded for performance. A
* separate thread per target and per LUN is used. The config handle is used
* to coordinate all the threads at a given level and the config thread data
* contains the required information for a specific thread to identify what it
* is processing and the handle under which this is being processed.
*/
/* multi-threaded config handle */
struct scsi_hba_mte_h {
dev_info_t *h_self; /* initiator port */
int h_thr_count;
kmutex_t h_lock;
kcondvar_t h_cv;
};
/* target of 'self' config thread data */
struct scsi_hba_mte_td {
struct scsi_hba_mte_h *td_h;
char *td_taddr; /* target port */
int td_mt;
scsi_enum_t td_se;
};
/* Invoke callback on a vector of taddrs from multiple threads */
static void
scsi_hba_thread_taddrs(dev_info_t *self, char **taddrs, int mt,
scsi_enum_t se, void (*callback)(void *arg))
{
struct scsi_hba_mte_h *h; /* HBA header */
struct scsi_hba_mte_td *td; /* target data */
char **taddr;
/* allocate and initialize the handle */
h = kmem_zalloc(sizeof (*h), KM_SLEEP);
mutex_init(&h->h_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&h->h_cv, NULL, CV_DEFAULT, NULL);
h->h_self = self;
/* loop over all the targets */
for (taddr = taddrs; *taddr; taddr++) {
/* allocate a thread data structure for target */
td = kmem_alloc(sizeof (*td), KM_SLEEP);
td->td_h = h;
td->td_taddr = *taddr;
td->td_mt = mt;
td->td_se = se;
/* process the target */
mutex_enter(&h->h_lock);
h->h_thr_count++;
mutex_exit(&h->h_lock);
if (mt & SCSI_ENUMERATION_MT_TARGET_DISABLE)
callback((void *)td);
else
(void) thread_create(NULL, 0, callback, (void *)td,
0, &p0, TS_RUN, minclsyspri);
}
/* wait for all the target threads to complete */
mutex_enter(&h->h_lock);
while (h->h_thr_count > 0)
cv_wait(&h->h_cv, &h->h_lock);
mutex_exit(&h->h_lock);
/* free the handle */
cv_destroy(&h->h_cv);
mutex_destroy(&h->h_lock);
kmem_free(h, sizeof (*h));
}
/* lun/secondary function of lun0 config thread data */
struct scsi_hba_mte_ld {
struct scsi_hba_mte_h *ld_h;
char *ld_taddr; /* target port */
scsi_lun64_t ld_lun64; /* lun */
int ld_sfunc; /* secondary function */
scsi_enum_t ld_se;
};
/*
* Enumerate the LUNs and secondary functions of the specified target. The
* target portion of the "@addr" is already represented as a string in the
* thread data, we add a ",lun" representation to this and perform a
* bus_configone byte of enumeration on that "@addr".
*/
static void
scsi_hba_enum_lsf_of_tgt_thr(void *arg)
{
struct scsi_hba_mte_ld *ld = (struct scsi_hba_mte_ld *)arg;
struct scsi_hba_mte_h *h = ld->ld_h;
dev_info_t *self = h->h_self;
char addr[SCSI_MAXNAMELEN];
/* make string form of "@taddr,lun[,sfunc]" and see if it exists */
if (ld->ld_sfunc == -1)
(void) snprintf(addr, sizeof (addr),
"%s,%" PRIx64, ld->ld_taddr, ld->ld_lun64);
else
(void) snprintf(addr, sizeof (addr),
"%s,%" PRIx64 ",%x",
ld->ld_taddr, ld->ld_lun64, ld->ld_sfunc);
/* configure device at that unit-address address */
(void) scsi_hba_bus_configone_addr(self, addr, ld->ld_se);
/* signal completion of this LUN thread to the target */
mutex_enter(&h->h_lock);
if (--h->h_thr_count == 0)
cv_broadcast(&h->h_cv);
mutex_exit(&h->h_lock);
/* free config thread data */
kmem_free(ld, sizeof (*ld));
}
/* Format of SCSI REPORT_LUNS report */
typedef struct scsi_lunrpt {
uchar_t lunrpt_len_msb; /* # LUNs being reported */
uchar_t lunrpt_len_mmsb;
uchar_t lunrpt_len_mlsb;
uchar_t lunrpt_len_lsb;
uchar_t lunrpt_reserved[4];
scsi_lun_t lunrpt_luns[1]; /* LUNs, variable size */
} scsi_lunrpt_t;
/*
* scsi_device_reportluns()
*
* Callers of this routine should ensure that the 'sd0' scsi_device structure
* and 'pi' path_instance specified are associated with a responding LUN0.
* This should not be called for SCSI-1 devices.
*
* To get a LUN report, we must allocate a buffer. To know how big to make the
* buffer, we must know the number of LUNs. To know the number of LUNs, we must
* get a LUN report. We first issue a SCMD_REPORT_LUNS command using a
* reasonably sized buffer that's big enough to report all LUNs for most
* typical devices. If it turns out that we needed a bigger buffer, we attempt
* to allocate a buffer of sufficient size, and reissue the command. If the
* first command succeeds, but the second fails, we return whatever we were
* able to get the first time. We return enough information for the caller to
* tell whether he got all the LUNs or only a subset.
*
* If successful, we allocate an array of scsi_lun_t to hold the results. The
* caller must kmem_free(*lunarrayp, *sizep) when finished with it. Upon
* successful return return value is NDI_SUCCESS and:
*
* *lunarrayp points to the allocated array,
* *nlunsp is the number of valid LUN entries in the array,
* *tlunsp is the total number of LUNs in the target,
* *sizep is the size of the lunarrayp array, which must be freed.
*
* If the *nlunsp is less than *tlunsp, then we were only able to retrieve a
* subset of the total set of LUNs in the target.
*/
static int
scsi_device_reportluns(struct scsi_device *sd0, char *taddr, int pi,
scsi_lun_t **lunarrayp, uint32_t *nlunsp, uint32_t *tlunsp, size_t *sizep)
{
struct buf *lunrpt_bp;
struct scsi_pkt *lunrpt_pkt;
scsi_lunrpt_t *lunrpt;
uint32_t bsize;
uint32_t tluns, nluns;
int default_maxluns = scsi_lunrpt_default_max;
dev_info_t *child;
ASSERT(sd0 && lunarrayp && nlunsp && tlunsp && sizep);
/*
* NOTE: child should only be used in SCSI_HBA_LOG context since with
* vHCI enumeration it may be the vHCI 'client' devinfo child instead
* of a child of the 'self' pHCI we are enumerating.
*/
child = sd0->sd_dev;
/* first try, look for up to scsi_lunrpt_default_max LUNs */
nluns = default_maxluns;
again: bsize = sizeof (struct scsi_lunrpt) +
((nluns - 1) * sizeof (struct scsi_lun));
lunrpt_bp = scsi_alloc_consistent_buf(&sd0->sd_address,
(struct buf *)NULL, bsize, B_READ, SLEEP_FUNC, NULL);
if (lunrpt_bp == NULL) {
SCSI_HBA_LOG((_LOG(1), NULL, child, "failed alloc"));
return (NDI_NOMEM);
}
lunrpt_pkt = scsi_init_pkt(&sd0->sd_address,
(struct scsi_pkt *)NULL, lunrpt_bp, CDB_GROUP5,
sizeof (struct scsi_arq_status), 0, PKT_CONSISTENT,
SLEEP_FUNC, NULL);
if (lunrpt_pkt == NULL) {
SCSI_HBA_LOG((_LOG(1), NULL, child, "failed init"));
scsi_free_consistent_buf(lunrpt_bp);
return (NDI_NOMEM);
}
(void) scsi_setup_cdb((union scsi_cdb *)lunrpt_pkt->pkt_cdbp,
SCMD_REPORT_LUNS, 0, bsize, 0);
lunrpt_pkt->pkt_time = scsi_lunrpt_timeout;
/*
* When sd0 is a vHCI scsi device, we need reportlun to be issued
* against a specific LUN0 path_instance that we are enumerating.
*/
lunrpt_pkt->pkt_path_instance = pi;
lunrpt_pkt->pkt_flags |= FLAG_PKT_PATH_INSTANCE;
/*
* NOTE: scsi_poll may not allow HBA specific recovery from TRAN_BUSY.
*/
if (scsi_poll(lunrpt_pkt) < 0) {
SCSI_HBA_LOG((_LOG(2), NULL, child, "reportlun not supported"));
scsi_destroy_pkt(lunrpt_pkt);
scsi_free_consistent_buf(lunrpt_bp);
return (NDI_FAILURE);
}
scsi_destroy_pkt(lunrpt_pkt);
lunrpt = (scsi_lunrpt_t *)lunrpt_bp->b_un.b_addr;
/* Compute the total number of LUNs in the target */
tluns = (((uint_t)lunrpt->lunrpt_len_msb << 24) |
((uint_t)lunrpt->lunrpt_len_mmsb << 16) |
((uint_t)lunrpt->lunrpt_len_mlsb << 8) |
((uint_t)lunrpt->lunrpt_len_lsb)) >> 3;
if (tluns == 0) {
/* Illegal response -- this target is broken */
SCSI_HBA_LOG((_LOG(1), NULL, child, "illegal tluns of zero"));
scsi_free_consistent_buf(lunrpt_bp);
return (DDI_NOT_WELL_FORMED);
}
if (tluns > nluns) {
/* have more than we allocated space for */
if (nluns == default_maxluns) {
/* first time around, reallocate larger */
scsi_free_consistent_buf(lunrpt_bp);
nluns = tluns;
goto again;
}
/* uh oh, we got a different tluns the second time! */
SCSI_HBA_LOG((_LOG(1), NULL, child,
"tluns changed from %d to %d", nluns, tluns));
} else
nluns = tluns;
/*
* Now we have:
* lunrpt_bp is the buffer we're using;
* tluns is the total number of LUNs the target says it has;
* nluns is the number of LUNs we were able to get into the buffer.
*
* Copy the data out of scarce iopb memory into regular kmem.
* The caller must kmem_free(*lunarrayp, *sizep) when finished with it.
*/
*lunarrayp = (scsi_lun_t *)kmem_alloc(
nluns * sizeof (scsi_lun_t), KM_SLEEP);
if (*lunarrayp == NULL) {
SCSI_HBA_LOG((_LOG(1), NULL, child, "NULL lunarray"));
scsi_free_consistent_buf(lunrpt_bp);
return (NDI_NOMEM);
}
*sizep = nluns * sizeof (scsi_lun_t);
*nlunsp = nluns;
*tlunsp = tluns;
bcopy((void *)&lunrpt->lunrpt_luns, (void *)*lunarrayp, *sizep);
scsi_free_consistent_buf(lunrpt_bp);
SCSI_HBA_LOG((_LOG(3), NULL, child,
"@%s,0 path %d: %d/%d luns", taddr, pi, nluns, tluns));
return (NDI_SUCCESS);
}
/*
* Enumerate all the LUNs and secondary functions of the specified 'taddr'
* target port as accessed via 'self' pHCI. Note that sd0 may be associated
* with a child of the vHCI instead of 'self' - in this case the 'pi'
* path_instance is used to ensure that the SCMD_REPORT_LUNS command is issued
* through the 'self' pHCI path.
*
* We multi-thread across all the LUNs and secondary functions and enumerate
* them. Which LUNs exist is based on SCMD_REPORT_LUNS data.
*
* The scsi_device we are called with should be for LUN0 and has been probed.
*
* This function is structured so that an HBA that has a different target
* addressing structure can still use this function to enumerate the its
* LUNs if it uses "taddr,lun" for its LUN space.
*
* We make assumptions about other LUNs associated with the target:
*
* For SCSI-2 and SCSI-3 target we will issue the SCSI report_luns
* command. If this fails or we have a SCSI-1 then the number of
* LUNs is determined based on SCSI_OPTIONS_NLUNS. For a SCSI-1
* target we never probe above LUN 8, even if SCSI_OPTIONS_NLUNS
* indicates we should.
*
* HBA drivers wanting a different set of assumptions should implement their
* own LUN enumeration code.
*/
static int
scsi_hba_enum_lsf_of_t(struct scsi_device *sd0,
dev_info_t *self, char *taddr, int pi, int mt, scsi_enum_t se)
{
dev_info_t *child;
scsi_hba_tran_t *tran;
impl_scsi_tgtmap_t *tgtmap;
damap_id_t tgtid;
damap_t *tgtdam;
damap_t *lundam = NULL;
struct scsi_hba_mte_h *h;
struct scsi_hba_mte_ld *ld;
int aver;
scsi_lun_t *lunp = NULL;
int lun;
uint32_t nluns;
uint32_t tluns;
size_t size;
scsi_lun64_t lun64;
int maxluns;
/*
* If LUN0 failed then we have no other LUNs.
*
* NOTE: We need sd_inq to be valid to check ansi version. Since
* scsi_unprobe is now a noop (sd_inq freeded in
* scsi_busctl_uninitchild) sd_inq remains valid even if a target
* driver detach(9E) occurs, resulting in a scsi_unprobe call
* (sd_uninit_prevent keeps sd_inq valid by failing any
* device_uninitchild attempts).
*/
ASSERT(sd0 && sd0->sd_uninit_prevent && sd0->sd_dev && sd0->sd_inq);
if ((sd0 == NULL) || (sd0->sd_dev == NULL) || (sd0->sd_inq == NULL)) {
SCSI_HBA_LOG((_LOG(1), NULL, sd0 ? sd0->sd_dev : NULL,
"not setup correctly:%s%s%s",
(sd0 == NULL) ? " device" : "",
(sd0 && (sd0->sd_dev == NULL)) ? " dip" : "",
(sd0 && (sd0->sd_inq == NULL)) ? " inq" : ""));
return (DDI_FAILURE);
}
/*
* NOTE: child should only be used in SCSI_HBA_LOG context since with
* vHCI enumeration it may be the vHCI 'client' devinfo child instead
* of a child of the 'self' pHCI we are enumerating.
*/
child = sd0->sd_dev;
/* Determine if we are reporting lun observations into lunmap. */
tran = ndi_flavorv_get(self, SCSA_FLAVOR_SCSI_DEVICE);
tgtmap = (impl_scsi_tgtmap_t *)tran->tran_tgtmap;
if (tgtmap) {
tgtdam = tgtmap->tgtmap_dam[SCSI_TGT_SCSI_DEVICE];
tgtid = damap_lookup(tgtdam, taddr);
if (tgtid != NODAM) {
lundam = damap_id_priv_get(tgtdam, tgtid);
damap_id_rele(tgtdam, tgtid);
ASSERT(lundam);
}
}
if (lundam) {
/* If using lunmap, start the observation */
scsi_lunmap_set_begin(self, lundam);
} else {
/* allocate and initialize the LUN handle */
h = kmem_zalloc(sizeof (*h), KM_SLEEP);
mutex_init(&h->h_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&h->h_cv, NULL, CV_DEFAULT, NULL);
h->h_self = self;
}
/* See if SCMD_REPORT_LUNS works for SCSI-2 and beyond */
aver = sd0->sd_inq->inq_ansi;
if ((aver >= SCSI_VERSION_2) && (scsi_device_reportluns(sd0,
taddr, pi, &lunp, &nluns, &tluns, &size) == NDI_SUCCESS)) {
ASSERT(lunp && (size > 0) && (nluns > 0) && (tluns > 0));
/* loop over the reported LUNs */
SCSI_HBA_LOG((_LOG(2), NULL, child,
"@%s,0 path %d: enumerating %d reported lun%s", taddr, pi,
nluns, nluns > 1 ? "s" : ""));
for (lun = 0; lun < nluns; lun++) {
lun64 = scsi_lun_to_lun64(lunp[lun]);
if (lundam) {
if (scsi_lunmap_set_add(self, lundam,
taddr, lun64, -1) != DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"@%s,%" PRIx64 " failed to create",
taddr, lun64));
}
} else {
if (lun64 == 0)
continue;
/* allocate a thread data structure for LUN */
ld = kmem_alloc(sizeof (*ld), KM_SLEEP);
ld->ld_h = h;
ld->ld_taddr = taddr;
ld->ld_lun64 = lun64;
ld->ld_sfunc = -1;
ld->ld_se = se;
/* process the LUN */
mutex_enter(&h->h_lock);
h->h_thr_count++;
mutex_exit(&h->h_lock);
if (mt & SCSI_ENUMERATION_MT_LUN_DISABLE)
scsi_hba_enum_lsf_of_tgt_thr(
(void *)ld);
else
(void) thread_create(NULL, 0,
scsi_hba_enum_lsf_of_tgt_thr,
(void *)ld, 0, &p0, TS_RUN,
minclsyspri);
}
}
/* free the LUN array allocated by scsi_device_reportluns */
kmem_free(lunp, size);
} else {
/* Determine the number of LUNs to enumerate. */
maxluns = scsi_get_scsi_maxluns(sd0);
/* Couldn't get SCMD_REPORT_LUNS data */
if (aver >= SCSI_VERSION_3) {
scsi_enumeration_failed(child, se, taddr, "report_lun");
/*
* Based on calling context tunable, only enumerate one
* lun (lun0) if scsi_device_reportluns() fails on a
* SCSI_VERSION_3 or greater device.
*/
if (scsi_lunrpt_failed_do1lun & (1 << se))
maxluns = 1;
}
/* loop over possible LUNs, skipping LUN0 */
if (maxluns > 1)
SCSI_HBA_LOG((_LOG(2), NULL, child,
"@%s,0 path %d: enumerating luns 1-%d", taddr, pi,
maxluns - 1));
else
SCSI_HBA_LOG((_LOG(2), NULL, child,
"@%s,0 path %d: enumerating just lun0", taddr, pi));
for (lun64 = 0; lun64 < maxluns; lun64++) {
if (lundam) {
if (scsi_lunmap_set_add(self, lundam,
taddr, lun64, -1) != DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"@%s,%" PRIx64 " failed to create",
taddr, lun64));
}
} else {
if (lun64 == 0)
continue;
/* allocate a thread data structure for LUN */
ld = kmem_alloc(sizeof (*ld), KM_SLEEP);
ld->ld_h = h;
ld->ld_taddr = taddr;
ld->ld_lun64 = lun64;
ld->ld_sfunc = -1;
ld->ld_se = se;
/* process the LUN */
mutex_enter(&h->h_lock);
h->h_thr_count++;
mutex_exit(&h->h_lock);
if (mt & SCSI_ENUMERATION_MT_LUN_DISABLE)
scsi_hba_enum_lsf_of_tgt_thr(
(void *)ld);
else
(void) thread_create(NULL, 0,
scsi_hba_enum_lsf_of_tgt_thr,
(void *)ld, 0, &p0, TS_RUN,
minclsyspri);
}
}
}
/*
* If we have an embedded service as a secondary function on LUN0 and
* the primary LUN0 function is different than the secondary function
* then enumerate the secondary function. The sfunc value is the dtype
* associated with the embedded service.
*
* inq_encserv: enclosure service and our dtype is not DTYPE_ESI
* or DTYPE_UNKNOWN then create a separate DTYPE_ESI node for
* enclosure service access.
*/
ASSERT(sd0->sd_inq);
if (sd0->sd_inq->inq_encserv &&
((sd0->sd_inq->inq_dtype & DTYPE_MASK) != DTYPE_UNKNOWN) &&
((sd0->sd_inq->inq_dtype & DTYPE_MASK) != DTYPE_ESI) &&
((sd0->sd_inq->inq_ansi >= SCSI_VERSION_3))) {
if (lundam) {
if (scsi_lunmap_set_add(self, lundam,
taddr, 0, DTYPE_ESI) != DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"@%s,0,%x failed to create",
taddr, DTYPE_ESI));
}
} else {
/* allocate a thread data structure for sfunc */
ld = kmem_alloc(sizeof (*ld), KM_SLEEP);
ld->ld_h = h;
ld->ld_taddr = taddr;
ld->ld_lun64 = 0;
ld->ld_sfunc = DTYPE_ESI;
ld->ld_se = se;
/* process the LUN */
mutex_enter(&h->h_lock);
h->h_thr_count++;
mutex_exit(&h->h_lock);
if (mt & SCSI_ENUMERATION_MT_LUN_DISABLE)
scsi_hba_enum_lsf_of_tgt_thr((void *)ld);
else
(void) thread_create(NULL, 0,
scsi_hba_enum_lsf_of_tgt_thr, (void *)ld,
0, &p0, TS_RUN, minclsyspri);
}
}
/*
* Future: Add secondary function support for:
* inq_mchngr (DTYPE_CHANGER)
* inq_sccs (DTYPE_ARRAY_CTRL)
*/
if (lundam) {
/* If using lunmap, end the observation */
scsi_lunmap_set_end(self, lundam);
} else {
/* wait for all the LUN threads of this target to complete */
mutex_enter(&h->h_lock);
while (h->h_thr_count > 0)
cv_wait(&h->h_cv, &h->h_lock);
mutex_exit(&h->h_lock);
/* free the target handle */
cv_destroy(&h->h_cv);
mutex_destroy(&h->h_lock);
kmem_free(h, sizeof (*h));
}
return (DDI_SUCCESS);
}
/*
* Enumerate LUN0 and all other LUNs and secondary functions associated with
* the specified target address.
*
* Return NDI_SUCCESS if we might have created a new node.
* Return NDI_FAILURE if we definitely did not create a new node.
*/
static int
scsi_hba_bus_config_taddr(dev_info_t *self, char *taddr, int mt, scsi_enum_t se)
{
char addr[SCSI_MAXNAMELEN];
struct scsi_device *sd;
int circ;
int ret;
int pi;
/* See if LUN0 of the specified target exists. */
(void) snprintf(addr, sizeof (addr), "%s,0", taddr);
scsi_hba_devi_enter(self, &circ);
sd = scsi_device_config(self, NULL, addr, se, &circ, &pi);
if (sd) {
/*
* LUN0 exists, enumerate all the other LUNs.
*
* With vHCI enumeration, when 'self' is a pHCI the sd
* scsi_device may be associated with the vHCI 'client'.
* In this case 'pi' is the path_instance needed to
* continue enumeration communication LUN0 via 'self'
* pHCI and specific 'taddr' target address.
*
* We prevent the removal of LUN0 until we are done with
* prevent/allow because we must exit the parent for
* multi-threaded scsi_hba_enum_lsf_of_t().
*
* NOTE: scsi_unprobe is a noop, sd->sd_inq is valid until
* device_uninitchild - so sd_uninit_prevent keeps sd_inq valid
* by failing any device_uninitchild attempts.
*/
ret = NDI_SUCCESS;
sd->sd_uninit_prevent++;
scsi_hba_devi_exit(self, circ);
(void) scsi_hba_enum_lsf_of_t(sd, self, taddr, pi, mt, se);
scsi_hba_devi_enter(self, &circ);
sd->sd_uninit_prevent--;
} else
ret = NDI_FAILURE;
scsi_hba_devi_exit(self, circ);
return (ret);
}
/* Config callout from scsi_hba_thread_taddrs */
static void
scsi_hba_taddr_config_thr(void *arg)
{
struct scsi_hba_mte_td *td = (struct scsi_hba_mte_td *)arg;
struct scsi_hba_mte_h *h = td->td_h;
(void) scsi_hba_bus_config_taddr(h->h_self, td->td_taddr,
td->td_mt, td->td_se);
/* signal completion of this target thread to the HBA */
mutex_enter(&h->h_lock);
if (--h->h_thr_count == 0)
cv_broadcast(&h->h_cv);
mutex_exit(&h->h_lock);
/* free config thread data */
kmem_free(td, sizeof (*td));
}
/*
* Enumerate all the children of the specified SCSI parallel interface (spi).
* An HBA associated with a non-parallel scsi bus should be using another bus
* level enumeration implementation (possibly their own) and calling
* scsi_hba_bus_config_taddr to do enumeration of devices associated with a
* particular target address.
*
* On an spi bus the targets are sequentially enumerated based on the
* width of the bus. We also take care to try to skip the HBAs own initiator
* id. See scsi_hba_enum_lsf_of_t() for LUN and secondary function enumeration.
*
* Return NDI_SUCCESS if we might have created a new node.
* Return NDI_FAILURE if we definitely did not create a new node.
*
* Note: At some point we may want to expose this interface in transport.h
* if we find an hba that implements bus_config but still uses spi-like target
* addresses.
*/
static int
scsi_hba_bus_configall_spi(dev_info_t *self, int mt)
{
int options;
int ntargets;
int id;
int tgt;
char **taddrs;
char **taddr;
char *tbuf;
/*
* Find the number of targets supported on the bus. Look at the per
* bus scsi-options property on the HBA node and check its
* SCSI_OPTIONS_WIDE setting.
*/
options = ddi_prop_get_int(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-options", -1);
if ((options != -1) && ((options & SCSI_OPTIONS_WIDE) == 0))
ntargets = NTARGETS; /* 8 */
else
ntargets = NTARGETS_WIDE; /* 16 */
/*
* Find the initiator-id for the HBA so we can skip that. We get the
* cached value on the HBA node, established in scsi_hba_attach_setup.
* If we were unable to determine the id then we rely on the HBA to
* fail gracefully when asked to enumerate itself.
*/
id = ddi_prop_get_int(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-initiator-id", -1);
if (id > ntargets) {
SCSI_HBA_LOG((_LOG(1), self, NULL,
"'scsi-initiator-id' bogus for %d target bus: %d",
ntargets, id));
id = -1;
}
SCSI_HBA_LOG((_LOG(2), self, NULL,
"enumerating targets 0-%d skip %d", ntargets, id));
/* form vector of target addresses */
taddrs = kmem_zalloc(sizeof (char *) * (ntargets + 1), KM_SLEEP);
for (tgt = 0, taddr = taddrs; tgt < ntargets; tgt++) {
/* skip initiator */
if (tgt == id)
continue;
/* convert to string and enumerate the target address */
tbuf = kmem_alloc(((tgt/16) + 1) + 1, KM_SLEEP);
(void) sprintf(tbuf, "%x", tgt);
ASSERT(strlen(tbuf) == ((tgt/16) + 1));
*taddr++ = tbuf;
}
/* null terminate vector of target addresses */
*taddr = NULL;
/* configure vector of target addresses */
scsi_hba_thread_taddrs(self, taddrs, mt, SE_BUSCONFIG,
scsi_hba_taddr_config_thr);
/* free vector of target addresses */
for (taddr = taddrs; *taddr; taddr++)
kmem_free(*taddr, strlen(*taddr) + 1);
kmem_free(taddrs, sizeof (char *) * (ntargets + 1));
return (NDI_SUCCESS);
}
/*
* Transport independent bus_configone BUS_CONFIG_ONE implementation. Takes
* same arguments, minus op, as scsi_hba_bus_config(), tran_bus_config(),
* and scsi_hba_bus_config_spi().
*/
int
scsi_hba_bus_configone(dev_info_t *self, uint_t flags, char *arg,
dev_info_t **childp)
{
int ret;
int circ;
char *name, *addr;
char *lcp;
char sc1, sc2;
char nameaddr[SCSI_MAXNAMELEN];
extern int i_ndi_make_spec_children(dev_info_t *, uint_t);
struct scsi_device *sd0, *sd;
scsi_lun64_t lun64;
int mt;
/* parse_name modifies arg1, we must duplicate "name@addr" */
(void) strcpy(nameaddr, arg);
i_ddi_parse_name(nameaddr, &name, &addr, NULL);
/* verify the form of the node - we need an @addr */
if ((name == NULL) || (addr == NULL) ||
(*name == '\0') || (*addr == '\0')) {
/*
* OBP may create ill formed template/stub/wild-card
* nodes (no @addr) for legacy driver loading methods -
* ignore them.
*/
SCSI_HBA_LOG((_LOG(2), self, NULL, "%s ill formed", arg));
return (NDI_FAILURE);
}
/*
* Check to see if this is a non-scsi flavor configuration operation.
*/
if (strcmp(name, "smp") == 0) {
/*
* Configure the child, and if we're successful return with
* active hold.
*/
return (smp_hba_bus_config(self, addr, childp));
}
/*
* The framework does not ensure the creation of driver.conf
* nodes prior to calling a nexus bus_config. For legacy
* support of driver.conf file nodes we want to create our
* driver.conf file children now so that we can detect if we
* are being asked to bus_configone one of these nodes.
*
* Needing driver.conf file nodes prior to bus config is unique
* to scsi_enumeration mixed mode (legacy driver.conf and
* dynamic SID node) support. There is no general need for the
* framework to make driver.conf children prior to bus_config.
*
* We enter our HBA (self) prior to scsi_device_config, and
* pass it our circ. The scsi_device_config may exit the
* HBA around scsi_probe() operations to allow for parallelism.
* This is done after the probe node "@addr" is available as a
* barrier to prevent parallel probes of the same device. The
* probe node is also configured in a way that it can't be
* removed by the framework until we are done with it.
*
* NOTE: The framework is currently preventing many parallel
* sibling operations (such as attaches), so the parallelism
* we are providing is of marginal use until that is improved.
* The most logical way to solve this would be to have separate
* target and lun nodes. This would be a large change in the
* format of /devices paths and is not being pursued at this
* time. The need for parallelism will become more of an issue
* with top-down attach for mpxio/vhci and for iSCSI support.
* We may want to eventually want a dual mode implementation,
* where the HBA determines if we should construct separate
* target and lun devinfo nodes.
*/
scsi_hba_devi_enter(self, &circ);
SCSI_HBA_LOG((_LOG(4), self, NULL, "%s@%s config_one", name, addr));
(void) i_ndi_make_spec_children(self, flags);
/*
* For bus_configone, we make sure that we can find LUN0
* first. This allows the delayed probe/barrier deletion for a
* non-existent LUN0 (if enabled in scsi_device_config) to
* cover all LUNs on the target. This is done to minimize the
* number of independent target selection timeouts that occur
* when a target with many LUNs is no longer accessible
* (powered off). This removes the need for target driver
* probe cache implementations.
*
* This optimization may not be desirable in a pure bridge
* environment where targets on the other side of the bridge
* show up as LUNs to the host. If we ever need to support
* such a configuration then we should consider implementing a
* SCSI_OPTIONS_ILUN0 bit.
*
* NOTE: we are *not* applying any target limitation filtering
* to bus_configone, which means that we are relying on the
* HBA tran_tgt_init entry point invoked by scsi_busctl_initchild
* to fail.
*/
sd0 = (struct scsi_device *)-1;
lcp = strchr(addr, ','); /* "addr,lun[,sfunc]" */
if (lcp) {
/*
* With "tgt,lun[,sfunc]" addressing, multiple addressing levels
* have been compressed into single devinfo node unit-address.
* This presents a mismatch - there is no bus_config to discover
* LUNs below a specific target, the only choice is to
* BUS_CONFIG_ALL the HBA. To support BUS_CONFIG_ALL_LUNS below
* a specific target, a bus_configone with lun address of "*"
* triggers lun discovery below a target.
*/
if (*(lcp + 1) == '*') {
mt = ddi_prop_get_int(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
"scsi-enumeration", scsi_enumeration);
mt |= scsi_hba_log_mt_disable;
SCSI_HBA_LOG((_LOG(2), self, NULL,
"%s@%s lun enumeration triggered", name, addr));
*lcp = '\0'; /* turn ',' into '\0' */
scsi_hba_devi_exit(self, circ);
(void) scsi_hba_bus_config_taddr(self, addr,
mt, SE_BUSCONFIG);
return (NDI_FAILURE);
}
/* convert hex lun number from ascii */
lun64 = scsi_addr_to_lun64(lcp + 1);
if ((lun64 != 0) && (lun64 != SCSI_LUN64_ILLEGAL)) {
/*
* configure ",0" lun first, saving off
* original lun characters.
*/
sc1 = *(lcp + 1);
sc2 = *(lcp + 2);
*(lcp + 1) = '0';
*(lcp + 2) = '\0';
sd0 = scsi_device_config(self,
NULL, addr, SE_BUSCONFIG, &circ, NULL);
/* restore original lun */
*(lcp + 1) = sc1;
*(lcp + 2) = sc2;
/*
* Apply maxlun filtering.
*
* Future: We still have the kludged
* scsi_check_ss2_LUN_limit() filtering off
* scsi_probe() to catch bogus driver.conf
* entries.
*/
if (sd0 && (lun64 < SCSI_32LUNS_PER_TARGET) &&
(lun64 >= scsi_get_scsi_maxluns(sd0))) {
sd0 = NULL;
SCSI_HBA_LOG((_LOG(4), self, NULL,
"%s@%s filtered", name, addr));
} else
SCSI_HBA_LOG((_LOG(4), self, NULL,
"%s@%s lun 0 %s", name, addr,
sd0 ? "worked" : "failed"));
}
}
/*
* configure the requested device if LUN0 exists or we were
* unable to determine the lun format to determine if LUN0
* exists.
*/
if (sd0) {
sd = scsi_device_config(self,
name, addr, SE_BUSCONFIG, &circ, NULL);
} else {
sd = NULL;
SCSI_HBA_LOG((_LOG(2), self, NULL,
"%s@%s no lun 0 or filtered lun", name, addr));
}
/*
* We know what we found, to reduce overhead we finish BUS_CONFIG_ONE
* processing without calling back to the frameworks
* ndi_busop_bus_config (unless we goto framework below).
*
* If the reference is to a driver name and we created a generic name
* (bound to that driver) we will still succeed. This is important
* for correctly resolving old drivername references to device that now
* uses a generic names across the transition to generic naming. This
* is effectively an internal implementation of the NDI_DRIVERNAME flag.
*
* We also need to special case the resolve_pathname OBP boot-device
* case (modrootloaded == 0) where reference is to a generic name but
* we created a legacy driver name node by returning just returning
* the node created.
*/
if (sd && sd->sd_dev &&
((strcmp(ddi_node_name(sd->sd_dev), name) == 0) ||
(strcmp(ddi_driver_name(sd->sd_dev), name) == 0) ||
(modrootloaded == 0)) &&
(ndi_devi_online(sd->sd_dev,
flags & NDI_NO_EVENT) == NDI_SUCCESS)) {
/* device attached, return devinfo node with hold */
ret = NDI_SUCCESS;
*childp = sd->sd_dev;
ndi_hold_devi(sd->sd_dev);
} else {
/*
* In the process of failing we may have added nodes to the HBA
* (self), clearing DEVI_MADE_CHILDREN. To reduce the overhead
* associated with the frameworks reaction to this we clear the
* flag here.
*/
mutex_enter(&DEVI(self)->devi_lock);
DEVI(self)->devi_flags &= ~DEVI_MADE_CHILDREN;
mutex_exit(&DEVI(self)->devi_lock);
ret = NDI_FAILURE;
/*
* The framework may still be able to succeed with
* with its GENERIC_PROP code.
*/
scsi_hba_devi_exit(self, circ);
if (flags & NDI_DRV_CONF_REPROBE)
flags |= NDI_CONFIG_REPROBE;
flags |= NDI_MDI_FALLBACK; /* devinfo&pathinfo children */
return (ndi_busop_bus_config(self, flags, BUS_CONFIG_ONE,
(void *)arg, childp, 0));
}
scsi_hba_devi_exit(self, circ);
return (ret);
}
/*
* Perform SCSI Parallel Interconnect bus_config
*/
static int
scsi_hba_bus_config_spi(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp)
{
int ret;
int mt;
/*
* Enumerate scsi target devices: See if we are doing generic dynamic
* enumeration: if driver.conf has not specified the 'scsi-enumeration'
* knob then use the global scsi_enumeration knob.
*/
mt = ddi_prop_get_int(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
"scsi-enumeration", scsi_enumeration);
mt |= scsi_hba_log_mt_disable;
if ((mt & SCSI_ENUMERATION_ENABLE) == 0) {
/*
* Static driver.conf file enumeration:
*
* Force reprobe for BUS_CONFIG_ONE or when manually
* reconfiguring via devfsadm(1m) to emulate deferred attach.
* Reprobe only discovers driver.conf enumerated nodes, more
* dynamic implementations probably require their own
* bus_config.
*/
if ((op == BUS_CONFIG_ONE) || (flags & NDI_DRV_CONF_REPROBE))
flags |= NDI_CONFIG_REPROBE;
flags |= NDI_MDI_FALLBACK; /* devinfo&pathinfo children */
return (ndi_busop_bus_config(self, flags, op, arg, childp, 0));
}
if (scsi_hba_busconfig_debug)
flags |= NDI_DEVI_DEBUG;
/*
* Generic spi dynamic bus config enumeration to discover and enumerate
* the target device nodes we are looking for.
*/
switch (op) {
case BUS_CONFIG_ONE: /* enumerate the named child */
ret = scsi_hba_bus_configone(self, flags, (char *)arg, childp);
break;
case BUS_CONFIG_ALL: /* enumerate all children on the bus */
case BUS_CONFIG_DRIVER: /* enumerate all children that bind to driver */
SCSI_HBA_LOG((_LOG(3), self, NULL,
"BUS_CONFIG_%s mt %x",
(op == BUS_CONFIG_ALL) ? "ALL" : "DRIVER", mt));
/*
* Enumerate targets on SCSI parallel interconnect and let the
* framework finish the operation (attach the nodes).
*/
if ((ret = scsi_hba_bus_configall_spi(self, mt)) == NDI_SUCCESS)
ret = ndi_busop_bus_config(self, flags, op,
arg, childp, 0);
break;
default:
ret = NDI_FAILURE;
break;
}
return (ret);
}
/*
* Perform SCSI Parallel Interconnect bus_unconfig
*/
static int
scsi_hba_bus_unconfig_spi(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg)
{
int mt;
int circ;
int ret;
/*
* See if we are doing generic dynamic enumeration: if driver.conf has
* not specified the 'scsi-enumeration' knob then use the global
* scsi_enumeration knob.
*/
mt = ddi_prop_get_int(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
"scsi-enumeration", scsi_enumeration);
mt |= scsi_hba_log_mt_disable;
if ((mt & SCSI_ENUMERATION_ENABLE) == 0)
return (ndi_busop_bus_unconfig(self, flags, op, arg));
if (scsi_hba_busconfig_debug)
flags |= NDI_DEVI_DEBUG;
scsi_hba_devi_enter(self, &circ);
switch (op) {
case BUS_UNCONFIG_ONE:
SCSI_HBA_LOG((_LOG(3), self, NULL,
"unconfig one: %s", (char *)arg));
ret = NDI_SUCCESS;
break;
case BUS_UNCONFIG_ALL:
case BUS_UNCONFIG_DRIVER:
ret = NDI_SUCCESS;
break;
default:
ret = NDI_FAILURE;
break;
}
/* Perform the generic default bus unconfig */
if (ret == NDI_SUCCESS)
ret = ndi_busop_bus_unconfig(self, flags, op, arg);
scsi_hba_devi_exit(self, circ);
return (ret);
}
static int
scsi_hba_bus_config_tgtmap(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp)
{
int ret = NDI_FAILURE;
switch (op) {
case BUS_CONFIG_ONE:
ret = scsi_hba_bus_configone(self, flags, arg, childp);
break;
case BUS_CONFIG_ALL:
case BUS_CONFIG_DRIVER:
ret = ndi_busop_bus_config(self, flags, op, arg, childp, 0);
break;
default:
break;
}
return (ret);
}
static int
scsi_hba_bus_unconfig_tgtmap(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg)
{
int ret = NDI_FAILURE;
switch (op) {
case BUS_UNCONFIG_ONE:
case BUS_UNCONFIG_DRIVER:
case BUS_UNCONFIG_ALL:
ret = NDI_SUCCESS;
break;
default:
break;
}
if (ret == NDI_SUCCESS) {
flags &= ~NDI_DEVI_REMOVE;
ret = ndi_busop_bus_unconfig(self, flags, op, arg);
}
return (ret);
}
static int
scsi_hba_bus_config_iportmap(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp)
{
dev_info_t *child;
int circ;
int ret = NDI_FAILURE;
/*
* MPXIO is never a sure thing (and we have mixed children), so
* set NDI_NDI_FALLBACK so that ndi_busop_bus_config will
* search for both devinfo and pathinfo children.
*
* Future: Remove NDI_MDI_FALLBACK since devcfg.c now looks for
* devinfo/pathinfo children in parallel (instead of old way of
* looking for one form of child and then doing "fallback" to
* look for other form of child).
*/
flags |= NDI_MDI_FALLBACK; /* devinfo&pathinfo children */
switch (op) {
case BUS_CONFIG_ONE:
scsi_hba_devi_enter(self, &circ);
/* create the iport node child */
if ((child = scsi_hba_bus_config_port(self, (char *)arg,
SE_BUSCONFIG)) != NULL) {
if (childp) {
ndi_hold_devi(child);
*childp = child;
}
ret = NDI_SUCCESS;
}
scsi_hba_devi_exit(self, circ);
break;
case BUS_CONFIG_ALL:
case BUS_CONFIG_DRIVER:
ret = ndi_busop_bus_config(self, flags, op, arg, childp, 0);
break;
default:
break;
}
return (ret);
}
static int
scsi_hba_bus_unconfig_iportmap(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg)
{
flags &= ~NDI_DEVI_REMOVE;
return (ndi_busop_bus_unconfig(self, flags, op, arg));
}
/*
* SCSI HBA bus config enumeration entry point. Called via the bus_ops
* bus_config entry point for all SCSA HBA drivers.
*
* o If an HBA implements its own bus_config via tran_bus_config then we
* invoke it. An HBA that implements its own tran_bus_config entry point
* may still call back into common SCSA code bus_config code for:
*
* o SPI bus_config (scsi_hba_bus_spi)
* o LUN and secondary function enumeration (scsi_hba_enum_lsf_of_t()).
* o configuration of a specific device (scsi_device_config).
* o determining 1275 SCSI nodename and compatible property
* (scsi_hba_nodename_compatible_get/_free).
*
* o Otherwise we implement a SCSI parallel interface (spi) bus config.
*
* Return NDI_SUCCESS if we might have created a new node.
* Return NDI_FAILURE if we definitely did not create a new node.
*/
static int
scsi_hba_bus_config(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp)
{
scsi_hba_tran_t *tran;
int ret;
/* make sure that we will not disappear */
ASSERT(DEVI(self)->devi_ref);
tran = ndi_flavorv_get(self, SCSA_FLAVOR_SCSI_DEVICE);
if (tran == NULL) {
/* NULL tran driver.conf config (used by cmdk). */
if ((op == BUS_CONFIG_ONE) || (flags & NDI_DRV_CONF_REPROBE))
flags |= NDI_CONFIG_REPROBE;
return (ndi_busop_bus_config(self, flags, op, arg, childp, 0));
}
/* Check if self is HBA-only node. */
if (tran->tran_hba_flags & SCSI_HBA_HBA) {
/* The bus_config request is to configure iports below HBA. */
#ifdef sparc
/*
* Sparc's 'boot-device' OBP property value lacks an /iport@X/
* component. Prior to the mount of root, we drive a disk@
* BUS_CONFIG_ONE operatino down a level to resolve an
* OBP 'boot-device' path.
*
* Future: Add (modrootloaded == 0) below, and insure that
* all attempts bus_conf of 'bo_name' (in OBP form) occur
* prior to 'modrootloaded = 1;' assignment in vfs_mountroot.
*/
if ((op == BUS_CONFIG_ONE) &&
(strncmp((char *)arg, "disk@", strlen("disk@")) == 0)) {
return (scsi_hba_bus_config_prom_node(self,
flags, arg, childp));
}
#endif /* sparc */
if (tran->tran_iportmap) {
/* config based on scsi_hba_iportmap API */
ret = scsi_hba_bus_config_iportmap(self,
flags, op, arg, childp);
} else {
/* config based on 'iport_register' API */
ret = scsi_hba_bus_config_iports(self,
flags, op, arg, childp);
}
return (ret);
}
/* Check to see how the iport/HBA does target/lun bus config. */
if (tran->tran_bus_config) {
/* HBA config based on Sun-private/legacy tran_bus_config */
ret = tran->tran_bus_config(self, flags, op, arg, childp);
} else if (tran->tran_tgtmap) {
/* SCSAv3 config based on scsi_hba_tgtmap_*() API */
ret = scsi_hba_bus_config_tgtmap(self, flags, op, arg, childp);
} else {
/* SCSA config based on SCSI Parallel Interconnect */
ret = scsi_hba_bus_config_spi(self, flags, op, arg, childp);
}
return (ret);
}
/*
* Called via the bus_ops bus_unconfig entry point for SCSI HBA drivers.
*/
static int
scsi_hba_bus_unconfig(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg)
{
int circ;
scsi_hba_tran_t *tran;
int ret;
tran = ddi_get_driver_private(self);
if (tran == NULL) {
/* NULL tran driver.conf unconfig (used by cmdk). */
return (ndi_busop_bus_unconfig(self, flags, op, arg));
}
/*
* Purge barrier/probe node children. We do this prior to
* tran_bus_unconfig in case the unconfig implementation calls back
* into the common code at a different enumeration level, such a
* scsi_device_config, which still creates barrier/probe nodes.
*/
scsi_hba_devi_enter(self, &circ);
scsi_hba_barrier_purge(self);
scsi_hba_devi_exit(self, circ);
/* Check if self is HBA-only node. */
if (tran->tran_hba_flags & SCSI_HBA_HBA) {
/* The bus_config request is to unconfigure iports below HBA. */
if (tran->tran_iportmap) {
/* unconfig based on scsi_hba_iportmap API */
ret = scsi_hba_bus_unconfig_iportmap(self,
flags, op, arg);
}
return (ret);
}
/* Check to see how the iport/HBA does target/lun bus unconfig. */
if (tran->tran_bus_unconfig) {
/* HBA unconfig based on Sun-private/legacy tran_bus_unconfig */
ret = tran->tran_bus_unconfig(self, flags, op, arg);
} else if (tran->tran_tgtmap) {
/* SCSAv3 unconfig based on scsi_hba_tgtmap_*() API */
ret = scsi_hba_bus_unconfig_tgtmap(self, flags, op, arg);
} else {
/* SCSA unconfig based on SCSI Parallel Interconnect */
ret = scsi_hba_bus_unconfig_spi(self, flags, op, arg);
}
return (ret);
}
static int
scsi_tgtmap_scsi_config(void *arg, damap_t *mapp, damap_id_t tgtid)
{
scsi_hba_tran_t *tran = (scsi_hba_tran_t *)arg;
dev_info_t *self = tran->tran_iport_dip;
impl_scsi_tgtmap_t *tgtmap;
char *tgtaddr;
int cfg_status, mt;
tgtmap = (impl_scsi_tgtmap_t *)tran->tran_tgtmap;
tgtaddr = damap_id2addr(mapp, tgtid);
if (scsi_lunmap_create(self, tgtmap, tgtaddr) != DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"failed to create lunmap for %s", tgtaddr));
}
mt = ddi_prop_get_int(DDI_DEV_T_ANY, self,
DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, "scsi-enumeration",
scsi_enumeration);
mt |= scsi_hba_log_mt_disable;
cfg_status = scsi_hba_bus_config_taddr(self, tgtaddr, mt, SE_HP);
if (cfg_status != NDI_SUCCESS) {
SCSI_HBA_LOG((_LOGCFG, self, NULL, "%s @%s config status %d",
damap_name(mapp), tgtaddr, cfg_status));
scsi_lunmap_destroy(self, tgtmap, tgtaddr);
return (DAM_FAILURE);
}
return (DAM_SUCCESS);
}
static int
scsi_tgtmap_scsi_unconfig(void *arg, damap_t *mapp, damap_id_t tgtid)
{
scsi_hba_tran_t *tran = (scsi_hba_tran_t *)arg;
dev_info_t *self = tran->tran_iport_dip;
impl_scsi_tgtmap_t *tgtmap;
char *tgt_addr;
tgtmap = (impl_scsi_tgtmap_t *)tran->tran_tgtmap;
tgt_addr = damap_id2addr(mapp, tgtid);
SCSI_HBA_LOG((_LOGUNCFG, self, NULL, "%s @%s", damap_name(mapp),
tgt_addr));
scsi_lunmap_destroy(self, tgtmap, tgt_addr);
return (DAM_SUCCESS);
}
static int
scsi_tgtmap_smp_config(void *arg, damap_t *mapp, damap_id_t tgtid)
{
scsi_hba_tran_t *tran = (scsi_hba_tran_t *)arg;
dev_info_t *self = tran->tran_iport_dip;
char *addr;
addr = damap_id2addr(mapp, tgtid);
SCSI_HBA_LOG((_LOGCFG, self, NULL, "%s @%s", damap_name(mapp), addr));
return ((smp_hba_bus_config_taddr(self, addr) == NDI_SUCCESS) ?
DAM_SUCCESS : DAM_FAILURE);
}
static int
scsi_tgtmap_smp_unconfig(void *arg, damap_t *mapp, damap_id_t tgtid)
{
scsi_hba_tran_t *tran = (scsi_hba_tran_t *)arg;
dev_info_t *self = tran->tran_iport_dip;
char *addr;
dev_info_t *child;
char nameaddr[SCSI_MAXNAMELEN];
int circ;
addr = damap_id2addr(mapp, tgtid);
SCSI_HBA_LOG((_LOGUNCFG, self, NULL, "%s @%s", damap_name(mapp), addr));
(void) snprintf(nameaddr, sizeof (nameaddr), "smp@%s", addr);
scsi_hba_devi_enter(self, &circ);
if ((child = ndi_devi_findchild(self, nameaddr)) == NULL) {
scsi_hba_devi_exit(self, circ);
return (DAM_SUCCESS);
}
if (ndi_devi_offline(child,
NDI_DEVFS_CLEAN | NDI_DEVI_REMOVE) == DDI_SUCCESS) {
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"devinfo smp@%s offlined and removed", addr));
} else if (ndi_devi_device_remove(child)) {
/* Offline/remove failed, note new device_remove */
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"devinfo smp@%s offline failed, device_remove",
addr));
}
scsi_hba_devi_exit(self, circ);
return (DAM_SUCCESS);
}
/* ARGSUSED1 */
static void
scsi_tgtmap_smp_activate(void *map_priv, char *tgt_addr, int addrid,
void **tgt_privp)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)map_priv;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
if (tgtmap->tgtmap_activate_cb) {
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s @%s activated",
damap_name(tgtmap->tgtmap_dam[SCSI_TGT_SMP_DEVICE]),
tgt_addr));
(*tgtmap->tgtmap_activate_cb)(tgtmap->tgtmap_mappriv,
tgt_addr, SCSI_TGT_SMP_DEVICE, tgt_privp);
}
}
/* ARGSUSED1 */
static void
scsi_tgtmap_smp_deactivate(void *map_priv, char *tgt_addr, int addrid,
void *tgt_privp, damap_deact_rsn_t damap_rsn)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)map_priv;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
boolean_t tgtmap_rereport;
scsi_tgtmap_deact_rsn_t tgtmap_rsn;
if (tgtmap->tgtmap_deactivate_cb) {
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s @%s deactivated %d",
damap_name(tgtmap->tgtmap_dam[SCSI_TGT_SMP_DEVICE]),
tgt_addr, damap_rsn));
if (damap_rsn == DAMAP_DEACT_RSN_GONE)
tgtmap_rsn = SCSI_TGT_DEACT_RSN_GONE;
else if (damap_rsn == DAMAP_DEACT_RSN_CFG_FAIL)
tgtmap_rsn = SCSI_TGT_DEACT_RSN_CFG_FAIL;
else if (damap_rsn == DAMAP_DEACT_RSN_UNSTBL)
tgtmap_rsn = SCSI_TGT_DEACT_RSN_UNSTBL;
else {
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"%s @%s deactivated with unknown rsn",
damap_name(tgtmap->tgtmap_dam[SCSI_TGT_SMP_DEVICE]),
tgt_addr));
return;
}
tgtmap_rereport = (*tgtmap->tgtmap_deactivate_cb)
(tgtmap->tgtmap_mappriv, tgt_addr,
SCSI_TGT_SMP_DEVICE, tgt_privp, tgtmap_rsn);
if ((tgtmap_rsn == SCSI_TGT_DEACT_RSN_CFG_FAIL) &&
(tgtmap_rereport == B_FALSE)) {
SCSI_HBA_LOG((_LOG(WARN), NULL, self,
"%s enumeration failed, no more retries until "
"config change occurs", tgt_addr));
}
}
}
/* ARGSUSED1 */
static void
scsi_tgtmap_scsi_activate(void *map_priv, char *tgt_addr, int addrid,
void **tgt_privp)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)map_priv;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
if (tgtmap->tgtmap_activate_cb) {
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s @%s activated",
damap_name(tgtmap->tgtmap_dam[SCSI_TGT_SCSI_DEVICE]),
tgt_addr));
(*tgtmap->tgtmap_activate_cb)(tgtmap->tgtmap_mappriv,
tgt_addr, SCSI_TGT_SCSI_DEVICE, tgt_privp);
}
}
/* ARGSUSED1 */
static void
scsi_tgtmap_scsi_deactivate(void *map_priv, char *tgt_addr, int addrid,
void *tgt_privp, damap_deact_rsn_t damap_rsn)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)map_priv;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
boolean_t tgtmap_rereport;
scsi_tgtmap_deact_rsn_t tgtmap_rsn;
if (tgtmap->tgtmap_deactivate_cb) {
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s @%s deactivated %d",
damap_name(tgtmap->tgtmap_dam[SCSI_TGT_SCSI_DEVICE]),
tgt_addr, damap_rsn));
if (damap_rsn == DAMAP_DEACT_RSN_GONE)
tgtmap_rsn = SCSI_TGT_DEACT_RSN_GONE;
else if (damap_rsn == DAMAP_DEACT_RSN_CFG_FAIL)
tgtmap_rsn = SCSI_TGT_DEACT_RSN_CFG_FAIL;
else if (damap_rsn == DAMAP_DEACT_RSN_UNSTBL)
tgtmap_rsn = SCSI_TGT_DEACT_RSN_UNSTBL;
else {
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"%s @%s deactivated with unknown rsn", damap_name(
tgtmap->tgtmap_dam[SCSI_TGT_SCSI_DEVICE]),
tgt_addr));
return;
}
tgtmap_rereport = (*tgtmap->tgtmap_deactivate_cb)
(tgtmap->tgtmap_mappriv, tgt_addr,
SCSI_TGT_SCSI_DEVICE, tgt_privp, tgtmap_rsn);
if ((tgtmap_rsn == SCSI_TGT_DEACT_RSN_CFG_FAIL) &&
(tgtmap_rereport == B_FALSE)) {
SCSI_HBA_LOG((_LOG(WARN), NULL, self,
"%s enumeration failed, no more retries until "
"config change occurs", tgt_addr));
}
}
}
int
scsi_hba_tgtmap_create(dev_info_t *self, scsi_tgtmap_mode_t mode,
clock_t settle, void *tgtmap_priv, scsi_tgt_activate_cb_t activate_cb,
scsi_tgt_deactivate_cb_t deactivate_cb, scsi_hba_tgtmap_t **handle)
{
scsi_hba_tran_t *tran;
damap_t *mapp;
char context[64];
impl_scsi_tgtmap_t *tgtmap;
damap_rptmode_t rpt_style;
char *scsi_binding_set;
int optflags;
if (self == NULL || settle == 0 || handle == NULL)
return (DDI_FAILURE);
*handle = NULL;
if (scsi_hba_iport_unit_address(self) == NULL)
return (DDI_FAILURE);
switch (mode) {
case SCSI_TM_FULLSET:
rpt_style = DAMAP_REPORT_FULLSET;
break;
case SCSI_TM_PERADDR:
rpt_style = DAMAP_REPORT_PERADDR;
break;
default:
return (DDI_FAILURE);
}
tran = (scsi_hba_tran_t *)ddi_get_driver_private(self);
ASSERT(tran);
if (tran == NULL)
return (DDI_FAILURE);
tgtmap = kmem_zalloc(sizeof (*tgtmap), KM_SLEEP);
tgtmap->tgtmap_tran = tran;
tgtmap->tgtmap_activate_cb = activate_cb;
tgtmap->tgtmap_deactivate_cb = deactivate_cb;
tgtmap->tgtmap_mappriv = tgtmap_priv;
optflags = (ddi_prop_get_int(DDI_DEV_T_ANY, self,
DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, "scsi-enumeration",
scsi_enumeration) & SCSI_ENUMERATION_MT_TARGET_DISABLE) ?
DAMAP_SERIALCONFIG : DAMAP_MTCONFIG;
(void) snprintf(context, sizeof (context), "%s%d.tgtmap.scsi",
ddi_driver_name(self), ddi_get_instance(self));
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s", context));
if (damap_create(context, rpt_style, optflags, settle,
tgtmap, scsi_tgtmap_scsi_activate, scsi_tgtmap_scsi_deactivate,
tran, scsi_tgtmap_scsi_config, scsi_tgtmap_scsi_unconfig,
&mapp) != DAM_SUCCESS) {
kmem_free(tgtmap, sizeof (*tgtmap));
return (DDI_FAILURE);
}
tgtmap->tgtmap_dam[SCSI_TGT_SCSI_DEVICE] = mapp;
(void) snprintf(context, sizeof (context), "%s%d.tgtmap.smp",
ddi_driver_name(self), ddi_get_instance(self));
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s", context));
if (damap_create(context, rpt_style, optflags,
settle, tgtmap, scsi_tgtmap_smp_activate,
scsi_tgtmap_smp_deactivate,
tran, scsi_tgtmap_smp_config, scsi_tgtmap_smp_unconfig,
&mapp) != DAM_SUCCESS) {
damap_destroy(tgtmap->tgtmap_dam[SCSI_TGT_SCSI_DEVICE]);
kmem_free(tgtmap, sizeof (*tgtmap));
return (DDI_FAILURE);
}
tgtmap->tgtmap_dam[SCSI_TGT_SMP_DEVICE] = mapp;
tran->tran_tgtmap = (scsi_hba_tgtmap_t *)tgtmap;
*handle = (scsi_hba_tgtmap_t *)tgtmap;
/*
* We have now set tran_tgtmap, marking the tran as using tgtmap
* enumeration services. To prevent the generation of legacy spi
* 'binding-set' compatible forms, remove the 'scsi-binding-set'
* property.
*/
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-binding-set",
&scsi_binding_set) == DDI_PROP_SUCCESS) {
if (strcmp(scsi_binding_set, scsi_binding_set_spi) == 0)
(void) ndi_prop_remove(DDI_DEV_T_NONE, self,
"scsi-binding-set");
ddi_prop_free(scsi_binding_set);
}
return (DDI_SUCCESS);
}
void
scsi_hba_tgtmap_destroy(scsi_hba_tgtmap_t *handle)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)handle;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
int i;
for (i = 0; i < SCSI_TGT_NTYPES; i++) {
if (tgtmap->tgtmap_dam[i]) {
SCSI_HBA_LOG((_LOGTGT, self, NULL,
"%s", damap_name(tgtmap->tgtmap_dam[i])));
damap_destroy(tgtmap->tgtmap_dam[i]);
}
}
kmem_free(tgtmap, sizeof (*tgtmap));
}
static int
scsi_tgtmap_sync(scsi_hba_tgtmap_t *handle)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)handle;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
int empty = 1;
int i;
for (i = 0; i < SCSI_TGT_NTYPES; i++) {
if (tgtmap->tgtmap_dam[i]) {
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s sync begin",
damap_name(tgtmap->tgtmap_dam[i])));
/* return 1 if all maps ended up empty */
empty &= damap_sync(tgtmap->tgtmap_dam[i]);
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s sync end",
damap_name(tgtmap->tgtmap_dam[i])));
}
}
return (empty);
}
static int
scsi_tgtmap_begin_or_flush(scsi_hba_tgtmap_t *handle, boolean_t do_begin)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)handle;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
char *context;
int rv = DAM_SUCCESS;
int i;
for (i = 0; i < SCSI_TGT_NTYPES; i++) {
if (tgtmap->tgtmap_dam[i] == NULL) {
continue;
}
context = damap_name(tgtmap->tgtmap_dam[i]);
if (do_begin == B_TRUE) {
if (i == SCSI_TGT_SCSI_DEVICE) {
/*
* In scsi_device context, so we have the
* 'context' string, diagnose the case where
* the tgtmap caller is failing to make
* forward progress, i.e. the caller is never
* completing an observation, and calling
* scsi_hbg_tgtmap_set_end. If this occurs,
* the solaris target/lun state may be out
* of sync with hardware.
*/
if (tgtmap->tgtmap_reports++ >=
scsi_hba_tgtmap_reports_max) {
tgtmap->tgtmap_noisy++;
if (tgtmap->tgtmap_noisy == 1) {
SCSI_HBA_LOG((_LOG(WARN), self,
NULL, "%s: failing a tgtmap"
" observation", context));
}
}
}
rv = damap_addrset_begin(tgtmap->tgtmap_dam[i]);
} else {
rv = damap_addrset_flush(tgtmap->tgtmap_dam[i]);
}
if (rv != DAM_SUCCESS) {
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s FAIL", context));
} else {
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s", context));
}
}
return ((rv == DAM_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
int
scsi_hba_tgtmap_set_begin(scsi_hba_tgtmap_t *handle)
{
return (scsi_tgtmap_begin_or_flush(handle, B_TRUE));
}
int
scsi_hba_tgtmap_set_flush(scsi_hba_tgtmap_t *handle)
{
return (scsi_tgtmap_begin_or_flush(handle, B_FALSE));
}
int
scsi_hba_tgtmap_set_add(scsi_hba_tgtmap_t *handle,
scsi_tgtmap_tgt_type_t tgt_type, char *tgt_addr, void *tgt_priv)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)handle;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
if (tgt_type >= SCSI_TGT_NTYPES || !tgtmap->tgtmap_dam[tgt_type])
return (DDI_FAILURE);
SCSI_HBA_LOG((_LOGTGT, self, NULL,
"%s @%s", damap_name(tgtmap->tgtmap_dam[tgt_type]), tgt_addr));
return ((damap_addrset_add(tgtmap->tgtmap_dam[tgt_type], tgt_addr,
NULL, NULL, tgt_priv) == DAM_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
/*ARGSUSED*/
int
scsi_hba_tgtmap_set_end(scsi_hba_tgtmap_t *handle, uint_t flags)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)handle;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
char *context;
int rv = DDI_SUCCESS;
int i;
tgtmap->tgtmap_reports = tgtmap->tgtmap_noisy = 0;
for (i = 0; i < SCSI_TGT_NTYPES; i++) {
if (tgtmap->tgtmap_dam[i] == NULL)
continue;
context = damap_name(tgtmap->tgtmap_dam[i]);
if (damap_addrset_end(
tgtmap->tgtmap_dam[i], 0) != DAM_SUCCESS) {
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s FAIL", context));
rv = DDI_FAILURE;
continue;
}
SCSI_HBA_LOG((_LOGTGT, self, NULL, "%s", context));
}
return (rv);
}
int
scsi_hba_tgtmap_tgt_add(scsi_hba_tgtmap_t *handle,
scsi_tgtmap_tgt_type_t tgt_type, char *tgt_addr, void *tgt_priv)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)handle;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
if (tgt_type >= SCSI_TGT_NTYPES || !tgtmap->tgtmap_dam[tgt_type])
return (DDI_FAILURE);
SCSI_HBA_LOG((_LOGTGT, self, NULL,
"%s @%s", damap_name(tgtmap->tgtmap_dam[tgt_type]), tgt_addr));
return ((damap_addr_add(tgtmap->tgtmap_dam[tgt_type], tgt_addr, NULL,
NULL, tgt_priv) == DAM_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
int
scsi_hba_tgtmap_tgt_remove(scsi_hba_tgtmap_t *handle,
scsi_tgtmap_tgt_type_t tgt_type, char *tgt_addr)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)handle;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
if (tgt_type >= SCSI_TGT_NTYPES || !tgtmap->tgtmap_dam[tgt_type])
return (DDI_FAILURE);
SCSI_HBA_LOG((_LOGTGT, self, NULL,
"%s @%s", damap_name(tgtmap->tgtmap_dam[tgt_type]), tgt_addr));
return ((damap_addr_del(tgtmap->tgtmap_dam[tgt_type],
tgt_addr) == DAM_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
int
scsi_hba_tgtmap_lookup(scsi_hba_tgtmap_t *handle,
char *tgt_addr, scsi_tgtmap_tgt_type_t *r_type)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)handle;
dev_info_t *self = tgtmap->tgtmap_tran->tran_iport_dip;
damap_id_t tgtid;
int i;
for (i = 0; i < SCSI_TGT_NTYPES; i++) {
tgtid = damap_lookup(tgtmap->tgtmap_dam[i], tgt_addr);
if (tgtid != NODAM) {
*r_type = i;
SCSI_HBA_LOG((_LOG(3), self, NULL,
"%s @%s found: type %d",
damap_name(tgtmap->tgtmap_dam[i]), tgt_addr, i));
damap_id_rele(tgtmap->tgtmap_dam[i], tgtid);
return (DDI_SUCCESS);
}
}
SCSI_HBA_LOG((_LOG(3), self, NULL,
"%s%d.tgtmap @%s not found",
ddi_driver_name(self), ddi_get_instance(self), tgt_addr));
return (DDI_FAILURE);
}
/*
* Return the unit-address of an 'iport' node, or NULL for non-iport node.
*/
char *
scsi_hba_iport_unit_address(dev_info_t *self)
{
/*
* NOTE: Since 'self' could be a SCSA iport node or a SCSA HBA node,
* we can't use SCSA flavors: the flavor of a SCSA HBA node is not
* established/owned by SCSA, it is established by the nexus that
* created the SCSA HBA node (PCI) as a child.
*
* NOTE: If we want to support a node_name other than "iport" for
* an iport node then we can add support for a "scsa-iport-node-name"
* property on the SCSA HBA node. A SCSA HBA driver would set this
* property on the SCSA HBA node prior to using the iport API.
*/
if (strcmp(ddi_node_name(self), "iport") == 0)
return (ddi_get_name_addr(self));
else
return (NULL);
}
/*
* Define a SCSI initiator port (bus/channel) for an HBA card that needs to
* support multiple SCSI ports, but only has a single HBA devinfo node. This
* function should be called from the HBA's attach(9E) implementation (when
* processing the HBA devinfo node attach) after the number of SCSI ports on
* the card is known or when the HBA driver DR handler detects a new port.
* The function returns 0 on failure and 1 on success.
*
* The implementation will add the port value into the "scsi-iports" property
* value maintained on the HBA node as. These properties are used by the generic
* scsi bus_config implementation to dynamicaly enumerate the specified iport
* children. The enumeration code will, on demand, create the appropriate
* iport children with a SCSI_ADDR_PROP_IPORTUA unit address. This node will
* bind to the same driver as the HBA node itself. This means that an HBA
* driver that uses iports should expect probe(9E), attach(9E), and detach(9E)
* calls on the iport children of the HBA. If configuration for all ports was
* already done during HBA node attach, the driver should just return
* DDI_SUCCESS when confronted with an iport node.
*
* A maximum of 32 iport ports are supported per HBA devinfo node.
*
* A NULL "port" can be used to indicate that the framework should enumerate
* target children on the HBA node itself, in addition to enumerating target
* children on any iport nodes declared. There are two reasons that an HBA may
* wish to have target children enumerated on both the HBA node and iport
* node(s):
*
* o If, in the past, HBA hardware had only a single physical port but now
* supports multiple physical ports, the updated driver that supports
* multiple physical ports may want to avoid /devices path upgrade issues
* by enumerating the first physical port under the HBA instead of as a
* iport.
*
* o Some hardware RAID HBA controllers (mlx, chs, etc) support multiple
* SCSI physical ports configured so that various physical devices on
* the physical ports are amalgamated into virtual devices on a virtual
* port. Amalgamated physical devices no longer appear to the host OS
* on the physical ports, but other non-amalgamated devices may still be
* visible on the physical ports. These drivers use a model where the
* physical ports are iport nodes and the HBA node is the virtual port to
* the configured virtual devices.
*/
int
scsi_hba_iport_register(dev_info_t *self, char *port)
{
unsigned int ports = 0;
int rval, i;
char **iports, **newiports;
ASSERT(self);
if (self == NULL)
return (DDI_FAILURE);
rval = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-iports", &iports,
&ports);
if (ports >= SCSI_HBA_MAX_IPORTS) {
ddi_prop_free(iports);
return (DDI_FAILURE);
}
if (rval == DDI_PROP_SUCCESS) {
for (i = 0; i < ports; i++) {
if (strcmp(port, iports[i]) == 0) {
/* iport already registered */
ddi_prop_free(iports);
return (DDI_SUCCESS);
}
}
}
newiports = kmem_alloc((sizeof (char *) * (ports + 1)), KM_SLEEP);
for (i = 0; i < ports; i++) {
newiports[i] = strdup(iports[i]);
}
newiports[ports] = strdup(port);
ports++;
if (ddi_prop_update_string_array(DDI_DEV_T_NONE, self,
"scsi-iports", newiports, ports) != DDI_PROP_SUCCESS) {
SCSI_HBA_LOG((_LOG(WARN), self, NULL,
"failed to establish %s %s",
SCSI_ADDR_PROP_IPORTUA, port));
rval = DDI_FAILURE;
} else {
rval = DDI_SUCCESS;
}
/* If there is iport exist, free property */
if (ports > 1)
ddi_prop_free(iports);
for (i = 0; i < ports; i++) {
strfree(newiports[i]);
}
kmem_free(newiports, (sizeof (char *)) * ports);
return (rval);
}
/*
* Check if the HBA has any scsi_hba_iport_register()ed children.
*/
int
scsi_hba_iport_exist(dev_info_t *self)
{
unsigned int ports = 0;
char **iports;
int rval;
rval = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-iports", &iports,
&ports);
if (rval != DDI_PROP_SUCCESS)
return (0);
/* If there is now at least 1 iport, then iports is valid */
if (ports > 0) {
rval = 1;
} else
rval = 0;
ddi_prop_free(iports);
return (rval);
}
dev_info_t *
scsi_hba_iport_find(dev_info_t *self, char *portnm)
{
char *addr = NULL;
char **iports;
unsigned int num_iports = 0;
int rval = DDI_FAILURE;
int i = 0;
dev_info_t *child = NULL;
/* check to see if this is an HBA that defined scsi iports */
rval = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-iports", &iports,
&num_iports);
if (rval != DDI_SUCCESS) {
return (NULL);
}
ASSERT(num_iports > 0);
/* check to see if this port was registered */
for (i = 0; i < num_iports; i++) {
if (strcmp(iports[i], portnm) == 0)
break;
}
if (i == num_iports) {
child = NULL;
goto out;
}
addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
(void) snprintf(addr, SCSI_MAXNAMELEN, "iport@%s", portnm);
rval = ndi_devi_config_one(self, addr, &child, NDI_NO_EVENT);
kmem_free(addr, SCSI_MAXNAMELEN);
if (rval != DDI_SUCCESS) {
child = NULL;
}
out:
ddi_prop_free(iports);
return (child);
}
/*
* Search/create the specified iport node
*/
static dev_info_t *
scsi_hba_bus_config_port(dev_info_t *self, char *nameaddr, scsi_enum_t se)
{
dev_info_t *child; /* iport child of HBA node */
scsi_hba_tran_t *tran;
char *addr;
char *compat;
/*
* See if the iport node already exists.
*/
addr = nameaddr + strlen("iport@");
if (child = ndi_devi_findchild(self, nameaddr)) {
if (ndi_devi_device_isremoved(child)) {
if ((se == SE_HP) || !ndi_dev_is_hotplug_node(child)) {
if (ndi_devi_device_insert(child))
SCSI_HBA_LOG((_LOGCFG, self, NULL,
"devinfo iport@%s device_reinsert",
addr));
} else
return (NULL);
}
return (child);
}
/*
* If config based on scsi_hba_iportmap API, only allow create
* from hotplug.
*/
tran = ndi_flavorv_get(self, SCSA_FLAVOR_SCSI_DEVICE);
ASSERT(tran);
if (tran->tran_iportmap && (se != SE_HP))
return (NULL);
/* allocate and initialize a new "iport" node */
ndi_devi_alloc_sleep(self, "iport",
(se == SE_HP) ? DEVI_SID_HP_NODEID : DEVI_SID_NODEID,
&child);
ASSERT(child);
/*
* Set the flavor of the child to be IPORT flavored
*/
ndi_flavor_set(child, SCSA_FLAVOR_IPORT);
/*
* Add the SCSI_ADDR_PROP_IPORTUA addressing property for this child.
* This property is used to identify a iport node, and to represent the
* nodes @addr form via node properties.
*
* Add "compatible" property to the "scsi-iport" node to cause it bind
* to the same driver as the HBA driver. Use the "driver" name
* instead of the "binding name" to distinguish from hw node.
*
* Give the HBA a chance, via tran_set_name_prop, to set additional
* iport node properties or to change the "compatible" binding
* prior to init_child.
*
* NOTE: the order of these operations is important so that
* scsi_hba_iport works when called.
*/
compat = (char *)ddi_driver_name(self);
if ((ndi_prop_update_string(DDI_DEV_T_NONE, child,
SCSI_ADDR_PROP_IPORTUA, addr) != DDI_PROP_SUCCESS) ||
(ndi_prop_update_string_array(DDI_DEV_T_NONE, child,
"compatible", &compat, 1) != DDI_PROP_SUCCESS) ||
ddi_pathname_obp_set(child, NULL) != DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(WARN), "%s failed dynamic decoration",
nameaddr));
(void) ddi_remove_child(child, 0);
child = NULL;
} else {
/*
* Online/attach in order to get events so devfsadm will
* create public names.
*/
ndi_hold_devi(child);
if (ndi_devi_online(child, 0) != NDI_SUCCESS) {
ndi_rele_devi(child);
ndi_prop_remove_all(child);
(void) ndi_devi_free(child);
child = NULL;
} else
ndi_rele_devi(child);
}
return (child);
}
#ifdef sparc
/*
* Future: When iportmap boot support is added, consider rewriting this to
* perform a scsi_hba_bus_config(BUS_CONFIG_ALL) on self (HBA) followed by
* a scsi_hba_bus_config(BUS_CONFIG_ONE) on each child of self (each iport).
*/
/* ARGSUSED */
static int
scsi_hba_bus_config_prom_node(dev_info_t *self, uint_t flags,
void *arg, dev_info_t **childp)
{
char **iports;
int circ, i;
int ret = NDI_FAILURE;
unsigned int num_iports = 0;
dev_info_t *pdip = NULL;
char *addr = NULL;
/* check to see if this is an HBA that defined scsi iports */
ret = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-iports", &iports,
&num_iports);
if (ret != DDI_SUCCESS) {
return (ret);
}
ASSERT(num_iports > 0);
addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
ret = NDI_FAILURE;
scsi_hba_devi_enter(self, &circ);
/* create iport nodes for each scsi port/bus */
for (i = 0; i < num_iports; i++) {
bzero(addr, SCSI_MAXNAMELEN);
/* Prepend the iport name */
(void) snprintf(addr, SCSI_MAXNAMELEN, "iport@%s",
iports[i]);
if (pdip = scsi_hba_bus_config_port(self, addr, SE_BUSCONFIG)) {
if (ndi_busop_bus_config(self, NDI_NO_EVENT,
BUS_CONFIG_ONE, addr, &pdip, 0) !=
NDI_SUCCESS) {
continue;
}
/*
* Try to configure child under iport see wehter
* request node is the child of the iport node
*/
if (ndi_devi_config_one(pdip, arg, childp,
NDI_NO_EVENT) == NDI_SUCCESS) {
ret = NDI_SUCCESS;
break;
}
}
}
scsi_hba_devi_exit(self, circ);
kmem_free(addr, SCSI_MAXNAMELEN);
ddi_prop_free(iports);
return (ret);
}
#endif
/*
* Perform iport port/bus bus_config.
*/
static int
scsi_hba_bus_config_iports(dev_info_t *self, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp)
{
char *nameaddr, *addr;
char **iports;
int circ, i;
int ret = NDI_FAILURE;
unsigned int num_iports = 0;
/* check to see if this is an HBA that defined scsi iports */
ret = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, self,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-iports", &iports,
&num_iports);
if (ret != DDI_SUCCESS) {
return (ret);
}
ASSERT(num_iports > 0);
scsi_hba_devi_enter(self, &circ);
switch (op) {
case BUS_CONFIG_ONE:
/* return if this operation is not against an iport node */
nameaddr = (char *)arg;
if ((nameaddr == NULL) ||
(strncmp(nameaddr, "iport@", strlen("iport@")) != 0)) {
ret = NDI_FAILURE;
scsi_hba_devi_exit(self, circ);
ddi_prop_free(iports);
return (ret);
}
/* parse the port number from "iport@%s" */
addr = nameaddr + strlen("iport@");
/* check to see if this port was registered */
for (i = 0; i < num_iports; i++) {
if (strcmp((iports[i]), addr) == 0)
break;
}
if (i == num_iports) {
ret = NDI_FAILURE;
break;
}
/* create the iport node child */
if (scsi_hba_bus_config_port(self, nameaddr, SE_BUSCONFIG)) {
ret = NDI_SUCCESS;
}
break;
case BUS_CONFIG_ALL:
case BUS_CONFIG_DRIVER:
addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
/* create iport nodes for each scsi port/bus */
for (i = 0; i < num_iports; i++) {
bzero(addr, SCSI_MAXNAMELEN);
/* Prepend the iport name */
(void) snprintf(addr, SCSI_MAXNAMELEN, "iport@%s",
iports[i]);
(void) scsi_hba_bus_config_port(self, addr,
SE_BUSCONFIG);
}
kmem_free(addr, SCSI_MAXNAMELEN);
ret = NDI_SUCCESS;
break;
}
if (ret == NDI_SUCCESS) {
#ifdef sparc
/*
* Mask NDI_PROMNAME since PROM doesn't have iport
* node at all.
*/
flags &= (~NDI_PROMNAME);
#endif
flags |= NDI_MDI_FALLBACK; /* devinfo&pathinfo children */
ret = ndi_busop_bus_config(self, flags, op,
arg, childp, 0);
}
scsi_hba_devi_exit(self, circ);
ddi_prop_free(iports);
return (ret);
}
typedef struct impl_scsi_iportmap {
dev_info_t *iportmap_hba_dip;
damap_t *iportmap_dam;
} impl_scsi_iportmap_t;
static int
scsi_iportmap_config(void *arg, damap_t *mapp, damap_id_t tgtid)
{
dev_info_t *self = (dev_info_t *)arg;
int circ;
char nameaddr[SCSI_MAXNAMELEN];
char *iport_addr;
dev_info_t *childp;
scsi_hba_devi_enter(self, &circ);
iport_addr = damap_id2addr(mapp, tgtid);
SCSI_HBA_LOG((_LOGIPT, self, NULL,
"%s @%s", damap_name(mapp), iport_addr));
(void) snprintf(nameaddr, sizeof (nameaddr), "iport@%s", iport_addr);
childp = scsi_hba_bus_config_port(self, nameaddr, SE_HP);
scsi_hba_devi_exit(self, circ);
return (childp != NULL ? DAM_SUCCESS : DAM_FAILURE);
}
static int
scsi_iportmap_unconfig(void *arg, damap_t *mapp, damap_id_t tgtid)
{
dev_info_t *self = arg;
dev_info_t *childp; /* iport child of HBA node */
int circ, empty;
char *addr;
char nameaddr[SCSI_MAXNAMELEN];
scsi_hba_tran_t *tran;
addr = damap_id2addr(mapp, tgtid);
SCSI_HBA_LOG((_LOGIPT, self, NULL, "%s @%s", damap_name(mapp), addr));
(void) snprintf(nameaddr, sizeof (nameaddr), "iport@%s", addr);
scsi_hba_devi_enter(self, &circ);
if ((childp = ndi_devi_findchild(self, nameaddr)) == NULL) {
scsi_hba_devi_exit(self, circ);
return (DAM_FAILURE);
}
tran = ddi_get_driver_private(childp);
ASSERT(tran);
ndi_hold_devi(childp);
scsi_hba_devi_exit(self, circ);
/*
* A begin/end (clear) against the iport's
* tgtmap will trigger unconfigure of all
* targets on the iport.
*
* Future: This bit of code only works if the
* target map reporting style is are full
* reports and not per-address. Maybe we
* should plan on handling this by
* auto-unconfiguration when destroying the
* target map(s).
*/
(void) scsi_hba_tgtmap_set_begin(tran->tran_tgtmap);
(void) scsi_hba_tgtmap_set_end(tran->tran_tgtmap, 0);
/* wait for unconfigure */
empty = scsi_tgtmap_sync(tran->tran_tgtmap);
scsi_hba_devi_enter(self, &circ);
ndi_rele_devi(childp);
/* If begin/end/sync ends in empty map, offline/remove. */
if (empty) {
if (ndi_devi_offline(childp,
NDI_DEVFS_CLEAN | NDI_DEVI_REMOVE) == DDI_SUCCESS) {
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"devinfo iport@%s offlined and removed",
addr));
} else if (ndi_devi_device_remove(childp)) {
/* Offline/rem failed, note new device_remove */
SCSI_HBA_LOG((_LOGUNCFG, self, NULL,
"devinfo iport@%s offline failed, "
"device_remove", addr));
}
}
scsi_hba_devi_exit(self, circ);
return (empty ? DAM_SUCCESS : DAM_FAILURE);
}
int
scsi_hba_iportmap_create(dev_info_t *self, clock_t settle,
scsi_hba_iportmap_t **handle)
{
scsi_hba_tran_t *tran;
damap_t *mapp;
char context[64];
impl_scsi_iportmap_t *iportmap;
if (self == NULL || settle == 0 || handle == NULL)
return (DDI_FAILURE);
*handle = NULL;
if (scsi_hba_iport_unit_address(self) != NULL)
return (DDI_FAILURE);
tran = (scsi_hba_tran_t *)ddi_get_driver_private(self);
ASSERT(tran);
if (tran == NULL)
return (DDI_FAILURE);
(void) snprintf(context, sizeof (context), "%s%d.iportmap",
ddi_driver_name(self), ddi_get_instance(self));
if (damap_create(context, DAMAP_REPORT_PERADDR, DAMAP_SERIALCONFIG,
settle, NULL, NULL, NULL, self,
scsi_iportmap_config, scsi_iportmap_unconfig, &mapp) !=
DAM_SUCCESS) {
return (DDI_FAILURE);
}
iportmap = kmem_zalloc(sizeof (*iportmap), KM_SLEEP);
iportmap->iportmap_hba_dip = self;
iportmap->iportmap_dam = mapp;
tran->tran_iportmap = (scsi_hba_iportmap_t *)iportmap;
*handle = (scsi_hba_iportmap_t *)iportmap;
SCSI_HBA_LOG((_LOGIPT, self, NULL, "%s", damap_name(mapp)));
return (DDI_SUCCESS);
}
void
scsi_hba_iportmap_destroy(scsi_hba_iportmap_t *handle)
{
impl_scsi_iportmap_t *iportmap = (impl_scsi_iportmap_t *)handle;
dev_info_t *self = iportmap->iportmap_hba_dip;
SCSI_HBA_LOG((_LOGIPT, self, NULL,
"%s", damap_name(iportmap->iportmap_dam)));
damap_destroy(iportmap->iportmap_dam);
kmem_free(iportmap, sizeof (*iportmap));
}
int
scsi_hba_iportmap_iport_add(scsi_hba_iportmap_t *handle,
char *iport_addr, void *iport_priv)
{
impl_scsi_iportmap_t *iportmap = (impl_scsi_iportmap_t *)handle;
dev_info_t *self = iportmap->iportmap_hba_dip;
SCSI_HBA_LOG((_LOGIPT, self, NULL,
"%s @%s", damap_name(iportmap->iportmap_dam), iport_addr));
return ((damap_addr_add(iportmap->iportmap_dam, iport_addr, NULL,
NULL, iport_priv) == DAM_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
int
scsi_hba_iportmap_iport_remove(scsi_hba_iportmap_t *handle,
char *iport_addr)
{
impl_scsi_iportmap_t *iportmap = (impl_scsi_iportmap_t *)handle;
dev_info_t *self = iportmap->iportmap_hba_dip;
SCSI_HBA_LOG((_LOGIPT, self, NULL,
"%s @%s", damap_name(iportmap->iportmap_dam), iport_addr));
return ((damap_addr_del(iportmap->iportmap_dam,
iport_addr) == DAM_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
int
scsi_hba_iportmap_lookup(scsi_hba_iportmap_t *handle,
char *iport_addr)
{
impl_scsi_iportmap_t *iportmap = (impl_scsi_iportmap_t *)handle;
dev_info_t *self = iportmap->iportmap_hba_dip;
damap_id_t iportid;
iportid = damap_lookup(iportmap->iportmap_dam, iport_addr);
if (iportid != NODAM) {
SCSI_HBA_LOG((_LOG(3), self, NULL,
"%s @%s found",
damap_name(iportmap->iportmap_dam), iport_addr));
damap_id_rele(iportmap->iportmap_dam, iportid);
return (DDI_SUCCESS);
}
SCSI_HBA_LOG((_LOG(3), self, NULL,
"%s @%s not found",
damap_name(iportmap->iportmap_dam), iport_addr));
return (DDI_FAILURE);
}
static int
scsi_lunmap_config(void *arg, damap_t *lundam, damap_id_t lunid)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)arg;
scsi_hba_tran_t *tran = tgtmap->tgtmap_tran;
dev_info_t *self = tran->tran_iport_dip;
char *addr;
addr = damap_id2addr(lundam, lunid);
SCSI_HBA_LOG((_LOGLUN, self, NULL,
"%s @%s", damap_name(lundam), addr));
if (scsi_hba_bus_configone_addr(self, addr, SE_HP) != NULL)
return (DAM_SUCCESS);
else
return (DAM_FAILURE);
}
static int
scsi_lunmap_unconfig(void *arg, damap_t *lundam, damap_id_t lunid)
{
impl_scsi_tgtmap_t *tgtmap = (impl_scsi_tgtmap_t *)arg;
scsi_hba_tran_t *tran = tgtmap->tgtmap_tran;
dev_info_t *self = tran->tran_iport_dip;
char *addr;
addr = damap_id2addr(lundam, lunid);
SCSI_HBA_LOG((_LOGLUN, self, NULL, "%s @%s", damap_name(lundam),
addr));
scsi_hba_bus_unconfigone_addr(self, addr);
return (DAM_SUCCESS);
}
static int
scsi_lunmap_create(dev_info_t *self, impl_scsi_tgtmap_t *tgtmap, char *taddr)
{
char context[64];
damap_t *tgtdam;
damap_id_t tgtid;
damap_t *lundam;
int optflags;
(void) snprintf(context, sizeof (context), "%s%d.%s.lunmap",
ddi_driver_name(self), ddi_get_instance(self), taddr);
tgtdam = tgtmap->tgtmap_dam[SCSI_TGT_SCSI_DEVICE];
tgtid = damap_lookup(tgtdam, taddr);
if (tgtid == NODAM) {
SCSI_HBA_LOG((_LOG(1), self, NULL,
"target %s not found", context));
return (DDI_FAILURE);
}
lundam = damap_id_priv_get(tgtdam, tgtid);
if (lundam) {
SCSI_HBA_LOG((_LOG(1), self, NULL,
"lunmap %s already created", context));
damap_id_rele(tgtdam, tgtid);
return (DDI_FAILURE);
}
optflags = (ddi_prop_get_int(DDI_DEV_T_ANY, self,
DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, "scsi-enumeration",
scsi_enumeration) & SCSI_ENUMERATION_MT_LUN_DISABLE) ?
DAMAP_SERIALCONFIG : DAMAP_MTCONFIG;
/* NOTE: expected ref at tgtid/taddr: 2: caller + lookup. */
ASSERT(damap_id_ref(tgtdam, tgtid) == 2);
SCSI_HBA_LOG((_LOGLUN, self, NULL, "%s creat, id %d ref %d",
context, tgtid, damap_id_ref(tgtdam, tgtid)));
/* create lundam */
if (damap_create(context, DAMAP_REPORT_FULLSET, optflags, 1,
NULL, NULL, NULL, tgtmap, scsi_lunmap_config, scsi_lunmap_unconfig,
&lundam) != DAM_SUCCESS) {
SCSI_HBA_LOG((_LOG(1), self, NULL,
"%s create failed, id %d ref %d",
context, tgtid, damap_id_ref(tgtdam, tgtid)));
damap_id_rele(tgtdam, tgtid);
return (DDI_FAILURE);
}
/*
* Return with damap_id_hold at tgtid/taddr from damap_lookup to
* account for damap_id_prv_set below.
*/
damap_id_priv_set(tgtdam, tgtid, lundam);
return (DDI_SUCCESS);
}
static void
scsi_lunmap_destroy(dev_info_t *self, impl_scsi_tgtmap_t *tgtmap, char *taddr)
{
char context[64];
damap_t *tgtdam;
damap_id_t tgtid;
damap_t *lundam;
(void) snprintf(context, sizeof (context), "%s%d.%s.lunmap",
ddi_driver_name(self), ddi_get_instance(self), taddr);
tgtdam = tgtmap->tgtmap_dam[SCSI_TGT_SCSI_DEVICE];
tgtid = damap_lookup(tgtdam, taddr);
if (tgtid == NODAM) {
SCSI_HBA_LOG((_LOG(1), self, NULL,
"target %s not found", context));
return;
}
lundam = (damap_t *)damap_id_priv_get(tgtdam, tgtid);
if (lundam == NULL) {
damap_id_rele(tgtdam, tgtid); /* from damap_lookup */
SCSI_HBA_LOG((_LOG(1), self, NULL,
"lunmap %s already destroyed", context));
return;
}
/* NOTE: expected ref at tgtid/taddr: 3: priv_set + caller + lookup. */
ASSERT(damap_id_ref(tgtdam, tgtid) == 3);
SCSI_HBA_LOG((_LOGLUN, self, NULL, "%s, id %d ref %d",
damap_name(lundam), tgtid, damap_id_ref(tgtdam, tgtid)));
/*
* A begin/end (clear) against a target's lunmap will trigger
* unconfigure of all LUNs on the target.
*/
scsi_lunmap_set_begin(self, lundam);
scsi_lunmap_set_end(self, lundam);
SCSI_HBA_LOG((_LOGLUN, self, NULL,
"%s sync begin", damap_name(lundam)));
(void) damap_sync(lundam); /* wait for unconfigure */
SCSI_HBA_LOG((_LOGLUN, self, NULL,
"%s sync end", damap_name(lundam)));
damap_id_priv_set(tgtdam, tgtid, NULL);
/* release hold established by damap_lookup above */
damap_id_rele(tgtdam, tgtid);
/* release hold established since scsi_lunmap_create() */
damap_id_rele(tgtdam, tgtid);
damap_destroy(lundam);
}
static void
scsi_lunmap_set_begin(dev_info_t *self, damap_t *lundam)
{
SCSI_HBA_LOG((_LOGLUN, self, NULL, "%s", damap_name(lundam)));
(void) damap_addrset_begin(lundam);
}
static int
scsi_lunmap_set_add(dev_info_t *self, damap_t *lundam,
char *taddr, scsi_lun64_t lun64, int sfunc)
{
char ua[SCSI_MAXNAMELEN];
/* make unit address string form of "@taddr,lun[,sfunc]" */
if (sfunc == -1)
(void) snprintf(ua, sizeof (ua), "%s,%" PRIx64, taddr, lun64);
else
(void) snprintf(ua, sizeof (ua), "%s,%" PRIx64 ",%x",
taddr, lun64, sfunc);
SCSI_HBA_LOG((_LOGLUN, self, NULL, "%s @%s", damap_name(lundam), ua));
return ((damap_addrset_add(lundam, ua, NULL, NULL,
NULL) == DAM_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
static void
scsi_lunmap_set_end(dev_info_t *self, damap_t *lundam)
{
SCSI_HBA_LOG((_LOGLUN, self, NULL, "%s", damap_name(lundam)));
(void) damap_addrset_end(lundam, 0);
}
int
scsi_lunmap_lookup(dev_info_t *self, damap_t *lundam, char *addr)
{
damap_id_t lunid;
if ((lunid = damap_lookup(lundam, addr)) != NODAM) {
SCSI_HBA_LOG((_LOG(3), self, NULL,
"%s @%s found", damap_name(lundam), addr));
damap_id_rele(lundam, lunid);
return (DDI_SUCCESS);
}
SCSI_HBA_LOG((_LOG(3), self, NULL,
"%s @%s not found", damap_name(lundam), addr));
return (DDI_FAILURE);
}
/*
* phymap implementation
*
* We manage the timed aggregation of phys into a phy map * by creating a
* SAS port construct (based upon 'name' of "local,remote" SAS addresses)
* upon the first link up. As time goes on additional phys may join that port.
* After an appropriate amount of settle time, we trigger the activation
* callback which will then take the resultant bit mask of phys (phymask) in
* the SAS port and use that to call back to the callback function
* provided by the additional caller.
*
* We cross check to make sure that phys only exist in one SAS port at a
* time by having soft state for each phy point back to the created
* SAS port.
*
* NOTE: Make SAS_PHY_UA_LEN max(SAS_PHY_PHYMASK_LEN, SAS_PHY_NAME_LEN)
* so we have enough space if sas_phymap_bitset2phymaskua phymask address
* is already in use, and we end up using port name as unit address.
*/
#define SAS_PHY_NAME_FMT "%" PRIx64 ",%" PRIx64
#define SAS_PHY_NAME_LEN (16 + 1 + 16 + 1)
#define SAS_PHY_NPHY (SAS2_PHYNUM_MAX + 1)
#define SAS_PHY_PHYMASK_LEN ((roundup(SAS_PHY_NPHY, 4)) / 4)
#if (SAS_PHY_PHYMASK_LEN > SAS_PHY_NAME_LEN)
#define SAS_PHY_UA_LEN SAS_PHY_PHYMASK_LEN
#else
#define SAS_PHY_UA_LEN SAS_PHY_NAME_LEN
#endif
typedef struct impl_sas_phymap {
dev_info_t *phymap_self;
kmutex_t phymap_lock;
damap_t *phymap_dam;
void *phymap_phy2name;
ddi_soft_state_bystr *phymap_name2phys; /* bitset */
ddi_soft_state_bystr *phymap_name2ua;
ddi_soft_state_bystr *phymap_ua2name;
/* Noisy phy information - ensure forward progress for noisy phys */
int phymap_phy_max; /* max phy# */
int phymap_reports; /* per period */
int phymap_reports_max; /* scales */
int phymap_phys_noisy; /* detected */
/* These are for callbacks to the consumer. */
sas_phymap_activate_cb_t phymap_acp;
sas_phymap_deactivate_cb_t phymap_dcp;
void *phymap_private;
} impl_sas_phymap_t;
/* Detect noisy phy: max changes per stabilization period per phy. */
static int sas_phymap_phy_max_factor = 16;
/*
* Convert bitset into a unit-address string. The maximum string length would
* be the maximum number of phys, rounded up by 4 and divided by 4.
*/
static void
sas_phymap_bitset2phymaskua(bitset_t *phys, char *buf)
{
char *ptr;
int grp;
int cur;
uint_t bit;
bit = roundup(SAS_PHY_NPHY, 4);
grp = 4;
ptr = buf;
cur = 0;
do {
bit -= 1;
grp -= 1;
if (bitset_in_set(phys, bit)) {
cur |= (1 << grp);
}
if (grp == 0) {
grp = 4;
if (cur || ptr != buf) {
*ptr++ = "0123456789abcdef"[cur];
*ptr = 0;
}
cur = 0;
}
} while (bit != 0);
if (ptr == buf) {
*ptr++ = '0';
*ptr = 0;
}
}
static int
sas_phymap_config(void *arg, damap_t *phydam, damap_id_t phyid)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)arg;
char *context = damap_name(phymap->phymap_dam);
char *damn;
char *name;
bitset_t *phys;
char *ua;
void *ua_priv;
ASSERT(context);
mutex_enter(&phymap->phymap_lock);
phymap->phymap_reports = phymap->phymap_phys_noisy = 0;
/* Get the name ("local,remote" address string) from damap. */
damn = damap_id2addr(phydam, phyid);
/* Get the bitset of phys currently forming the port. */
phys = ddi_soft_state_bystr_get(phymap->phymap_name2phys, damn);
if (phys == NULL) {
SCSI_HBA_LOG((_LOG_NF(WARN), "%s: %s: no phys",
context, damn));
mutex_exit(&phymap->phymap_lock);
return (DAM_FAILURE);
}
/* allocate, get, and initialize name index of name2ua map */
if (ddi_soft_state_bystr_zalloc(phymap->phymap_name2ua, damn) !=
DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: failed name2ua alloc", context, damn));
mutex_exit(&phymap->phymap_lock);
return (DAM_FAILURE);
}
if (!(ua = ddi_soft_state_bystr_get(phymap->phymap_name2ua, damn))) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: no name2ua", context, damn));
mutex_exit(&phymap->phymap_lock);
return (DAM_FAILURE);
}
sas_phymap_bitset2phymaskua(phys, ua); /* set ua */
/* see if phymask ua index already allocated in ua2name map */
if (name = ddi_soft_state_bystr_get(phymap->phymap_ua2name, ua)) {
/*
* The 'phymask' sas_phymap_bitset2phymaskua ua is
* already in use. This means that original phys have
* formed into a new port, and that the original port
* still exists (it has migrated to some completely
* different set of phys). In this corner-case we use
* "local,remote" name as a 'temporary' unit address.
* Reset ua in name2ua map.
*/
(void) strlcpy(ua, damn, SAS_PHY_NAME_LEN);
name = ddi_soft_state_bystr_get(phymap->phymap_ua2name, ua);
if (name) {
/* The "local,remote" ua should be new... */
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s ua already configured",
context, ua));
mutex_exit(&phymap->phymap_lock);
return (DAM_SUCCESS);
}
}
/* allocate, get, and init ua index of ua2name map */
if (ddi_soft_state_bystr_zalloc(phymap->phymap_ua2name, ua) !=
DDI_SUCCESS) {
ddi_soft_state_bystr_free(phymap->phymap_name2ua, damn);
SCSI_HBA_LOG((_LOG_NF(WARN), "%s: %s: failed ua2name alloc",
context, damn));
mutex_exit(&phymap->phymap_lock);
return (DAM_FAILURE);
}
name = ddi_soft_state_bystr_get(phymap->phymap_ua2name, ua);
if (name == NULL) {
ddi_soft_state_bystr_free(phymap->phymap_name2ua, damn);
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: no ua2name", context, ua));
mutex_exit(&phymap->phymap_lock);
return (DAM_FAILURE);
}
/* set name in ua2name map */
(void) strlcpy(name, damn, SAS_PHY_NAME_LEN);
SCSI_HBA_LOG((_LOGPHY, phymap->phymap_self, NULL,
"%s: %s: ua %s: activate", context, damn, ua));
if (phymap->phymap_acp) {
/*
* drop our lock and invoke the activation callback
*/
mutex_exit(&phymap->phymap_lock);
ua_priv = NULL;
(phymap->phymap_acp)(phymap->phymap_private, ua, &ua_priv);
mutex_enter(&phymap->phymap_lock);
damap_id_priv_set(phydam, phyid, ua_priv);
}
SCSI_HBA_LOG((_LOGPHY, phymap->phymap_self, NULL,
"%s: %s: ua %s: activate complete", context, damn, ua));
mutex_exit(&phymap->phymap_lock);
return (DAM_SUCCESS);
}
/*ARGSUSED*/
static int
sas_phymap_unconfig(void *arg, damap_t *phydam, damap_id_t phyid)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)arg;
char *context = damap_name(phymap->phymap_dam);
char *damn;
char *ua;
void *ua_priv;
ASSERT(context);
mutex_enter(&phymap->phymap_lock);
phymap->phymap_reports = phymap->phymap_phys_noisy = 0;
/* Get the name ("local,remote" address string) from damap. */
damn = damap_id2addr(phydam, phyid);
if (!(ua = ddi_soft_state_bystr_get(phymap->phymap_name2ua, damn))) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: no name2ua", context, damn));
mutex_exit(&phymap->phymap_lock);
return (DAM_FAILURE);
}
SCSI_HBA_LOG((_LOGPHY, phymap->phymap_self, NULL,
"%s: %s: ua %s: deactivate", context, damn, ua));
if (phymap->phymap_dcp) {
ua_priv = damap_id_priv_get(phydam, phyid);
mutex_exit(&phymap->phymap_lock);
(phymap->phymap_dcp)(phymap->phymap_private, ua, ua_priv);
mutex_enter(&phymap->phymap_lock);
}
SCSI_HBA_LOG((_LOGPHY, phymap->phymap_self, NULL,
"%s: %s: ua %s: deactivate complete", context, damn, ua));
/* delete ua<->name mappings */
ddi_soft_state_bystr_free(phymap->phymap_ua2name, ua);
ddi_soft_state_bystr_free(phymap->phymap_name2ua, damn);
mutex_exit(&phymap->phymap_lock);
return (DAM_SUCCESS);
}
int
sas_phymap_create(dev_info_t *self, clock_t settle,
sas_phymap_mode_t mode, void *mode_argument, void *phymap_priv,
sas_phymap_activate_cb_t activate_cb,
sas_phymap_deactivate_cb_t deactivate_cb,
sas_phymap_t **handlep)
{
_NOTE(ARGUNUSED(mode_argument));
char context[64];
impl_sas_phymap_t *phymap;
if (self == NULL || settle == 0 || handlep == NULL)
return (DDI_FAILURE);
if (mode != PHYMAP_MODE_SIMPLE)
return (DDI_FAILURE);
phymap = kmem_zalloc(sizeof (*phymap), KM_SLEEP);
phymap->phymap_self = self;
phymap->phymap_reports_max = 1 * sas_phymap_phy_max_factor;
phymap->phymap_acp = activate_cb;
phymap->phymap_dcp = deactivate_cb;
phymap->phymap_private = phymap_priv;
mutex_init(&phymap->phymap_lock, NULL, MUTEX_DRIVER, NULL);
(void) snprintf(context, sizeof (context), "%s%d.phymap",
ddi_driver_name(self), ddi_get_instance(self));
SCSI_HBA_LOG((_LOGPHY, self, NULL, "%s", context));
if (damap_create(context, DAMAP_REPORT_PERADDR, DAMAP_SERIALCONFIG,
settle, NULL, NULL, NULL,
phymap, sas_phymap_config, sas_phymap_unconfig,
&phymap->phymap_dam) != DAM_SUCCESS)
goto fail;
if (ddi_soft_state_init(&phymap->phymap_phy2name,
SAS_PHY_NAME_LEN, SAS_PHY_NPHY) != 0)
goto fail;
if (ddi_soft_state_bystr_init(&phymap->phymap_name2phys,
sizeof (bitset_t), SAS_PHY_NPHY) != 0)
goto fail;
if (ddi_soft_state_bystr_init(&phymap->phymap_name2ua,
SAS_PHY_UA_LEN, SAS_PHY_NPHY) != 0)
goto fail;
if (ddi_soft_state_bystr_init(&phymap->phymap_ua2name,
SAS_PHY_NAME_LEN, SAS_PHY_NPHY) != 0)
goto fail;
*handlep = (sas_phymap_t *)phymap;
return (DDI_SUCCESS);
fail: sas_phymap_destroy((sas_phymap_t *)phymap);
*handlep = NULL;
return (DDI_FAILURE);
}
void
sas_phymap_destroy(sas_phymap_t *handle)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)handle;
char *context;
context = phymap->phymap_dam ?
damap_name(phymap->phymap_dam) : "unknown";
SCSI_HBA_LOG((_LOGPHY, phymap->phymap_self, NULL, "%s", context));
if (phymap->phymap_ua2name)
ddi_soft_state_bystr_fini(&phymap->phymap_ua2name);
if (phymap->phymap_name2ua)
ddi_soft_state_bystr_fini(&phymap->phymap_name2ua);
if (phymap->phymap_name2phys)
ddi_soft_state_bystr_fini(&phymap->phymap_name2phys);
if (phymap->phymap_phy2name)
ddi_soft_state_fini(&phymap->phymap_phy2name);
if (phymap->phymap_dam)
damap_destroy(phymap->phymap_dam);
mutex_destroy(&phymap->phymap_lock);
kmem_free(phymap, sizeof (*phymap));
}
int
sas_phymap_phy_add(sas_phymap_t *handle,
int phy, uint64_t local, uint64_t remote)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)handle;
char *context = damap_name(phymap->phymap_dam);
char port[SAS_PHY_NAME_LEN];
char *name;
bitset_t *phys;
int phy2name_allocated = 0;
int name2phys_allocated = 0;
int rv;
/* Create the SAS port name from the local and remote addresses. */
(void) snprintf(port, SAS_PHY_NAME_LEN, SAS_PHY_NAME_FMT,
local, remote);
mutex_enter(&phymap->phymap_lock);
SCSI_HBA_LOG((_LOGPHY, phymap->phymap_self, NULL, "%s: %s: add phy %d",
context, port, phy));
/* Check for conflict in phy2name map */
name = ddi_get_soft_state(phymap->phymap_phy2name, phy);
if (name) {
if (strcmp(name, port) != 0)
SCSI_HBA_LOG((_LOG_NF(WARN), "%s: %s: add phy %d: "
"already in %s", context, port, phy, name));
else
SCSI_HBA_LOG((_LOG_NF(WARN), "%s: %s: add phy %d: "
"duplicate add", context, port, phy));
mutex_exit(&phymap->phymap_lock);
return (DDI_FAILURE);
}
/* allocate, get, and initialize phy index of phy2name map */
if (ddi_soft_state_zalloc(
phymap->phymap_phy2name, phy) != DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: failed phy2name alloc", context, port));
goto fail;
}
name = ddi_get_soft_state(phymap->phymap_phy2name, phy);
if (name == NULL) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: no phy2name", context, port));
goto fail;
}
phy2name_allocated = 1;
(void) strlcpy(name, port, SAS_PHY_NAME_LEN); /* set name */
/* Find/alloc, initialize name index of name2phys map */
phys = ddi_soft_state_bystr_get(phymap->phymap_name2phys, name);
if (phys == NULL) {
if (ddi_soft_state_bystr_zalloc(phymap->phymap_name2phys,
name) != DDI_SUCCESS) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: failed name2phys alloc", context, name));
goto fail;
}
phys = ddi_soft_state_bystr_get(phymap->phymap_name2phys, name);
if (phys == NULL) {
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: no name2phys", context, name));
goto fail;
}
name2phys_allocated = 1;
/* Initialize bitset of phys */
bitset_init(phys);
bitset_resize(phys, SAS_PHY_NPHY);
/* NOTE: no bitset_fini of phys needed */
}
ASSERT(phys);
/* Reflect 'add' in phys bitset. */
if (bitset_atomic_test_and_add(phys, phy) < 0) {
/* It is an error if the phy was already recorded. */
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: phy bit %d already in port", context, name, phy));
goto fail;
}
/*
* Check to see if we have a new phy_max for this map, and if so
* scale phymap_reports_max to the new number of phys.
*/
if (phy > phymap->phymap_phy_max) {
phymap->phymap_phy_max = phy + 1;
phymap->phymap_reports_max = phymap->phymap_phy_max *
sas_phymap_phy_max_factor;
}
/*
* If we have not reached phymap_reports_max, start/restart the
* activate timer. Otherwise, if phymap->phymap_reports add/rem reports
* ever exceeds phymap_reports_max due to noisy phys, then report the
* noise and force stabilization by stopping reports into the damap.
*
* The first config/unconfig callout out of the damap will reset
* phymap->phymap_reports.
*/
rv = DDI_SUCCESS;
if (phymap->phymap_reports++ < phymap->phymap_reports_max) {
if (damap_addr_add(phymap->phymap_dam, name,
NULL, NULL, NULL) == DAM_SUCCESS) {
SCSI_HBA_LOG((_LOGPHY, phymap->phymap_self, NULL,
"%s: %s: damap_addr_add", context, name));
} else {
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: damap_addr_add failed", context, name));
rv = DDI_FAILURE;
}
} else {
phymap->phymap_phys_noisy++;
if (phymap->phymap_phys_noisy == 1)
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: noisy phys", context, name));
}
mutex_exit(&phymap->phymap_lock);
return (rv);
fail: if (phy2name_allocated)
ddi_soft_state_free(phymap->phymap_phy2name, phy);
if (name2phys_allocated)
ddi_soft_state_bystr_free(phymap->phymap_name2phys, name);
mutex_exit(&phymap->phymap_lock);
return (DDI_FAILURE);
}
int
sas_phymap_phy_rem(sas_phymap_t *handle, int phy)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)handle;
char *context = damap_name(phymap->phymap_dam);
char *name;
bitset_t *phys;
int rv = DDI_FAILURE;
ASSERT(context);
mutex_enter(&phymap->phymap_lock);
phymap->phymap_reports++;
/* Find and free phy index of phy2name map */
name = ddi_get_soft_state(phymap->phymap_phy2name, phy);
if (name == NULL) {
SCSI_HBA_LOG((_LOG_NF(WARN), "%s: rem phy %d: never added",
context, phy));
goto fail;
}
/* NOTE: always free phy index of phy2name map before return... */
SCSI_HBA_LOG((_LOGPHY, phymap->phymap_self, NULL, "%s: %s: rem phy %d",
context, name, phy));
/* Get bitset of phys currently associated with named port. */
phys = ddi_soft_state_bystr_get(phymap->phymap_name2phys, name);
if (phys == NULL) {
SCSI_HBA_LOG((_LOG_NF(WARN), "%s: %s: name2phys failed",
context, name));
goto fail;
}
/* Reflect 'rem' in phys bitset. */
if (bitset_atomic_test_and_del(phys, phy) < 0) {
/* It is an error if the phy wasn't one of the port's phys. */
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: phy bit %d not in port", context, name, phy));
goto fail;
}
/* If this was the last phy in the port, start the deactivate timer. */
if (bitset_is_null(phys) &&
(phymap->phymap_reports++ < phymap->phymap_reports_max)) {
if (damap_addr_del(phymap->phymap_dam, name) == DAM_SUCCESS) {
SCSI_HBA_LOG((_LOGPHY, phymap->phymap_self, NULL,
"%s: %s: damap_addr_del", context, name));
} else {
SCSI_HBA_LOG((_LOG_NF(WARN),
"%s: %s: damap_addr_del failure", context, name));
goto fail;
}
}
rv = DDI_SUCCESS;
/* free phy index of phy2name map */
fail: if (name)
ddi_soft_state_free(phymap->phymap_phy2name, phy); /* free */
mutex_exit(&phymap->phymap_lock);
return (rv);
}
char *
sas_phymap_lookup_ua(sas_phymap_t *handle, uint64_t local, uint64_t remote)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)handle;
char *context = damap_name(phymap->phymap_dam);
char name[SAS_PHY_NAME_LEN];
char *ua;
ASSERT(context);
(void) snprintf(name, SAS_PHY_NAME_LEN, SAS_PHY_NAME_FMT,
local, remote);
mutex_enter(&phymap->phymap_lock);
ua = ddi_soft_state_bystr_get(phymap->phymap_name2ua, name);
SCSI_HBA_LOG((_LOG(3), phymap->phymap_self, NULL,
"%s: %s: ua %s", context, name, ua ? ua : "NULL"));
mutex_exit(&phymap->phymap_lock);
return (ua);
}
void *
sas_phymap_lookup_uapriv(sas_phymap_t *handle, char *ua)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)handle;
char *context = damap_name(phymap->phymap_dam);
char *name;
damap_id_t phyid;
void *ua_priv = NULL;
ASSERT(context);
mutex_enter(&phymap->phymap_lock);
name = ddi_soft_state_bystr_get(phymap->phymap_ua2name, ua);
if (name) {
phyid = damap_lookup(phymap->phymap_dam, name);
if (phyid != NODAM) {
ua_priv = damap_id_priv_get(phymap->phymap_dam, phyid);
damap_id_rele(phymap->phymap_dam, phyid);
}
}
SCSI_HBA_LOG((_LOG(3), phymap->phymap_self, NULL,
"%s: %s: ua %s ua_priv %p", context, name,
ua ? ua : "NULL", ua_priv));
mutex_exit(&phymap->phymap_lock);
return (ua_priv);
}
int
sas_phymap_uahasphys(sas_phymap_t *handle, char *ua)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)handle;
char *name;
bitset_t *phys;
int n = 0;
mutex_enter(&phymap->phymap_lock);
name = ddi_soft_state_bystr_get(phymap->phymap_ua2name, ua);
if (name) {
phys = ddi_soft_state_bystr_get(phymap->phymap_name2phys, name);
if (phys)
n = bitset_is_null(phys) ? 0 : 1;
}
mutex_exit(&phymap->phymap_lock);
return (n);
}
sas_phymap_phys_t *
sas_phymap_ua2phys(sas_phymap_t *handle, char *ua)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)handle;
char *name;
bitset_t *phys;
bitset_t *cphys = NULL;
mutex_enter(&phymap->phymap_lock);
name = ddi_soft_state_bystr_get(phymap->phymap_ua2name, ua);
if (name == NULL)
goto fail;
phys = ddi_soft_state_bystr_get(phymap->phymap_name2phys, name);
if (phys == NULL)
goto fail;
/* dup the phys and return */
cphys = kmem_alloc(sizeof (*cphys), KM_SLEEP);
bitset_init(cphys);
bitset_resize(cphys, SAS_PHY_NPHY);
bitset_copy(phys, cphys);
fail: mutex_exit(&phymap->phymap_lock);
return ((sas_phymap_phys_t *)cphys);
}
int
sas_phymap_phys_next(sas_phymap_phys_t *phys)
{
bitset_t *cphys = (bitset_t *)phys;
int phy;
phy = bitset_find(cphys);
if (phy != -1)
bitset_del(cphys, phy);
return (phy);
}
void
sas_phymap_phys_free(sas_phymap_phys_t *phys)
{
bitset_t *cphys = (bitset_t *)phys;
if (cphys) {
bitset_fini(cphys);
kmem_free(cphys, sizeof (*cphys));
}
}
char *
sas_phymap_phy2ua(sas_phymap_t *handle, int phy)
{
impl_sas_phymap_t *phymap = (impl_sas_phymap_t *)handle;
char *name;
char *ua;
char *rua = NULL;
mutex_enter(&phymap->phymap_lock);
name = ddi_get_soft_state(phymap->phymap_phy2name, phy);
if (name == NULL)
goto fail;
ua = ddi_soft_state_bystr_get(phymap->phymap_name2ua, name);
if (ua == NULL)
goto fail;
/* dup the ua and return */
rua = strdup(ua);
fail: mutex_exit(&phymap->phymap_lock);
return (rua);
}
void
sas_phymap_ua_free(char *ua)
{
if (ua)
strfree(ua);
}