rtw.c revision 0dc2366f7b9f9f36e10909b1e95edbf2a261c2ac
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2004 David Young. All rights reserved.
*
* This code was written by David Young.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
* Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
#include <sys/sysmacros.h>
#include <sys/pci.h>
#include <sys/stat.h>
#include <sys/strsubr.h>
#include <sys/strsun.h>
#include <sys/mac_provider.h>
#include <sys/mac_wifi.h>
#include <sys/net80211.h>
#include <sys/byteorder.h>
#include "rtwreg.h"
#include "rtwvar.h"
#include "smc93cx6var.h"
#include "rtwphy.h"
#include "rtwphyio.h"
/*
* PIO access attributes for registers
*/
static ddi_device_acc_attr_t rtw_reg_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/*
* DMA access attributes for descriptors and bufs: NOT to be byte swapped.
*/
static ddi_device_acc_attr_t rtw_desc_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
static ddi_device_acc_attr_t rtw_buf_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/*
* Describes the chip's DMA engine
*/
static ddi_dma_attr_t dma_attr_desc = {
DMA_ATTR_V0, /* dma_attr version */
0x0000000000000000ull, /* dma_attr_addr_lo */
0xFFFFFFFF, /* dma_attr_addr_hi */
0x00000000FFFFFFFFull, /* dma_attr_count_max */
0x100, /* dma_attr_align */
0xFFFFFFFF, /* dma_attr_burstsizes */
0x00000001, /* dma_attr_minxfer */
0x00000000FFFFull, /* dma_attr_maxxfer */
0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
1, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0 /* dma_attr_flags */
};
static ddi_dma_attr_t dma_attr_rxbuf = {
DMA_ATTR_V0, /* dma_attr version */
0x0000000000000000ull, /* dma_attr_addr_lo */
0xFFFFFFFF, /* dma_attr_addr_hi */
0x00000000FFFFFFFFull, /* dma_attr_count_max */
(uint32_t)16, /* dma_attr_align */
0xFFFFFFFF, /* dma_attr_burstsizes */
0x00000001, /* dma_attr_minxfer */
0x00000000FFFFull, /* dma_attr_maxxfer */
0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
1, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0 /* dma_attr_flags */
};
static ddi_dma_attr_t dma_attr_txbuf = {
DMA_ATTR_V0, /* dma_attr version */
0x0000000000000000ull, /* dma_attr_addr_lo */
0xFFFFFFFF, /* dma_attr_addr_hi */
0x00000000FFFFFFFFull, /* dma_attr_count_max */
(uint32_t)16, /* dma_attr_align */
0xFFFFFFFF, /* dma_attr_burstsizes */
0x00000001, /* dma_attr_minxfer */
0x00000000FFFFull, /* dma_attr_maxxfer */
0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
1, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0 /* dma_attr_flags */
};
static void *rtw_soft_state_p = NULL;
static void rtw_stop(void *);
static int rtw_attach(dev_info_t *, ddi_attach_cmd_t);
static int rtw_detach(dev_info_t *, ddi_detach_cmd_t);
static int rtw_quiesce(dev_info_t *);
static int rtw_m_stat(void *, uint_t, uint64_t *);
static int rtw_m_start(void *);
static void rtw_m_stop(void *);
static int rtw_m_promisc(void *, boolean_t);
static int rtw_m_multicst(void *, boolean_t, const uint8_t *);
static int rtw_m_unicst(void *, const uint8_t *);
static mblk_t *rtw_m_tx(void *, mblk_t *);
static void rtw_m_ioctl(void *, queue_t *, mblk_t *);
static int rtw_m_setprop(void *, const char *, mac_prop_id_t,
uint_t, const void *);
static int rtw_m_getprop(void *, const char *, mac_prop_id_t,
uint_t, void *);
static void rtw_m_propinfo(void *, const char *, mac_prop_id_t,
mac_prop_info_handle_t);
static mac_callbacks_t rtw_m_callbacks = {
MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
rtw_m_stat,
rtw_m_start,
rtw_m_stop,
rtw_m_promisc,
rtw_m_multicst,
rtw_m_unicst,
rtw_m_tx,
NULL,
rtw_m_ioctl,
NULL, /* mc_getcapab */
NULL,
NULL,
rtw_m_setprop,
rtw_m_getprop,
rtw_m_propinfo
};
DDI_DEFINE_STREAM_OPS(rtw_dev_ops, nulldev, nulldev, rtw_attach, rtw_detach,
nodev, NULL, D_MP, NULL, rtw_quiesce);
static struct modldrv rtw_modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
"realtek 8180L driver 1.7", /* short description */
&rtw_dev_ops /* driver specific ops */
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&rtw_modldrv, NULL
};
static uint32_t rtw_qlen[RTW_NTXPRI] = {
RTW_TXQLENLO,
RTW_TXQLENMD,
RTW_TXQLENHI,
RTW_TXQLENBCN
};
uint32_t rtw_dbg_flags = 0;
/*
* RTW_DEBUG_ATTACH | RTW_DEBUG_TUNE |
* RTW_DEBUG_ACCESS | RTW_DEBUG_INIT | RTW_DEBUG_PKTFILT |
* RTW_DEBUG_RECV | RTW_DEBUG_XMIT | RTW_DEBUG_80211 | RTW_DEBUG_INTR |
* RTW_DEBUG_PKTDUMP;
*/
/*
* Supported rates for 802.11b modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset rtw_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_init(void)
{
int status;
status = ddi_soft_state_init(&rtw_soft_state_p,
sizeof (rtw_softc_t), 1);
if (status != 0)
return (status);
mac_init_ops(&rtw_dev_ops, "rtw");
status = mod_install(&modlinkage);
if (status != 0) {
mac_fini_ops(&rtw_dev_ops);
ddi_soft_state_fini(&rtw_soft_state_p);
}
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&modlinkage);
if (status == 0) {
mac_fini_ops(&rtw_dev_ops);
ddi_soft_state_fini(&rtw_soft_state_p);
}
return (status);
}
void
rtw_dbg(uint32_t dbg_flags, const int8_t *fmt, ...)
{
va_list args;
if (dbg_flags & rtw_dbg_flags) {
va_start(args, fmt);
vcmn_err(CE_CONT, fmt, args);
va_end(args);
}
}
#ifdef DEBUG
static void
rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
{
#define PRINTREG32(sc, reg) \
RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
"%s: reg[ " #reg " / %03x ] = %08x\n", \
dvname, reg, RTW_READ(regs, reg))
#define PRINTREG16(sc, reg) \
RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
"%s: reg[ " #reg " / %03x ] = %04x\n", \
dvname, reg, RTW_READ16(regs, reg))
#define PRINTREG8(sc, reg) \
RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
"%s: reg[ " #reg " / %03x ] = %02x\n", \
dvname, reg, RTW_READ8(regs, reg))
RTW_DPRINTF(RTW_DEBUG_REGDUMP, "%s: %s\n", dvname, where);
PRINTREG32(regs, RTW_IDR0);
PRINTREG32(regs, RTW_IDR1);
PRINTREG32(regs, RTW_MAR0);
PRINTREG32(regs, RTW_MAR1);
PRINTREG32(regs, RTW_TSFTRL);
PRINTREG32(regs, RTW_TSFTRH);
PRINTREG32(regs, RTW_TLPDA);
PRINTREG32(regs, RTW_TNPDA);
PRINTREG32(regs, RTW_THPDA);
PRINTREG32(regs, RTW_TCR);
PRINTREG32(regs, RTW_RCR);
PRINTREG32(regs, RTW_TINT);
PRINTREG32(regs, RTW_TBDA);
PRINTREG32(regs, RTW_ANAPARM);
PRINTREG32(regs, RTW_BB);
PRINTREG32(regs, RTW_PHYCFG);
PRINTREG32(regs, RTW_WAKEUP0L);
PRINTREG32(regs, RTW_WAKEUP0H);
PRINTREG32(regs, RTW_WAKEUP1L);
PRINTREG32(regs, RTW_WAKEUP1H);
PRINTREG32(regs, RTW_WAKEUP2LL);
PRINTREG32(regs, RTW_WAKEUP2LH);
PRINTREG32(regs, RTW_WAKEUP2HL);
PRINTREG32(regs, RTW_WAKEUP2HH);
PRINTREG32(regs, RTW_WAKEUP3LL);
PRINTREG32(regs, RTW_WAKEUP3LH);
PRINTREG32(regs, RTW_WAKEUP3HL);
PRINTREG32(regs, RTW_WAKEUP3HH);
PRINTREG32(regs, RTW_WAKEUP4LL);
PRINTREG32(regs, RTW_WAKEUP4LH);
PRINTREG32(regs, RTW_WAKEUP4HL);
PRINTREG32(regs, RTW_WAKEUP4HH);
PRINTREG32(regs, RTW_DK0);
PRINTREG32(regs, RTW_DK1);
PRINTREG32(regs, RTW_DK2);
PRINTREG32(regs, RTW_DK3);
PRINTREG32(regs, RTW_RETRYCTR);
PRINTREG32(regs, RTW_RDSAR);
PRINTREG32(regs, RTW_FER);
PRINTREG32(regs, RTW_FEMR);
PRINTREG32(regs, RTW_FPSR);
PRINTREG32(regs, RTW_FFER);
/* 16-bit registers */
PRINTREG16(regs, RTW_BRSR);
PRINTREG16(regs, RTW_IMR);
PRINTREG16(regs, RTW_ISR);
PRINTREG16(regs, RTW_BCNITV);
PRINTREG16(regs, RTW_ATIMWND);
PRINTREG16(regs, RTW_BINTRITV);
PRINTREG16(regs, RTW_ATIMTRITV);
PRINTREG16(regs, RTW_CRC16ERR);
PRINTREG16(regs, RTW_CRC0);
PRINTREG16(regs, RTW_CRC1);
PRINTREG16(regs, RTW_CRC2);
PRINTREG16(regs, RTW_CRC3);
PRINTREG16(regs, RTW_CRC4);
PRINTREG16(regs, RTW_CWR);
/* 8-bit registers */
PRINTREG8(regs, RTW_CR);
PRINTREG8(regs, RTW_9346CR);
PRINTREG8(regs, RTW_CONFIG0);
PRINTREG8(regs, RTW_CONFIG1);
PRINTREG8(regs, RTW_CONFIG2);
PRINTREG8(regs, RTW_MSR);
PRINTREG8(regs, RTW_CONFIG3);
PRINTREG8(regs, RTW_CONFIG4);
PRINTREG8(regs, RTW_TESTR);
PRINTREG8(regs, RTW_PSR);
PRINTREG8(regs, RTW_SCR);
PRINTREG8(regs, RTW_PHYDELAY);
PRINTREG8(regs, RTW_CRCOUNT);
PRINTREG8(regs, RTW_PHYADDR);
PRINTREG8(regs, RTW_PHYDATAW);
PRINTREG8(regs, RTW_PHYDATAR);
PRINTREG8(regs, RTW_CONFIG5);
PRINTREG8(regs, RTW_TPPOLL);
PRINTREG16(regs, RTW_BSSID16);
PRINTREG32(regs, RTW_BSSID32);
#undef PRINTREG32
#undef PRINTREG16
#undef PRINTREG8
}
#endif /* DEBUG */
static const char *
rtw_access_string(enum rtw_access access)
{
switch (access) {
case RTW_ACCESS_NONE:
return ("none");
case RTW_ACCESS_CONFIG:
return ("config");
case RTW_ACCESS_ANAPARM:
return ("anaparm");
default:
return ("unknown");
}
}
/*
* Enable registers, switch register banks.
*/
void
rtw_config0123_enable(struct rtw_regs *regs, int enable)
{
uint8_t ecr;
ecr = RTW_READ8(regs, RTW_9346CR);
ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
if (enable)
ecr |= RTW_9346CR_EEM_CONFIG;
else {
RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
ecr |= RTW_9346CR_EEM_NORMAL;
}
RTW_WRITE8(regs, RTW_9346CR, ecr);
RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
}
/*
* requires rtw_config0123_enable(, 1)
*/
void
rtw_anaparm_enable(struct rtw_regs *regs, int enable)
{
uint8_t cfg3;
cfg3 = RTW_READ8(regs, RTW_CONFIG3);
cfg3 |= RTW_CONFIG3_CLKRUNEN;
if (enable)
cfg3 |= RTW_CONFIG3_PARMEN;
else
cfg3 &= ~RTW_CONFIG3_PARMEN;
RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
}
/*
* requires rtw_anaparm_enable(, 1)
*/
void
rtw_txdac_enable(rtw_softc_t *rsc, int enable)
{
uint32_t anaparm;
struct rtw_regs *regs = &rsc->sc_regs;
anaparm = RTW_READ(regs, RTW_ANAPARM);
if (enable)
anaparm &= ~RTW_ANAPARM_TXDACOFF;
else
anaparm |= RTW_ANAPARM_TXDACOFF;
RTW_WRITE(regs, RTW_ANAPARM, anaparm);
RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
}
static void
rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
{
ASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
ASSERT(regs->r_access >= RTW_ACCESS_NONE &&
regs->r_access <= RTW_ACCESS_ANAPARM);
if (naccess == regs->r_access)
return;
switch (naccess) {
case RTW_ACCESS_NONE:
switch (regs->r_access) {
case RTW_ACCESS_ANAPARM:
rtw_anaparm_enable(regs, 0);
/*FALLTHROUGH*/
case RTW_ACCESS_CONFIG:
rtw_config0123_enable(regs, 0);
/*FALLTHROUGH*/
case RTW_ACCESS_NONE:
break;
}
break;
case RTW_ACCESS_CONFIG:
switch (regs->r_access) {
case RTW_ACCESS_NONE:
rtw_config0123_enable(regs, 1);
/*FALLTHROUGH*/
case RTW_ACCESS_CONFIG:
break;
case RTW_ACCESS_ANAPARM:
rtw_anaparm_enable(regs, 0);
break;
}
break;
case RTW_ACCESS_ANAPARM:
switch (regs->r_access) {
case RTW_ACCESS_NONE:
rtw_config0123_enable(regs, 1);
/*FALLTHROUGH*/
case RTW_ACCESS_CONFIG:
rtw_anaparm_enable(regs, 1);
/*FALLTHROUGH*/
case RTW_ACCESS_ANAPARM:
break;
}
break;
}
}
void
rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
{
rtw_set_access1(regs, access);
RTW_DPRINTF(RTW_DEBUG_ACCESS,
"%s: access %s -> %s\n", __func__,
rtw_access_string(regs->r_access),
rtw_access_string(access));
regs->r_access = access;
}
void
rtw_continuous_tx_enable(rtw_softc_t *rsc, int enable)
{
struct rtw_regs *regs = &rsc->sc_regs;
uint32_t tcr;
tcr = RTW_READ(regs, RTW_TCR);
tcr &= ~RTW_TCR_LBK_MASK;
if (enable)
tcr |= RTW_TCR_LBK_CONT;
else
tcr |= RTW_TCR_LBK_NORMAL;
RTW_WRITE(regs, RTW_TCR, tcr);
RTW_SYNC(regs, RTW_TCR, RTW_TCR);
rtw_set_access(regs, RTW_ACCESS_ANAPARM);
rtw_txdac_enable(rsc, !enable);
rtw_set_access(regs, RTW_ACCESS_ANAPARM);
rtw_set_access(regs, RTW_ACCESS_NONE);
}
static int
rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
{
uint8_t cr;
int i;
RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
RTW_WBR(regs, RTW_CR, RTW_CR);
for (i = 0; i < 1000; i++) {
cr = RTW_READ8(regs, RTW_CR);
if ((cr & RTW_CR_RST) == 0) {
RTW_DPRINTF(RTW_DEBUG_RESET,
"%s: reset in %dus\n", dvname, i);
return (0);
}
RTW_RBR(regs, RTW_CR, RTW_CR);
DELAY(10); /* 10us */
}
cmn_err(CE_WARN, "%s: reset failed\n", dvname);
return (ETIMEDOUT);
}
static int
rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
{
RTW_WBW(regs, RTW_CR, RTW_TCR);
return (rtw_chip_reset1(regs, dvname));
}
static void
rtw_disable_interrupts(struct rtw_regs *regs)
{
RTW_WRITE16(regs, RTW_IMR, 0);
RTW_WRITE16(regs, RTW_ISR, 0xffff);
(void) RTW_READ16(regs, RTW_IMR);
}
static void
rtw_enable_interrupts(rtw_softc_t *rsc)
{
struct rtw_regs *regs = &rsc->sc_regs;
rsc->sc_inten = RTW_INTR_RX | RTW_INTR_TX | RTW_INTR_IOERROR;
RTW_WRITE16(regs, RTW_IMR, rsc->sc_inten);
RTW_WRITE16(regs, RTW_ISR, 0xffff);
/* XXX necessary? */
if (rsc->sc_intr_ack != NULL)
(*rsc->sc_intr_ack)(regs);
}
static int
rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
{
int i;
uint8_t ecr;
ecr = RTW_READ8(regs, RTW_9346CR);
ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
RTW_WRITE8(regs, RTW_9346CR, ecr);
RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
/* wait 25ms for completion */
for (i = 0; i < 250; i++) {
ecr = RTW_READ8(regs, RTW_9346CR);
if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
RTW_DPRINTF(RTW_DEBUG_RESET,
"%s: recall EEPROM in %dus\n", dvname, i * 100);
return (0);
}
RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
DELAY(100);
}
cmn_err(CE_WARN, "%s: recall EEPROM failed\n", dvname);
return (ETIMEDOUT);
}
static int
rtw_reset(rtw_softc_t *rsc)
{
int rc;
rc = rtw_chip_reset(&rsc->sc_regs, "rtw");
if (rc != 0)
return (rc);
(void) rtw_recall_eeprom(&rsc->sc_regs, "rtw");
return (0);
}
void
rtw_set_mode(struct rtw_regs *regs, int mode)
{
uint8_t command;
command = RTW_READ8(regs, RTW_9346CR);
command = command &~ RTW_EPROM_CMD_OPERATING_MODE_MASK;
command = command | (mode<<RTW_EPROM_CMD_OPERATING_MODE_SHIFT);
command = command &~ (1<<RTW_EPROM_CS_SHIFT);
command = command &~ (1<<RTW_EPROM_CK_SHIFT);
RTW_WRITE8(regs, RTW_9346CR, command);
}
void
rtw_dma_start(struct rtw_regs *regs, int priority)
{
uint8_t check = 0;
check = RTW_READ8(regs, RTW_TPPOLL);
switch (priority) {
case (0):
RTW_WRITE8(regs, RTW_TPPOLL,
(1<< RTW_TX_DMA_POLLING_LOWPRIORITY_SHIFT) | check);
break;
case (1):
RTW_WRITE8(regs, RTW_TPPOLL,
(1<< RTW_TX_DMA_POLLING_NORMPRIORITY_SHIFT) | check);
break;
case (2):
RTW_WRITE8(regs, RTW_TPPOLL,
(1<< RTW_TX_DMA_POLLING_HIPRIORITY_SHIFT) | check);
break;
}
(void) RTW_READ8(regs, RTW_TPPOLL);
}
void
rtw_beacon_tx_disable(struct rtw_regs *regs)
{
uint8_t mask = 0;
mask |= (1 << RTW_TX_DMA_STOP_BEACON_SHIFT);
rtw_set_mode(regs, RTW_EPROM_CMD_CONFIG);
RTW_WRITE8(regs, RTW_TPPOLL, mask);
rtw_set_mode(regs, RTW_EPROM_CMD_NORMAL);
}
static void
rtw_io_enable(rtw_softc_t *rsc, uint8_t flags, int enable);
void
rtw_rtx_disable(rtw_softc_t *rsc)
{
struct rtw_regs *regs = &rsc->sc_regs;
rtw_io_enable(rsc, RTW_CR_RE|RTW_CR_TE, 0);
(void) RTW_READ8(regs, RTW_CR);
}
static void
rtw_srom_free(struct rtw_srom *sr)
{
if (sr->sr_content == NULL)
return;
kmem_free(sr->sr_content, sr->sr_size);
sr->sr_size = 0;
sr->sr_content = NULL;
}
/*ARGSUSED*/
static void
rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
enum rtw_rfchipid *rfchipid, uint32_t *rcr)
{
*flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
*cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
*rcr |= RTW_RCR_ENCS1;
*rfchipid = RTW_RFCHIPID_PHILIPS;
}
static int
rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
const char *dvname)
{
int i;
const char *rfname, *paname;
char scratch[sizeof ("unknown 0xXX")];
uint16_t version;
uint8_t mac[IEEE80211_ADDR_LEN];
*flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
*rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
version = RTW_SR_GET16(sr, RTW_SR_VERSION);
RTW_DPRINTF(RTW_DEBUG_IOSTATE, "%s: SROM version %d.%d", dvname,
version >> 8, version & 0xff);
if (version <= 0x0101) {
cmn_err(CE_NOTE, " is not understood, limping along "
"with defaults\n");
rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
return (0);
}
for (i = 0; i < IEEE80211_ADDR_LEN; i++)
mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
RTW_DPRINTF(RTW_DEBUG_ATTACH,
"%s: EEPROM MAC %s\n", dvname, mac);
*cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
*flags |= RTW_F_ANTDIV;
/*
* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
* to be reversed.
*/
if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
*flags |= RTW_F_DIGPHY;
if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
*flags |= RTW_F_DFLANTB;
*rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
*rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
switch (*rfchipid) {
case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
rfname = "GCT GRF5101";
paname = "Winspring WS9901";
break;
case RTW_RFCHIPID_MAXIM:
rfname = "Maxim MAX2820"; /* guess */
paname = "Maxim MAX2422"; /* guess */
break;
case RTW_RFCHIPID_INTERSIL:
rfname = "Intersil HFA3873"; /* guess */
paname = "Intersil <unknown>";
break;
case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
rfname = "Philips SA2400A";
paname = "Philips SA2411";
break;
case RTW_RFCHIPID_RFMD:
/*
* this is the same front-end as an atw(4)!
*/
rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
"LNA: RFMD RF2494, " /* mentioned in Realtek docs */
"SYN: Silicon Labs Si4126";
paname = "RFMD RF2189"; /* mentioned in Realtek docs */
break;
case RTW_RFCHIPID_RESERVED:
rfname = paname = "reserved";
break;
default:
(void) snprintf(scratch, sizeof (scratch),
"unknown 0x%02x", *rfchipid);
rfname = paname = scratch;
}
RTW_DPRINTF(RTW_DEBUG_PHY, "%s: RF: %s, PA: %s\n",
dvname, rfname, paname);
switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
case RTW_CONFIG0_GL_USA:
*locale = RTW_LOCALE_USA;
break;
case RTW_CONFIG0_GL_EUROPE:
*locale = RTW_LOCALE_EUROPE;
break;
case RTW_CONFIG0_GL_JAPAN:
*locale = RTW_LOCALE_JAPAN;
break;
default:
*locale = RTW_LOCALE_UNKNOWN;
break;
}
return (0);
}
/*
* Returns -1 on failure.
*/
static int
rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
const char *dvname)
{
int rc;
struct seeprom_descriptor sd;
uint8_t ecr;
(void) memset(&sd, 0, sizeof (sd));
ecr = RTW_READ8(regs, RTW_9346CR);
if ((flags & RTW_F_9356SROM) != 0) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "%s: 93c56 SROM\n", dvname);
sr->sr_size = 256;
sd.sd_chip = C56_66;
} else {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "%s: 93c46 SROM\n", dvname);
sr->sr_size = 128;
sd.sd_chip = C46;
}
ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
ecr |= RTW_9346CR_EEM_PROGRAM;
RTW_WRITE8(regs, RTW_9346CR, ecr);
sr->sr_content = kmem_zalloc(sr->sr_size, KM_SLEEP);
if (sr->sr_content == NULL) {
cmn_err(CE_WARN, "%s: unable to allocate SROM buffer\n",
dvname);
return (ENOMEM);
}
(void) memset(sr->sr_content, 0, sr->sr_size);
/*
* RTL8180 has a single 8-bit register for controlling the
* 93cx6 SROM. There is no "ready" bit. The RTL8180
* input/output sense is the reverse of read_seeprom's.
*/
sd.sd_handle = regs->r_handle;
sd.sd_base = regs->r_base;
sd.sd_regsize = 1;
sd.sd_control_offset = RTW_9346CR;
sd.sd_status_offset = RTW_9346CR;
sd.sd_dataout_offset = RTW_9346CR;
sd.sd_CK = RTW_9346CR_EESK;
sd.sd_CS = RTW_9346CR_EECS;
sd.sd_DI = RTW_9346CR_EEDO;
sd.sd_DO = RTW_9346CR_EEDI;
/*
* make read_seeprom enter EEPROM read/write mode
*/
sd.sd_MS = ecr;
sd.sd_RDY = 0;
/*
* TBD bus barriers
*/
if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
cmn_err(CE_WARN, "%s: could not read SROM\n", dvname);
kmem_free(sr->sr_content, sr->sr_size);
sr->sr_content = NULL;
return (-1); /* XXX */
}
/*
* end EEPROM read/write mode
*/
RTW_WRITE8(regs, RTW_9346CR,
(ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
return (rc);
#ifdef SROM_DEBUG
{
int i;
RTW_DPRINTF(RTW_DEBUG_ATTACH,
"\n%s: serial ROM:\n\t", dvname);
for (i = 0; i < sr->sr_size/2; i++) {
RTW_DPRINTF(RTW_DEBUG_ATTACH,
"offset-0x%x: %04x", 2*i, sr->sr_content[i]);
}
}
#endif /* DEBUG */
return (0);
}
static void
rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
const char *dvname)
{
uint8_t cfg4;
const char *method;
cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
switch (rfchipid) {
default:
cfg4 |= LSHIFT(0, RTW_CONFIG4_RFTYPE_MASK);
method = "fallback";
break;
case RTW_RFCHIPID_INTERSIL:
cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
method = "Intersil";
break;
case RTW_RFCHIPID_PHILIPS:
cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
method = "Philips";
break;
case RTW_RFCHIPID_GCT: /* XXX a guess */
case RTW_RFCHIPID_RFMD:
cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
method = "RFMD";
break;
}
RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
RTW_DPRINTF(RTW_DEBUG_INIT,
"%s: %s RF programming method, %02x\n", dvname, method,
RTW_READ8(regs, RTW_CONFIG4));
}
static void
rtw_init_channels(enum rtw_locale locale,
struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
const char *dvname)
{
int i;
const char *name = NULL;
#define ADD_CHANNEL(_chans, _chan) { \
(*_chans)[_chan].ich_flags = IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK;\
(*_chans)[_chan].ich_freq = \
ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ich_flags);\
}
switch (locale) {
case RTW_LOCALE_USA: /* 1-11 */
name = "USA";
for (i = 1; i <= 11; i++)
ADD_CHANNEL(chans, i);
break;
case RTW_LOCALE_JAPAN: /* 1-14 */
name = "Japan";
ADD_CHANNEL(chans, 14);
for (i = 1; i <= 14; i++)
ADD_CHANNEL(chans, i);
break;
case RTW_LOCALE_EUROPE: /* 1-13 */
name = "Europe";
for (i = 1; i <= 13; i++)
ADD_CHANNEL(chans, i);
break;
default: /* 10-11 allowed by most countries */
name = "<unknown>";
for (i = 10; i <= 11; i++)
ADD_CHANNEL(chans, i);
break;
}
RTW_DPRINTF(RTW_DEBUG_ATTACH, "%s: Geographic Location %s\n",
dvname, name);
#undef ADD_CHANNEL
}
static void
rtw_set80211props(struct ieee80211com *ic)
{
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
IEEE80211_C_SHPREAMBLE;
/* IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP */
ic->ic_sup_rates[IEEE80211_MODE_11B] = rtw_rateset_11b;
}
/*ARGSUSED*/
static void
rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
const char *dvname)
{
uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
switch (cfg0 & RTW_CONFIG0_GL_MASK) {
case RTW_CONFIG0_GL_USA:
*locale = RTW_LOCALE_USA;
break;
case RTW_CONFIG0_GL_JAPAN:
*locale = RTW_LOCALE_JAPAN;
break;
case RTW_CONFIG0_GL_EUROPE:
*locale = RTW_LOCALE_EUROPE;
break;
default:
*locale = RTW_LOCALE_UNKNOWN;
break;
}
}
static int
rtw_identify_sta(struct rtw_regs *regs, uint8_t *addr,
const char *dvname)
{
uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
idr1 = RTW_READ(regs, RTW_IDR1);
*addr = MASK_AND_RSHIFT(idr0, BITS(0, 7));
*(addr + 1) = MASK_AND_RSHIFT(idr0, BITS(8, 15));
*(addr + 2) = MASK_AND_RSHIFT(idr0, BITS(16, 23));
*(addr + 3) = MASK_AND_RSHIFT(idr0, BITS(24, 31));
*(addr + 4) = MASK_AND_RSHIFT(idr1, BITS(0, 7));
*(addr + 5) = MASK_AND_RSHIFT(idr1, BITS(8, 15));
RTW_DPRINTF(RTW_DEBUG_ATTACH,
"%s: 802.11mac address %x:%x:%x:%x:%x:%x\n", dvname,
*addr, *(addr+1), *(addr+2), *(addr+3), *(addr+4), *(addr+5));
return (0);
}
static uint8_t
rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
struct ieee80211_channel *chan)
{
uint32_t idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
return (RTW_SR_GET(sr, idx));
}
static void
rtw_rxdesc_init(rtw_softc_t *rsc, struct rtw_rxbuf *rbf, int idx, int is_last)
{
uint32_t ctl = 0;
uint8_t *buf = (uint8_t *)rbf->bf_dma.mem_va;
ASSERT(rbf != NULL);
rbf->rxdesc->rd_buf = (rbf->bf_dma.cookie.dmac_address);
bzero(buf, rbf->bf_dma.alength);
RTW_DMA_SYNC(rbf->bf_dma, DDI_DMA_SYNC_FORDEV);
ctl = (rbf->bf_dma.alength & 0xfff) | RTW_RXCTL_OWN;
if (is_last)
ctl |= RTW_RXCTL_EOR;
rbf->rxdesc->rd_ctl = (ctl);
/* sync the mbuf */
/* sync the descriptor */
RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
RTW_DESC_OFFSET(hd_rx, idx),
sizeof (struct rtw_rxdesc),
DDI_DMA_SYNC_FORDEV);
}
static void
rtw_idle(struct rtw_regs *regs)
{
int active;
/* request stop DMA; wait for packets to stop transmitting. */
RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
for (active = 0; active < 300 &&
(RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ALL) != 0; active++)
drv_usecwait(10);
}
static void
rtw_io_enable(rtw_softc_t *rsc, uint8_t flags, int enable)
{
uint8_t cr;
struct rtw_regs *regs = &rsc->sc_regs;
RTW_DPRINTF(RTW_DEBUG_IOSTATE, "%s: %s 0x%02x\n", __func__,
enable ? "enable" : "disable", flags);
cr = RTW_READ8(regs, RTW_CR);
/* The receive engine will always start at RDSAR. */
if (enable && (flags & ~cr & RTW_CR_RE)) {
RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
RTW_DESC_OFFSET(hd_rx, 0),
sizeof (struct rtw_rxdesc),
DDI_DMA_SYNC_FORCPU);
rsc->rx_next = 0;
rtw_rxdesc_init(rsc, rsc->rxbuf_h, 0, 0);
}
if (enable)
cr |= flags;
else
cr &= ~flags;
RTW_WRITE8(regs, RTW_CR, cr);
(void) RTW_READ8(regs, RTW_CR);
}
/*
* Allocate an area of memory and a DMA handle for accessing it
*/
static int
rtw_alloc_dma_mem(dev_info_t *devinfo, ddi_dma_attr_t *dma_attr,
size_t memsize, ddi_device_acc_attr_t *attr_p, uint_t alloc_flags,
uint_t bind_flags, dma_area_t *dma_p)
{
int err;
/*
* Allocate handle
*/
err = ddi_dma_alloc_handle(devinfo, dma_attr,
DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Allocate memory
*/
err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
alloc_flags, DDI_DMA_SLEEP, NULL, &dma_p->mem_va,
&dma_p->alength, &dma_p->acc_hdl);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Bind the two together
*/
err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
dma_p->mem_va, dma_p->alength, bind_flags,
DDI_DMA_SLEEP, NULL, &dma_p->cookie, &dma_p->ncookies);
if ((dma_p->ncookies != 1) || (err != DDI_DMA_MAPPED))
return (DDI_FAILURE);
dma_p->nslots = ~0U;
dma_p->size = ~0U;
dma_p->token = ~0U;
dma_p->offset = 0;
return (DDI_SUCCESS);
}
/*
* Free one allocated area of DMAable memory
*/
static void
rtw_free_dma_mem(dma_area_t *dma_p)
{
if (dma_p->dma_hdl != NULL) {
(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
if (dma_p->acc_hdl != NULL) {
ddi_dma_mem_free(&dma_p->acc_hdl);
dma_p->acc_hdl = NULL;
}
ddi_dma_free_handle(&dma_p->dma_hdl);
dma_p->ncookies = 0;
dma_p->dma_hdl = NULL;
}
}
static void
rtw_dma_free(rtw_softc_t *rsc)
{
struct rtw_txbuf *txbf;
struct rtw_rxbuf *rxbf;
int i, j;
/* Free TX DMA buffer */
for (i = 0; i < RTW_NTXPRI; i++) {
txbf = list_head(&rsc->sc_txq[i].tx_free_list);
while (txbf != NULL) {
rtw_free_dma_mem(&txbf->bf_dma);
list_remove(&rsc->sc_txq[i].tx_free_list, txbf);
txbf = list_head(&rsc->sc_txq[i].tx_free_list);
}
list_destroy(&rsc->sc_txq[i].tx_free_list);
txbf = list_head(&rsc->sc_txq[i].tx_dirty_list);
while (txbf != NULL) {
rtw_free_dma_mem(&txbf->bf_dma);
list_remove(&rsc->sc_txq[i].tx_dirty_list, txbf);
txbf = list_head(&rsc->sc_txq[i].tx_dirty_list);
}
list_destroy(&rsc->sc_txq[i].tx_dirty_list);
if (rsc->sc_txq[i].txbuf_h != NULL) {
kmem_free(rsc->sc_txq[i].txbuf_h,
sizeof (struct rtw_txbuf) * rtw_qlen[i]);
rsc->sc_txq[i].txbuf_h = NULL;
}
}
/* Free RX DMA buffer */
rxbf = rsc->rxbuf_h;
for (j = 0; j < RTW_RXQLEN; j++) {
rtw_free_dma_mem(&rxbf->bf_dma);
rxbf++;
}
if (rsc->rxbuf_h != NULL) {
kmem_free(rsc->rxbuf_h,
sizeof (struct rtw_rxbuf) * RTW_RXQLEN);
rsc->rxbuf_h = NULL;
}
rtw_free_dma_mem(&rsc->sc_desc_dma);
}
static int
rtw_dma_init(dev_info_t *devinfo, rtw_softc_t *rsc)
{
int i, j, err;
size_t size;
uint32_t buflen;
struct rtw_txdesc *txds;
struct rtw_rxdesc *rxds;
struct rtw_txbuf *txbf;
struct rtw_rxbuf *rxbf;
uint32_t phybaseaddr, ptx[RTW_NTXPRI], prx;
caddr_t virbaseaddr, vtx[RTW_NTXPRI], vrx;
/* DMA buffer size for each TX/RX packet */
rsc->sc_dmabuf_size = roundup(sizeof (struct ieee80211_frame) + 0x100 +
IEEE80211_MTU + IEEE80211_CRC_LEN + sizeof (struct ieee80211_llc) +
(IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
IEEE80211_WEP_CRCLEN), rsc->sc_cachelsz);
size = sizeof (struct rtw_descs);
err = rtw_alloc_dma_mem(devinfo, &dma_attr_desc, size,
&rtw_desc_accattr,
DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&rsc->sc_desc_dma);
if (err != DDI_SUCCESS)
goto error;
phybaseaddr = rsc->sc_desc_dma.cookie.dmac_address;
virbaseaddr = rsc->sc_desc_dma.mem_va;
ptx[0] = RTW_RING_BASE(phybaseaddr, hd_txlo);
ptx[1] = RTW_RING_BASE(phybaseaddr, hd_txmd);
ptx[2] = RTW_RING_BASE(phybaseaddr, hd_txhi);
ptx[3] = RTW_RING_BASE(phybaseaddr, hd_bcn);
vtx[0] = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_txlo));
vtx[1] = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_txmd));
vtx[2] = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_txhi));
vtx[3] = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_bcn));
for (i = 0; i < RTW_NTXPRI; i++) {
RTW_DPRINTF(RTW_DEBUG_DMA, "p[%d]=%x, v[%d]=%x", i, ptx[i],
i, vtx[i]);
RTW_DPRINTF(RTW_DEBUG_DMA, "ring%d:", i);
list_create(&rsc->sc_txq[i].tx_free_list,
sizeof (struct rtw_txbuf),
offsetof(struct rtw_txbuf, bf_node));
list_create(&rsc->sc_txq[i].tx_dirty_list,
sizeof (struct rtw_txbuf),
offsetof(struct rtw_txbuf, bf_node));
/* virtual address of the first descriptor */
rsc->sc_txq[i].txdesc_h =
(struct rtw_txdesc *)(uintptr_t)vtx[i];
txds = rsc->sc_txq[i].txdesc_h;
/* allocate data structures to describe TX DMA buffers */
buflen = sizeof (struct rtw_txbuf) * rtw_qlen[i];
txbf = (struct rtw_txbuf *)kmem_zalloc(buflen, KM_SLEEP);
rsc->sc_txq[i].txbuf_h = txbf;
for (j = 0; j < rtw_qlen[i]; j++, txbf++, txds++) {
txbf->txdesc = txds;
txbf->bf_daddr = ptx[i] + ((uintptr_t)txds -
(uintptr_t)rsc->sc_txq[i].txdesc_h);
list_insert_tail(&rsc->sc_txq[i].tx_free_list, txbf);
/* alloc DMA memory */
err = rtw_alloc_dma_mem(devinfo, &dma_attr_txbuf,
rsc->sc_dmabuf_size,
&rtw_buf_accattr,
DDI_DMA_STREAMING,
DDI_DMA_WRITE | DDI_DMA_STREAMING,
&txbf->bf_dma);
if (err != DDI_SUCCESS)
goto error;
RTW_DPRINTF(RTW_DEBUG_DMA, "pbufaddr[%d]=%x",
j, txbf->bf_dma.cookie.dmac_address);
}
}
prx = RTW_RING_BASE(phybaseaddr, hd_rx);
vrx = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_rx));
/* virtual address of the first descriptor */
rsc->rxdesc_h = (struct rtw_rxdesc *)(uintptr_t)vrx;
rxds = rsc->rxdesc_h;
/* allocate data structures to describe RX DMA buffers */
buflen = sizeof (struct rtw_rxbuf) * RTW_RXQLEN;
rxbf = (struct rtw_rxbuf *)kmem_zalloc(buflen, KM_SLEEP);
rsc->rxbuf_h = rxbf;
for (j = 0; j < RTW_RXQLEN; j++, rxbf++, rxds++) {
rxbf->rxdesc = rxds;
rxbf->bf_daddr =
prx + ((uintptr_t)rxds - (uintptr_t)rsc->rxdesc_h);
/* alloc DMA memory */
err = rtw_alloc_dma_mem(devinfo, &dma_attr_rxbuf,
rsc->sc_dmabuf_size,
&rtw_buf_accattr,
DDI_DMA_STREAMING, DDI_DMA_READ | DDI_DMA_STREAMING,
&rxbf->bf_dma);
if (err != DDI_SUCCESS)
goto error;
}
return (DDI_SUCCESS);
error:
return (DDI_FAILURE);
}
static void
rtw_hwring_setup(rtw_softc_t *rsc)
{
struct rtw_regs *regs = &rsc->sc_regs;
uint32_t phybaseaddr;
phybaseaddr = rsc->sc_desc_dma.cookie.dmac_address;
RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(phybaseaddr, hd_rx));
RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(phybaseaddr, hd_txlo));
RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(phybaseaddr, hd_txmd));
RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(phybaseaddr, hd_txhi));
RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(phybaseaddr, hd_bcn));
rsc->hw_start = RTW_READ(regs, RTW_TNPDA);
rsc->hw_go = RTW_READ(regs, RTW_TNPDA);
}
static void
rtw_swring_setup(rtw_softc_t *rsc, int flag)
{
int i, j;
int is_last;
struct rtw_txbuf *txbf;
struct rtw_rxbuf *rxbf;
uint32_t phybaseaddr, ptx[RTW_NTXPRI], baddr_desc, taddr_desc;
phybaseaddr = rsc->sc_desc_dma.cookie.dmac_address;
ptx[0] = RTW_RING_BASE(phybaseaddr, hd_txlo);
ptx[1] = RTW_RING_BASE(phybaseaddr, hd_txmd);
ptx[2] = RTW_RING_BASE(phybaseaddr, hd_txhi);
ptx[3] = RTW_RING_BASE(phybaseaddr, hd_bcn);
RTW_DMA_SYNC(rsc->sc_desc_dma, DDI_DMA_SYNC_FORDEV);
/* sync tx desc and tx buf */
for (i = 0; i < RTW_NTXPRI; i++) {
rsc->sc_txq[i].tx_prod = rsc->sc_txq[i].tx_cons = 0;
rsc->sc_txq[i].tx_nfree = rtw_qlen[i];
txbf = list_head(&rsc->sc_txq[i].tx_free_list);
while (txbf != NULL) {
list_remove(&rsc->sc_txq[i].tx_free_list, txbf);
txbf = list_head(&rsc->sc_txq[i].tx_free_list);
}
txbf = list_head(&rsc->sc_txq[i].tx_dirty_list);
while (txbf != NULL) {
list_remove(&rsc->sc_txq[i].tx_dirty_list, txbf);
txbf = list_head(&rsc->sc_txq[i].tx_dirty_list);
}
txbf = rsc->sc_txq[i].txbuf_h;
baddr_desc = ptx[i];
taddr_desc = baddr_desc + sizeof (struct rtw_txdesc);
for (j = 0; j < rtw_qlen[i]; j++) {
list_insert_tail(&rsc->sc_txq[i].tx_free_list, txbf);
if (j == (rtw_qlen[i] - 1)) {
is_last = 1;
} else {
is_last = 0;
}
if (is_last) {
txbf->txdesc->td_next = baddr_desc;
} else {
txbf->txdesc->td_next = taddr_desc;
}
txbf->next_bf_daddr = txbf->txdesc->td_next;
RTW_DMA_SYNC(txbf->bf_dma, DDI_DMA_SYNC_FORDEV);
txbf->order = j;
txbf++;
taddr_desc += sizeof (struct rtw_txdesc);
}
}
if (!flag)
return;
/* sync rx desc and rx buf */
rsc->rx_next = 0;
rxbf = rsc->rxbuf_h;
for (j = 0; j < RTW_RXQLEN; j++) {
RTW_DMA_SYNC(rxbf->bf_dma, DDI_DMA_SYNC_FORCPU);
if (j == (RTW_RXQLEN - 1))
is_last = 1;
else
is_last = 0;
rtw_rxdesc_init(rsc, rxbf, j, is_last);
rxbf++;
}
}
static void
rtw_resume_ticks(rtw_softc_t *rsc)
{
RTW_WRITE(&rsc->sc_regs, RTW_TINT, 0xffffffff);
}
const char *
rtw_pwrstate_string(enum rtw_pwrstate power)
{
switch (power) {
case RTW_ON:
return ("on");
case RTW_SLEEP:
return ("sleep");
case RTW_OFF:
return ("off");
default:
return ("unknown");
}
}
/*
* XXX For Maxim, I am using the RFMD settings gleaned from the
* reference driver, plus a magic Maxim "ON" value that comes from
* the Realtek document "Windows PG for Rtl8180."
*/
/*ARGSUSED*/
static void
rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
int before_rf, int digphy)
{
uint32_t anaparm;
anaparm = RTW_READ(regs, RTW_ANAPARM);
anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
switch (power) {
case RTW_OFF:
if (before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_SLEEP:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_ON:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
break;
}
RTW_DPRINTF(RTW_DEBUG_PWR,
"%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
__func__, rtw_pwrstate_string(power),
(before_rf) ? "before" : "after", anaparm);
RTW_WRITE(regs, RTW_ANAPARM, anaparm);
RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
}
/*
* XXX I am using the RFMD settings gleaned from the reference
* driver. They agree
*/
/*ARGSUSED*/
static void
rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
int before_rf, int digphy)
{
uint32_t anaparm;
anaparm = RTW_READ(regs, RTW_ANAPARM);
anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
switch (power) {
case RTW_OFF:
if (before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_SLEEP:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_ON:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
break;
}
RTW_DPRINTF(RTW_DEBUG_PWR,
"%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
__func__, rtw_pwrstate_string(power),
(before_rf) ? "before" : "after", anaparm);
RTW_WRITE(regs, RTW_ANAPARM, anaparm);
RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
}
static void
rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
int before_rf, int digphy)
{
uint32_t anaparm;
anaparm = RTW_READ(regs, RTW_ANAPARM);
anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
switch (power) {
case RTW_OFF:
if (before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_SLEEP:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_ON:
if (!before_rf)
return;
if (digphy) {
anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
/* XXX guess */
anaparm |= RTW_ANAPARM_TXDACOFF;
} else
anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
break;
}
RTW_DPRINTF(RTW_DEBUG_PWR,
"%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
__func__, rtw_pwrstate_string(power),
(before_rf) ? "before" : "after", anaparm);
RTW_WRITE(regs, RTW_ANAPARM, anaparm);
RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
}
static void
rtw_pwrstate0(rtw_softc_t *rsc, enum rtw_pwrstate power, int before_rf,
int digphy)
{
struct rtw_regs *regs = &rsc->sc_regs;
rtw_set_access(regs, RTW_ACCESS_ANAPARM);
(*rsc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
rtw_set_access(regs, RTW_ACCESS_NONE);
}
static void
rtw_rf_destroy(struct rtw_rf *rf)
{
(*rf->rf_destroy)(rf);
}
static int
rtw_rf_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
{
return (*rf->rf_pwrstate)(rf, power);
}
static int
rtw_pwrstate(rtw_softc_t *rsc, enum rtw_pwrstate power)
{
int rc;
RTW_DPRINTF(RTW_DEBUG_PWR,
"%s: %s->%s\n", __func__,
rtw_pwrstate_string(rsc->sc_pwrstate), rtw_pwrstate_string(power));
if (rsc->sc_pwrstate == power)
return (0);
rtw_pwrstate0(rsc, power, 1, rsc->sc_flags & RTW_F_DIGPHY);
rc = rtw_rf_pwrstate(rsc->sc_rf, power);
rtw_pwrstate0(rsc, power, 0, rsc->sc_flags & RTW_F_DIGPHY);
switch (power) {
case RTW_ON:
/* TBD set LEDs */
break;
case RTW_SLEEP:
/* TBD */
break;
case RTW_OFF:
/* TBD */
break;
}
if (rc == 0)
rsc->sc_pwrstate = power;
else
rsc->sc_pwrstate = RTW_OFF;
return (rc);
}
void
rtw_disable(rtw_softc_t *rsc)
{
int rc;
if ((rsc->sc_flags & RTW_F_ENABLED) == 0)
return;
/* turn off PHY */
if ((rsc->sc_flags & RTW_F_INVALID) == 0 &&
(rc = rtw_pwrstate(rsc, RTW_OFF)) != 0) {
cmn_err(CE_WARN, "failed to turn off PHY (%d)\n", rc);
}
if (rsc->sc_disable != NULL)
(*rsc->sc_disable)(rsc);
rsc->sc_flags &= ~RTW_F_ENABLED;
}
int
rtw_enable(rtw_softc_t *rsc)
{
if ((rsc->sc_flags & RTW_F_ENABLED) == 0) {
if (rsc->sc_enable != NULL && (*rsc->sc_enable)(rsc) != 0) {
cmn_err(CE_WARN, "device enable failed\n");
return (EIO);
}
rsc->sc_flags |= RTW_F_ENABLED;
if (rtw_pwrstate(rsc, RTW_ON) != 0)
cmn_err(CE_WARN, "PHY turn on failed\n");
}
return (0);
}
static void
rtw_set_nettype(rtw_softc_t *rsc, enum ieee80211_opmode opmode)
{
uint8_t msr;
/* I'm guessing that MSR is protected as CONFIG[0123] are. */
rtw_set_access(&rsc->sc_regs, RTW_ACCESS_CONFIG);
msr = RTW_READ8(&rsc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
switch (opmode) {
case IEEE80211_M_AHDEMO:
case IEEE80211_M_IBSS:
msr |= RTW_MSR_NETYPE_ADHOC_OK;
break;
case IEEE80211_M_HOSTAP:
msr |= RTW_MSR_NETYPE_AP_OK;
break;
case IEEE80211_M_STA:
msr |= RTW_MSR_NETYPE_INFRA_OK;
break;
}
RTW_WRITE8(&rsc->sc_regs, RTW_MSR, msr);
rtw_set_access(&rsc->sc_regs, RTW_ACCESS_NONE);
}
static void
rtw_pktfilt_load(rtw_softc_t *rsc)
{
struct rtw_regs *regs = &rsc->sc_regs;
struct ieee80211com *ic = &rsc->sc_ic;
/* XXX might be necessary to stop Rx/Tx engines while setting filters */
rsc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
rsc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
rsc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
/* MAC auto-reset PHY (huh?) */
rsc->sc_rcr |= RTW_RCR_ENMARP;
/* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
rsc->sc_rcr |= RTW_RCR_RXFTH_WHOLE |RTW_RCR_MXDMA_1024;
switch (ic->ic_opmode) {
case IEEE80211_M_AHDEMO:
case IEEE80211_M_IBSS:
/* receive broadcasts in our BSS */
rsc->sc_rcr |= RTW_RCR_ADD3;
break;
default:
break;
}
#if 0
/* XXX accept all broadcast if scanning */
rsc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
#endif
RTW_WRITE(regs, RTW_MAR0, 0xffffffff);
RTW_WRITE(regs, RTW_MAR1, 0xffffffff);
rsc->sc_rcr |= RTW_RCR_AM;
RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
RTW_DPRINTF(RTW_DEBUG_PKTFILT,
"RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
RTW_READ(regs, RTW_MAR0),
RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR));
RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
}
static void
rtw_transmit_config(struct rtw_regs *regs)
{
uint32_t tcr;
tcr = RTW_READ(regs, RTW_TCR);
tcr |= RTW_TCR_CWMIN;
tcr &= ~RTW_TCR_MXDMA_MASK;
tcr |= RTW_TCR_MXDMA_1024;
tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
tcr &= ~RTW_TCR_LBK_MASK;
tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
/* set short/long retry limits */
tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
tcr |= LSHIFT(0x4, RTW_TCR_SRL_MASK) | LSHIFT(0x4, RTW_TCR_LRL_MASK);
tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
RTW_WRITE(regs, RTW_TCR, tcr);
RTW_SYNC(regs, RTW_TCR, RTW_TCR);
}
int
rtw_refine_setting(rtw_softc_t *rsc)
{
struct rtw_regs *regs;
int rc = 0;
regs = &rsc->sc_regs;
rc = rtw_reset(rsc);
if (rc != 0)
return (-1);
rtw_beacon_tx_disable(regs);
rtw_io_enable(rsc, RTW_CR_RE|RTW_CR_TE, 1);
rtw_set_mode(regs, RTW_EPROM_CMD_CONFIG);
rtw_transmit_config(regs);
rtw_pktfilt_load(rsc);
rtw_set_access(regs, RTW_ACCESS_CONFIG);
RTW_WRITE(regs, RTW_TINT, 0xffffffff);
RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
RTW_WRITE16(regs, RTW_BRSR, 0);
rtw_set_access(regs, RTW_ACCESS_ANAPARM);
rtw_set_access(regs, RTW_ACCESS_NONE);
RTW_WRITE(regs, RTW_FEMR, 0xffff);
RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
rtw_set_rfprog(regs, rsc->sc_rfchipid, "rtw");
RTW_WRITE8(regs, RTW_PHYDELAY, rsc->sc_phydelay);
RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
rtw_set_mode(regs, RTW_EPROM_CMD_NORMAL);
return (0);
}
static int
rtw_tune(rtw_softc_t *rsc)
{
struct ieee80211com *ic = &rsc->sc_ic;
uint32_t chan;
int rc;
int antdiv = rsc->sc_flags & RTW_F_ANTDIV,
dflantb = rsc->sc_flags & RTW_F_DFLANTB;
ASSERT(ic->ic_curchan != NULL);
chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
RTW_DPRINTF(RTW_DEBUG_TUNE, "rtw: chan no = %x", chan);
if (chan == IEEE80211_CHAN_ANY) {
cmn_err(CE_WARN, "%s: chan == IEEE80211_CHAN_ANY\n", __func__);
return (-1);
}
if (chan == rsc->sc_cur_chan) {
RTW_DPRINTF(RTW_DEBUG_TUNE,
"%s: already tuned chan %d\n", __func__, chan);
return (0);
}
rtw_idle(&rsc->sc_regs);
rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 0);
ASSERT((rsc->sc_flags & RTW_F_ENABLED) != 0);
if ((rc = rtw_phy_init(&rsc->sc_regs, rsc->sc_rf,
rtw_chan2txpower(&rsc->sc_srom, ic, ic->ic_curchan),
rsc->sc_csthr, ic->ic_curchan->ich_freq, antdiv,
dflantb, RTW_ON)) != 0) {
/* XXX condition on powersaving */
cmn_err(CE_NOTE, "phy init failed\n");
}
rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 1);
rtw_resume_ticks(rsc);
rsc->sc_cur_chan = chan;
return (rc);
}
static int
rtw_init(rtw_softc_t *rsc)
{
struct ieee80211com *ic = &rsc->sc_ic;
int rc = 0;
rtw_stop(rsc);
mutex_enter(&rsc->sc_genlock);
if ((rc = rtw_enable(rsc)) != 0)
goto out;
rc = rtw_refine_setting(rsc);
if (rc != 0) {
mutex_exit(&rsc->sc_genlock);
return (rc);
}
rtw_swring_setup(rsc, 1);
rtw_hwring_setup(rsc);
RTW_WRITE16(&rsc->sc_regs, RTW_BSSID16, 0x0);
RTW_WRITE(&rsc->sc_regs, RTW_BSSID32, 0x0);
rtw_enable_interrupts(rsc);
ic->ic_ibss_chan = &ic->ic_sup_channels[1];
ic->ic_curchan = ic->ic_ibss_chan;
RTW_DPRINTF(RTW_DEBUG_TUNE, "%s: channel %d freq %d flags 0x%04x\n",
__func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
ic->ic_curchan->ich_freq, ic->ic_curchan->ich_flags);
rsc->sc_invalid = 0;
out:
mutex_exit(&rsc->sc_genlock);
return (rc);
}
static struct rtw_rf *
rtw_rf_attach(rtw_softc_t *rsc, enum rtw_rfchipid rfchipid, int digphy)
{
rtw_rf_write_t rf_write;
struct rtw_rf *rf;
int rtw_host_rfio;
switch (rfchipid) {
default:
rf_write = rtw_rf_hostwrite;
break;
case RTW_RFCHIPID_INTERSIL:
case RTW_RFCHIPID_PHILIPS:
case RTW_RFCHIPID_GCT: /* XXX a guess */
case RTW_RFCHIPID_RFMD:
rtw_host_rfio = 1;
rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
break;
}
switch (rfchipid) {
case RTW_RFCHIPID_MAXIM:
rf = rtw_max2820_create(&rsc->sc_regs, rf_write, 0);
rsc->sc_pwrstate_cb = rtw_maxim_pwrstate;
break;
case RTW_RFCHIPID_PHILIPS:
rf = rtw_sa2400_create(&rsc->sc_regs, rf_write, digphy);
rsc->sc_pwrstate_cb = rtw_philips_pwrstate;
break;
case RTW_RFCHIPID_RFMD:
/* XXX RFMD has no RF constructor */
rsc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
/*FALLTHROUGH*/
default:
return (NULL);
}
if (rf != NULL) {
rf->rf_continuous_tx_cb =
(rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
rf->rf_continuous_tx_arg = (void *)rsc;
}
return (rf);
}
/*
* Revision C and later use a different PHY delay setting than
* revisions A and B.
*/
static uint8_t
rtw_check_phydelay(struct rtw_regs *regs, uint32_t rcr0)
{
#define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
#define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
uint8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
RTW_WRITE(regs, RTW_RCR, REVAB);
RTW_WBW(regs, RTW_RCR, RTW_RCR);
RTW_WRITE(regs, RTW_RCR, REVC);
RTW_WBR(regs, RTW_RCR, RTW_RCR);
if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
phydelay |= RTW_PHYDELAY_REVC_MAGIC;
RTW_WRITE(regs, RTW_RCR, rcr0); /* restore RCR */
RTW_SYNC(regs, RTW_RCR, RTW_RCR);
return (phydelay);
#undef REVC
}
static void rtw_intr_rx(rtw_softc_t *rsc);
static void rtw_ring_recycling(rtw_softc_t *rsc, uint16_t isr, uint32_t pri);
static int
rtw_get_rate(struct ieee80211com *ic)
{
uint8_t (*rates)[IEEE80211_RATE_MAXSIZE];
int rate;
rates = &ic->ic_bss->in_rates.ir_rates;
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
rate = ic->ic_fixed_rate;
else if (ic->ic_state == IEEE80211_S_RUN)
rate = (*rates)[ic->ic_bss->in_txrate];
else
rate = 0;
return (rate & IEEE80211_RATE_VAL);
}
/*
* Arguments in:
*
* paylen: payload length (no FCS, no WEP header)
*
* hdrlen: header length
*
* rate: MSDU speed, units 500kb/s
*
* flags: IEEE80211_F_SHPREAMBLE (use short preamble),
* IEEE80211_F_SHSLOT (use short slot length)
*
* Arguments out:
*
* d: 802.11 Duration field for RTS,
* 802.11 Duration field for data frame,
* PLCP Length for data frame,
* residual octets at end of data slot
*/
static int
rtw_compute_duration1(int len, int use_ack, uint32_t flags, int rate,
struct rtw_ieee80211_duration *d)
{
int pre, ctsrate;
uint16_t ack, bitlen, data_dur, remainder;
/*
* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
* DATA reserves medium for SIFS | ACK
*
* XXXMYC: no ACK on multicast/broadcast or control packets
*/
bitlen = len * 8;
pre = IEEE80211_DUR_DS_SIFS;
if ((flags & IEEE80211_F_SHPREAMBLE) != 0)
pre += IEEE80211_DUR_DS_SHORT_PREAMBLE +
IEEE80211_DUR_DS_FAST_PLCPHDR;
else
pre += IEEE80211_DUR_DS_LONG_PREAMBLE +
IEEE80211_DUR_DS_SLOW_PLCPHDR;
d->d_residue = 0;
data_dur = (bitlen * 2) / rate;
remainder = (bitlen * 2) % rate;
if (remainder != 0) {
if (rate == 22)
d->d_residue = (rate - remainder) / 16;
data_dur++;
}
switch (rate) {
case 2: /* 1 Mb/s */
case 4: /* 2 Mb/s */
/* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
ctsrate = 2;
break;
case 11: /* 5.5 Mb/s */
case 22: /* 11 Mb/s */
case 44: /* 22 Mb/s */
/* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
ctsrate = 4;
break;
default:
/* TBD */
return (-1);
}
d->d_plcp_len = data_dur;
ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
d->d_rts_dur =
pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
pre + data_dur +
ack;
d->d_data_dur = ack;
return (0);
}
/*
* Arguments in:
*
* wh: 802.11 header
*
* paylen: payload length (no FCS, no WEP header)
*
* rate: MSDU speed, units 500kb/s
*
* fraglen: fragment length, set to maximum (or higher) for no
* fragmentation
*
* flags: IEEE80211_F_PRIVACY (hardware adds WEP),
* IEEE80211_F_SHPREAMBLE (use short preamble),
* IEEE80211_F_SHSLOT (use short slot length)
*
* Arguments out:
*
* d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
* of first/only fragment
*
* dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
* of first/only fragment
*/
static int
rtw_compute_duration(struct ieee80211_frame *wh, int len,
uint32_t flags, int fraglen, int rate, struct rtw_ieee80211_duration *d0,
struct rtw_ieee80211_duration *dn, int *npktp)
{
int ack, rc;
int firstlen, hdrlen, lastlen, lastlen0, npkt, overlen, paylen;
/* don't think about addr4 here */
hdrlen = sizeof (struct ieee80211_frame);
paylen = len - hdrlen;
if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) {
overlen = 8 + IEEE80211_CRC_LEN;
paylen -= 8;
} else
overlen = IEEE80211_CRC_LEN;
npkt = paylen / fraglen;
lastlen0 = paylen % fraglen;
if (npkt == 0) /* no fragments */
lastlen = paylen + overlen;
else if (lastlen0 != 0) { /* a short "tail" fragment */
lastlen = lastlen0 + overlen;
npkt++;
} else /* full-length "tail" fragment */
lastlen = fraglen + overlen;
if (npktp != NULL)
*npktp = npkt;
if (npkt > 1)
firstlen = fraglen + overlen;
else
firstlen = paylen + overlen;
ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_CTL;
rc = rtw_compute_duration1(firstlen + hdrlen,
ack, flags, rate, d0);
if (rc == -1)
return (rc);
if (npkt <= 1) {
*dn = *d0;
return (0);
}
return (rtw_compute_duration1(lastlen + hdrlen, ack, flags,
rate, dn));
}
static int
rtw_assembly_80211(rtw_softc_t *rsc, struct rtw_txbuf *bf,
mblk_t *mp)
{
ieee80211com_t *ic;
struct rtw_txdesc *ds;
struct ieee80211_frame *wh;
uint8_t *buf;
uint32_t ctl0 = 0, ctl1 = 0;
int npkt, rate;
struct rtw_ieee80211_duration d0, dn;
int32_t iswep, pktlen, mblen;
mblk_t *mp0;
ic = &rsc->sc_ic;
ds = bf->txdesc;
buf = (uint8_t *)bf->bf_dma.mem_va;
bzero(buf, bf->bf_dma.alength);
bzero((uint8_t *)ds, sizeof (struct rtw_txdesc));
wh = (struct ieee80211_frame *)mp->b_rptr;
iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
/* ieee80211_crypto_encap() needs a single mblk */
mp0 = allocb(bf->bf_dma.alength, BPRI_MED);
if (mp0 == NULL) {
cmn_err(CE_WARN, "%s: allocb(mp) error", __func__);
return (-1);
}
for (; mp != NULL; mp = mp->b_cont) {
mblen = (uintptr_t)mp->b_wptr - (uintptr_t)mp->b_rptr;
bcopy(mp->b_rptr, mp0->b_wptr, mblen);
mp0->b_wptr += mblen;
}
if (iswep) {
struct ieee80211_key *k;
k = ieee80211_crypto_encap(ic, mp0);
if (k == NULL) {
cmn_err(CE_WARN, "%s: ieee80211_crypto_encap() error",
__func__);
freemsg(mp0);
return (-1);
}
}
pktlen = msgdsize(mp0);
#if 0
RTW_DPRINTF(RTW_DEBUG_XMIT, "-----------send------begin--------");
ieee80211_dump_pkt((uint8_t *)(mp0->b_rptr), pktlen, 0, 0);
RTW_DPRINTF(RTW_DEBUG_XMIT, "-----------send------end--------");
#endif
/* RTW_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORDEV); */
if (pktlen > bf->bf_dma.alength) {
cmn_err(CE_WARN, "%s: overlength packet pktlen = %d\n",
__func__, pktlen);
freemsg(mp0);
return (-1);
}
bcopy(mp0->b_rptr, buf, pktlen);
RTW_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORDEV);
/* setup descriptor */
ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
if (((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0) &&
(ic->ic_bss->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
ctl0 |= RTW_TXCTL0_SPLCP;
}
/* XXX do real rate control */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT)
rate = 2;
else {
rate = MAX(2, rtw_get_rate(ic));
}
ctl0 = ctl0 |
LSHIFT(pktlen, RTW_TXCTL0_TPKTSIZE_MASK);
RTW_DPRINTF(RTW_DEBUG_XMIT, "%s: rate = %d", __func__, rate);
switch (rate) {
default:
case 2:
ctl0 |= RTW_TXCTL0_RATE_1MBPS;
break;
case 4:
ctl0 |= RTW_TXCTL0_RATE_2MBPS;
break;
case 11:
ctl0 |= RTW_TXCTL0_RATE_5MBPS;
break;
case 22:
ctl0 |= RTW_TXCTL0_RATE_11MBPS;
break;
}
/* XXX >= ? Compare after fragmentation? */
if (pktlen > ic->ic_rtsthreshold) {
ctl0 |= RTW_TXCTL0_RTSEN;
cmn_err(CE_NOTE, "%s: fragmentation: pktlen = %d",
__func__, pktlen);
}
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_BEACON)
ctl0 |= RTW_TXCTL0_BEACON;
}
if (rtw_compute_duration(wh, pktlen,
ic->ic_flags, ic->ic_fragthreshold,
rate, &d0, &dn, &npkt) == -1) {
RTW_DPRINTF(RTW_DEBUG_XMIT,
"%s: fail compute duration\n", __func__);
freemsg(mp0);
return (-1);
}
*(uint16_t *)(uintptr_t)wh->i_dur = (d0.d_data_dur);
ctl1 = LSHIFT(d0.d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
LSHIFT(d0.d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
if (d0.d_residue)
ctl1 |= RTW_TXCTL1_LENGEXT;
RTW_DPRINTF(RTW_DEBUG_XMIT, "%s: duration=%x, ctl1=%x", __func__,
*(uint16_t *)(uintptr_t)wh->i_dur, ctl1);
if (bf->bf_dma.alength > RTW_TXLEN_LENGTH_MASK) {
RTW_DPRINTF(RTW_DEBUG_XMIT,
"%s: seg too long\n", __func__);
freemsg(mp0);
return (-1);
}
ds->td_ctl0 = ctl0;
ds->td_ctl0 |= RTW_TXCTL0_OWN | RTW_TXCTL0_LS | RTW_TXCTL0_FS;
ds->td_ctl1 = ctl1;
ds->td_buf = bf->bf_dma.cookie.dmac_address;
ds->td_len = pktlen & 0xfff;
ds->td_next = bf->next_bf_daddr;
RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
RTW_DESC_OFFSET(hd_txmd, bf->order),
sizeof (struct rtw_txdesc),
DDI_DMA_SYNC_FORDEV);
RTW_DPRINTF(RTW_DEBUG_XMIT,
"descriptor: order = %d, phy_addr=%x, ctl0=%x,"
" ctl1=%x, buf=%x, len=%x, next=%x", bf->order,
bf->bf_daddr, ds->td_ctl0, ds->td_ctl1,
ds->td_buf, ds->td_len, ds->td_next);
rsc->sc_pktxmt64++;
rsc->sc_bytexmt64 += pktlen;
freemsg(mp0);
return (0);
}
static int
rtw_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
{
rtw_softc_t *rsc = (rtw_softc_t *)ic;
struct ieee80211_node *in = ic->ic_bss;
struct rtw_txbuf *bf = NULL;
int ret, i = RTW_TXPRIMD;
mutex_enter(&rsc->sc_txlock);
mutex_enter(&rsc->sc_txq[i].txbuf_lock);
bf = list_head(&rsc->sc_txq[i].tx_free_list);
if ((bf == NULL) || (rsc->sc_txq[i].tx_nfree <= 4)) {
RTW_DPRINTF(RTW_DEBUG_XMIT, "%s: no tx buf\n", __func__);
rsc->sc_noxmtbuf++;
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) {
RTW_DPRINTF(RTW_DEBUG_XMIT, "%s: need reschedule\n",
__func__);
rsc->sc_need_reschedule = 1;
} else {
freemsg(mp);
}
mutex_exit(&rsc->sc_txq[i].txbuf_lock);
mutex_exit(&rsc->sc_txlock);
return (1);
}
list_remove(&rsc->sc_txq[i].tx_free_list, bf);
rsc->sc_txq[i].tx_nfree--;
/* assemble 802.11 frame here */
ret = rtw_assembly_80211(rsc, bf, mp);
if (ret != 0) {
cmn_err(CE_WARN, "%s assembly frame error\n", __func__);
mutex_exit(&rsc->sc_txq[i].txbuf_lock);
mutex_exit(&rsc->sc_txlock);
if ((type & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_DATA) {
freemsg(mp);
}
return (1);
}
list_insert_tail(&rsc->sc_txq[i].tx_dirty_list, bf);
bf->bf_in = in;
rtw_dma_start(&rsc->sc_regs, i);
mutex_exit(&rsc->sc_txq[i].txbuf_lock);
mutex_exit(&rsc->sc_txlock);
freemsg(mp);
return (0);
}
static mblk_t *
rtw_m_tx(void *arg, mblk_t *mp)
{
rtw_softc_t *rsc = arg;
ieee80211com_t *ic = (ieee80211com_t *)rsc;
mblk_t *next;
if (ic->ic_state != IEEE80211_S_RUN) {
freemsgchain(mp);
return (NULL);
}
while (mp != NULL) {
next = mp->b_next;
mp->b_next = NULL;
if (rtw_send(ic, mp, IEEE80211_FC0_TYPE_DATA)) {
mp->b_next = next;
break;
}
mp = next;
}
return (mp);
}
static void
rtw_next_scan(void *arg)
{
ieee80211com_t *ic = arg;
rtw_softc_t *rsc = (rtw_softc_t *)arg;
rsc->sc_scan_id = 0;
if (ic->ic_state == IEEE80211_S_SCAN) {
RTW_DPRINTF(RTW_DEBUG_TUNE, "rtw_next_scan\n");
(void) ieee80211_next_scan(ic);
}
}
static void
rtw_join_bss(rtw_softc_t *rsc, uint8_t *bssid, uint16_t intval0)
{
uint16_t bcnitv, intval;
int i;
struct rtw_regs *regs = &rsc->sc_regs;
for (i = 0; i < IEEE80211_ADDR_LEN; i++)
RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
rtw_set_access(regs, RTW_ACCESS_CONFIG);
RTW_WRITE8(regs, RTW_MSR, 0x8); /* sta mode link ok */
intval = MIN(intval0, PRESHIFT(RTW_BCNITV_BCNITV_MASK));
bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
bcnitv |= LSHIFT(intval, RTW_BCNITV_BCNITV_MASK);
RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
RTW_WRITE16(regs, RTW_ATIMWND, LSHIFT(1, RTW_ATIMWND_ATIMWND));
RTW_WRITE16(regs, RTW_ATIMTRITV, LSHIFT(2, RTW_ATIMTRITV_ATIMTRITV));
rtw_set_access(regs, RTW_ACCESS_NONE);
/* TBD WEP */
/* RTW_WRITE8(regs, RTW_SCR, 0); */
rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 1);
}
/*
* Set the starting transmit rate for a node.
*/
static void
rtw_rate_ctl_start(rtw_softc_t *rsc, struct ieee80211_node *in)
{
ieee80211com_t *ic = (ieee80211com_t *)rsc;
int32_t srate;
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
/*
* No fixed rate is requested. For 11b start with
* the highest negotiated rate; otherwise, for 11g
* and 11a, we start "in the middle" at 24Mb or 36Mb.
*/
srate = in->in_rates.ir_nrates - 1;
if (ic->ic_curmode != IEEE80211_MODE_11B) {
/*
* Scan the negotiated rate set to find the
* closest rate.
*/
/* NB: the rate set is assumed sorted */
for (; srate >= 0 && IEEE80211_RATE(srate) > 72;
srate--)
;
}
} else {
/*
* A fixed rate is to be used; We know the rate is
* there because the rate set is checked when the
* station associates.
*/
/* NB: the rate set is assumed sorted */
srate = in->in_rates.ir_nrates - 1;
for (; srate >= 0 && IEEE80211_RATE(srate) != ic->ic_fixed_rate;
srate--)
;
}
in->in_txrate = srate;
}
/*
* Reset the rate control state for each 802.11 state transition.
*/
static void
rtw_rate_ctl_reset(rtw_softc_t *rsc, enum ieee80211_state state)
{
ieee80211com_t *ic = &rsc->sc_ic;
ieee80211_node_t *in;
if (ic->ic_opmode == IEEE80211_M_STA) {
/*
* Reset local xmit state; this is really only
* meaningful when operating in station mode.
*/
in = (struct ieee80211_node *)ic->ic_bss;
if (state == IEEE80211_S_RUN) {
rtw_rate_ctl_start(rsc, in);
} else {
in->in_txrate = 0;
}
}
}
/*
* Examine and potentially adjust the transmit rate.
*/
static void
rtw_rate_ctl(void *arg)
{
ieee80211com_t *ic = (ieee80211com_t *)arg;
rtw_softc_t *rsc = (rtw_softc_t *)ic;
struct ieee80211_node *in = ic->ic_bss;
struct ieee80211_rateset *rs = &in->in_rates;
int32_t mod = 1, nrate, enough;
mutex_enter(&rsc->sc_genlock);
enough = (rsc->sc_tx_ok + rsc->sc_tx_err) >= 600? 1 : 0;
/* err ratio is high -> down */
if (enough && rsc->sc_tx_ok < rsc->sc_tx_err)
mod = -1;
nrate = in->in_txrate;
switch (mod) {
case -1:
if (nrate > 0) {
nrate--;
}
break;
case 1:
if (nrate + 1 < rs->ir_nrates) {
nrate++;
}
break;
}
if (nrate != in->in_txrate)
in->in_txrate = nrate;
rsc->sc_tx_ok = rsc->sc_tx_err = rsc->sc_tx_retr = 0;
mutex_exit(&rsc->sc_genlock);
if (ic->ic_state == IEEE80211_S_RUN)
rsc->sc_ratectl_id = timeout(rtw_rate_ctl, ic,
drv_usectohz(1000000));
}
static int32_t
rtw_new_state(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
{
rtw_softc_t *rsc = (rtw_softc_t *)ic;
int error;
enum ieee80211_state ostate;
ostate = ic->ic_state;
RTW_DPRINTF(RTW_DEBUG_ATTACH,
"rtw_new_state: ostate:0x%x, nstate:0x%x, opmode:0x%x\n",
ostate, nstate, ic->ic_opmode);
mutex_enter(&rsc->sc_genlock);
if (rsc->sc_scan_id != 0) {
(void) untimeout(rsc->sc_scan_id);
rsc->sc_scan_id = 0;
}
if (rsc->sc_ratectl_id != 0) {
(void) untimeout(rsc->sc_ratectl_id);
rsc->sc_ratectl_id = 0;
}
rtw_rate_ctl_reset(rsc, nstate);
if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
(void) rtw_pwrstate(rsc, RTW_ON);
if (nstate != IEEE80211_S_INIT) {
if ((error = rtw_tune(rsc)) != 0) {
mutex_exit(&rsc->sc_genlock);
return (error);
}
}
switch (nstate) {
case IEEE80211_S_INIT:
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw_new_state: S_INIT\n");
break;
case IEEE80211_S_SCAN:
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw_new_state: S_SCAN\n");
rsc->sc_scan_id = timeout(rtw_next_scan, ic,
drv_usectohz(200000));
rtw_set_nettype(rsc, IEEE80211_M_MONITOR);
break;
case IEEE80211_S_RUN:
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw_new_state: S_RUN\n");
switch (ic->ic_opmode) {
case IEEE80211_M_HOSTAP:
case IEEE80211_M_IBSS:
rtw_set_nettype(rsc, IEEE80211_M_MONITOR);
/* TBD */
/*FALLTHROUGH*/
case IEEE80211_M_AHDEMO:
case IEEE80211_M_STA:
RTW_DPRINTF(RTW_DEBUG_ATTACH,
"rtw_new_state: sta\n");
rtw_join_bss(rsc, ic->ic_bss->in_bssid, 0);
rsc->sc_ratectl_id = timeout(rtw_rate_ctl, ic,
drv_usectohz(1000000));
break;
case IEEE80211_M_MONITOR:
break;
}
rtw_set_nettype(rsc, ic->ic_opmode);
break;
case IEEE80211_S_ASSOC:
case IEEE80211_S_AUTH:
break;
}
mutex_exit(&rsc->sc_genlock);
/*
* Invoke the parent method to complete the work.
*/
error = rsc->sc_newstate(ic, nstate, arg);
return (error);
}
static void
rtw_intr_rx(rtw_softc_t *rsc)
{
#define IS_BEACON(__fc0) \
((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
/*
* ratetbl[4] = {2, 4, 11, 22};
*/
struct rtw_rxbuf *bf;
struct rtw_rxdesc *ds;
int hwrate, len, rssi;
uint32_t hstat, hrssi, htsftl;
int is_last, next, n = 0, i;
struct ieee80211_frame *wh;
ieee80211com_t *ic = (ieee80211com_t *)rsc;
mblk_t *mp;
RTW_DPRINTF(RTW_DEBUG_RECV, "%s rtw_intr_rx: enter ic_state=%x\n",
__func__, rsc->sc_ic.ic_state);
mutex_enter(&rsc->rxbuf_lock);
next = rsc->rx_next;
mutex_exit(&rsc->rxbuf_lock);
for (i = 0; i < RTW_RXQLEN; i++) {
RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
RTW_DESC_OFFSET(hd_rx, next),
sizeof (struct rtw_rxdesc),
DDI_DMA_SYNC_FORKERNEL);
n++;
bf = rsc->rxbuf_h + next;
ds = bf->rxdesc;
hstat = (ds->rd_stat);
hrssi = ds->rd_rssi;
htsftl = ds->rd_tsftl;
/* htsfth = ds->rd_tsfth; */
RTW_DPRINTF(RTW_DEBUG_RECV, "%s: stat=%x\n", __func__, hstat);
/* still belongs to NIC */
if ((hstat & RTW_RXSTAT_OWN) != 0) {
if (n > 1) {
RTW_DPRINTF(RTW_DEBUG_RECV,
"%s: n > 1\n", __func__);
break;
}
RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
RTW_DESC_OFFSET(hd_rx, 0),
sizeof (struct rtw_rxdesc),
DDI_DMA_SYNC_FORCPU);
bf = rsc->rxbuf_h;
ds = bf->rxdesc;
hstat = (ds->rd_stat);
if ((hstat & RTW_RXSTAT_OWN) != 0)
break;
next = 0 /* RTW_RXQLEN - 1 */;
continue;
}
rsc->sc_pktrcv64++;
if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
RTW_DPRINTF(RTW_DEBUG_RECV,
"rtw: DMA error/FIFO overflow %08x, "
"rx descriptor %d\n",
hstat & RTW_RXSTAT_IOERROR, next);
goto next;
}
len = MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
rsc->sc_bytercv64 += len;
/* CRC is included with the packet; trim it off. */
/* len -= IEEE80211_CRC_LEN; */
hwrate = MASK_AND_RSHIFT(hstat, RTW_RXSTAT_RATE_MASK);
if (hwrate >= 4) {
goto next;
}
if ((hstat & RTW_RXSTAT_RES) != 0 &&
rsc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) {
goto next;
}
/* if bad flags, skip descriptor */
if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
RTW_DPRINTF(RTW_DEBUG_RECV,
"rtw too many rx segments\n");
goto next;
}
if (rsc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
else {
rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
/*
* TBD find out each front-end's LNA gain in the
* front-end's units
*/
if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
rssi |= 0x80;
}
/* sq = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_SQ); */
/* deal with the frame itself here */
mp = allocb(rsc->sc_dmabuf_size, BPRI_MED);
if (mp == NULL) {
cmn_err(CE_WARN, "rtw: alloc mblk error");
rsc->sc_norcvbuf++;
return;
}
len -= IEEE80211_CRC_LEN;
RTW_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORKERNEL);
bcopy(bf->bf_dma.mem_va, mp->b_rptr, len);
mp->b_wptr += len;
wh = (struct ieee80211_frame *)mp->b_rptr;
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_CTL) {
cmn_err(CE_WARN, "TYPE CTL !!\n");
freemsg(mp);
goto next;
}
(void) ieee80211_input(ic, mp, ic->ic_bss, rssi, htsftl);
next:
if (next == 63)
is_last = 1;
else
is_last = 0;
rtw_rxdesc_init(rsc, bf, next, is_last);
next = (next + 1)%RTW_RXQLEN;
RTW_DPRINTF(RTW_DEBUG_RECV, "%s: next = %d\n", __func__, next);
}
mutex_enter(&rsc->rxbuf_lock);
rsc->rx_next = next;
mutex_exit(&rsc->rxbuf_lock);
}
static void
rtw_ring_recycling(rtw_softc_t *rsc, uint16_t isr, uint32_t pri)
{
struct rtw_txbuf *bf;
struct rtw_txdesc *ds;
uint32_t hstat;
uint32_t head = 0;
uint32_t cnt = 0, idx = 0;
mutex_enter(&rsc->sc_txq[pri].txbuf_lock);
head = RTW_READ(&rsc->sc_regs, RTW_TNPDA);
if (head == rsc->hw_go) {
mutex_exit(&rsc->sc_txq[pri].txbuf_lock);
return;
}
RTW_DPRINTF(RTW_DEBUG_XMIT, "rtw_ring_recycling: enter ic_state=%x\n",
rsc->sc_ic.ic_state);
bf = list_head(&rsc->sc_txq[pri].tx_dirty_list);
if (bf == NULL) {
RTW_DPRINTF(RTW_DEBUG_XMIT,
"rtw_ring_recycling: dirty bf[%d] NULL\n", pri);
mutex_exit(&rsc->sc_txq[pri].txbuf_lock);
return;
}
while ((bf != NULL) && (rsc->hw_go != head)) {
cnt++;
idx = (rsc->hw_go - rsc->hw_start) / sizeof (struct rtw_txdesc);
if (idx == 63)
rsc->hw_go = rsc->hw_start;
else
rsc->hw_go += sizeof (struct rtw_txdesc);
RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
RTW_DESC_OFFSET(hd_txmd, idx),
sizeof (struct rtw_txdesc),
DDI_DMA_SYNC_FORCPU);
RTW_DPRINTF(RTW_DEBUG_XMIT, "Head = 0x%x\n", head);
ds = bf->txdesc;
hstat = (ds->td_stat);
ds->td_len = ds->td_len & 0xfff;
RTW_DPRINTF(RTW_DEBUG_XMIT,
"%s rtw_ring_recycling: stat=%x, pri=%x\n",
__func__, hstat, pri);
if (hstat & RTW_TXSTAT_TOK)
rsc->sc_tx_ok++;
else {
RTW_DPRINTF(RTW_DEBUG_XMIT,
"TX err @%d, o %d, retry[%d], isr[0x%x], cnt %d\n",
idx, (hstat & RTW_TXSTAT_OWN)?1:0,
(hstat & RTW_TXSTAT_DRC_MASK), isr, cnt);
if ((hstat & RTW_TXSTAT_DRC_MASK) <= 4) {
rsc->sc_tx_ok++;
} else {
rsc->sc_tx_err++;
}
}
rsc->sc_tx_retr +=
(hstat & RTW_TXSTAT_DRC_MASK);
rsc->sc_xmtretry +=
(hstat & RTW_TXSTAT_DRC_MASK);
list_remove(&rsc->sc_txq[pri].tx_dirty_list, bf);
list_insert_tail(&rsc->sc_txq[pri].tx_free_list,
bf);
(rsc->sc_txq[pri].tx_nfree)++;
if (rsc->sc_need_reschedule == 1) {
mac_tx_update(rsc->sc_ic.ic_mach);
rsc->sc_need_reschedule = 0;
}
RTW_DPRINTF(RTW_DEBUG_XMIT,
"rtw_ring_recycling: nfree[%d]=%d\n",
pri, rsc->sc_txq[pri].tx_nfree);
bzero((uint8_t *)ds, sizeof (struct rtw_txdesc));
RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
RTW_DESC_OFFSET(hd_txmd, idx),
sizeof (struct rtw_txdesc),
DDI_DMA_SYNC_FORDEV);
bf = list_head(&rsc->sc_txq[pri].tx_dirty_list);
}
mutex_exit(&rsc->sc_txq[pri].txbuf_lock);
}
static void
rtw_intr_timeout(rtw_softc_t *rsc)
{
rtw_resume_ticks(rsc);
}
static uint_t
rtw_intr(caddr_t arg)
{
/* LINTED E_BAD_PTR_CAST_ALIGN */
rtw_softc_t *rsc = (rtw_softc_t *)arg;
struct rtw_regs *regs = &rsc->sc_regs;
uint16_t isr = 0;
mutex_enter(&rsc->sc_genlock);
isr = RTW_READ16(regs, RTW_ISR);
RTW_WRITE16(regs, RTW_ISR, isr);
if (isr == 0) {
mutex_exit(&rsc->sc_genlock);
return (DDI_INTR_UNCLAIMED);
}
#ifdef DEBUG
#define PRINTINTR(flag) { \
if ((isr & flag) != 0) { \
RTW_DPRINTF(RTW_DEBUG_INTR, "|" #flag); \
} \
}
if ((rtw_dbg_flags & RTW_DEBUG_INTR) != 0 && isr != 0) {
RTW_DPRINTF(RTW_DEBUG_INTR, "rtw: reg[ISR] = %x", isr);
PRINTINTR(RTW_INTR_TXFOVW);
PRINTINTR(RTW_INTR_TIMEOUT);
PRINTINTR(RTW_INTR_BCNINT);
PRINTINTR(RTW_INTR_ATIMINT);
PRINTINTR(RTW_INTR_TBDER);
PRINTINTR(RTW_INTR_TBDOK);
PRINTINTR(RTW_INTR_THPDER);
PRINTINTR(RTW_INTR_THPDOK);
PRINTINTR(RTW_INTR_TNPDER);
PRINTINTR(RTW_INTR_TNPDOK);
PRINTINTR(RTW_INTR_RXFOVW);
PRINTINTR(RTW_INTR_RDU);
PRINTINTR(RTW_INTR_TLPDER);
PRINTINTR(RTW_INTR_TLPDOK);
PRINTINTR(RTW_INTR_RER);
PRINTINTR(RTW_INTR_ROK);
}
#undef PRINTINTR
#endif /* DEBUG */
rsc->sc_intr++;
if ((isr & RTW_INTR_RX) != 0) {
mutex_exit(&rsc->sc_genlock);
rtw_intr_rx(rsc);
mutex_enter(&rsc->sc_genlock);
}
if ((isr & RTW_INTR_TIMEOUT) != 0)
rtw_intr_timeout(rsc);
if ((isr & RTW_INTR_TX) != 0)
rtw_ring_recycling(rsc, isr, 1);
mutex_exit(&rsc->sc_genlock);
return (DDI_INTR_CLAIMED);
}
static void
rtw_stop(void *arg)
{
rtw_softc_t *rsc = (rtw_softc_t *)arg;
struct rtw_regs *regs = &rsc->sc_regs;
mutex_enter(&rsc->sc_genlock);
rtw_disable_interrupts(regs);
rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 0);
RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
rsc->sc_invalid = 1;
mutex_exit(&rsc->sc_genlock);
}
static void
rtw_m_stop(void *arg)
{
rtw_softc_t *rsc = (rtw_softc_t *)arg;
(void) ieee80211_new_state(&rsc->sc_ic, IEEE80211_S_INIT, -1);
rtw_stop(rsc);
}
/*
* quiesce(9E) entry point.
*
* This function is called when the system is single-threaded at high
* PIL with preemption disabled. Therefore, this function must not be
* blocked.
*
* This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
* DDI_FAILURE indicates an error condition and should almost never happen.
*/
int
rtw_quiesce(dev_info_t *dip)
{
rtw_softc_t *rsc = NULL;
struct rtw_regs *regs;
rsc = ddi_get_soft_state(rtw_soft_state_p, ddi_get_instance(dip));
ASSERT(rsc != NULL);
regs = &rsc->sc_regs;
rtw_dbg_flags = 0;
rtw_disable_interrupts(regs);
rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 0);
RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
return (DDI_SUCCESS);
}
/*
* callback functions for /get/set properties
*/
static int
rtw_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, const void *wldp_buf)
{
rtw_softc_t *rsc = (rtw_softc_t *)arg;
struct ieee80211com *ic = &rsc->sc_ic;
int err;
err = ieee80211_setprop(ic, pr_name, wldp_pr_num,
wldp_length, wldp_buf);
if (err == ENETRESET) {
if (ic->ic_des_esslen && (rsc->sc_invalid == 0)) {
(void) rtw_init(rsc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
err = 0;
}
return (err);
}
static int
rtw_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, void *wldp_buf)
{
rtw_softc_t *rsc = arg;
int err;
err = ieee80211_getprop(&rsc->sc_ic, pr_name, wldp_pr_num,
wldp_length, wldp_buf);
return (err);
}
static void
rtw_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
mac_prop_info_handle_t prh)
{
rtw_softc_t *rsc = arg;
ieee80211_propinfo(&rsc->sc_ic, pr_name, wldp_pr_num, prh);
}
static int
rtw_m_start(void *arg)
{
rtw_softc_t *rsc = (rtw_softc_t *)arg;
ieee80211com_t *ic = (ieee80211com_t *)rsc;
int ret;
#ifdef DEBUG
rtw_print_regs(&rsc->sc_regs, "rtw", "rtw_start");
#endif
ret = rtw_init(rsc);
if (ret) {
cmn_err(CE_WARN, "rtw: failed to do rtw_init\n");
return (EIO);
}
(void) ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
return (0);
}
static int
rtw_m_unicst(void *arg, const uint8_t *macaddr)
{
rtw_softc_t *rsc = (rtw_softc_t *)arg;
ieee80211com_t *ic = (ieee80211com_t *)rsc;
struct rtw_regs *regs = &rsc->sc_regs;
uint32_t t;
mutex_enter(&rsc->sc_genlock);
bcopy(macaddr, ic->ic_macaddr, 6);
t = ((*macaddr)<<24) | ((*(macaddr + 1))<<16) |
((*(macaddr + 2))<<8) | (*(macaddr + 3));
RTW_WRITE(regs, RTW_IDR0, ntohl(t));
t = ((*(macaddr + 4))<<24) | ((*(macaddr + 5))<<16);
RTW_WRITE(regs, RTW_IDR1, ntohl(t));
mutex_exit(&rsc->sc_genlock);
return (0);
}
static int
rtw_m_promisc(void *arg, boolean_t on)
{
rtw_softc_t *rsc = (rtw_softc_t *)arg;
struct rtw_regs *regs = &rsc->sc_regs;
mutex_enter(&rsc->sc_genlock);
if (on)
rsc->sc_rcr |= RTW_RCR_PROMIC;
else
rsc->sc_rcr &= ~RTW_RCR_PROMIC;
RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
mutex_exit(&rsc->sc_genlock);
return (0);
}
static int
rtw_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr)
{
rtw_softc_t *rsc = (rtw_softc_t *)arg;
struct rtw_regs *regs = &rsc->sc_regs;
uint32_t t;
mutex_enter(&rsc->sc_genlock);
if (add) {
rsc->sc_rcr |= RTW_RCR_AM;
t = ((*macaddr)<<24) | ((*(macaddr + 1))<<16) |
((*(macaddr + 2))<<8) | (*(macaddr + 3));
RTW_WRITE(regs, RTW_MAR0, ntohl(t));
t = ((*(macaddr + 4))<<24) | ((*(macaddr + 5))<<16);
RTW_WRITE(regs, RTW_MAR1, ntohl(t));
RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
RTW_SYNC(regs, RTW_MAR0, RTW_RCR);
} else {
rsc->sc_rcr &= ~RTW_RCR_AM;
RTW_WRITE(regs, RTW_MAR0, 0);
RTW_WRITE(regs, RTW_MAR1, 0);
RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
RTW_SYNC(regs, RTW_MAR0, RTW_RCR);
}
mutex_exit(&rsc->sc_genlock);
return (0);
}
static void
rtw_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
{
rtw_softc_t *rsc = arg;
struct ieee80211com *ic = &rsc->sc_ic;
int err;
err = ieee80211_ioctl(ic, wq, mp);
if (err == ENETRESET) {
if (ic->ic_des_esslen && (rsc->sc_invalid == 0)) {
(void) rtw_init(rsc);
(void) ieee80211_new_state(ic,
IEEE80211_S_SCAN, -1);
}
}
}
static int
rtw_m_stat(void *arg, uint_t stat, uint64_t *val)
{
rtw_softc_t *rsc = (rtw_softc_t *)arg;
ieee80211com_t *ic = &rsc->sc_ic;
struct ieee80211_node *in = 0;
struct ieee80211_rateset *rs = 0;
mutex_enter(&rsc->sc_genlock);
switch (stat) {
case MAC_STAT_IFSPEED:
in = ic->ic_bss;
rs = &in->in_rates;
*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
(rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL)
: ic->ic_fixed_rate) / 2 * 1000000;
break;
case MAC_STAT_NOXMTBUF:
*val = rsc->sc_noxmtbuf;
break;
case MAC_STAT_NORCVBUF:
*val = rsc->sc_norcvbuf;
break;
case MAC_STAT_RBYTES:
*val = rsc->sc_bytercv64;
break;
case MAC_STAT_IPACKETS:
*val = rsc->sc_pktrcv64;
break;
case MAC_STAT_OBYTES:
*val = rsc->sc_bytexmt64;
break;
case MAC_STAT_OPACKETS:
*val = rsc->sc_pktxmt64;
break;
case WIFI_STAT_TX_RETRANS:
*val = rsc->sc_xmtretry;
break;
case WIFI_STAT_TX_FRAGS:
case WIFI_STAT_MCAST_TX:
case WIFI_STAT_RTS_SUCCESS:
case WIFI_STAT_RTS_FAILURE:
case WIFI_STAT_ACK_FAILURE:
case WIFI_STAT_RX_FRAGS:
case WIFI_STAT_MCAST_RX:
case WIFI_STAT_RX_DUPS:
mutex_exit(&rsc->sc_genlock);
return (ieee80211_stat(ic, stat, val));
default:
*val = 0;
break;
}
mutex_exit(&rsc->sc_genlock);
return (0);
}
static void
rtw_mutex_destroy(rtw_softc_t *rsc)
{
int i;
mutex_destroy(&rsc->rxbuf_lock);
mutex_destroy(&rsc->sc_txlock);
for (i = 0; i < RTW_NTXPRI; i++) {
mutex_destroy(&rsc->sc_txq[RTW_NTXPRI - 1 - i].txbuf_lock);
}
mutex_destroy(&rsc->sc_genlock);
}
static int
rtw_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
{
rtw_softc_t *rsc;
ieee80211com_t *ic;
uint8_t csz;
uint32_t i;
uint16_t vendor_id, device_id, command;
int32_t err;
char strbuf[32];
wifi_data_t wd = { 0 };
mac_register_t *macp;
int instance = ddi_get_instance(devinfo);
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
rsc = ddi_get_soft_state(rtw_soft_state_p,
ddi_get_instance(devinfo));
ASSERT(rsc != NULL);
mutex_enter(&rsc->sc_genlock);
rsc->sc_flags &= ~RTW_F_SUSPEND;
mutex_exit(&rsc->sc_genlock);
if ((rsc->sc_flags & RTW_F_PLUMBED)) {
err = rtw_init(rsc);
if (err == 0) {
mutex_enter(&rsc->sc_genlock);
rsc->sc_flags &= ~RTW_F_PLUMBED;
mutex_exit(&rsc->sc_genlock);
}
}
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
if (ddi_soft_state_zalloc(rtw_soft_state_p,
ddi_get_instance(devinfo)) != DDI_SUCCESS) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"Unable to alloc softstate\n");
return (DDI_FAILURE);
}
rsc = ddi_get_soft_state(rtw_soft_state_p, ddi_get_instance(devinfo));
ic = &rsc->sc_ic;
rsc->sc_dev = devinfo;
err = ddi_regs_map_setup(devinfo, 0, (caddr_t *)&rsc->sc_cfg_base, 0, 0,
&rtw_reg_accattr, &rsc->sc_cfg_handle);
if (err != DDI_SUCCESS) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"ddi_regs_map_setup() failed");
goto attach_fail0;
}
csz = ddi_get8(rsc->sc_cfg_handle,
(uint8_t *)(rsc->sc_cfg_base + PCI_CONF_CACHE_LINESZ));
if (!csz)
csz = 16;
rsc->sc_cachelsz = csz << 2;
vendor_id = ddi_get16(rsc->sc_cfg_handle,
(uint16_t *)((uintptr_t)rsc->sc_cfg_base + PCI_CONF_VENID));
device_id = ddi_get16(rsc->sc_cfg_handle,
(uint16_t *)((uintptr_t)rsc->sc_cfg_base + PCI_CONF_DEVID));
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): vendor 0x%x, "
"device id 0x%x, cache size %d\n", vendor_id, device_id, csz);
/*
* Enable response to memory space accesses,
* and enabe bus master.
*/
command = PCI_COMM_MAE | PCI_COMM_ME;
ddi_put16(rsc->sc_cfg_handle,
(uint16_t *)((uintptr_t)rsc->sc_cfg_base + PCI_CONF_COMM), command);
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"set command reg to 0x%x \n", command);
ddi_put8(rsc->sc_cfg_handle,
(uint8_t *)(rsc->sc_cfg_base + PCI_CONF_LATENCY_TIMER), 0xa8);
ddi_regs_map_free(&rsc->sc_cfg_handle);
err = ddi_regs_map_setup(devinfo, 2, (caddr_t *)&rsc->sc_regs.r_base,
0, 0, &rtw_reg_accattr, &rsc->sc_regs.r_handle);
if (err != DDI_SUCCESS) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"ddi_regs_map_setup() failed");
goto attach_fail0;
}
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: r_base=%x, r_handle=%x\n",
rsc->sc_regs.r_base, rsc->sc_regs.r_handle);
err = rtw_dma_init(devinfo, rsc);
if (err != DDI_SUCCESS) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"failed to init dma: %d\n", err);
goto attach_fail1;
}
/*
* Stop the transmit and receive processes. First stop DMA,
* then disable receiver and transmitter.
*/
RTW_WRITE8(&rsc->sc_regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 0);
/* Reset the chip to a known state. */
if (rtw_reset(rsc) != 0) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"failed to reset\n");
goto attach_fail2;
}
rsc->sc_rcr = RTW_READ(&rsc->sc_regs, RTW_RCR);
if ((rsc->sc_rcr & RTW_RCR_9356SEL) != 0)
rsc->sc_flags |= RTW_F_9356SROM;
if (rtw_srom_read(&rsc->sc_regs, rsc->sc_flags, &rsc->sc_srom,
"rtw") != 0) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"failed to read srom\n");
goto attach_fail2;
}
if (rtw_srom_parse(&rsc->sc_srom, &rsc->sc_flags, &rsc->sc_csthr,
&rsc->sc_rfchipid, &rsc->sc_rcr, &rsc->sc_locale,
"rtw") != 0) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw_attach():"
" malformed serial ROM\n");
goto attach_fail3;
}
RTW_DPRINTF(RTW_DEBUG_PHY, "rtw: %s PHY\n",
((rsc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
rsc->sc_rf = rtw_rf_attach(rsc, rsc->sc_rfchipid,
rsc->sc_flags & RTW_F_DIGPHY);
if (rsc->sc_rf == NULL) {
cmn_err(CE_WARN, "rtw: rtw_attach(): could not attach RF\n");
goto attach_fail3;
}
rsc->sc_phydelay = rtw_check_phydelay(&rsc->sc_regs, rsc->sc_rcr);
RTW_DPRINTF(RTW_DEBUG_ATTACH,
"rtw: PHY delay %d\n", rsc->sc_phydelay);
if (rsc->sc_locale == RTW_LOCALE_UNKNOWN)
rtw_identify_country(&rsc->sc_regs, &rsc->sc_locale,
"rtw");
rtw_init_channels(rsc->sc_locale, &rsc->sc_ic.ic_sup_channels,
"rtw");
rtw_set80211props(ic);
if (rtw_identify_sta(&rsc->sc_regs, ic->ic_macaddr,
"rtw") != 0)
goto attach_fail4;
ic->ic_xmit = rtw_send;
ieee80211_attach(ic);
rsc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rtw_new_state;
ieee80211_media_init(ic);
ic->ic_def_txkey = 0;
if (ddi_get_iblock_cookie(devinfo, 0, &(rsc->sc_iblock))
!= DDI_SUCCESS) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"Can not get iblock cookie for INT\n");
goto attach_fail5;
}
mutex_init(&rsc->sc_genlock, NULL, MUTEX_DRIVER, rsc->sc_iblock);
for (i = 0; i < RTW_NTXPRI; i++) {
mutex_init(&rsc->sc_txq[i].txbuf_lock, NULL, MUTEX_DRIVER,
rsc->sc_iblock);
}
mutex_init(&rsc->rxbuf_lock, NULL, MUTEX_DRIVER, rsc->sc_iblock);
mutex_init(&rsc->sc_txlock, NULL, MUTEX_DRIVER, rsc->sc_iblock);
if (ddi_add_intr(devinfo, 0, &rsc->sc_iblock, NULL, rtw_intr,
(caddr_t)(rsc)) != DDI_SUCCESS) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"Can not add intr for rtw driver\n");
goto attach_fail7;
}
/*
* Provide initial settings for the WiFi plugin; whenever this
* information changes, we need to call mac_plugindata_update()
*/
wd.wd_opmode = ic->ic_opmode;
wd.wd_secalloc = WIFI_SEC_NONE;
IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"MAC version mismatch\n");
goto attach_fail8;
}
macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
macp->m_driver = rsc;
macp->m_dip = devinfo;
macp->m_src_addr = ic->ic_macaddr;
macp->m_callbacks = &rtw_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = IEEE80211_MTU;
macp->m_pdata = &wd;
macp->m_pdata_size = sizeof (wd);
err = mac_register(macp, &ic->ic_mach);
mac_free(macp);
if (err != 0) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
"mac_register err %x\n", err);
goto attach_fail8;
}
/* Create minor node of type DDI_NT_NET_WIFI */
(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
"rtw", instance);
err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
instance + 1, DDI_NT_NET_WIFI, 0);
if (err != DDI_SUCCESS) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, "WARN: rtw: rtw_attach(): "
"Create minor node failed - %d\n", err);
goto attach_fail9;
}
mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
rsc->sc_flags |= RTW_F_ATTACHED;
rsc->sc_need_reschedule = 0;
rsc->sc_invalid = 1;
return (DDI_SUCCESS);
attach_fail9:
(void) mac_disable(ic->ic_mach);
(void) mac_unregister(ic->ic_mach);
attach_fail8:
ddi_remove_intr(devinfo, 0, rsc->sc_iblock);
attach_fail7:
attach_fail6:
rtw_mutex_destroy(rsc);
attach_fail5:
ieee80211_detach(ic);
attach_fail4:
rtw_rf_destroy(rsc->sc_rf);
attach_fail3:
rtw_srom_free(&rsc->sc_srom);
attach_fail2:
rtw_dma_free(rsc);
attach_fail1:
ddi_regs_map_free(&rsc->sc_regs.r_handle);
attach_fail0:
ddi_soft_state_free(rtw_soft_state_p, ddi_get_instance(devinfo));
return (DDI_FAILURE);
}
static int32_t
rtw_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
{
rtw_softc_t *rsc;
rsc = ddi_get_soft_state(rtw_soft_state_p, ddi_get_instance(devinfo));
ASSERT(rsc != NULL);
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
ieee80211_new_state(&rsc->sc_ic, IEEE80211_S_INIT, -1);
mutex_enter(&rsc->sc_genlock);
rsc->sc_flags |= RTW_F_SUSPEND;
mutex_exit(&rsc->sc_genlock);
if (rsc->sc_invalid == 0) {
rtw_stop(rsc);
mutex_enter(&rsc->sc_genlock);
rsc->sc_flags |= RTW_F_PLUMBED;
mutex_exit(&rsc->sc_genlock);
}
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
if (!(rsc->sc_flags & RTW_F_ATTACHED))
return (DDI_FAILURE);
if (mac_disable(rsc->sc_ic.ic_mach) != 0)
return (DDI_FAILURE);
/* free intterrupt resources */
ddi_remove_intr(devinfo, 0, rsc->sc_iblock);
rtw_mutex_destroy(rsc);
ieee80211_detach((ieee80211com_t *)rsc);
/*
* Unregister from the MAC layer subsystem
*/
(void) mac_unregister(rsc->sc_ic.ic_mach);
rtw_rf_destroy(rsc->sc_rf);
rtw_srom_free(&rsc->sc_srom);
rtw_dma_free(rsc);
ddi_remove_minor_node(devinfo, NULL);
ddi_regs_map_free(&rsc->sc_regs.r_handle);
ddi_soft_state_free(rtw_soft_state_p, ddi_get_instance(devinfo));
return (DDI_SUCCESS);
}