ixgbe_phy.c revision 73cd555c10e70dac413ae4b40de8450a291750ac
/*
* CDDL HEADER START
*
* Copyright(c) 2007-2009 Intel Corporation. All rights reserved.
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at:
* http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When using or redistributing this file, you may do so under the
* License only. No other modification of this header is permitted.
*
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* IntelVersion: 1.83 v2-7-8_2009-4-7 */
#include "ixgbe_api.h"
#include "ixgbe_common.h"
#include "ixgbe_phy.h"
static void ixgbe_i2c_start(struct ixgbe_hw *hw);
static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
static bool ixgbe_get_i2c_data(u32 *i2cctl);
void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
/*
* ixgbe_init_phy_ops_generic - Inits PHY function ptrs
* @hw: pointer to the hardware structure
*
* Initialize the function pointers.
*/
s32
ixgbe_init_phy_ops_generic(struct ixgbe_hw *hw)
{
struct ixgbe_phy_info *phy = &hw->phy;
/* PHY */
phy->ops.identify = &ixgbe_identify_phy_generic;
phy->ops.reset = &ixgbe_reset_phy_generic;
phy->ops.read_reg = &ixgbe_read_phy_reg_generic;
phy->ops.write_reg = &ixgbe_write_phy_reg_generic;
phy->ops.setup_link = &ixgbe_setup_phy_link_generic;
phy->ops.setup_link_speed = &ixgbe_setup_phy_link_speed_generic;
phy->ops.check_link = NULL;
phy->ops.get_firmware_version = NULL;
phy->ops.read_i2c_byte = &ixgbe_read_i2c_byte_generic;
phy->ops.write_i2c_byte = &ixgbe_write_i2c_byte_generic;
phy->ops.read_i2c_eeprom = &ixgbe_read_i2c_eeprom_generic;
phy->ops.write_i2c_eeprom = &ixgbe_write_i2c_eeprom_generic;
phy->ops.i2c_bus_clear = &ixgbe_i2c_bus_clear;
phy->ops.identify_sfp = &ixgbe_identify_sfp_module_generic;
phy->sfp_type = ixgbe_sfp_type_unknown;
return (IXGBE_SUCCESS);
}
/*
* ixgbe_identify_phy_generic - Get physical layer module
* @hw: pointer to hardware structure
*
* Determines the physical layer module found on the current adapter.
*/
s32
ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
{
s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
u32 phy_addr;
u16 ext_ability = 0;
if (hw->phy.type == ixgbe_phy_unknown) {
for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
if (ixgbe_validate_phy_addr(hw, phy_addr)) {
hw->phy.addr = phy_addr;
(void) ixgbe_get_phy_id(hw);
hw->phy.type =
ixgbe_get_phy_type_from_id(hw->phy.id);
if (hw->phy.type == ixgbe_phy_unknown) {
hw->phy.ops.read_reg(hw,
IXGBE_MDIO_PHY_EXT_ABILITY,
IXGBE_MDIO_PMA_PMD_DEV_TYPE,
&ext_ability);
if (ext_ability &
IXGBE_MDIO_PHY_10GBASET_ABILITY ||
ext_ability &
IXGBE_MDIO_PHY_1000BASET_ABILITY)
hw->phy.type =
ixgbe_phy_cu_unknown;
else
hw->phy.type =
ixgbe_phy_generic;
}
status = IXGBE_SUCCESS;
break;
}
}
if (status != IXGBE_SUCCESS)
hw->phy.addr = 0;
} else {
status = IXGBE_SUCCESS;
}
return (status);
}
/*
* ixgbe_validate_phy_addr - Determines phy address is valid
* @hw: pointer to hardware structure
*
*/
bool
ixgbe_validate_phy_addr(struct ixgbe_hw *hw, u32 phy_addr)
{
u16 phy_id = 0;
bool valid = false;
hw->phy.addr = phy_addr;
hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH,
IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_id);
if (phy_id != 0xFFFF && phy_id != 0x0)
valid = true;
return (valid);
}
/*
* ixgbe_get_phy_id - Get the phy type
* @hw: pointer to hardware structure
*
*/
s32
ixgbe_get_phy_id(struct ixgbe_hw *hw)
{
u32 status;
u16 phy_id_high = 0;
u16 phy_id_low = 0;
status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH,
IXGBE_MDIO_PMA_PMD_DEV_TYPE,
&phy_id_high);
if (status == IXGBE_SUCCESS) {
hw->phy.id = (u32)(phy_id_high << 16);
status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_LOW,
IXGBE_MDIO_PMA_PMD_DEV_TYPE,
&phy_id_low);
hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
}
return (status);
}
/*
* ixgbe_get_phy_type_from_id - Get the phy type
* @hw: pointer to hardware structure
*
*/
enum ixgbe_phy_type
ixgbe_get_phy_type_from_id(u32 phy_id)
{
enum ixgbe_phy_type phy_type;
switch (phy_id) {
case TN1010_PHY_ID:
phy_type = ixgbe_phy_tn;
break;
case QT2022_PHY_ID:
phy_type = ixgbe_phy_qt;
break;
case ATH_PHY_ID:
phy_type = ixgbe_phy_nl;
break;
default:
phy_type = ixgbe_phy_unknown;
break;
}
DEBUGOUT1("phy type found is %d\n", phy_type);
return (phy_type);
}
/*
* ixgbe_reset_phy_generic - Performs a PHY reset
* @hw: pointer to hardware structure
*/
s32
ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
{
u32 i;
u16 ctrl = 0;
s32 status = IXGBE_SUCCESS;
if (hw->phy.type == ixgbe_phy_unknown)
status = ixgbe_identify_phy_generic(hw);
if (status != IXGBE_SUCCESS || hw->phy.type == ixgbe_phy_none)
goto out;
/*
* Perform soft PHY reset to the PHY_XS.
* This will cause a soft reset to the PHY
*/
hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE,
IXGBE_MDIO_PHY_XS_RESET);
/* Poll for reset bit to self-clear indicating reset is complete */
for (i = 0; i < 500; i++) {
msec_delay(1);
hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE, &ctrl);
if (!(ctrl & IXGBE_MDIO_PHY_XS_RESET))
break;
}
if (ctrl & IXGBE_MDIO_PHY_XS_RESET) {
status = IXGBE_ERR_RESET_FAILED;
DEBUGOUT("PHY reset polling failed to complete.\n");
}
out:
return (status);
}
/*
* ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
* @hw: pointer to hardware structure
* @reg_addr: 32 bit address of PHY register to read
* @phy_data: Pointer to read data from PHY register
*/
s32
ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
u32 device_type, u16 *phy_data)
{
u32 command;
u32 i;
u32 data;
s32 status = IXGBE_SUCCESS;
u16 gssr;
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
gssr = IXGBE_GSSR_PHY1_SM;
else
gssr = IXGBE_GSSR_PHY0_SM;
if (ixgbe_acquire_swfw_sync(hw, gssr) != IXGBE_SUCCESS)
status = IXGBE_ERR_SWFW_SYNC;
if (status == IXGBE_SUCCESS) {
/* Setup and write the address cycle command */
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
(hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
(IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
/*
* Check every 10 usec to see if the address cycle completed.
* The MDI Command bit will clear when the operation is
* complete
*/
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
usec_delay(10);
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) {
break;
}
}
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
DEBUGOUT("PHY address command did not complete.\n");
status = IXGBE_ERR_PHY;
}
if (status == IXGBE_SUCCESS) {
/*
* Address cycle complete, setup and write the read
* command
*/
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
(hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
(IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
/*
* Check every 10 usec to see if the address cycle
* completed. The MDI Command bit will clear when the
* operation is complete
*/
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
usec_delay(10);
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
break;
}
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
DEBUGOUT("PHY read command didn't complete\n");
status = IXGBE_ERR_PHY;
} else {
/*
* Read operation is complete. Get the data
* from MSRWD
*/
data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
*phy_data = (u16)(data);
}
}
ixgbe_release_swfw_sync(hw, gssr);
}
return (status);
}
/*
* ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
* @hw: pointer to hardware structure
* @reg_addr: 32 bit PHY register to write
* @device_type: 5 bit device type
* @phy_data: Data to write to the PHY register
*/
s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
u32 device_type, u16 phy_data)
{
u32 command;
u32 i;
s32 status = IXGBE_SUCCESS;
u16 gssr;
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
gssr = IXGBE_GSSR_PHY1_SM;
else
gssr = IXGBE_GSSR_PHY0_SM;
if (ixgbe_acquire_swfw_sync(hw, gssr) != IXGBE_SUCCESS)
status = IXGBE_ERR_SWFW_SYNC;
if (status == IXGBE_SUCCESS) {
/*
* Put the data in the MDI single read and write data register
*/
IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
/* Setup and write the address cycle command */
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
(hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
(IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
/*
* Check every 10 usec to see if the address cycle completed.
* The MDI Command bit will clear when the operation is
* complete
*/
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
usec_delay(10);
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
break;
}
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
DEBUGOUT("PHY address cmd didn't complete\n");
status = IXGBE_ERR_PHY;
}
if (status == IXGBE_SUCCESS) {
/*
* Address cycle complete, setup and write the write
* command
*/
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
(hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
(IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
/*
* Check every 10 usec to see if the address cycle
* completed. The MDI Command bit will clear when the
* operation is complete
*/
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
usec_delay(10);
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
break;
}
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
DEBUGOUT("PHY address cmd didn't complete\n");
status = IXGBE_ERR_PHY;
}
}
ixgbe_release_swfw_sync(hw, gssr);
}
return (status);
}
/*
* ixgbe_setup_phy_link_generic - Set and restart autoneg
* @hw: pointer to hardware structure
*
* Restart autonegotiation and PHY and waits for completion.
*/
s32
ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
{
s32 status = IXGBE_NOT_IMPLEMENTED;
u32 time_out;
u32 max_time_out = 10;
u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
/*
* Set advertisement settings in PHY based on autoneg_advertised
* settings. If autoneg_advertised = 0, then advertise default values
* tnx devices cannot be "forced" to a autoneg 10G and fail. But can
* for a 1G.
*/
hw->phy.ops.read_reg(hw, IXGBE_MII_SPEED_SELECTION_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
autoneg_reg &= 0xEFFF; /* 0 in bit 12 is 1G operation */
else
autoneg_reg |= 0x1000; /* 1 in bit 12 is 10G/1G operation */
hw->phy.ops.write_reg(hw, IXGBE_MII_SPEED_SELECTION_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
/* Restart PHY autonegotiation and wait for completion */
hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
autoneg_reg |= IXGBE_MII_RESTART;
hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
/* Wait for autonegotiation to finish */
for (time_out = 0; time_out < max_time_out; time_out++) {
usec_delay(10);
/* Restart PHY autonegotiation and wait for completion */
status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_STATUS,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&autoneg_reg);
autoneg_reg &= IXGBE_MII_AUTONEG_COMPLETE;
if (autoneg_reg == IXGBE_MII_AUTONEG_COMPLETE) {
status = IXGBE_SUCCESS;
break;
}
}
if (time_out == max_time_out)
status = IXGBE_ERR_LINK_SETUP;
return (status);
}
/*
* ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
* @hw: pointer to hardware structure
* @speed: new link speed
* @autoneg: true if autonegotiation enabled
*/
s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
ixgbe_link_speed speed,
bool autoneg,
bool autoneg_wait_to_complete)
{
UNREFERENCED_PARAMETER(autoneg);
UNREFERENCED_PARAMETER(autoneg_wait_to_complete);
/*
* Clear autoneg_advertised and set new values based on input link
* speed.
*/
hw->phy.autoneg_advertised = 0;
if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
}
if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
}
/* Setup link based on the new speed settings */
hw->phy.ops.setup_link(hw);
return (IXGBE_SUCCESS);
}
/*
* ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
* @hw: pointer to hardware structure
* @speed: pointer to link speed
* @autoneg: boolean auto-negotiation value
*
* Determines the link capabilities by reading the AUTOC register.
*/
s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
ixgbe_link_speed *speed, bool *autoneg)
{
s32 status = IXGBE_ERR_LINK_SETUP;
u16 speed_ability;
*speed = 0;
*autoneg = true;
status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_SPEED_ABILITY,
IXGBE_MDIO_PMA_PMD_DEV_TYPE, &speed_ability);
if (status == IXGBE_SUCCESS) {
if (speed_ability & IXGBE_MDIO_PHY_SPEED_10G)
*speed |= IXGBE_LINK_SPEED_10GB_FULL;
if (speed_ability & IXGBE_MDIO_PHY_SPEED_1G)
*speed |= IXGBE_LINK_SPEED_1GB_FULL;
}
return (status);
}
/*
* ixgbe_check_phy_link_tnx - Determine link and speed status
* @hw: pointer to hardware structure
*
* Reads the VS1 register to determine if link is up and the current speed for
* the PHY.
*/
s32
ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
bool *link_up)
{
s32 status = IXGBE_SUCCESS;
u32 time_out;
u32 max_time_out = 10;
u16 phy_link = 0;
u16 phy_speed = 0;
u16 phy_data = 0;
/* Initialize speed and link to default case */
*link_up = false;
*speed = IXGBE_LINK_SPEED_10GB_FULL;
/*
* Check current speed and link status of the PHY register.
* This is a vendor specific register and may have to
* be changed for other copper PHYs.
*/
for (time_out = 0; time_out < max_time_out; time_out++) {
usec_delay(10);
status = hw->phy.ops.read_reg(hw,
IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
&phy_data);
phy_link = phy_data &
IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
phy_speed = phy_data &
IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
*link_up = true;
if (phy_speed ==
IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
*speed = IXGBE_LINK_SPEED_1GB_FULL;
break;
}
}
return (status);
}
/*
* ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
* @hw: pointer to hardware structure
* @firmware_version: pointer to the PHY Firmware Version
*/
s32
ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw, u16 *firmware_version)
{
s32 status = IXGBE_SUCCESS;
status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE, firmware_version);
return (status);
}
/*
* ixgbe_reset_phy_nl - Performs a PHY reset
* @hw: pointer to hardware structure
*/
s32
ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
{
u16 phy_offset, control, eword, edata, block_crc;
bool end_data = false;
u16 list_offset, data_offset;
u16 phy_data = 0;
s32 ret_val = IXGBE_SUCCESS;
u32 i;
hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data);
/* reset the PHY and poll for completion */
hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE,
(phy_data | IXGBE_MDIO_PHY_XS_RESET));
for (i = 0; i < 100; i++) {
hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data);
if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) == 0)
break;
msec_delay(10);
}
if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) != 0) {
DEBUGOUT("PHY reset did not complete.\n");
ret_val = IXGBE_ERR_PHY;
goto out;
}
/* Get init offsets */
ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
&data_offset);
if (ret_val != IXGBE_SUCCESS)
goto out;
ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
data_offset++;
while (!end_data) {
/*
* Read control word from PHY init contents offset
*/
ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
control = (eword & IXGBE_CONTROL_MASK_NL) >>
IXGBE_CONTROL_SHIFT_NL;
edata = eword & IXGBE_DATA_MASK_NL;
switch (control) {
case IXGBE_DELAY_NL:
data_offset++;
DEBUGOUT1("DELAY: %d MS\n", edata);
msec_delay(edata);
break;
case IXGBE_DATA_NL:
DEBUGOUT("DATA: \n");
data_offset++;
hw->eeprom.ops.read(hw, data_offset++, &phy_offset);
for (i = 0; i < edata; i++) {
hw->eeprom.ops.read(hw, data_offset, &eword);
hw->phy.ops.write_reg(hw, phy_offset,
IXGBE_TWINAX_DEV, eword);
DEBUGOUT2("Wrote %4.4x to %4.4x\n", eword,
phy_offset);
data_offset++;
phy_offset++;
}
break;
case IXGBE_CONTROL_NL:
data_offset++;
DEBUGOUT("CONTROL: \n");
if (edata == IXGBE_CONTROL_EOL_NL) {
DEBUGOUT("EOL\n");
end_data = true;
} else if (edata == IXGBE_CONTROL_SOL_NL) {
DEBUGOUT("SOL\n");
} else {
DEBUGOUT("Bad control value\n");
ret_val = IXGBE_ERR_PHY;
goto out;
}
break;
default:
DEBUGOUT("Bad control type\n");
ret_val = IXGBE_ERR_PHY;
goto out;
}
}
out:
return (ret_val);
}
/*
* ixgbe_identify_sfp_module_generic - Identifies SFP module
* @hw: pointer to hardware structure
*
* Searches for and identifies the SFP module and assigns appropriate PHY type.
*/
s32
ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
{
s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
u32 vendor_oui = 0;
enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
u8 identifier = 0;
u8 comp_codes_1g = 0;
u8 comp_codes_10g = 0;
u8 oui_bytes[3] = {0, 0, 0};
u8 transmission_media = 0;
u16 enforce_sfp = 0;
status = hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_IDENTIFIER, &identifier);
if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
status = IXGBE_ERR_SFP_NOT_PRESENT;
hw->phy.sfp_type = ixgbe_sfp_type_not_present;
if (hw->phy.type != ixgbe_phy_nl) {
hw->phy.id = 0;
hw->phy.type = ixgbe_phy_unknown;
}
goto out;
}
/* LAN ID is needed for sfp_type determination */
hw->mac.ops.set_lan_id(hw);
if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
&comp_codes_1g);
hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
&comp_codes_10g);
hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_TRANSMISSION_MEDIA,
&transmission_media);
/*
* ID Module
* ============
* 0 SFP_DA_CU
* 1 SFP_SR
* 2 SFP_LR
* 3 SFP_DA_CORE0 - 82599-specific
* 4 SFP_DA_CORE1 - 82599-specific
* 5 SFP_SR/LR_CORE0 - 82599-specific
* 6 SFP_SR/LR_CORE1 - 82599-specific
*/
if (hw->mac.type == ixgbe_mac_82598EB) {
if (transmission_media & IXGBE_SFF_TWIN_AX_CAPABLE)
hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
hw->phy.sfp_type = ixgbe_sfp_type_sr;
else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
hw->phy.sfp_type = ixgbe_sfp_type_lr;
else
hw->phy.sfp_type = ixgbe_sfp_type_unknown;
} else if (hw->mac.type == ixgbe_mac_82599EB) {
if (transmission_media & IXGBE_SFF_TWIN_AX_CAPABLE)
if (hw->bus.lan_id == 0)
hw->phy.sfp_type =
ixgbe_sfp_type_da_cu_core0;
else
hw->phy.sfp_type =
ixgbe_sfp_type_da_cu_core1;
else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
if (hw->bus.lan_id == 0)
hw->phy.sfp_type =
ixgbe_sfp_type_srlr_core0;
else
hw->phy.sfp_type =
ixgbe_sfp_type_srlr_core1;
else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
if (hw->bus.lan_id == 0)
hw->phy.sfp_type =
ixgbe_sfp_type_srlr_core0;
else
hw->phy.sfp_type =
ixgbe_sfp_type_srlr_core1;
else
hw->phy.sfp_type = ixgbe_sfp_type_unknown;
}
if (hw->phy.sfp_type != stored_sfp_type)
hw->phy.sfp_setup_needed = true;
/* Determine if the SFP+ PHY is dual speed or not. */
if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
(comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
(comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
hw->phy.multispeed_fiber = true;
/* Determine PHY vendor */
if (hw->phy.type != ixgbe_phy_nl) {
hw->phy.id = identifier;
hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_VENDOR_OUI_BYTE0, &oui_bytes[0]);
hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_VENDOR_OUI_BYTE1, &oui_bytes[1]);
hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_VENDOR_OUI_BYTE2, &oui_bytes[2]);
vendor_oui =
((oui_bytes[0] <<
IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
(oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
(oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
switch (vendor_oui) {
case IXGBE_SFF_VENDOR_OUI_TYCO:
if (transmission_media &
IXGBE_SFF_TWIN_AX_CAPABLE)
hw->phy.type = ixgbe_phy_tw_tyco;
break;
case IXGBE_SFF_VENDOR_OUI_FTL:
hw->phy.type = ixgbe_phy_sfp_ftl;
break;
case IXGBE_SFF_VENDOR_OUI_AVAGO:
hw->phy.type = ixgbe_phy_sfp_avago;
break;
case IXGBE_SFF_VENDOR_OUI_INTEL:
hw->phy.type = ixgbe_phy_sfp_intel;
break;
default:
if (transmission_media &
IXGBE_SFF_TWIN_AX_CAPABLE)
hw->phy.type = ixgbe_phy_tw_unknown;
else
hw->phy.type = ixgbe_phy_sfp_unknown;
break;
}
}
if (hw->mac.type == ixgbe_mac_82598EB ||
(hw->phy.sfp_type != ixgbe_sfp_type_sr &&
hw->phy.sfp_type != ixgbe_sfp_type_lr &&
hw->phy.sfp_type != ixgbe_sfp_type_srlr_core0 &&
hw->phy.sfp_type != ixgbe_sfp_type_srlr_core1)) {
status = IXGBE_SUCCESS;
goto out;
}
(void) ixgbe_get_device_caps(hw, &enforce_sfp);
if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
/* Make sure we're a supported PHY type */
if (hw->phy.type == ixgbe_phy_sfp_intel) {
status = IXGBE_SUCCESS;
} else {
DEBUGOUT("SFP+ module not supported\n");
hw->phy.type = ixgbe_phy_sfp_unsupported;
status = IXGBE_ERR_SFP_NOT_SUPPORTED;
}
} else {
status = IXGBE_SUCCESS;
}
}
out:
return (status);
}
/*
* ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
* @hw: pointer to hardware structure
* @list_offset: offset to the SFP ID list
* @data_offset: offset to the SFP data block
*
* Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
* so it returns the offsets to the phy init sequence block.
*/
s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
u16 *list_offset, u16 *data_offset)
{
u16 sfp_id;
if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
return (IXGBE_ERR_SFP_NOT_SUPPORTED);
if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
return (IXGBE_ERR_SFP_NOT_PRESENT);
if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
(hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
return (IXGBE_ERR_SFP_NOT_SUPPORTED);
/* Read offset to PHY init contents */
hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
if ((!*list_offset) || (*list_offset == 0xFFFF))
return (IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT);
/* Shift offset to first ID word */
(*list_offset)++;
/*
* Find the matching SFP ID in the EEPROM
* and program the init sequence
*/
hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
while (sfp_id != IXGBE_PHY_INIT_END_NL) {
if (sfp_id == hw->phy.sfp_type) {
(*list_offset)++;
hw->eeprom.ops.read(hw, *list_offset, data_offset);
if ((!*data_offset) || (*data_offset == 0xFFFF)) {
DEBUGOUT("SFP+ module not supported\n");
return (IXGBE_ERR_SFP_NOT_SUPPORTED);
} else {
break;
}
} else {
(*list_offset) += 2;
if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
return (IXGBE_ERR_PHY);
}
}
if (sfp_id == IXGBE_PHY_INIT_END_NL) {
DEBUGOUT("No matching SFP+ module found\n");
return (IXGBE_ERR_SFP_NOT_SUPPORTED);
}
return (IXGBE_SUCCESS);
}
/*
* ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
* @hw: pointer to hardware structure
* @byte_offset: EEPROM byte offset to read
* @eeprom_data: value read
*
* Performs byte read operation to SFP module's EEPROM over I2C interface.
*/
s32
ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 *eeprom_data)
{
DEBUGFUNC("ixgbe_read_i2c_eeprom_generic");
return (hw->phy.ops.read_i2c_byte(hw, byte_offset,
IXGBE_I2C_EEPROM_DEV_ADDR, eeprom_data));
}
/*
* ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
* @hw: pointer to hardware structure
* @byte_offset: EEPROM byte offset to write
* @eeprom_data: value to write
*
* Performs byte write operation to SFP module's EEPROM over I2C interface.
*/
s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 eeprom_data)
{
DEBUGFUNC("ixgbe_write_i2c_eeprom_generic");
return (hw->phy.ops.write_i2c_byte(hw, byte_offset,
IXGBE_I2C_EEPROM_DEV_ADDR, eeprom_data));
}
/*
* ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to read
* @data: value read
*
* Performs byte read operation to SFP module's EEPROM over I2C interface at
* a specified deivce address.
*/
s32
ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 dev_addr, u8 *data)
{
s32 status = IXGBE_SUCCESS;
u32 max_retry = 1;
u32 retry = 0;
u16 swfw_mask = 0;
bool nack = 1;
DEBUGFUNC("ixgbe_read_i2c_byte_generic");
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
swfw_mask = IXGBE_GSSR_PHY1_SM;
else
swfw_mask = IXGBE_GSSR_PHY0_SM;
if (ixgbe_acquire_swfw_sync(hw, swfw_mask) != IXGBE_SUCCESS) {
status = IXGBE_ERR_SWFW_SYNC;
goto read_byte_out;
}
do {
ixgbe_i2c_start(hw);
/* Device Address and write indication */
status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
ixgbe_i2c_start(hw);
/* Device Address and read indication */
status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_in_i2c_byte(hw, data);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_out_i2c_bit(hw, nack);
if (status != IXGBE_SUCCESS)
goto fail;
ixgbe_i2c_stop(hw);
break;
fail:
ixgbe_i2c_bus_clear(hw);
retry++;
if (retry < max_retry)
DEBUGOUT("I2C byte read error - Retrying.\n");
else
DEBUGOUT("I2C byte read error.\n");
} while (retry < max_retry);
ixgbe_release_swfw_sync(hw, swfw_mask);
read_byte_out:
return (status);
}
/*
* ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to write
* @data: value to write
*
* Performs byte write operation to SFP module's EEPROM over I2C interface at
* a specified device address.
*/
s32
ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 dev_addr, u8 data)
{
s32 status = IXGBE_SUCCESS;
u32 max_retry = 1;
u32 retry = 0;
u16 swfw_mask = 0;
DEBUGFUNC("ixgbe_write_i2c_byte_generic");
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
swfw_mask = IXGBE_GSSR_PHY1_SM;
else
swfw_mask = IXGBE_GSSR_PHY0_SM;
if (ixgbe_acquire_swfw_sync(hw, swfw_mask) != IXGBE_SUCCESS) {
status = IXGBE_ERR_SWFW_SYNC;
goto write_byte_out;
}
do {
ixgbe_i2c_start(hw);
status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_out_i2c_byte(hw, data);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
ixgbe_i2c_stop(hw);
break;
fail:
ixgbe_i2c_bus_clear(hw);
retry++;
if (retry < max_retry)
DEBUGOUT("I2C byte write error - Retrying.\n");
else
DEBUGOUT("I2C byte write error.\n");
} while (retry < max_retry);
ixgbe_release_swfw_sync(hw, swfw_mask);
write_byte_out:
return (status);
}
/*
* ixgbe_i2c_start - Sets I2C start condition
* @hw: pointer to hardware structure
*
* Sets I2C start condition (High -> Low on SDA while SCL is High)
*/
static void
ixgbe_i2c_start(struct ixgbe_hw *hw)
{
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
DEBUGFUNC("ixgbe_i2c_start");
/* Start condition must begin with data and clock high */
(void) ixgbe_set_i2c_data(hw, &i2cctl, 1);
(void) ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Setup time for start condition (4.7us) */
usec_delay(IXGBE_I2C_T_SU_STA);
(void) ixgbe_set_i2c_data(hw, &i2cctl, 0);
/* Hold time for start condition (4us) */
usec_delay(IXGBE_I2C_T_HD_STA);
ixgbe_lower_i2c_clk(hw, &i2cctl);
/* Minimum low period of clock is 4.7 us */
usec_delay(IXGBE_I2C_T_LOW);
}
/*
* ixgbe_i2c_stop - Sets I2C stop condition
* @hw: pointer to hardware structure
*
* Sets I2C stop condition (Low -> High on SDA while SCL is High)
*/
static void
ixgbe_i2c_stop(struct ixgbe_hw *hw)
{
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
DEBUGFUNC("ixgbe_i2c_stop");
/* Stop condition must begin with data low and clock high */
(void) ixgbe_set_i2c_data(hw, &i2cctl, 0);
(void) ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Setup time for stop condition (4us) */
usec_delay(IXGBE_I2C_T_SU_STO);
(void) ixgbe_set_i2c_data(hw, &i2cctl, 1);
/* bus free time between stop and start (4.7us) */
usec_delay(IXGBE_I2C_T_BUF);
}
/*
* ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
* @hw: pointer to hardware structure
* @data: data byte to clock in
*
* Clocks in one byte data via I2C data/clock
*/
static s32
ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
{
s32 status = IXGBE_SUCCESS;
s32 i;
bool bit = 0;
DEBUGFUNC("ixgbe_clock_in_i2c_byte");
for (i = 7; i >= 0; i--) {
status = ixgbe_clock_in_i2c_bit(hw, &bit);
*data |= bit<<i;
if (status != IXGBE_SUCCESS)
break;
}
return (status);
}
/*
* ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
* @hw: pointer to hardware structure
* @data: data byte clocked out
*
* Clocks out one byte data via I2C data/clock
*/
static s32
ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
{
s32 status = IXGBE_SUCCESS;
s32 i;
u32 i2cctl;
bool bit = 0;
DEBUGFUNC("ixgbe_clock_out_i2c_byte");
for (i = 7; i >= 0; i--) {
bit = (data >> i) & 0x1;
status = ixgbe_clock_out_i2c_bit(hw, bit);
if (status != IXGBE_SUCCESS)
break;
}
/* Release SDA line (set high) */
i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
i2cctl |= IXGBE_I2C_DATA_OUT;
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
return (status);
}
/*
* ixgbe_get_i2c_ack - Polls for I2C ACK
* @hw: pointer to hardware structure
*
* Clocks in/out one bit via I2C data/clock
*/
static s32
ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
{
s32 status;
u32 i = 0;
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
u32 timeout = 10;
bool ack = 1;
DEBUGFUNC("ixgbe_get_i2c_ack");
status = ixgbe_raise_i2c_clk(hw, &i2cctl);
if (status != IXGBE_SUCCESS)
goto out;
/* Minimum high period of clock is 4us */
usec_delay(IXGBE_I2C_T_HIGH);
/*
* Poll for ACK. Note that ACK in I2C spec is
* transition from 1 to 0
*/
for (i = 0; i < timeout; i++) {
i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
ack = ixgbe_get_i2c_data(&i2cctl);
usec_delay(1);
if (ack == 0)
break;
}
if (ack == 1) {
DEBUGOUT("I2C ack was not received.\n");
status = IXGBE_ERR_I2C;
}
ixgbe_lower_i2c_clk(hw, &i2cctl);
/* Minimum low period of clock is 4.7 us */
usec_delay(IXGBE_I2C_T_LOW);
out:
return (status);
}
/*
* ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
* @hw: pointer to hardware structure
* @data: read data value
*
* Clocks in one bit via I2C data/clock
*/
static s32
ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
{
s32 status;
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
status = ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Minimum high period of clock is 4us */
usec_delay(IXGBE_I2C_T_HIGH);
i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
*data = ixgbe_get_i2c_data(&i2cctl);
ixgbe_lower_i2c_clk(hw, &i2cctl);
/* Minimum low period of clock is 4.7 us */
usec_delay(IXGBE_I2C_T_LOW);
return (status);
}
/*
* ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
* @hw: pointer to hardware structure
* @data: data value to write
*
* Clocks out one bit via I2C data/clock
*/
static s32
ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
{
s32 status;
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
status = ixgbe_set_i2c_data(hw, &i2cctl, data);
if (status == IXGBE_SUCCESS) {
status = ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Minimum high period of clock is 4us */
usec_delay(IXGBE_I2C_T_HIGH);
ixgbe_lower_i2c_clk(hw, &i2cctl);
/*
* Minimum low period of clock is 4.7 us.
* This also takes care of the data hold time.
*/
usec_delay(IXGBE_I2C_T_LOW);
} else {
status = IXGBE_ERR_I2C;
DEBUGOUT1("I2C data was not set to %X\n", data);
}
return (status);
}
/*
* ixgbe_raise_i2c_clk - Raises the I2C SCL clock
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
*
* Raises the I2C clock line '0'->'1'
*/
static s32
ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
{
s32 status = IXGBE_SUCCESS;
*i2cctl |= IXGBE_I2C_CLK_OUT;
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
/* SCL rise time (1000ns) */
usec_delay(IXGBE_I2C_T_RISE);
return (status);
}
/*
* ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
*
* Lowers the I2C clock line '1'->'0'
*/
static void
ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
{
*i2cctl &= ~IXGBE_I2C_CLK_OUT;
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
/* SCL fall time (300ns) */
usec_delay(IXGBE_I2C_T_FALL);
}
/*
* ixgbe_set_i2c_data - Sets the I2C data bit
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
* @data: I2C data value (0 or 1) to set
*
* Sets the I2C data bit
*/
static s32
ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
{
s32 status = IXGBE_SUCCESS;
if (data)
*i2cctl |= IXGBE_I2C_DATA_OUT;
else
*i2cctl &= ~IXGBE_I2C_DATA_OUT;
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
usec_delay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
/* Verify data was set correctly */
*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
if (data != ixgbe_get_i2c_data(i2cctl)) {
status = IXGBE_ERR_I2C;
DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
}
return (status);
}
/*
* ixgbe_get_i2c_data - Reads the I2C SDA data bit
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
*
* Returns the I2C data bit value
*/
static bool
ixgbe_get_i2c_data(u32 *i2cctl)
{
bool data;
if (*i2cctl & IXGBE_I2C_DATA_IN)
data = 1;
else
data = 0;
return (data);
}
/*
* ixgbe_i2c_bus_clear - Clears the I2C bus
* @hw: pointer to hardware structure
*
* Clears the I2C bus by sending nine clock pulses.
* Used when data line is stuck low.
*/
void
ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
{
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
u32 i;
DEBUGFUNC("ixgbe_i2c_bus_clear");
ixgbe_i2c_start(hw);
(void) ixgbe_set_i2c_data(hw, &i2cctl, 1);
for (i = 0; i < 9; i++) {
(void) ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Min high period of clock is 4us */
usec_delay(IXGBE_I2C_T_HIGH);
ixgbe_lower_i2c_clk(hw, &i2cctl);
/* Min low period of clock is 4.7us */
usec_delay(IXGBE_I2C_T_LOW);
}
ixgbe_i2c_start(hw);
/* Put the i2c bus back to default state */
ixgbe_i2c_stop(hw);
}