mac.c revision ae6aa22afeb444ae208c287e7227a4a7c877f17a
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* MAC Services Module
*
* The GLDv3 framework locking - The MAC layer
* --------------------------------------------
*
* The MAC layer is central to the GLD framework and can provide the locking
* framework needed for itself and for the use of MAC clients. MAC end points
* are fairly disjoint and don't share a lot of state. So a coarse grained
* multi-threading scheme is to single thread all create/modify/delete or set
* type of control operations on a per mac end point while allowing data threads
* concurrently.
*
* Control operations (set) that modify a mac end point are always serialized on
* a per mac end point basis, We have at most 1 such thread per mac end point
* at a time.
*
* All other operations that are not serialized are essentially multi-threaded.
* For example a control operation (get) like getting statistics which may not
* care about reading values atomically or data threads sending or receiving
* data. Mostly these type of operations don't modify the control state. Any
* state these operations care about are protected using traditional locks.
*
* The perimeter only serializes serial operations. It does not imply there
* aren't any other concurrent operations. However a serialized operation may
* sometimes need to make sure it is the only thread. In this case it needs
* to use reference counting mechanisms to cv_wait until any current data
* threads are done.
*
* The mac layer itself does not hold any locks across a call to another layer.
* The perimeter is however held across a down call to the driver to make the
* whole control operation atomic with respect to other control operations.
* Also the data path and get type control operations may proceed concurrently.
* These operations synchronize with the single serial operation on a given mac
* end point using regular locks. The perimeter ensures that conflicting
* operations like say a mac_multicast_add and a mac_multicast_remove on the
* same mac end point don't interfere with each other and also ensures that the
* changes in the mac layer and the call to the underlying driver to say add a
* multicast address are done atomically without interference from a thread
* trying to delete the same address.
*
* For example, consider
* mac_multicst_add()
* {
* mac_perimeter_enter(); serialize all control operations
*
* grab list lock protect against access by data threads
* add to list
* drop list lock
*
* call driver's mi_multicst
*
* mac_perimeter_exit();
* }
*
* To lessen the number of serialization locks and simplify the lock hierarchy,
* we serialize all the control operations on a per mac end point by using a
* single serialization lock called the perimeter. We allow recursive entry into
* the perimeter to facilitate use of this mechanism by both the mac client and
* the MAC layer itself.
*
* MAC client means an entity that does an operation on a mac handle
* obtained from a mac_open/mac_client_open. Similarly MAC driver means
* an entity that does an operation on a mac handle obtained from a
* mac_register. An entity could be both client and driver but on different
* handles eg. aggr. and should only make the corresponding mac interface calls
* i.e. mac driver interface or mac client interface as appropriate for that
* mac handle.
*
* General rules.
* -------------
*
* R1. The lock order of upcall threads is natually opposite to downcall
* threads. Hence upcalls must not hold any locks across layers for fear of
* recursive lock enter and lock order violation. This applies to all layers.
*
* R2. The perimeter is just another lock. Since it is held in the down
* direction, acquiring the perimeter in an upcall is prohibited as it would
* cause a deadlock. This applies to all layers.
*
* Note that upcalls that need to grab the mac perimeter (for example
* mac_notify upcalls) can still achieve that by posting the request to a
* thread, which can then grab all the required perimeters and locks in the
* right global order. Note that in the above example the mac layer iself
* won't grab the mac perimeter in the mac_notify upcall, instead the upcall
* to the client must do that. Please see the aggr code for an example.
*
* MAC client rules
* ----------------
*
* R3. A MAC client may use the MAC provided perimeter facility to serialize
* control operations on a per mac end point. It does this by by acquring
* and holding the perimeter across a sequence of calls to the mac layer.
* This ensures atomicity across the entire block of mac calls. In this
* model the MAC client must not hold any client locks across the calls to
* the mac layer. This model is the preferred solution.
*
* R4. However if a MAC client has a lot of global state across all mac end
* points the per mac end point serialization may not be sufficient. In this
* case the client may choose to use global locks or use its own serialization.
* To avoid deadlocks, these client layer locks held across the mac calls
* in the control path must never be acquired by the data path for the reason
* mentioned below.
*
* (Assume that a control operation that holds a client lock blocks in the
* mac layer waiting for upcall reference counts to drop to zero. If an upcall
* data thread that holds this reference count, tries to acquire the same
* client lock subsequently it will deadlock).
*
* A MAC client may follow either the R3 model or the R4 model, but can't
* mix both. In the former, the hierarchy is Perim -> client locks, but in
* the latter it is client locks -> Perim.
*
* R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
* context since they may block while trying to acquire the perimeter.
* In addition some calls may block waiting for upcall refcnts to come down to
* zero.
*
* R6. MAC clients must make sure that they are single threaded and all threads
* from the top (in particular data threads) have finished before calling
* mac_client_close. The MAC framework does not track the number of client
* threads using the mac client handle. Also mac clients must make sure
* they have undone all the control operations before calling mac_client_close.
* For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
* mac_unicast_add/mac_multicast_add.
*
* MAC framework rules
* -------------------
*
* R7. The mac layer itself must not hold any mac layer locks (except the mac
* perimeter) across a call to any other layer from the mac layer. The call to
* any other layer could be via mi_* entry points, classifier entry points into
* the driver or via upcall pointers into layers above. The mac perimeter may
* be acquired or held only in the down direction, for e.g. when calling into
* a mi_* driver enty point to provide atomicity of the operation.
*
* R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
* mac driver interfaces, the MAC layer must provide a cut out for control
* interfaces like upcall notifications and start them in a separate thread.
*
* R9. Note that locking order also implies a plumbing order. For example
* VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
* to plumb in any other order must be failed at mac_open time, otherwise it
* could lead to deadlocks due to inverse locking order.
*
* R10. MAC driver interfaces must not block since the driver could call them
* in interrupt context.
*
* R11. Walkers must preferably not hold any locks while calling walker
* callbacks. Instead these can operate on reference counts. In simple
* callbacks it may be ok to hold a lock and call the callbacks, but this is
* harder to maintain in the general case of arbitrary callbacks.
*
* R12. The MAC layer must protect upcall notification callbacks using reference
* counts rather than holding locks across the callbacks.
*
* R13. Given the variety of drivers, it is preferable if the MAC layer can make
* sure that any pointers (such as mac ring pointers) it passes to the driver
* remain valid until mac unregister time. Currently the mac layer achieves
* this by using generation numbers for rings and freeing the mac rings only
* at unregister time. The MAC layer must provide a layer of indirection and
* must not expose underlying driver rings or driver data structures/pointers
* directly to MAC clients.
*
* MAC driver rules
* ----------------
*
* R14. It would be preferable if MAC drivers don't hold any locks across any
* mac call. However at a minimum they must not hold any locks across data
* upcalls. They must also make sure that all references to mac data structures
* are cleaned up and that it is single threaded at mac_unregister time.
*
* R15. MAC driver interfaces don't block and so the action may be done
* asynchronously in a separate thread as for example handling notifications.
* The driver must not assume that the action is complete when the call
* returns.
*
* R16. Drivers must maintain a generation number per Rx ring, and pass it
* back to mac_rx_ring(); They are expected to increment the generation
* number whenever the ring's stop routine is invoked.
* See comments in mac_rx_ring();
*
* R17 Similarly mi_stop is another synchronization point and the driver must
* ensure that all upcalls are done and there won't be any future upcall
* before returning from mi_stop.
*
* R18. The driver may assume that all set/modify control operations via
* the mi_* entry points are single threaded on a per mac end point.
*
* Lock and Perimeter hierarchy scenarios
* ---------------------------------------
*
* i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
*
* ft_lock -> fe_lock [mac_flow_lookup]
*
* mi_rw_lock -> fe_lock [mac_bcast_send]
*
* srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
*
* cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
*
* i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
*
* Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
* client to driver. In the case of clients that explictly use the mac provided
* perimeter mechanism for its serialization, the hierarchy is
* Perimeter -> mac layer locks, since the client never holds any locks across
* the mac calls. In the case of clients that use its own locks the hierarchy
* is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
* calls mac_perim_enter/exit in this case.
*
* Subflow creation rules
* ---------------------------
* o In case of a user specified cpulist present on underlying link and flows,
* the flows cpulist must be a subset of the underlying link.
* o In case of a user specified fanout mode present on link and flow, the
* subflow fanout count has to be less than or equal to that of the
* underlying link. The cpu-bindings for the subflows will be a subset of
* the underlying link.
* o In case if no cpulist specified on both underlying link and flow, the
* underlying link relies on a MAC tunable to provide out of box fanout.
* The subflow will have no cpulist (the subflow will be unbound)
* o In case if no cpulist is specified on the underlying link, a subflow can
* carry either a user-specified cpulist or fanout count. The cpu-bindings
* for the subflow will not adhere to restriction that they need to be subset
* of the underlying link.
* o In case where the underlying link is carrying either a user specified
* cpulist or fanout mode and for a unspecified subflow, the subflow will be
* created unbound.
* o While creating unbound subflows, bandwidth mode changes attempt to
* figure a right fanout count. In such cases the fanout count will override
* the unbound cpu-binding behavior.
* o In addition to this, while cycling between flow and link properties, we
* impose a restriction that if a link property has a subflow with
* user-specified attributes, we will not allow changing the link property.
* The administrator needs to reset all the user specified properties for the
* subflows before attempting a link property change.
* Some of the above rules can be overridden by specifying additional command
* line options while creating or modifying link or subflow properties.
*/
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/id_space.h>
#include <sys/esunddi.h>
#include <sys/stat.h>
#include <sys/mkdev.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/strsubr.h>
#include <sys/dlpi.h>
#include <sys/modhash.h>
#include <sys/mac_provider.h>
#include <sys/mac_client_impl.h>
#include <sys/mac_soft_ring.h>
#include <sys/mac_impl.h>
#include <sys/mac.h>
#include <sys/dls.h>
#include <sys/dld.h>
#include <sys/modctl.h>
#include <sys/fs/dv_node.h>
#include <sys/thread.h>
#include <sys/proc.h>
#include <sys/callb.h>
#include <sys/cpuvar.h>
#include <sys/atomic.h>
#include <sys/bitmap.h>
#include <sys/sdt.h>
#include <sys/mac_flow.h>
#include <sys/ddi_intr_impl.h>
#include <sys/disp.h>
#include <sys/sdt.h>
#include <sys/vnic.h>
#include <sys/vnic_impl.h>
#include <sys/vlan.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <sys/exacct.h>
#include <sys/exacct_impl.h>
#include <inet/nd.h>
#include <sys/ethernet.h>
#define IMPL_HASHSZ 67 /* prime */
kmem_cache_t *i_mac_impl_cachep;
mod_hash_t *i_mac_impl_hash;
krwlock_t i_mac_impl_lock;
uint_t i_mac_impl_count;
static kmem_cache_t *mac_ring_cache;
static id_space_t *minor_ids;
static uint32_t minor_count;
/*
* Logging stuff. Perhaps mac_logging_interval could be broken into
* mac_flow_log_interval and mac_link_log_interval if we want to be
* able to schedule them differently.
*/
uint_t mac_logging_interval;
boolean_t mac_flow_log_enable;
boolean_t mac_link_log_enable;
timeout_id_t mac_logging_timer;
/* for debugging, see MAC_DBG_PRT() in mac_impl.h */
int mac_dbg = 0;
#define MACTYPE_KMODDIR "mac"
#define MACTYPE_HASHSZ 67
static mod_hash_t *i_mactype_hash;
/*
* i_mactype_lock synchronizes threads that obtain references to mactype_t
* structures through i_mactype_getplugin().
*/
static kmutex_t i_mactype_lock;
/*
* mac_tx_percpu_cnt
*
* Number of per cpu locks per mac_client_impl_t. Used by the transmit side
* in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
* mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
* Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
*/
int mac_tx_percpu_cnt;
int mac_tx_percpu_cnt_max = 128;
static int i_mac_constructor(void *, void *, int);
static void i_mac_destructor(void *, void *);
static int i_mac_ring_ctor(void *, void *, int);
static void i_mac_ring_dtor(void *, void *);
static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
void mac_tx_client_flush(mac_client_impl_t *);
void mac_tx_client_block(mac_client_impl_t *);
static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
static int mac_start_group_and_rings(mac_group_t *);
static void mac_stop_group_and_rings(mac_group_t *);
/*
* Module initialization functions.
*/
void
mac_init(void)
{
mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
boot_max_ncpus);
/* Upper bound is mac_tx_percpu_cnt_max */
if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
if (mac_tx_percpu_cnt < 1) {
/* Someone set max_tx_percpu_cnt_max to 0 or less */
mac_tx_percpu_cnt = 1;
}
ASSERT(mac_tx_percpu_cnt >= 1);
mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
/*
* Make it of the form 2**N - 1 in the range
* [0 .. mac_tx_percpu_cnt_max - 1]
*/
mac_tx_percpu_cnt--;
i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
NULL, NULL, NULL, 0);
ASSERT(i_mac_impl_cachep != NULL);
mac_ring_cache = kmem_cache_create("mac_ring_cache",
sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
NULL, NULL, 0);
ASSERT(mac_ring_cache != NULL);
i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
mac_flow_init();
mac_soft_ring_init();
mac_bcast_init();
mac_client_init();
i_mac_impl_count = 0;
i_mactype_hash = mod_hash_create_extended("mactype_hash",
MACTYPE_HASHSZ,
mod_hash_null_keydtor, mod_hash_null_valdtor,
mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
/*
* Allocate an id space to manage minor numbers. The range of the
* space will be from MAC_MAX_MINOR+1 to MAXMIN32 (maximum legal
* minor number is MAXMIN, but id_t is type of integer and does not
* allow MAXMIN).
*/
minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, MAXMIN32);
ASSERT(minor_ids != NULL);
minor_count = 0;
/* Let's default to 20 seconds */
mac_logging_interval = 20;
mac_flow_log_enable = B_FALSE;
mac_link_log_enable = B_FALSE;
mac_logging_timer = 0;
}
int
mac_fini(void)
{
if (i_mac_impl_count > 0 || minor_count > 0)
return (EBUSY);
id_space_destroy(minor_ids);
mac_flow_fini();
mod_hash_destroy_hash(i_mac_impl_hash);
rw_destroy(&i_mac_impl_lock);
mac_client_fini();
kmem_cache_destroy(mac_ring_cache);
mod_hash_destroy_hash(i_mactype_hash);
mac_soft_ring_finish();
return (0);
}
void
mac_init_ops(struct dev_ops *ops, const char *name)
{
dld_init_ops(ops, name);
}
void
mac_fini_ops(struct dev_ops *ops)
{
dld_fini_ops(ops);
}
/*ARGSUSED*/
static int
i_mac_constructor(void *buf, void *arg, int kmflag)
{
mac_impl_t *mip = buf;
bzero(buf, sizeof (mac_impl_t));
mip->mi_linkstate = LINK_STATE_UNKNOWN;
mip->mi_nclients = 0;
mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL);
rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
return (0);
}
/*ARGSUSED*/
static void
i_mac_destructor(void *buf, void *arg)
{
mac_impl_t *mip = buf;
mac_cb_info_t *mcbi;
ASSERT(mip->mi_ref == 0);
ASSERT(mip->mi_active == 0);
ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
ASSERT(mip->mi_devpromisc == 0);
ASSERT(mip->mi_promisc == 0);
ASSERT(mip->mi_ksp == NULL);
ASSERT(mip->mi_kstat_count == 0);
ASSERT(mip->mi_nclients == 0);
ASSERT(mip->mi_nactiveclients == 0);
ASSERT(mip->mi_single_active_client == NULL);
ASSERT(mip->mi_state_flags == 0);
ASSERT(mip->mi_factory_addr == NULL);
ASSERT(mip->mi_factory_addr_num == 0);
ASSERT(mip->mi_default_tx_ring == NULL);
mcbi = &mip->mi_notify_cb_info;
ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
ASSERT(mip->mi_notify_bits == 0);
ASSERT(mip->mi_notify_thread == NULL);
ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
mcbi->mcbi_lockp = NULL;
mcbi = &mip->mi_promisc_cb_info;
ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
ASSERT(mip->mi_promisc_list == NULL);
ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
mcbi->mcbi_lockp = NULL;
ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
mutex_destroy(&mip->mi_lock);
rw_destroy(&mip->mi_rw_lock);
mutex_destroy(&mip->mi_promisc_lock);
cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
mutex_destroy(&mip->mi_notify_lock);
cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
mutex_destroy(&mip->mi_ring_lock);
}
/* ARGSUSED */
static int
i_mac_ring_ctor(void *buf, void *arg, int kmflag)
{
mac_ring_t *ring = (mac_ring_t *)buf;
bzero(ring, sizeof (mac_ring_t));
cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
ring->mr_state = MR_FREE;
return (0);
}
/* ARGSUSED */
static void
i_mac_ring_dtor(void *buf, void *arg)
{
mac_ring_t *ring = (mac_ring_t *)buf;
cv_destroy(&ring->mr_cv);
mutex_destroy(&ring->mr_lock);
}
/*
* Common functions to do mac callback addition and deletion. Currently this is
* used by promisc callbacks and notify callbacks. List addition and deletion
* need to take care of list walkers. List walkers in general, can't hold list
* locks and make upcall callbacks due to potential lock order and recursive
* reentry issues. Instead list walkers increment the list walker count to mark
* the presence of a walker thread. Addition can be carefully done to ensure
* that the list walker always sees either the old list or the new list.
* However the deletion can't be done while the walker is active, instead the
* deleting thread simply marks the entry as logically deleted. The last walker
* physically deletes and frees up the logically deleted entries when the walk
* is complete.
*/
void
mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
mac_cb_t *mcb_elem)
{
mac_cb_t *p;
mac_cb_t **pp;
/* Verify it is not already in the list */
for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
if (p == mcb_elem)
break;
}
VERIFY(p == NULL);
/*
* Add it to the head of the callback list. The membar ensures that
* the following list pointer manipulations reach global visibility
* in exactly the program order below.
*/
ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
mcb_elem->mcb_nextp = *mcb_head;
membar_producer();
*mcb_head = mcb_elem;
}
/*
* Mark the entry as logically deleted. If there aren't any walkers unlink
* from the list. In either case return the corresponding status.
*/
boolean_t
mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
mac_cb_t *mcb_elem)
{
mac_cb_t *p;
mac_cb_t **pp;
ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
/*
* Search the callback list for the entry to be removed
*/
for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
if (p == mcb_elem)
break;
}
VERIFY(p != NULL);
/*
* If there are walkers just mark it as deleted and the last walker
* will remove from the list and free it.
*/
if (mcbi->mcbi_walker_cnt != 0) {
p->mcb_flags |= MCB_CONDEMNED;
mcbi->mcbi_del_cnt++;
return (B_FALSE);
}
ASSERT(mcbi->mcbi_del_cnt == 0);
*pp = p->mcb_nextp;
p->mcb_nextp = NULL;
return (B_TRUE);
}
/*
* Wait for all pending callback removals to be completed
*/
void
mac_callback_remove_wait(mac_cb_info_t *mcbi)
{
ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
while (mcbi->mcbi_del_cnt != 0) {
DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
}
}
/*
* The last mac callback walker does the cleanup. Walk the list and unlik
* all the logically deleted entries and construct a temporary list of
* removed entries. Return the list of removed entries to the caller.
*/
mac_cb_t *
mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
{
mac_cb_t *p;
mac_cb_t **pp;
mac_cb_t *rmlist = NULL; /* List of removed elements */
int cnt = 0;
ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
pp = mcb_head;
while (*pp != NULL) {
if ((*pp)->mcb_flags & MCB_CONDEMNED) {
p = *pp;
*pp = p->mcb_nextp;
p->mcb_nextp = rmlist;
rmlist = p;
cnt++;
continue;
}
pp = &(*pp)->mcb_nextp;
}
ASSERT(mcbi->mcbi_del_cnt == cnt);
mcbi->mcbi_del_cnt = 0;
return (rmlist);
}
boolean_t
mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
{
mac_cb_t *mcb;
/* Verify it is not already in the list */
for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
if (mcb == mcb_elem)
return (B_TRUE);
}
return (B_FALSE);
}
boolean_t
mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
{
boolean_t found;
mutex_enter(mcbi->mcbi_lockp);
found = mac_callback_lookup(mcb_headp, mcb_elem);
mutex_exit(mcbi->mcbi_lockp);
return (found);
}
/* Free the list of removed callbacks */
void
mac_callback_free(mac_cb_t *rmlist)
{
mac_cb_t *mcb;
mac_cb_t *mcb_next;
for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
mcb_next = mcb->mcb_nextp;
kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
}
}
/*
* The promisc callbacks are in 2 lists, one off the 'mip' and another off the
* 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
* is only a single shared total walker count, and an entry can't be physically
* unlinked if a walker is active on either list. The last walker does this
* cleanup of logically deleted entries.
*/
void
i_mac_promisc_walker_cleanup(mac_impl_t *mip)
{
mac_cb_t *rmlist;
mac_cb_t *mcb;
mac_cb_t *mcb_next;
mac_promisc_impl_t *mpip;
/*
* Construct a temporary list of deleted callbacks by walking the
* the mi_promisc_list. Then for each entry in the temporary list,
* remove it from the mci_promisc_list and free the entry.
*/
rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
&mip->mi_promisc_list);
for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
mcb_next = mcb->mcb_nextp;
mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
&mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
mcb->mcb_flags = 0;
mcb->mcb_nextp = NULL;
kmem_cache_free(mac_promisc_impl_cache, mpip);
}
}
void
i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
{
mac_cb_info_t *mcbi;
/*
* Signal the notify thread even after mi_ref has become zero and
* mi_disabled is set. The synchronization with the notify thread
* happens in mac_unregister and that implies the driver must make
* sure it is single-threaded (with respect to mac calls) and that
* all pending mac calls have returned before it calls mac_unregister
*/
rw_enter(&i_mac_impl_lock, RW_READER);
if (mip->mi_state_flags & MIS_DISABLED)
goto exit;
/*
* Guard against incorrect notifications. (Running a newer
* mac client against an older implementation?)
*/
if (type >= MAC_NNOTE)
goto exit;
mcbi = &mip->mi_notify_cb_info;
mutex_enter(mcbi->mcbi_lockp);
mip->mi_notify_bits |= (1 << type);
cv_broadcast(&mcbi->mcbi_cv);
mutex_exit(mcbi->mcbi_lockp);
exit:
rw_exit(&i_mac_impl_lock);
}
/*
* Mac serialization primitives. Please see the block comment at the
* top of the file.
*/
void
i_mac_perim_enter(mac_impl_t *mip)
{
mac_client_impl_t *mcip;
if (mip->mi_state_flags & MIS_IS_VNIC) {
/*
* This is a VNIC. Return the lower mac since that is what
* we want to serialize on.
*/
mcip = mac_vnic_lower(mip);
mip = mcip->mci_mip;
}
mutex_enter(&mip->mi_perim_lock);
if (mip->mi_perim_owner == curthread) {
mip->mi_perim_ocnt++;
mutex_exit(&mip->mi_perim_lock);
return;
}
while (mip->mi_perim_owner != NULL)
cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
mip->mi_perim_owner = curthread;
ASSERT(mip->mi_perim_ocnt == 0);
mip->mi_perim_ocnt++;
#ifdef DEBUG
mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
MAC_PERIM_STACK_DEPTH);
#endif
mutex_exit(&mip->mi_perim_lock);
}
int
i_mac_perim_enter_nowait(mac_impl_t *mip)
{
/*
* The vnic is a special case, since the serialization is done based
* on the lower mac. If the lower mac is busy, it does not imply the
* vnic can't be unregistered. But in the case of other drivers,
* a busy perimeter or open mac handles implies that the mac is busy
* and can't be unregistered.
*/
if (mip->mi_state_flags & MIS_IS_VNIC) {
i_mac_perim_enter(mip);
return (0);
}
mutex_enter(&mip->mi_perim_lock);
if (mip->mi_perim_owner != NULL) {
mutex_exit(&mip->mi_perim_lock);
return (EBUSY);
}
ASSERT(mip->mi_perim_ocnt == 0);
mip->mi_perim_owner = curthread;
mip->mi_perim_ocnt++;
mutex_exit(&mip->mi_perim_lock);
return (0);
}
void
i_mac_perim_exit(mac_impl_t *mip)
{
mac_client_impl_t *mcip;
if (mip->mi_state_flags & MIS_IS_VNIC) {
/*
* This is a VNIC. Return the lower mac since that is what
* we want to serialize on.
*/
mcip = mac_vnic_lower(mip);
mip = mcip->mci_mip;
}
ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
mutex_enter(&mip->mi_perim_lock);
if (--mip->mi_perim_ocnt == 0) {
mip->mi_perim_owner = NULL;
cv_signal(&mip->mi_perim_cv);
}
mutex_exit(&mip->mi_perim_lock);
}
/*
* Returns whether the current thread holds the mac perimeter. Used in making
* assertions.
*/
boolean_t
mac_perim_held(mac_handle_t mh)
{
mac_impl_t *mip = (mac_impl_t *)mh;
mac_client_impl_t *mcip;
if (mip->mi_state_flags & MIS_IS_VNIC) {
/*
* This is a VNIC. Return the lower mac since that is what
* we want to serialize on.
*/
mcip = mac_vnic_lower(mip);
mip = mcip->mci_mip;
}
return (mip->mi_perim_owner == curthread);
}
/*
* mac client interfaces to enter the mac perimeter of a mac end point, given
* its mac handle, or macname or linkid.
*/
void
mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
{
mac_impl_t *mip = (mac_impl_t *)mh;
i_mac_perim_enter(mip);
/*
* The mac_perim_handle_t returned encodes the 'mip' and whether a
* mac_open has been done internally while entering the perimeter.
* This information is used in mac_perim_exit
*/
MAC_ENCODE_MPH(*mphp, mip, 0);
}
int
mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
{
int err;
mac_handle_t mh;
if ((err = mac_open(name, &mh)) != 0)
return (err);
mac_perim_enter_by_mh(mh, mphp);
MAC_ENCODE_MPH(*mphp, mh, 1);
return (0);
}
int
mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
{
int err;
mac_handle_t mh;
if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
return (err);
mac_perim_enter_by_mh(mh, mphp);
MAC_ENCODE_MPH(*mphp, mh, 1);
return (0);
}
void
mac_perim_exit(mac_perim_handle_t mph)
{
mac_impl_t *mip;
boolean_t need_close;
MAC_DECODE_MPH(mph, mip, need_close);
i_mac_perim_exit(mip);
if (need_close)
mac_close((mac_handle_t)mip);
}
int
mac_hold(const char *macname, mac_impl_t **pmip)
{
mac_impl_t *mip;
int err;
/*
* Check the device name length to make sure it won't overflow our
* buffer.
*/
if (strlen(macname) >= MAXNAMELEN)
return (EINVAL);
/*
* Look up its entry in the global hash table.
*/
rw_enter(&i_mac_impl_lock, RW_WRITER);
err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
(mod_hash_val_t *)&mip);
if (err != 0) {
rw_exit(&i_mac_impl_lock);
return (ENOENT);
}
if (mip->mi_state_flags & MIS_DISABLED) {
rw_exit(&i_mac_impl_lock);
return (ENOENT);
}
if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
rw_exit(&i_mac_impl_lock);
return (EBUSY);
}
mip->mi_ref++;
rw_exit(&i_mac_impl_lock);
*pmip = mip;
return (0);
}
void
mac_rele(mac_impl_t *mip)
{
rw_enter(&i_mac_impl_lock, RW_WRITER);
ASSERT(mip->mi_ref != 0);
if (--mip->mi_ref == 0) {
ASSERT(mip->mi_nactiveclients == 0 &&
!(mip->mi_state_flags & MIS_EXCLUSIVE));
}
rw_exit(&i_mac_impl_lock);
}
/*
* This function is called only by mac_client_open.
*/
int
mac_start(mac_impl_t *mip)
{
int err = 0;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
ASSERT(mip->mi_start != NULL);
/*
* Check whether the device is already started.
*/
if (mip->mi_active++ == 0) {
mac_ring_t *ring = NULL;
/*
* Start the device.
*/
err = mip->mi_start(mip->mi_driver);
if (err != 0) {
mip->mi_active--;
return (err);
}
/*
* Start the default tx ring.
*/
if (mip->mi_default_tx_ring != NULL) {
ring = (mac_ring_t *)mip->mi_default_tx_ring;
err = mac_start_ring(ring);
if (err != 0) {
mip->mi_active--;
return (err);
}
ring->mr_state = MR_INUSE;
}
if (mip->mi_rx_groups != NULL) {
/*
* Start the default ring, since it will be needed
* to receive broadcast and multicast traffic for
* both primary and non-primary MAC clients.
*/
mac_group_t *grp = &mip->mi_rx_groups[0];
ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
err = mac_start_group_and_rings(grp);
if (err != 0) {
mip->mi_active--;
if (ring != NULL) {
mac_stop_ring(ring);
ring->mr_state = MR_FREE;
}
return (err);
}
mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED);
}
}
return (err);
}
/*
* This function is called only by mac_client_close.
*/
void
mac_stop(mac_impl_t *mip)
{
ASSERT(mip->mi_stop != NULL);
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
/*
* Check whether the device is still needed.
*/
ASSERT(mip->mi_active != 0);
if (--mip->mi_active == 0) {
if (mip->mi_rx_groups != NULL) {
/*
* There should be no more active clients since the
* MAC is being stopped. Stop the default RX group
* and transition it back to registered state.
*/
mac_group_t *grp = &mip->mi_rx_groups[0];
/*
* When clients are torn down, the groups
* are release via mac_release_rx_group which
* knows the the default group is always in
* started mode since broadcast uses it. So
* we can assert that their are no clients
* (since mac_bcast_add doesn't register itself
* as a client) and group is in SHARED state.
*/
ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) &&
mip->mi_nactiveclients == 0);
mac_stop_group_and_rings(grp);
mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED);
}
if (mip->mi_default_tx_ring != NULL) {
mac_ring_t *ring;
ring = (mac_ring_t *)mip->mi_default_tx_ring;
mac_stop_ring(ring);
ring->mr_state = MR_FREE;
}
/*
* Stop the device.
*/
mip->mi_stop(mip->mi_driver);
}
}
int
i_mac_promisc_set(mac_impl_t *mip, boolean_t on, mac_promisc_type_t ptype)
{
int err = 0;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
ASSERT(mip->mi_setpromisc != NULL);
ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC);
/*
* Determine whether we should enable or disable promiscuous mode.
* For details on the distinction between "device promiscuous mode"
* and "MAC promiscuous mode", see PSARC/2005/289.
*/
if (on) {
/*
* Enable promiscuous mode on the device if not yet enabled.
*/
if (mip->mi_devpromisc++ == 0) {
err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
if (err != 0) {
mip->mi_devpromisc--;
return (err);
}
i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
}
/*
* Enable promiscuous mode on the MAC if not yet enabled.
*/
if (ptype == MAC_PROMISC && mip->mi_promisc++ == 0)
i_mac_notify(mip, MAC_NOTE_PROMISC);
} else {
if (mip->mi_devpromisc == 0)
return (EPROTO);
/*
* Disable promiscuous mode on the device if this is the last
* enabling.
*/
if (--mip->mi_devpromisc == 0) {
err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
if (err != 0) {
mip->mi_devpromisc++;
return (err);
}
i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
}
/*
* Disable promiscuous mode on the MAC if this is the last
* enabling.
*/
if (ptype == MAC_PROMISC && --mip->mi_promisc == 0)
i_mac_notify(mip, MAC_NOTE_PROMISC);
}
return (0);
}
int
mac_promisc_set(mac_handle_t mh, boolean_t on, mac_promisc_type_t ptype)
{
mac_impl_t *mip = (mac_impl_t *)mh;
int rv;
i_mac_perim_enter(mip);
rv = i_mac_promisc_set(mip, on, ptype);
i_mac_perim_exit(mip);
return (rv);
}
/*
* The promiscuity state can change any time. If the caller needs to take
* actions that are atomic with the promiscuity state, then the caller needs
* to bracket the entire sequence with mac_perim_enter/exit
*/
boolean_t
mac_promisc_get(mac_handle_t mh, mac_promisc_type_t ptype)
{
mac_impl_t *mip = (mac_impl_t *)mh;
ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC);
/*
* Return the current promiscuity.
*/
if (ptype == MAC_DEVPROMISC)
return (mip->mi_devpromisc != 0);
else
return (mip->mi_promisc != 0);
}
/*
* Invoked at MAC instance attach time to initialize the list
* of factory MAC addresses supported by a MAC instance. This function
* builds a local cache in the mac_impl_t for the MAC addresses
* supported by the underlying hardware. The MAC clients themselves
* use the mac_addr_factory*() functions to query and reserve
* factory MAC addresses.
*/
void
mac_addr_factory_init(mac_impl_t *mip)
{
mac_capab_multifactaddr_t capab;
uint8_t *addr;
int i;
/*
* First round to see how many factory MAC addresses are available.
*/
bzero(&capab, sizeof (capab));
if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
&capab) || (capab.mcm_naddr == 0)) {
/*
* The MAC instance doesn't support multiple factory
* MAC addresses, we're done here.
*/
return;
}
/*
* Allocate the space and get all the factory addresses.
*/
addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
mip->mi_factory_addr_num = capab.mcm_naddr;
mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
sizeof (mac_factory_addr_t), KM_SLEEP);
for (i = 0; i < capab.mcm_naddr; i++) {
bcopy(addr + i * MAXMACADDRLEN,
mip->mi_factory_addr[i].mfa_addr,
mip->mi_type->mt_addr_length);
mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
}
kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
}
void
mac_addr_factory_fini(mac_impl_t *mip)
{
if (mip->mi_factory_addr == NULL) {
ASSERT(mip->mi_factory_addr_num == 0);
return;
}
kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
sizeof (mac_factory_addr_t));
mip->mi_factory_addr = NULL;
mip->mi_factory_addr_num = 0;
}
/*
* Reserve a factory MAC address. If *slot is set to -1, the function
* attempts to reserve any of the available factory MAC addresses and
* returns the reserved slot id. If no slots are available, the function
* returns ENOSPC. If *slot is not set to -1, the function reserves
* the specified slot if it is available, or returns EBUSY is the slot
* is already used. Returns ENOTSUP if the underlying MAC does not
* support multiple factory addresses. If the slot number is not -1 but
* is invalid, returns EINVAL.
*/
int
mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
{
mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
mac_impl_t *mip = mcip->mci_mip;
int i, ret = 0;
i_mac_perim_enter(mip);
/*
* Protect against concurrent readers that may need a self-consistent
* view of the factory addresses
*/
rw_enter(&mip->mi_rw_lock, RW_WRITER);
if (mip->mi_factory_addr_num == 0) {
ret = ENOTSUP;
goto bail;
}
if (*slot != -1) {
/* check the specified slot */
if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
ret = EINVAL;
goto bail;
}
if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
ret = EBUSY;
goto bail;
}
} else {
/* pick the next available slot */
for (i = 0; i < mip->mi_factory_addr_num; i++) {
if (!mip->mi_factory_addr[i].mfa_in_use)
break;
}
if (i == mip->mi_factory_addr_num) {
ret = ENOSPC;
goto bail;
}
*slot = i+1;
}
mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
mip->mi_factory_addr[*slot-1].mfa_client = mcip;
bail:
rw_exit(&mip->mi_rw_lock);
i_mac_perim_exit(mip);
return (ret);
}
/*
* Release the specified factory MAC address slot.
*/
void
mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
{
mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
mac_impl_t *mip = mcip->mci_mip;
i_mac_perim_enter(mip);
/*
* Protect against concurrent readers that may need a self-consistent
* view of the factory addresses
*/
rw_enter(&mip->mi_rw_lock, RW_WRITER);
ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
rw_exit(&mip->mi_rw_lock);
i_mac_perim_exit(mip);
}
/*
* Stores in mac_addr the value of the specified MAC address. Returns
* 0 on success, or EINVAL if the slot number is not valid for the MAC.
* The caller must provide a string of at least MAXNAMELEN bytes.
*/
void
mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
{
mac_impl_t *mip = (mac_impl_t *)mh;
boolean_t in_use;
ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
/*
* Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
* and mi_rw_lock
*/
rw_enter(&mip->mi_rw_lock, RW_READER);
bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
*addr_len = mip->mi_type->mt_addr_length;
in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
if (in_use && client_name != NULL) {
bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
client_name, MAXNAMELEN);
}
if (in_use_arg != NULL)
*in_use_arg = in_use;
rw_exit(&mip->mi_rw_lock);
}
/*
* Returns the number of factory MAC addresses (in addition to the
* primary MAC address), 0 if the underlying MAC doesn't support
* that feature.
*/
uint_t
mac_addr_factory_num(mac_handle_t mh)
{
mac_impl_t *mip = (mac_impl_t *)mh;
return (mip->mi_factory_addr_num);
}
void
mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
{
mac_ring_t *ring;
for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
ring->mr_flag &= ~flag;
}
/*
* The following mac_hwrings_xxx() functions are private mac client functions
* used by the aggr driver to access and control the underlying HW Rx group
* and rings. In this case, the aggr driver has exclusive control of the
* underlying HW Rx group/rings, it calls the following functions to
* start/stop the HW Rx rings, disable/enable polling, add/remove mac'
* addresses, or set up the Rx callback.
*/
/* ARGSUSED */
static void
mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
mblk_t *mp_chain, boolean_t loopback)
{
mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
mac_direct_rx_t proc;
void *arg1;
mac_resource_handle_t arg2;
proc = srs_rx->sr_func;
arg1 = srs_rx->sr_arg1;
arg2 = mac_srs->srs_mrh;
proc(arg1, arg2, mp_chain, NULL);
}
/*
* This function is called to get the list of HW rings that are reserved by
* an exclusive mac client.
*
* Return value: the number of HW rings.
*/
int
mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
mac_ring_handle_t *hwrh)
{
mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
flow_entry_t *flent = mcip->mci_flent;
mac_group_t *grp = flent->fe_rx_ring_group;
mac_ring_t *ring;
int cnt = 0;
/*
* The mac client did not reserve any RX group, return directly.
* This is probably because the underlying MAC does not support
* any RX groups.
*/
*hwgh = NULL;
if (grp == NULL)
return (0);
/*
* This RX group must be reserved by this mac client.
*/
ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
(mch == (mac_client_handle_t)(MAC_RX_GROUP_ONLY_CLIENT(grp))));
for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) {
ASSERT(cnt < MAX_RINGS_PER_GROUP);
hwrh[cnt++] = (mac_ring_handle_t)ring;
}
*hwgh = (mac_group_handle_t)grp;
return (cnt);
}
/*
* Setup the RX callback of the mac client which exclusively controls HW ring.
*/
void
mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh)
{
mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs;
mac_srs->srs_mrh = prh;
mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
}
void
mac_hwring_teardown(mac_ring_handle_t hwrh)
{
mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs;
mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
mac_srs->srs_mrh = NULL;
}
int
mac_hwring_disable_intr(mac_ring_handle_t rh)
{
mac_ring_t *rr_ring = (mac_ring_t *)rh;
mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
return (intr->mi_disable(intr->mi_handle));
}
int
mac_hwring_enable_intr(mac_ring_handle_t rh)
{
mac_ring_t *rr_ring = (mac_ring_t *)rh;
mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
return (intr->mi_enable(intr->mi_handle));
}
int
mac_hwring_start(mac_ring_handle_t rh)
{
mac_ring_t *rr_ring = (mac_ring_t *)rh;
MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
return (0);
}
void
mac_hwring_stop(mac_ring_handle_t rh)
{
mac_ring_t *rr_ring = (mac_ring_t *)rh;
mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
}
mblk_t *
mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
{
mac_ring_t *rr_ring = (mac_ring_t *)rh;
mac_ring_info_t *info = &rr_ring->mr_info;
return (info->mri_poll(info->mri_driver, bytes_to_pickup));
}
int
mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
{
mac_group_t *group = (mac_group_t *)gh;
return (mac_group_addmac(group, addr));
}
int
mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
{
mac_group_t *group = (mac_group_t *)gh;
return (mac_group_remmac(group, addr));
}
/*
* Set the RX group to be shared/reserved. Note that the group must be
* started/stopped outside of this function.
*/
void
mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state)
{
/*
* If there is no change in the group state, just return.
*/
if (grp->mrg_state == state)
return;
switch (state) {
case MAC_GROUP_STATE_RESERVED:
/*
* Successfully reserved the group.
*
* Given that there is an exclusive client controlling this
* group, we enable the group level polling when available,
* so that SRSs get to turn on/off individual rings they's
* assigned to.
*/
ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
if (GROUP_INTR_DISABLE_FUNC(grp) != NULL)
GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
break;
case MAC_GROUP_STATE_SHARED:
/*
* Set all rings of this group to software classified.
* If the group has an overriding interrupt, then re-enable it.
*/
ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
if (GROUP_INTR_ENABLE_FUNC(grp) != NULL)
GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
/* The ring is not available for reservations any more */
break;
case MAC_GROUP_STATE_REGISTERED:
/* Also callable from mac_register, perim is not held */
break;
default:
ASSERT(B_FALSE);
break;
}
grp->mrg_state = state;
}
/*
* Quiesce future hardware classified packets for the specified Rx ring
*/
static void
mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
{
ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE);
mutex_enter(&rx_ring->mr_lock);
rx_ring->mr_flag |= ring_flag;
while (rx_ring->mr_refcnt != 0)
cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
mutex_exit(&rx_ring->mr_lock);
}
/*
* Please see mac_tx for details about the per cpu locking scheme
*/
static void
mac_tx_lock_all(mac_client_impl_t *mcip)
{
int i;
for (i = 0; i <= mac_tx_percpu_cnt; i++)
mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
}
static void
mac_tx_unlock_all(mac_client_impl_t *mcip)
{
int i;
for (i = mac_tx_percpu_cnt; i >= 0; i--)
mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
}
static void
mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
{
int i;
for (i = mac_tx_percpu_cnt; i > 0; i--)
mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
}
static int
mac_tx_sum_refcnt(mac_client_impl_t *mcip)
{
int i;
int refcnt = 0;
for (i = 0; i <= mac_tx_percpu_cnt; i++)
refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
return (refcnt);
}
/*
* Stop future Tx packets coming down from the client in preparation for
* quiescing the Tx side. This is needed for dynamic reclaim and reassignment
* of rings between clients
*/
void
mac_tx_client_block(mac_client_impl_t *mcip)
{
mac_tx_lock_all(mcip);
mcip->mci_tx_flag |= MCI_TX_QUIESCE;
while (mac_tx_sum_refcnt(mcip) != 0) {
mac_tx_unlock_allbutzero(mcip);
cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
mac_tx_lock_all(mcip);
}
mac_tx_unlock_all(mcip);
}
void
mac_tx_client_unblock(mac_client_impl_t *mcip)
{
mac_tx_lock_all(mcip);
mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
mac_tx_unlock_all(mcip);
/*
* We may fail to disable flow control for the last MAC_NOTE_TX
* notification because the MAC client is quiesced. Send the
* notification again.
*/
i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
}
/*
* Wait for an SRS to quiesce. The SRS worker will signal us when the
* quiesce is done.
*/
static void
mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
{
mutex_enter(&srs->srs_lock);
while (!(srs->srs_state & srs_flag))
cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
mutex_exit(&srs->srs_lock);
}
/*
* Quiescing an Rx SRS is achieved by the following sequence. The protocol
* works bottom up by cutting off packet flow from the bottommost point in the
* mac, then the SRS, and then the soft rings. There are 2 use cases of this
* mechanism. One is a temporary quiesce of the SRS, such as say while changing
* the Rx callbacks. Another use case is Rx SRS teardown. In the former case
* the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
* for the SRS and MR flags. In the former case the threads pause waiting for
* a restart, while in the latter case the threads exit. The Tx SRS teardown
* is also mostly similar to the above.
*
* 1. Stop future hardware classified packets at the lowest level in the mac.
* Remove any hardware classification rule (CONDEMNED case) and mark the
* rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
* from increasing. Upcalls from the driver that come through hardware
* classification will be dropped in mac_rx from now on. Then we wait for
* the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
* sure there aren't any upcall threads from the driver through hardware
* classification. In the case of SRS teardown we also remove the
* classification rule in the driver.
*
* 2. Stop future software classified packets by marking the flow entry with
* FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
* increasing. We also remove the flow entry from the table in the latter
* case. Then wait for the fe_refcnt to reach an appropriate quiescent value
* that indicates there aren't any active threads using that flow entry.
*
* 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
* SRS worker thread, and the soft ring threads are quiesced in sequence
* with the SRS worker thread serving as a master controller. This
* mechansim is explained in mac_srs_worker_quiesce().
*
* The restart mechanism to reactivate the SRS and softrings is explained
* in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
* restart sequence.
*/
void
mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
{
flow_entry_t *flent = srs->srs_flent;
uint_t mr_flag, srs_done_flag;
ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
ASSERT(!(srs->srs_type & SRST_TX));
if (srs_quiesce_flag == SRS_CONDEMNED) {
mr_flag = MR_CONDEMNED;
srs_done_flag = SRS_CONDEMNED_DONE;
if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
mac_srs_client_poll_disable(srs->srs_mcip, srs);
} else {
ASSERT(srs_quiesce_flag == SRS_QUIESCE);
mr_flag = MR_QUIESCE;
srs_done_flag = SRS_QUIESCE_DONE;
if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
}
if (srs->srs_ring != NULL) {
mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
} else {
/*
* SRS is driven by software classification. In case
* of CONDEMNED, the top level teardown functions will
* deal with flow removal.
*/
if (srs_quiesce_flag != SRS_CONDEMNED) {
FLOW_MARK(flent, FE_QUIESCE);
mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
}
}
/*
* Signal the SRS to quiesce itself, and then cv_wait for the
* SRS quiesce to complete. The SRS worker thread will wake us
* up when the quiesce is complete
*/
mac_srs_signal(srs, srs_quiesce_flag);
mac_srs_quiesce_wait(srs, srs_done_flag);
}
/*
* Remove an SRS.
*/
void
mac_rx_srs_remove(mac_soft_ring_set_t *srs)
{
flow_entry_t *flent = srs->srs_flent;
int i;
mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
/*
* Locate and remove our entry in the fe_rx_srs[] array, and
* adjust the fe_rx_srs array entries and array count by
* moving the last entry into the vacated spot.
*/
mutex_enter(&flent->fe_lock);
for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
if (flent->fe_rx_srs[i] == srs)
break;
}
ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
if (i != flent->fe_rx_srs_cnt - 1) {
flent->fe_rx_srs[i] =
flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
i = flent->fe_rx_srs_cnt - 1;
}
flent->fe_rx_srs[i] = NULL;
flent->fe_rx_srs_cnt--;
mutex_exit(&flent->fe_lock);
mac_srs_free(srs);
}
static void
mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
{
mutex_enter(&srs->srs_lock);
srs->srs_state &= ~flag;
mutex_exit(&srs->srs_lock);
}
void
mac_rx_srs_restart(mac_soft_ring_set_t *srs)
{
flow_entry_t *flent = srs->srs_flent;
mac_ring_t *mr;
ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
ASSERT((srs->srs_type & SRST_TX) == 0);
/*
* This handles a change in the number of SRSs between the quiesce and
* and restart operation of a flow.
*/
if (!SRS_QUIESCED(srs))
return;
/*
* Signal the SRS to restart itself. Wait for the restart to complete
* Note that we only restart the SRS if it is not marked as
* permanently quiesced.
*/
if (!SRS_QUIESCED_PERMANENT(srs)) {
mac_srs_signal(srs, SRS_RESTART);
mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
mac_srs_clear_flag(srs, SRS_RESTART_DONE);
mac_srs_client_poll_restart(srs->srs_mcip, srs);
}
/* Finally clear the flags to let the packets in */
mr = srs->srs_ring;
if (mr != NULL) {
MAC_RING_UNMARK(mr, MR_QUIESCE);
/* In case the ring was stopped, safely restart it */
(void) mac_start_ring(mr);
} else {
FLOW_UNMARK(flent, FE_QUIESCE);
}
}
/*
* Temporary quiesce of a flow and associated Rx SRS.
* Please see block comment above mac_rx_classify_flow_rem.
*/
/* ARGSUSED */
int
mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
{
int i;
for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
SRS_QUIESCE);
}
return (0);
}
/*
* Restart a flow and associated Rx SRS that has been quiesced temporarily
* Please see block comment above mac_rx_classify_flow_rem
*/
/* ARGSUSED */
int
mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
{
int i;
for (i = 0; i < flent->fe_rx_srs_cnt; i++)
mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
return (0);
}
void
mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
{
mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
flow_entry_t *flent = mcip->mci_flent;
mac_impl_t *mip = mcip->mci_mip;
mac_soft_ring_set_t *mac_srs;
int i;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
if (flent == NULL)
return;
for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
mac_srs = flent->fe_rx_srs[i];
mutex_enter(&mac_srs->srs_lock);
if (on)
mac_srs->srs_state |= SRS_QUIESCE_PERM;
else
mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
mutex_exit(&mac_srs->srs_lock);
}
}
void
mac_rx_client_quiesce(mac_client_handle_t mch)
{
mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
mac_impl_t *mip = mcip->mci_mip;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
if (MCIP_DATAPATH_SETUP(mcip)) {
(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
NULL);
(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
mac_rx_classify_flow_quiesce, NULL);
}
}
void
mac_rx_client_restart(mac_client_handle_t mch)
{
mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
mac_impl_t *mip = mcip->mci_mip;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
if (MCIP_DATAPATH_SETUP(mcip)) {
(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
mac_rx_classify_flow_restart, NULL);
}
}
/*
* This function only quiesces the Tx SRS and softring worker threads. Callers
* need to make sure that there aren't any mac client threads doing current or
* future transmits in the mac before calling this function.
*/
void
mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
{
mac_client_impl_t *mcip = srs->srs_mcip;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
ASSERT(srs->srs_type & SRST_TX);
ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
srs_quiesce_flag == SRS_QUIESCE);
/*
* Signal the SRS to quiesce itself, and then cv_wait for the
* SRS quiesce to complete. The SRS worker thread will wake us
* up when the quiesce is complete
*/
mac_srs_signal(srs, srs_quiesce_flag);
mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
}
void
mac_tx_srs_restart(mac_soft_ring_set_t *srs)
{
/*
* Resizing the fanout could result in creation of new SRSs.
* They may not necessarily be in the quiesced state in which
* case it need be restarted
*/
if (!SRS_QUIESCED(srs))
return;
mac_srs_signal(srs, SRS_RESTART);
mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
mac_srs_clear_flag(srs, SRS_RESTART_DONE);
}
/*
* Temporary quiesce of a flow and associated Rx SRS.
* Please see block comment above mac_rx_srs_quiesce
*/
/* ARGSUSED */
int
mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
{
/*
* The fe_tx_srs is null for a subflow on an interface that is
* not plumbed
*/
if (flent->fe_tx_srs != NULL)
mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
return (0);
}
/* ARGSUSED */
int
mac_tx_flow_restart(flow_entry_t *flent, void *arg)
{
/*
* The fe_tx_srs is null for a subflow on an interface that is
* not plumbed
*/
if (flent->fe_tx_srs != NULL)
mac_tx_srs_restart(flent->fe_tx_srs);
return (0);
}
void
mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag)
{
ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
mac_tx_client_block(mcip);
if (MCIP_TX_SRS(mcip) != NULL) {
mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
mac_tx_flow_quiesce, NULL);
}
}
void
mac_tx_client_restart(mac_client_impl_t *mcip)
{
ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
mac_tx_client_unblock(mcip);
if (MCIP_TX_SRS(mcip) != NULL) {
mac_tx_srs_restart(MCIP_TX_SRS(mcip));
(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
mac_tx_flow_restart, NULL);
}
}
void
mac_tx_client_flush(mac_client_impl_t *mcip)
{
ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
mac_tx_client_quiesce(mcip, SRS_QUIESCE);
mac_tx_client_restart(mcip);
}
void
mac_client_quiesce(mac_client_impl_t *mcip)
{
mac_rx_client_quiesce((mac_client_handle_t)mcip);
mac_tx_client_quiesce(mcip, SRS_QUIESCE);
}
void
mac_client_restart(mac_client_impl_t *mcip)
{
mac_rx_client_restart((mac_client_handle_t)mcip);
mac_tx_client_restart(mcip);
}
/*
* Allocate a minor number.
*/
minor_t
mac_minor_hold(boolean_t sleep)
{
minor_t minor;
/*
* Grab a value from the arena.
*/
atomic_add_32(&minor_count, 1);
if (sleep)
minor = (uint_t)id_alloc(minor_ids);
else
minor = (uint_t)id_alloc_nosleep(minor_ids);
if (minor == 0) {
atomic_add_32(&minor_count, -1);
return (0);
}
return (minor);
}
/*
* Release a previously allocated minor number.
*/
void
mac_minor_rele(minor_t minor)
{
/*
* Return the value to the arena.
*/
id_free(minor_ids, minor);
atomic_add_32(&minor_count, -1);
}
uint32_t
mac_no_notification(mac_handle_t mh)
{
mac_impl_t *mip = (mac_impl_t *)mh;
return (mip->mi_unsup_note);
}
/*
* Prevent any new opens of this mac in preparation for unregister
*/
int
i_mac_disable(mac_impl_t *mip)
{
mac_client_impl_t *mcip;
rw_enter(&i_mac_impl_lock, RW_WRITER);
if (mip->mi_state_flags & MIS_DISABLED) {
/* Already disabled, return success */
rw_exit(&i_mac_impl_lock);
return (0);
}
/*
* See if there are any other references to this mac_t (e.g., VLAN's).
* If so return failure. If all the other checks below pass, then
* set mi_disabled atomically under the i_mac_impl_lock to prevent
* any new VLAN's from being created or new mac client opens of this
* mac end point.
*/
if (mip->mi_ref > 0) {
rw_exit(&i_mac_impl_lock);
return (EBUSY);
}
/*
* mac clients must delete all multicast groups they join before
* closing. bcast groups are reference counted, the last client
* to delete the group will wait till the group is physically
* deleted. Since all clients have closed this mac end point
* mi_bcast_ngrps must be zero at this point
*/
ASSERT(mip->mi_bcast_ngrps == 0);
/*
* Don't let go of this if it has some flows.
* All other code guarantees no flows are added to a disabled
* mac, therefore it is sufficient to check for the flow table
* only here.
*/
mcip = mac_primary_client_handle(mip);
if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
rw_exit(&i_mac_impl_lock);
return (ENOTEMPTY);
}
mip->mi_state_flags |= MIS_DISABLED;
rw_exit(&i_mac_impl_lock);
return (0);
}
int
mac_disable_nowait(mac_handle_t mh)
{
mac_impl_t *mip = (mac_impl_t *)mh;
int err;
if ((err = i_mac_perim_enter_nowait(mip)) != 0)
return (err);
err = i_mac_disable(mip);
i_mac_perim_exit(mip);
return (err);
}
int
mac_disable(mac_handle_t mh)
{
mac_impl_t *mip = (mac_impl_t *)mh;
int err;
i_mac_perim_enter(mip);
err = i_mac_disable(mip);
i_mac_perim_exit(mip);
/*
* Clean up notification thread and wait for it to exit.
*/
if (err == 0)
i_mac_notify_exit(mip);
return (err);
}
/*
* Called when the MAC instance has a non empty flow table, to de-multiplex
* incoming packets to the right flow.
* The MAC's rw lock is assumed held as a READER.
*/
/* ARGSUSED */
static mblk_t *
mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
{
flow_entry_t *flent = NULL;
uint_t flags = FLOW_INBOUND;
int err;
/*
* If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
* to mac_flow_lookup() so that the VLAN packets can be successfully
* passed to the non-VLAN aggregation flows.
*
* Note that there is possibly a race between this and
* mac_unicast_remove/add() and VLAN packets could be incorrectly
* classified to non-VLAN flows of non-aggregation mac clients. These
* VLAN packets will be then filtered out by the mac module.
*/
if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
flags |= FLOW_IGNORE_VLAN;
err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
if (err != 0) {
/* no registered receive function */
return (mp);
} else {
mac_client_impl_t *mcip;
/*
* This flent might just be an additional one on the MAC client,
* i.e. for classification purposes (different fdesc), however
* the resources, SRS et. al., are in the mci_flent, so if
* this isn't the mci_flent, we need to get it.
*/
if ((mcip = flent->fe_mcip) != NULL &&
mcip->mci_flent != flent) {
FLOW_REFRELE(flent);
flent = mcip->mci_flent;
FLOW_TRY_REFHOLD(flent, err);
if (err != 0)
return (mp);
}
(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
B_FALSE);
FLOW_REFRELE(flent);
}
return (NULL);
}
mblk_t *
mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
{
mac_impl_t *mip = (mac_impl_t *)mh;
mblk_t *bp, *bp1, **bpp, *list = NULL;
/*
* We walk the chain and attempt to classify each packet.
* The packets that couldn't be classified will be returned
* back to the caller.
*/
bp = mp_chain;
bpp = &list;
while (bp != NULL) {
bp1 = bp;
bp = bp->b_next;
bp1->b_next = NULL;
if (mac_rx_classify(mip, mrh, bp1) != NULL) {
*bpp = bp1;
bpp = &bp1->b_next;
}
}
return (list);
}
static int
mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
{
mac_ring_handle_t ring = arg;
if (flent->fe_tx_srs)
mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
return (0);
}
void
i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
{
mac_client_impl_t *cclient;
mac_soft_ring_set_t *mac_srs;
/*
* After grabbing the mi_rw_lock, the list of clients can't change.
* If there are any clients mi_disabled must be B_FALSE and can't
* get set since there are clients. If there aren't any clients we
* don't do anything. In any case the mip has to be valid. The driver
* must make sure that it goes single threaded (with respect to mac
* calls) and wait for all pending mac calls to finish before calling
* mac_unregister.
*/
rw_enter(&i_mac_impl_lock, RW_READER);
if (mip->mi_state_flags & MIS_DISABLED) {
rw_exit(&i_mac_impl_lock);
return;
}
/*
* Get MAC tx srs from walking mac_client_handle list.
*/
rw_enter(&mip->mi_rw_lock, RW_READER);
for (cclient = mip->mi_clients_list; cclient != NULL;
cclient = cclient->mci_client_next) {
if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL)
mac_tx_srs_wakeup(mac_srs, ring);
(void) mac_flow_walk(cclient->mci_subflow_tab,
mac_tx_flow_srs_wakeup, ring);
}
rw_exit(&mip->mi_rw_lock);
rw_exit(&i_mac_impl_lock);
}
/* ARGSUSED */
void
mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
boolean_t add)
{
mac_impl_t *mip = (mac_impl_t *)mh;
i_mac_perim_enter((mac_impl_t *)mh);
/*
* If no specific refresh function was given then default to the
* driver's m_multicst entry point.
*/
if (refresh == NULL) {
refresh = mip->mi_multicst;
arg = mip->mi_driver;
}
mac_bcast_refresh(mip, refresh, arg, add);
i_mac_perim_exit((mac_impl_t *)mh);
}
void
mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
{
mac_impl_t *mip = (mac_impl_t *)mh;
/*
* If no specific refresh function was given then default to the
* driver's m_promisc entry point.
*/
if (refresh == NULL) {
refresh = mip->mi_setpromisc;
arg = mip->mi_driver;
}
ASSERT(refresh != NULL);
/*
* Call the refresh function with the current promiscuity.
*/
refresh(arg, (mip->mi_devpromisc != 0));
}
/*
* The mac client requests that the mac not to change its margin size to
* be less than the specified value. If "current" is B_TRUE, then the client
* requests the mac not to change its margin size to be smaller than the
* current size. Further, return the current margin size value in this case.
*
* We keep every requested size in an ordered list from largest to smallest.
*/
int
mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
{
mac_impl_t *mip = (mac_impl_t *)mh;
mac_margin_req_t **pp, *p;
int err = 0;
rw_enter(&(mip->mi_rw_lock), RW_WRITER);
if (current)
*marginp = mip->mi_margin;
/*
* If the current margin value cannot satisfy the margin requested,
* return ENOTSUP directly.
*/
if (*marginp > mip->mi_margin) {
err = ENOTSUP;
goto done;
}
/*
* Check whether the given margin is already in the list. If so,
* bump the reference count.
*/
for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
if (p->mmr_margin == *marginp) {
/*
* The margin requested is already in the list,
* so just bump the reference count.
*/
p->mmr_ref++;
goto done;
}
if (p->mmr_margin < *marginp)
break;
}
p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
p->mmr_margin = *marginp;
p->mmr_ref++;
p->mmr_nextp = *pp;
*pp = p;
done:
rw_exit(&(mip->mi_rw_lock));
return (err);
}
/*
* The mac client requests to cancel its previous mac_margin_add() request.
* We remove the requested margin size from the list.
*/
int
mac_margin_remove(mac_handle_t mh, uint32_t margin)
{
mac_impl_t *mip = (mac_impl_t *)mh;
mac_margin_req_t **pp, *p;
int err = 0;
rw_enter(&(mip->mi_rw_lock), RW_WRITER);
/*
* Find the entry in the list for the given margin.
*/
for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
if (p->mmr_margin == margin) {
if (--p->mmr_ref == 0)
break;
/*
* There is still a reference to this address so
* there's nothing more to do.
*/
goto done;
}
}
/*
* We did not find an entry for the given margin.
*/
if (p == NULL) {
err = ENOENT;
goto done;
}
ASSERT(p->mmr_ref == 0);
/*
* Remove it from the list.
*/
*pp = p->mmr_nextp;
kmem_free(p, sizeof (mac_margin_req_t));
done:
rw_exit(&(mip->mi_rw_lock));
return (err);
}
boolean_t
mac_margin_update(mac_handle_t mh, uint32_t margin)
{
mac_impl_t *mip = (mac_impl_t *)mh;
uint32_t margin_needed = 0;
rw_enter(&(mip->mi_rw_lock), RW_WRITER);
if (mip->mi_mmrp != NULL)
margin_needed = mip->mi_mmrp->mmr_margin;
if (margin_needed <= margin)
mip->mi_margin = margin;
rw_exit(&(mip->mi_rw_lock));
if (margin_needed <= margin)
i_mac_notify(mip, MAC_NOTE_MARGIN);
return (margin_needed <= margin);
}
/*
* MAC Type Plugin functions.
*/
mactype_t *
mactype_getplugin(const char *pname)
{
mactype_t *mtype = NULL;
boolean_t tried_modload = B_FALSE;
mutex_enter(&i_mactype_lock);
find_registered_mactype:
if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
(mod_hash_val_t *)&mtype) != 0) {
if (!tried_modload) {
/*
* If the plugin has not yet been loaded, then
* attempt to load it now. If modload() succeeds,
* the plugin should have registered using
* mactype_register(), in which case we can go back
* and attempt to find it again.
*/
if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
tried_modload = B_TRUE;
goto find_registered_mactype;
}
}
} else {
/*
* Note that there's no danger that the plugin we've loaded
* could be unloaded between the modload() step and the
* reference count bump here, as we're holding
* i_mactype_lock, which mactype_unregister() also holds.
*/
atomic_inc_32(&mtype->mt_ref);
}
mutex_exit(&i_mactype_lock);
return (mtype);
}
mactype_register_t *
mactype_alloc(uint_t mactype_version)
{
mactype_register_t *mtrp;
/*
* Make sure there isn't a version mismatch between the plugin and
* the framework. In the future, if multiple versions are
* supported, this check could become more sophisticated.
*/
if (mactype_version != MACTYPE_VERSION)
return (NULL);
mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
mtrp->mtr_version = mactype_version;
return (mtrp);
}
void
mactype_free(mactype_register_t *mtrp)
{
kmem_free(mtrp, sizeof (mactype_register_t));
}
int
mactype_register(mactype_register_t *mtrp)
{
mactype_t *mtp;
mactype_ops_t *ops = mtrp->mtr_ops;
/* Do some sanity checking before we register this MAC type. */
if (mtrp->mtr_ident == NULL || ops == NULL)
return (EINVAL);
/*
* Verify that all mandatory callbacks are set in the ops
* vector.
*/
if (ops->mtops_unicst_verify == NULL ||
ops->mtops_multicst_verify == NULL ||
ops->mtops_sap_verify == NULL ||
ops->mtops_header == NULL ||
ops->mtops_header_info == NULL) {
return (EINVAL);
}
mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
mtp->mt_ident = mtrp->mtr_ident;
mtp->mt_ops = *ops;
mtp->mt_type = mtrp->mtr_mactype;
mtp->mt_nativetype = mtrp->mtr_nativetype;
mtp->mt_addr_length = mtrp->mtr_addrlen;
if (mtrp->mtr_brdcst_addr != NULL) {
mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
mtrp->mtr_addrlen);
}
mtp->mt_stats = mtrp->mtr_stats;
mtp->mt_statcount = mtrp->mtr_statcount;
mtp->mt_mapping = mtrp->mtr_mapping;
mtp->mt_mappingcount = mtrp->mtr_mappingcount;
if (mod_hash_insert(i_mactype_hash,
(mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
kmem_free(mtp, sizeof (*mtp));
return (EEXIST);
}
return (0);
}
int
mactype_unregister(const char *ident)
{
mactype_t *mtp;
mod_hash_val_t val;
int err;
/*
* Let's not allow MAC drivers to use this plugin while we're
* trying to unregister it. Holding i_mactype_lock also prevents a
* plugin from unregistering while a MAC driver is attempting to
* hold a reference to it in i_mactype_getplugin().
*/
mutex_enter(&i_mactype_lock);
if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
(mod_hash_val_t *)&mtp)) != 0) {
/* A plugin is trying to unregister, but it never registered. */
err = ENXIO;
goto done;
}
if (mtp->mt_ref != 0) {
err = EBUSY;
goto done;
}
err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
ASSERT(err == 0);
if (err != 0) {
/* This should never happen, thus the ASSERT() above. */
err = EINVAL;
goto done;
}
ASSERT(mtp == (mactype_t *)val);
kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
kmem_free(mtp, sizeof (mactype_t));
done:
mutex_exit(&i_mactype_lock);
return (err);
}
/*
* Returns TRUE when the specified property is intended for the MAC framework,
* as opposed to driver defined properties.
*/
static boolean_t
mac_is_macprop(mac_prop_t *macprop)
{
switch (macprop->mp_id) {
case MAC_PROP_MAXBW:
case MAC_PROP_PRIO:
case MAC_PROP_BIND_CPU:
return (B_TRUE);
default:
return (B_FALSE);
}
}
/*
* mac_set_prop() sets mac or hardware driver properties:
* mac properties include maxbw, priority, and cpu binding list. Driver
* properties are private properties to the hardware, such as mtu, speed
* etc.
* If the property is a driver property, mac_set_prop() calls driver's callback
* function to set it.
* If the property is a mac property, mac_set_prop() invokes mac_set_resources()
* which will cache the property value in mac_impl_t and may call
* mac_client_set_resource() to update property value of the primary mac client,
* if it exists.
*/
int
mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize)
{
int err = ENOTSUP;
mac_impl_t *mip = (mac_impl_t *)mh;
ASSERT(MAC_PERIM_HELD(mh));
/* If it is mac property, call mac_set_resources() */
if (mac_is_macprop(macprop)) {
mac_resource_props_t mrp;
if (valsize < sizeof (mac_resource_props_t))
return (EINVAL);
bzero(&mrp, sizeof (mac_resource_props_t));
bcopy(val, &mrp, sizeof (mrp));
return (mac_set_resources(mh, &mrp));
}
switch (macprop->mp_id) {
case MAC_PROP_MTU: {
uint32_t mtu;
if (valsize < sizeof (mtu))
return (EINVAL);
bcopy(val, &mtu, sizeof (mtu));
err = mac_set_mtu(mh, mtu, NULL);
break;
}
default:
/* For other driver properties, call driver's callback */
if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
macprop->mp_name, macprop->mp_id, valsize, val);
}
}
return (err);
}
/*
* mac_get_prop() gets mac or hardware driver properties.
*
* If the property is a driver property, mac_get_prop() calls driver's callback
* function to get it.
* If the property is a mac property, mac_get_prop() invokes mac_get_resources()
* which returns the cached value in mac_impl_t.
*/
int
mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize,
uint_t *perm)
{
int err = ENOTSUP;
mac_impl_t *mip = (mac_impl_t *)mh;
uint32_t sdu;
link_state_t link_state;
/* If mac property, read from cache */
if (mac_is_macprop(macprop)) {
mac_resource_props_t mrp;
if (valsize < sizeof (mac_resource_props_t))
return (EINVAL);
bzero(&mrp, sizeof (mac_resource_props_t));
mac_get_resources(mh, &mrp);
bcopy(&mrp, val, sizeof (mac_resource_props_t));
return (0);
}
switch (macprop->mp_id) {
case MAC_PROP_MTU:
if (valsize < sizeof (sdu))
return (EINVAL);
if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) {
mac_sdu_get(mh, NULL, &sdu);
bcopy(&sdu, val, sizeof (sdu));
if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) &&
(mip->mi_callbacks->mc_setprop(mip->mi_driver,
macprop->mp_name, macprop->mp_id, valsize,
val) == 0)) {
*perm = MAC_PROP_PERM_RW;
} else {
*perm = MAC_PROP_PERM_READ;
}
return (0);
} else {
if (mip->mi_info.mi_media == DL_ETHER) {
sdu = ETHERMTU;
bcopy(&sdu, val, sizeof (sdu));
return (0);
}
/*
* ask driver for its default.
*/
break;
}
case MAC_PROP_STATUS:
if (valsize < sizeof (link_state))
return (EINVAL);
*perm = MAC_PROP_PERM_READ;
link_state = mac_link_get(mh);
bcopy(&link_state, val, sizeof (link_state));
return (0);
default:
break;
}
/* If driver property, request from driver */
if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
err = mip->mi_callbacks->mc_getprop(mip->mi_driver,
macprop->mp_name, macprop->mp_id, macprop->mp_flags,
valsize, val, perm);
}
return (err);
}
void
mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop)
{
mac_priv_prop_t *mpriv;
if (mpp == NULL)
return;
mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP);
(void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv));
mip->mi_priv_prop = mpriv;
mip->mi_priv_prop_count = nprop;
}
void
mac_unregister_priv_prop(mac_impl_t *mip)
{
mac_priv_prop_t *mpriv;
mpriv = mip->mi_priv_prop;
if (mpriv != NULL) {
kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv));
mip->mi_priv_prop = NULL;
}
mip->mi_priv_prop_count = 0;
}
/*
* mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
* (by invoking mac_rx()) even after processing mac_stop_ring(). In such
* cases if MAC free's the ring structure after mac_stop_ring(), any
* illegal access to the ring structure coming from the driver will panic
* the system. In order to protect the system from such inadverent access,
* we maintain a cache of rings in the mac_impl_t after they get free'd up.
* When packets are received on free'd up rings, MAC (through the generation
* count mechanism) will drop such packets.
*/
static mac_ring_t *
mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings)
{
mac_ring_t *ring;
if (cap_rings->mr_type == MAC_RING_TYPE_RX) {
mutex_enter(&mip->mi_ring_lock);
if (mip->mi_ring_freelist != NULL) {
ring = mip->mi_ring_freelist;
mip->mi_ring_freelist = ring->mr_next;
bzero(ring, sizeof (mac_ring_t));
} else {
ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
}
mutex_exit(&mip->mi_ring_lock);
} else {
ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP);
}
ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
return (ring);
}
static void
mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
{
if (ring->mr_type == MAC_RING_TYPE_RX) {
mutex_enter(&mip->mi_ring_lock);
ring->mr_state = MR_FREE;
ring->mr_flag = 0;
ring->mr_next = mip->mi_ring_freelist;
mip->mi_ring_freelist = ring;
mutex_exit(&mip->mi_ring_lock);
} else {
kmem_free(ring, sizeof (mac_ring_t));
}
}
static void
mac_ring_freeall(mac_impl_t *mip)
{
mac_ring_t *ring_next;
mutex_enter(&mip->mi_ring_lock);
mac_ring_t *ring = mip->mi_ring_freelist;
while (ring != NULL) {
ring_next = ring->mr_next;
kmem_cache_free(mac_ring_cache, ring);
ring = ring_next;
}
mip->mi_ring_freelist = NULL;
mutex_exit(&mip->mi_ring_lock);
}
int
mac_start_ring(mac_ring_t *ring)
{
int rv = 0;
if (ring->mr_start != NULL)
rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
return (rv);
}
void
mac_stop_ring(mac_ring_t *ring)
{
if (ring->mr_stop != NULL)
ring->mr_stop(ring->mr_driver);
/*
* Increment the ring generation number for this ring.
*/
ring->mr_gen_num++;
}
int
mac_start_group(mac_group_t *group)
{
int rv = 0;
if (group->mrg_start != NULL)
rv = group->mrg_start(group->mrg_driver);
return (rv);
}
void
mac_stop_group(mac_group_t *group)
{
if (group->mrg_stop != NULL)
group->mrg_stop(group->mrg_driver);
}
/*
* Called from mac_start() on the default Rx group. Broadcast and multicast
* packets are received only on the default group. Hence the default group
* needs to be up even if the primary client is not up, for the other groups
* to be functional. We do this by calling this function at mac_start time
* itself. However the broadcast packets that are received can't make their
* way beyond mac_rx until a mac client creates a broadcast flow.
*/
static int
mac_start_group_and_rings(mac_group_t *group)
{
mac_ring_t *ring;
int rv = 0;
ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
if ((rv = mac_start_group(group)) != 0)
return (rv);
for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
ASSERT(ring->mr_state == MR_FREE);
if ((rv = mac_start_ring(ring)) != 0)
goto error;
ring->mr_state = MR_INUSE;
ring->mr_classify_type = MAC_SW_CLASSIFIER;
}
return (0);
error:
mac_stop_group_and_rings(group);
return (rv);
}
/* Called from mac_stop on the default Rx group */
static void
mac_stop_group_and_rings(mac_group_t *group)
{
mac_ring_t *ring;
for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
if (ring->mr_state != MR_FREE) {
mac_stop_ring(ring);
ring->mr_state = MR_FREE;
ring->mr_flag = 0;
ring->mr_classify_type = MAC_NO_CLASSIFIER;
}
}
mac_stop_group(group);
}
static mac_ring_t *
mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
mac_capab_rings_t *cap_rings)
{
mac_ring_t *ring;
mac_ring_info_t ring_info;
ring = mac_ring_alloc(mip, cap_rings);
/* Prepare basic information of ring */
ring->mr_index = index;
ring->mr_type = group->mrg_type;
ring->mr_gh = (mac_group_handle_t)group;
/* Insert the new ring to the list. */
ring->mr_next = group->mrg_rings;
group->mrg_rings = ring;
/* Zero to reuse the info data structure */
bzero(&ring_info, sizeof (ring_info));
/* Query ring information from driver */
cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
index, &ring_info, (mac_ring_handle_t)ring);
ring->mr_info = ring_info;
/* Update ring's status */
ring->mr_state = MR_FREE;
ring->mr_flag = 0;
/* Update the ring count of the group */
group->mrg_cur_count++;
return (ring);
}
/*
* Rings are chained together for easy regrouping.
*/
static void
mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
mac_capab_rings_t *cap_rings)
{
int index;
/*
* Initialize all ring members of this group. Size of zero will not
* enter the loop, so it's safe for initializing an empty group.
*/
for (index = size - 1; index >= 0; index--)
(void) mac_init_ring(mip, group, index, cap_rings);
}
int
mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
{
mac_capab_rings_t *cap_rings;
mac_group_t *group, *groups;
mac_group_info_t group_info;
uint_t group_free = 0;
uint_t ring_left;
mac_ring_t *ring;
int g, err = 0;
switch (rtype) {
case MAC_RING_TYPE_RX:
ASSERT(mip->mi_rx_groups == NULL);
cap_rings = &mip->mi_rx_rings_cap;
cap_rings->mr_type = MAC_RING_TYPE_RX;
break;
case MAC_RING_TYPE_TX:
ASSERT(mip->mi_tx_groups == NULL);
cap_rings = &mip->mi_tx_rings_cap;
cap_rings->mr_type = MAC_RING_TYPE_TX;
break;
default:
ASSERT(B_FALSE);
}
if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS,
cap_rings))
return (0);
/*
* Allocate a contiguous buffer for all groups.
*/
groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1),
KM_SLEEP);
ring_left = cap_rings->mr_rnum;
/*
* Get all ring groups if any, and get their ring members
* if any.
*/
for (g = 0; g < cap_rings->mr_gnum; g++) {
group = groups + g;
/* Prepare basic information of the group */
group->mrg_index = g;
group->mrg_type = rtype;
group->mrg_state = MAC_GROUP_STATE_UNINIT;
group->mrg_mh = (mac_handle_t)mip;
group->mrg_next = group + 1;
/* Zero to reuse the info data structure */
bzero(&group_info, sizeof (group_info));
/* Query group information from driver */
cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
(mac_group_handle_t)group);
switch (cap_rings->mr_group_type) {
case MAC_GROUP_TYPE_DYNAMIC:
if (cap_rings->mr_gaddring == NULL ||
cap_rings->mr_gremring == NULL) {
DTRACE_PROBE3(
mac__init__rings_no_addremring,
char *, mip->mi_name,
mac_group_add_ring_t,
cap_rings->mr_gaddring,
mac_group_add_ring_t,
cap_rings->mr_gremring);
err = EINVAL;
goto bail;
}
switch (rtype) {
case MAC_RING_TYPE_RX:
/*
* The first RX group must have non-zero
* rings, and the following groups must
* have zero rings.
*/
if (g == 0 && group_info.mgi_count == 0) {
DTRACE_PROBE1(
mac__init__rings__rx__def__zero,
char *, mip->mi_name);
err = EINVAL;
goto bail;
}
if (g > 0 && group_info.mgi_count != 0) {
DTRACE_PROBE3(
mac__init__rings__rx__nonzero,
char *, mip->mi_name,
int, g, int, group_info.mgi_count);
err = EINVAL;
goto bail;
}
break;
case MAC_RING_TYPE_TX:
/*
* All TX ring groups must have zero rings.
*/
if (group_info.mgi_count != 0) {
DTRACE_PROBE3(
mac__init__rings__tx__nonzero,
char *, mip->mi_name,
int, g, int, group_info.mgi_count);
err = EINVAL;
goto bail;
}
break;
}
break;
case MAC_GROUP_TYPE_STATIC:
/*
* Note that an empty group is allowed, e.g., an aggr
* would start with an empty group.
*/
break;
default:
/* unknown group type */
DTRACE_PROBE2(mac__init__rings__unknown__type,
char *, mip->mi_name,
int, cap_rings->mr_group_type);
err = EINVAL;
goto bail;
}
/*
* Driver must register group->mgi_addmac/remmac() for rx groups
* to support multiple MAC addresses.
*/
if (rtype == MAC_RING_TYPE_RX) {
if ((group_info.mgi_addmac == NULL) ||
(group_info.mgi_addmac == NULL))
goto bail;
}
/* Cache driver-supplied information */
group->mrg_info = group_info;
/* Update the group's status and group count. */
mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED);
group_free++;
group->mrg_rings = NULL;
group->mrg_cur_count = 0;
mac_init_group(mip, group, group_info.mgi_count, cap_rings);
ring_left -= group_info.mgi_count;
/* The current group size should be equal to default value */
ASSERT(group->mrg_cur_count == group_info.mgi_count);
}
/* Build up a dummy group for free resources as a pool */
group = groups + cap_rings->mr_gnum;
/* Prepare basic information of the group */
group->mrg_index = -1;
group->mrg_type = rtype;
group->mrg_state = MAC_GROUP_STATE_UNINIT;
group->mrg_mh = (mac_handle_t)mip;
group->mrg_next = NULL;
/*
* If there are ungrouped rings, allocate a continuous buffer for
* remaining resources.
*/
if (ring_left != 0) {
group->mrg_rings = NULL;
group->mrg_cur_count = 0;
mac_init_group(mip, group, ring_left, cap_rings);
/* The current group size should be equal to ring_left */
ASSERT(group->mrg_cur_count == ring_left);
ring_left = 0;
/* Update this group's status */
mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED);
} else
group->mrg_rings = NULL;
ASSERT(ring_left == 0);
bail:
/* Cache other important information to finalize the initialization */
switch (rtype) {
case MAC_RING_TYPE_RX:
mip->mi_rx_group_type = cap_rings->mr_group_type;
mip->mi_rx_group_count = cap_rings->mr_gnum;
mip->mi_rx_groups = groups;
break;
case MAC_RING_TYPE_TX:
mip->mi_tx_group_type = cap_rings->mr_group_type;
mip->mi_tx_group_count = cap_rings->mr_gnum;
mip->mi_tx_group_free = group_free;
mip->mi_tx_groups = groups;
/*
* Ring 0 is used as the default one and it could be assigned
* to a client as well.
*/
group = groups + cap_rings->mr_gnum;
ring = group->mrg_rings;
while ((ring->mr_index != 0) && (ring->mr_next != NULL))
ring = ring->mr_next;
ASSERT(ring->mr_index == 0);
mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
break;
default:
ASSERT(B_FALSE);
}
if (err != 0)
mac_free_rings(mip, rtype);
return (err);
}
/*
* Called to free all ring groups with particular type. It's supposed all groups
* have been released by clinet.
*/
void
mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
{
mac_group_t *group, *groups;
uint_t group_count;
switch (rtype) {
case MAC_RING_TYPE_RX:
if (mip->mi_rx_groups == NULL)
return;
groups = mip->mi_rx_groups;
group_count = mip->mi_rx_group_count;
mip->mi_rx_groups = NULL;
mip->mi_rx_group_count = 0;
break;
case MAC_RING_TYPE_TX:
ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
if (mip->mi_tx_groups == NULL)
return;
groups = mip->mi_tx_groups;
group_count = mip->mi_tx_group_count;
mip->mi_tx_groups = NULL;
mip->mi_tx_group_count = 0;
mip->mi_tx_group_free = 0;
mip->mi_default_tx_ring = NULL;
break;
default:
ASSERT(B_FALSE);
}
for (group = groups; group != NULL; group = group->mrg_next) {
mac_ring_t *ring;
if (group->mrg_cur_count == 0)
continue;
ASSERT(group->mrg_rings != NULL);
while ((ring = group->mrg_rings) != NULL) {
group->mrg_rings = ring->mr_next;
mac_ring_free(mip, ring);
}
}
/* Free all the cached rings */
mac_ring_freeall(mip);
/* Free the block of group data strutures */
kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
}
/*
* Associate a MAC address with a receive group.
*
* The return value of this function should always be checked properly, because
* any type of failure could cause unexpected results. A group can be added
* or removed with a MAC address only after it has been reserved. Ideally,
* a successful reservation always leads to calling mac_group_addmac() to
* steer desired traffic. Failure of adding an unicast MAC address doesn't
* always imply that the group is functioning abnormally.
*
* Currently this function is called everywhere, and it reflects assumptions
* about MAC addresses in the implementation. CR 6735196.
*/
int
mac_group_addmac(mac_group_t *group, const uint8_t *addr)
{
ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
ASSERT(group->mrg_info.mgi_addmac != NULL);
return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
}
/*
* Remove the association between MAC address and receive group.
*/
int
mac_group_remmac(mac_group_t *group, const uint8_t *addr)
{
ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
ASSERT(group->mrg_info.mgi_remmac != NULL);
return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
}
/*
* Release a ring in use by marking it MR_FREE.
* Any other client may reserve it for its use.
*/
void
mac_release_tx_ring(mac_ring_handle_t rh)
{
mac_ring_t *ring = (mac_ring_t *)rh;
mac_group_t *group = (mac_group_t *)ring->mr_gh;
mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
ASSERT(ring->mr_state != MR_FREE);
/*
* Default tx ring will be released by mac_stop().
*/
if (rh == mip->mi_default_tx_ring)
return;
mac_stop_ring(ring);
ring->mr_state = MR_FREE;
ring->mr_flag = 0;
}
/*
* Send packets through a selected tx ring.
*/
mblk_t *
mac_ring_tx(mac_ring_handle_t rh, mblk_t *mp)
{
mac_ring_t *ring = (mac_ring_t *)rh;
mac_ring_info_t *info = &ring->mr_info;
ASSERT(ring->mr_type == MAC_RING_TYPE_TX);
ASSERT(ring->mr_state >= MR_INUSE);
ASSERT(info->mri_tx != NULL);
return (info->mri_tx(info->mri_driver, mp));
}
/*
* Find a ring from its index.
*/
mac_ring_t *
mac_find_ring(mac_group_t *group, int index)
{
mac_ring_t *ring = group->mrg_rings;
for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
if (ring->mr_index == index)
break;
return (ring);
}
/*
* Add a ring to an existing group.
*
* The ring must be either passed directly (for example if the ring
* movement is initiated by the framework), or specified through a driver
* index (for example when the ring is added by the driver.
*
* The caller needs to call mac_perim_enter() before calling this function.
*/
int
i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
{
mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
mac_capab_rings_t *cap_rings;
boolean_t driver_call = (ring == NULL);
mac_group_type_t group_type;
int ret = 0;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
switch (group->mrg_type) {
case MAC_RING_TYPE_RX:
cap_rings = &mip->mi_rx_rings_cap;
group_type = mip->mi_rx_group_type;
break;
case MAC_RING_TYPE_TX:
cap_rings = &mip->mi_tx_rings_cap;
group_type = mip->mi_tx_group_type;
break;
default:
ASSERT(B_FALSE);
}
/*
* There should be no ring with the same ring index in the target
* group.
*/
ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) ==
NULL);
if (driver_call) {
/*
* The function is called as a result of a request from
* a driver to add a ring to an existing group, for example
* from the aggregation driver. Allocate a new mac_ring_t
* for that ring.
*/
ring = mac_init_ring(mip, group, index, cap_rings);
ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
} else {
/*
* The function is called as a result of a MAC layer request
* to add a ring to an existing group. In this case the
* ring is being moved between groups, which requires
* the underlying driver to support dynamic grouping,
* and the mac_ring_t already exists.
*/
ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
ASSERT(cap_rings->mr_gaddring != NULL);
ASSERT(ring->mr_gh == NULL);
}
/*
* At this point the ring should not be in use, and it should be
* of the right for the target group.
*/
ASSERT(ring->mr_state < MR_INUSE);
ASSERT(ring->mr_srs == NULL);
ASSERT(ring->mr_type == group->mrg_type);
if (!driver_call) {
/*
* Add the driver level hardware ring if the process was not
* initiated by the driver, and the target group is not the
* group.
*/
if (group->mrg_driver != NULL) {
cap_rings->mr_gaddring(group->mrg_driver,
ring->mr_driver, ring->mr_type);
}
/*
* Insert the ring ahead existing rings.
*/
ring->mr_next = group->mrg_rings;
group->mrg_rings = ring;
ring->mr_gh = (mac_group_handle_t)group;
group->mrg_cur_count++;
}
/*
* If the group has not been actively used, we're done.
*/
if (group->mrg_index != -1 &&
group->mrg_state < MAC_GROUP_STATE_RESERVED)
return (0);
/*
* Set up SRS/SR according to the ring type.
*/
switch (ring->mr_type) {
case MAC_RING_TYPE_RX:
/*
* Setup SRS on top of the new ring if the group is
* reserved for someones exclusive use.
*/
if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
flow_entry_t *flent;
mac_client_impl_t *mcip;
mcip = MAC_RX_GROUP_ONLY_CLIENT(group);
ASSERT(mcip != NULL);
flent = mcip->mci_flent;
ASSERT(flent->fe_rx_srs_cnt > 0);
mac_srs_group_setup(mcip, flent, group, SRST_LINK);
}
break;
case MAC_RING_TYPE_TX:
/*
* For TX this function is only invoked during the
* initial creation of a group when a share is
* associated with a MAC client. So the datapath is not
* yet setup, and will be setup later after the
* group has been reserved and populated.
*/
break;
default:
ASSERT(B_FALSE);
}
/*
* Start the ring if needed. Failure causes to undo the grouping action.
*/
if ((ret = mac_start_ring(ring)) != 0) {
if (ring->mr_type == MAC_RING_TYPE_RX) {
if (ring->mr_srs != NULL) {
mac_rx_srs_remove(ring->mr_srs);
ring->mr_srs = NULL;
}
}
if (!driver_call) {
cap_rings->mr_gremring(group->mrg_driver,
ring->mr_driver, ring->mr_type);
}
group->mrg_cur_count--;
group->mrg_rings = ring->mr_next;
ring->mr_gh = NULL;
if (driver_call)
mac_ring_free(mip, ring);
return (ret);
}
/*
* Update the ring's state.
*/
ring->mr_state = MR_INUSE;
MAC_RING_UNMARK(ring, MR_INCIPIENT);
return (0);
}
/*
* Remove a ring from it's current group. MAC internal function for dynamic
* grouping.
*
* The caller needs to call mac_perim_enter() before calling this function.
*/
void
i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
boolean_t driver_call)
{
mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
mac_capab_rings_t *cap_rings = NULL;
mac_group_type_t group_type;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
ASSERT(mac_find_ring(group, ring->mr_index) == ring);
ASSERT((mac_group_t *)ring->mr_gh == group);
ASSERT(ring->mr_type == group->mrg_type);
switch (ring->mr_type) {
case MAC_RING_TYPE_RX:
group_type = mip->mi_rx_group_type;
cap_rings = &mip->mi_rx_rings_cap;
if (group->mrg_state >= MAC_GROUP_STATE_RESERVED)
mac_stop_ring(ring);
/*
* Only hardware classified packets hold a reference to the
* ring all the way up the Rx path. mac_rx_srs_remove()
* will take care of quiescing the Rx path and removing the
* SRS. The software classified path neither holds a reference
* nor any association with the ring in mac_rx.
*/
if (ring->mr_srs != NULL) {
mac_rx_srs_remove(ring->mr_srs);
ring->mr_srs = NULL;
}
ring->mr_state = MR_FREE;
ring->mr_flag = 0;
break;
case MAC_RING_TYPE_TX:
/*
* For TX this function is only invoked in two
* cases:
*
* 1) In the case of a failure during the
* initial creation of a group when a share is
* associated with a MAC client. So the SRS is not
* yet setup, and will be setup later after the
* group has been reserved and populated.
*
* 2) From mac_release_tx_group() when freeing
* a TX SRS.
*
* In both cases the SRS and its soft rings are
* already quiesced.
*/
ASSERT(!driver_call);
group_type = mip->mi_tx_group_type;
cap_rings = &mip->mi_tx_rings_cap;
break;
default:
ASSERT(B_FALSE);
}
/*
* Remove the ring from the group.
*/
if (ring == group->mrg_rings)
group->mrg_rings = ring->mr_next;
else {
mac_ring_t *pre;
pre = group->mrg_rings;
while (pre->mr_next != ring)
pre = pre->mr_next;
pre->mr_next = ring->mr_next;
}
group->mrg_cur_count--;
if (!driver_call) {
ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
ASSERT(cap_rings->mr_gremring != NULL);
/*
* Remove the driver level hardware ring.
*/
if (group->mrg_driver != NULL) {
cap_rings->mr_gremring(group->mrg_driver,
ring->mr_driver, ring->mr_type);
}
}
ring->mr_gh = NULL;
if (driver_call) {
mac_ring_free(mip, ring);
} else {
ring->mr_state = MR_FREE;
ring->mr_flag = 0;
}
}
/*
* Move a ring to the target group. If needed, remove the ring from the group
* that it currently belongs to.
*
* The caller need to enter MAC's perimeter by calling mac_perim_enter().
*/
static int
mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
{
mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
int rv;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
ASSERT(d_group != NULL);
ASSERT(s_group->mrg_mh == d_group->mrg_mh);
if (s_group == d_group)
return (0);
/*
* Remove it from current group first.
*/
if (s_group != NULL)
i_mac_group_rem_ring(s_group, ring, B_FALSE);
/*
* Add it to the new group.
*/
rv = i_mac_group_add_ring(d_group, ring, 0);
if (rv != 0) {
/*
* Failed to add ring back to source group. If
* that fails, the ring is stuck in limbo, log message.
*/
if (i_mac_group_add_ring(s_group, ring, 0)) {
cmn_err(CE_WARN, "%s: failed to move ring %p\n",
mip->mi_name, (void *)ring);
}
}
return (rv);
}
/*
* Find a MAC address according to its value.
*/
mac_address_t *
mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
{
mac_address_t *map;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
break;
}
return (map);
}
/*
* Check whether the MAC address is shared by multiple clients.
*/
boolean_t
mac_check_macaddr_shared(mac_address_t *map)
{
ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
return (map->ma_nusers > 1);
}
/*
* Remove the specified MAC address from the MAC address list and free it.
*/
static void
mac_free_macaddr(mac_address_t *map)
{
mac_impl_t *mip = map->ma_mip;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
ASSERT(mip->mi_addresses != NULL);
map = mac_find_macaddr(mip, map->ma_addr);
ASSERT(map != NULL);
ASSERT(map->ma_nusers == 0);
if (map == mip->mi_addresses) {
mip->mi_addresses = map->ma_next;
} else {
mac_address_t *pre;
pre = mip->mi_addresses;
while (pre->ma_next != map)
pre = pre->ma_next;
pre->ma_next = map->ma_next;
}
kmem_free(map, sizeof (mac_address_t));
}
/*
* Add a MAC address reference for a client. If the desired MAC address
* exists, add a reference to it. Otherwise, add the new address by adding
* it to a reserved group or setting promiscuous mode. Won't try different
* group is the group is non-NULL, so the caller must explictly share
* default group when needed.
*
* Note, the primary MAC address is initialized at registration time, so
* to add it to default group only need to activate it if its reference
* count is still zero. Also, some drivers may not have advertised RINGS
* capability.
*/
int
mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
boolean_t use_hw)
{
mac_address_t *map;
int err = 0;
boolean_t allocated_map = B_FALSE;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
map = mac_find_macaddr(mip, mac_addr);
/*
* If the new MAC address has not been added. Allocate a new one
* and set it up.
*/
if (map == NULL) {
map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
map->ma_len = mip->mi_type->mt_addr_length;
bcopy(mac_addr, map->ma_addr, map->ma_len);
map->ma_nusers = 0;
map->ma_group = group;
map->ma_mip = mip;
/* add the new MAC address to the head of the address list */
map->ma_next = mip->mi_addresses;
mip->mi_addresses = map;
allocated_map = B_TRUE;
}
ASSERT(map->ma_group == group);
/*
* If the MAC address is already in use, simply account for the
* new client.
*/
if (map->ma_nusers++ > 0)
return (0);
/*
* Activate this MAC address by adding it to the reserved group.
*/
if (group != NULL) {
err = mac_group_addmac(group, (const uint8_t *)mac_addr);
if (err == 0) {
map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
return (0);
}
}
/*
* The MAC address addition failed. If the client requires a
* hardware classified MAC address, fail the operation.
*/
if (use_hw) {
err = ENOSPC;
goto bail;
}
/*
* Try promiscuous mode.
*
* For drivers that don't advertise RINGS capability, do
* nothing for the primary address.
*/
if ((group == NULL) &&
(bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
return (0);
}
/*
* Enable promiscuous mode in order to receive traffic
* to the new MAC address.
*/
if ((err = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) == 0) {
map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
return (0);
}
/*
* Free the MAC address that could not be added. Don't free
* a pre-existing address, it could have been the entry
* for the primary MAC address which was pre-allocated by
* mac_init_macaddr(), and which must remain on the list.
*/
bail:
map->ma_nusers--;
if (allocated_map)
mac_free_macaddr(map);
return (err);
}
/*
* Remove a reference to a MAC address. This may cause to remove the MAC
* address from an associated group or to turn off promiscuous mode.
* The caller needs to handle the failure properly.
*/
int
mac_remove_macaddr(mac_address_t *map)
{
mac_impl_t *mip = map->ma_mip;
int err = 0;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
/*
* If it's not the last client using this MAC address, only update
* the MAC clients count.
*/
if (--map->ma_nusers > 0)
return (0);
/*
* The MAC address is no longer used by any MAC client, so remove
* it from its associated group, or turn off promiscuous mode
* if it was enabled for the MAC address.
*/
switch (map->ma_type) {
case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
/*
* Don't free the preset primary address for drivers that
* don't advertise RINGS capability.
*/
if (map->ma_group == NULL)
return (0);
err = mac_group_remmac(map->ma_group, map->ma_addr);
break;
case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
err = i_mac_promisc_set(mip, B_FALSE, MAC_DEVPROMISC);
break;
default:
ASSERT(B_FALSE);
}
if (err != 0)
return (err);
/*
* We created MAC address for the primary one at registration, so we
* won't free it here. mac_fini_macaddr() will take care of it.
*/
if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
mac_free_macaddr(map);
return (0);
}
/*
* Update an existing MAC address. The caller need to make sure that the new
* value has not been used.
*/
int
mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
{
mac_impl_t *mip = map->ma_mip;
int err = 0;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
switch (map->ma_type) {
case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
/*
* Update the primary address for drivers that are not
* RINGS capable.
*/
if (map->ma_group == NULL) {
err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
mac_addr);
if (err != 0)
return (err);
break;
}
/*
* If this MAC address is not currently in use,
* simply break out and update the value.
*/
if (map->ma_nusers == 0)
break;
/*
* Need to replace the MAC address associated with a group.
*/
err = mac_group_remmac(map->ma_group, map->ma_addr);
if (err != 0)
return (err);
err = mac_group_addmac(map->ma_group, mac_addr);
/*
* Failure hints hardware error. The MAC layer needs to
* have error notification facility to handle this.
* Now, simply try to restore the value.
*/
if (err != 0)
(void) mac_group_addmac(map->ma_group, map->ma_addr);
break;
case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
/*
* Need to do nothing more if in promiscuous mode.
*/
break;
default:
ASSERT(B_FALSE);
}
/*
* Successfully replaced the MAC address.
*/
if (err == 0)
bcopy(mac_addr, map->ma_addr, map->ma_len);
return (err);
}
/*
* Freshen the MAC address with new value. Its caller must have updated the
* hardware MAC address before calling this function.
* This funcitons is supposed to be used to handle the MAC address change
* notification from underlying drivers.
*/
void
mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
{
mac_impl_t *mip = map->ma_mip;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
/*
* Freshen the MAC address with new value.
*/
bcopy(mac_addr, map->ma_addr, map->ma_len);
bcopy(mac_addr, mip->mi_addr, map->ma_len);
/*
* Update all MAC clients that share this MAC address.
*/
mac_unicast_update_clients(mip, map);
}
/*
* Set up the primary MAC address.
*/
void
mac_init_macaddr(mac_impl_t *mip)
{
mac_address_t *map;
/*
* The reference count is initialized to zero, until it's really
* activated.
*/
map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
map->ma_len = mip->mi_type->mt_addr_length;
bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
/*
* If driver advertises RINGS capability, it shouldn't have initialized
* its primary MAC address. For other drivers, including VNIC, the
* primary address must work after registration.
*/
if (mip->mi_rx_groups == NULL)
map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
/*
* The primary MAC address is reserved for default group according
* to current design.
*/
map->ma_group = mip->mi_rx_groups;
map->ma_mip = mip;
mip->mi_addresses = map;
}
/*
* Clean up the primary MAC address. Note, only one primary MAC address
* is allowed. All other MAC addresses must have been freed appropriately.
*/
void
mac_fini_macaddr(mac_impl_t *mip)
{
mac_address_t *map = mip->mi_addresses;
if (map == NULL)
return;
/*
* If mi_addresses is initialized, there should be exactly one
* entry left on the list with no users.
*/
ASSERT(map->ma_nusers == 0);
ASSERT(map->ma_next == NULL);
kmem_free(map, sizeof (mac_address_t));
mip->mi_addresses = NULL;
}
/*
* Logging related functions.
*/
/* Write the Flow description to the log file */
int
mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
{
flow_desc_t *fdesc;
mac_resource_props_t *mrp;
net_desc_t ndesc;
bzero(&ndesc, sizeof (net_desc_t));
/*
* Grab the fe_lock to see a self-consistent fe_flow_desc.
* Updates to the fe_flow_desc are done under the fe_lock
*/
mutex_enter(&flent->fe_lock);
fdesc = &flent->fe_flow_desc;
mrp = &flent->fe_resource_props;
ndesc.nd_name = flent->fe_flow_name;
ndesc.nd_devname = mcip->mci_name;
bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL);
bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL);
ndesc.nd_sap = htonl(fdesc->fd_sap);
ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
ndesc.nd_bw_limit = mrp->mrp_maxbw;
if (ndesc.nd_isv4) {
ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
} else {
bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN);
bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN);
}
ndesc.nd_sport = htons(fdesc->fd_local_port);
ndesc.nd_dport = htons(fdesc->fd_remote_port);
ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol;
mutex_exit(&flent->fe_lock);
return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC));
}
/* Write the Flow statistics to the log file */
int
mac_write_flow_stats(flow_entry_t *flent)
{
flow_stats_t *fl_stats;
net_stat_t nstat;
fl_stats = &flent->fe_flowstats;
nstat.ns_name = flent->fe_flow_name;
nstat.ns_ibytes = fl_stats->fs_rbytes;
nstat.ns_obytes = fl_stats->fs_obytes;
nstat.ns_ipackets = fl_stats->fs_ipackets;
nstat.ns_opackets = fl_stats->fs_opackets;
nstat.ns_ierrors = fl_stats->fs_ierrors;
nstat.ns_oerrors = fl_stats->fs_oerrors;
return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC));
}
/* Write the Link Description to the log file */
int
mac_write_link_desc(mac_client_impl_t *mcip)
{
net_desc_t ndesc;
flow_entry_t *flent = mcip->mci_flent;
bzero(&ndesc, sizeof (net_desc_t));
ndesc.nd_name = mcip->mci_name;
ndesc.nd_devname = mcip->mci_name;
ndesc.nd_isv4 = B_TRUE;
/*
* Grab the fe_lock to see a self-consistent fe_flow_desc.
* Updates to the fe_flow_desc are done under the fe_lock
* after removing the flent from the flow table.
*/
mutex_enter(&flent->fe_lock);
bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL);
mutex_exit(&flent->fe_lock);
return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC));
}
/* Write the Link statistics to the log file */
int
mac_write_link_stats(mac_client_impl_t *mcip)
{
net_stat_t nstat;
nstat.ns_name = mcip->mci_name;
nstat.ns_ibytes = mcip->mci_stat_ibytes;
nstat.ns_obytes = mcip->mci_stat_obytes;
nstat.ns_ipackets = mcip->mci_stat_ipackets;
nstat.ns_opackets = mcip->mci_stat_opackets;
nstat.ns_ierrors = mcip->mci_stat_ierrors;
nstat.ns_oerrors = mcip->mci_stat_oerrors;
return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC));
}
/*
* For a given flow, if the descrition has not been logged before, do it now.
* If it is a VNIC, then we have collected information about it from the MAC
* table, so skip it.
*/
/*ARGSUSED*/
static int
mac_log_flowinfo(flow_entry_t *flent, void *args)
{
mac_client_impl_t *mcip = flent->fe_mcip;
if (mcip == NULL)
return (0);
/*
* If the name starts with "vnic", and fe_user_generated is true (to
* exclude the mcast and active flow entries created implicitly for
* a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow,
* vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
*/
if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
(flent->fe_type & FLOW_USER) != 0) {
return (0);
}
if (!flent->fe_desc_logged) {
/*
* We don't return error because we want to continu the
* walk in case this is the last walk which means we
* need to reset fe_desc_logged in all the flows.
*/
if (mac_write_flow_desc(flent, mcip) != 0)
return (0);
flent->fe_desc_logged = B_TRUE;
}
/*
* Regardless of the error, we want to proceed in case we have to
* reset fe_desc_logged.
*/
(void) mac_write_flow_stats(flent);
if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
flent->fe_desc_logged = B_FALSE;
return (0);
}
typedef struct i_mac_log_state_s {
boolean_t mi_last;
int mi_fenable;
int mi_lenable;
} i_mac_log_state_t;
/*
* Walk the mac_impl_ts and log the description for each mac client of this mac,
* if it hasn't already been done. Additionally, log statistics for the link as
* well. Walk the flow table and log information for each flow as well.
* If it is the last walk (mci_last), then we turn off mci_desc_logged (and
* also fe_desc_logged, if flow logging is on) since we want to log the
* description if and when logging is restarted.
*/
/*ARGSUSED*/
static uint_t
i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
{
mac_impl_t *mip = (mac_impl_t *)val;
i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg;
int ret;
mac_client_impl_t *mcip;
/*
* Only walk the client list for NIC and etherstub
*/
if ((mip->mi_state_flags & MIS_DISABLED) ||
((mip->mi_state_flags & MIS_IS_VNIC) &&
(mac_get_lower_mac_handle((mac_handle_t)mip) != NULL)))
return (MH_WALK_CONTINUE);
for (mcip = mip->mi_clients_list; mcip != NULL;
mcip = mcip->mci_client_next) {
if (!MCIP_DATAPATH_SETUP(mcip))
continue;
if (lstate->mi_lenable) {
if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
ret = mac_write_link_desc(mcip);
if (ret != 0) {
/*
* We can't terminate it if this is the last
* walk, else there might be some links with
* mi_desc_logged set to true, which means
* their description won't be logged the next
* time logging is started (similarly for the
* flows within such links). We can continue
* without walking the flow table (i.e. to
* set fe_desc_logged to false) because we
* won't have written any flow stuff for this
* link as we haven't logged the link itself.
*/
if (lstate->mi_last)
return (MH_WALK_CONTINUE);
else
return (MH_WALK_TERMINATE);
}
mcip->mci_state_flags |= MCIS_DESC_LOGGED;
}
}
if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last)
return (MH_WALK_TERMINATE);
if (lstate->mi_last)
mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
if (lstate->mi_fenable) {
if (mcip->mci_subflow_tab != NULL) {
(void) mac_flow_walk(mcip->mci_subflow_tab,
mac_log_flowinfo, mip);
}
}
}
return (MH_WALK_CONTINUE);
}
/*
* The timer thread that runs every mac_logging_interval seconds and logs
* link and/or flow information.
*/
/* ARGSUSED */
void
mac_log_linkinfo(void *arg)
{
i_mac_log_state_t lstate;
rw_enter(&i_mac_impl_lock, RW_READER);
if (!mac_flow_log_enable && !mac_link_log_enable) {
rw_exit(&i_mac_impl_lock);
return;
}
lstate.mi_fenable = mac_flow_log_enable;
lstate.mi_lenable = mac_link_log_enable;
lstate.mi_last = B_FALSE;
rw_exit(&i_mac_impl_lock);
mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate);
rw_enter(&i_mac_impl_lock, RW_WRITER);
if (mac_flow_log_enable || mac_link_log_enable) {
mac_logging_timer = timeout(mac_log_linkinfo, NULL,
SEC_TO_TICK(mac_logging_interval));
}
rw_exit(&i_mac_impl_lock);
}
/*
* Start the logging timer.
*/
void
mac_start_logusage(mac_logtype_t type, uint_t interval)
{
rw_enter(&i_mac_impl_lock, RW_WRITER);
switch (type) {
case MAC_LOGTYPE_FLOW:
if (mac_flow_log_enable) {
rw_exit(&i_mac_impl_lock);
return;
}
mac_flow_log_enable = B_TRUE;
/* FALLTHRU */
case MAC_LOGTYPE_LINK:
if (mac_link_log_enable) {
rw_exit(&i_mac_impl_lock);
return;
}
mac_link_log_enable = B_TRUE;
break;
default:
ASSERT(0);
}
mac_logging_interval = interval;
rw_exit(&i_mac_impl_lock);
mac_log_linkinfo(NULL);
}
/*
* Stop the logging timer if both Link and Flow logging are turned off.
*/
void
mac_stop_logusage(mac_logtype_t type)
{
i_mac_log_state_t lstate;
rw_enter(&i_mac_impl_lock, RW_WRITER);
lstate.mi_fenable = mac_flow_log_enable;
lstate.mi_lenable = mac_link_log_enable;
/* Last walk */
lstate.mi_last = B_TRUE;
switch (type) {
case MAC_LOGTYPE_FLOW:
if (lstate.mi_fenable) {
ASSERT(mac_link_log_enable);
mac_flow_log_enable = B_FALSE;
mac_link_log_enable = B_FALSE;
break;
}
/* FALLTHRU */
case MAC_LOGTYPE_LINK:
if (!lstate.mi_lenable || mac_flow_log_enable) {
rw_exit(&i_mac_impl_lock);
return;
}
mac_link_log_enable = B_FALSE;
break;
default:
ASSERT(0);
}
rw_exit(&i_mac_impl_lock);
(void) untimeout(mac_logging_timer);
mac_logging_timer = 0;
/* Last walk */
mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate);
}
/*
* Walk the rx and tx SRS/SRs for a flow and update the priority value.
*/
void
mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
{
pri_t pri;
int count;
mac_soft_ring_set_t *mac_srs;
if (flent->fe_rx_srs_cnt <= 0)
return;
if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
SRST_FLOW) {
pri = FLOW_PRIORITY(mcip->mci_min_pri,
mcip->mci_max_pri,
flent->fe_resource_props.mrp_priority);
} else {
pri = mcip->mci_max_pri;
}
for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
mac_srs = flent->fe_rx_srs[count];
mac_update_srs_priority(mac_srs, pri);
}
/*
* If we have a Tx SRS, we need to modify all the threads associated
* with it.
*/
if (flent->fe_tx_srs != NULL)
mac_update_srs_priority(flent->fe_tx_srs, pri);
}
/*
* RX and TX rings are reserved according to different semantics depending
* on the requests from the MAC clients and type of rings:
*
* On the Tx side, by default we reserve individual rings, independently from
* the groups.
*
* On the Rx side, the reservation is at the granularity of the group
* of rings, and used for v12n level 1 only. It has a special case for the
* primary client.
*
* If a share is allocated to a MAC client, we allocate a TX group and an
* RX group to the client, and assign TX rings and RX rings to these
* groups according to information gathered from the driver through
* the share capability.
*
* The foreseable evolution of Rx rings will handle v12n level 2 and higher
* to allocate individual rings out of a group and program the hw classifier
* based on IP address or higher level criteria.
*/
/*
* mac_reserve_tx_ring()
* Reserve a unused ring by marking it with MR_INUSE state.
* As reserved, the ring is ready to function.
*
* Notes for Hybrid I/O:
*
* If a specific ring is needed, it is specified through the desired_ring
* argument. Otherwise that argument is set to NULL.
* If the desired ring was previous allocated to another client, this
* function swaps it with a new ring from the group of unassigned rings.
*/
mac_ring_t *
mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
{
mac_group_t *group;
mac_ring_t *ring;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
if (mip->mi_tx_groups == NULL)
return (NULL);
/*
* Find an available ring and start it before changing its status.
* The unassigned rings are at the end of the mi_tx_groups
* array.
*/
group = mip->mi_tx_groups + mip->mi_tx_group_count;
for (ring = group->mrg_rings; ring != NULL;
ring = ring->mr_next) {
if (desired_ring == NULL) {
if (ring->mr_state == MR_FREE)
/* wanted any free ring and found one */
break;
} else {
mac_ring_t *sring;
mac_client_impl_t *client;
mac_soft_ring_set_t *srs;
if (ring != desired_ring)
/* wants a desired ring but this one ain't it */
continue;
if (ring->mr_state == MR_FREE)
break;
/*
* Found the desired ring but it's already in use.
* Swap it with a new ring.
*/
/* find the client which owns that ring */
for (client = mip->mi_clients_list; client != NULL;
client = client->mci_client_next) {
srs = MCIP_TX_SRS(client);
if (srs != NULL && mac_tx_srs_ring_present(srs,
desired_ring)) {
/* found our ring */
break;
}
}
if (client == NULL) {
/*
* The TX ring is in use, but it's not
* associated with any clients, so it
* has to be the default ring. In that
* case we can simply assign a new ring
* as the default ring, and we're done.
*/
ASSERT(mip->mi_default_tx_ring ==
(mac_ring_handle_t)desired_ring);
/*
* Quiesce all clients on top of
* the NIC to make sure there are no
* pending threads still relying on
* that default ring, for example
* the multicast path.
*/
for (client = mip->mi_clients_list;
client != NULL;
client = client->mci_client_next) {
mac_tx_client_quiesce(client,
SRS_QUIESCE);
}
mip->mi_default_tx_ring = (mac_ring_handle_t)
mac_reserve_tx_ring(mip, NULL);
/* resume the clients */
for (client = mip->mi_clients_list;
client != NULL;
client = client->mci_client_next)
mac_tx_client_restart(client);
break;
}
/*
* Note that we cannot simply invoke the group
* add/rem routines since the client doesn't have a
* TX group. So we need to instead add/remove
* the rings from the SRS.
*/
ASSERT(client->mci_share == NULL);
/* first quiece the client */
mac_tx_client_quiesce(client, SRS_QUIESCE);
/* give a new ring to the client... */
sring = mac_reserve_tx_ring(mip, NULL);
if (sring != NULL) {
/*
* There are no other available ring
* on that MAC instance. The client
* will fallback to the shared TX
* ring.
*/
mac_tx_srs_add_ring(srs, sring);
}
/* ... in exchange for our desired ring */
mac_tx_srs_del_ring(srs, desired_ring);
/* restart the client */
mac_tx_client_restart(client);
if (mip->mi_default_tx_ring ==
(mac_ring_handle_t)desired_ring) {
/*
* The desired ring is the default ring,
* and there are one or more clients
* using that default ring directly.
*/
mip->mi_default_tx_ring =
(mac_ring_handle_t)sring;
/*
* Find clients using default ring and
* swap it with the new default ring.
*/
for (client = mip->mi_clients_list;
client != NULL;
client = client->mci_client_next) {
srs = MCIP_TX_SRS(client);
if (srs != NULL &&
mac_tx_srs_ring_present(srs,
desired_ring)) {
/* first quiece the client */
mac_tx_client_quiesce(client,
SRS_QUIESCE);
/*
* Give it the new default
* ring, and remove the old
* one.
*/
if (sring != NULL) {
mac_tx_srs_add_ring(srs,
sring);
}
mac_tx_srs_del_ring(srs,
desired_ring);
/* restart the client */
mac_tx_client_restart(client);
}
}
}
break;
}
}
if (ring != NULL) {
if (mac_start_ring(ring) != 0)
return (NULL);
ring->mr_state = MR_INUSE;
}
return (ring);
}
/*
* Minimum number of rings to leave in the default TX group when allocating
* rings to new clients.
*/
static uint_t mac_min_rx_default_rings = 1;
/*
* Populate a zero-ring group with rings. If the share is non-NULL,
* the rings are chosen according to that share.
* Invoked after allocating a new RX or TX group through
* mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
* Returns zero on success, an errno otherwise.
*/
int
i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share)
{
mac_ring_t **rings, *tmp_ring[1], *ring;
uint_t nrings;
int rv, i, j;
ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC &&
mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC);
ASSERT(new_group->mrg_cur_count == 0);
/*
* First find the rings to allocate to the group.
*/
if (share != NULL) {
/* get rings through ms_squery() */
mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
ASSERT(nrings != 0);
rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
KM_SLEEP);
mip->mi_share_capab.ms_squery(share, ring_type,
(mac_ring_handle_t *)rings, &nrings);
} else {
/* this function is called for TX only with a share */
ASSERT(ring_type == MAC_RING_TYPE_RX);
/*
* Pick one ring from default group.
*
* for now pick the second ring which requires the first ring
* at index 0 to stay in the default group, since it is the
* ring which carries the multicast traffic.
* We need a better way for a driver to indicate this,
* for example a per-ring flag.
*/
for (ring = src_group->mrg_rings; ring != NULL;
ring = ring->mr_next) {
if (ring->mr_index != 0)
break;
}
ASSERT(ring != NULL);
nrings = 1;
tmp_ring[0] = ring;
rings = tmp_ring;
}
switch (ring_type) {
case MAC_RING_TYPE_RX:
if (src_group->mrg_cur_count - nrings <
mac_min_rx_default_rings) {
/* we ran out of rings */
return (ENOSPC);
}
/* move receive rings to new group */
for (i = 0; i < nrings; i++) {
rv = mac_group_mov_ring(mip, new_group, rings[i]);
if (rv != 0) {
/* move rings back on failure */
for (j = 0; j < i; j++) {
(void) mac_group_mov_ring(mip,
src_group, rings[j]);
}
return (rv);
}
}
break;
case MAC_RING_TYPE_TX: {
mac_ring_t *tmp_ring;
/* move the TX rings to the new group */
ASSERT(src_group == NULL);
for (i = 0; i < nrings; i++) {
/* get the desired ring */
tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
ASSERT(tmp_ring == rings[i]);
rv = mac_group_mov_ring(mip, new_group, rings[i]);
if (rv != 0) {
/* cleanup on failure */
for (j = 0; j < i; j++) {
(void) mac_group_mov_ring(mip,
mip->mi_tx_groups +
mip->mi_tx_group_count, rings[j]);
}
}
}
break;
}
}
if (share != NULL) {
/* add group to share */
mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
/* free temporary array of rings */
kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
}
return (0);
}
void
mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
{
mac_grp_client_t *mgcp;
for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
if (mgcp->mgc_client == mcip)
break;
}
VERIFY(mgcp == NULL);
mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
mgcp->mgc_client = mcip;
mgcp->mgc_next = grp->mrg_clients;
grp->mrg_clients = mgcp;
}
void
mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
{
mac_grp_client_t *mgcp, **pprev;
for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
pprev = &mgcp->mgc_next, mgcp = *pprev) {
if (mgcp->mgc_client == mcip)
break;
}
ASSERT(mgcp != NULL);
*pprev = mgcp->mgc_next;
kmem_free(mgcp, sizeof (mac_grp_client_t));
}
/*
* mac_reserve_rx_group()
*
* Finds an available group and exclusively reserves it for a client.
* The group is chosen to suit the flow's resource controls (bandwidth and
* fanout requirements) and the address type.
* If the requestor is the pimary MAC then return the group with the
* largest number of rings, otherwise the default ring when available.
*/
mac_group_t *
mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr,
mac_rx_group_reserve_type_t rtype)
{
mac_share_handle_t share = mcip->mci_share;
mac_impl_t *mip = mcip->mci_mip;
mac_group_t *grp = NULL;
int i, start, loopcount;
int err;
mac_address_t *map;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
/* Check if a group already has this mac address (case of VLANs) */
if ((map = mac_find_macaddr(mip, mac_addr)) != NULL)
return (map->ma_group);
if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 ||
rtype == MAC_RX_NO_RESERVE)
return (NULL);
/*
* Try to exclusively reserve a RX group.
*
* For flows requires SW_RING it always goes to the default group
* (Until we can explicitely call out default groups (CR 6695600),
* we assume that the default group is always at position zero);
*
* For flows requires HW_DEFAULT_RING (unicast flow of the primary
* client), try to reserve the default RX group only.
*
* For flows requires HW_RING (unicast flow of other clients), try
* to reserve non-default RX group then the default group.
*/
switch (rtype) {
case MAC_RX_RESERVE_DEFAULT:
start = 0;
loopcount = 1;
break;
case MAC_RX_RESERVE_NONDEFAULT:
start = 1;
loopcount = mip->mi_rx_group_count;
}
for (i = start; i < start + loopcount; i++) {
grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count];
DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
/*
* Check to see whether this mac client is the only client
* on this RX group. If not, we cannot exclusively reserve
* this RX group.
*/
if (!MAC_RX_GROUP_NO_CLIENT(grp) &&
(MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) {
continue;
}
/*
* This group could already be SHARED by other multicast
* flows on this client. In that case, the group would
* be shared and has already been started.
*/
ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
(mac_start_group(grp) != 0)) {
continue;
}
if ((i % mip->mi_rx_group_count) == 0 ||
mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
break;
}
ASSERT(grp->mrg_cur_count == 0);
/*
* Populate the group. Rings should be taken
* from the default group at position 0 for now.
*/
err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
&mip->mi_rx_groups[0], grp, share);
if (err == 0)
break;
DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
mip->mi_name, int, grp->mrg_index, int, err);
/*
* It's a dynamic group but the grouping operation failed.
*/
mac_stop_group(grp);
}
if (i == start + loopcount)
return (NULL);
ASSERT(grp != NULL);
DTRACE_PROBE2(rx__group__reserved,
char *, mip->mi_name, int, grp->mrg_index);
return (grp);
}
/*
* mac_rx_release_group()
*
* This is called when there are no clients left for the group.
* The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
* and if it is a non default group, the shares are removed and
* all rings are assigned back to default group.
*/
void
mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
{
mac_impl_t *mip = mcip->mci_mip;
mac_ring_t *ring;
ASSERT(group != &mip->mi_rx_groups[0]);
/*
* This is the case where there are no clients left. Any
* SRS etc on this group have also be quiesced.
*/
for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
/*
* Remove the SRS associated with the HW ring.
* As a result, polling will be disabled.
*/
ring->mr_srs = NULL;
}
ASSERT(ring->mr_state == MR_INUSE);
mac_stop_ring(ring);
ring->mr_state = MR_FREE;
ring->mr_flag = 0;
}
/* remove group from share */
if (mcip->mci_share != NULL) {
mip->mi_share_capab.ms_sremove(mcip->mci_share,
group->mrg_driver);
}
if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
mac_ring_t *ring;
/*
* Rings were dynamically allocated to group.
* Move rings back to default group.
*/
while ((ring = group->mrg_rings) != NULL) {
(void) mac_group_mov_ring(mip,
&mip->mi_rx_groups[0], ring);
}
}
mac_stop_group(group);
/*
* Possible improvement: See if we can assign the group just released
* to a another client of the mip
*/
}
/*
* Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
* when a share was allocated to the client.
*/
mac_group_t *
mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share)
{
mac_group_t *grp;
int rv, i;
/*
* TX groups are currently allocated only to MAC clients
* which are associated with a share. Since we have a fixed
* number of share and groups, and we already successfully
* allocated a share, find an available TX group.
*/
ASSERT(share != NULL);
ASSERT(mip->mi_tx_group_free > 0);
for (i = 0; i < mip->mi_tx_group_count; i++) {
grp = &mip->mi_tx_groups[i];
if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
(grp->mrg_state == MAC_GROUP_STATE_UNINIT))
continue;
rv = mac_start_group(grp);
ASSERT(rv == 0);
grp->mrg_state = MAC_GROUP_STATE_RESERVED;
break;
}
ASSERT(grp != NULL);
/*
* Populate the group. Rings should be taken from the group
* of unassigned rings, which is past the array of TX
* groups adversized by the driver.
*/
rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL,
grp, share);
if (rv != 0) {
DTRACE_PROBE3(tx__group__reserve__alloc__rings,
char *, mip->mi_name, int, grp->mrg_index, int, rv);
mac_stop_group(grp);
grp->mrg_state = MAC_GROUP_STATE_UNINIT;
return (NULL);
}
mip->mi_tx_group_free--;
return (grp);
}
void
mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp)
{
mac_client_impl_t *mcip = grp->mrg_tx_client;
mac_share_handle_t share = mcip->mci_share;
mac_ring_t *ring;
ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC);
ASSERT(share != NULL);
ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED);
mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
while ((ring = grp->mrg_rings) != NULL) {
/* move the ring back to the pool */
(void) mac_group_mov_ring(mip, mip->mi_tx_groups +
mip->mi_tx_group_count, ring);
}
mac_stop_group(grp);
mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED);
grp->mrg_tx_client = NULL;
mip->mi_tx_group_free++;
}
/*
* This is a 1-time control path activity initiated by the client (IP).
* The mac perimeter protects against other simultaneous control activities,
* for example an ioctl that attempts to change the degree of fanout and
* increase or decrease the number of softrings associated with this Tx SRS.
*/
static mac_tx_notify_cb_t *
mac_client_tx_notify_add(mac_client_impl_t *mcip,
mac_tx_notify_t notify, void *arg)
{
mac_cb_info_t *mcbi;
mac_tx_notify_cb_t *mtnfp;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
mtnfp->mtnf_fn = notify;
mtnfp->mtnf_arg = arg;
mtnfp->mtnf_link.mcb_objp = mtnfp;
mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
mcbi = &mcip->mci_tx_notify_cb_info;
mutex_enter(mcbi->mcbi_lockp);
mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
mutex_exit(mcbi->mcbi_lockp);
return (mtnfp);
}
static void
mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
{
mac_cb_info_t *mcbi;
mac_cb_t **cblist;
ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
&mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
cmn_err(CE_WARN,
"mac_client_tx_notify_remove: callback not "
"found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
return;
}
mcbi = &mcip->mci_tx_notify_cb_info;
cblist = &mcip->mci_tx_notify_cb_list;
mutex_enter(mcbi->mcbi_lockp);
if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
else
mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
mutex_exit(mcbi->mcbi_lockp);
}
/*
* mac_client_tx_notify():
* call to add and remove flow control callback routine.
*/
mac_tx_notify_handle_t
mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
void *ptr)
{
mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
mac_tx_notify_cb_t *mtnfp = NULL;
i_mac_perim_enter(mcip->mci_mip);
if (callb_func != NULL) {
/* Add a notify callback */
mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
} else {
mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
}
i_mac_perim_exit(mcip->mci_mip);
return ((mac_tx_notify_handle_t)mtnfp);
}