rt2560.c revision 020c47705d28102a8df83a43ddf08e34dde21f22
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2005, 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Ralink Technology RT2560 chipset driver
* http://www.ralinktech.com/
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/byteorder.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/strsubr.h>
#include <sys/ethernet.h>
#include <inet/common.h>
#include <inet/nd.h>
#include <inet/mi.h>
#include <sys/note.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/modctl.h>
#include <sys/devops.h>
#include <sys/dlpi.h>
#include <sys/mac.h>
#include <sys/mac_wifi.h>
#include <sys/net80211.h>
#include <sys/net80211_proto.h>
#include <sys/varargs.h>
#include <sys/policy.h>
#include <sys/pci.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <inet/wifi_ioctl.h>
#include "ral_rate.h"
#include "rt2560_reg.h"
#include "rt2560_var.h"
static void *ral_soft_state_p = NULL;
#define RAL_TXBUF_SIZE (IEEE80211_MAX_LEN)
#define RAL_RXBUF_SIZE (IEEE80211_MAX_LEN)
/* quickly determine if a given rate is CCK or OFDM */
#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
#define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
#define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
#define RAL_SIFS 10 /* us */
#define RT2560_TXRX_TURNAROUND 10 /* us */
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset rt2560_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset rt2560_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset rt2560_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct {
uint32_t reg;
uint32_t val;
} rt2560_def_mac[] = {
RT2560_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rt2560_def_bbp[] = {
RT2560_DEF_BBP
};
static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2;
static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2;
static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2;
static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2;
static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2;
static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2;
static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
static const struct {
uint8_t chan;
uint32_t r1, r2, r4;
} rt2560_rf5222[] = {
RT2560_RF5222
};
/*
* PIO access attributes for registers
*/
static ddi_device_acc_attr_t ral_csr_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC
};
/*
* DMA access attributes for descriptors: NOT to be byte swapped.
*/
static ddi_device_acc_attr_t ral_desc_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC
};
/*
* Describes the chip's DMA engine
*/
static ddi_dma_attr_t ral_dma_attr = {
DMA_ATTR_V0, /* dma_attr version */
0x0000000000000000ull, /* dma_attr_addr_lo */
0xFFFFFFFF, /* dma_attr_addr_hi */
0x00000000FFFFFFFFull, /* dma_attr_count_max */
0x0000000000000001ull, /* dma_attr_align */
0x00000FFF, /* dma_attr_burstsizes */
0x00000001, /* dma_attr_minxfer */
0x000000000000FFFFull, /* dma_attr_maxxfer */
0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
1, /* dma_attr_sgllen */
0x00000001, /* dma_attr_granular */
0 /* dma_attr_flags */
};
/*
* device operations
*/
static int rt2560_attach(dev_info_t *, ddi_attach_cmd_t);
static int rt2560_detach(dev_info_t *, ddi_detach_cmd_t);
static int rt2560_reset(dev_info_t *, ddi_reset_cmd_t);
/*
* Module Loading Data & Entry Points
*/
DDI_DEFINE_STREAM_OPS(ral_dev_ops, nulldev, nulldev, rt2560_attach,
rt2560_detach, rt2560_reset, NULL, D_MP, NULL);
static struct modldrv ral_modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
"Ralink RT2500 driver v%I%", /* short description */
&ral_dev_ops /* driver specific ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&ral_modldrv,
NULL
};
static int rt2560_m_stat(void *, uint_t, uint64_t *);
static int rt2560_m_start(void *);
static void rt2560_m_stop(void *);
static int rt2560_m_promisc(void *, boolean_t);
static int rt2560_m_multicst(void *, boolean_t, const uint8_t *);
static int rt2560_m_unicst(void *, const uint8_t *);
static mblk_t *rt2560_m_tx(void *, mblk_t *);
static void rt2560_m_ioctl(void *, queue_t *, mblk_t *);
static mac_callbacks_t rt2560_m_callbacks = {
MC_IOCTL,
rt2560_m_stat,
rt2560_m_start,
rt2560_m_stop,
rt2560_m_promisc,
rt2560_m_multicst,
rt2560_m_unicst,
rt2560_m_tx,
NULL, /* mc_resources; */
rt2560_m_ioctl,
NULL /* mc_getcapab */
};
uint32_t ral_dbg_flags = 0;
void
ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
{
va_list args;
if (dbg_flags & ral_dbg_flags) {
va_start(args, fmt);
vcmn_err(CE_CONT, fmt, args);
va_end(args);
}
}
static void
rt2560_set_basicrates(struct rt2560_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* update basic rate set */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
/* 11b basic rates: 1, 2Mbps */
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
/* 11a basic rates: 6, 12, 24Mbps */
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
} else {
/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
}
}
static void
rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
{
uint32_t tmp;
/* set ON period to 70ms and OFF period to 30ms */
tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
RAL_WRITE(sc, RT2560_LEDCSR, tmp);
}
static void
rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
RAL_WRITE(sc, RT2560_CSR5, tmp);
tmp = bssid[4] | bssid[5] << 8;
RAL_WRITE(sc, RT2560_CSR6, tmp);
RAL_DEBUG(RAL_DBG_HW, "setting BSSID to " MACSTR "\n", MAC2STR(bssid));
}
static void
rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
break;
drv_usecwait(1);
}
if (ntries == 100) {
RAL_DEBUG(RAL_DBG_HW, "could not write to BBP\n");
return;
}
tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
RAL_WRITE(sc, RT2560_BBPCSR, tmp);
RAL_DEBUG(RAL_DBG_HW, "BBP R%u <- 0x%02x\n", reg, val);
}
static uint8_t
rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
val = RT2560_BBP_BUSY | reg << 8;
RAL_WRITE(sc, RT2560_BBPCSR, val);
for (ntries = 0; ntries < 100; ntries++) {
val = RAL_READ(sc, RT2560_BBPCSR);
if (!(val & RT2560_BBP_BUSY))
return (val & 0xff);
drv_usecwait(1);
}
RAL_DEBUG(RAL_DBG_HW, "could not read from BBP\n");
return (0);
}
static void
rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
break;
drv_usecwait(1);
}
if (ntries == 100) {
RAL_DEBUG(RAL_DBG_HW, "could not write to RF\n");
return;
}
tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
(reg & 0x3);
RAL_WRITE(sc, RT2560_RFCSR, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
RAL_DEBUG(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
}
static void
rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t power, tmp;
uint_t i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
if (IEEE80211_IS_CHAN_2GHZ(c))
power = min(sc->txpow[chan - 1], 31);
else
power = 31;
/* adjust txpower using ifconfig settings */
power -= (100 - ic->ic_txpowlimit) / 8;
RAL_DEBUG(RAL_DBG_CHAN, "setting channel to %u, txpower to %u\n",
chan, power);
switch (sc->rf_rev) {
case RT2560_RF_2522:
rt2560_rf_write(sc, RAL_RF1, 0x00814);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
break;
case RT2560_RF_2523:
rt2560_rf_write(sc, RAL_RF1, 0x08804);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RT2560_RF_2524:
rt2560_rf_write(sc, RAL_RF1, 0x0c808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RT2560_RF_2525:
rt2560_rf_write(sc, RAL_RF1, 0x08808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
rt2560_rf_write(sc, RAL_RF1, 0x08808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RT2560_RF_2525E:
rt2560_rf_write(sc, RAL_RF1, 0x08808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
break;
case RT2560_RF_2526:
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
rt2560_rf_write(sc, RAL_RF1, 0x08804);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
break;
/* dual-band RF */
case RT2560_RF_5222:
for (i = 0; rt2560_rf5222[i].chan != chan; i++) {
}
rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
break;
}
if (ic->ic_state != IEEE80211_S_SCAN) {
/* set Japan filter bit for channel 14 */
tmp = rt2560_bbp_read(sc, 70);
tmp &= ~RT2560_JAPAN_FILTER;
if (chan == 14)
tmp |= RT2560_JAPAN_FILTER;
rt2560_bbp_write(sc, 70, tmp);
/* clear CRC errors */
(void) RAL_READ(sc, RT2560_CNT0);
}
}
/*
* Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
* synchronization.
*/
static void
rt2560_enable_tsf_sync(struct rt2560_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t logcwmin, preload;
uint32_t tmp;
/* first, disable TSF synchronization */
RAL_WRITE(sc, RT2560_CSR14, 0);
tmp = 16 * ic->ic_bss->in_intval;
RAL_WRITE(sc, RT2560_CSR12, tmp);
RAL_WRITE(sc, RT2560_CSR13, 0);
logcwmin = 5;
preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
tmp = logcwmin << 16 | preload;
RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
/* finally, enable TSF synchronization */
tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2560_ENABLE_TSF_SYNC(1);
else
tmp |= RT2560_ENABLE_TSF_SYNC(2) |
RT2560_ENABLE_BEACON_GENERATOR;
RAL_WRITE(sc, RT2560_CSR14, tmp);
RAL_DEBUG(RAL_DBG_HW, "enabling TSF synchronization\n");
}
static void
rt2560_update_plcp(struct rt2560_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* no short preamble for 1Mbps */
RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
/* values taken from the reference driver */
RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
} else {
/* same values as above or'ed 0x8 */
RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
}
RAL_DEBUG(RAL_DBG_HW, "updating PLCP for %s preamble\n",
(ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long");
}
/*
* This function can be called by ieee80211_set_shortslottime(). Refer to
* IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
*/
void
rt2560_update_slot(struct ieee80211com *ic, int onoff)
{
struct rt2560_softc *sc = (struct rt2560_softc *)ic;
uint8_t slottime;
uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
uint32_t tmp;
/* slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; */
slottime = (onoff ? 9 : 20);
/* update the MAC slot boundaries */
tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
tx_pifs = tx_sifs + slottime;
tx_difs = tx_sifs + 2 * slottime;
eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
tmp = RAL_READ(sc, RT2560_CSR11);
tmp = (tmp & ~0x1f00) | slottime << 8;
RAL_WRITE(sc, RT2560_CSR11, tmp);
tmp = tx_pifs << 16 | tx_sifs;
RAL_WRITE(sc, RT2560_CSR18, tmp);
tmp = eifs << 16 | tx_difs;
RAL_WRITE(sc, RT2560_CSR19, tmp);
RAL_DEBUG(RAL_DBG_HW, "setting slottime to %uus\n", slottime);
}
int
ral_dma_region_alloc(struct rt2560_softc *sc, struct dma_region *dr,
size_t size, uint_t alloc_flags, uint_t bind_flags)
{
dev_info_t *dip = sc->sc_dev;
int err;
RAL_DEBUG(RAL_DBG_DMA, "ral_dma_region_alloc() size=%u\n", size);
err = ddi_dma_alloc_handle(dip, &ral_dma_attr, DDI_DMA_SLEEP, NULL,
&dr->dr_hnd);
if (err != DDI_SUCCESS)
goto fail1;
err = ddi_dma_mem_alloc(dr->dr_hnd, size, &ral_desc_accattr,
alloc_flags, DDI_DMA_SLEEP, NULL,
&dr->dr_base, &dr->dr_size, &dr->dr_acc);
if (err != DDI_SUCCESS)
goto fail2;
err = ddi_dma_addr_bind_handle(dr->dr_hnd, NULL,
dr->dr_base, dr->dr_size,
bind_flags, DDI_DMA_SLEEP, NULL, &dr->dr_cookie, &dr->dr_ccnt);
if (err != DDI_SUCCESS)
goto fail3;
if (dr->dr_ccnt != 1) {
err = DDI_FAILURE;
goto fail4;
}
dr->dr_pbase = dr->dr_cookie.dmac_address;
RAL_DEBUG(RAL_DBG_DMA, "get physical-base=0x%08x\n", dr->dr_pbase);
return (DDI_SUCCESS);
fail4:
(void) ddi_dma_unbind_handle(dr->dr_hnd);
fail3:
ddi_dma_mem_free(&dr->dr_acc);
fail2:
ddi_dma_free_handle(&dr->dr_hnd);
fail1:
return (err);
}
/* ARGSUSED */
void
ral_dma_region_free(struct rt2560_softc *sc, struct dma_region *dr)
{
(void) ddi_dma_unbind_handle(dr->dr_hnd);
ddi_dma_mem_free(&dr->dr_acc);
ddi_dma_free_handle(&dr->dr_hnd);
}
int
rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
int count)
{
int i, err;
int size;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
ring->cur_encrypt = ring->next_encrypt = 0;
ring->data = kmem_zalloc(count * (sizeof (struct rt2560_tx_data)),
KM_SLEEP);
ring->dr_txbuf = kmem_zalloc(count * (sizeof (struct dma_region)),
KM_SLEEP);
err = ral_dma_region_alloc(sc, &ring->dr_desc,
count * (sizeof (struct rt2560_tx_desc)),
DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT);
if (err != DDI_SUCCESS)
goto fail1;
size = roundup(RAL_TXBUF_SIZE, sc->sc_cachelsz);
for (i = 0; i < count; i++) {
err = ral_dma_region_alloc(sc, &ring->dr_txbuf[i], size,
DDI_DMA_STREAMING, DDI_DMA_WRITE | DDI_DMA_STREAMING);
if (err != DDI_SUCCESS) {
while (i >= 0) {
ral_dma_region_free(sc, &ring->dr_txbuf[i]);
i--;
}
goto fail2;
}
}
ring->physaddr = LE_32(ring->dr_desc.dr_pbase);
ring->desc = (struct rt2560_tx_desc *)ring->dr_desc.dr_base;
for (i = 0; i < count; i++) {
ring->desc[i].physaddr = LE_32(ring->dr_txbuf[i].dr_pbase);
ring->data[i].buf = ring->dr_txbuf[i].dr_base;
}
return (DDI_SUCCESS);
fail2:
ral_dma_region_free(sc, &ring->dr_desc);
fail1:
return (err);
}
/* ARGSUSED */
void
rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
{
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
desc = &ring->desc[i];
data = &ring->data[i];
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
desc->flags = 0;
}
(void) ddi_dma_sync(ring->dr_desc.dr_hnd, 0,
ring->count * sizeof (struct rt2560_tx_desc), DDI_DMA_SYNC_FORDEV);
ring->queued = 0;
ring->cur = ring->next = 0;
ring->cur_encrypt = ring->next_encrypt = 0;
}
void
rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
{
struct rt2560_tx_data *data;
int i;
ral_dma_region_free(sc, &ring->dr_desc);
/* tx buf */
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
ral_dma_region_free(sc, &ring->dr_txbuf[i]);
}
kmem_free(ring->data, ring->count * (sizeof (struct rt2560_tx_data)));
kmem_free(ring->dr_txbuf, ring->count * (sizeof (struct dma_region)));
}
void
rt2560_ring_hwsetup(struct rt2560_softc *sc)
{
uint32_t tmp;
/* setup tx rings */
tmp = ((uint32_t)RT2560_PRIO_RING_COUNT << 24) |
RT2560_ATIM_RING_COUNT << 16 |
RT2560_TX_RING_COUNT << 8 |
RT2560_TX_DESC_SIZE;
/* rings must be initialized in this exact order */
RAL_WRITE(sc, RT2560_TXCSR2, tmp);
RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
/* setup rx ring */
tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
RAL_WRITE(sc, RT2560_RXCSR1, tmp);
RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
}
int
rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
int count)
{
struct rt2560_rx_desc *desc;
struct rt2560_rx_data *data;
int i, err;
int size;
ring->count = count;
ring->cur = ring->next = 0;
ring->cur_decrypt = 0;
ring->data = kmem_zalloc(count * (sizeof (struct rt2560_rx_data)),
KM_SLEEP);
ring->dr_rxbuf = kmem_zalloc(count * (sizeof (struct dma_region)),
KM_SLEEP);
err = ral_dma_region_alloc(sc, &ring->dr_desc,
count * (sizeof (struct rt2560_rx_desc)),
DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT);
if (err != DDI_SUCCESS)
goto fail1;
size = roundup(RAL_RXBUF_SIZE, sc->sc_cachelsz);
for (i = 0; i < count; i++) {
err = ral_dma_region_alloc(sc, &ring->dr_rxbuf[i], size,
DDI_DMA_STREAMING, DDI_DMA_READ | DDI_DMA_STREAMING);
if (err != DDI_SUCCESS) {
while (i >= 0) {
ral_dma_region_free(sc, &ring->dr_rxbuf[i]);
i--;
}
goto fail2;
}
}
ring->physaddr = ring->dr_desc.dr_pbase;
ring->desc = (struct rt2560_rx_desc *)ring->dr_desc.dr_base;
for (i = 0; i < count; i++) {
desc = &ring->desc[i];
data = &ring->data[i];
desc->physaddr = LE_32(ring->dr_rxbuf[i].dr_pbase);
desc->flags = LE_32(RT2560_RX_BUSY);
data->buf = ring->dr_rxbuf[i].dr_base;
}
return (DDI_SUCCESS);
fail2:
ral_dma_region_free(sc, &ring->dr_desc);
fail1:
return (err);
}
/* ARGSUSED */
static void
rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
{
int i;
for (i = 0; i < ring->count; i++) {
ring->desc[i].flags = LE_32(RT2560_RX_BUSY);
ring->data[i].drop = 0;
}
(void) ddi_dma_sync(ring->dr_desc.dr_hnd, 0,
ring->count * sizeof (struct rt2560_rx_desc),
DDI_DMA_SYNC_FORKERNEL);
ring->cur = ring->next = 0;
ring->cur_decrypt = 0;
}
static void
rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
{
int i;
ral_dma_region_free(sc, &ring->dr_desc);
/* rx buf */
for (i = 0; i < ring->count; i++)
ral_dma_region_free(sc, &ring->dr_rxbuf[i]);
kmem_free(ring->data, ring->count * (sizeof (struct rt2560_rx_data)));
kmem_free(ring->dr_rxbuf, ring->count * (sizeof (struct dma_region)));
}
/* ARGSUSED */
static struct ieee80211_node *
rt2560_node_alloc(ieee80211com_t *ic)
{
struct rt2560_node *rn;
rn = kmem_zalloc(sizeof (struct rt2560_node), KM_SLEEP);
return ((rn != NULL) ? &rn->ni : NULL);
}
static void
rt2560_node_free(struct ieee80211_node *in)
{
ieee80211com_t *ic = in->in_ic;
ic->ic_node_cleanup(in);
if (in->in_wpa_ie != NULL)
ieee80211_free(in->in_wpa_ie);
kmem_free(in, sizeof (struct rt2560_node));
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
static void
rt2560_next_scan(void *arg)
{
struct rt2560_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
(void) ieee80211_next_scan(ic);
}
/*
* This function is called for each node present in the node station table.
*/
/* ARGSUSED */
static void
rt2560_iter_func(void *arg, struct ieee80211_node *ni)
{
struct rt2560_node *rn = (struct rt2560_node *)ni;
ral_rssadapt_updatestats(&rn->rssadapt);
}
/*
* This function is called periodically (every 100ms) in RUN state to update
* the rate adaptation statistics.
*/
static void
rt2560_update_rssadapt(void *arg)
{
struct rt2560_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
sc->sc_rssadapt_id = timeout(rt2560_update_rssadapt, (void *)sc,
drv_usectohz(100 * 1000));
}
static void
rt2560_statedog(void *arg)
{
struct rt2560_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state state;
RAL_LOCK(sc);
RAL_DEBUG(RAL_DBG_MSG, "rt2560_statedog(...)\n");
sc->sc_state_id = 0;
state = ic->ic_state;
ic->ic_state = sc->sc_ostate;
RAL_UNLOCK(sc);
ieee80211_new_state(ic, state, -1);
}
static int
rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rt2560_softc *sc = (struct rt2560_softc *)ic;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
int err;
RAL_LOCK(sc);
ostate = ic->ic_state;
sc->sc_ostate = ostate;
if (sc->sc_scan_id != 0) {
(void) untimeout(sc->sc_scan_id);
sc->sc_scan_id = 0;
}
if (sc->sc_rssadapt_id != 0) {
(void) untimeout(sc->sc_rssadapt_id);
sc->sc_rssadapt_id = 0;
}
if (sc->sc_state_id != 0) {
(void) untimeout(sc->sc_state_id);
sc->sc_state_id = 0;
}
switch (nstate) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
RAL_WRITE(sc, RT2560_CSR14, 0);
/* turn association led off */
rt2560_update_led(sc, 0, 0);
}
break;
case IEEE80211_S_SCAN:
rt2560_set_chan(sc, ic->ic_curchan);
sc->sc_scan_id = timeout(rt2560_next_scan, (void *)sc,
drv_usectohz(sc->dwelltime * 1000));
break;
case IEEE80211_S_AUTH:
RAL_DEBUG(RAL_DBG_STATE, "-> IEEE80211_S_AUTH ...\n");
rt2560_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_ASSOC:
RAL_DEBUG(RAL_DBG_STATE, "-> IEEE80211_S_ASSOC ...\n");
rt2560_set_chan(sc, ic->ic_curchan);
drv_usecwait(10 * 1000); /* dlink */
sc->sc_state_id = timeout(rt2560_statedog, (void *)sc,
drv_usectohz(300 * 1000)); /* ap7-3 */
break;
case IEEE80211_S_RUN:
RAL_DEBUG(RAL_DBG_STATE, "-> IEEE80211_S_RUN ...\n");
rt2560_set_chan(sc, ic->ic_curchan);
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rt2560_update_plcp(sc);
rt2560_set_basicrates(sc);
rt2560_set_bssid(sc, ni->in_bssid);
}
/* turn assocation led on */
rt2560_update_led(sc, 1, 0);
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
sc->sc_rssadapt_id = timeout(rt2560_update_rssadapt,
(void *)sc, drv_usectohz(100 * 1000));
rt2560_enable_tsf_sync(sc);
}
break;
}
RAL_UNLOCK(sc);
err = sc->sc_newstate(ic, nstate, arg);
/*
* Finally, start any timers.
*/
if (nstate == IEEE80211_S_RUN)
ieee80211_start_watchdog(ic, 1);
return (err);
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
* 93C66).
*/
static uint16_t
rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
RT2560_EEPROM_CTL(sc, 0);
RT2560_EEPROM_CTL(sc, RT2560_S);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
RT2560_EEPROM_CTL(sc, RT2560_S);
/* write start bit (1) */
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
/* write READ opcode (10) */
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
RT2560_EEPROM_CTL(sc, RT2560_S);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
/* write address (A5-A0 or A7-A0) */
n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
for (; n >= 0; n--) {
RT2560_EEPROM_CTL(sc, RT2560_S |
(((addr >> n) & 1) << RT2560_SHIFT_D));
RT2560_EEPROM_CTL(sc, RT2560_S |
(((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
}
RT2560_EEPROM_CTL(sc, RT2560_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
tmp = RAL_READ(sc, RT2560_CSR21);
val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
RT2560_EEPROM_CTL(sc, RT2560_S);
}
RT2560_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
RT2560_EEPROM_CTL(sc, RT2560_S);
RT2560_EEPROM_CTL(sc, 0);
RT2560_EEPROM_CTL(sc, RT2560_C);
return (val);
}
static void
rt2560_tx_intr(struct rt2560_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct rt2560_node *rn;
struct dma_region *dr;
int count;
dr = &sc->txq.dr_desc;
count = sc->txq.count;
(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
DDI_DMA_SYNC_FORKERNEL);
mutex_enter(&sc->txq.tx_lock);
for (;;) {
desc = &sc->txq.desc[sc->txq.next];
data = &sc->txq.data[sc->txq.next];
if ((LE_32(desc->flags) & RT2560_TX_BUSY) ||
(LE_32(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
!(LE_32(desc->flags) & RT2560_TX_VALID))
break;
rn = (struct rt2560_node *)data->ni;
switch (LE_32(desc->flags) & RT2560_TX_RESULT_MASK) {
case RT2560_TX_SUCCESS:
RAL_DEBUG(RAL_DBG_INTR, "data frame sent success\n");
if (data->id.id_node != NULL) {
ral_rssadapt_raise_rate(ic, &rn->rssadapt,
&data->id);
}
break;
case RT2560_TX_SUCCESS_RETRY:
RAL_DEBUG(RAL_DBG_INTR,
"data frame sent after %u retries\n",
(LE_32(desc->flags) >> 5) & 0x7);
sc->sc_tx_retries++;
break;
case RT2560_TX_FAIL_RETRY:
RAL_DEBUG(RAL_DBG_INTR,
"sending data frame failed (too much retries)\n");
if (data->id.id_node != NULL) {
ral_rssadapt_lower_rate(ic, data->ni,
&rn->rssadapt, &data->id);
}
break;
case RT2560_TX_FAIL_INVALID:
case RT2560_TX_FAIL_OTHER:
default:
RAL_DEBUG(RAL_DBG_INTR, "sending data frame failed "
"0x%08x\n", LE_32(desc->flags));
break;
}
ieee80211_free_node(data->ni);
data->ni = NULL;
/* descriptor is no longer valid */
desc->flags &= ~LE_32(RT2560_TX_VALID);
RAL_DEBUG(RAL_DBG_INTR, "tx done idx=%u\n", sc->txq.next);
sc->txq.queued--;
sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
if (sc->sc_need_sched &&
sc->txq.queued < (RT2560_TX_RING_COUNT - 32)) {
sc->sc_need_sched = 0;
mac_tx_update(ic->ic_mach);
}
}
(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
DDI_DMA_SYNC_FORDEV);
sc->sc_tx_timer = 0;
mutex_exit(&sc->txq.tx_lock);
}
static void
rt2560_prio_intr(struct rt2560_softc *sc)
{
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct dma_region *dr;
int count;
dr = &sc->prioq.dr_desc;
count = sc->prioq.count;
(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
DDI_DMA_SYNC_FORKERNEL);
mutex_enter(&sc->prioq.tx_lock);
for (;;) {
desc = &sc->prioq.desc[sc->prioq.next];
data = &sc->prioq.data[sc->prioq.next];
if ((LE_32(desc->flags) & RT2560_TX_BUSY) ||
!(LE_32(desc->flags) & RT2560_TX_VALID))
break;
switch (LE_32(desc->flags) & RT2560_TX_RESULT_MASK) {
case RT2560_TX_SUCCESS:
RAL_DEBUG(RAL_DBG_INTR, "mgt frame sent success\n");
break;
case RT2560_TX_SUCCESS_RETRY:
RAL_DEBUG(RAL_DBG_INTR,
"mgt frame sent after %u retries\n",
(LE_32(desc->flags) >> 5) & 0x7);
break;
case RT2560_TX_FAIL_RETRY:
RAL_DEBUG(RAL_DBG_INTR,
"sending mgt frame failed (too much " "retries)\n");
break;
case RT2560_TX_FAIL_INVALID:
case RT2560_TX_FAIL_OTHER:
default:
RAL_DEBUG(RAL_DBG_INTR, "sending mgt frame failed "
"0x%08x\n", LE_32(desc->flags));
}
ieee80211_free_node(data->ni);
data->ni = NULL;
/* descriptor is no longer valid */
desc->flags &= ~LE_32(RT2560_TX_VALID);
RAL_DEBUG(RAL_DBG_INTR, "prio done idx=%u\n", sc->prioq.next);
sc->prioq.queued--;
sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
}
(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
DDI_DMA_SYNC_FORDEV);
sc->sc_tx_timer = 0;
mutex_exit(&sc->prioq.tx_lock);
}
/*
* Some frames were received. Pass them to the hardware cipher engine before
* sending them to the 802.11 layer.
*/
void
rt2560_rx_intr(struct rt2560_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2560_rx_desc *desc;
struct rt2560_rx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct rt2560_node *rn;
mblk_t *m;
uint32_t len;
char *rxbuf;
struct dma_region *dr, *dr_bf;
int count;
dr = &sc->rxq.dr_desc;
count = sc->rxq.count;
mutex_enter(&sc->rxq.rx_lock);
(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_RX_DESC_SIZE,
DDI_DMA_SYNC_FORKERNEL);
for (;;) {
desc = &sc->rxq.desc[sc->rxq.cur];
data = &sc->rxq.data[sc->rxq.cur];
if ((LE_32(desc->flags) & RT2560_RX_BUSY) ||
(LE_32(desc->flags) & RT2560_RX_CIPHER_BUSY))
break;
data->drop = 0;
if ((LE_32(desc->flags) & RT2560_RX_PHY_ERROR) ||
(LE_32(desc->flags) & RT2560_RX_CRC_ERROR)) {
/*
* This should not happen since we did not request
* to receive those frames when we filled RXCSR0.
*/
RAL_DEBUG(RAL_DBG_RX, "PHY or CRC error flags 0x%08x\n",
LE_32(desc->flags));
data->drop = 1;
}
if (((LE_32(desc->flags) >> 16) & 0xfff) > RAL_RXBUF_SIZE) {
RAL_DEBUG(RAL_DBG_RX, "bad length\n");
data->drop = 1;
}
if (data->drop) {
sc->sc_rx_err++;
goto skip;
}
rxbuf = data->buf;
len = (LE_32(desc->flags) >> 16) & 0xfff;
if ((len < sizeof (struct ieee80211_frame_min)) ||
(len > RAL_RXBUF_SIZE)) {
RAL_DEBUG(RAL_DBG_RX, "bad frame length=%u\n", len);
sc->sc_rx_err++;
goto skip;
}
if ((m = allocb(len, BPRI_MED)) == NULL) {
RAL_DEBUG(RAL_DBG_RX, "rt2560_rx_intr():"
" allocate mblk failed.\n");
sc->sc_rx_nobuf++;
goto skip;
}
dr_bf = &sc->rxq.dr_rxbuf[sc->rxq.cur];
(void) ddi_dma_sync(dr_bf->dr_hnd, 0, dr_bf->dr_size,
DDI_DMA_SYNC_FORCPU);
bcopy(rxbuf, m->b_rptr, len);
m->b_wptr += len;
wh = (struct ieee80211_frame *)m->b_rptr;
ni = ieee80211_find_rxnode(ic, wh);
/* give rssi to the rate adatation algorithm */
rn = (struct rt2560_node *)ni;
ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
/* send the frame to the 802.11 layer */
(void) ieee80211_input(ic, m, ni, desc->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
skip: desc->flags = LE_32(RT2560_RX_BUSY);
RAL_DEBUG(RAL_DBG_RX, "rx done idx=%u\n", sc->rxq.cur);
sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
}
mutex_exit(&sc->rxq.rx_lock);
(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
DDI_DMA_SYNC_FORDEV);
}
uint_t
ral_softint_handler(caddr_t data)
{
struct rt2560_softc *sc = (struct rt2560_softc *)data;
/*
* Check if the soft interrupt is triggered by another
* driver at the same level.
*/
RAL_LOCK(sc);
if (sc->sc_rx_pend) {
sc->sc_rx_pend = 0;
RAL_UNLOCK(sc);
rt2560_rx_intr((struct rt2560_softc *)data);
return (DDI_INTR_CLAIMED);
}
RAL_UNLOCK(sc);
return (DDI_INTR_UNCLAIMED);
}
/*
* Return the expected ack rate for a frame transmitted at rate `rate'.
* XXX: this should depend on the destination node basic rate set.
*/
static int
rt2560_ack_rate(struct ieee80211com *ic, int rate)
{
switch (rate) {
/* CCK rates */
case 2:
return (2);
case 4:
case 11:
case 22:
return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate);
/* OFDM rates */
case 12:
case 18:
return (12);
case 24:
case 36:
return (24);
case 48:
case 72:
case 96:
case 108:
return (48);
}
/* default to 1Mbps */
return (2);
}
/*
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
* The function automatically determines the operating mode depending on the
* given rate. `flags' indicates whether short preamble is in use or not.
*/
static uint16_t
rt2560_txtime(int len, int rate, uint32_t flags)
{
uint16_t txtime;
if (RAL_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11a-1999, pp. 37 */
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
txtime = 16 + 4 + 4 * txtime + 6;
} else {
/* IEEE Std 802.11b-1999, pp. 28 */
txtime = (16 * len + rate - 1) / rate;
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
}
return (txtime);
}
static uint8_t
rt2560_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return (0x0);
case 4: return (0x1);
case 11: return (0x2);
case 22: return (0x3);
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return (0xb);
case 18: return (0xf);
case 24: return (0xa);
case 36: return (0xe);
case 48: return (0x9);
case 72: return (0xd);
case 96: return (0x8);
case 108: return (0xc);
/* unsupported rates (should not get there) */
default: return (0xff);
}
}
void
rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
uint32_t flags, int len, int rate, int encrypt)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t plcp_length;
int remainder;
desc->flags = LE_32(flags);
desc->flags |= LE_32(len << 16);
desc->flags |= encrypt ? LE_32(RT2560_TX_CIPHER_BUSY) :
LE_32(RT2560_TX_BUSY | RT2560_TX_VALID);
desc->wme = LE_16(
RT2560_AIFSN(2) |
RT2560_LOGCWMIN(3) |
RT2560_LOGCWMAX(8));
/* setup PLCP fields */
desc->plcp_signal = rt2560_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (RAL_RATE_IS_OFDM(rate)) {
desc->flags |= LE_32(RT2560_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2560_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
}
/* ARGSUSED */
int
rt2560_mgmt_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
{
struct rt2560_softc *sc = (struct rt2560_softc *)ic;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct ieee80211_frame *wh;
uint16_t dur;
uint32_t flags = 0;
int rate, err = DDI_SUCCESS;
int off, pktlen, mblen;
caddr_t dest;
mblk_t *m, *m0;
struct dma_region *dr;
uint32_t idx;
struct ieee80211_node *ni;
struct ieee80211_key *k;
mutex_enter(&sc->prioq.tx_lock);
if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
err = ENOMEM;
sc->sc_tx_nobuf++;
goto fail1;
}
m = allocb(msgdsize(mp) + 32, BPRI_MED);
if (m == NULL) {
RAL_DEBUG(RAL_DBG_TX, "rt2560_mgmt_send: can't alloc mblk.\n");
err = DDI_FAILURE;
goto fail1;
}
for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
mblen = MBLKL(m0);
(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
off += mblen;
}
m->b_wptr += off;
wh = (struct ieee80211_frame *)m->b_rptr;
ni = ieee80211_find_txnode(ic, wh->i_addr1);
if (ni == NULL) {
err = DDI_FAILURE;
sc->sc_tx_err++;
goto fail2;
}
/* to support shared_key auth mode */
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, m);
if (k == NULL) {
err = DDI_FAILURE;
sc->sc_tx_err++;
goto fail3;
}
/* packet header may have moved, reset our local pointer */
wh = (struct ieee80211_frame *)m->b_rptr;
}
desc = &sc->prioq.desc[sc->prioq.cur];
data = &sc->prioq.data[sc->prioq.cur];
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
data->ni = ieee80211_ref_node(ni);
pktlen = msgdsize(m);
dest = data->buf;
bcopy(m->b_rptr, dest, pktlen);
wh = (struct ieee80211_frame *)m->b_rptr;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2560_TX_ACK;
dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
RAL_SIFS;
*(uint16_t *)wh->i_dur = LE_16(dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= RT2560_TX_TIMESTAMP;
}
rt2560_setup_tx_desc(sc, desc, flags, pktlen, rate, 0);
idx = sc->prioq.cur;
dr = &sc->prioq.dr_txbuf[idx];
(void) ddi_dma_sync(dr->dr_hnd, 0, RAL_TXBUF_SIZE, DDI_DMA_SYNC_FORDEV);
dr = &sc->prioq.dr_desc;
(void) ddi_dma_sync(dr->dr_hnd, idx * RT2560_TX_DESC_SIZE,
RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORDEV);
RAL_DEBUG(RAL_DBG_MGMT, "sending mgt frame len=%u idx=%u rate=%u\n",
pktlen, sc->prioq.cur, rate);
/* kick prio */
sc->prioq.queued++; /* IF > RT2560_PRIO_RING_COUNT? FULL */
sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
sc->sc_tx_timer = 5;
ic->ic_stats.is_tx_frags++;
ic->ic_stats.is_tx_bytes += pktlen;
fail3:
ieee80211_free_node(ni);
fail2:
freemsg(m);
fail1:
freemsg(mp);
mutex_exit(&sc->prioq.tx_lock);
return (err);
}
static int
rt2560_send(ieee80211com_t *ic, mblk_t *mp)
{
struct rt2560_softc *sc = (struct rt2560_softc *)ic;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct rt2560_node *rn;
struct ieee80211_rateset *rs;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint16_t dur;
uint32_t flags = 0;
int rate, err = DDI_SUCCESS;
struct ieee80211_node *ni;
mblk_t *m, *m0;
int off, mblen, pktlen;
caddr_t dest;
struct dma_region *dr;
uint32_t idx;
mutex_enter(&sc->txq.tx_lock);
if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
RAL_DEBUG(RAL_DBG_TX, "ral: rt2560_tx_data(): "
"no TX DMA buffer available!\n");
sc->sc_need_sched = 1;
sc->sc_tx_nobuf++;
err = ENOMEM;
goto fail1;
}
m = allocb(msgdsize(mp) + 32, BPRI_MED);
if (m == NULL) {
RAL_DEBUG(RAL_DBG_TX, "rt2560_xmit(): can't alloc mblk.\n");
err = DDI_FAILURE;
goto fail1;
}
for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
mblen = MBLKL(m0);
(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
off += mblen;
}
m->b_wptr += off;
wh = (struct ieee80211_frame *)m->b_rptr;
ni = ieee80211_find_txnode(ic, wh->i_addr1);
if (ni == NULL) {
err = DDI_FAILURE;
sc->sc_tx_err++;
goto fail2;
}
(void) ieee80211_encap(ic, m, ni);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, m);
if (k == NULL) {
sc->sc_tx_err++;
err = DDI_FAILURE;
goto fail3;
}
/* packet header may have moved, reset our local pointer */
wh = (struct ieee80211_frame *)m->b_rptr;
}
/*
* RTS/CTS exchange ignore, since the max packet will less than
* the rtsthreshold (2346)
* Unnecessary codes deleted.
*/
data = &sc->txq.data[sc->txq.cur];
desc = &sc->txq.desc[sc->txq.cur];
data->ni = ieee80211_ref_node(ni);
pktlen = msgdsize(m);
dest = data->buf;
bcopy(m->b_rptr, dest, pktlen);
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
rs = &ic->ic_sup_rates[ic->ic_curmode];
rate = rs->ir_rates[ic->ic_fixed_rate];
} else {
rs = &ni->in_rates;
rn = (struct rt2560_node *)ni;
ni->in_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
pktlen, NULL, 0);
rate = rs->ir_rates[ni->in_txrate];
}
rate &= IEEE80211_RATE_VAL;
if (rate <= 0) {
rate = 2; /* basic rate */
}
/* remember link conditions for rate adaptation algorithm */
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
data->id.id_len = pktlen;
data->id.id_rateidx = ni->in_txrate;
data->id.id_node = ni;
data->id.id_rssi = ni->in_rssi;
} else
data->id.id_node = NULL;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2560_TX_ACK;
dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
ic->ic_flags) + RAL_SIFS;
*(uint16_t *)wh->i_dur = LE_16(dur);
}
/* flags |= RT2560_TX_CIPHER_NONE; */
rt2560_setup_tx_desc(sc, desc, flags, pktlen, rate, 0);
idx = sc->txq.cur;
dr = &sc->txq.dr_txbuf[idx];
(void) ddi_dma_sync(dr->dr_hnd, 0, RAL_TXBUF_SIZE, DDI_DMA_SYNC_FORDEV);
dr = &sc->txq.dr_desc;
(void) ddi_dma_sync(dr->dr_hnd, idx * RT2560_TX_DESC_SIZE,
RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORDEV);
RAL_DEBUG(RAL_DBG_TX, "sending data frame len=%u idx=%u rate=%u\n",
pktlen, sc->txq.cur, rate);
/* kick tx */
sc->txq.queued++;
sc->txq.cur = (sc->txq.cur + 1) % RT2560_TX_RING_COUNT;
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
sc->sc_tx_timer = 5;
ic->ic_stats.is_tx_frags++;
ic->ic_stats.is_tx_bytes += pktlen;
freemsg(mp);
fail3:
ieee80211_free_node(ni);
fail2:
freemsg(m);
fail1:
mutex_exit(&sc->txq.tx_lock);
return (err);
}
static mblk_t *
rt2560_m_tx(void *arg, mblk_t *mp)
{
struct rt2560_softc *sc = (struct rt2560_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
mblk_t *next;
/*
* No data frames go out unless we're associated; this
* should not happen as the 802.11 layer does not enable
* the xmit queue until we enter the RUN state.
*/
if (ic->ic_state != IEEE80211_S_RUN) {
RAL_DEBUG(RAL_DBG_TX, "ral: rt2560_tx_data(): "
"discard, state %u\n", ic->ic_state);
freemsgchain(mp);
return (NULL);
}
while (mp != NULL) {
next = mp->b_next;
mp->b_next = NULL;
if (rt2560_send(ic, mp) != DDI_SUCCESS) {
mp->b_next = next;
freemsgchain(mp);
return (NULL);
}
mp = next;
}
return (mp);
}
static void
rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
RAL_WRITE(sc, RT2560_CSR3, tmp);
tmp = addr[4] | addr[5] << 8;
RAL_WRITE(sc, RT2560_CSR4, tmp);
RAL_DEBUG(RAL_DBG_HW,
"setting MAC address to " MACSTR "\n", MAC2STR(addr));
}
static void
rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = RAL_READ(sc, RT2560_CSR3);
addr[0] = tmp & 0xff;
addr[1] = (tmp >> 8) & 0xff;
addr[2] = (tmp >> 16) & 0xff;
addr[3] = (tmp >> 24);
tmp = RAL_READ(sc, RT2560_CSR4);
addr[4] = tmp & 0xff;
addr[5] = (tmp >> 8) & 0xff;
}
static void
rt2560_update_promisc(struct rt2560_softc *sc)
{
uint32_t tmp;
tmp = RAL_READ(sc, RT2560_RXCSR0);
tmp &= ~RT2560_DROP_NOT_TO_ME;
if (!(sc->sc_rcr & RAL_RCR_PROMISC))
tmp |= RT2560_DROP_NOT_TO_ME;
RAL_WRITE(sc, RT2560_RXCSR0, tmp);
RAL_DEBUG(RAL_DBG_HW, "%s promiscuous mode\n",
(sc->sc_rcr & RAL_RCR_PROMISC) ? "entering" : "leaving");
}
static const char *
rt2560_get_rf(int rev)
{
switch (rev) {
case RT2560_RF_2522: return ("RT2522");
case RT2560_RF_2523: return ("RT2523");
case RT2560_RF_2524: return ("RT2524");
case RT2560_RF_2525: return ("RT2525");
case RT2560_RF_2525E: return ("RT2525e");
case RT2560_RF_2526: return ("RT2526");
case RT2560_RF_5222: return ("RT5222");
default: return ("unknown");
}
}
static void
rt2560_read_eeprom(struct rt2560_softc *sc)
{
uint16_t val;
int i;
val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
sc->rf_rev = (val >> 11) & 0x7;
sc->hw_radio = (val >> 10) & 0x1;
sc->led_mode = (val >> 6) & 0x7;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
/* read default values for BBP registers */
for (i = 0; i < 16; i++) {
val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
sc->bbp_prom[i].reg = val >> 8;
sc->bbp_prom[i].val = val & 0xff;
}
/* read Tx power for all b/g channels */
for (i = 0; i < 14 / 2; i++) {
val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
sc->txpow[i * 2] = val >> 8;
sc->txpow[i * 2 + 1] = val & 0xff;
}
}
static int
rt2560_bbp_init(struct rt2560_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
break;
drv_usecwait(1);
}
if (ntries == 100) {
RAL_DEBUG(RAL_DBG_HW, "timeout waiting for BBP\n");
return (EIO);
}
/* initialize BBP registers to default values */
for (i = 0; i < N(rt2560_def_bbp); i++) {
rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
rt2560_def_bbp[i].val);
}
return (0);
#undef N
}
static void
rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
{
uint32_t tmp;
uint8_t tx;
tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
if (antenna == 1)
tx |= RT2560_BBP_ANTA;
else if (antenna == 2)
tx |= RT2560_BBP_ANTB;
else
tx |= RT2560_BBP_DIVERSITY;
/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
sc->rf_rev == RT2560_RF_5222)
tx |= RT2560_BBP_FLIPIQ;
rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
/* update values for CCK and OFDM in BBPCSR1 */
tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
tmp |= (tx & 0x7) << 16 | (tx & 0x7);
RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
}
static void
rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
{
uint8_t rx;
rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
if (antenna == 1)
rx |= RT2560_BBP_ANTA;
else if (antenna == 2)
rx |= RT2560_BBP_ANTB;
else
rx |= RT2560_BBP_DIVERSITY;
/* need to force no I/Q flip for RF 2525e and 2526 */
if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
rx &= ~RT2560_BBP_FLIPIQ;
rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
}
static void
rt2560_stop(struct rt2560_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
ieee80211_stop_watchdog(ic); /* stop the watchdog */
RAL_LOCK(sc);
sc->sc_tx_timer = 0;
/* abort Tx */
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
/* disable Rx */
RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
/* reset ASIC (imply reset BBP) */
RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
RAL_WRITE(sc, RT2560_CSR1, 0);
/* disable interrupts */
RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
/* reset Tx and Rx rings */
rt2560_reset_tx_ring(sc, &sc->txq);
rt2560_reset_tx_ring(sc, &sc->prioq);
rt2560_reset_rx_ring(sc, &sc->rxq);
RAL_UNLOCK(sc);
}
static int
rt2560_init(struct rt2560_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
/* struct rt2560_softc *sc = priv; */
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int i;
rt2560_stop(sc);
RAL_LOCK(sc);
/* setup tx/rx ring */
rt2560_ring_hwsetup(sc);
/* initialize MAC registers to default values */
for (i = 0; i < N(rt2560_def_mac); i++)
RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
rt2560_set_macaddr(sc, ic->ic_macaddr);
/* set basic rate set (will be updated later) */
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
rt2560_set_txantenna(sc, sc->tx_ant);
rt2560_set_rxantenna(sc, sc->rx_ant);
rt2560_update_slot(ic, 1);
rt2560_update_plcp(sc);
rt2560_update_led(sc, 0, 0);
RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
if (rt2560_bbp_init(sc) != 0) {
RAL_UNLOCK(sc);
rt2560_stop(sc);
return (DDI_FAILURE);
}
/* set default BSS channel */
rt2560_set_chan(sc, ic->ic_curchan);
/* kick Rx */
tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RT2560_DROP_TODS;
if (!(sc->sc_rcr & RAL_RCR_PROMISC))
tmp |= RT2560_DROP_NOT_TO_ME;
}
RAL_WRITE(sc, RT2560_RXCSR0, tmp);
/* clear old FCS and Rx FIFO errors */
(void) RAL_READ(sc, RT2560_CNT0);
(void) RAL_READ(sc, RT2560_CNT4);
/* clear any pending interrupts */
RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
/* enable interrupts */
RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
RAL_UNLOCK(sc);
#undef N
return (DDI_SUCCESS);
}
void
rt2560_watchdog(void *arg)
{
struct rt2560_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int ntimer = 0;
RAL_LOCK(sc);
ic->ic_watchdog_timer = 0;
if (!RAL_IS_RUNNING(sc)) {
RAL_UNLOCK(sc);
return;
}
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
RAL_DEBUG(RAL_DBG_MSG, "tx timer timeout\n");
RAL_UNLOCK(sc);
(void) rt2560_init(sc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return;
}
}
if (ic->ic_state == IEEE80211_S_RUN)
ntimer = 1;
RAL_UNLOCK(sc);
ieee80211_watchdog(ic);
if (ntimer)
ieee80211_start_watchdog(ic, ntimer);
}
static int
rt2560_m_start(void *arg)
{
struct rt2560_softc *sc = (struct rt2560_softc *)arg;
crypto_mech_type_t type;
int err;
type = crypto_mech2id(SUN_CKM_RC4); /* load rc4 module into kernel */
RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_m_start(%d)\n", type);
/*
* initialize rt2560 hardware
*/
err = rt2560_init(sc);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD, "device configuration failed\n");
goto fail;
}
sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */
return (err);
fail:
rt2560_stop(sc);
return (err);
}
static void
rt2560_m_stop(void *arg)
{
struct rt2560_softc *sc = (struct rt2560_softc *)arg;
RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_m_stop()\n");
(void) rt2560_stop(sc);
sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
}
static int
rt2560_m_unicst(void *arg, const uint8_t *macaddr)
{
struct rt2560_softc *sc = (struct rt2560_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
RAL_DEBUG(RAL_DBG_GLD, "rt2560_m_unicst(): " MACSTR "\n",
MAC2STR(macaddr));
IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
(void) rt2560_set_macaddr(sc, (uint8_t *)macaddr);
(void) rt2560_init(sc);
return (0);
}
/*ARGSUSED*/
static int
rt2560_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
{
return (0);
}
static int
rt2560_m_promisc(void *arg, boolean_t on)
{
struct rt2560_softc *sc = (struct rt2560_softc *)arg;
RAL_DEBUG(RAL_DBG_GLD, "rt2560_m_promisc()\n");
if (on) {
sc->sc_rcr |= RAL_RCR_PROMISC;
sc->sc_rcr |= RAL_RCR_MULTI;
} else {
sc->sc_rcr &= ~RAL_RCR_PROMISC;
sc->sc_rcr &= ~RAL_RCR_PROMISC;
}
rt2560_update_promisc(sc);
return (0);
}
static void
rt2560_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
{
struct rt2560_softc *sc = (struct rt2560_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
int err;
err = ieee80211_ioctl(ic, wq, mp);
RAL_LOCK(sc);
if (err == ENETRESET) {
if (RAL_IS_RUNNING(sc)) {
RAL_UNLOCK(sc);
(void) rt2560_init(sc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
RAL_LOCK(sc);
}
}
RAL_UNLOCK(sc);
}
static int
rt2560_m_stat(void *arg, uint_t stat, uint64_t *val)
{
struct rt2560_softc *sc = (struct rt2560_softc *)arg;
ieee80211com_t *ic = &sc->sc_ic;
ieee80211_node_t *ni = ic->ic_bss;
struct ieee80211_rateset *rs = &ni->in_rates;
RAL_LOCK(sc);
switch (stat) {
case MAC_STAT_IFSPEED:
*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
(rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
: ic->ic_fixed_rate) / 2 * 1000000;
break;
case MAC_STAT_NOXMTBUF:
*val = sc->sc_tx_nobuf;
break;
case MAC_STAT_NORCVBUF:
*val = sc->sc_rx_nobuf;
break;
case MAC_STAT_IERRORS:
*val = sc->sc_rx_err;
break;
case MAC_STAT_RBYTES:
*val = ic->ic_stats.is_rx_bytes;
break;
case MAC_STAT_IPACKETS:
*val = ic->ic_stats.is_rx_frags;
break;
case MAC_STAT_OBYTES:
*val = ic->ic_stats.is_tx_bytes;
break;
case MAC_STAT_OPACKETS:
*val = ic->ic_stats.is_tx_frags;
break;
case MAC_STAT_OERRORS:
case WIFI_STAT_TX_FAILED:
*val = sc->sc_tx_err;
break;
case WIFI_STAT_TX_RETRANS:
*val = sc->sc_tx_retries;
break;
case WIFI_STAT_FCS_ERRORS:
case WIFI_STAT_WEP_ERRORS:
case WIFI_STAT_TX_FRAGS:
case WIFI_STAT_MCAST_TX:
case WIFI_STAT_RTS_SUCCESS:
case WIFI_STAT_RTS_FAILURE:
case WIFI_STAT_ACK_FAILURE:
case WIFI_STAT_RX_FRAGS:
case WIFI_STAT_MCAST_RX:
case WIFI_STAT_RX_DUPS:
RAL_UNLOCK(sc);
return (ieee80211_stat(ic, stat, val));
default:
RAL_UNLOCK(sc);
return (ENOTSUP);
}
RAL_UNLOCK(sc);
return (0);
}
static uint_t
rt2560_intr(caddr_t arg)
{
struct rt2560_softc *sc = (struct rt2560_softc *)arg;
uint32_t r;
RAL_LOCK(sc);
r = RAL_READ(sc, RT2560_CSR7);
RAL_WRITE(sc, RT2560_CSR7, r);
if (r == 0xffffffff) {
RAL_UNLOCK(sc);
return (DDI_INTR_UNCLAIMED);
}
if (!(r & RT2560_INTR_ALL)) {
RAL_UNLOCK(sc);
return (DDI_INTR_UNCLAIMED);
}
/* disable interrupts */
RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
if (r & RT2560_TX_DONE) {
RAL_UNLOCK(sc);
rt2560_tx_intr(sc);
RAL_LOCK(sc);
}
if (r & RT2560_PRIO_DONE) {
RAL_UNLOCK(sc);
rt2560_prio_intr(sc);
RAL_LOCK(sc);
}
if (r & RT2560_RX_DONE) {
sc->sc_rx_pend = 1;
ddi_trigger_softintr(sc->sc_softint_id);
}
/* re-enable interrupts */
RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
RAL_UNLOCK(sc);
return (DDI_INTR_CLAIMED);
}
static int
rt2560_reset(dev_info_t *devinfo, ddi_reset_cmd_t cmd)
{
struct rt2560_softc *sc;
RAL_DEBUG(RAL_DBG_GLD, "rt2560_reset(0x%p)\n", (void *)devinfo);
if (cmd != DDI_RESET_FORCE)
return (DDI_FAILURE);
sc = ddi_get_soft_state(ral_soft_state_p, ddi_get_instance(devinfo));
/* abort Tx */
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
/* disable Rx */
RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
/* reset ASIC (imply reset BBP) */
RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
RAL_WRITE(sc, RT2560_CSR1, 0);
/* disable interrupts */
RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
return (DDI_SUCCESS);
}
static int
rt2560_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
{
struct rt2560_softc *sc;
struct ieee80211com *ic;
int err, i;
int instance;
ddi_acc_handle_t ioh;
caddr_t regs;
uint16_t vendor_id, device_id, command;
uint8_t cachelsz;
char strbuf[32];
wifi_data_t wd = { 0 };
mac_register_t *macp;
RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_attach()\n");
if (cmd != DDI_ATTACH)
return (DDI_FAILURE);
instance = ddi_get_instance(devinfo);
if (ddi_soft_state_zalloc(ral_soft_state_p, instance) != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
"unable to alloc soft_state_p\n");
return (DDI_FAILURE);
}
sc = ddi_get_soft_state(ral_soft_state_p, instance);
ic = (ieee80211com_t *)&sc->sc_ic;
sc->sc_dev = devinfo;
/* pci configuration */
err = ddi_regs_map_setup(devinfo, 0, &regs, 0, 0, &ral_csr_accattr,
&ioh);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
"ddi_regs_map_setup() failed");
goto fail1;
}
cachelsz = ddi_get8(ioh, (uint8_t *)(regs + PCI_CONF_CACHE_LINESZ));
if (cachelsz == 0)
cachelsz = 0x10;
sc->sc_cachelsz = cachelsz << 2;
vendor_id = ddi_get16(ioh, (uint16_t *)(regs + PCI_CONF_VENID));
device_id = ddi_get16(ioh, (uint16_t *)(regs + PCI_CONF_DEVID));
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): vendor 0x%x, "
"device id 0x%x, cache size %d\n", vendor_id, device_id, cachelsz);
/*
* Enable response to memory space accesses,
* and enabe bus master.
*/
command = PCI_COMM_MAE | PCI_COMM_ME;
ddi_put16(ioh, (uint16_t *)(regs + PCI_CONF_COMM), command);
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
"set command reg to 0x%x \n", command);
ddi_put8(ioh, (uint8_t *)(regs + PCI_CONF_LATENCY_TIMER), 0xa8);
ddi_put8(ioh, (uint8_t *)(regs + PCI_CONF_ILINE), 0x10);
ddi_regs_map_free(&ioh);
/* pci i/o space */
err = ddi_regs_map_setup(devinfo, 1,
&sc->sc_rbase, 0, 0, &ral_csr_accattr, &sc->sc_ioh);
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
"regs map1 = %x err=%d\n", regs, err);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
"ddi_regs_map_setup() failed");
goto fail1;
}
/* initialize the ral rate */
ral_rate_init();
/* retrieve RT2560 rev. no */
sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
/* retrieve MAC address */
rt2560_get_macaddr(sc, ic->ic_macaddr);
/* retrieve RF rev. no and various other things from EEPROM */
rt2560_read_eeprom(sc);
RAL_DEBUG(RAL_DBG_GLD, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
sc->asic_rev, rt2560_get_rf(sc->rf_rev));
/*
* Allocate Tx and Rx rings.
*/
err = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD, "could not allocate Tx ring\n");
goto fail2;
}
err = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD, "could not allocate Prio ring\n");
goto fail3;
}
err = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD, "could not allocate Rx ring\n");
goto fail4;
}
mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->txq.tx_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->prioq.tx_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->rxq.rx_lock, NULL, MUTEX_DRIVER, NULL);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
ic->ic_maxrssi = 63;
ic->ic_set_shortslot = rt2560_update_slot;
ic->ic_xmit = rt2560_mgmt_send;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT; /* short slot time supported */
ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
#define IEEE80211_CHAN_A \
(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
if (sc->rf_rev == RT2560_RF_5222) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
for (i = 100; i <= 140; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 161; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_sup_channels[i].ich_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ieee80211_attach(ic);
/* register WPA door */
ieee80211_register_door(ic, ddi_driver_name(devinfo),
ddi_get_instance(devinfo));
ic->ic_node_alloc = rt2560_node_alloc;
ic->ic_node_free = rt2560_node_free;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rt2560_newstate;
ic->ic_watchdog = rt2560_watchdog;
ieee80211_media_init(ic);
ic->ic_def_txkey = 0;
sc->sc_rcr = 0;
sc->sc_rx_pend = 0;
sc->dwelltime = 300;
sc->sc_flags &= ~RAL_FLAG_RUNNING;
err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW,
&sc->sc_softint_id, NULL, 0, ral_softint_handler, (caddr_t)sc);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
"ddi_add_softintr() failed");
goto fail5;
}
err = ddi_get_iblock_cookie(devinfo, 0, &sc->sc_iblock);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
"Can not get iblock cookie for INT\n");
goto fail6;
}
err = ddi_add_intr(devinfo, 0, NULL, NULL, rt2560_intr, (caddr_t)sc);
if (err != DDI_SUCCESS) {
RAL_DEBUG(RAL_DBG_GLD,
"unable to add device interrupt handler\n");
goto fail6;
}
/*
* Provide initial settings for the WiFi plugin; whenever this
* information changes, we need to call mac_plugindata_update()
*/
wd.wd_opmode = ic->ic_opmode;
wd.wd_secalloc = WIFI_SEC_NONE;
IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
"MAC version mismatch\n");
goto fail7;
}
macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
macp->m_driver = sc;
macp->m_dip = devinfo;
macp->m_src_addr = ic->ic_macaddr;
macp->m_callbacks = &rt2560_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = IEEE80211_MTU;
macp->m_pdata = &wd;
macp->m_pdata_size = sizeof (wd);
err = mac_register(macp, &ic->ic_mach);
mac_free(macp);
if (err != 0) {
RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
"mac_register err %x\n", err);
goto fail7;
}
/*
* Create minor node of type DDI_NT_NET_WIFI
*/
(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
"ral", instance);
err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
instance + 1, DDI_NT_NET_WIFI, 0);
if (err != DDI_SUCCESS)
RAL_DEBUG(RAL_DBG_GLD, "ddi_create_minor_node() failed\n");
/*
* Notify link is down now
*/
mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
RAL_DEBUG(RAL_DBG_GLD, "rt2560_attach() exit successfully.\n");
return (DDI_SUCCESS);
fail7:
ddi_remove_intr(devinfo, 0, sc->sc_iblock);
fail6:
ddi_remove_softintr(sc->sc_softint_id);
fail5:
mutex_destroy(&sc->sc_genlock);
mutex_destroy(&sc->txq.tx_lock);
mutex_destroy(&sc->prioq.tx_lock);
mutex_destroy(&sc->rxq.rx_lock);
rt2560_free_rx_ring(sc, &sc->rxq);
fail4:
rt2560_free_tx_ring(sc, &sc->prioq);
fail3:
rt2560_free_tx_ring(sc, &sc->txq);
fail2:
ddi_regs_map_free(&sc->sc_ioh);
fail1:
ddi_soft_state_free(ral_soft_state_p, ddi_get_instance(devinfo));
return (DDI_FAILURE);
}
static int
rt2560_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
{
struct rt2560_softc *sc;
RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_detach()\n");
sc = ddi_get_soft_state(ral_soft_state_p, ddi_get_instance(devinfo));
if (cmd != DDI_DETACH)
return (DDI_FAILURE);
rt2560_stop(sc);
/*
* Unregister from the MAC layer subsystem
*/
if (mac_unregister(sc->sc_ic.ic_mach) != 0)
return (DDI_FAILURE);
ddi_remove_intr(devinfo, 0, sc->sc_iblock);
ddi_remove_softintr(sc->sc_softint_id);
/*
* detach ieee80211 layer
*/
ieee80211_detach(&sc->sc_ic);
rt2560_free_tx_ring(sc, &sc->txq);
rt2560_free_tx_ring(sc, &sc->prioq);
rt2560_free_rx_ring(sc, &sc->rxq);
ddi_regs_map_free(&sc->sc_ioh);
mutex_destroy(&sc->sc_genlock);
mutex_destroy(&sc->txq.tx_lock);
mutex_destroy(&sc->prioq.tx_lock);
mutex_destroy(&sc->rxq.rx_lock);
ddi_remove_minor_node(devinfo, NULL);
ddi_soft_state_free(ral_soft_state_p, ddi_get_instance(devinfo));
return (DDI_SUCCESS);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_init(void)
{
int status;
status = ddi_soft_state_init(&ral_soft_state_p,
sizeof (struct rt2560_softc), 1);
if (status != 0)
return (status);
mac_init_ops(&ral_dev_ops, "ral");
status = mod_install(&modlinkage);
if (status != 0) {
mac_fini_ops(&ral_dev_ops);
ddi_soft_state_fini(&ral_soft_state_p);
}
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&modlinkage);
if (status == 0) {
mac_fini_ops(&ral_dev_ops);
ddi_soft_state_fini(&ral_soft_state_p);
}
return (status);
}