nge_chip.c revision 51fc88a818087605a0e5f11eddb8b66576f72c23
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include "nge.h"
static uint32_t nge_watchdog_count = 1 << 5;
static uint32_t nge_watchdog_check = 1 << 3;
extern boolean_t nge_enable_msi;
static void nge_sync_mac_modes(nge_t *);
#undef NGE_DBG
#define NGE_DBG NGE_DBG_CHIP
/*
* Operating register get/set access routines
*/
uint8_t nge_reg_get8(nge_t *ngep, nge_regno_t regno);
#pragma inline(nge_reg_get8)
uint8_t
nge_reg_get8(nge_t *ngep, nge_regno_t regno)
{
NGE_TRACE(("nge_reg_get8($%p, 0x%lx)", (void *)ngep, regno));
return (ddi_get8(ngep->io_handle, PIO_ADDR(ngep, regno)));
}
void nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data);
#pragma inline(nge_reg_put8)
void
nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data)
{
NGE_TRACE(("nge_reg_put8($%p, 0x%lx, 0x%x)",
(void *)ngep, regno, data));
ddi_put8(ngep->io_handle, PIO_ADDR(ngep, regno), data);
}
uint16_t nge_reg_get16(nge_t *ngep, nge_regno_t regno);
#pragma inline(nge_reg_get16)
uint16_t
nge_reg_get16(nge_t *ngep, nge_regno_t regno)
{
NGE_TRACE(("nge_reg_get16($%p, 0x%lx)", (void *)ngep, regno));
return (ddi_get16(ngep->io_handle, PIO_ADDR(ngep, regno)));
}
void nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data);
#pragma inline(nge_reg_put16)
void
nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data)
{
NGE_TRACE(("nge_reg_put16($%p, 0x%lx, 0x%x)",
(void *)ngep, regno, data));
ddi_put16(ngep->io_handle, PIO_ADDR(ngep, regno), data);
}
uint32_t nge_reg_get32(nge_t *ngep, nge_regno_t regno);
#pragma inline(nge_reg_get32)
uint32_t
nge_reg_get32(nge_t *ngep, nge_regno_t regno)
{
NGE_TRACE(("nge_reg_get32($%p, 0x%lx)", (void *)ngep, regno));
return (ddi_get32(ngep->io_handle, PIO_ADDR(ngep, regno)));
}
void nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data);
#pragma inline(nge_reg_put32)
void
nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data)
{
NGE_TRACE(("nge_reg_put32($%p, 0x%lx, 0x%x)",
(void *)ngep, regno, data));
ddi_put32(ngep->io_handle, PIO_ADDR(ngep, regno), data);
}
static int nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
#pragma no_inline(nge_chip_peek_cfg)
static int
nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
{
int err;
uint64_t regval;
uint64_t regno;
NGE_TRACE(("nge_chip_peek_cfg($%p, $%p)",
(void *)ngep, (void *)ppd));
err = DDI_SUCCESS;
regno = ppd->pp_acc_offset;
switch (ppd->pp_acc_size) {
case 1:
regval = pci_config_get8(ngep->cfg_handle, regno);
break;
case 2:
regval = pci_config_get16(ngep->cfg_handle, regno);
break;
case 4:
regval = pci_config_get32(ngep->cfg_handle, regno);
break;
case 8:
regval = pci_config_get64(ngep->cfg_handle, regno);
break;
}
ppd->pp_acc_data = regval;
return (err);
}
static int nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
static int
nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
{
int err;
uint64_t regval;
uint64_t regno;
NGE_TRACE(("nge_chip_poke_cfg($%p, $%p)",
(void *)ngep, (void *)ppd));
err = DDI_SUCCESS;
regno = ppd->pp_acc_offset;
regval = ppd->pp_acc_data;
switch (ppd->pp_acc_size) {
case 1:
pci_config_put8(ngep->cfg_handle, regno, regval);
break;
case 2:
pci_config_put16(ngep->cfg_handle, regno, regval);
break;
case 4:
pci_config_put32(ngep->cfg_handle, regno, regval);
break;
case 8:
pci_config_put64(ngep->cfg_handle, regno, regval);
break;
}
return (err);
}
static int nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd);
static int
nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd)
{
int err;
uint64_t regval;
void *regaddr;
NGE_TRACE(("nge_chip_peek_reg($%p, $%p)",
(void *)ngep, (void *)ppd));
err = DDI_SUCCESS;
regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
switch (ppd->pp_acc_size) {
case 1:
regval = ddi_get8(ngep->io_handle, regaddr);
break;
case 2:
regval = ddi_get16(ngep->io_handle, regaddr);
break;
case 4:
regval = ddi_get32(ngep->io_handle, regaddr);
break;
case 8:
regval = ddi_get64(ngep->io_handle, regaddr);
break;
default:
regval = 0x0ull;
break;
}
ppd->pp_acc_data = regval;
return (err);
}
static int nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd);
static int
nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd)
{
int err;
uint64_t regval;
void *regaddr;
NGE_TRACE(("nge_chip_poke_reg($%p, $%p)",
(void *)ngep, (void *)ppd));
err = DDI_SUCCESS;
regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
regval = ppd->pp_acc_data;
switch (ppd->pp_acc_size) {
case 1:
ddi_put8(ngep->io_handle, regaddr, regval);
break;
case 2:
ddi_put16(ngep->io_handle, regaddr, regval);
break;
case 4:
ddi_put32(ngep->io_handle, regaddr, regval);
break;
case 8:
ddi_put64(ngep->io_handle, regaddr, regval);
break;
}
return (err);
}
static int nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd);
#pragma no_inline(nge_chip_peek_mii)
static int
nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd)
{
int err;
err = DDI_SUCCESS;
ppd->pp_acc_data = nge_mii_get16(ngep, ppd->pp_acc_offset/2);
return (err);
}
static int nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd);
#pragma no_inline(nge_chip_poke_mii)
static int
nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd)
{
int err;
err = DDI_SUCCESS;
nge_mii_put16(ngep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
return (err);
}
/*
* Basic SEEPROM get/set access routine
*
* This uses the chip's SEEPROM auto-access method, controlled by the
* Serial EEPROM Address/Data Registers at 0x504h, so the CPU
* doesn't have to fiddle with the individual bits.
*
* The caller should hold <genlock> and *also* have already acquired
* the right to access the SEEPROM.
*
* Return value:
* 0 on success,
* ENODATA on access timeout (maybe retryable: device may just be busy)
* EPROTO on other h/w or s/w errors.
*
* <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
* from a (successful) SEEPROM_ACCESS_READ.
*/
static int
nge_seeprom_access(nge_t *ngep, uint32_t cmd, nge_regno_t addr, uint16_t *dp)
{
uint32_t tries;
nge_ep_cmd cmd_reg;
nge_ep_data data_reg;
NGE_TRACE(("nge_seeprom_access($%p, %d, %x, $%p)",
(void *)ngep, cmd, addr, (void *)dp));
ASSERT(mutex_owned(ngep->genlock));
/*
* Check there's no command in progress.
*
* Note: this *shouldn't* ever find that there is a command
* in progress, because we already hold the <genlock> mutex.
* Also, to ensure we don't have a conflict with the chip's
* internal firmware or a process accessing the same (shared)
* So this is just a final consistency check: we shouldn't
* see EITHER the START bit (command started but not complete)
* OR the COMPLETE bit (command completed but not cleared).
*/
cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
for (tries = 0; tries < 30; tries++) {
if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
break;
drv_usecwait(10);
cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
}
/*
* This should not happen. If so, we have to restart eeprom
* state machine
*/
if (tries == 30) {
cmd_reg.cmd_bits.sts = SEEPROM_READY;
nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
drv_usecwait(10);
/*
* Polling the status bit to make assure the eeprom is ready
*/
cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
for (tries = 0; tries < 30; tries++) {
if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
break;
drv_usecwait(10);
cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
}
}
/*
* Assemble the command ...
*/
cmd_reg.cmd_bits.addr = (uint32_t)addr;
cmd_reg.cmd_bits.cmd = cmd;
cmd_reg.cmd_bits.sts = 0;
nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
/*
* Polling whether the access is successful.
*
*/
cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
for (tries = 0; tries < 30; tries++) {
if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
break;
drv_usecwait(10);
cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
}
if (tries == 30) {
nge_report(ngep, NGE_HW_ROM);
return (DDI_FAILURE);
}
switch (cmd) {
default:
case SEEPROM_CMD_WRITE_ENABLE:
case SEEPROM_CMD_ERASE:
case SEEPROM_CMD_ERALSE_ALL:
case SEEPROM_CMD_WRITE_DIS:
break;
case SEEPROM_CMD_READ:
data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
*dp = data_reg.data_bits.data;
break;
case SEEPROM_CMD_WRITE:
data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
data_reg.data_bits.data = *dp;
nge_reg_put32(ngep, NGE_EP_DATA, data_reg.data_val);
break;
}
return (DDI_SUCCESS);
}
static int
nge_chip_peek_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
{
uint16_t data;
int err;
err = nge_seeprom_access(ngep, SEEPROM_CMD_READ,
ppd->pp_acc_offset, &data);
ppd->pp_acc_data = data;
return (err);
}
static int
nge_chip_poke_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
{
uint16_t data;
int err;
data = ppd->pp_acc_data;
err = nge_seeprom_access(ngep, SEEPROM_CMD_WRITE,
ppd->pp_acc_offset, &data);
return (err);
}
void
nge_init_dev_spec_param(nge_t *ngep)
{
nge_dev_spec_param_t *dev_param_p;
chip_info_t *infop;
dev_param_p = &ngep->dev_spec_param;
infop = (chip_info_t *)&ngep->chipinfo;
switch (infop->device) {
case DEVICE_ID_NF3_E6:
case DEVICE_ID_NF3_DF:
case DEVICE_ID_MCP04_37:
case DEVICE_ID_MCP04_38:
dev_param_p->msi = B_FALSE;
dev_param_p->msi_x = B_FALSE;
dev_param_p->vlan = B_FALSE;
dev_param_p->advanced_pm = B_FALSE;
dev_param_p->mac_addr_order = B_FALSE;
dev_param_p->tx_pause_frame = B_FALSE;
dev_param_p->rx_pause_frame = B_FALSE;
dev_param_p->jumbo = B_FALSE;
dev_param_p->tx_rx_64byte = B_FALSE;
dev_param_p->rx_hw_checksum = B_FALSE;
dev_param_p->tx_hw_checksum = 0;
dev_param_p->desc_type = DESC_OFFLOAD;
dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
dev_param_p->nge_split = NGE_SPLIT_32;
break;
case DEVICE_ID_CK804_56:
case DEVICE_ID_CK804_57:
dev_param_p->msi = B_TRUE;
dev_param_p->msi_x = B_TRUE;
dev_param_p->vlan = B_FALSE;
dev_param_p->advanced_pm = B_FALSE;
dev_param_p->mac_addr_order = B_FALSE;
dev_param_p->tx_pause_frame = B_FALSE;
dev_param_p->rx_pause_frame = B_TRUE;
dev_param_p->jumbo = B_TRUE;
dev_param_p->tx_rx_64byte = B_FALSE;
dev_param_p->rx_hw_checksum = B_TRUE;
dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
dev_param_p->desc_type = DESC_HOT;
dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
dev_param_p->nge_split = NGE_SPLIT_96;
break;
case DEVICE_ID_MCP51_268:
case DEVICE_ID_MCP51_269:
dev_param_p->msi = B_FALSE;
dev_param_p->msi_x = B_FALSE;
dev_param_p->vlan = B_FALSE;
dev_param_p->advanced_pm = B_TRUE;
dev_param_p->mac_addr_order = B_FALSE;
dev_param_p->tx_pause_frame = B_FALSE;
dev_param_p->rx_pause_frame = B_FALSE;
dev_param_p->jumbo = B_FALSE;
dev_param_p->tx_rx_64byte = B_TRUE;
dev_param_p->rx_hw_checksum = B_FALSE;
dev_param_p->tx_hw_checksum = 0;
dev_param_p->desc_type = DESC_OFFLOAD;
dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
dev_param_p->nge_split = NGE_SPLIT_32;
break;
case DEVICE_ID_MCP55_372:
case DEVICE_ID_MCP55_373:
dev_param_p->msi = B_TRUE;
dev_param_p->msi_x = B_TRUE;
dev_param_p->vlan = B_TRUE;
dev_param_p->advanced_pm = B_TRUE;
dev_param_p->mac_addr_order = B_FALSE;
dev_param_p->tx_pause_frame = B_TRUE;
dev_param_p->rx_pause_frame = B_TRUE;
dev_param_p->jumbo = B_TRUE;
dev_param_p->tx_rx_64byte = B_TRUE;
dev_param_p->rx_hw_checksum = B_TRUE;
dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
dev_param_p->desc_type = DESC_HOT;
dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
dev_param_p->nge_split = NGE_SPLIT_96;
break;
case DEVICE_ID_MCP61_3EE:
case DEVICE_ID_MCP61_3EF:
dev_param_p->msi = B_FALSE;
dev_param_p->msi_x = B_FALSE;
dev_param_p->vlan = B_FALSE;
dev_param_p->advanced_pm = B_TRUE;
dev_param_p->mac_addr_order = B_TRUE;
dev_param_p->tx_pause_frame = B_FALSE;
dev_param_p->rx_pause_frame = B_FALSE;
dev_param_p->jumbo = B_FALSE;
dev_param_p->tx_rx_64byte = B_TRUE;
dev_param_p->rx_hw_checksum = B_FALSE;
dev_param_p->tx_hw_checksum = 0;
dev_param_p->desc_type = DESC_OFFLOAD;
dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
dev_param_p->nge_split = NGE_SPLIT_32;
break;
case DEVICE_ID_MCP77_760:
case DEVICE_ID_MCP79_AB0:
dev_param_p->msi = B_FALSE;
dev_param_p->msi_x = B_FALSE;
dev_param_p->vlan = B_FALSE;
dev_param_p->advanced_pm = B_TRUE;
dev_param_p->mac_addr_order = B_TRUE;
dev_param_p->tx_pause_frame = B_FALSE;
dev_param_p->rx_pause_frame = B_FALSE;
dev_param_p->jumbo = B_FALSE;
dev_param_p->tx_rx_64byte = B_TRUE;
dev_param_p->rx_hw_checksum = B_FALSE;
dev_param_p->tx_hw_checksum = 0;
dev_param_p->desc_type = DESC_HOT;
dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
dev_param_p->nge_split = NGE_SPLIT_32;
break;
default:
dev_param_p->msi = B_FALSE;
dev_param_p->msi_x = B_FALSE;
dev_param_p->vlan = B_FALSE;
dev_param_p->advanced_pm = B_FALSE;
dev_param_p->mac_addr_order = B_FALSE;
dev_param_p->tx_pause_frame = B_FALSE;
dev_param_p->rx_pause_frame = B_FALSE;
dev_param_p->jumbo = B_FALSE;
dev_param_p->tx_rx_64byte = B_FALSE;
dev_param_p->rx_hw_checksum = B_FALSE;
dev_param_p->tx_hw_checksum = 0;
dev_param_p->desc_type = DESC_OFFLOAD;
dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
dev_param_p->nge_split = NGE_SPLIT_32;
return;
}
}
/*
* Perform first-stage chip (re-)initialisation, using only config-space
* accesses:
*
* + Read the vendor/device/revision/subsystem/cache-line-size registers,
* returning the data in the structure pointed to by <infop>.
*/
void nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset);
#pragma no_inline(nge_chip_cfg_init)
void
nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset)
{
uint16_t command;
ddi_acc_handle_t handle;
nge_interbus_conf interbus_conf;
nge_msi_mask_conf msi_mask_conf;
nge_msi_map_cap_conf cap_conf;
NGE_TRACE(("nge_chip_cfg_init($%p, $%p, %d)",
(void *)ngep, (void *)infop, reset));
/*
* save PCI cache line size and subsystem vendor ID
*
* Read all the config-space registers that characterise the
* chip, specifically vendor/device/revision/subsystem vendor
* and subsystem device id. We expect (but don't check) that
*/
handle = ngep->cfg_handle;
/* reading the vendor information once */
if (reset == B_FALSE) {
infop->command = pci_config_get16(handle,
PCI_CONF_COMM);
infop->vendor = pci_config_get16(handle,
PCI_CONF_VENID);
infop->device = pci_config_get16(handle,
PCI_CONF_DEVID);
infop->subven = pci_config_get16(handle,
PCI_CONF_SUBVENID);
infop->subdev = pci_config_get16(handle,
PCI_CONF_SUBSYSID);
infop->class_code = pci_config_get8(handle,
PCI_CONF_BASCLASS);
infop->revision = pci_config_get8(handle,
PCI_CONF_REVID);
infop->clsize = pci_config_get8(handle,
PCI_CONF_CACHE_LINESZ);
infop->latency = pci_config_get8(handle,
PCI_CONF_LATENCY_TIMER);
}
if (nge_enable_msi) {
/* Disable the hidden for MSI support */
interbus_conf.conf_val = pci_config_get32(handle,
PCI_CONF_HT_INTERNAL);
if ((infop->device == DEVICE_ID_MCP55_373) ||
(infop->device == DEVICE_ID_MCP55_372))
interbus_conf.conf_bits.msix_off = NGE_SET;
interbus_conf.conf_bits.msi_off = NGE_CLEAR;
pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
interbus_conf.conf_val);
if ((infop->device == DEVICE_ID_MCP55_373) ||
(infop->device == DEVICE_ID_MCP55_372)) {
/* Disable the vector off for mcp55 */
msi_mask_conf.msi_mask_conf_val =
pci_config_get32(handle, PCI_CONF_HT_MSI_MASK);
msi_mask_conf.msi_mask_bits.vec0_off = NGE_CLEAR;
msi_mask_conf.msi_mask_bits.vec1_off = NGE_CLEAR;
msi_mask_conf.msi_mask_bits.vec2_off = NGE_CLEAR;
msi_mask_conf.msi_mask_bits.vec3_off = NGE_CLEAR;
msi_mask_conf.msi_mask_bits.vec4_off = NGE_CLEAR;
msi_mask_conf.msi_mask_bits.vec5_off = NGE_CLEAR;
msi_mask_conf.msi_mask_bits.vec6_off = NGE_CLEAR;
msi_mask_conf.msi_mask_bits.vec7_off = NGE_CLEAR;
pci_config_put32(handle, PCI_CONF_HT_MSI_MASK,
msi_mask_conf.msi_mask_conf_val);
/* Enable the MSI mapping */
cap_conf.msi_map_cap_conf_val =
pci_config_get32(handle, PCI_CONF_HT_MSI_MAP_CAP);
cap_conf.map_cap_conf_bits.map_en = NGE_SET;
pci_config_put32(handle, PCI_CONF_HT_MSI_MAP_CAP,
cap_conf.msi_map_cap_conf_val);
}
} else {
interbus_conf.conf_val = pci_config_get32(handle,
PCI_CONF_HT_INTERNAL);
interbus_conf.conf_bits.msi_off = NGE_SET;
pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
interbus_conf.conf_val);
}
command = infop->command | PCI_COMM_MAE;
command &= ~PCI_COMM_MEMWR_INVAL;
command |= PCI_COMM_ME;
pci_config_put16(handle, PCI_CONF_COMM, command);
pci_config_put16(handle, PCI_CONF_STAT, ~0);
}
int
nge_chip_stop(nge_t *ngep, boolean_t fault)
{
int err;
uint32_t reg_val;
uint32_t tries;
nge_mintr_src mintr_src;
nge_mii_cs mii_cs;
nge_rx_poll rx_poll;
nge_tx_poll tx_poll;
nge_rx_en rx_en;
nge_tx_en tx_en;
nge_tx_sta tx_sta;
nge_rx_sta rx_sta;
nge_mode_cntl mode;
nge_pmu_cntl2 pmu_cntl2;
NGE_TRACE(("nge_chip_stop($%p, %d)", (void *)ngep, fault));
err = DDI_SUCCESS;
/* Clear any pending PHY interrupt */
mintr_src.src_val = nge_reg_get8(ngep, NGE_MINTR_SRC);
nge_reg_put8(ngep, NGE_MINTR_SRC, mintr_src.src_val);
/* Mask all interrupts */
reg_val = nge_reg_get32(ngep, NGE_INTR_MASK);
reg_val &= ~NGE_INTR_ALL_EN;
nge_reg_put32(ngep, NGE_INTR_MASK, reg_val);
/* Disable auto-polling of phy */
mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
mii_cs.cs_bits.ap_en = NGE_CLEAR;
nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
/* Reset buffer management & DMA */
mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
mode.mode_bits.dma_dis = NGE_SET;
mode.mode_bits.desc_type = ngep->desc_mode;
nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
for (tries = 0; tries < 10000; tries++) {
drv_usecwait(10);
mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
if (mode.mode_bits.dma_status == NGE_SET)
break;
}
if (tries == 10000) {
ngep->nge_chip_state = NGE_CHIP_ERROR;
return (DDI_FAILURE);
}
/* Disable rx's machine */
rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
rx_en.bits.rx_en = NGE_CLEAR;
nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
/* Disable tx's machine */
tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
tx_en.bits.tx_en = NGE_CLEAR;
nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
/*
* Clean the status of tx's state machine
* and Make assure the tx's channel is idle
*/
tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
for (tries = 0; tries < 1000; tries++) {
if (tx_sta.sta_bits.tx_chan_sta == NGE_CLEAR)
break;
drv_usecwait(10);
tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
}
if (tries == 1000) {
ngep->nge_chip_state = NGE_CHIP_ERROR;
return (DDI_FAILURE);
}
nge_reg_put32(ngep, NGE_TX_STA, tx_sta.sta_val);
/*
* Clean the status of rx's state machine
* and Make assure the tx's channel is idle
*/
rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
for (tries = 0; tries < 1000; tries++) {
if (rx_sta.sta_bits.rx_chan_sta == NGE_CLEAR)
break;
drv_usecwait(10);
rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
}
if (tries == 1000) {
ngep->nge_chip_state = NGE_CHIP_ERROR;
return (DDI_FAILURE);
}
nge_reg_put32(ngep, NGE_RX_STA, rx_sta.sta_val);
/* Disable auto-poll of rx's state machine */
rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
rx_poll.poll_bits.rpen = NGE_CLEAR;
rx_poll.poll_bits.rpi = NGE_CLEAR;
nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
/* Disable auto-polling of tx's state machine */
tx_poll.poll_val = nge_reg_get32(ngep, NGE_TX_POLL);
tx_poll.poll_bits.tpen = NGE_CLEAR;
tx_poll.poll_bits.tpi = NGE_CLEAR;
nge_reg_put32(ngep, NGE_TX_POLL, tx_poll.poll_val);
/* Restore buffer management */
mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
mode.mode_bits.bm_reset = NGE_SET;
mode.mode_bits.tx_rcom_en = NGE_SET;
nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
if (ngep->dev_spec_param.advanced_pm) {
nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT, 0);
nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT, 0);
pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
pmu_cntl2.cntl2_bits.cidle_timer = NGE_CLEAR;
pmu_cntl2.cntl2_bits.didle_timer = NGE_CLEAR;
nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
}
if (fault)
ngep->nge_chip_state = NGE_CHIP_FAULT;
else
ngep->nge_chip_state = NGE_CHIP_STOPPED;
return (err);
}
static void
nge_rx_setup(nge_t *ngep)
{
uint64_t desc_addr;
nge_rxtx_dlen dlen;
nge_rx_poll rx_poll;
/*
* Filling the address and length of rx's descriptors
*/
desc_addr = ngep->recv->desc.cookie.dmac_laddress;
nge_reg_put32(ngep, NGE_RX_DADR, desc_addr);
nge_reg_put32(ngep, NGE_RX_DADR_HI, desc_addr >> 32);
dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
dlen.dlen_bits.rdlen = ngep->recv->desc.nslots - 1;
nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
rx_poll.poll_bits.rpi = RX_POLL_INTV_1G;
rx_poll.poll_bits.rpen = NGE_SET;
nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
}
static void
nge_tx_setup(nge_t *ngep)
{
uint64_t desc_addr;
nge_rxtx_dlen dlen;
/*
* Filling the address and length of tx's descriptors
*/
desc_addr = ngep->send->desc.cookie.dmac_laddress;
nge_reg_put32(ngep, NGE_TX_DADR, desc_addr);
nge_reg_put32(ngep, NGE_TX_DADR_HI, desc_addr >> 32);
dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
dlen.dlen_bits.tdlen = ngep->send->desc.nslots - 1;
nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
}
static int
nge_buff_setup(nge_t *ngep)
{
nge_mode_cntl mode_cntl;
nge_dev_spec_param_t *dev_param_p;
dev_param_p = &ngep->dev_spec_param;
/*
* Configure Rx&Tx's buffer
*/
nge_rx_setup(ngep);
nge_tx_setup(ngep);
/*
* Configure buffer attribute
*/
mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
/*
* Enable Dma access request
*/
mode_cntl.mode_bits.dma_dis = NGE_CLEAR;
/*
* Enbale Buffer management
*/
mode_cntl.mode_bits.bm_reset = NGE_CLEAR;
/*
* Support Standoffload Descriptor
*/
mode_cntl.mode_bits.desc_type = ngep->desc_mode;
/*
* Support receive hardware checksum
*/
if (dev_param_p->rx_hw_checksum) {
mode_cntl.mode_bits.rx_sum_en = NGE_SET;
} else
mode_cntl.mode_bits.rx_sum_en = NGE_CLEAR;
/*
* Disable Tx PRD coarse update
*/
mode_cntl.mode_bits.tx_prd_cu_en = NGE_CLEAR;
/*
* Disable 64-byte access
*/
mode_cntl.mode_bits.w64_dis = NGE_SET;
/*
* Skip Rx Error Frame is not supported and if
* enable it, jumbo frame does not work any more.
*/
mode_cntl.mode_bits.rx_filter_en = NGE_CLEAR;
/*
* Can not support hot mode now
*/
mode_cntl.mode_bits.resv15 = NGE_CLEAR;
if (dev_param_p->vlan) {
/* Disable the vlan strip for devices which support vlan */
mode_cntl.mode_bits.vlan_strip = NGE_CLEAR;
/* Disable the vlan insert for devices which supprot vlan */
mode_cntl.mode_bits.vlan_ins = NGE_CLEAR;
}
if (dev_param_p->tx_rx_64byte) {
/* Set the maximum TX PRD fetch size to 64 bytes */
mode_cntl.mode_bits.tx_fetch_prd = NGE_SET;
/* Set the maximum RX PRD fetch size to 64 bytes */
mode_cntl.mode_bits.rx_fetch_prd = NGE_SET;
}
/*
* Upload Rx data as it arrives, rather than waiting for full frame
*/
mode_cntl.mode_bits.resv16 = NGE_CLEAR;
/*
* Normal HOT table accesses
*/
mode_cntl.mode_bits.resv17 = NGE_CLEAR;
/*
* Normal HOT buffer requesting
*/
mode_cntl.mode_bits.resv18 = NGE_CLEAR;
nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
/*
* Signal controller to check for new Rx descriptors
*/
mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
mode_cntl.mode_bits.rxdm = NGE_SET;
mode_cntl.mode_bits.tx_rcom_en = NGE_SET;
nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
return (DDI_SUCCESS);
}
/*
* When chipset resets, the chipset can not restore the orignial
* mac address to the mac address registers.
*
* When the driver is dettached, the function will write the orignial
* mac address to the mac address registers.
*/
void
nge_restore_mac_addr(nge_t *ngep)
{
uint32_t mac_addr;
mac_addr = (uint32_t)ngep->chipinfo.hw_mac_addr;
nge_reg_put32(ngep, NGE_UNI_ADDR0, mac_addr);
mac_addr = (uint32_t)(ngep->chipinfo.hw_mac_addr >> 32);
nge_reg_put32(ngep, NGE_UNI_ADDR1, mac_addr);
}
int
nge_chip_reset(nge_t *ngep)
{
int err;
uint8_t i;
uint32_t regno;
uint64_t mac = 0;
nge_uni_addr1 uaddr1;
nge_cp_cntl ee_cntl;
nge_soft_misc soft_misc;
nge_pmu_cntl0 pmu_cntl0;
nge_pmu_cntl2 pmu_cntl2;
nge_pm_cntl2 pm_cntl2;
const nge_ksindex_t *ksip;
NGE_TRACE(("nge_chip_reset($%p)", (void *)ngep));
/*
* Clear the statistics by reading the statistics register
*/
for (ksip = nge_statistics; ksip->name != NULL; ++ksip) {
regno = KS_BASE + ksip->index * sizeof (uint32_t);
(void) nge_reg_get32(ngep, regno);
}
/*
* Setup seeprom control
*/
ee_cntl.cntl_val = nge_reg_get32(ngep, NGE_EP_CNTL);
ee_cntl.cntl_bits.clkdiv = EEPROM_CLKDIV;
ee_cntl.cntl_bits.rom_size = EEPROM_32K;
ee_cntl.cntl_bits.word_wid = ACCESS_16BIT;
ee_cntl.cntl_bits.wait_slots = EEPROM_WAITCLK;
nge_reg_put32(ngep, NGE_EP_CNTL, ee_cntl.cntl_val);
/*
* Reading the unicast mac address table
*/
if (ngep->nge_chip_state == NGE_CHIP_INITIAL) {
uaddr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
mac = uaddr1.addr_bits.addr;
mac <<= 32;
mac |= nge_reg_get32(ngep, NGE_UNI_ADDR0);
ngep->chipinfo.hw_mac_addr = mac;
if (ngep->dev_spec_param.mac_addr_order) {
for (i = 0; i < ETHERADDRL; i++) {
ngep->chipinfo.vendor_addr.addr[i] =
(uchar_t)mac;
ngep->cur_uni_addr.addr[i] =
(uchar_t)mac;
mac >>= 8;
}
} else {
for (i = ETHERADDRL; i-- != 0; ) {
ngep->chipinfo.vendor_addr.addr[i] =
(uchar_t)mac;
ngep->cur_uni_addr.addr[i] =
(uchar_t)mac;
mac >>= 8;
}
}
ngep->chipinfo.vendor_addr.set = 1;
}
pci_config_put8(ngep->cfg_handle, PCI_CONF_CACHE_LINESZ,
ngep->chipinfo.clsize);
pci_config_put8(ngep->cfg_handle, PCI_CONF_LATENCY_TIMER,
ngep->chipinfo.latency);
if (ngep->dev_spec_param.advanced_pm) {
/* Program software misc register */
soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
soft_misc.misc_bits.rx_clk_vx_rst = NGE_SET;
soft_misc.misc_bits.tx_clk_vx_rst = NGE_SET;
soft_misc.misc_bits.clk12m_vx_rst = NGE_SET;
soft_misc.misc_bits.fpci_clk_vx_rst = NGE_SET;
soft_misc.misc_bits.rx_clk_vc_rst = NGE_SET;
soft_misc.misc_bits.tx_clk_vc_rst = NGE_SET;
soft_misc.misc_bits.fs_clk_vc_rst = NGE_SET;
soft_misc.misc_bits.rst_ex_m2pintf = NGE_SET;
nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
/* wait for 32 us */
drv_usecwait(32);
soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
soft_misc.misc_bits.rx_clk_vx_rst = NGE_CLEAR;
soft_misc.misc_bits.tx_clk_vx_rst = NGE_CLEAR;
soft_misc.misc_bits.clk12m_vx_rst = NGE_CLEAR;
soft_misc.misc_bits.fpci_clk_vx_rst = NGE_CLEAR;
soft_misc.misc_bits.rx_clk_vc_rst = NGE_CLEAR;
soft_misc.misc_bits.tx_clk_vc_rst = NGE_CLEAR;
soft_misc.misc_bits.fs_clk_vc_rst = NGE_CLEAR;
soft_misc.misc_bits.rst_ex_m2pintf = NGE_CLEAR;
nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
/* Program PMU registers */
pmu_cntl0.cntl0_val = nge_reg_get32(ngep, NGE_PMU_CNTL0);
pmu_cntl0.cntl0_bits.core_spd10_fp =
NGE_PMU_CORE_SPD10_BUSY;
pmu_cntl0.cntl0_bits.core_spd10_idle =
NGE_PMU_CORE_SPD10_IDLE;
pmu_cntl0.cntl0_bits.core_spd100_fp =
NGE_PMU_CORE_SPD100_BUSY;
pmu_cntl0.cntl0_bits.core_spd100_idle =
NGE_PMU_CORE_SPD100_IDLE;
pmu_cntl0.cntl0_bits.core_spd1000_fp =
NGE_PMU_CORE_SPD1000_BUSY;
pmu_cntl0.cntl0_bits.core_spd1000_idle =
NGE_PMU_CORE_SPD100_IDLE;
pmu_cntl0.cntl0_bits.core_spd10_idle =
NGE_PMU_CORE_SPD10_IDLE;
nge_reg_put32(ngep, NGE_PMU_CNTL0, pmu_cntl0.cntl0_val);
/* Set the core idle limit value */
nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT,
NGE_PMU_CIDLE_LIMIT_DEF);
/* Set the device idle limit value */
nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT,
NGE_PMU_DIDLE_LIMIT_DEF);
/* Enable the core/device idle timer in PMU control 2 */
pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
pmu_cntl2.cntl2_bits.cidle_timer = NGE_SET;
pmu_cntl2.cntl2_bits.didle_timer = NGE_SET;
pmu_cntl2.cntl2_bits.core_enable = NGE_SET;
pmu_cntl2.cntl2_bits.dev_enable = NGE_SET;
nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
}
/*
* Stop the chipset and clear buffer management
*/
err = nge_chip_stop(ngep, B_FALSE);
if (err == DDI_FAILURE)
return (err);
/*
* Clear the power state bits for phy since interface no longer
* works after rebooting from Windows on a multi-boot machine
*/
if (ngep->chipinfo.device == DEVICE_ID_MCP51_268 ||
ngep->chipinfo.device == DEVICE_ID_MCP51_269 ||
ngep->chipinfo.device == DEVICE_ID_MCP55_372 ||
ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
ngep->chipinfo.device == DEVICE_ID_MCP61_3EE ||
ngep->chipinfo.device == DEVICE_ID_MCP61_3EF ||
ngep->chipinfo.device == DEVICE_ID_MCP77_760 ||
ngep->chipinfo.device == DEVICE_ID_MCP79_AB0) {
pm_cntl2.cntl_val = nge_reg_get32(ngep, NGE_PM_CNTL2);
/* bring phy out of coma mode */
pm_cntl2.cntl_bits.phy_coma_set = NGE_CLEAR;
/* disable auto reset coma bits */
pm_cntl2.cntl_bits.resv4 = NGE_CLEAR;
/* restore power to gated clocks */
pm_cntl2.cntl_bits.resv8_11 = NGE_CLEAR;
nge_reg_put32(ngep, NGE_PM_CNTL2, pm_cntl2.cntl_val);
}
ngep->nge_chip_state = NGE_CHIP_RESET;
return (DDI_SUCCESS);
}
int
nge_chip_start(nge_t *ngep)
{
int err;
nge_itc itc;
nge_tx_cntl tx_cntl;
nge_rx_cntrl0 rx_cntl0;
nge_rx_cntl1 rx_cntl1;
nge_tx_en tx_en;
nge_rx_en rx_en;
nge_mii_cs mii_cs;
nge_swtr_cntl swtr_cntl;
nge_rx_fifo_wm rx_fifo;
nge_intr_mask intr_mask;
nge_mintr_mask mintr_mask;
nge_dev_spec_param_t *dev_param_p;
NGE_TRACE(("nge_chip_start($%p)", (void *)ngep));
/*
* Setup buffer management
*/
err = nge_buff_setup(ngep);
if (err == DDI_FAILURE)
return (err);
dev_param_p = &ngep->dev_spec_param;
/*
* Enable polling attribute
*/
mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
mii_cs.cs_bits.ap_paddr = ngep->phy_xmii_addr;
mii_cs.cs_bits.ap_en = NGE_SET;
mii_cs.cs_bits.ap_intv = MII_POLL_INTV;
nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
/*
* Setup link
*/
(*ngep->physops->phys_update)(ngep);
/*
* Configure the tx's parameters
*/
tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
if (dev_param_p->tx_pause_frame)
tx_cntl.cntl_bits.paen = NGE_SET;
else
tx_cntl.cntl_bits.paen = NGE_CLEAR;
tx_cntl.cntl_bits.retry_en = NGE_SET;
tx_cntl.cntl_bits.pad_en = NGE_SET;
tx_cntl.cntl_bits.fappend_en = NGE_SET;
tx_cntl.cntl_bits.two_def_en = NGE_SET;
tx_cntl.cntl_bits.max_retry = 15;
tx_cntl.cntl_bits.burst_en = NGE_CLEAR;
tx_cntl.cntl_bits.uflo_err_mask = NGE_CLEAR;
tx_cntl.cntl_bits.tlcol_mask = NGE_CLEAR;
tx_cntl.cntl_bits.lcar_mask = NGE_CLEAR;
tx_cntl.cntl_bits.def_mask = NGE_CLEAR;
tx_cntl.cntl_bits.exdef_mask = NGE_SET;
tx_cntl.cntl_bits.lcar_mask = NGE_SET;
tx_cntl.cntl_bits.tlcol_mask = NGE_SET;
tx_cntl.cntl_bits.uflo_err_mask = NGE_SET;
tx_cntl.cntl_bits.jam_seq_en = NGE_CLEAR;
nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
/*
* Configure the parameters of Rx's state machine
* Enabe the parameters:
* 1). Pad Strip
* 2). FCS Relay
* 3). Pause
* 4). Address filter
* 5). Runt Packet receive
* 6). Broadcast
* 7). Receive Deferral
*
* Disable the following parameters for decreasing
* the number of interrupts:
* 1). Runt Inerrupt.
* 2). Rx's Late Collision interrupt.
* 3). Rx's Max length Error Interrupt.
* 4). Rx's Length Field error Interrupt.
* 5). Rx's FCS error interrupt.
* 6). Rx's overflow error interrupt.
* 7). Rx's Frame alignment error interrupt.
*/
rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
rx_cntl0.cntl_bits.padsen = NGE_CLEAR;
rx_cntl0.cntl_bits.fcsren = NGE_CLEAR;
if (dev_param_p->rx_pause_frame)
rx_cntl0.cntl_bits.paen = NGE_SET;
else
rx_cntl0.cntl_bits.paen = NGE_CLEAR;
rx_cntl0.cntl_bits.lben = NGE_CLEAR;
rx_cntl0.cntl_bits.afen = NGE_SET;
rx_cntl0.cntl_bits.runten = NGE_CLEAR;
rx_cntl0.cntl_bits.brdis = NGE_CLEAR;
rx_cntl0.cntl_bits.rdfen = NGE_CLEAR;
rx_cntl0.cntl_bits.runtm = NGE_CLEAR;
rx_cntl0.cntl_bits.slfb = NGE_CLEAR;
rx_cntl0.cntl_bits.rlcolm = NGE_CLEAR;
rx_cntl0.cntl_bits.maxerm = NGE_CLEAR;
rx_cntl0.cntl_bits.lferm = NGE_CLEAR;
rx_cntl0.cntl_bits.crcm = NGE_CLEAR;
rx_cntl0.cntl_bits.ofolm = NGE_CLEAR;
rx_cntl0.cntl_bits.framerm = NGE_CLEAR;
nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
/*
* Configure the watermark for the rx's statemachine
*/
rx_fifo.wm_val = nge_reg_get32(ngep, NGE_RX_FIFO_WM);
rx_fifo.wm_bits.data_hwm = ngep->rx_datahwm;
rx_fifo.wm_bits.prd_lwm = ngep->rx_prdlwm;
rx_fifo.wm_bits.prd_hwm = ngep->rx_prdhwm;
nge_reg_put32(ngep, NGE_RX_FIFO_WM, rx_fifo.wm_val);
/*
* Configure the deffer time slot for rx's state machine
*/
nge_reg_put8(ngep, NGE_RX_DEf, ngep->rx_def);
/*
* Configure the length of rx's packet
*/
rx_cntl1.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL1);
rx_cntl1.cntl_bits.length = ngep->max_sdu;
nge_reg_put32(ngep, NGE_RX_CNTL1, rx_cntl1.cntl_val);
/*
* Enable Tx's state machine
*/
tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
tx_en.bits.tx_en = NGE_SET;
nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
/*
* Enable Rx's state machine
*/
rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
rx_en.bits.rx_en = NGE_SET;
nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
itc.itc_val = nge_reg_get32(ngep, NGE_SWTR_ITC);
itc.itc_bits.sw_intv = ngep->sw_intr_intv;
nge_reg_put32(ngep, NGE_SWTR_ITC, itc.itc_val);
swtr_cntl.ctrl_val = nge_reg_get8(ngep, NGE_SWTR_CNTL);
swtr_cntl.cntl_bits.sten = NGE_SET;
swtr_cntl.cntl_bits.stren = NGE_SET;
nge_reg_put32(ngep, NGE_SWTR_CNTL, swtr_cntl.ctrl_val);
/*
* Disable all mii read/write operation Interrupt
*/
mintr_mask.mask_val = nge_reg_get8(ngep, NGE_MINTR_MASK);
mintr_mask.mask_bits.mrei = NGE_CLEAR;
mintr_mask.mask_bits.mcc2 = NGE_CLEAR;
mintr_mask.mask_bits.mcc1 = NGE_CLEAR;
mintr_mask.mask_bits.mapi = NGE_SET;
mintr_mask.mask_bits.mpdi = NGE_SET;
nge_reg_put8(ngep, NGE_MINTR_MASK, mintr_mask.mask_val);
/*
* Enable all interrupt event
*/
intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
intr_mask.mask_bits.reint = NGE_SET;
intr_mask.mask_bits.rcint = NGE_SET;
intr_mask.mask_bits.miss = NGE_SET;
intr_mask.mask_bits.teint = NGE_SET;
intr_mask.mask_bits.tcint = NGE_CLEAR;
intr_mask.mask_bits.stint = NGE_CLEAR;
intr_mask.mask_bits.mint = NGE_CLEAR;
intr_mask.mask_bits.rfint = NGE_CLEAR;
intr_mask.mask_bits.tfint = NGE_SET;
intr_mask.mask_bits.feint = NGE_SET;
intr_mask.mask_bits.resv10 = NGE_CLEAR;
intr_mask.mask_bits.resv11 = NGE_CLEAR;
intr_mask.mask_bits.resv12 = NGE_CLEAR;
intr_mask.mask_bits.resv13 = NGE_CLEAR;
intr_mask.mask_bits.phyint = NGE_CLEAR;
ngep->intr_masks = intr_mask.mask_val;
nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
ngep->nge_chip_state = NGE_CHIP_RUNNING;
return (DDI_SUCCESS);
}
/*
* nge_chip_sync() -- program the chip with the unicast MAC address,
* the multicast hash table, the required level of promiscuity.
*/
void
nge_chip_sync(nge_t *ngep)
{
uint8_t i;
uint64_t macaddr;
uint64_t mul_addr;
uint64_t mul_mask;
nge_rx_cntrl0 rx_cntl;
nge_uni_addr1 uni_adr1;
NGE_TRACE(("nge_chip_sync($%p)", (void *)ngep));
macaddr = 0x0ull;
mul_addr = 0x0ull;
mul_mask = 0x0ull;
rx_cntl.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
if (ngep->promisc) {
rx_cntl.cntl_bits.afen = NGE_CLEAR;
rx_cntl.cntl_bits.brdis = NGE_SET;
} else {
rx_cntl.cntl_bits.afen = NGE_SET;
rx_cntl.cntl_bits.brdis = NGE_CLEAR;
}
/*
* Transform the MAC address from host to chip format, the unicast
* MAC address(es) ...
*/
for (i = ETHERADDRL, macaddr = 0ull; i != 0; --i) {
macaddr |= ngep->cur_uni_addr.addr[i-1];
macaddr <<= (i > 1) ? 8 : 0;
}
nge_reg_put32(ngep, NGE_UNI_ADDR0, (uint32_t)macaddr);
macaddr = macaddr >>32;
uni_adr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
uni_adr1.addr_bits.addr = (uint16_t)macaddr;
uni_adr1.addr_bits.resv16_31 = (uint16_t)0;
nge_reg_put32(ngep, NGE_UNI_ADDR1, uni_adr1.addr_val);
/*
* Reprogram the multicast address table ...
*/
for (i = ETHERADDRL, mul_addr = 0ull; i != 0; --i) {
mul_addr |= ngep->cur_mul_addr.addr[i-1];
mul_addr <<= (i > 1) ? 8 : 0;
mul_mask |= ngep->cur_mul_mask.addr[i-1];
mul_mask <<= (i > 1) ? 8 : 0;
}
nge_reg_put32(ngep, NGE_MUL_ADDR0, (uint32_t)mul_addr);
mul_addr >>= 32;
nge_reg_put32(ngep, NGE_MUL_ADDR1, mul_addr);
nge_reg_put32(ngep, NGE_MUL_MASK, (uint32_t)mul_mask);
mul_mask >>= 32;
nge_reg_put32(ngep, NGE_MUL_MASK1, mul_mask);
/*
* Set or clear the PROMISCUOUS mode bit
*/
nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl.cntl_val);
/*
* For internal PHY loopback, the link will
* not be up, so it need to sync mac modes directly.
*/
if (ngep->param_loop_mode == NGE_LOOP_INTERNAL_PHY)
nge_sync_mac_modes(ngep);
}
static void
nge_chip_err(nge_t *ngep)
{
nge_reg010 reg010_ins;
nge_sw_statistics_t *psw_stat;
nge_intr_mask intr_mask;
NGE_TRACE(("nge_chip_err($%p)", (void *)ngep));
psw_stat = (nge_sw_statistics_t *)&ngep->statistics.sw_statistics;
reg010_ins.reg010_val = nge_reg_get32(ngep, NGE_REG010);
if (reg010_ins.reg010_bits.resv0)
psw_stat->fe_err.tso_err_mss ++;
if (reg010_ins.reg010_bits.resv1)
psw_stat->fe_err.tso_dis ++;
if (reg010_ins.reg010_bits.resv2)
psw_stat->fe_err.tso_err_nosum ++;
if (reg010_ins.reg010_bits.resv3)
psw_stat->fe_err.tso_err_hov ++;
if (reg010_ins.reg010_bits.resv4)
psw_stat->fe_err.tso_err_huf ++;
if (reg010_ins.reg010_bits.resv5)
psw_stat->fe_err.tso_err_l2 ++;
if (reg010_ins.reg010_bits.resv6)
psw_stat->fe_err.tso_err_ip ++;
if (reg010_ins.reg010_bits.resv7)
psw_stat->fe_err.tso_err_l4 ++;
if (reg010_ins.reg010_bits.resv8)
psw_stat->fe_err.tso_err_tcp ++;
if (reg010_ins.reg010_bits.resv9)
psw_stat->fe_err.hsum_err_ip ++;
if (reg010_ins.reg010_bits.resv10)
psw_stat->fe_err.hsum_err_l4 ++;
if (reg010_ins.reg010_val != 0) {
/*
* Fatal error is triggered by malformed driver commands.
* Disable unless debugging.
*/
intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
intr_mask.mask_bits.feint = NGE_CLEAR;
nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
ngep->intr_masks = intr_mask.mask_val;
}
}
static void
nge_sync_mac_modes(nge_t *ngep)
{
nge_tx_def tx_def;
nge_tx_fifo_wm tx_fifo;
nge_bkoff_cntl bk_cntl;
nge_mac2phy m2p;
nge_rx_cntrl0 rx_cntl0;
nge_tx_cntl tx_cntl;
nge_dev_spec_param_t *dev_param_p;
dev_param_p = &ngep->dev_spec_param;
tx_def.def_val = nge_reg_get32(ngep, NGE_TX_DEF);
m2p.m2p_val = nge_reg_get32(ngep, NGE_MAC2PHY);
tx_fifo.wm_val = nge_reg_get32(ngep, NGE_TX_FIFO_WM);
bk_cntl.cntl_val = nge_reg_get32(ngep, NGE_BKOFF_CNTL);
bk_cntl.bkoff_bits.rseed = BKOFF_RSEED;
switch (ngep->param_link_speed) {
case 10:
m2p.m2p_bits.speed = low_speed;
tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
if (ngep->phy_mode == RGMII_IN) {
tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
} else {
tx_def.def_bits.if_def = TX_TIFG_MII;
tx_def.def_bits.ifg2_def = TX_IFG2_MII;
}
tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
break;
case 100:
m2p.m2p_bits.speed = fast_speed;
tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
if (ngep->phy_mode == RGMII_IN) {
tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
} else {
tx_def.def_bits.if_def = TX_TIFG_MII;
tx_def.def_bits.ifg2_def = TX_IFG2_MII;
}
tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
break;
case 1000:
m2p.m2p_bits.speed = giga_speed;
tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
if (ngep->param_link_duplex == LINK_DUPLEX_FULL) {
tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
tx_def.def_bits.if_def = TX_IFG_RGMII_1000_FD;
} else {
tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
}
tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_GMII;
bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_GMII;
break;
}
if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
m2p.m2p_bits.phyintr = NGE_CLEAR;
m2p.m2p_bits.phyintrlvl = NGE_CLEAR;
}
if (ngep->param_link_duplex == LINK_DUPLEX_HALF) {
m2p.m2p_bits.hdup_en = NGE_SET;
}
else
m2p.m2p_bits.hdup_en = NGE_CLEAR;
nge_reg_put32(ngep, NGE_MAC2PHY, m2p.m2p_val);
nge_reg_put32(ngep, NGE_TX_DEF, tx_def.def_val);
tx_fifo.wm_bits.data_lwm = TX_FIFO_DATA_LWM;
tx_fifo.wm_bits.prd_lwm = TX_FIFO_PRD_LWM;
tx_fifo.wm_bits.uprd_hwm = TX_FIFO_PRD_HWM;
tx_fifo.wm_bits.fb_wm = TX_FIFO_TBFW;
nge_reg_put32(ngep, NGE_TX_FIFO_WM, tx_fifo.wm_val);
nge_reg_put32(ngep, NGE_BKOFF_CNTL, bk_cntl.cntl_val);
rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
if (ngep->param_link_rx_pause && dev_param_p->rx_pause_frame) {
if (rx_cntl0.cntl_bits.paen == NGE_CLEAR) {
rx_cntl0.cntl_bits.paen = NGE_SET;
nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
}
} else {
if (rx_cntl0.cntl_bits.paen == NGE_SET) {
rx_cntl0.cntl_bits.paen = NGE_CLEAR;
nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
}
}
tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
if (ngep->param_link_tx_pause && dev_param_p->tx_pause_frame) {
if (tx_cntl.cntl_bits.paen == NGE_CLEAR) {
tx_cntl.cntl_bits.paen = NGE_SET;
nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
}
} else {
if (tx_cntl.cntl_bits.paen == NGE_SET) {
tx_cntl.cntl_bits.paen = NGE_CLEAR;
nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
}
}
}
/*
* Handler for hardware link state change.
*
* When this routine is called, the hardware link state has changed
* and the new state is reflected in the param_* variables. Here
* we must update the softstate, reprogram the MAC to match, and
* record the change in the log and/or on the console.
*/
static void
nge_factotum_link_handler(nge_t *ngep)
{
/*
* Update the s/w link_state
*/
if (ngep->param_link_up)
ngep->link_state = LINK_STATE_UP;
else
ngep->link_state = LINK_STATE_DOWN;
/*
* Reprogram the MAC modes to match
*/
nge_sync_mac_modes(ngep);
}
static boolean_t
nge_factotum_link_check(nge_t *ngep)
{
boolean_t lchg;
boolean_t check;
ASSERT(mutex_owned(ngep->genlock));
(*ngep->physops->phys_check)(ngep);
switch (ngep->link_state) {
case LINK_STATE_UP:
lchg = (ngep->param_link_up == B_FALSE);
check = (ngep->param_link_up == B_FALSE);
break;
case LINK_STATE_DOWN:
lchg = (ngep->param_link_up == B_TRUE);
check = (ngep->param_link_up == B_TRUE);
break;
default:
check = B_TRUE;
break;
}
/*
* If <check> is false, we're sure the link hasn't changed.
* If true, however, it's not yet definitive; we have to call
* nge_phys_check() to determine whether the link has settled
* into a new state yet ... and if it has, then call the link
* state change handler.But when the chip is 5700 in Dell 6650
* ,even if check is false, the link may have changed.So we
* have to call nge_phys_check() to determine the link state.
*/
if (check)
nge_factotum_link_handler(ngep);
return (lchg);
}
/*
* Factotum routine to check for Tx stall, using the 'watchdog' counter
*/
static boolean_t nge_factotum_stall_check(nge_t *ngep);
static boolean_t
nge_factotum_stall_check(nge_t *ngep)
{
uint32_t dogval;
send_ring_t *srp;
srp = ngep->send;
/*
* Specific check for Tx stall ...
*
* The 'watchdog' counter is incremented whenever a packet
* is queued, reset to 1 when some (but not all) buffers
* are reclaimed, reset to 0 (disabled) when all buffers
* are reclaimed, and shifted left here. If it exceeds the
* threshold value, the chip is assumed to have stalled and
* is put into the ERROR state. The factotum will then reset
* it on the next pass.
*
* All of which should ensure that we don't get into a state
* where packets are left pending indefinitely!
*/
if (ngep->watchdog == 0 &&
srp->tx_free < srp->desc.nslots)
ngep->watchdog = 1;
dogval = nge_atomic_shl32(&ngep->watchdog, 1);
if (dogval >= nge_watchdog_check)
nge_tx_recycle(ngep, B_FALSE);
if (dogval < nge_watchdog_count)
return (B_FALSE);
else {
ngep->statistics.sw_statistics.tx_stall++;
return (B_TRUE);
}
}
/*
* The factotum is woken up when there's something to do that we'd rather
* not do from inside a hardware interrupt handler or high-level cyclic.
* Its two main tasks are:
* reset & restart the chip after an error
* check the link status whenever necessary
*/
/* ARGSUSED */
uint_t
nge_chip_factotum(caddr_t args1, caddr_t args2)
{
uint_t result;
nge_t *ngep;
boolean_t err;
boolean_t linkchg;
ngep = (nge_t *)args1;
NGE_TRACE(("nge_chip_factotum($%p)", (void *)ngep));
mutex_enter(ngep->softlock);
if (ngep->factotum_flag == 0) {
mutex_exit(ngep->softlock);
return (DDI_INTR_UNCLAIMED);
}
ngep->factotum_flag = 0;
mutex_exit(ngep->softlock);
err = B_FALSE;
linkchg = B_FALSE;
result = DDI_INTR_CLAIMED;
mutex_enter(ngep->genlock);
switch (ngep->nge_chip_state) {
default:
break;
case NGE_CHIP_RUNNING:
linkchg = nge_factotum_link_check(ngep);
err = nge_factotum_stall_check(ngep);
break;
case NGE_CHIP_FAULT:
(void) nge_restart(ngep);
NGE_REPORT((ngep, "automatic recovery activated"));
break;
}
if (err)
(void) nge_chip_stop(ngep, B_TRUE);
mutex_exit(ngep->genlock);
/*
* If the link state changed, tell the world about it (if
* this version of MAC supports link state notification).
* Note: can't do this while still holding the mutex.
*/
if (linkchg)
mac_link_update(ngep->mh, ngep->link_state);
return (result);
}
static void
nge_intr_handle(nge_t *ngep, nge_intr_src *pintr_src)
{
boolean_t brx;
boolean_t btx;
nge_mintr_src mintr_src;
brx = B_FALSE;
btx = B_FALSE;
ngep->statistics.sw_statistics.intr_count++;
ngep->statistics.sw_statistics.intr_lval = pintr_src->intr_val;
brx = (pintr_src->int_bits.reint | pintr_src->int_bits.miss
| pintr_src->int_bits.rcint | pintr_src->int_bits.stint)
!= 0 ? B_TRUE : B_FALSE;
if (pintr_src->int_bits.reint)
ngep->statistics.sw_statistics.rx_err++;
if (pintr_src->int_bits.miss)
ngep->statistics.sw_statistics.rx_nobuffer++;
btx = (pintr_src->int_bits.teint | pintr_src->int_bits.tfint)
!= 0 ? B_TRUE : B_FALSE;
if (btx)
nge_tx_recycle(ngep, B_TRUE);
if (brx)
nge_receive(ngep);
if (pintr_src->int_bits.teint)
ngep->statistics.sw_statistics.tx_stop_err++;
if (ngep->intr_moderation && brx) {
if (ngep->poll) {
if (ngep->recv_count < ngep->param_rx_intr_hwater) {
ngep->quiet_time++;
if (ngep->quiet_time ==
ngep->param_poll_quiet_time) {
ngep->poll = B_FALSE;
ngep->quiet_time = 0;
}
} else
ngep->quiet_time = 0;
} else {
if (ngep->recv_count > ngep->param_rx_intr_lwater) {
ngep->busy_time++;
if (ngep->busy_time ==
ngep->param_poll_busy_time) {
ngep->poll = B_TRUE;
ngep->busy_time = 0;
}
} else
ngep->busy_time = 0;
}
}
ngep->recv_count = 0;
if (pintr_src->int_bits.feint)
nge_chip_err(ngep);
/* link interrupt, check the link state */
if (pintr_src->int_bits.mint) {
mintr_src.src_val = nge_reg_get32(ngep, NGE_MINTR_SRC);
nge_reg_put32(ngep, NGE_MINTR_SRC, mintr_src.src_val);
nge_wake_factotum(ngep);
}
}
/*
* nge_chip_intr() -- handle chip interrupts
*/
/* ARGSUSED */
uint_t
nge_chip_intr(caddr_t arg1, caddr_t arg2)
{
nge_t *ngep = (nge_t *)arg1;
nge_intr_src intr_src;
nge_intr_mask intr_mask;
mutex_enter(ngep->genlock);
if (ngep->suspended) {
mutex_exit(ngep->genlock);
return (DDI_INTR_UNCLAIMED);
}
/*
* Check whether chip's says it's asserting #INTA;
* if not, don't process or claim the interrupt.
*/
intr_src.intr_val = nge_reg_get32(ngep, NGE_INTR_SRC);
if (intr_src.intr_val == 0) {
mutex_exit(ngep->genlock);
return (DDI_INTR_UNCLAIMED);
}
/*
* Ack the interrupt
*/
nge_reg_put32(ngep, NGE_INTR_SRC, intr_src.intr_val);
if (ngep->nge_chip_state != NGE_CHIP_RUNNING) {
mutex_exit(ngep->genlock);
return (DDI_INTR_CLAIMED);
}
nge_intr_handle(ngep, &intr_src);
if (ngep->poll && !ngep->ch_intr_mode) {
intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
intr_mask.mask_bits.stint = NGE_SET;
intr_mask.mask_bits.rcint = NGE_CLEAR;
nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
ngep->ch_intr_mode = B_TRUE;
} else if ((ngep->ch_intr_mode) && (!ngep->poll)) {
nge_reg_put32(ngep, NGE_INTR_MASK, ngep->intr_masks);
ngep->ch_intr_mode = B_FALSE;
}
mutex_exit(ngep->genlock);
return (DDI_INTR_CLAIMED);
}
static enum ioc_reply
nge_pp_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
int err;
uint64_t sizemask;
uint64_t mem_va;
uint64_t maxoff;
boolean_t peek;
nge_peekpoke_t *ppd;
int (*ppfn)(nge_t *ngep, nge_peekpoke_t *ppd);
switch (cmd) {
default:
return (IOC_INVAL);
case NGE_PEEK:
peek = B_TRUE;
break;
case NGE_POKE:
peek = B_FALSE;
break;
}
/*
* Validate format of ioctl
*/
if (iocp->ioc_count != sizeof (nge_peekpoke_t))
return (IOC_INVAL);
if (mp->b_cont == NULL)
return (IOC_INVAL);
ppd = (nge_peekpoke_t *)mp->b_cont->b_rptr;
/*
* Validate request parameters
*/
switch (ppd->pp_acc_space) {
default:
return (IOC_INVAL);
case NGE_PP_SPACE_CFG:
/*
* Config space
*/
sizemask = 8|4|2|1;
mem_va = 0;
maxoff = PCI_CONF_HDR_SIZE;
ppfn = peek ? nge_chip_peek_cfg : nge_chip_poke_cfg;
break;
case NGE_PP_SPACE_REG:
/*
* Memory-mapped I/O space
*/
sizemask = 8|4|2|1;
mem_va = 0;
maxoff = NGE_REG_SIZE;
ppfn = peek ? nge_chip_peek_reg : nge_chip_poke_reg;
break;
case NGE_PP_SPACE_MII:
sizemask = 4|2|1;
mem_va = 0;
maxoff = NGE_MII_SIZE;
ppfn = peek ? nge_chip_peek_mii : nge_chip_poke_mii;
break;
case NGE_PP_SPACE_SEEPROM:
sizemask = 4|2|1;
mem_va = 0;
maxoff = NGE_SEEROM_SIZE;
ppfn = peek ? nge_chip_peek_seeprom : nge_chip_poke_seeprom;
break;
}
switch (ppd->pp_acc_size) {
default:
return (IOC_INVAL);
case 8:
case 4:
case 2:
case 1:
if ((ppd->pp_acc_size & sizemask) == 0)
return (IOC_INVAL);
break;
}
if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
return (IOC_INVAL);
if (ppd->pp_acc_offset >= maxoff)
return (IOC_INVAL);
if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
return (IOC_INVAL);
/*
* All OK - go do it!
*/
ppd->pp_acc_offset += mem_va;
if (ppfn)
err = (*ppfn)(ngep, ppd);
if (err != DDI_SUCCESS)
return (IOC_INVAL);
return (peek ? IOC_REPLY : IOC_ACK);
}
static enum ioc_reply nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(nge_diag_ioctl)
static enum ioc_reply
nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
ASSERT(mutex_owned(ngep->genlock));
switch (cmd) {
default:
nge_error(ngep, "nge_diag_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case NGE_DIAG:
return (IOC_ACK);
case NGE_PEEK:
case NGE_POKE:
return (nge_pp_ioctl(ngep, cmd, mp, iocp));
case NGE_PHY_RESET:
return (IOC_RESTART_ACK);
case NGE_SOFT_RESET:
case NGE_HARD_RESET:
return (IOC_ACK);
}
/* NOTREACHED */
}
enum ioc_reply
nge_chip_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
{
int cmd;
ASSERT(mutex_owned(ngep->genlock));
cmd = iocp->ioc_cmd;
switch (cmd) {
default:
return (IOC_INVAL);
case NGE_DIAG:
case NGE_PEEK:
case NGE_POKE:
case NGE_PHY_RESET:
case NGE_SOFT_RESET:
case NGE_HARD_RESET:
#if NGE_DEBUGGING
return (nge_diag_ioctl(ngep, cmd, mp, iocp));
#else
return (IOC_INVAL);
#endif
case NGE_MII_READ:
case NGE_MII_WRITE:
return (IOC_INVAL);
#if NGE_SEE_IO32
case NGE_SEE_READ:
case NGE_SEE_WRITE:
return (IOC_INVAL);
#endif
#if NGE_FLASH_IO32
case NGE_FLASH_READ:
case NGE_FLASH_WRITE:
return (IOC_INVAL);
#endif
}
}