ramdisk.c revision 18c2aff776a775d34a4c9893a4c72e0434d68e36
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Ramdisk device driver.
*
* There are two types of ramdisk: 'real' OBP-created ramdisks, and 'pseudo'
* ramdisks created at runtime with no corresponding OBP device node. The
* ramdisk(7D) driver is capable of dealing with both, and with the creation
* and deletion of 'pseudo' ramdisks.
*
* Every ramdisk has a single 'state' structure which maintains data for
* that ramdisk, and is assigned a single minor number. The bottom 10-bits
* of the minor number index the state structures; the top 8-bits give a
* 'real OBP disk' number, i.e. they are zero for 'pseudo' ramdisks. Thus
* it is possible to distinguish 'real' from 'pseudo' ramdisks using the
* top 8-bits of the minor number.
*
* Each OBP-created ramdisk has its own node in the device tree with an
* "existing" property which describes the one-or-more physical address ranges
* assigned to the ramdisk. All 'pseudo' ramdisks share a common devinfo
* structure.
*
* A single character device node is used by ramdiskadm(1M) to communicate
* with the ramdisk driver, with minor number 0:
*
* /dev/ramdiskctl -> /devices/pseudo/ramdisk@0:ctl
*
* For consistent access, block and raw device nodes are created for *every*
* ramdisk. For 'pseudo' ramdisks:
*
* /dev/ramdisk/<diskname> -> /devices/pseudo/ramdisk@0:<diskname>
* /dev/rramdisk/<diskname> -> /devices/pseudo/ramdisk@0:<diskname>,raw
*
* For OBP-created ramdisks:
*
* /dev/ramdisk/<diskname> -> /devices/ramdisk-<diskname>:a
* /dev/ramdisk/<diskname> -> /devices/ramdisk-<diskname>:a,raw
*
* This allows the transition from the standalone to the kernel to proceed
* when booting from a ramdisk, and for the installation to correctly identify
* the root device.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/buf.h>
#include <sys/modctl.h>
#include <sys/open.h>
#include <sys/kmem.h>
#include <sys/poll.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ramdisk.h>
#include <vm/seg_kmem.h>
/*
* An opaque handle where information about our set of ramdisk devices lives.
*/
static void *rd_statep;
/*
* Pointer to devinfo for the 'pseudo' ramdisks. Real OBP-created ramdisks
* get their own individual devinfo.
*/
static dev_info_t *rd_dip = NULL;
/*
* Global state lock.
*/
static kmutex_t rd_lock;
/*
* Maximum number of ramdisks supported by this driver.
*/
static uint32_t rd_max_disks = RD_DFLT_DISKS;
/*
* Percentage of physical memory which can be assigned to pseudo ramdisks,
* what that equates to in pages, and how many pages are currently assigned.
*/
static uint_t rd_percent_physmem = RD_DEFAULT_PERCENT_PHYSMEM;
static pgcnt_t rd_max_physmem;
static pgcnt_t rd_tot_physmem;
static uint_t rd_maxphys = RD_DEFAULT_MAXPHYS;
/*
* Is the driver busy, i.e. are there any pseudo ramdisk devices in existence?
*/
static int
rd_is_busy(void)
{
minor_t minor;
rd_devstate_t *rsp;
ASSERT(mutex_owned(&rd_lock));
for (minor = 1; minor <= rd_max_disks; ++minor) {
if ((rsp = ddi_get_soft_state(rd_statep, minor)) != NULL &&
rsp->rd_dip == rd_dip) {
return (EBUSY);
}
}
return (0);
}
/*
* Find the first free minor number; returns zero if there isn't one.
*/
static minor_t
rd_find_free_minor(void)
{
minor_t minor;
ASSERT(mutex_owned(&rd_lock));
for (minor = 1; minor <= rd_max_disks; ++minor) {
if (ddi_get_soft_state(rd_statep, minor) == NULL) {
return (minor);
}
}
return (0);
}
/*
* Locate the rd_devstate for the named ramdisk; returns NULL if not found.
* Each ramdisk is identified uniquely by name, i.e. an OBP-created ramdisk
* cannot have the same name as a pseudo ramdisk.
*/
static rd_devstate_t *
rd_find_named_disk(char *name)
{
minor_t minor;
rd_devstate_t *rsp;
ASSERT(mutex_owned(&rd_lock));
for (minor = 1; minor <= rd_max_disks; ++minor) {
if ((rsp = ddi_get_soft_state(rd_statep, minor)) != NULL &&
strcmp(rsp->rd_name, name) == 0) {
return (rsp);
}
}
return (NULL);
}
/*
* Locate the rd_devstate for the real OBP-created ramdisk whose devinfo
* is referenced by 'dip'; returns NULL if not found (shouldn't happen).
*/
static rd_devstate_t *
rd_find_dip_state(dev_info_t *dip)
{
minor_t minor;
rd_devstate_t *rsp;
ASSERT(mutex_owned(&rd_lock));
for (minor = 1; minor <= rd_max_disks; ++minor) {
if ((rsp = ddi_get_soft_state(rd_statep, minor)) != NULL &&
rsp->rd_dip == dip) {
return (rsp);
}
}
return (NULL);
}
/*
* Is the ramdisk open?
*/
static int
rd_is_open(rd_devstate_t *rsp)
{
ASSERT(mutex_owned(&rd_lock));
return (rsp->rd_chr_open || rsp->rd_blk_open || rsp->rd_lyr_open_cnt);
}
/*
* Mark the ramdisk open.
*/
static int
rd_opened(rd_devstate_t *rsp, int otyp)
{
ASSERT(mutex_owned(&rd_lock));
switch (otyp) {
case OTYP_CHR:
rsp->rd_chr_open = 1;
break;
case OTYP_BLK:
rsp->rd_blk_open = 1;
break;
case OTYP_LYR:
rsp->rd_lyr_open_cnt++;
break;
default:
return (-1);
}
return (0);
}
/*
* Mark the ramdisk closed.
*/
static void
rd_closed(rd_devstate_t *rsp, int otyp)
{
ASSERT(mutex_owned(&rd_lock));
switch (otyp) {
case OTYP_CHR:
rsp->rd_chr_open = 0;
break;
case OTYP_BLK:
rsp->rd_blk_open = 0;
break;
case OTYP_LYR:
rsp->rd_lyr_open_cnt--;
break;
default:
break;
}
}
static void
rd_init_tuneables(void)
{
char *prop, *p;
/*
* Ensure sanity of 'rd_max_disks', which may be tuned in ramdisk.conf.
*/
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, rd_dip, 0,
"max_disks", &prop) == DDI_PROP_SUCCESS) {
p = prop;
rd_max_disks = (uint32_t)stoi(&p);
ddi_prop_free(prop);
}
if (rd_max_disks >= RD_MAX_DISKS) {
cmn_err(CE_WARN, "ramdisk: rd_max_disks (%u) too big;"
" using default (%u).", rd_max_disks, RD_MAX_DISKS - 1);
rd_max_disks = RD_MAX_DISKS - 1;
}
/*
* Ensure sanity of 'rd_percent_physmem', which may be tuned
* in ramdisk.conf.
*/
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, rd_dip, 0,
"percent_physmem", &prop) == DDI_PROP_SUCCESS) {
p = prop;
rd_percent_physmem = (uint_t)stoi(&p);
ddi_prop_free(prop);
}
if (rd_percent_physmem >= 100) {
cmn_err(CE_WARN, "ramdisk: rd_percent_physmem (%u) >= 100;"
" using default (%u%%).", rd_percent_physmem,
RD_DEFAULT_PERCENT_PHYSMEM);
rd_percent_physmem = RD_DEFAULT_PERCENT_PHYSMEM;
}
/*
* Since availrmem is in pages (and is a long), this won't overflow.
*/
rd_max_physmem = (availrmem * rd_percent_physmem) / 100;
}
/*
* Allocate enough physical pages to hold `size' bytes. Returns an
* array of page_t * pointers that can later be mapped in or out via
* rd_{un}map_window() but is otherwise opaque, or NULL on failure.
*
* This code stolen from the NCA driver.
*/
page_t **
rd_phys_alloc(pgcnt_t npages)
{
page_t *pp, **ppa;
pgcnt_t i;
size_t ppalen = npages * sizeof (struct page_t *);
struct seg kseg;
char *addr; /* For the purposes of coloring */
if (rd_tot_physmem + npages > rd_max_physmem) {
return (NULL);
}
ppa = kmem_zalloc(ppalen, KM_SLEEP);
(void) page_resv(npages, KM_SLEEP);
for (i = 0, addr = NULL; i < npages; ++i, addr += PAGESIZE) {
if (!page_create_wait(1, KM_SLEEP)) {
goto out;
}
kseg.s_as = &kas;
if ((pp = page_get_freelist(&kvp, 0, &kseg, addr, PAGESIZE,
KM_SLEEP, NULL)) == NULL) {
if ((pp = page_get_cachelist(&kvp, 0, &kseg, addr,
KM_SLEEP, NULL)) == NULL) {
goto out;
}
if (PP_ISAGED(pp) == 0) {
page_hashout(pp, NULL);
}
}
PP_CLRFREE(pp);
PP_CLRAGED(pp);
ppa[i] = pp;
page_downgrade(pp);
}
rd_tot_physmem += npages;
return (ppa);
out:
for (i = 0; ppa[i] != NULL && i < npages; ++i) {
page_free(ppa[i], 0);
}
page_create_putback(i);
kmem_free(ppa, ppalen);
page_unresv(npages);
return (NULL);
}
/*
* Free physical pages previously allocated via rd_phys_alloc(); note that
* this function may block as it has to wait until it can exclusively lock
* all the pages first.
*/
static void
rd_phys_free(page_t **ppa, pgcnt_t npages)
{
pgcnt_t i;
size_t ppalen = npages * sizeof (struct page_t *);
for (i = 0; i < npages; ++i) {
if (! page_tryupgrade(ppa[i])) {
page_unlock(ppa[i]);
while (! page_lock(ppa[i], SE_EXCL, NULL, P_RECLAIM))
;
}
page_free(ppa[i], 0);
}
kmem_free(ppa, ppalen);
page_unresv(npages);
rd_tot_physmem -= npages;
}
/*
* Remove a window mapping (if present).
*/
static void
rd_unmap_window(rd_devstate_t *rsp)
{
if (rsp->rd_window_base != RD_WINDOW_NOT_MAPPED) {
hat_unload(kas.a_hat, rsp->rd_window_virt, rsp->rd_window_size,
HAT_UNLOAD_UNLOCK);
}
}
/*
* Map a portion of the ramdisk into the virtual window.
*/
static void
rd_map_window(rd_devstate_t *rsp, off_t offset)
{
pgcnt_t offpgs = btop(offset);
if (rsp->rd_window_base != RD_WINDOW_NOT_MAPPED) {
/*
* Already mapped; is offset within our window?
*/
if (offset >= rsp->rd_window_base &&
offset < rsp->rd_window_base + rsp->rd_window_size) {
return;
}
/*
* No, we need to re-map; toss the old mapping.
*/
rd_unmap_window(rsp);
}
rsp->rd_window_base = ptob(offpgs);
/*
* Different algorithms depending on whether this is a real
* OBP-created ramdisk, or a pseudo ramdisk.
*/
if (rsp->rd_dip == rd_dip) {
pgcnt_t pi, lastpi;
caddr_t vaddr;
/*
* Find the range of pages which should be mapped.
*/
pi = offpgs;
lastpi = pi + btopr(rsp->rd_window_size);
if (lastpi > rsp->rd_npages) {
lastpi = rsp->rd_npages;
}
/*
* Load the mapping.
*/
vaddr = rsp->rd_window_virt;
for (; pi < lastpi; ++pi) {
hat_memload(kas.a_hat, vaddr, rsp->rd_ppa[pi],
(PROT_READ | PROT_WRITE) | HAT_NOSYNC,
HAT_LOAD_LOCK);
vaddr += ptob(1);
}
} else {
uint_t i;
pfn_t pfn;
/*
* Real OBP-created ramdisk: locate the physical range which
* contains this offset.
*/
for (i = 0; i < rsp->rd_nexisting; ++i) {
if (offset < rsp->rd_existing[i].size) {
break;
}
offset -= rsp->rd_existing[i].size;
}
ASSERT(i < rsp->rd_nexisting);
/*
* Load the mapping.
*/
pfn = btop(rsp->rd_existing[i].phys + offset);
hat_devload(kas.a_hat, rsp->rd_window_virt, rsp->rd_window_size,
pfn, (PROT_READ | PROT_WRITE),
HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
}
}
/*
* Fakes up a disk geometry, and one big partition, based on the size
* of the file. This is needed because we allow newfs'ing the device,
* and newfs will do several disk ioctls to figure out the geometry and
* partition information. It uses that information to determine the parameters
* to pass to mkfs. Geometry is pretty much irrelevent these days, but we
* have to support it.
*
* Stolen from lofi.c - should maybe split out common code sometime.
*/
static void
rd_fake_disk_geometry(rd_devstate_t *rsp)
{
/* dk_geom - see dkio(7I) */
/*
* dkg_ncyl _could_ be set to one here (one big cylinder with gobs
* of sectors), but that breaks programs like fdisk which want to
* partition a disk by cylinder. With one cylinder, you can't create
* an fdisk partition and put pcfs on it for testing (hard to pick
* a number between one and one).
*
* The cheezy floppy test is an attempt to not have too few cylinders
* for a small file, or so many on a big file that you waste space
* for backup superblocks or cylinder group structures.
*/
if (rsp->rd_size < (2 * 1024 * 1024)) /* floppy? */
rsp->rd_dkg.dkg_ncyl = rsp->rd_size / (100 * 1024);
else
rsp->rd_dkg.dkg_ncyl = rsp->rd_size / (300 * 1024);
/* in case file file is < 100k */
if (rsp->rd_dkg.dkg_ncyl == 0)
rsp->rd_dkg.dkg_ncyl = 1;
rsp->rd_dkg.dkg_acyl = 0;
rsp->rd_dkg.dkg_bcyl = 0;
rsp->rd_dkg.dkg_nhead = 1;
rsp->rd_dkg.dkg_obs1 = 0;
rsp->rd_dkg.dkg_intrlv = 0;
rsp->rd_dkg.dkg_obs2 = 0;
rsp->rd_dkg.dkg_obs3 = 0;
rsp->rd_dkg.dkg_apc = 0;
rsp->rd_dkg.dkg_rpm = 7200;
rsp->rd_dkg.dkg_pcyl = rsp->rd_dkg.dkg_ncyl + rsp->rd_dkg.dkg_acyl;
rsp->rd_dkg.dkg_nsect = rsp->rd_size /
(DEV_BSIZE * rsp->rd_dkg.dkg_ncyl);
rsp->rd_dkg.dkg_write_reinstruct = 0;
rsp->rd_dkg.dkg_read_reinstruct = 0;
/* vtoc - see dkio(7I) */
bzero(&rsp->rd_vtoc, sizeof (struct vtoc));
rsp->rd_vtoc.v_sanity = VTOC_SANE;
rsp->rd_vtoc.v_version = V_VERSION;
bcopy(RD_DRIVER_NAME, rsp->rd_vtoc.v_volume, 7);
rsp->rd_vtoc.v_sectorsz = DEV_BSIZE;
rsp->rd_vtoc.v_nparts = 1;
rsp->rd_vtoc.v_part[0].p_tag = V_UNASSIGNED;
rsp->rd_vtoc.v_part[0].p_flag = V_UNMNT;
rsp->rd_vtoc.v_part[0].p_start = (daddr_t)0;
/*
* The partition size cannot just be the number of sectors, because
* that might not end on a cylinder boundary. And if that's the case,
* newfs/mkfs will print a scary warning. So just figure the size
* based on the number of cylinders and sectors/cylinder.
*/
rsp->rd_vtoc.v_part[0].p_size = rsp->rd_dkg.dkg_pcyl *
rsp->rd_dkg.dkg_nsect * rsp->rd_dkg.dkg_nhead;
/* dk_cinfo - see dkio(7I) */
bzero(&rsp->rd_ci, sizeof (struct dk_cinfo));
(void) strcpy(rsp->rd_ci.dki_cname, RD_DRIVER_NAME);
rsp->rd_ci.dki_ctype = DKC_MD;
rsp->rd_ci.dki_flags = 0;
rsp->rd_ci.dki_cnum = 0;
rsp->rd_ci.dki_addr = 0;
rsp->rd_ci.dki_space = 0;
rsp->rd_ci.dki_prio = 0;
rsp->rd_ci.dki_vec = 0;
(void) strcpy(rsp->rd_ci.dki_dname, RD_DRIVER_NAME);
rsp->rd_ci.dki_unit = 0;
rsp->rd_ci.dki_slave = 0;
rsp->rd_ci.dki_partition = 0;
/*
* newfs uses this to set maxcontig. Must not be < 16, or it
* will be 0 when newfs multiplies it by DEV_BSIZE and divides
* it by the block size. Then tunefs doesn't work because
* maxcontig is 0.
*/
rsp->rd_ci.dki_maxtransfer = 16;
}
/*
* Deallocate resources (virtual and physical, device nodes, structures)
* from a ramdisk.
*/
static void
rd_dealloc_resources(rd_devstate_t *rsp)
{
dev_info_t *dip = rsp->rd_dip;
char namebuf[RD_NAME_LEN + 5];
dev_t fulldev;
if (rsp->rd_window_virt != NULL) {
if (rsp->rd_window_base != RD_WINDOW_NOT_MAPPED) {
rd_unmap_window(rsp);
}
vmem_free(heap_arena, rsp->rd_window_virt, rsp->rd_window_size);
}
mutex_destroy(&rsp->rd_device_lock);
if (rsp->rd_existing) {
ddi_prop_free(rsp->rd_existing);
}
if (rsp->rd_ppa != NULL) {
rd_phys_free(rsp->rd_ppa, rsp->rd_npages);
}
/*
* Remove the block and raw device nodes.
*/
if (dip == rd_dip) {
(void) snprintf(namebuf, sizeof (namebuf), "%s",
rsp->rd_name);
ddi_remove_minor_node(dip, namebuf);
(void) snprintf(namebuf, sizeof (namebuf), "%s,raw",
rsp->rd_name);
ddi_remove_minor_node(dip, namebuf);
} else {
ddi_remove_minor_node(dip, "a");
ddi_remove_minor_node(dip, "a,raw");
}
/*
* Remove the "Size" and "Nblocks" properties.
*/
fulldev = makedevice(ddi_driver_major(dip), rsp->rd_minor);
(void) ddi_prop_remove(fulldev, dip, SIZE_PROP_NAME);
(void) ddi_prop_remove(fulldev, dip, NBLOCKS_PROP_NAME);
if (rsp->rd_kstat) {
kstat_delete(rsp->rd_kstat);
mutex_destroy(&rsp->rd_kstat_lock);
}
ddi_soft_state_free(rd_statep, rsp->rd_minor);
}
/*
* Allocate resources (virtual and physical, device nodes, structures)
* to a ramdisk.
*/
static rd_devstate_t *
rd_alloc_resources(char *name, size_t size, dev_info_t *dip)
{
minor_t minor;
rd_devstate_t *rsp;
char namebuf[RD_NAME_LEN + 5];
dev_t fulldev;
int64_t Nblocks_prop_val;
int64_t Size_prop_val;
minor = rd_find_free_minor();
if (ddi_soft_state_zalloc(rd_statep, minor) == DDI_FAILURE) {
return (NULL);
}
rsp = ddi_get_soft_state(rd_statep, minor);
(void) strcpy(rsp->rd_name, name);
rsp->rd_dip = dip;
rsp->rd_minor = minor;
rsp->rd_size = size;
/*
* Allocate virtual window onto ramdisk.
*/
mutex_init(&rsp->rd_device_lock, NULL, MUTEX_DRIVER, NULL);
rsp->rd_window_base = RD_WINDOW_NOT_MAPPED;
rsp->rd_window_size = PAGESIZE;
rsp->rd_window_virt = vmem_alloc(heap_arena,
rsp->rd_window_size, VM_SLEEP);
if (rsp->rd_window_virt == NULL) {
goto create_failed;
}
/*
* Allocate physical memory for non-OBP ramdisks.
* Create pseudo block and raw device nodes.
*/
if (dip == rd_dip) {
rsp->rd_npages = btopr(size);
rsp->rd_ppa = rd_phys_alloc(rsp->rd_npages);
if (rsp->rd_ppa == NULL) {
goto create_failed;
}
/*
* For non-OBP ramdisks the device nodes are:
*
* /devices/pseudo/ramdisk@0:<diskname>
* /devices/pseudo/ramdisk@0:<diskname>,raw
*/
(void) snprintf(namebuf, sizeof (namebuf), "%s",
rsp->rd_name);
if (ddi_create_minor_node(dip, namebuf, S_IFBLK, minor,
DDI_PSEUDO, 0) == DDI_FAILURE) {
goto create_failed;
}
(void) snprintf(namebuf, sizeof (namebuf), "%s,raw",
rsp->rd_name);
if (ddi_create_minor_node(dip, namebuf, S_IFCHR, minor,
DDI_PSEUDO, 0) == DDI_FAILURE) {
goto create_failed;
}
} else {
/*
* For OBP-created ramdisks the device nodes are:
*
* /devices/ramdisk-<diskname>:a
* /devices/ramdisk-<diskname>:a,raw
*/
if (ddi_create_minor_node(dip, "a", S_IFBLK, minor,
DDI_PSEUDO, 0) == DDI_FAILURE) {
goto create_failed;
}
if (ddi_create_minor_node(dip, "a,raw", S_IFCHR, minor,
DDI_PSEUDO, 0) == DDI_FAILURE) {
goto create_failed;
}
}
/*
* Create the "Size" and "Nblocks" properties.
*/
fulldev = makedevice(ddi_driver_major(dip), minor);
Size_prop_val = size;
if ((ddi_prop_update_int64(fulldev, dip,
SIZE_PROP_NAME, Size_prop_val)) != DDI_PROP_SUCCESS) {
goto create_failed;
}
Nblocks_prop_val = size / DEV_BSIZE;
if ((ddi_prop_update_int64(fulldev, dip,
NBLOCKS_PROP_NAME, Nblocks_prop_val)) != DDI_PROP_SUCCESS) {
goto create_failed;
}
/*
* Allocate kstat stuff.
*/
rsp->rd_kstat = kstat_create(RD_DRIVER_NAME, minor, NULL,
"disk", KSTAT_TYPE_IO, 1, 0);
if (rsp->rd_kstat) {
mutex_init(&rsp->rd_kstat_lock, NULL,
MUTEX_DRIVER, NULL);
rsp->rd_kstat->ks_lock = &rsp->rd_kstat_lock;
kstat_install(rsp->rd_kstat);
}
rd_fake_disk_geometry(rsp);
return (rsp);
create_failed:
/*
* Cleanup.
*/
rd_dealloc_resources(rsp);
return (NULL);
}
/*
* Undo what we did in rd_attach, freeing resources and removing things which
* we installed. The system framework guarantees we are not active with this
* devinfo node in any other entry points at this time.
*/
static int
rd_common_detach(dev_info_t *dip)
{
if (dip == rd_dip) {
/*
* Pseudo node: can't detach if any pseudo ramdisks exist.
*/
if (rd_is_busy()) {
return (DDI_FAILURE);
}
ddi_soft_state_free(rd_statep, RD_CTL_MINOR);
rd_dip = NULL;
} else {
/*
* A 'real' ramdisk; find the state and free resources.
*/
rd_devstate_t *rsp;
if ((rsp = rd_find_dip_state(dip)) != NULL) {
rd_dealloc_resources(rsp);
}
}
ddi_remove_minor_node(dip, NULL);
return (DDI_SUCCESS);
}
static int
rd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
char *name;
rd_existing_t *ep = NULL;
uint_t nep, i;
size_t size = 0;
rd_devstate_t *rsp;
switch (cmd) {
case DDI_ATTACH:
mutex_enter(&rd_lock);
/*
* For pseudo ramdisk devinfo set up state 0 and :ctl device;
* else it's an OBP-created ramdisk.
*/
if (is_pseudo_device(dip)) {
rd_dip = dip;
rd_init_tuneables();
/*
* The zeroth minor is reserved for the ramdisk
* 'control' device.
*/
if (ddi_soft_state_zalloc(rd_statep, RD_CTL_MINOR) ==
DDI_FAILURE) {
goto attach_failed;
}
rsp = ddi_get_soft_state(rd_statep, RD_CTL_MINOR);
rsp->rd_dip = dip;
if (ddi_create_minor_node(dip, RD_CTL_NODE,
S_IFCHR, 0, DDI_PSEUDO, NULL) == DDI_FAILURE) {
goto attach_failed;
}
} else {
RD_STRIP_PREFIX(name, ddi_node_name(dip));
if (strlen(name) > RD_NAME_LEN) {
cmn_err(CE_CONT,
"%s: name too long - ignoring\n", name);
goto attach_failed;
}
/*
* An OBP-created ramdisk must have an 'existing'
* property; get and check it.
*/
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, RD_EXISTING_PROP_NAME,
(uchar_t **)&ep, &nep) != DDI_SUCCESS) {
cmn_err(CE_CONT,
"%s: " RD_EXISTING_PROP_NAME
" property missing\n", name);
goto attach_failed;
}
if (nep == 0 || (nep % sizeof (*ep)) != 0) {
cmn_err(CE_CONT,
"%s: " RD_EXISTING_PROP_NAME
" illegal size\n", name);
goto attach_failed;
}
nep /= sizeof (*ep);
/*
* Calculate the size of the ramdisk.
*/
for (i = 0; i < nep; ++i) {
size += ep[i].size;
}
/*
* Allocate driver resources for the ramdisk.
*/
if ((rsp = rd_alloc_resources(name, size,
dip)) == NULL) {
goto attach_failed;
}
rsp->rd_existing = ep;
rsp->rd_nexisting = nep;
}
mutex_exit(&rd_lock);
ddi_report_dev(dip);
return (DDI_SUCCESS);
case DDI_RESUME:
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
attach_failed:
/*
* Use our common detach routine to unallocate any stuff which
* was allocated above.
*/
(void) rd_common_detach(dip);
mutex_exit(&rd_lock);
if (ep != NULL) {
ddi_prop_free(ep);
}
return (DDI_FAILURE);
}
static int
rd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
int e;
switch (cmd) {
case DDI_DETACH:
mutex_enter(&rd_lock);
e = rd_common_detach(dip);
mutex_exit(&rd_lock);
return (e);
case DDI_SUSPEND:
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*ARGSUSED*/
static int
rd_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
rd_devstate_t *rsp;
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
if ((rsp = ddi_get_soft_state(rd_statep,
getminor((dev_t)arg))) != NULL) {
*result = rsp->rd_dip;
return (DDI_SUCCESS);
}
*result = NULL;
return (DDI_FAILURE);
case DDI_INFO_DEVT2INSTANCE:
if ((rsp = ddi_get_soft_state(rd_statep,
getminor((dev_t)arg))) != NULL) {
*result = (void *)(uintptr_t)
ddi_get_instance(rsp->rd_dip);
return (DDI_SUCCESS);
}
*result = NULL;
return (DDI_FAILURE);
default:
return (DDI_FAILURE);
}
}
/*ARGSUSED3*/
static int
rd_open(dev_t *devp, int flag, int otyp, cred_t *credp)
{
minor_t minor;
rd_devstate_t *rsp;
mutex_enter(&rd_lock);
minor = getminor(*devp);
if (minor == RD_CTL_MINOR) {
/*
* Master control device; must be opened exclusively.
*/
if ((flag & FEXCL) != FEXCL || otyp != OTYP_CHR) {
mutex_exit(&rd_lock);
return (EINVAL);
}
rsp = ddi_get_soft_state(rd_statep, RD_CTL_MINOR);
if (rsp == NULL) {
mutex_exit(&rd_lock);
return (ENXIO);
}
if (rd_is_open(rsp)) {
mutex_exit(&rd_lock);
return (EBUSY);
}
(void) rd_opened(rsp, OTYP_CHR);
mutex_exit(&rd_lock);
return (0);
}
rsp = ddi_get_soft_state(rd_statep, minor);
if (rsp == NULL) {
mutex_exit(&rd_lock);
return (ENXIO);
}
if (rd_opened(rsp, otyp) == -1) {
mutex_exit(&rd_lock);
return (EINVAL);
}
mutex_exit(&rd_lock);
return (0);
}
/*ARGSUSED*/
static int
rd_close(dev_t dev, int flag, int otyp, struct cred *credp)
{
minor_t minor;
rd_devstate_t *rsp;
mutex_enter(&rd_lock);
minor = getminor(dev);
rsp = ddi_get_soft_state(rd_statep, minor);
if (rsp == NULL) {
mutex_exit(&rd_lock);
return (EINVAL);
}
rd_closed(rsp, otyp);
mutex_exit(&rd_lock);
return (0);
}
static void
rd_minphys(struct buf *bp)
{
if (bp->b_bcount > rd_maxphys) {
bp->b_bcount = rd_maxphys;
}
}
static void
rd_rw(rd_devstate_t *rsp, struct buf *bp, offset_t offset, size_t nbytes)
{
int reading = bp->b_flags & B_READ;
caddr_t buf_addr;
bp_mapin(bp);
buf_addr = bp->b_un.b_addr;
while (nbytes > 0) {
offset_t off_in_window;
size_t rem_in_window, copy_bytes;
caddr_t raddr;
mutex_enter(&rsp->rd_device_lock);
rd_map_window(rsp, offset);
off_in_window = offset - rsp->rd_window_base;
rem_in_window = rsp->rd_window_size - off_in_window;
raddr = rsp->rd_window_virt + off_in_window;
copy_bytes = MIN(nbytes, rem_in_window);
if (reading) {
(void) bcopy(raddr, buf_addr, copy_bytes);
} else {
(void) bcopy(buf_addr, raddr, copy_bytes);
}
mutex_exit(&rsp->rd_device_lock);
offset += copy_bytes;
buf_addr += copy_bytes;
nbytes -= copy_bytes;
}
}
static int
rd_strategy(struct buf *bp)
{
rd_devstate_t *rsp;
offset_t offset;
rsp = ddi_get_soft_state(rd_statep, getminor(bp->b_edev));
offset = bp->b_blkno * DEV_BSIZE;
if (rsp == NULL) {
bp->b_error = ENXIO;
bp->b_flags |= B_ERROR;
} else if (offset >= rsp->rd_size) {
bp->b_error = EINVAL;
bp->b_flags |= B_ERROR;
} else {
size_t nbytes;
if (rsp->rd_kstat) {
mutex_enter(rsp->rd_kstat->ks_lock);
kstat_runq_enter(KSTAT_IO_PTR(rsp->rd_kstat));
mutex_exit(rsp->rd_kstat->ks_lock);
}
nbytes = min(bp->b_bcount, rsp->rd_size - offset);
rd_rw(rsp, bp, offset, nbytes);
bp->b_resid = bp->b_bcount - nbytes;
if (rsp->rd_kstat) {
kstat_io_t *kioptr;
mutex_enter(rsp->rd_kstat->ks_lock);
kioptr = KSTAT_IO_PTR(rsp->rd_kstat);
if (bp->b_flags & B_READ) {
kioptr->nread += nbytes;
kioptr->reads++;
} else {
kioptr->nwritten += nbytes;
kioptr->writes++;
}
kstat_runq_exit(kioptr);
mutex_exit(rsp->rd_kstat->ks_lock);
}
}
biodone(bp);
return (0);
}
/*ARGSUSED*/
static int
rd_read(dev_t dev, struct uio *uiop, cred_t *credp)
{
rd_devstate_t *rsp;
rsp = ddi_get_soft_state(rd_statep, getminor(dev));
if (uiop->uio_offset >= rsp->rd_size)
return (EINVAL);
return (physio(rd_strategy, NULL, dev, B_READ, rd_minphys, uiop));
}
/*ARGSUSED*/
static int
rd_write(dev_t dev, register struct uio *uiop, cred_t *credp)
{
rd_devstate_t *rsp;
rsp = ddi_get_soft_state(rd_statep, getminor(dev));
if (uiop->uio_offset >= rsp->rd_size)
return (EINVAL);
return (physio(rd_strategy, NULL, dev, B_WRITE, rd_minphys, uiop));
}
/*ARGSUSED*/
static int
rd_create_disk(dev_t dev, struct rd_ioctl *urip, int mode, int *rvalp)
{
struct rd_ioctl kri;
size_t size;
rd_devstate_t *rsp;
if (ddi_copyin(urip, &kri, sizeof (kri), mode) == -1) {
return (EFAULT);
}
kri.ri_name[RD_NAME_LEN] = '\0';
size = kri.ri_size;
if (size == 0) {
return (EINVAL);
}
size = ptob(btopr(size));
mutex_enter(&rd_lock);
if (rd_find_named_disk(kri.ri_name) != NULL) {
mutex_exit(&rd_lock);
return (EEXIST);
}
rsp = rd_alloc_resources(kri.ri_name, size, rd_dip);
if (rsp == NULL) {
mutex_exit(&rd_lock);
return (EAGAIN);
}
mutex_exit(&rd_lock);
return (ddi_copyout(&kri, urip, sizeof (kri), mode) == -1 ? EFAULT : 0);
}
/*ARGSUSED*/
static int
rd_delete_disk(dev_t dev, struct rd_ioctl *urip, int mode)
{
struct rd_ioctl kri;
rd_devstate_t *rsp;
if (ddi_copyin(urip, &kri, sizeof (kri), mode) == -1) {
return (EFAULT);
}
kri.ri_name[RD_NAME_LEN] = '\0';
mutex_enter(&rd_lock);
rsp = rd_find_named_disk(kri.ri_name);
if (rsp == NULL || rsp->rd_dip != rd_dip) {
mutex_exit(&rd_lock);
return (EINVAL);
}
if (rd_is_open(rsp)) {
mutex_exit(&rd_lock);
return (EBUSY);
}
rd_dealloc_resources(rsp);
mutex_exit(&rd_lock);
return (0);
}
/*ARGSUSED*/
static int
rd_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
{
minor_t minor;
int error;
enum dkio_state dkstate;
rd_devstate_t *rsp;
minor = getminor(dev);
/*
* Ramdisk ioctls only apply to the master device.
*/
if (minor == RD_CTL_MINOR) {
struct rd_ioctl *rip = (struct rd_ioctl *)arg;
/*
* The query commands only need read-access - i.e., normal
* users are allowed to do those on the controlling device
* as long as they can open it read-only.
*/
switch (cmd) {
case RD_CREATE_DISK:
if ((mode & FWRITE) == 0)
return (EPERM);
return (rd_create_disk(dev, rip, mode, rvalp));
case RD_DELETE_DISK:
if ((mode & FWRITE) == 0)
return (EPERM);
return (rd_delete_disk(dev, rip, mode));
default:
return (EINVAL);
}
}
rsp = ddi_get_soft_state(rd_statep, minor);
if (rsp == NULL) {
return (ENXIO);
}
/*
* These are for faking out utilities like newfs.
*/
switch (cmd) {
case DKIOCGVTOC:
switch (ddi_model_convert_from(mode & FMODELS)) {
case DDI_MODEL_ILP32: {
struct vtoc32 vtoc32;
vtoctovtoc32(rsp->rd_vtoc, vtoc32);
if (ddi_copyout(&vtoc32, (void *)arg,
sizeof (struct vtoc32), mode))
return (EFAULT);
}
break;
case DDI_MODEL_NONE:
if (ddi_copyout(&rsp->rd_vtoc, (void *)arg,
sizeof (struct vtoc), mode))
return (EFAULT);
break;
}
return (0);
case DKIOCINFO:
error = ddi_copyout(&rsp->rd_ci, (void *)arg,
sizeof (struct dk_cinfo), mode);
if (error)
return (EFAULT);
return (0);
case DKIOCG_VIRTGEOM:
case DKIOCG_PHYGEOM:
case DKIOCGGEOM:
error = ddi_copyout(&rsp->rd_dkg, (void *)arg,
sizeof (struct dk_geom), mode);
if (error)
return (EFAULT);
return (0);
case DKIOCSTATE:
/* the file is always there */
dkstate = DKIO_INSERTED;
error = ddi_copyout(&dkstate, (void *)arg,
sizeof (enum dkio_state), mode);
if (error)
return (EFAULT);
return (0);
default:
return (ENOTTY);
}
}
static struct cb_ops rd_cb_ops = {
rd_open,
rd_close,
rd_strategy,
nodev,
nodev, /* dump */
rd_read,
rd_write,
rd_ioctl,
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op,
NULL,
D_NEW | D_MP
};
static struct dev_ops rd_ops = {
DEVO_REV,
0,
rd_getinfo,
nulldev, /* identify */
nulldev, /* probe */
rd_attach,
rd_detach,
nodev, /* reset */
&rd_cb_ops,
(struct bus_ops *)0
};
extern struct mod_ops mod_driverops;
static struct modldrv modldrv = {
&mod_driverops,
"ramdisk driver v%I%",
&rd_ops
};
static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
0
};
int
_init(void)
{
int e;
if ((e = ddi_soft_state_init(&rd_statep,
sizeof (rd_devstate_t), 0)) != 0) {
return (e);
}
mutex_init(&rd_lock, NULL, MUTEX_DRIVER, NULL);
if ((e = mod_install(&modlinkage)) != 0) {
mutex_destroy(&rd_lock);
ddi_soft_state_fini(&rd_statep);
}
return (e);
}
int
_fini(void)
{
int e;
if ((e = mod_remove(&modlinkage)) != 0) {
return (e);
}
ddi_soft_state_fini(&rd_statep);
mutex_destroy(&rd_lock);
return (e);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}