unm_nic_ctx.c revision 93833965647072e8fb234b6f0cd4060544c6dc4a
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 NetXen, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/debug.h>
#include <sys/stropts.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/kmem.h>
#include <sys/stat.h>
#include <sys/kstat.h>
#include <sys/vtrace.h>
#include <sys/dlpi.h>
#include <sys/strsun.h>
#include <sys/ethernet.h>
#include <sys/modctl.h>
#include <sys/errno.h>
#include <sys/dditypes.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sysmacros.h>
#include <sys/pci.h>
#include "unm_nic_hw.h"
#include "unm_nic.h"
#include "nic_phan_reg.h"
#include "nic_cmn.h"
typedef unsigned int nx_rcode_t;
#include "nx_errorcode.h"
#include "nxhal_nic_interface.h"
#define NXHAL_VERSION 1
#define NX_OS_CRB_RETRY_COUNT 4000
#define NX_CDRP_CLEAR 0x00000000
#define NX_CDRP_CMD_BIT 0x80000000
/*
* All responses must have the NX_CDRP_CMD_BIT cleared
* in the crb NX_CDRP_CRB_OFFSET.
*/
#define NX_CDRP_FORM_RSP(rsp) (rsp)
#define NX_CDRP_IS_RSP(rsp) (((rsp) & NX_CDRP_CMD_BIT) == 0)
#define NX_CDRP_RSP_OK 0x00000001
#define NX_CDRP_RSP_FAIL 0x00000002
#define NX_CDRP_RSP_TIMEOUT 0x00000003
/*
* All commands must have the NX_CDRP_CMD_BIT set in
* the crb NX_CDRP_CRB_OFFSET.
*/
#define NX_CDRP_FORM_CMD(cmd) (NX_CDRP_CMD_BIT | (cmd))
#define NX_CDRP_IS_CMD(cmd) (((cmd) & NX_CDRP_CMD_BIT) != 0)
#define NX_CDRP_CMD_SUBMIT_CAPABILITIES 0x00000001
#define NX_CDRP_CMD_READ_MAX_RDS_PER_CTX 0x00000002
#define NX_CDRP_CMD_READ_MAX_SDS_PER_CTX 0x00000003
#define NX_CDRP_CMD_READ_MAX_RULES_PER_CTX 0x00000004
#define NX_CDRP_CMD_READ_MAX_RX_CTX 0x00000005
#define NX_CDRP_CMD_READ_MAX_TX_CTX 0x00000006
#define NX_CDRP_CMD_CREATE_RX_CTX 0x00000007
#define NX_CDRP_CMD_DESTROY_RX_CTX 0x00000008
#define NX_CDRP_CMD_CREATE_TX_CTX 0x00000009
#define NX_CDRP_CMD_DESTROY_TX_CTX 0x0000000a
#define NX_CDRP_CMD_SETUP_STATISTICS 0x0000000e
#define NX_CDRP_CMD_GET_STATISTICS 0x0000000f
#define NX_CDRP_CMD_DELETE_STATISTICS 0x00000010
#define NX_CDRP_CMD_SET_MTU 0x00000012
#define NX_CDRP_CMD_MAX 0x00000013
#define NX_DESTROY_CTX_RESET 0
#define NX_DESTROY_CTX_D3_RESET 1
#define NX_DESTROY_CTX_MAX 2
/*
* Context state
*/
#define NX_HOST_CTX_STATE_FREED 0
#define NX_HOST_CTX_STATE_ALLOCATED 1
#define NX_HOST_CTX_STATE_ACTIVE 2
#define NX_HOST_CTX_STATE_DISABLED 3
#define NX_HOST_CTX_STATE_QUIESCED 4
#define NX_HOST_CTX_STATE_MAX 5
static int
netxen_api_lock(struct unm_adapter_s *adapter)
{
u32 done = 0, timeout = 0;
for (;;) {
/* Acquire PCIE HW semaphore5 */
unm_nic_read_w0(adapter,
UNM_PCIE_REG(PCIE_SEM5_LOCK), &done);
if (done == 1)
break;
if (++timeout >= NX_OS_CRB_RETRY_COUNT) {
cmn_err(CE_WARN, "%s: lock timeout.\n", __func__);
return (-1);
}
drv_usecwait(1000);
}
#if 0
unm_nic_reg_write(adapter, NETXEN_API_LOCK_ID, NX_OS_API_LOCK_DRIVER);
#endif
return (0);
}
static void
netxen_api_unlock(struct unm_adapter_s *adapter)
{
u32 val;
/* Release PCIE HW semaphore5 */
unm_nic_read_w0(adapter,
UNM_PCIE_REG(PCIE_SEM5_UNLOCK), &val);
}
static u32
netxen_poll_rsp(struct unm_adapter_s *adapter)
{
u32 raw_rsp, rsp = NX_CDRP_RSP_OK;
int timeout = 0;
do {
/* give atleast 1ms for firmware to respond */
drv_usecwait(1000);
if (++timeout > NX_OS_CRB_RETRY_COUNT)
return (NX_CDRP_RSP_TIMEOUT);
adapter->unm_nic_hw_read_wx(adapter, NX_CDRP_CRB_OFFSET,
&raw_rsp, 4);
rsp = LE_TO_HOST_32(raw_rsp);
} while (!NX_CDRP_IS_RSP(rsp));
return (rsp);
}
static u32
netxen_issue_cmd(struct unm_adapter_s *adapter,
u32 pci_fn, u32 version, u32 arg1, u32 arg2, u32 arg3, u32 cmd)
{
u32 rsp;
u32 signature = 0;
u32 rcode = NX_RCODE_SUCCESS;
signature = NX_CDRP_SIGNATURE_MAKE(pci_fn, version);
/* Acquire semaphore before accessing CRB */
if (netxen_api_lock(adapter))
return (NX_RCODE_TIMEOUT);
unm_nic_reg_write(adapter, NX_SIGN_CRB_OFFSET,
HOST_TO_LE_32(signature));
unm_nic_reg_write(adapter, NX_ARG1_CRB_OFFSET,
HOST_TO_LE_32(arg1));
unm_nic_reg_write(adapter, NX_ARG2_CRB_OFFSET,
HOST_TO_LE_32(arg2));
unm_nic_reg_write(adapter, NX_ARG3_CRB_OFFSET,
HOST_TO_LE_32(arg3));
unm_nic_reg_write(adapter, NX_CDRP_CRB_OFFSET,
HOST_TO_LE_32(NX_CDRP_FORM_CMD(cmd)));
rsp = netxen_poll_rsp(adapter);
if (rsp == NX_CDRP_RSP_TIMEOUT) {
cmn_err(CE_WARN, "%s: card response timeout.\n",
unm_nic_driver_name);
rcode = NX_RCODE_TIMEOUT;
} else if (rsp == NX_CDRP_RSP_FAIL) {
adapter->unm_nic_hw_read_wx(adapter, NX_ARG1_CRB_OFFSET,
&rcode, 4);
rcode = LE_TO_HOST_32(rcode);
cmn_err(CE_WARN, "%s: failed card response code:0x%x\n",
unm_nic_driver_name, rcode);
}
/* Release semaphore */
netxen_api_unlock(adapter);
return (rcode);
}
int
nx_fw_cmd_set_mtu(struct unm_adapter_s *adapter, int mtu)
{
u32 rcode = NX_RCODE_SUCCESS;
struct unm_recv_context_s *recv_ctx = &adapter->recv_ctx[0];
if (recv_ctx->state == NX_HOST_CTX_STATE_ACTIVE)
rcode = netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
recv_ctx->context_id,
mtu,
0,
NX_CDRP_CMD_SET_MTU);
if (rcode != NX_RCODE_SUCCESS)
return (-EIO);
return (0);
}
static int
nx_fw_cmd_create_rx_ctx(struct unm_adapter_s *adapter)
{
unm_recv_context_t *recv_ctx = &adapter->recv_ctx[0];
nx_hostrq_rx_ctx_t *prq;
nx_cardrsp_rx_ctx_t *prsp;
nx_hostrq_rds_ring_t *prq_rds;
nx_hostrq_sds_ring_t *prq_sds;
nx_cardrsp_rds_ring_t *prsp_rds;
nx_cardrsp_sds_ring_t *prsp_sds;
unm_rcv_desc_ctx_t *rcv_desc;
ddi_dma_cookie_t cookie;
ddi_dma_handle_t rqdhdl, rsdhdl;
ddi_acc_handle_t rqahdl, rsahdl;
uint64_t hostrq_phys_addr, cardrsp_phys_addr;
u64 phys_addr;
u32 cap, reg;
size_t rq_size, rsp_size;
void *addr;
int i, nrds_rings, nsds_rings, err;
/* only one sds ring for now */
nrds_rings = adapter->max_rds_rings;
nsds_rings = 1;
rq_size =
SIZEOF_HOSTRQ_RX(nx_hostrq_rx_ctx_t, nrds_rings, nsds_rings);
rsp_size =
SIZEOF_CARDRSP_RX(nx_cardrsp_rx_ctx_t, nrds_rings, nsds_rings);
if (unm_pci_alloc_consistent(adapter, rq_size, (caddr_t *)&addr,
&cookie, &rqdhdl, &rqahdl) != DDI_SUCCESS)
return (-ENOMEM);
hostrq_phys_addr = cookie.dmac_laddress;
prq = (nx_hostrq_rx_ctx_t *)addr;
if (unm_pci_alloc_consistent(adapter, rsp_size, (caddr_t *)&addr,
&cookie, &rsdhdl, &rsahdl) != DDI_SUCCESS) {
err = -ENOMEM;
goto out_free_rq;
}
cardrsp_phys_addr = cookie.dmac_laddress;
prsp = (nx_cardrsp_rx_ctx_t *)addr;
prq->host_rsp_dma_addr = HOST_TO_LE_64(cardrsp_phys_addr);
cap = (NX_CAP0_LEGACY_CONTEXT | NX_CAP0_LEGACY_MN);
cap |= (NX_CAP0_JUMBO_CONTIGUOUS);
prq->capabilities[0] = HOST_TO_LE_32(cap);
prq->host_int_crb_mode =
HOST_TO_LE_32(NX_HOST_INT_CRB_MODE_SHARED);
prq->host_rds_crb_mode =
HOST_TO_LE_32(NX_HOST_RDS_CRB_MODE_UNIQUE);
prq->num_rds_rings = HOST_TO_LE_16(nrds_rings);
prq->num_sds_rings = HOST_TO_LE_16(nsds_rings);
prq->rds_ring_offset = 0;
prq->sds_ring_offset = prq->rds_ring_offset +
(sizeof (nx_hostrq_rds_ring_t) * nrds_rings);
prq_rds = (nx_hostrq_rds_ring_t *)(uintptr_t)((char *)prq +
sizeof (*prq) + prq->rds_ring_offset);
for (i = 0; i < nrds_rings; i++) {
rcv_desc = &recv_ctx->rcv_desc[i];
prq_rds[i].host_phys_addr = HOST_TO_LE_64(rcv_desc->phys_addr);
prq_rds[i].ring_size = HOST_TO_LE_32(rcv_desc->MaxRxDescCount);
prq_rds[i].ring_kind = HOST_TO_LE_32(i);
prq_rds[i].buff_size = HOST_TO_LE_64(rcv_desc->dma_size);
}
prq_sds = (nx_hostrq_sds_ring_t *)(uintptr_t)((char *)prq +
sizeof (*prq) + prq->sds_ring_offset);
prq_sds[0].host_phys_addr =
HOST_TO_LE_64(recv_ctx->rcvStatusDesc_physAddr);
prq_sds[0].ring_size = HOST_TO_LE_32(adapter->MaxRxDescCount);
/* only one msix vector for now */
prq_sds[0].msi_index = HOST_TO_LE_32(0);
/* now byteswap offsets */
prq->rds_ring_offset = HOST_TO_LE_32(prq->rds_ring_offset);
prq->sds_ring_offset = HOST_TO_LE_32(prq->sds_ring_offset);
phys_addr = hostrq_phys_addr;
err = netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
(u32)(phys_addr >> 32),
(u32)(phys_addr & 0xffffffff),
rq_size,
NX_CDRP_CMD_CREATE_RX_CTX);
if (err) {
cmn_err(CE_WARN, "Failed to create rx ctx in firmware%d\n",
err);
goto out_free_rsp;
}
prsp_rds = (nx_cardrsp_rds_ring_t *)(uintptr_t)((char *)prsp +
sizeof (*prsp) + prsp->rds_ring_offset);
for (i = 0; i < LE_TO_HOST_32(prsp->num_rds_rings); i++) {
rcv_desc = &recv_ctx->rcv_desc[i];
reg = LE_TO_HOST_32(prsp_rds[i].host_producer_crb);
rcv_desc->host_rx_producer = UNM_NIC_REG(reg - 0x200);
}
prsp_sds = (nx_cardrsp_sds_ring_t *)(uintptr_t)((char *)prsp +
sizeof (*prsp) + prsp->sds_ring_offset);
reg = LE_TO_HOST_32(prsp_sds[0].host_consumer_crb);
recv_ctx->host_sds_consumer = UNM_NIC_REG(reg - 0x200);
reg = LE_TO_HOST_32(prsp_sds[0].interrupt_crb);
adapter->interrupt_crb = UNM_NIC_REG(reg - 0x200);
recv_ctx->state = LE_TO_HOST_32(prsp->host_ctx_state);
recv_ctx->context_id = LE_TO_HOST_16(prsp->context_id);
recv_ctx->virt_port = LE_TO_HOST_16(prsp->virt_port);
out_free_rsp:
unm_pci_free_consistent(&rsdhdl, &rsahdl);
out_free_rq:
unm_pci_free_consistent(&rqdhdl, &rqahdl);
return (err);
}
static void
nx_fw_cmd_destroy_rx_ctx(struct unm_adapter_s *adapter)
{
struct unm_recv_context_s *recv_ctx = &adapter->recv_ctx[0];
if (netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
recv_ctx->context_id,
NX_DESTROY_CTX_RESET,
0,
NX_CDRP_CMD_DESTROY_RX_CTX)) {
cmn_err(CE_WARN, "%s: Failed to destroy rx ctx in firmware\n",
unm_nic_driver_name);
}
}
static int
nx_fw_cmd_create_tx_ctx(struct unm_adapter_s *adapter)
{
nx_hostrq_tx_ctx_t *prq;
nx_hostrq_cds_ring_t *prq_cds;
nx_cardrsp_tx_ctx_t *prsp;
ddi_dma_cookie_t cookie;
ddi_dma_handle_t rqdhdl, rsdhdl;
ddi_acc_handle_t rqahdl, rsahdl;
void *rq_addr, *rsp_addr;
size_t rq_size, rsp_size;
u32 temp;
int err = 0;
u64 offset, phys_addr;
uint64_t rq_phys_addr, rsp_phys_addr;
rq_size = SIZEOF_HOSTRQ_TX(nx_hostrq_tx_ctx_t);
if (unm_pci_alloc_consistent(adapter, rq_size, (caddr_t *)&rq_addr,
&cookie, &rqdhdl, &rqahdl) != DDI_SUCCESS)
return (-ENOMEM);
rq_phys_addr = cookie.dmac_laddress;
rsp_size = SIZEOF_CARDRSP_TX(nx_cardrsp_tx_ctx_t);
if (unm_pci_alloc_consistent(adapter, rsp_size, (caddr_t *)&rsp_addr,
&cookie, &rsdhdl, &rsahdl) != DDI_SUCCESS) {
err = -ENOMEM;
goto out_free_rq;
}
rsp_phys_addr = cookie.dmac_laddress;
(void) memset(rq_addr, 0, rq_size);
prq = (nx_hostrq_tx_ctx_t *)rq_addr;
(void) memset(rsp_addr, 0, rsp_size);
prsp = (nx_cardrsp_tx_ctx_t *)rsp_addr;
prq->host_rsp_dma_addr = HOST_TO_LE_64(rsp_phys_addr);
temp = (NX_CAP0_LEGACY_CONTEXT | NX_CAP0_LEGACY_MN);
prq->capabilities[0] = HOST_TO_LE_32(temp);
prq->host_int_crb_mode =
HOST_TO_LE_32(NX_HOST_INT_CRB_MODE_SHARED);
prq->interrupt_ctl = 0;
prq->msi_index = 0;
prq->dummy_dma_addr = HOST_TO_LE_64(adapter->dummy_dma.phys_addr);
offset = adapter->ctxDesc_physAddr + sizeof (RingContext);
prq->cmd_cons_dma_addr = HOST_TO_LE_64(offset);
prq_cds = &prq->cds_ring;
prq_cds->host_phys_addr =
HOST_TO_LE_64(adapter->ahw.cmdDesc_physAddr);
prq_cds->ring_size = HOST_TO_LE_32(adapter->MaxTxDescCount);
phys_addr = rq_phys_addr;
err = netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
(u32)(phys_addr >> 32),
((u32)phys_addr & 0xffffffff),
rq_size,
NX_CDRP_CMD_CREATE_TX_CTX);
if (err == NX_RCODE_SUCCESS) {
temp = LE_TO_HOST_32(prsp->cds_ring.host_producer_crb);
adapter->crb_addr_cmd_producer =
UNM_NIC_REG(temp - 0x200);
#if 0
adapter->tx_state =
LE_TO_HOST_32(prsp->host_ctx_state);
#endif
adapter->tx_context_id =
LE_TO_HOST_16(prsp->context_id);
} else {
cmn_err(CE_WARN, "Failed to create tx ctx in firmware%d\n",
err);
err = -EIO;
}
unm_pci_free_consistent(&rsdhdl, &rsahdl);
out_free_rq:
unm_pci_free_consistent(&rqdhdl, &rqahdl);
return (err);
}
static void
nx_fw_cmd_destroy_tx_ctx(struct unm_adapter_s *adapter)
{
if (netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
adapter->tx_context_id,
NX_DESTROY_CTX_RESET,
0,
NX_CDRP_CMD_DESTROY_TX_CTX)) {
cmn_err(CE_WARN, "%s: Failed to destroy tx ctx in firmware\n",
unm_nic_driver_name);
}
}
static u64 ctx_addr_sig_regs[][3] = {
{UNM_NIC_REG(0x188), UNM_NIC_REG(0x18c), UNM_NIC_REG(0x1c0)},
{UNM_NIC_REG(0x190), UNM_NIC_REG(0x194), UNM_NIC_REG(0x1c4)},
{UNM_NIC_REG(0x198), UNM_NIC_REG(0x19c), UNM_NIC_REG(0x1c8)},
{UNM_NIC_REG(0x1a0), UNM_NIC_REG(0x1a4), UNM_NIC_REG(0x1cc)}
};
#define CRB_CTX_ADDR_REG_LO(FUNC_ID) (ctx_addr_sig_regs[FUNC_ID][0])
#define CRB_CTX_ADDR_REG_HI(FUNC_ID) (ctx_addr_sig_regs[FUNC_ID][2])
#define CRB_CTX_SIGNATURE_REG(FUNC_ID) (ctx_addr_sig_regs[FUNC_ID][1])
struct netxen_recv_crb {
u32 crb_rcv_producer[NUM_RCV_DESC_RINGS];
u32 crb_sts_consumer;
};
static struct netxen_recv_crb recv_crb_registers[] = {
/* Instance 0 */
{
/* crb_rcv_producer: */
{
UNM_NIC_REG(0x100),
/* Jumbo frames */
UNM_NIC_REG(0x110),
/* LRO */
UNM_NIC_REG(0x120)
},
/* crb_sts_consumer: */
UNM_NIC_REG(0x138),
},
/* Instance 1 */
{
/* crb_rcv_producer: */
{
UNM_NIC_REG(0x144),
/* Jumbo frames */
UNM_NIC_REG(0x154),
/* LRO */
UNM_NIC_REG(0x164)
},
/* crb_sts_consumer: */
UNM_NIC_REG(0x17c),
},
/* Instance 2 */
{
/* crb_rcv_producer: */
{
UNM_NIC_REG(0x1d8),
/* Jumbo frames */
UNM_NIC_REG(0x1f8),
/* LRO */
UNM_NIC_REG(0x208)
},
/* crb_sts_consumer: */
UNM_NIC_REG(0x220),
},
/* Instance 3 */
{
/* crb_rcv_producer: */
{
UNM_NIC_REG(0x22c),
/* Jumbo frames */
UNM_NIC_REG(0x23c),
/* LRO */
UNM_NIC_REG(0x24c)
},
/* crb_sts_consumer: */
UNM_NIC_REG(0x264),
},
};
static uint32_t sw_int_mask[4] = {
CRB_SW_INT_MASK_0, CRB_SW_INT_MASK_1,
CRB_SW_INT_MASK_2, CRB_SW_INT_MASK_3
};
static int
netxen_init_old_ctx(struct unm_adapter_s *adapter)
{
hardware_context *hw = &adapter->ahw;
struct unm_recv_context_s *recv_ctx;
unm_rcv_desc_ctx_t *rcv_desc;
int ctx, ring, func_id = adapter->portnum;
unsigned int temp;
adapter->ctxDesc->CmdRingAddrLo = hw->cmdDesc_physAddr & 0xffffffffUL;
adapter->ctxDesc->CmdRingAddrHi = ((U64)hw->cmdDesc_physAddr >> 32);
adapter->ctxDesc->CmdRingSize = adapter->MaxTxDescCount;
for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
recv_ctx = &adapter->recv_ctx[ctx];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rcv_desc = &recv_ctx->rcv_desc[ring];
adapter->ctxDesc->RcvContext[ring].RcvRingAddrLo =
rcv_desc->phys_addr & 0xffffffffUL;
adapter->ctxDesc->RcvContext[ring].RcvRingAddrHi =
((U64)rcv_desc->phys_addr>>32);
adapter->ctxDesc->RcvContext[ring].RcvRingSize =
rcv_desc->MaxRxDescCount;
rcv_desc->host_rx_producer =
recv_crb_registers[adapter->portnum].
crb_rcv_producer[ring];
}
adapter->ctxDesc->StsRingAddrLo =
recv_ctx->rcvStatusDesc_physAddr & 0xffffffff;
adapter->ctxDesc->StsRingAddrHi =
recv_ctx->rcvStatusDesc_physAddr >> 32;
adapter->ctxDesc->StsRingSize = adapter->MaxRxDescCount;
recv_ctx->host_sds_consumer =
recv_crb_registers[adapter->portnum].crb_sts_consumer;
}
adapter->interrupt_crb = sw_int_mask[adapter->portnum];
temp = lower32(adapter->ctxDesc_physAddr);
adapter->unm_nic_hw_write_wx(adapter, CRB_CTX_ADDR_REG_LO(func_id),
&temp, 4);
temp = upper32(adapter->ctxDesc_physAddr);
adapter->unm_nic_hw_write_wx(adapter, CRB_CTX_ADDR_REG_HI(func_id),
&temp, 4);
temp = UNM_CTX_SIGNATURE | func_id;
adapter->unm_nic_hw_write_wx(adapter, CRB_CTX_SIGNATURE_REG(func_id),
&temp, 4);
return (0);
}
void
netxen_destroy_rxtx(struct unm_adapter_s *adapter)
{
if (adapter->fw_major >= 4) {
nx_fw_cmd_destroy_tx_ctx(adapter);
nx_fw_cmd_destroy_rx_ctx(adapter);
}
}
int
netxen_create_rxtx(struct unm_adapter_s *adapter)
{
int err;
if (adapter->fw_major >= 4) {
err = nx_fw_cmd_create_rx_ctx(adapter);
if (err)
return (err);
err = nx_fw_cmd_create_tx_ctx(adapter);
if (err)
nx_fw_cmd_destroy_rx_ctx(adapter);
return (err);
} else {
return (netxen_init_old_ctx(adapter));
}
}