rge_chip.c revision 75d94465dbafa487b716482dc36d5150a4ec9853
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include "rge.h"
#define REG32(rgep, reg) ((uint32_t *)(rgep->io_regs+(reg)))
#define REG16(rgep, reg) ((uint16_t *)(rgep->io_regs+(reg)))
#define REG8(rgep, reg) ((uint8_t *)(rgep->io_regs+(reg)))
#define PIO_ADDR(rgep, offset) ((void *)(rgep->io_regs+(offset)))
/*
* Patchable globals:
*
* rge_autorecover
* Enables/disables automatic recovery after fault detection
*/
static uint32_t rge_autorecover = 1;
/*
* globals:
*/
#define RGE_DBG RGE_DBG_REGS /* debug flag for this code */
static uint32_t rge_watchdog_count = 1 << 5;
static uint32_t rge_rx_watchdog_count = 1 << 3;
/*
* Operating register get/set access routines
*/
static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
#pragma inline(rge_reg_get32)
static uint32_t
rge_reg_get32(rge_t *rgep, uintptr_t regno)
{
RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
(void *)rgep, regno));
return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
}
static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
#pragma inline(rge_reg_put32)
static void
rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
{
RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
(void *)rgep, regno, data));
ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
}
static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
#pragma inline(rge_reg_set32)
static void
rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
{
uint32_t regval;
RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
(void *)rgep, regno, bits));
regval = rge_reg_get32(rgep, regno);
regval |= bits;
rge_reg_put32(rgep, regno, regval);
}
static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
#pragma inline(rge_reg_clr32)
static void
rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
{
uint32_t regval;
RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
(void *)rgep, regno, bits));
regval = rge_reg_get32(rgep, regno);
regval &= ~bits;
rge_reg_put32(rgep, regno, regval);
}
static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
#pragma inline(rge_reg_get16)
static uint16_t
rge_reg_get16(rge_t *rgep, uintptr_t regno)
{
RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
(void *)rgep, regno));
return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
}
static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
#pragma inline(rge_reg_put16)
static void
rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
{
RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
(void *)rgep, regno, data));
ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
}
static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
#pragma inline(rge_reg_get8)
static uint8_t
rge_reg_get8(rge_t *rgep, uintptr_t regno)
{
RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
(void *)rgep, regno));
return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
}
static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
#pragma inline(rge_reg_put8)
static void
rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
{
RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
(void *)rgep, regno, data));
ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
}
static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
#pragma inline(rge_reg_set8)
static void
rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
{
uint8_t regval;
RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
(void *)rgep, regno, bits));
regval = rge_reg_get8(rgep, regno);
regval |= bits;
rge_reg_put8(rgep, regno, regval);
}
static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
#pragma inline(rge_reg_clr8)
static void
rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
{
uint8_t regval;
RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
(void *)rgep, regno, bits));
regval = rge_reg_get8(rgep, regno);
regval &= ~bits;
rge_reg_put8(rgep, regno, regval);
}
uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
#pragma no_inline(rge_mii_get16)
uint16_t
rge_mii_get16(rge_t *rgep, uintptr_t mii)
{
uint32_t regval;
uint32_t val32;
uint32_t i;
regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
/*
* Waiting for PHY reading OK
*/
for (i = 0; i < PHY_RESET_LOOP; i++) {
drv_usecwait(1000);
val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
if (val32 & PHY_ACCESS_WR_FLAG)
return ((uint16_t)(val32 & 0xffff));
}
RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
return ((uint16_t)~0u);
}
void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
#pragma no_inline(rge_mii_put16)
void
rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
{
uint32_t regval;
uint32_t val32;
uint32_t i;
regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
regval |= data & PHY_DATA_MASK;
regval |= PHY_ACCESS_WR_FLAG;
rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
/*
* Waiting for PHY writing OK
*/
for (i = 0; i < PHY_RESET_LOOP; i++) {
drv_usecwait(1000);
val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
if (!(val32 & PHY_ACCESS_WR_FLAG))
return;
}
RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
mii, data));
}
void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
#pragma no_inline(rge_ephy_put16)
void
rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
{
uint32_t regval;
uint32_t val32;
uint32_t i;
regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
regval |= data & EPHY_DATA_MASK;
regval |= EPHY_ACCESS_WR_FLAG;
rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
/*
* Waiting for PHY writing OK
*/
for (i = 0; i < PHY_RESET_LOOP; i++) {
drv_usecwait(1000);
val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
if (!(val32 & EPHY_ACCESS_WR_FLAG))
return;
}
RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
emii, data));
}
/*
* Atomically shift a 32-bit word left, returning
* the value it had *before* the shift was applied
*/
static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
#pragma inline(rge_mii_put16)
static uint32_t
rge_atomic_shl32(uint32_t *sp, uint_t count)
{
uint32_t oldval;
uint32_t newval;
/* ATOMICALLY */
do {
oldval = *sp;
newval = oldval << count;
} while (atomic_cas_32(sp, oldval, newval) != oldval);
return (oldval);
}
/*
* PHY operation routines
*/
#if RGE_DEBUGGING
void
rge_phydump(rge_t *rgep)
{
uint16_t regs[32];
int i;
ASSERT(mutex_owned(rgep->genlock));
for (i = 0; i < 32; ++i) {
regs[i] = rge_mii_get16(rgep, i);
}
for (i = 0; i < 32; i += 8)
RGE_DEBUG(("rge_phydump: "
"0x%04x %04x %04x %04x %04x %04x %04x %04x",
regs[i+0], regs[i+1], regs[i+2], regs[i+3],
regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
}
#endif /* RGE_DEBUGGING */
static void
rge_phy_check(rge_t *rgep)
{
uint16_t gig_ctl;
if (rgep->param_link_up == LINK_STATE_DOWN) {
/*
* RTL8169S/8110S PHY has the "PCS bug". Need reset PHY
* every 15 seconds whin link down & advertise is 1000.
*/
if (rgep->chipid.phy_ver == PHY_VER_S) {
gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
rgep->link_down_count++;
if (rgep->link_down_count > 15) {
(void) rge_phy_reset(rgep);
rgep->stats.phy_reset++;
rgep->link_down_count = 0;
}
}
}
} else {
rgep->link_down_count = 0;
}
}
/*
* Basic low-level function to reset the PHY.
* Doesn't incorporate any special-case workarounds.
*
* Returns TRUE on success, FALSE if the RESET bit doesn't clear
*/
boolean_t
rge_phy_reset(rge_t *rgep)
{
uint16_t control;
uint_t count;
/*
* Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
*/
control = rge_mii_get16(rgep, MII_CONTROL);
rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
for (count = 0; count < 5; count++) {
drv_usecwait(100);
control = rge_mii_get16(rgep, MII_CONTROL);
if (BIC(control, MII_CONTROL_RESET))
return (B_TRUE);
}
RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
return (B_FALSE);
}
/*
* Synchronise the PHY's speed/duplex/autonegotiation capabilities
* and advertisements with the required settings as specified by the various
* param_* variables that can be poked via the NDD interface.
*
* We always reset the PHY and reprogram *all* the relevant registers,
* not just those changed. This should cause the link to go down, and then
* back up again once the link is stable and autonegotiation (if enabled)
* is complete. We should get a link state change interrupt somewhere along
* the way ...
*
* NOTE: <genlock> must already be held by the caller
*/
void
rge_phy_update(rge_t *rgep)
{
boolean_t adv_autoneg;
boolean_t adv_pause;
boolean_t adv_asym_pause;
boolean_t adv_1000fdx;
boolean_t adv_1000hdx;
boolean_t adv_100fdx;
boolean_t adv_100hdx;
boolean_t adv_10fdx;
boolean_t adv_10hdx;
uint16_t control;
uint16_t gigctrl;
uint16_t anar;
ASSERT(mutex_owned(rgep->genlock));
RGE_DEBUG(("rge_phy_update: autoneg %d "
"pause %d asym_pause %d "
"1000fdx %d 1000hdx %d "
"100fdx %d 100hdx %d "
"10fdx %d 10hdx %d ",
rgep->param_adv_autoneg,
rgep->param_adv_pause, rgep->param_adv_asym_pause,
rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
rgep->param_adv_100fdx, rgep->param_adv_100hdx,
rgep->param_adv_10fdx, rgep->param_adv_10hdx));
control = gigctrl = anar = 0;
/*
* PHY settings are normally based on the param_* variables,
* but if any loopback mode is in effect, that takes precedence.
*
* RGE supports MAC-internal loopback, PHY-internal loopback,
* and External loopback at a variety of speeds (with a special
* cable). In all cases, autoneg is turned OFF, full-duplex
* is turned ON, and the speed/mastership is forced.
*/
switch (rgep->param_loop_mode) {
case RGE_LOOP_NONE:
default:
adv_autoneg = rgep->param_adv_autoneg;
adv_pause = rgep->param_adv_pause;
adv_asym_pause = rgep->param_adv_asym_pause;
adv_1000fdx = rgep->param_adv_1000fdx;
adv_1000hdx = rgep->param_adv_1000hdx;
adv_100fdx = rgep->param_adv_100fdx;
adv_100hdx = rgep->param_adv_100hdx;
adv_10fdx = rgep->param_adv_10fdx;
adv_10hdx = rgep->param_adv_10hdx;
break;
case RGE_LOOP_INTERNAL_PHY:
case RGE_LOOP_INTERNAL_MAC:
adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
rgep->param_link_duplex = LINK_DUPLEX_FULL;
switch (rgep->param_loop_mode) {
case RGE_LOOP_INTERNAL_PHY:
if (rgep->chipid.mac_ver != MAC_VER_8101E) {
rgep->param_link_speed = 1000;
adv_1000fdx = B_TRUE;
} else {
rgep->param_link_speed = 100;
adv_100fdx = B_TRUE;
}
control = MII_CONTROL_LOOPBACK;
break;
case RGE_LOOP_INTERNAL_MAC:
if (rgep->chipid.mac_ver != MAC_VER_8101E) {
rgep->param_link_speed = 1000;
adv_1000fdx = B_TRUE;
} else {
rgep->param_link_speed = 100;
adv_100fdx = B_TRUE;
break;
}
}
RGE_DEBUG(("rge_phy_update: autoneg %d "
"pause %d asym_pause %d "
"1000fdx %d 1000hdx %d "
"100fdx %d 100hdx %d "
"10fdx %d 10hdx %d ",
adv_autoneg,
adv_pause, adv_asym_pause,
adv_1000fdx, adv_1000hdx,
adv_100fdx, adv_100hdx,
adv_10fdx, adv_10hdx));
/*
* We should have at least one technology capability set;
* if not, we select a default of 1000Mb/s full-duplex
*/
if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
!adv_1000hdx && !adv_100hdx && !adv_10hdx) {
if (rgep->chipid.mac_ver != MAC_VER_8101E)
adv_1000fdx = B_TRUE;
} else {
adv_1000fdx = B_FALSE;
adv_100fdx = B_TRUE;
}
}
/*
* Now transform the adv_* variables into the proper settings
* of the PHY registers ...
*
* If autonegotiation is (now) enabled, we want to trigger
* a new autonegotiation cycle once the PHY has been
* programmed with the capabilities to be advertised.
*
* RTL8169/8110 doesn't support 1000Mb/s half-duplex.
*/
if (adv_autoneg)
control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
if (adv_1000fdx)
control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
else if (adv_1000hdx)
control |= MII_CONTROL_1GB;
else if (adv_100fdx)
control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
else if (adv_100hdx)
control |= MII_CONTROL_100MB;
else if (adv_10fdx)
control |= MII_CONTROL_FDUPLEX;
else if (adv_10hdx)
control |= 0;
else
{ _NOTE(EMPTY); } /* Can't get here anyway ... */
if (adv_1000fdx) {
gigctrl |= MII_1000BT_CTL_ADV_FDX;
/*
* Chipset limitation: need set other capabilities to true
*/
if (rgep->chipid.is_pcie)
adv_1000hdx = B_TRUE;
adv_100fdx = B_TRUE;
adv_100hdx = B_TRUE;
adv_10fdx = B_TRUE;
adv_10hdx = B_TRUE;
}
if (adv_1000hdx)
gigctrl |= MII_1000BT_CTL_ADV_HDX;
if (adv_100fdx)
anar |= MII_ABILITY_100BASE_TX_FD;
if (adv_100hdx)
anar |= MII_ABILITY_100BASE_TX;
if (adv_10fdx)
anar |= MII_ABILITY_10BASE_T_FD;
if (adv_10hdx)
anar |= MII_ABILITY_10BASE_T;
if (adv_pause)
anar |= MII_ABILITY_PAUSE;
if (adv_asym_pause)
anar |= MII_ABILITY_ASMPAUSE;
/*
* Munge in any other fixed bits we require ...
*/
anar |= MII_AN_SELECTOR_8023;
/*
* Restart the PHY and write the new values. Note the
* time, so that we can say whether subsequent link state
* changes can be attributed to our reprogramming the PHY
*/
rge_phy_init(rgep);
if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
rgep->chipid.mac_ver == MAC_VER_8168B_C) {
/* power up PHY for RTL8168B chipset */
rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
}
rge_mii_put16(rgep, MII_AN_ADVERT, anar);
rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
rge_mii_put16(rgep, MII_CONTROL, control);
RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
}
void rge_phy_init(rge_t *rgep);
#pragma no_inline(rge_phy_init)
void
rge_phy_init(rge_t *rgep)
{
rgep->phy_mii_addr = 1;
/*
* Below phy config steps are copied from the Programming Guide
* (there's no detail comments for these steps.)
*/
switch (rgep->chipid.mac_ver) {
case MAC_VER_8169S_D:
case MAC_VER_8169S_E :
rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
rge_mii_put16(rgep, PHY_15_REG, 0x1000);
rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
break;
case MAC_VER_8169SB:
rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
break;
case MAC_VER_8169SC:
rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
rge_mii_put16(rgep, PHY_13_REG, 0x0600);
rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
break;
case MAC_VER_8168:
rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
break;
case MAC_VER_8168B_B:
case MAC_VER_8168B_C:
rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
rge_mii_put16(rgep, PHY_12_REG, 0x6096);
rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
break;
}
}
void rge_chip_ident(rge_t *rgep);
#pragma no_inline(rge_chip_ident)
void
rge_chip_ident(rge_t *rgep)
{
chip_id_t *chip = &rgep->chipid;
uint32_t val32;
uint16_t val16;
/*
* Read and record MAC version
*/
val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
chip->mac_ver = val32;
chip->is_pcie = pci_lcap_locate(rgep->cfg_handle,
PCI_CAP_ID_PCI_E, &val16) == DDI_SUCCESS;
/*
* Workaround for 8101E_C
*/
chip->enable_mac_first = !chip->is_pcie;
if (chip->mac_ver == MAC_VER_8101E_C) {
chip->is_pcie = B_FALSE;
}
/*
* Read and record PHY version
*/
val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
val16 &= PHY_VER_MASK;
chip->phy_ver = val16;
/* set pci latency timer */
if (chip->mac_ver == MAC_VER_8169 ||
chip->mac_ver == MAC_VER_8169S_D ||
chip->mac_ver == MAC_VER_8169S_E ||
chip->mac_ver == MAC_VER_8169SC)
pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
if (chip->mac_ver == MAC_VER_8169SC) {
val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
val16 &= 0x0300;
if (val16 == 0x1) /* 66Mhz PCI */
rge_reg_put32(rgep, 0x7c, 0x000700ff);
else if (val16 == 0x0) /* 33Mhz PCI */
rge_reg_put32(rgep, 0x7c, 0x0007ff00);
}
/*
* PCIE chipset require the Rx buffer start address must be
* 8-byte alignment and the Rx buffer size must be multiple of 8.
* We'll just use bcopy in receive procedure for the PCIE chipset.
*/
if (chip->is_pcie) {
rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
if (rgep->default_mtu > ETHERMTU) {
rge_notice(rgep, "Jumbo packets not supported "
"for this PCIE chipset");
rgep->default_mtu = ETHERMTU;
}
}
if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
rgep->head_room = 0;
else
rgep->head_room = RGE_HEADROOM;
/*
* Initialize other variables.
*/
if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
rgep->default_mtu = ETHERMTU;
if (rgep->default_mtu > ETHERMTU) {
rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
rgep->ethmax_size = RGE_JUMBO_SIZE;
} else {
rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
rgep->txbuf_size = RGE_BUFF_SIZE_STD;
rgep->ethmax_size = ETHERMAX;
}
chip->rxconfig = RX_CONFIG_DEFAULT;
chip->txconfig = TX_CONFIG_DEFAULT;
/* interval to update statistics for polling mode */
rgep->tick_delta = drv_usectohz(1000*1000/CLK_TICK);
/* ensure we are not in polling mode */
rgep->curr_tick = ddi_get_lbolt() - 2*rgep->tick_delta;
RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
rgep->ifname, chip->mac_ver, chip->phy_ver));
}
/*
* Perform first-stage chip (re-)initialisation, using only config-space
* accesses:
*
* + Read the vendor/device/revision/subsystem/cache-line-size registers,
* returning the data in the structure pointed to by <idp>.
* + Enable Memory Space accesses.
* + Enable Bus Mastering according.
*/
void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
#pragma no_inline(rge_chip_cfg_init)
void
rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
{
ddi_acc_handle_t handle;
uint16_t commd;
handle = rgep->cfg_handle;
/*
* Save PCI cache line size and subsystem vendor ID
*/
cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
/*
* Turn on Master Enable (DMA) and IO Enable bits.
* Enable PCI Memory Space accesses
*/
commd = cidp->command;
commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
pci_config_put16(handle, PCI_CONF_COMM, commd);
RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
cidp->vendor, cidp->device, cidp->revision));
RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
cidp->subven, cidp->subdev));
RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
cidp->clsize, cidp->latency, cidp->command));
}
int rge_chip_reset(rge_t *rgep);
#pragma no_inline(rge_chip_reset)
int
rge_chip_reset(rge_t *rgep)
{
int i;
uint8_t val8;
/*
* Chip should be in STOP state
*/
rge_reg_clr8(rgep, RT_COMMAND_REG,
RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
/*
* Disable interrupt
*/
rgep->int_mask = INT_MASK_NONE;
rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
/*
* Clear pended interrupt
*/
rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
/*
* Reset chip
*/
rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
/*
* Wait for reset success
*/
for (i = 0; i < CHIP_RESET_LOOP; i++) {
drv_usecwait(10);
val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
if (!(val8 & RT_COMMAND_RESET)) {
rgep->rge_chip_state = RGE_CHIP_RESET;
return (0);
}
}
RGE_REPORT((rgep, "rge_chip_reset fail."));
return (-1);
}
void rge_chip_init(rge_t *rgep);
#pragma no_inline(rge_chip_init)
void
rge_chip_init(rge_t *rgep)
{
uint32_t val32;
uint32_t val16;
uint32_t *hashp;
chip_id_t *chip = &rgep->chipid;
/*
* Increase the threshold voltage of RX sensitivity
*/
if (chip->mac_ver == MAC_VER_8168B_B ||
chip->mac_ver == MAC_VER_8168B_C ||
chip->mac_ver == MAC_VER_8101E) {
rge_ephy_put16(rgep, 0x01, 0x1bd3);
}
if (chip->mac_ver == MAC_VER_8168 ||
chip->mac_ver == MAC_VER_8168B_B) {
val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
val16 = 0x12<<8 | val16;
rge_reg_put16(rgep, PHY_STATUS_REG, val16);
rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
val32 |= 0x7000;
val32 &= 0xffff5fff;
rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
}
/*
* Config MII register
*/
rgep->param_link_up = LINK_STATE_DOWN;
rge_phy_update(rgep);
/*
* Enable Rx checksum offload.
* Then for vlan support, we must enable receive vlan de-tagging.
* Otherwise, there'll be checksum error.
*/
val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
if (chip->mac_ver == MAC_VER_8169S_D) {
val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
rge_reg_put8(rgep, RESV_82_REG, 0x01);
}
if (chip->mac_ver == MAC_VER_8169S_E ||
chip->mac_ver == MAC_VER_8169SC) {
val16 |= MUL_PCI_RW_ENABLE;
}
rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
/*
* Start transmit/receive before set tx/rx configuration register
*/
if (chip->enable_mac_first)
rge_reg_set8(rgep, RT_COMMAND_REG,
RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
/*
* Set dump tally counter register
*/
val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
val32 &= DUMP_COUNTER_REG_RESV;
val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
/*
* Change to config register write enable mode
*/
rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
/*
* Set Tx/Rx maximum packet size
*/
if (rgep->default_mtu > ETHERMTU) {
rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
} else {
rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
}
/*
* Set receive configuration register
*/
val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
val32 &= RX_CONFIG_REG_RESV;
if (rgep->promisc)
val32 |= RX_ACCEPT_ALL_PKT;
rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
/*
* Set transmit configuration register
*/
val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
val32 &= TX_CONFIG_REG_RESV;
rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
/*
* Set Tx/Rx descriptor register
*/
val32 = rgep->tx_desc.cookie.dmac_laddress;
rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
val32 = rgep->rx_desc.cookie.dmac_laddress;
rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
/*
* Suggested setting from Realtek
*/
if (rgep->chipid.mac_ver != MAC_VER_8101E)
rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
else
rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
/*
* Set multicast register
*/
hashp = (uint32_t *)rgep->mcast_hash;
if (rgep->promisc) {
rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
} else {
rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
}
/*
* Msic register setting:
* -- Missed packet counter: clear it
* -- TimerInt Register
* -- Timer count register
*/
rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
/*
* disable the Unicast Wakeup Frame capability
*/
rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME);
/*
* Return to normal network/host communication mode
*/
rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
drv_usecwait(20);
}
/*
* rge_chip_start() -- start the chip transmitting and/or receiving,
* including enabling interrupts
*/
void rge_chip_start(rge_t *rgep);
#pragma no_inline(rge_chip_start)
void
rge_chip_start(rge_t *rgep)
{
/*
* Clear statistics
*/
bzero(&rgep->stats, sizeof (rge_stats_t));
DMA_ZERO(rgep->dma_area_stats);
/*
* Start transmit/receive
*/
rge_reg_set8(rgep, RT_COMMAND_REG,
RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
/*
* Enable interrupt
*/
rgep->int_mask = RGE_INT_MASK;
if (rgep->chipid.is_pcie) {
rgep->int_mask |= NO_TXDESC_INT;
}
rgep->rx_fifo_ovf = 0;
rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
/*
* All done!
*/
rgep->rge_chip_state = RGE_CHIP_RUNNING;
}
/*
* rge_chip_stop() -- stop board receiving
*
* Since this function is also invoked by rge_quiesce(), it
* must not block; also, no tracing or logging takes place
* when invoked by rge_quiesce().
*/
void rge_chip_stop(rge_t *rgep, boolean_t fault);
#pragma no_inline(rge_chip_stop)
void
rge_chip_stop(rge_t *rgep, boolean_t fault)
{
/*
* Disable interrupt
*/
rgep->int_mask = INT_MASK_NONE;
rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
/*
* Clear pended interrupt
*/
if (!rgep->suspended) {
rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
}
/*
* Stop the board and disable transmit/receive
*/
rge_reg_clr8(rgep, RT_COMMAND_REG,
RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
if (fault)
rgep->rge_chip_state = RGE_CHIP_FAULT;
else
rgep->rge_chip_state = RGE_CHIP_STOPPED;
}
/*
* rge_get_mac_addr() -- get the MAC address on NIC
*/
static void rge_get_mac_addr(rge_t *rgep);
#pragma inline(rge_get_mac_addr)
static void
rge_get_mac_addr(rge_t *rgep)
{
uint8_t *macaddr = rgep->netaddr;
uint32_t val32;
/*
* Read first 4-byte of mac address
*/
val32 = rge_reg_get32(rgep, ID_0_REG);
macaddr[0] = val32 & 0xff;
val32 = val32 >> 8;
macaddr[1] = val32 & 0xff;
val32 = val32 >> 8;
macaddr[2] = val32 & 0xff;
val32 = val32 >> 8;
macaddr[3] = val32 & 0xff;
/*
* Read last 2-byte of mac address
*/
val32 = rge_reg_get32(rgep, ID_4_REG);
macaddr[4] = val32 & 0xff;
val32 = val32 >> 8;
macaddr[5] = val32 & 0xff;
}
static void rge_set_mac_addr(rge_t *rgep);
#pragma inline(rge_set_mac_addr)
static void
rge_set_mac_addr(rge_t *rgep)
{
uint8_t *p = rgep->netaddr;
uint32_t val32;
/*
* Change to config register write enable mode
*/
rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
/*
* Get first 4 bytes of mac address
*/
val32 = p[3];
val32 = val32 << 8;
val32 |= p[2];
val32 = val32 << 8;
val32 |= p[1];
val32 = val32 << 8;
val32 |= p[0];
/*
* Set first 4 bytes of mac address
*/
rge_reg_put32(rgep, ID_0_REG, val32);
/*
* Get last 2 bytes of mac address
*/
val32 = p[5];
val32 = val32 << 8;
val32 |= p[4];
/*
* Set last 2 bytes of mac address
*/
val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
rge_reg_put32(rgep, ID_4_REG, val32);
/*
* Return to normal network/host communication mode
*/
rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
}
static void rge_set_multi_addr(rge_t *rgep);
#pragma inline(rge_set_multi_addr)
static void
rge_set_multi_addr(rge_t *rgep)
{
uint32_t *hashp;
hashp = (uint32_t *)rgep->mcast_hash;
/*
* Change to config register write enable mode
*/
if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
}
if (rgep->promisc) {
rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
} else {
rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
}
/*
* Return to normal network/host communication mode
*/
if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
}
}
static void rge_set_promisc(rge_t *rgep);
#pragma inline(rge_set_promisc)
static void
rge_set_promisc(rge_t *rgep)
{
if (rgep->promisc)
rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
else
rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
}
/*
* rge_chip_sync() -- program the chip with the unicast MAC address,
* the multicast hash table, the required level of promiscuity, and
* the current loopback mode ...
*/
void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
#pragma no_inline(rge_chip_sync)
void
rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
{
switch (todo) {
case RGE_GET_MAC:
rge_get_mac_addr(rgep);
break;
case RGE_SET_MAC:
/* Reprogram the unicast MAC address(es) ... */
rge_set_mac_addr(rgep);
break;
case RGE_SET_MUL:
/* Reprogram the hashed multicast address table ... */
rge_set_multi_addr(rgep);
break;
case RGE_SET_PROMISC:
/* Set or clear the PROMISCUOUS mode bit */
rge_set_multi_addr(rgep);
rge_set_promisc(rgep);
break;
default:
break;
}
}
void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag);
#pragma no_inline(rge_chip_blank)
/* ARGSUSED */
void
rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
{
_NOTE(ARGUNUSED(arg, ticks, count));
}
void rge_tx_trigger(rge_t *rgep);
#pragma no_inline(rge_tx_trigger)
void
rge_tx_trigger(rge_t *rgep)
{
rge_reg_put8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
}
void rge_hw_stats_dump(rge_t *rgep);
#pragma no_inline(rge_tx_trigger)
void
rge_hw_stats_dump(rge_t *rgep)
{
int i = 0;
uint32_t regval = 0;
if (rgep->rge_mac_state == RGE_MAC_STOPPED)
return;
regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
while (regval & DUMP_START) {
drv_usecwait(100);
if (++i > STATS_DUMP_LOOP) {
RGE_DEBUG(("rge h/w statistics dump fail!"));
rgep->rge_chip_state = RGE_CHIP_ERROR;
return;
}
regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
}
DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
/*
* Start H/W statistics dump for RTL8169 chip
*/
rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
}
/*
* ========== Hardware interrupt handler ==========
*/
#undef RGE_DBG
#define RGE_DBG RGE_DBG_INT /* debug flag for this code */
static void rge_wake_factotum(rge_t *rgep);
#pragma inline(rge_wake_factotum)
static void
rge_wake_factotum(rge_t *rgep)
{
if (rgep->factotum_flag == 0) {
rgep->factotum_flag = 1;
(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
}
}
/*
* rge_intr() -- handle chip interrupts
*/
uint_t rge_intr(caddr_t arg1, caddr_t arg2);
#pragma no_inline(rge_intr)
uint_t
rge_intr(caddr_t arg1, caddr_t arg2)
{
rge_t *rgep = (rge_t *)arg1;
uint16_t int_status;
clock_t now;
uint32_t tx_pkts;
uint32_t rx_pkts;
uint32_t poll_rate;
uint32_t opt_pkts;
uint32_t opt_intrs;
boolean_t update_int_mask = B_FALSE;
uint32_t itimer;
_NOTE(ARGUNUSED(arg2))
mutex_enter(rgep->genlock);
if (rgep->suspended) {
mutex_exit(rgep->genlock);
return (DDI_INTR_UNCLAIMED);
}
/*
* Was this interrupt caused by our device...
*/
int_status = rge_reg_get16(rgep, INT_STATUS_REG);
if (!(int_status & rgep->int_mask)) {
mutex_exit(rgep->genlock);
return (DDI_INTR_UNCLAIMED);
/* indicate it wasn't our interrupt */
}
rgep->stats.intr++;
/*
* Clear interrupt
* For PCIE chipset, we need disable interrupt first.
*/
if (rgep->chipid.is_pcie) {
rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
update_int_mask = B_TRUE;
}
rge_reg_put16(rgep, INT_STATUS_REG, int_status);
/*
* Calculate optimal polling interval
*/
now = ddi_get_lbolt();
if (now - rgep->curr_tick >= rgep->tick_delta &&
(rgep->param_link_speed == RGE_SPEED_1000M ||
rgep->param_link_speed == RGE_SPEED_100M)) {
/* number of rx and tx packets in the last tick */
tx_pkts = rgep->stats.opackets - rgep->last_opackets;
rx_pkts = rgep->stats.rpackets - rgep->last_rpackets;
rgep->last_opackets = rgep->stats.opackets;
rgep->last_rpackets = rgep->stats.rpackets;
/* restore interrupt mask */
rgep->int_mask |= TX_OK_INT | RX_OK_INT;
if (rgep->chipid.is_pcie) {
rgep->int_mask |= NO_TXDESC_INT;
}
/* optimal number of packets in a tick */
if (rgep->param_link_speed == RGE_SPEED_1000M) {
opt_pkts = (1000*1000*1000/8)/ETHERMTU/CLK_TICK;
} else {
opt_pkts = (100*1000*1000/8)/ETHERMTU/CLK_TICK;
}
/*
* calculate polling interval based on rx and tx packets
* in the last tick
*/
poll_rate = 0;
if (now - rgep->curr_tick < 2*rgep->tick_delta) {
opt_intrs = opt_pkts/TX_COALESC;
if (tx_pkts > opt_intrs) {
poll_rate = max(tx_pkts/TX_COALESC, opt_intrs);
rgep->int_mask &= ~(TX_OK_INT | NO_TXDESC_INT);
}
opt_intrs = opt_pkts/RX_COALESC;
if (rx_pkts > opt_intrs) {
opt_intrs = max(rx_pkts/RX_COALESC, opt_intrs);
poll_rate = max(opt_intrs, poll_rate);
rgep->int_mask &= ~RX_OK_INT;
}
/* ensure poll_rate reasonable */
poll_rate = min(poll_rate, opt_pkts*4);
}
if (poll_rate) {
/* move to polling mode */
if (rgep->chipid.is_pcie) {
itimer = (TIMER_CLK_PCIE/CLK_TICK)/poll_rate;
} else {
itimer = (TIMER_CLK_PCI/CLK_TICK)/poll_rate;
}
} else {
/* move to normal mode */
itimer = 0;
}
RGE_DEBUG(("%s: poll: itimer:%d int_mask:0x%x",
__func__, itimer, rgep->int_mask));
rge_reg_put32(rgep, TIMER_INT_REG, itimer);
/* update timestamp for statistics */
rgep->curr_tick = now;
/* reset timer */
int_status |= TIME_OUT_INT;
update_int_mask = B_TRUE;
}
if (int_status & TIME_OUT_INT) {
rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
}
/* flush post writes */
(void) rge_reg_get16(rgep, INT_STATUS_REG);
/*
* Cable link change interrupt
*/
if (int_status & LINK_CHANGE_INT) {
rge_chip_cyclic(rgep);
}
if (int_status & RX_FIFO_OVERFLOW_INT) {
/* start rx watchdog timeout detection */
rgep->rx_fifo_ovf = 1;
if (rgep->int_mask & RX_FIFO_OVERFLOW_INT) {
rgep->int_mask &= ~RX_FIFO_OVERFLOW_INT;
update_int_mask = B_TRUE;
}
} else if (int_status & RGE_RX_INT) {
/* stop rx watchdog timeout detection */
rgep->rx_fifo_ovf = 0;
if ((rgep->int_mask & RX_FIFO_OVERFLOW_INT) == 0) {
rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
update_int_mask = B_TRUE;
}
}
mutex_exit(rgep->genlock);
/*
* Receive interrupt
*/
if (int_status & RGE_RX_INT)
rge_receive(rgep);
/*
* Transmit interrupt
*/
if (int_status & TX_ERR_INT) {
RGE_REPORT((rgep, "tx error happened, resetting the chip "));
mutex_enter(rgep->genlock);
rgep->rge_chip_state = RGE_CHIP_ERROR;
mutex_exit(rgep->genlock);
} else if ((rgep->chipid.is_pcie && (int_status & NO_TXDESC_INT)) ||
((int_status & TX_OK_INT) && rgep->tx_free < RGE_SEND_SLOTS/8)) {
(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
}
/*
* System error interrupt
*/
if (int_status & SYS_ERR_INT) {
RGE_REPORT((rgep, "sys error happened, resetting the chip "));
mutex_enter(rgep->genlock);
rgep->rge_chip_state = RGE_CHIP_ERROR;
mutex_exit(rgep->genlock);
}
/*
* Re-enable interrupt for PCIE chipset or install new int_mask
*/
if (update_int_mask)
rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
return (DDI_INTR_CLAIMED); /* indicate it was our interrupt */
}
/*
* ========== Factotum, implemented as a softint handler ==========
*/
#undef RGE_DBG
#define RGE_DBG RGE_DBG_FACT /* debug flag for this code */
static boolean_t rge_factotum_link_check(rge_t *rgep);
#pragma no_inline(rge_factotum_link_check)
static boolean_t
rge_factotum_link_check(rge_t *rgep)
{
uint8_t media_status;
int32_t link;
media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
link = (media_status & PHY_STATUS_LINK_UP) ?
LINK_STATE_UP : LINK_STATE_DOWN;
if (rgep->param_link_up != link) {
/*
* Link change.
*/
rgep->param_link_up = link;
if (link == LINK_STATE_UP) {
if (media_status & PHY_STATUS_1000MF) {
rgep->param_link_speed = RGE_SPEED_1000M;
rgep->param_link_duplex = LINK_DUPLEX_FULL;
} else {
rgep->param_link_speed =
(media_status & PHY_STATUS_100M) ?
RGE_SPEED_100M : RGE_SPEED_10M;
rgep->param_link_duplex =
(media_status & PHY_STATUS_DUPLEX_FULL) ?
LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
}
}
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Factotum routine to check for Tx stall, using the 'watchdog' counter
*/
static boolean_t rge_factotum_stall_check(rge_t *rgep);
#pragma no_inline(rge_factotum_stall_check)
static boolean_t
rge_factotum_stall_check(rge_t *rgep)
{
uint32_t dogval;
ASSERT(mutex_owned(rgep->genlock));
/*
* Specific check for RX stall ...
*/
rgep->rx_fifo_ovf <<= 1;
if (rgep->rx_fifo_ovf > rge_rx_watchdog_count) {
RGE_REPORT((rgep, "rx_hang detected"));
return (B_TRUE);
}
/*
* Specific check for Tx stall ...
*
* The 'watchdog' counter is incremented whenever a packet
* is queued, reset to 1 when some (but not all) buffers
* are reclaimed, reset to 0 (disabled) when all buffers
* are reclaimed, and shifted left here. If it exceeds the
* threshold value, the chip is assumed to have stalled and
* is put into the ERROR state. The factotum will then reset
* it on the next pass.
*
* All of which should ensure that we don't get into a state
* where packets are left pending indefinitely!
*/
if (rgep->resched_needed)
(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
dogval = rge_atomic_shl32(&rgep->watchdog, 1);
if (dogval < rge_watchdog_count)
return (B_FALSE);
RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
return (B_TRUE);
}
/*
* The factotum is woken up when there's something to do that we'd rather
* not do from inside a hardware interrupt handler or high-level cyclic.
* Its two main tasks are:
* reset & restart the chip after an error
* check the link status whenever necessary
*/
uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
#pragma no_inline(rge_chip_factotum)
uint_t
rge_chip_factotum(caddr_t arg1, caddr_t arg2)
{
rge_t *rgep;
uint_t result;
boolean_t error;
boolean_t linkchg;
rgep = (rge_t *)arg1;
_NOTE(ARGUNUSED(arg2))
if (rgep->factotum_flag == 0)
return (DDI_INTR_UNCLAIMED);
rgep->factotum_flag = 0;
result = DDI_INTR_CLAIMED;
error = B_FALSE;
linkchg = B_FALSE;
mutex_enter(rgep->genlock);
switch (rgep->rge_chip_state) {
default:
break;
case RGE_CHIP_RUNNING:
linkchg = rge_factotum_link_check(rgep);
error = rge_factotum_stall_check(rgep);
break;
case RGE_CHIP_ERROR:
error = B_TRUE;
break;
case RGE_CHIP_FAULT:
/*
* Fault detected, time to reset ...
*/
if (rge_autorecover) {
RGE_REPORT((rgep, "automatic recovery activated"));
rge_restart(rgep);
}
break;
}
/*
* If an error is detected, stop the chip now, marking it as
* faulty, so that it will be reset next time through ...
*/
if (error)
rge_chip_stop(rgep, B_TRUE);
mutex_exit(rgep->genlock);
/*
* If the link state changed, tell the world about it.
* Note: can't do this while still holding the mutex.
*/
if (linkchg)
mac_link_update(rgep->mh, rgep->param_link_up);
return (result);
}
/*
* High-level cyclic handler
*
* This routine schedules a (low-level) softint callback to the
* factotum, and prods the chip to update the status block (which
* will cause a hardware interrupt when complete).
*/
void rge_chip_cyclic(void *arg);
#pragma no_inline(rge_chip_cyclic)
void
rge_chip_cyclic(void *arg)
{
rge_t *rgep;
rgep = arg;
switch (rgep->rge_chip_state) {
default:
return;
case RGE_CHIP_RUNNING:
rge_phy_check(rgep);
if (rgep->tx_free < RGE_SEND_SLOTS)
rge_send_recycle(rgep);
break;
case RGE_CHIP_FAULT:
case RGE_CHIP_ERROR:
break;
}
rge_wake_factotum(rgep);
}
/*
* ========== Ioctl subfunctions ==========
*/
#undef RGE_DBG
#define RGE_DBG RGE_DBG_PPIO /* debug flag for this code */
#if RGE_DEBUGGING || RGE_DO_PPIO
static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
#pragma no_inline(rge_chip_peek_cfg)
static void
rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
{
uint64_t regval;
uint64_t regno;
RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
(void *)rgep, (void *)ppd));
regno = ppd->pp_acc_offset;
switch (ppd->pp_acc_size) {
case 1:
regval = pci_config_get8(rgep->cfg_handle, regno);
break;
case 2:
regval = pci_config_get16(rgep->cfg_handle, regno);
break;
case 4:
regval = pci_config_get32(rgep->cfg_handle, regno);
break;
case 8:
regval = pci_config_get64(rgep->cfg_handle, regno);
break;
}
ppd->pp_acc_data = regval;
}
static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
#pragma no_inline(rge_chip_poke_cfg)
static void
rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
{
uint64_t regval;
uint64_t regno;
RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
(void *)rgep, (void *)ppd));
regno = ppd->pp_acc_offset;
regval = ppd->pp_acc_data;
switch (ppd->pp_acc_size) {
case 1:
pci_config_put8(rgep->cfg_handle, regno, regval);
break;
case 2:
pci_config_put16(rgep->cfg_handle, regno, regval);
break;
case 4:
pci_config_put32(rgep->cfg_handle, regno, regval);
break;
case 8:
pci_config_put64(rgep->cfg_handle, regno, regval);
break;
}
}
static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
#pragma no_inline(rge_chip_peek_reg)
static void
rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
{
uint64_t regval;
void *regaddr;
RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
(void *)rgep, (void *)ppd));
regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
switch (ppd->pp_acc_size) {
case 1:
regval = ddi_get8(rgep->io_handle, regaddr);
break;
case 2:
regval = ddi_get16(rgep->io_handle, regaddr);
break;
case 4:
regval = ddi_get32(rgep->io_handle, regaddr);
break;
case 8:
regval = ddi_get64(rgep->io_handle, regaddr);
break;
}
ppd->pp_acc_data = regval;
}
static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
#pragma no_inline(rge_chip_peek_reg)
static void
rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
{
uint64_t regval;
void *regaddr;
RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
(void *)rgep, (void *)ppd));
regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
regval = ppd->pp_acc_data;
switch (ppd->pp_acc_size) {
case 1:
ddi_put8(rgep->io_handle, regaddr, regval);
break;
case 2:
ddi_put16(rgep->io_handle, regaddr, regval);
break;
case 4:
ddi_put32(rgep->io_handle, regaddr, regval);
break;
case 8:
ddi_put64(rgep->io_handle, regaddr, regval);
break;
}
}
static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
#pragma no_inline(rge_chip_peek_mii)
static void
rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
{
RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
(void *)rgep, (void *)ppd));
ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
}
static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
#pragma no_inline(rge_chip_poke_mii)
static void
rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
{
RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
(void *)rgep, (void *)ppd));
rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
}
static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
#pragma no_inline(rge_chip_peek_mem)
static void
rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
{
uint64_t regval;
void *vaddr;
RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
(void *)rgep, (void *)ppd));
vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
switch (ppd->pp_acc_size) {
case 1:
regval = *(uint8_t *)vaddr;
break;
case 2:
regval = *(uint16_t *)vaddr;
break;
case 4:
regval = *(uint32_t *)vaddr;
break;
case 8:
regval = *(uint64_t *)vaddr;
break;
}
RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
(void *)rgep, (void *)ppd, regval, vaddr));
ppd->pp_acc_data = regval;
}
static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
#pragma no_inline(rge_chip_poke_mem)
static void
rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
{
uint64_t regval;
void *vaddr;
RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
(void *)rgep, (void *)ppd));
vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
regval = ppd->pp_acc_data;
RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
(void *)rgep, (void *)ppd, regval, vaddr));
switch (ppd->pp_acc_size) {
case 1:
*(uint8_t *)vaddr = (uint8_t)regval;
break;
case 2:
*(uint16_t *)vaddr = (uint16_t)regval;
break;
case 4:
*(uint32_t *)vaddr = (uint32_t)regval;
break;
case 8:
*(uint64_t *)vaddr = (uint64_t)regval;
break;
}
}
static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(rge_pp_ioctl)
static enum ioc_reply
rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
rge_peekpoke_t *ppd;
dma_area_t *areap;
uint64_t sizemask;
uint64_t mem_va;
uint64_t maxoff;
boolean_t peek;
switch (cmd) {
default:
/* NOTREACHED */
rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case RGE_PEEK:
peek = B_TRUE;
break;
case RGE_POKE:
peek = B_FALSE;
break;
}
/*
* Validate format of ioctl
*/
if (iocp->ioc_count != sizeof (rge_peekpoke_t))
return (IOC_INVAL);
if (mp->b_cont == NULL)
return (IOC_INVAL);
ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
/*
* Validate request parameters
*/
switch (ppd->pp_acc_space) {
default:
return (IOC_INVAL);
case RGE_PP_SPACE_CFG:
/*
* Config space
*/
sizemask = 8|4|2|1;
mem_va = 0;
maxoff = PCI_CONF_HDR_SIZE;
ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
break;
case RGE_PP_SPACE_REG:
/*
* Memory-mapped I/O space
*/
sizemask = 8|4|2|1;
mem_va = 0;
maxoff = RGE_REGISTER_MAX;
ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
break;
case RGE_PP_SPACE_MII:
/*
* PHY's MII registers
* NB: all PHY registers are two bytes, but the
* addresses increment in ones (word addressing).
* So we scale the address here, then undo the
* transformation inside the peek/poke functions.
*/
ppd->pp_acc_offset *= 2;
sizemask = 2;
mem_va = 0;
maxoff = (MII_MAXREG+1)*2;
ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
break;
case RGE_PP_SPACE_RGE:
/*
* RGE data structure!
*/
sizemask = 8|4|2|1;
mem_va = (uintptr_t)rgep;
maxoff = sizeof (*rgep);
ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
break;
case RGE_PP_SPACE_STATISTICS:
case RGE_PP_SPACE_TXDESC:
case RGE_PP_SPACE_TXBUFF:
case RGE_PP_SPACE_RXDESC:
case RGE_PP_SPACE_RXBUFF:
/*
* Various DMA_AREAs
*/
switch (ppd->pp_acc_space) {
case RGE_PP_SPACE_TXDESC:
areap = &rgep->dma_area_txdesc;
break;
case RGE_PP_SPACE_RXDESC:
areap = &rgep->dma_area_rxdesc;
break;
case RGE_PP_SPACE_STATISTICS:
areap = &rgep->dma_area_stats;
break;
}
sizemask = 8|4|2|1;
mem_va = (uintptr_t)areap->mem_va;
maxoff = areap->alength;
ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
break;
}
switch (ppd->pp_acc_size) {
default:
return (IOC_INVAL);
case 8:
case 4:
case 2:
case 1:
if ((ppd->pp_acc_size & sizemask) == 0)
return (IOC_INVAL);
break;
}
if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
return (IOC_INVAL);
if (ppd->pp_acc_offset >= maxoff)
return (IOC_INVAL);
if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
return (IOC_INVAL);
/*
* All OK - go do it!
*/
ppd->pp_acc_offset += mem_va;
(*ppfn)(rgep, ppd);
return (peek ? IOC_REPLY : IOC_ACK);
}
static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(rge_diag_ioctl)
static enum ioc_reply
rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
ASSERT(mutex_owned(rgep->genlock));
switch (cmd) {
default:
/* NOTREACHED */
rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case RGE_DIAG:
/*
* Currently a no-op
*/
return (IOC_ACK);
case RGE_PEEK:
case RGE_POKE:
return (rge_pp_ioctl(rgep, cmd, mp, iocp));
case RGE_PHY_RESET:
return (IOC_RESTART_ACK);
case RGE_SOFT_RESET:
case RGE_HARD_RESET:
/*
* Reset and reinitialise the 570x hardware
*/
rge_restart(rgep);
return (IOC_ACK);
}
/* NOTREACHED */
}
#endif /* RGE_DEBUGGING || RGE_DO_PPIO */
static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(rge_mii_ioctl)
static enum ioc_reply
rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
struct rge_mii_rw *miirwp;
/*
* Validate format of ioctl
*/
if (iocp->ioc_count != sizeof (struct rge_mii_rw))
return (IOC_INVAL);
if (mp->b_cont == NULL)
return (IOC_INVAL);
miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
/*
* Validate request parameters ...
*/
if (miirwp->mii_reg > MII_MAXREG)
return (IOC_INVAL);
switch (cmd) {
default:
/* NOTREACHED */
rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case RGE_MII_READ:
miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
return (IOC_REPLY);
case RGE_MII_WRITE:
rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
return (IOC_ACK);
}
/* NOTREACHED */
}
enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(rge_chip_ioctl)
enum ioc_reply
rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
{
int cmd;
RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
(void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
ASSERT(mutex_owned(rgep->genlock));
cmd = iocp->ioc_cmd;
switch (cmd) {
default:
/* NOTREACHED */
rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case RGE_DIAG:
case RGE_PEEK:
case RGE_POKE:
case RGE_PHY_RESET:
case RGE_SOFT_RESET:
case RGE_HARD_RESET:
#if RGE_DEBUGGING || RGE_DO_PPIO
return (rge_diag_ioctl(rgep, cmd, mp, iocp));
#else
return (IOC_INVAL);
#endif /* RGE_DEBUGGING || RGE_DO_PPIO */
case RGE_MII_READ:
case RGE_MII_WRITE:
return (rge_mii_ioctl(rgep, cmd, mp, iocp));
}
/* NOTREACHED */
}