iwk_hw.h revision cdc64593cc1046229f4ac4daf5ead688b5efe6eb
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2007, Intel Corporation
* All rights reserved.
*/
/*
* Sun elects to use this software under the BSD license.
*/
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU Geeral Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _IWK_HW_H_
#define _IWK_HW_H_
#ifdef __cplusplus
extern "C" {
#endif
/*
* maximum scatter/gather
*/
#define IWK_MAX_SCATTER (10)
/*
* Flow Handler Definitions
*/
#define FH_MEM_LOWER_BOUND (0x1000)
#define FH_MEM_UPPER_BOUND (0x1EF0)
#define IWK_FH_REGS_LOWER_BOUND (0x1000)
#define IWK_FH_REGS_UPPER_BOUND (0x2000)
/*
* TFDB Area - TFDs buffer table
*/
#define FH_MEM_TFDB_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x000)
#define FH_MEM_TFDB_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x900)
/*
* channels 0 - 8
*/
#define FH_MEM_TFDB_CHNL_BUF0(x) (FH_MEM_TFDB_LOWER_BOUND + (x) * 0x100)
#define FH_MEM_TFDB_CHNL_BUF1(x) (FH_MEM_TFDB_LOWER_BOUND + 0x80 + (x) * 0x100)
/*
* TFDIB Area - TFD Immediate Buffer
*/
#define FH_MEM_TFDIB_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x900)
#define FH_MEM_TFDIB_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x958)
/*
* channels 0 - 10
*/
#define FH_MEM_TFDIB_CHNL(x) (FH_MEM_TFDIB_LOWER_BOUND + (x) * 0x8)
/*
* TFDIB registers used in Service Mode
*/
#define FH_MEM_TFDIB_CHNL9_REG0 (FH_MEM_TFDIB_CHNL(9))
#define FH_MEM_TFDIB_CHNL9_REG1 (FH_MEM_TFDIB_CHNL(9) + 4)
#define FH_MEM_TFDIB_CHNL10_REG0 (FH_MEM_TFDIB_CHNL(10))
#define FH_MEM_TFDIB_CHNL10_REG1 (FH_MEM_TFDIB_CHNL(10) + 4)
/*
* Tx service channels
*/
#define FH_MEM_TFDIB_DRAM_ADDR_LSB_MASK (0xFFFFFFFF)
#define FH_MEM_TFDIB_DRAM_ADDR_MSB_MASK (0xF00000000)
#define FH_MEM_TFDIB_TB_LENGTH_MASK (0x0001FFFF) /* bits 16:0 */
#define FH_MEM_TFDIB_DRAM_ADDR_LSB_BITSHIFT (0)
#define FH_MEM_TFDIB_DRAM_ADDR_MSB_BITSHIFT (32)
#define FH_MEM_TFDIB_TB_LENGTH_BITSHIFT (0)
#define FH_MEM_TFDIB_REG0_ADDR_MASK (0xFFFFFFFF)
#define FH_MEM_TFDIB_REG1_ADDR_MASK (0xF0000000)
#define FH_MEM_TFDIB_REG1_LENGTH_MASK (0x0001FFFF)
#define FH_MEM_TFDIB_REG0_ADDR_BITSHIFT (0)
#define FH_MEM_TFDIB_REG1_ADDR_BITSHIFT (28)
#define FH_MEM_TFDIB_REG1_LENGTH_BITSHIFT (0)
/*
* TRB Area - Transmit Request Buffers
*/
#define FH_MEM_TRB_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x0958)
#define FH_MEM_TRB_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x0980)
/*
* channels 0 - 8
*/
#define FH_MEM_TRB_CHNL(x) (FH_MEM_TRB_LOWER_BOUND + (x) * 0x4)
/*
* Keep-Warm (KW) buffer base address.
*
* Driver must allocate a 4KByte buffer that is used by 4965 for keeping the
* host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency
* DRAM access when 4965 is Txing or Rxing. The dummy accesses prevent host
* from going into a power-savings mode that would cause higher DRAM latency,
* and possible data over/under-runs, before all Tx/Rx is complete.
*
* Driver loads IWK_FH_KW_MEM_ADDR_REG with the physical address (bits 35:4)
* of the buffer, which must be 4K aligned. Once this is set up, the 4965
* automatically invokes keep-warm accesses when normal accesses might not
* be sufficient to maintain fast DRAM response.
*
* Bit fields:
* 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned
*/
#define IWK_FH_KW_MEM_ADDR_REG (FH_MEM_LOWER_BOUND + 0x97C)
/*
* STAGB Area - Scheduler TAG Buffer
*/
#define FH_MEM_STAGB_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x980)
#define FH_MEM_STAGB_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0)
/*
* channels 0 - 8
*/
#define FH_MEM_STAGB_0(x) (FH_MEM_STAGB_LOWER_BOUND + (x) * 0x8)
#define FH_MEM_STAGB_1(x) (FH_MEM_STAGB_LOWER_BOUND + 0x4 + (x) * 0x8)
/*
* Tx service channels
*/
#define FH_MEM_SRAM_ADDR_9 (FH_MEM_STAGB_LOWER_BOUND + 0x048)
#define FH_MEM_SRAM_ADDR_10 (FH_MEM_STAGB_LOWER_BOUND + 0x04C)
#define FH_MEM_STAGB_SRAM_ADDR_MASK (0x00FFFFFF)
/*
* TFD Circular Buffers Base (CBBC) addresses
*
* 4965 has 16 base pointer registers, one for each of 16 host-DRAM-resident
* circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs)
* (see struct iwk_tfd_frame). These 16 pointer registers are offset by 0x04
* bytes from one another. Each TFD circular buffer in DRAM must be 256-byte
* aligned (address bits 0-7 must be 0).
*
* Bit fields in each pointer register:
* 27-0: TFD CB physical base address [35:8], must be 256-byte aligned
*/
#define FH_MEM_CBBC_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0)
#define FH_MEM_CBBC_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xA10)
/*
* queues 0 - 15
*/
#define FH_MEM_CBBC_QUEUE(x) (FH_MEM_CBBC_LOWER_BOUND + (x) * 0x4)
/*
* TAGR Area - TAG reconstruct table
*/
#define FH_MEM_TAGR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xA10)
#define FH_MEM_TAGR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xA70)
/*
* TDBGR Area - Tx Debug Registers
*/
#define FH_MEM_TDBGR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x0A70)
#define FH_MEM_TDBGR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x0B20)
/*
* channels 0 - 10
*/
#define FH_MEM_TDBGR_CHNL(x) (FH_MEM_TDBGR_LOWER_BOUND + (x) * 0x10)
#define FH_MEM_TDBGR_CHNL_REG_0(x) (FH_MEM_TDBGR_CHNL(x))
#define FH_MEM_TDBGR_CHNL_REG_1(x) (FH_MEM_TDBGR_CHNL_REG_0(x) + 0x4)
#define FH_MEM_TDBGR_CHNL_BYTES_TO_FIFO_MASK (0x000FFFFF)
#define FH_MEM_TDBGR_CHNL_BYTES_TO_FIFO_BITSHIFT (0)
/*
* RDBUF Area
*/
#define FH_MEM_RDBUF_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xB80)
#define FH_MEM_RDBUF_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xBC0)
#define FH_MEM_RDBUF_CHNL0 (FH_MEM_RDBUF_LOWER_BOUND)
/*
* Rx SRAM Control and Status Registers (RSCSR)
*
* These registers provide handshake between driver and 4965 for the Rx queue
* (this queue handles *all* command responses, notifications, Rx data, etc.
* sent from 4965 uCode to host driver). Unlike Tx, there is only one Rx
* queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can
* concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer
* Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1
* mapping between RBDs and RBs.
*
* Driver must allocate host DRAM memory for the following, and set the
* physical address of each into 4965 registers:
*
* 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256
* entries (although any power of 2, up to 4096, is selectable by driver).
* Each entry (1 dword) points to a receive buffer (RB) of consistent size
* (typically 4K, although 8K or 16K are also selectable by driver).
* Driver sets up RB size and number of RBDs in the CB via Rx config
* register FH_MEM_RCSR_CHNL0_CONFIG_REG.
*
* Bit fields within one RBD:
* 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned.
*
* Driver sets physical address [35:8] of base of RBD circular buffer
* into FH_RSCSR_CHNL0_RBDCB_BASE_REG [27:0].
*
* 2) Rx status buffer, 8 bytes, in which 4965 indicates which Rx Buffers
* (RBs) have been filled, via a "write pointer", actually the index of
* the RB's corresponding RBD within the circular buffer. Driver sets
* physical address [35:4] into FH_RSCSR_CHNL0_STTS_WPTR_REG [31:0].
*
* Bit fields in lower dword of Rx status buffer (upper dword not used
* by driver; see struct iwk_shared, val0):
* 31-12: Not used by driver
* 11- 0: Index of last filled Rx buffer descriptor
* (4965 writes, driver reads this value)
*
* As the driver prepares Receive Buffers (RBs) for 4965 to fill, driver must
* enter pointers to these RBs into contiguous RBD circular buffer entries,
* and update the 4965's "write" index register, FH_RSCSR_CHNL0_RBDCB_WPTR_REG.
*
* This "write" index corresponds to the *next* RBD that the driver will make
* available, i.e. one RBD past the the tail of the ready-to-fill RBDs within
* the circular buffer. This value should initially be 0 (before preparing any
* RBs), should be 8 after preparing the first 8 RBs (for example), and must
* wrap back to 0 at the end of the circular buffer (but don't wrap before
* "read" index has advanced past 1! See below).
* NOTE: 4965 EXPECTS THE WRITE INDEX TO BE INCREMENTED IN MULTIPLES OF 8.
*
* As the 4965 fills RBs (referenced from contiguous RBDs within the circular
* buffer), it updates the Rx status buffer in DRAM, 2) described above,
* to tell the driver the index of the latest filled RBD. The driver must
* read this "read" index from DRAM after receiving an Rx interrupt from 4965.
*
* The driver must also internally keep track of a third index, which is the
* next RBD to process. When receiving an Rx interrupt, driver should process
* all filled but unprocessed RBs up to, but not including, the RB
* corresponding to the "read" index. For example, if "read" index becomes "1",
* driver may process the RB pointed to by RBD 0. Depending on volume of
* traffic, there may be many RBs to process.
*
* If read index == write index, 4965 thinks there is no room to put new data.
* Due to this, the maximum number of filled RBs is 255, instead of 256. To
* be safe, make sure that there is a gap of at least 2 RBDs between "write"
* and "read" indexes; that is, make sure that there are no more than 254
* buffers waiting to be filled.
*/
#define FH_MEM_RSCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xBC0)
#define FH_MEM_RSCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
#define FH_MEM_RSCSR_CHNL0 (FH_MEM_RSCSR_LOWER_BOUND)
#define FH_MEM_RSCSR_CHNL1 (FH_MEM_RSCSR_LOWER_BOUND + 0x020)
/*
* Physical base address of 8-byte Rx Status buffer.
* Bit fields:
* 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned.
*/
#define FH_RSCSR_CHNL0_STTS_WPTR_REG (FH_MEM_RSCSR_CHNL0)
/*
* Physical base address of Rx Buffer Descriptor Circular Buffer.
* Bit fields:
* 27-0: RBD CD physical base address [35:8], must be 256-byte aligned.
*/
#define FH_RSCSR_CHNL0_RBDCB_BASE_REG (FH_MEM_RSCSR_CHNL0 + 0x004)
/*
* Rx write pointer (index, really!).
* Bit fields:
* 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1.
* NOTE: For 256-entry circular buffer, use only bits [7:0].
*/
#define FH_RSCSR_CHNL0_RBDCB_WPTR_REG (FH_MEM_RSCSR_CHNL0 + 0x008)
#define FH_RSCSR_CHNL0_RBDCB_RPTR_REG (FH_MEM_RSCSR_CHNL0 + 0x00c)
#define FH_RSCSR_FRAME_SIZE_MASK (0x00000FFF) /* bits 0-11 */
/*
* RSCSR registers used in Service mode
*/
#define FH_RSCSR_CHNL1_RB_WPTR_REG (FH_MEM_RSCSR_CHNL1)
#define FH_RSCSR_CHNL1_RB_WPTR_OFFSET_REG (FH_MEM_RSCSR_CHNL1 + 0x004)
#define FH_RSCSR_CHNL1_RB_CHUNK_NUM_REG (FH_MEM_RSCSR_CHNL1 + 0x008)
#define FH_RSCSR_CHNL1_SRAM_ADDR_REG (FH_MEM_RSCSR_CHNL1 + 0x00C)
/*
* Rx Config/Status Registers (RCSR)
* Rx Config Reg for channel 0 (only channel used)
*
* Driver must initialize FH_MEM_RCSR_CHNL0_CONFIG_REG as follows for
* normal operation (see bit fields).
*
* Clearing FH_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA.
* Driver should poll FH_MEM_RSSR_RX_STATUS_REG for
* FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing.
*
* Bit fields:
* 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame,
* '10' operate normally
* 29-24: reserved
* 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal),
* min "5" for 32 RBDs, max "12" for 4096 RBDs.
* 19-18: reserved
* 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K,
* '10' 12K, '11' 16K.
* 15-14: reserved
* 13-12: IRQ destination; '00' none, '01' host driver (normal operation)
* 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec)
* typical value 0x10 (about 1/2 msec)
* 3- 0: reserved
*/
#define FH_MEM_RCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
#define FH_MEM_RCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xCC0)
#define FH_MEM_RCSR_CHNL0 (FH_MEM_RCSR_LOWER_BOUND)
#define FH_MEM_RCSR_CHNL1 (FH_MEM_RCSR_LOWER_BOUND + 0x020)
#define FH_MEM_RCSR_CHNL0_CONFIG_REG (FH_MEM_RCSR_CHNL0)
#define FH_MEM_RCSR_CHNL0_CREDIT_REG (FH_MEM_RCSR_CHNL0 + 0x004)
#define FH_MEM_RCSR_CHNL0_RBD_STTS_REG (FH_MEM_RCSR_CHNL0 + 0x008)
#define FH_MEM_RCSR_CHNL0_RB_STTS_REG (FH_MEM_RCSR_CHNL0 + 0x00C)
#define FH_MEM_RCSR_CHNL0_RXPD_STTS_REG (FH_MEM_RCSR_CHNL0 + 0x010)
#define FH_MEM_RCSR_CHNL0_RBD_STTS_FRAME_RB_CNT_MASK (0x7FFFFFF0)
/*
* RCSR registers used in Service mode
*/
#define FH_MEM_RCSR_CHNL1_CONFIG_REG (FH_MEM_RCSR_CHNL1)
#define FH_MEM_RCSR_CHNL1_RB_STTS_REG (FH_MEM_RCSR_CHNL1 + 0x00C)
#define FH_MEM_RCSR_CHNL1_RX_PD_STTS_REG (FH_MEM_RCSR_CHNL1 + 0x010)
/*
* Rx Shared Status Registers (RSSR)
*
* After stopping Rx DMA channel (writing 0 to FH_MEM_RCSR_CHNL0_CONFIG_REG),
* driver must poll FH_MEM_RSSR_RX_STATUS_REG until Rx channel is idle.
*
* Bit fields:
* 24: 1 = Channel 0 is idle
*
* FH_MEM_RSSR_SHARED_CTRL_REG and FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV contain
* default values that should not be altered by the driver.
*/
#define FH_MEM_RSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC40)
#define FH_MEM_RSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xD00)
#define FH_MEM_RSSR_SHARED_CTRL_REG (FH_MEM_RSSR_LOWER_BOUND)
#define FH_MEM_RSSR_RX_STATUS_REG (FH_MEM_RSSR_LOWER_BOUND + 0x004)
#define FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV (FH_MEM_RSSR_LOWER_BOUND + 0x008)
/*
* Transmit DMA Channel Control/Status Registers (TCSR)
*
* 4965 has one configuration register for each of 8 Tx DMA/FIFO channels
* supported in hardware; config regs are separated by 0x20 bytes.
*
* To use a Tx DMA channel, driver must initialize its
* IWK_FH_TCSR_CHNL_TX_CONFIG_REG(chnl) with:
*
* IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
* IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL
*
* All other bits should be 0.
*
* Bit fields:
* 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame,
* '10' operate normally
* 29- 4: Reserved, set to "0"
* 3: Enable internal DMA requests (1, normal operation), disable (0)
* 2- 0: Reserved, set to "0"
*/
#define IWK_FH_TCSR_LOWER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0xD00)
#define IWK_FH_TCSR_UPPER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0xE60)
#define IWK_FH_TCSR_CHNL_NUM (7)
#define IWK_FH_TCSR_CHNL_TX_CONFIG_REG(_chnl) \
(IWK_FH_TCSR_LOWER_BOUND + 0x20 * _chnl)
#define IWK_FH_TCSR_CHNL_TX_CREDIT_REG(_chnl) \
(IWK_FH_TCSR_LOWER_BOUND + 0x20 * _chnl + 0x4)
#define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG(_chnl) \
(IWK_FH_TCSR_LOWER_BOUND + 0x20 * _chnl + 0x8)
/*
* Tx Shared Status Registers (TSSR)
*
* After stopping Tx DMA channel (writing 0 to
* IWK_FH_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll
* IWK_FH_TSSR_TX_STATUS_REG until selected Tx channel is idle
* (channel's buffers empty | no pending requests).
*
* Bit fields:
* 31-24: 1 = Channel buffers empty (channel 7:0)
* 23-16: 1 = No pending requests (channel 7:0)
*/
#define IWK_FH_TSSR_LOWER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0xEA0)
#define IWK_FH_TSSR_UPPER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0xEC0)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG (IWK_FH_TSSR_LOWER_BOUND + 0x008)
#define IWK_FH_TSSR_TX_STATUS_REG (IWK_FH_TSSR_LOWER_BOUND + 0x010)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON (0xFF000000)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON (0x00FF0000)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_64B (0x00000000)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B (0x00000400)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_256B (0x00000800)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_512B (0x00000C00)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON (0x00000100)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON (0x00000080)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH (0x00000020)
#define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH (0x00000005)
#define IWK_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) \
((1 << (_chnl)) << 24)
#define IWK_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl) \
((1 << (_chnl)) << 16)
#define IWK_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) \
(IWK_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) | \
IWK_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl))
/*
* SRVC
*/
#define IWK_FH_SRVC_LOWER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0x9C8)
#define IWK_FH_SRVC_UPPER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0x9D0)
#define IWK_FH_SRVC_CHNL_SRAM_ADDR_REG(_chnl) \
(IWK_FH_SRVC_LOWER_BOUND + (_chnl - 9) * 0x4)
/*
* TFDIB
*/
#define IWK_FH_TFDIB_LOWER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0x900)
#define IWK_FH_TFDIB_UPPER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0x958)
#define IWK_FH_TFDIB_CTRL0_REG(_chnl) \
(IWK_FH_TFDIB_LOWER_BOUND + 0x8 * _chnl)
#define IWK_FH_TFDIB_CTRL1_REG(_chnl) \
(IWK_FH_TFDIB_LOWER_BOUND + 0x8 * _chnl + 0x4)
#define IWK_FH_SRVC_CHNL (9)
#define IWK_FH_TFDIB_CTRL1_REG_POS_MSB (28)
/*
* Debug Monitor Area
*/
#define FH_MEM_DM_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xEE0)
#define FH_MEM_DM_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xEF0)
#define FH_MEM_DM_CONTROL_MASK_REG (FH_MEM_DM_LOWER_BOUND)
#define FH_MEM_DM_CONTROL_START_REG (FH_MEM_DM_LOWER_BOUND + 0x004)
#define FH_MEM_DM_CONTROL_STATUS_REG (FH_MEM_DM_LOWER_BOUND + 0x008)
#define FH_MEM_DM_MONITOR_REG (FH_MEM_DM_LOWER_BOUND + 0x00C)
#define FH_TB1_ADDR_LOW_MASK (0xFFFFFFFF) /* bits 31:0 */
#define FH_TB1_ADDR_HIGH_MASK (0xF00000000) /* bits 35:32 */
#define FH_TB2_ADDR_LOW_MASK (0x0000FFFF) /* bits 15:0 */
#define FH_TB2_ADDR_HIGH_MASK (0xFFFFF0000) /* bits 35:16 */
#define FH_TB1_ADDR_LOW_BITSHIFT (0)
#define FH_TB1_ADDR_HIGH_BITSHIFT (32)
#define FH_TB2_ADDR_LOW_BITSHIFT (0)
#define FH_TB2_ADDR_HIGH_BITSHIFT (16)
#define FH_TB1_LENGTH_MASK (0x00000FFF) /* bits 11:0 */
#define FH_TB2_LENGTH_MASK (0x00000FFF) /* bits 11:0 */
/*
* number of FH channels including 2 service mode
*/
#define NUM_OF_FH_CHANNELS (10)
/*
* ctrl field bitology
*/
#define FH_TFD_CTRL_PADDING_MASK (0xC0000000) /* bits 31:30 */
#define FH_TFD_CTRL_NUMTB_MASK (0x1F000000) /* bits 28:24 */
#define FH_TFD_CTRL_PADDING_BITSHIFT (30)
#define FH_TFD_CTRL_NUMTB_BITSHIFT (24)
#define FH_TFD_GET_NUM_TBS(ctrl) \
((ctrl & FH_TFD_CTRL_NUMTB_MASK) >> FH_TFD_CTRL_NUMTB_BITSHIFT)
#define FH_TFD_GET_PADDING(ctrl) \
((ctrl & FH_TFD_CTRL_PADDING_MASK) >> FH_TFD_CTRL_PADDING_BITSHIFT)
/* TCSR: tx_config register values */
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRIVER (0x00000001)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_ARC (0x00000002)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL (0x00000000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL (0x00000008)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT (0x00000000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD (0x00100000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD (0x00400000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD (0x00800000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000)
#define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000)
#define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY (0x00000000)
#define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT (0x00002000)
#define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00000003)
#define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_BIT_TFDB_WPTR (0x00000001)
#define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM (20)
#define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX (12)
/*
* CBB table
*/
#define FH_CBB_ADDR_MASK 0x0FFFFFFF /* bits 27:0 */
#define FH_CBB_ADDR_BIT_SHIFT (8)
/*
* RCSR: channel 0 rx_config register defines
*/
#define FH_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MASK (0xC0000000) /* bits 30-31 */
#define FH_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MASK (0x00F00000) /* bits 20-23 */
#define FH_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MASK (0x00030000) /* bits 16-17 */
#define FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MASK (0x00008000) /* bit 15 */
#define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MASK (0x00001000) /* bit 12 */
#define FH_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MASK (0x00000FF0) /* bit 4-11 */
#define FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT (20)
#define FH_RCSR_RX_CONFIG_RB_SIZE_BITSHIFT (16)
#define FH_RCSR_GET_RDBC_SIZE(reg) \
((reg & FH_RCSR_RX_CONFIG_RDBC_SIZE_MASK) >> \
FH_RCSR_RX_CONFIG_RDBC_SIZE_BITSHIFT)
/*
* RCSR: channel 1 rx_config register defines
*/
#define FH_RCSR_CHNL1_RX_CONFIG_DMA_CHNL_EN_MASK (0xC0000000) /* bits 30-31 */
#define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_MASK (0x00003000) /* bits 12-13 */
/*
* RCSR: rx_config register values
*/
#define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000)
#define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000)
#define FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000)
#define FH_RCSR_RX_CONFIG_SINGLE_FRAME_MODE (0x00008000)
#define FH_RCSR_RX_CONFIG_RDRBD_DISABLE_VAL (0x00000000)
#define FH_RCSR_RX_CONFIG_RDRBD_ENABLE_VAL (0x20000000)
#define IWK_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000)
/*
* RCSR channel 0 config register values
*/
#define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000)
#define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000)
/*
* RCSR channel 1 config register values
*/
#define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000)
#define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000)
#define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_INT_RTC_VAL (0x00002000)
#define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_INT_HOST_RTC_VAL (0x00003000)
/*
* RCSR: rb status register defines
*/
#define FH_RCSR_RB_BYTE_TO_SEND_MASK (0x0001FFFF) /* bits 0-16 */
/*
* RSCSR: defs used in normal mode
*/
#define FH_RSCSR_CHNL0_RBDCB_WPTR_MASK (0x00000FFF) /* bits 0-11 */
/*
* RSCSR: defs used in service mode
*/
#define FH_RSCSR_CHNL1_SRAM_ADDR_MASK (0x00FFFFFF) /* bits 0-23 */
#define FH_RSCSR_CHNL1_RB_WPTR_MASK (0x0FFFFFFF) /* bits 0-27 */
#define FH_RSCSR_CHNL1_RB_WPTR_OFFSET_MASK (0x000000FF) /* bits 0-7 */
/*
* RSSR: RX Enable Error IRQ to Driver register defines
*/
#define FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV_NO_RBD (0x00400000) /* bit 22 */
#define FH_DRAM2SRAM_DRAM_ADDR_HIGH_MASK (0xFFFFFFF00) /* bits 8-35 */
#define FH_DRAM2SRAM_DRAM_ADDR_LOW_MASK (0x000000FF) /* bits 0-7 */
#define FH_DRAM2SRAM_DRAM_ADDR_HIGH_BITSHIFT (8) /* bits 8-35 */
/*
* RX DRAM status regs definitions
*/
#define FH_RX_RB_NUM_MASK (0x00000FFF) /* bits 0-11 */
#define FH_RX_FRAME_NUM_MASK (0x0FFF0000) /* bits 16-27 */
#define FH_RX_RB_NUM_BITSHIFT (0)
#define FH_RX_FRAME_NUM_BITSHIFT (16)
/*
* Tx Scheduler
*
* The Tx Scheduler selects the next frame to be transmitted, chosing TFDs
* (Transmit Frame Descriptors) from up to 16 circular queues resident in
* host DRAM. It steers each frame's Tx command (which contains the frame
* data) through one of up to 7 prioritized Tx DMA FIFO channels within the
* device. A queue maps to only one (selectable by driver) Tx DMA channel,
* but one DMA channel may take input from several queues.
*
* Tx DMA channels have dedicated purposes. For 4965, and are used as follows:
* BMC TODO: CONFIRM channel assignments, esp for 0/1
*
* 0 -- EDCA BK (background) frames, lowest priority
* 1 -- EDCA BE (best effort) frames, normal priority
* 2 -- EDCA VI (video) frames, higher priority
* 3 -- EDCA VO (voice) and management frames, highest priority
* 4 -- Commands (e.g. RXON, etc.)
* 5 -- HCCA short frames
* 6 -- HCCA long frames
* 7 -- not used by driver (device-internal only)
*
* Driver should normally map queues 0-6 to Tx DMA/FIFO channels 0-6.
* In addition, driver can map queues 7-15 to Tx DMA/FIFO channels 0-3 to
* support 11n aggregation via EDCA DMA channels. BMC confirm.
*
* The driver sets up each queue to work in one of two modes:
*
* 1) Scheduler-Ack, in which the scheduler automatically supports a
* block-ack (BA) window of up to 64 TFDs. In this mode, each queue
* contains TFDs for a unique combination of Recipient Address (RA)
* and Traffic Identifier (TID), that is, traffic of a given
* Quality-Of-Service (QOS) priority, destined for a single station.
*
* In scheduler-ack mode, the scheduler keeps track of the Tx status of
* each frame within the BA window, including whether it's been transmitted,
* and whether it's been acknowledged by the receiving station. The device
* automatically processes block-acks received from the receiving STA,
* and reschedules un-acked frames to be retransmitted (successful
* Tx completion may end up being out-of-order).
*
* The driver must maintain the queue's Byte Count table in host DRAM
* (struct iwk_sched_queue_byte_cnt_tbl) for this mode.
* This mode does not support fragmentation.
*
* 2) FIFO (a.k.a. non-Scheduler-ACK), in which each TFD is processed in order.
* The device may automatically retry Tx, but will retry only one frame
* at a time, until receiving ACK from receiving station, or reaching
* retry limit and giving up.
*
* The command queue (#4) must use this mode!
* This mode does not require use of the Byte Count table in host DRAM.
*
* Driver controls scheduler operation via 3 means:
* 1) Scheduler registers
* 2) Shared scheduler data base in internal 4956 SRAM
* 3) Shared data in host DRAM
*
* Initialization:
*
* When loading, driver should allocate memory for:
* 1) 16 TFD circular buffers, each with space for (typically) 256 TFDs.
* 2) 16 Byte Count circular buffers in 16 KBytes contiguous memory
* (1024 bytes for each queue).
*
* After receiving "Alive" response from uCode, driver must initialize
* the following (especially for queue #4, the command queue, otherwise
* the driver can't issue commands!):
*
* 1) 4965's scheduler data base area in SRAM:
* a) Read SRAM address of data base area from SCD_SRAM_BASE_ADDR
* b) Clear and Init SCD_CONTEXT_DATA_OFFSET area (size 128 bytes)
* c) Clear SCD_TX_STTS_BITMAP_OFFSET area (size 256 bytes)
* d) Clear (BMC and init?) SCD_TRANSLATE_TBL_OFFSET (size 32 bytes)
*
* 2) Init SCD_DRAM_BASE_ADDR with physical base of Tx byte count circular
* buffer array, allocated by driver in host DRAM.
*
* 3)
*/
/*
* Max Tx window size is the max number of contiguous TFDs that the scheduler
* can keep track of at one time when creating block-ack chains of frames.
* Note that "64" matches the number of ack bits in a block-ack.
* Driver should use SCD_WIN_SIZE and SCD_FRAME_LIMIT values to initialize
* SCD_CONTEXT_QUEUE_OFFSET(x) values.
*/
#define SCD_WIN_SIZE 64
#define SCD_FRAME_LIMIT 10
/*
* Memory mapped registers ... access via HBUS_TARG_PRPH regs
*/
#define SCD_START_OFFSET 0xa02c00
/*
* 4965 tells driver SRAM address for internal scheduler structs via this reg.
* Value is valid only after "Alive" response from uCode.
*/
#define SCD_SRAM_BASE_ADDR (SCD_START_OFFSET + 0x0)
/*
* Driver may need to update queue-empty bits after changing queue's
* write and read pointers (indexes) during (re-)initialization (i.e. when
* scheduler is not tracking what's happening).
* Bit fields:
* 31-16: Write mask -- 1: update empty bit, 0: don't change empty bit
* 15-00: Empty state, one for each queue -- 1: empty, 0: non-empty
* NOTE BMC: THIS REGISTER NOT USED BY LINUX DRIVER.
*/
#define SCD_EMPTY_BITS (SCD_START_OFFSET + 0x4)
/*
* Physical base address of array of byte count (BC) circular buffers (CBs).
* Each Tx queue has a BC CB in host DRAM to support Scheduler-ACK mode.
* This register points to BC CB for queue 0, must be on 1024-byte boundary.
* Others are spaced by 1024 bytes.
* Each BC CB is 2 bytes * (256 + 64) = 740 bytes, followed by 384 bytes pad.
* (Index into a queue's BC CB) = (index into queue's TFD CB) = (SSN & 0xff).
* Bit fields:
* 25-00: Byte Count CB physical address [35:10], must be 1024-byte aligned.
*/
#define SCD_DRAM_BASE_ADDR (SCD_START_OFFSET + 0x10)
#define SCD_AIT (SCD_START_OFFSET + 0x18)
/*
* Enables any/all Tx DMA/FIFO channels.
* Scheduler generates requests for only the active channels.
* Set this to 0xff to enable all 8 channels (normal usage).
* Bit fields:
* 7- 0: Enable (1), disable (0), one bit for each channel 0-7
*/
#define SCD_TXFACT (SCD_START_OFFSET + 0x1c)
/*
* Queue (x) Write Pointers (indexes, really!), one for each Tx queue.
* Initialized and updated by driver as new TFDs are added to queue.
* NOTE: If using Block Ack, index must correspond to frame's
* Start Sequence Number; index = (SSN & 0xff)
* NOTE BMC: Alternative to HBUS_TARG_WRPTR, which is what Linux driver uses?
*/
#define SCD_QUEUE_WRPTR(x) (SCD_START_OFFSET + 0x24 + (x) * 4)
/*
* Queue (x) Read Pointers (indexes, really!), one for each Tx queue.
* For FIFO mode, index indicates next frame to transmit.
* For Scheduler-ACK mode, index indicates first frame in Tx window.
* Initialized by driver, updated by scheduler.
*/
#define SCD_QUEUE_RDPTR(x) (SCD_START_OFFSET + 0x64 + (x) * 4)
#define SCD_SETQUEUENUM (SCD_START_OFFSET + 0xa4)
#define SCD_SET_TXSTAT_TXED (SCD_START_OFFSET + 0xa8)
#define SCD_SET_TXSTAT_DONE (SCD_START_OFFSET + 0xac)
#define SCD_SET_TXSTAT_NOT_SCHD (SCD_START_OFFSET + 0xb0)
#define SCD_DECREASE_CREDIT (SCD_START_OFFSET + 0xb4)
#define SCD_DECREASE_SCREDIT (SCD_START_OFFSET + 0xb8)
#define SCD_LOAD_CREDIT (SCD_START_OFFSET + 0xbc)
#define SCD_LOAD_SCREDIT (SCD_START_OFFSET + 0xc0)
#define SCD_BAR (SCD_START_OFFSET + 0xc4)
#define SCD_BAR_DW0 (SCD_START_OFFSET + 0xc8)
#define SCD_BAR_DW1 (SCD_START_OFFSET + 0xcc)
/*
* Select which queues work in chain mode (1) vs. not (0).
* Use chain mode to build chains of aggregated frames.
* Bit fields:
* 31-16: Reserved
* 15-00: Mode, one bit for each queue -- 1: Chain mode, 0: one-at-a-time
* NOTE: If driver sets up queue for chain mode, it should be also set up
* Scheduler-ACK mode as well, via SCD_QUEUE_STATUS_BITS(x).
*/
#define SCD_QUEUECHAIN_SEL (SCD_START_OFFSET + 0xd0)
#define SCD_QUERY_REQ (SCD_START_OFFSET + 0xd8)
#define SCD_QUERY_RES (SCD_START_OFFSET + 0xdc)
#define SCD_PENDING_FRAMES (SCD_START_OFFSET + 0xe0)
/*
* Select which queues interrupt driver when read pointer (index) increments.
* Bit fields:
* 31-16: Reserved
* 15-00: Interrupt enable, one bit for each queue -- 1: enabled, 0: disabled
* NOTE BMC: THIS FUNCTIONALITY IS APPARENTLY A NO-OP.
*/
#define SCD_INTERRUPT_MASK (SCD_START_OFFSET + 0xe4)
#define SCD_INTERRUPT_THRESHOLD (SCD_START_OFFSET + 0xe8)
#define SCD_QUERY_MIN_FRAME_SIZE (SCD_START_OFFSET + 0x100)
/*
* Queue search status registers. One for each queue.
* Sets up queue mode and assigns queue to Tx DMA channel.
* Bit fields:
* 19-10: Write mask/enable bits for bits 0-9
* 9: Driver should init to "0"
* 8: Scheduler-ACK mode (1), non-Scheduler-ACK (i.e. FIFO) mode (0).
* Driver should init to "1" for aggregation mode, or "0" otherwise.
* 7-6: Driver should init to "0"
* 5: Window Size Left; indicates whether scheduler can request
* another TFD, based on window size, etc. Driver should init
* this bit to "1" for aggregation mode, or "0" for non-agg.
* 4-1: Tx FIFO to use (range 0-7).
* 0: Queue is active (1), not active (0).
* Other bits should be written as "0"
*
* NOTE: If enabling Scheduler-ACK mode, chain mode should also be enabled
* via SCD_QUEUECHAIN_SEL.
*/
#define SCD_QUEUE_STATUS_BITS(x) (SCD_START_OFFSET + 0x104 + (x) * 4)
/*
* 4965 internal SRAM structures for scheduler, shared with driver ...
* Driver should clear and initialize the following areas after receiving
* "Alive" response from 4965 uCode, i.e. after initial
* uCode load, or after a uCode load done for error recovery:
*
* SCD_CONTEXT_DATA_OFFSET (size 128 bytes)
* SCD_TX_STTS_BITMAP_OFFSET (size 256 bytes)
* SCD_TRANSLATE_TBL_OFFSET (size 32 bytes)
*
* Driver reads base address of this scheduler area from SCD_SRAM_BASE_ADDR.
* All OFFSET values must be added to this base address.
* Use HBUS_TARG_MEM_* registers to access SRAM.
*/
/*
* Queue context. One 8-byte entry for each of 16 queues.
*
* Driver should clear this entire area (size 0x80) to 0 after receiving
* "Alive" notification from uCode. Additionally, driver should init
* each queue's entry as follows:
*
* LS Dword bit fields:
* 0-06: Max Tx window size for Scheduler-ACK. Driver should init to 64.
*
* MS Dword bit fields:
* 16-22: Frame limit. Driver should init to 10 (0xa).
*
* Driver should init all other bits to 0.
*
* Init must be done after driver receives "Alive" response from 4965 uCode,
* and when setting up queue for aggregation.
*/
#define SCD_CONTEXT_DATA_OFFSET 0x380
/*
* Tx Status Bitmap
*
* Driver should clear this entire area (size 0x100) to 0 after receiving
* "Alive" notification from uCode. Area is used only by device itself;
* no other support (besides clearing) is required from driver.
*/
#define SCD_TX_STTS_BITMAP_OFFSET 0x400
/*
* RAxTID to queue translation mapping.
*
* When queue is in Scheduler-ACK mode, frames placed in a that queue must be
* for only one combination of receiver address (RA) and traffic ID (TID), i.e.
* one QOS priority level destined for one station (for this link, not final
* destination). The SCD_TRANSLATE_TABLE area provides 16 16-bit mappings,
* one for each of the 16 queues. If queue is not in Scheduler-ACK mode, the
* device ignores the mapping value.
*
* Bit fields, for each 16-bit map:
* 15-9: Reserved, set to 0
* 8-4: Index into device's station table for recipient station
* 3-0: Traffic ID (tid), range 0-15
*
* Driver should clear this entire area (size 32 bytes) to 0 after receiving
* "Alive" notification from uCode. To update a 16-bit map value, driver
* must read a dword-aligned value from device SRAM, replace the 16-bit map
* value of interest, and write the dword value back into device SRAM.
*/
#define SCD_TRANSLATE_TBL_OFFSET 0x500
#define SCD_CONTEXT_QUEUE_OFFSET(x) (SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
#define SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
((SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc)
/*
* Mask to enable contiguous Tx DMA/FIFO channels between "lo" and "hi".
*/
#define SCD_TXFACT_REG_TXFIFO_MASK(lo, hi) \
((1<<(hi))|((1<<(hi))-(1<<(lo))))
#define SCD_MODE_REG_BIT_SEARCH_MODE (1<<0)
#define SCD_MODE_REG_BIT_SBYP_MODE (1<<1)
#define SCD_TXFIFO_POS_TID (0)
#define SCD_TXFIFO_POS_RA (4)
#define SCD_QUEUE_STTS_REG_POS_ACTIVE (0)
#define SCD_QUEUE_STTS_REG_POS_TXF (1)
#define SCD_QUEUE_STTS_REG_POS_WSL (5)
#define SCD_QUEUE_STTS_REG_POS_SCD_ACK (8)
#define SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10)
#define SCD_QUEUE_STTS_REG_MSK (0x0007FC00)
#define SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF)
#define SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0)
#define SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F)
#define SCD_QUEUE_CTX_REG1_CREDIT_POS (8)
#define SCD_QUEUE_CTX_REG1_CREDIT_MSK (0x00FFFF00)
#define SCD_QUEUE_CTX_REG1_SUPER_CREDIT_POS (24)
#define SCD_QUEUE_CTX_REG1_SUPER_CREDIT_MSK (0xFF000000)
#define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
#define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
#define CSR_HW_IF_CONFIG_REG_BIT_KEDRON_R (0x00000010)
#define CSR_HW_IF_CONFIG_REG_MSK_BOARD_VER (0x00000C00)
#define CSR_HW_IF_CONFIG_REG_BIT_MAC_SI (0x00000100)
#define CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI (0x00000200)
#define CSR_HW_IF_CONFIG_REG_EEP_SEM (0x00200000)
/* IWK-END */
#define RX_RES_PHY_CNT 14
#define STATISTICS_FLG_CLEAR (0x1)
#define STATISTICS_FLG_DISABLE_NOTIFICATION (0x2)
#define STATISTICS_REPLY_FLG_CLEAR (0x1)
#define STATISTICS_REPLY_FLG_BAND_24G_MSK (0x2)
#define STATISTICS_REPLY_FLG_TGJ_NARROW_BAND_MSK (0x4)
#define STATISTICS_REPLY_FLG_FAT_MODE_MSK (0x8)
#define RX_PHY_FLAGS_ANTENNAE_OFFSET (4)
#define RX_PHY_FLAGS_ANTENNAE_MASK (0x70)
/*
* Register and values
*/
#define CSR_BASE (0x0)
#define HBUS_BASE (0x400)
#define HBUS_TARG_MBX_C (HBUS_BASE+0x030)
/*
* CSR (control and status registers)
*/
#define CSR_SW_VER (CSR_BASE+0x000)
#define CSR_HW_IF_CONFIG_REG (CSR_BASE+0x000) /* hardware interface config */
#define CSR_INT_COALESCING (CSR_BASE+0x004) /* accum ints, 32-usec units */
#define CSR_INT (CSR_BASE+0x008) /* host interrupt status/ack */
#define CSR_INT_MASK (CSR_BASE+0x00c) /* host interrupt enable */
#define CSR_FH_INT_STATUS (CSR_BASE+0x010) /* busmaster int status/ack */
#define CSR_GPIO_IN (CSR_BASE+0x018) /* read external chip pins */
#define CSR_RESET (CSR_BASE+0x020) /* busmaster enable, NMI, etc */
#define CSR_GP_CNTRL (CSR_BASE+0x024)
/* 0x028 - reserved */
#define CSR_EEPROM_REG (CSR_BASE+0x02c)
#define CSR_EEPROM_GP (CSR_BASE+0x030)
#define CSR_UCODE_DRV_GP1 (CSR_BASE+0x054)
#define CSR_UCODE_DRV_GP1_SET (CSR_BASE+0x058)
#define CSR_UCODE_DRV_GP1_CLR (CSR_BASE+0x05c)
#define CSR_UCODE_DRV_GP2 (CSR_BASE+0x060)
#define CSR_GIO_CHICKEN_BITS (CSR_BASE+0x100)
#define CSR_ANA_PLL_CFG (CSR_BASE+0x20c)
#define CSR_HW_REV_WA_REG (CSR_BASE+0x22C)
/*
* BSM (Bootstrap State Machine)
*/
#define BSM_BASE (CSR_BASE + 0x3400)
#define BSM_WR_CTRL_REG (BSM_BASE + 0x000) /* ctl and status */
#define BSM_WR_MEM_SRC_REG (BSM_BASE + 0x004) /* source in BSM mem */
#define BSM_WR_MEM_DST_REG (BSM_BASE + 0x008) /* dest in SRAM mem */
#define BSM_WR_DWCOUNT_REG (BSM_BASE + 0x00C) /* bytes */
#define BSM_WR_STATUS_REG (BSM_BASE + 0x010) /* bit 0: 1 == done */
/*
* pointers and size regs for bootstrap load and data SRAM save
*/
#define BSM_DRAM_INST_PTR_REG (BSM_BASE + 0x090)
#define BSM_DRAM_INST_BYTECOUNT_REG (BSM_BASE + 0x094)
#define BSM_DRAM_DATA_PTR_REG (BSM_BASE + 0x098)
#define BSM_DRAM_DATA_BYTECOUNT_REG (BSM_BASE + 0x09C)
/*
* BSM special memory, stays powered during power-save sleeps
*/
#define BSM_SRAM_LOWER_BOUND (CSR_BASE + 0x3800)
#define BSM_SRAM_SIZE (1024)
/*
* card static random access memory (SRAM) for processor data and instructs
*/
#define RTC_INST_LOWER_BOUND (0x00000)
#define ALM_RTC_INST_UPPER_BOUND (0x14000)
#define RTC_DATA_LOWER_BOUND (0x800000)
#define ALM_RTC_DATA_UPPER_BOUND (0x808000)
/*
* HBUS (Host-side bus)
*/
#define HBUS_TARG_MEM_RADDR (HBUS_BASE+0x00c)
#define HBUS_TARG_MEM_WADDR (HBUS_BASE+0x010)
#define HBUS_TARG_MEM_WDAT (HBUS_BASE+0x018)
#define HBUS_TARG_MEM_RDAT (HBUS_BASE+0x01c)
#define HBUS_TARG_PRPH_WADDR (HBUS_BASE+0x044)
#define HBUS_TARG_PRPH_RADDR (HBUS_BASE+0x048)
#define HBUS_TARG_PRPH_WDAT (HBUS_BASE+0x04c)
#define HBUS_TARG_PRPH_RDAT (HBUS_BASE+0x050)
#define HBUS_TARG_WRPTR (HBUS_BASE+0x060)
/*
* HW I/F configuration
*/
#define CSR_HW_IF_CONFIG_REG_BIT_ALMAGOR_MB (0x00000100)
#define CSR_HW_IF_CONFIG_REG_BIT_ALMAGOR_MM (0x00000200)
#define CSR_HW_IF_CONFIG_REG_BIT_SKU_MRC (0x00000400)
#define CSR_HW_IF_CONFIG_REG_BIT_BOARD_TYPE (0x00000800)
#define CSR_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_A (0x00000000)
#define CSR_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_B (0x00001000)
#define CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP (0x00000001)
#define CSR_UCODE_SW_BIT_RFKILL (0x00000002)
#define CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED (0x00000004)
#define CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT (0x00000008)
#define CSR_GPIO_IN_BIT_AUX_POWER (0x00000200)
#define CSR_GPIO_IN_VAL_VAUX_PWR_SRC (0x00000000)
#define CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX (0x00800000)
#define CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER (0x20000000)
#define CSR_GPIO_IN_VAL_VMAIN_PWR_SRC CSR_GPIO_IN_BIT_AUX_POWER
#define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
/*
* interrupt flags in INTA, set by uCode or hardware (e.g. dma),
* acknowledged (reset) by host writing "1" to flagged bits.
*/
#define BIT_INT_FH_RX \
(((uint32_t)1) << 31) /* Rx DMA, cmd responses, FH_INT[17:16] */
#define BIT_INT_ERR (1<<29) /* DMA hardware error FH_INT[31] */
#define BIT_INT_FH_TX (1<<27) /* Tx DMA FH_INT[1:0] */
#define BIT_INT_MAC_CLK_ACTV (1<<26) /* NIC controller's clock toggled on/off */
#define BIT_INT_SWERROR (1<<25) /* uCode error */
#define BIT_INT_RF_KILL (1<<7) /* HW RFKILL switch GP_CNTRL[27] toggled */
#define BIT_INT_CT_KILL (1<<6) /* Critical temp (chip too hot) rfkill */
#define BIT_INT_SW_RX (1<<3) /* Rx, command responses, 3945 */
#define BIT_INT_WAKEUP (1<<1) /* NIC controller waking up (pwr mgmt) */
#define BIT_INT_ALIVE (1<<0) /* uCode interrupts once it initializes */
#define CSR_INI_SET_MASK (BIT_INT_FH_RX | \
BIT_INT_ERR | \
BIT_INT_FH_TX | \
BIT_INT_SWERROR | \
BIT_INT_RF_KILL | \
BIT_INT_SW_RX | \
BIT_INT_WAKEUP | \
BIT_INT_ALIVE)
/*
* interrupt flags in FH (flow handler) (PCI busmaster DMA)
*/
#define BIT_FH_INT_ERR (((uint32_t)1) << 31) /* Error */
#define BIT_FH_INT_HI_PRIOR (1<<30) /* High priority Rx,bypass coalescing */
#define BIT_FH_INT_RX_CHNL2 (1<<18) /* Rx channel 2 (3945 only) */
#define BIT_FH_INT_RX_CHNL1 (1<<17) /* Rx channel 1 */
#define BIT_FH_INT_RX_CHNL0 (1<<16) /* Rx channel 0 */
#define BIT_FH_INT_TX_CHNL6 (1<<6) /* Tx channel 6 (3945 only) */
#define BIT_FH_INT_TX_CHNL1 (1<<1) /* Tx channel 1 */
#define BIT_FH_INT_TX_CHNL0 (1<<0) /* Tx channel 0 */
#define FH_INT_RX_MASK (BIT_FH_INT_HI_PRIOR | \
BIT_FH_INT_RX_CHNL2 | \
BIT_FH_INT_RX_CHNL1 | \
BIT_FH_INT_RX_CHNL0)
#define FH_INT_TX_MASK (BIT_FH_INT_TX_CHNL6 | \
BIT_FH_INT_TX_CHNL1 | \
BIT_FH_INT_TX_CHNL0)
/*
* RESET
*/
#define CSR_RESET_REG_FLAG_NEVO_RESET (0x00000001)
#define CSR_RESET_REG_FLAG_FORCE_NMI (0x00000002)
#define CSR_RESET_REG_FLAG_SW_RESET (0x00000080)
#define CSR_RESET_REG_FLAG_MASTER_DISABLED (0x00000100)
#define CSR_RESET_REG_FLAG_STOP_MASTER (0x00000200)
/*
* GP (general purpose) CONTROL
*/
#define CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY (0x00000001)
#define CSR_GP_CNTRL_REG_FLAG_INIT_DONE (0x00000004)
#define CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ (0x00000008)
#define CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP (0x00000010)
#define CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN (0x00000001)
#define CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE (0x07000000)
#define CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE (0x04000000)
#define CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW (0x08000000)
/*
* APMG (power management) constants
*/
#define APMG_CLK_CTRL_REG (0x003000)
#define ALM_APMG_CLK_EN (0x003004)
#define ALM_APMG_CLK_DIS (0x003008)
#define ALM_APMG_PS_CTL (0x00300c)
#define ALM_APMG_PCIDEV_STT (0x003010)
#define ALM_APMG_RFKILL (0x003014)
#define ALM_APMG_LARC_INT (0x00301c)
#define ALM_APMG_LARC_INT_MSK (0x003020)
#define APMG_CLK_REG_VAL_DMA_CLK_RQT (0x00000200)
#define APMG_CLK_REG_VAL_BSM_CLK_RQT (0x00000800)
#define APMG_PS_CTRL_REG_VAL_ALM_R_RESET_REQ (0x04000000)
#define APMG_DEV_STATE_REG_VAL_L1_ACTIVE_DISABLE (0x00000800)
#define APMG_PS_CTRL_REG_MSK_POWER_SRC (0x03000000)
#define APMG_PS_CTRL_REG_VAL_POWER_SRC_VMAIN (0x00000000)
#define APMG_PS_CTRL_REG_VAL_POWER_SRC_VAUX (0x01000000)
/*
* BSM (bootstrap state machine)
*/
/*
* start boot load now
*/
#define BSM_WR_CTRL_REG_BIT_START (0x80000000)
/*
* enable boot after power up
*/
#define BSM_WR_CTRL_REG_BIT_START_EN (0x40000000)
/*
* DBM
*/
#define ALM_FH_SRVC_CHNL (6)
#define ALM_FH_RCSR_RX_CONFIG_REG_POS_RBDC_SIZE (20)
#define ALM_FH_RCSR_RX_CONFIG_REG_POS_IRQ_RBTH (4)
#define ALM_FH_RCSR_RX_CONFIG_REG_BIT_WR_STTS_EN (0x08000000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_DMA_CHNL_EN_ENABLE (0x80000000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_RDRBD_EN_ENABLE (0x20000000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_MAX_FRAG_SIZE_128 (0x01000000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_IRQ_DEST_INT_HOST (0x00001000)
#define ALM_FH_RCSR_RX_CONFIG_REG_VAL_MSG_MODE_FH (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRIVER (0x00000001)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL (0x00000008)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000)
#define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000)
#define ALM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00004000)
#define ALM_FH_TCSR_CHNL_TX_BUF_STS_REG_BIT_TFDB_WPTR (0x00000001)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON (0xFF000000)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON (0x00FF0000)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B (0x00000400)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON (0x00000100)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON (0x00000080)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH (0x00000020)
#define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH (0x00000005)
#define ALM_TB_MAX_BYTES_COUNT (0xFFF0)
#define ALM_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_channel) \
((1LU << _channel) << 24)
#define ALM_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_channel) \
((1LU << _channel) << 16)
#define ALM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_channel) \
(ALM_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_channel) | \
ALM_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_channel))
#define PCI_CFG_REV_ID_BIT_BASIC_SKU (0x40) /* bit 6 */
#define PCI_CFG_REV_ID_BIT_RTP (0x80) /* bit 7 */
#define HBUS_TARG_MBX_C_REG_BIT_CMD_BLOCKED (0x00000004)
#define TFD_QUEUE_MIN 0
#define TFD_QUEUE_MAX 6
#define TFD_QUEUE_SIZE_MAX (256)
/*
* spectrum and channel data structures
*/
#define IWK_NUM_SCAN_RATES (2)
#define IWK_SCAN_FLAG_24GHZ (1<<0)
#define IWK_SCAN_FLAG_52GHZ (1<<1)
#define IWK_SCAN_FLAG_ACTIVE (1<<2)
#define IWK_SCAN_FLAG_DIRECT (1<<3)
#define IWK_MAX_CMD_SIZE 1024
#define IWK_DEFAULT_TX_RETRY 15
#define IWK_MAX_TX_RETRY 16
#define RFD_SIZE 4
#define NUM_TFD_CHUNKS 4
#define RX_QUEUE_SIZE 256
#define RX_QUEUE_SIZE_LOG 8
/*
* TX Queue Flag Definitions
*/
/*
* use short preamble
*/
#define DCT_FLAG_LONG_PREAMBLE 0x00
#define DCT_FLAG_SHORT_PREAMBLE 0x04
/*
* ACK rx is expected to follow
*/
#define DCT_FLAG_ACK_REQD 0x80
#define IWK_MB_DISASSOCIATE_THRESHOLD_DEFAULT 24
#define IWK_MB_ROAMING_THRESHOLD_DEFAULT 8
#define IWK_REAL_RATE_RX_PACKET_THRESHOLD 300
/*
* QoS definitions
*/
#define CW_MIN_OFDM 15
#define CW_MAX_OFDM 1023
#define CW_MIN_CCK 31
#define CW_MAX_CCK 1023
#define QOS_TX0_CW_MIN_OFDM CW_MIN_OFDM
#define QOS_TX1_CW_MIN_OFDM CW_MIN_OFDM
#define QOS_TX2_CW_MIN_OFDM ((CW_MIN_OFDM + 1) / 2 - 1)
#define QOS_TX3_CW_MIN_OFDM ((CW_MIN_OFDM + 1) / 4 - 1)
#define QOS_TX0_CW_MIN_CCK CW_MIN_CCK
#define QOS_TX1_CW_MIN_CCK CW_MIN_CCK
#define QOS_TX2_CW_MIN_CCK ((CW_MIN_CCK + 1) / 2 - 1)
#define QOS_TX3_CW_MIN_CCK ((CW_MIN_CCK + 1) / 4 - 1)
#define QOS_TX0_CW_MAX_OFDM CW_MAX_OFDM
#define QOS_TX1_CW_MAX_OFDM CW_MAX_OFDM
#define QOS_TX2_CW_MAX_OFDM CW_MIN_OFDM
#define QOS_TX3_CW_MAX_OFDM ((CW_MIN_OFDM + 1) / 2 - 1)
#define QOS_TX0_CW_MAX_CCK CW_MAX_CCK
#define QOS_TX1_CW_MAX_CCK CW_MAX_CCK
#define QOS_TX2_CW_MAX_CCK CW_MIN_CCK
#define QOS_TX3_CW_MAX_CCK ((CW_MIN_CCK + 1) / 2 - 1)
#define QOS_TX0_AIFS (3)
#define QOS_TX1_AIFS (7)
#define QOS_TX2_AIFS (2)
#define QOS_TX3_AIFS (2)
#define QOS_TX0_ACM 0
#define QOS_TX1_ACM 0
#define QOS_TX2_ACM 0
#define QOS_TX3_ACM 0
#define QOS_TX0_TXOP_LIMIT_CCK 0
#define QOS_TX1_TXOP_LIMIT_CCK 0
#define QOS_TX2_TXOP_LIMIT_CCK 6016
#define QOS_TX3_TXOP_LIMIT_CCK 3264
#define QOS_TX0_TXOP_LIMIT_OFDM 0
#define QOS_TX1_TXOP_LIMIT_OFDM 0
#define QOS_TX2_TXOP_LIMIT_OFDM 3008
#define QOS_TX3_TXOP_LIMIT_OFDM 1504
#define DEF_TX0_CW_MIN_OFDM CW_MIN_OFDM
#define DEF_TX1_CW_MIN_OFDM CW_MIN_OFDM
#define DEF_TX2_CW_MIN_OFDM CW_MIN_OFDM
#define DEF_TX3_CW_MIN_OFDM CW_MIN_OFDM
#define DEF_TX0_CW_MIN_CCK CW_MIN_CCK
#define DEF_TX1_CW_MIN_CCK CW_MIN_CCK
#define DEF_TX2_CW_MIN_CCK CW_MIN_CCK
#define DEF_TX3_CW_MIN_CCK CW_MIN_CCK
#define DEF_TX0_CW_MAX_OFDM CW_MAX_OFDM
#define DEF_TX1_CW_MAX_OFDM CW_MAX_OFDM
#define DEF_TX2_CW_MAX_OFDM CW_MAX_OFDM
#define DEF_TX3_CW_MAX_OFDM CW_MAX_OFDM
#define DEF_TX0_CW_MAX_CCK CW_MAX_CCK
#define DEF_TX1_CW_MAX_CCK CW_MAX_CCK
#define DEF_TX2_CW_MAX_CCK CW_MAX_CCK
#define DEF_TX3_CW_MAX_CCK CW_MAX_CCK
#define DEF_TX0_AIFS (2)
#define DEF_TX1_AIFS (2)
#define DEF_TX2_AIFS (2)
#define DEF_TX3_AIFS (2)
#define DEF_TX0_ACM (0)
#define DEF_TX1_ACM (0)
#define DEF_TX2_ACM (0)
#define DEF_TX3_ACM (0)
#define DEF_TX0_TXOP_LIMIT_CCK (0)
#define DEF_TX1_TXOP_LIMIT_CCK (0)
#define DEF_TX2_TXOP_LIMIT_CCK (0)
#define DEF_TX3_TXOP_LIMIT_CCK (0)
#define DEF_TX0_TXOP_LIMIT_OFDM (0)
#define DEF_TX1_TXOP_LIMIT_OFDM (0)
#define DEF_TX2_TXOP_LIMIT_OFDM (0)
#define DEF_TX3_TXOP_LIMIT_OFDM (0)
#define QOS_QOS_SETS (3)
#define QOS_PARAM_SET_ACTIVE (0)
#define QOS_PARAM_SET_DEF_CCK (1)
#define QOS_PARAM_SET_DEF_OFDM (2)
#define CTRL_QOS_NO_ACK (0x0020)
#define DCT_FLAG_EXT_QOS_ENABLED (0x10)
#define IWK_TX_QUEUE_AC0 (0)
#define IWK_TX_QUEUE_AC1 (1)
#define IWK_TX_QUEUE_AC2 (2)
#define IWK_TX_QUEUE_AC3 (3)
#define IWK_TX_QUEUE_HCCA_1 (5)
#define IWK_TX_QUEUE_HCCA_2 (6)
#define U32_PAD(n) ((4-(n%4))%4)
#define AC_BE_TID_MASK 0x9 /* TID 0 and 3 */
#define AC_BK_TID_MASK 0x6 /* TID 1 and 2 */
/*
* Generic queue structure
*
* Contains common data for Rx and Tx queues
*/
#define TFD_CTL_COUNT_SET(n) (n<<24)
#define TFD_CTL_COUNT_GET(ctl) ((ctl>>24) & 7)
#define TFD_CTL_PAD_SET(n) (n<<28)
#define TFD_CTL_PAD_GET(ctl) (ctl>>28)
#define TFD_TX_CMD_SLOTS 64
#define TFD_CMD_SLOTS 32
/*
* Tx/Rx Queues
*
* Most communication between driver and 4965 is via queues of data buffers.
* For example, all commands that the driver issues to device's embedded
* controller (uCode) are via the command queue (one of the Tx queues). All
* uCode command responses/replies/notifications, including Rx frames, are
* conveyed from uCode to driver via the Rx queue.
*
* Most support for these queues, including handshake support, resides in
* structures in host DRAM, shared between the driver and the device. When
* allocating this memory, the driver must make sure that data written by
* the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
* cache memory), so DRAM and cache are consistent, and the device can
* immediately see changes made by the driver.
*
* 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
* up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
* in DRAM containing 256 Transmit Frame Descriptors (TFDs).
*/
#define IWK_MAX_WIN_SIZE 64
#define IWK_QUEUE_SIZE 256
#define IWK_NUM_FIFOS 7
#define IWK_NUM_QUEUES 6
#define IWK_CMD_QUEUE_NUM 4
#define IWK_KW_SIZE 0x1000 /* 4k */
struct iwk_rate {
union {
struct {
uint8_t rate;
uint8_t flags;
uint16_t ext_flags;
} s;
uint32_t rate_n_flags;
} r;
};
struct iwk_dram_scratch {
uint8_t try_cnt;
uint8_t bt_kill_cnt;
uint16_t reserved;
};
/*
* START TEMPERATURE
*/
/*
* 4965 temperature calculation.
*
* The driver must calculate the device temperature before calculating
* a txpower setting (amplifier gain is temperature dependent). The
* calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
* values used for the life of the driver, and one of which (R4) is the
* real-time temperature indicator.
*
* uCode provides all 4 values to the driver via the "initialize alive"
* notification (see struct iwk_init_alive_resp). After the runtime uCode
* image loads, uCode updates the R4 value via statistics notifications
* (see STATISTICS_NOTIFICATION), which occur after each received beacon
* when associated, or can be requested via REPLY_STATISTICS_CMD.
*
* NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
* must sign-extend to 32 bits before applying formula below.
*
* Formula:
*
* degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
*
* NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
* an additional correction, which should be centered around 0 degrees
* Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
* centering the 97/100 correction around 0 degrees K.
*
* Add 273 to Kelvin value to find degrees Celsius, for comparing current
* temperature with factory-measured temperatures when calculating txpower
* settings.
*/
#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
#define TEMPERATURE_CALIB_A_VAL 259
/*
* Limit range of calculated temperature to be between these Kelvin values
*/
#define IWK_TX_POWER_TEMPERATURE_MIN (263)
#define IWK_TX_POWER_TEMPERATURE_MAX (410)
#define IWK_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
(((t) < IWK_TX_POWER_TEMPERATURE_MIN) || \
((t) > IWK_TX_POWER_TEMPERATURE_MAX))
/*
* END TEMPERATURE
*/
/*
* START TXPOWER
*/
/*
* 4965 txpower calculations rely on information from three sources:
*
* 1) EEPROM
* 2) "initialize" alive notification
* 3) statistics notifications
*
* EEPROM data consists of:
*
* 1) Regulatory information (max txpower and channel usage flags) is provided
* separately for each channel that can possibly supported by 4965.
* 40 MHz wide (.11n fat) channels are listed separately from 20 MHz
* (legacy) channels.
*
* See struct iwk_eeprom_channel for format, and struct iwk_eeprom for
* locations in EEPROM.
*
* 2) Factory txpower calibration information is provided separately for
* sub-bands of contiguous channels. 2.4GHz has just one sub-band,
* but 5 GHz has several sub-bands.
*
* In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
*
* See struct iwk_eeprom_calib_info (and the tree of structures contained
* within it) for format, and struct iwk_eeprom for locations in EEPROM.
*
* "Initialization alive" notification (see struct iwk_init_alive_resp)
* consists of:
*
* 1) Temperature calculation parameters.
*
* 2) Power supply voltage measurement.
*
* 3) Tx gain compensation to balance 2 transmitters for MIMO use.
*
* Statistics notifications deliver:
*
* 1) Current values for temperature param R4.
*/
/*
* To calculate a txpower setting for a given desired target txpower, channel,
* modulation bit rate, and transmitter chain (4965 has 2 transmitters to
* support MIMO and transmit diversity), driver must do the following:
*
* 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
* Do not exceed regulatory limit; reduce target txpower if necessary.
*
* If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
* 2 transmitters will be used simultaneously; driver must reduce the
* regulatory limit by 3 dB (half-power) for each transmitter, so the
* combined total output of the 2 transmitters is within regulatory limits.
*
*
* 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
* backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
* reduce target txpower if necessary.
*
* Backoff values below are in 1/2 dB units (equivalent to steps in
* txpower gain tables):
*
* OFDM 6 - 36 MBit: 10 steps (5 dB)
* OFDM 48 MBit: 15 steps (7.5 dB)
* OFDM 54 MBit: 17 steps (8.5 dB)
* OFDM 60 MBit: 20 steps (10 dB)
* CCK all rates: 10 steps (5 dB)
*
* Backoff values apply to saturation txpower on a per-transmitter basis;
* when using MIMO (2 transmitters), each transmitter uses the same
* saturation level provided in EEPROM, and the same backoff values;
* no reduction (such as with regulatory txpower limits) is required.
*
* Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
* widths and 40 Mhz (.11n fat) channel widths; there is no separate
* factory measurement for fat channels.
*
* The result of this step is the final target txpower. The rest of
* the steps figure out the proper settings for the device.
*
*
* 3) Determine (EEPROM) calibration subband for the target channel, by
* comparing against first and last channels in each subband
* (see struct iwk_eeprom_calib_subband_info).
*
*
* 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
* referencing the 2 factory-measured (sample) channels within the subband.
*
* Interpolation is based on difference between target channel's frequency
* and the sample channels' frequencies. Since channel numbers are based
* on frequency (5 MHz between each channel number), this is equivalent
* to interpolating based on channel number differences.
*
* Note that the sample channels may or may not be the channels at the
* edges of the subband. The target channel may be "outside" of the
* span of the sampled channels.
*
* Driver may choose the pair (for 2 Tx chains) of measurements (see
* struct iwk_eeprom_calib_ch_info) for which the actual measured
* txpower comes closest to the desired txpower. Usually, though,
* the middle set of measurements is closest to the regulatory limits,
* and is therefore a good choice for all txpower calculations.
*
* Driver should interpolate both members of the chosen measurement pair,
* i.e. for both Tx chains (radio transmitters), unless the driver knows
* that only one of the chains will be used (e.g. only one tx antenna
* connected, but this should be unusual).
*
* Driver should interpolate factory values for temperature, gain table
* index, and actual power. The power amplifier detector values are
* not used by the driver.
*
* If the target channel happens to be one of the sample channels, the
* results should agree with the sample channel's measurements!
*
*
* 5) Find difference between desired txpower and (interpolated)
* factory-measured txpower. Using (interpolated) factory gain table index
* as a starting point, adjust this index lower to increase txpower,
* or higher to decrease txpower, until the target txpower is reached.
* Each step in the gain table is 1/2 dB.
*
* For example, if factory measured txpower is 16 dBm, and target txpower
* is 13 dBm, add 6 steps to the factory gain index to reduce txpower
* by 3 dB.
*
*
* 6) Find difference between current device temperature and (interpolated)
* factory-measured temperature for sub-band. Factory values are in
* degrees Celsius. To calculate current temperature, see comments for
* "4965 temperature calculation".
*
* If current temperature is higher than factory temperature, driver must
* increase gain (lower gain table index), and vice versa.
*
* Temperature affects gain differently for different channels:
*
* 2.4 GHz all channels: 3.5 degrees per half-dB step
* 5 GHz channels 34-43: 4.5 degrees per half-dB step
* 5 GHz channels >= 44: 4.0 degrees per half-dB step
*
* NOTE: Temperature can increase rapidly when transmitting, especially
* with heavy traffic at high txpowers. Driver should update
* temperature calculations often under these conditions to
* maintain strong txpower in the face of rising temperature.
*
*
* 7) Find difference between current power supply voltage indicator
* (from "initialize alive") and factory-measured power supply voltage
* indicator (EEPROM).
*
* If the current voltage is higher (indicator is lower) than factory
* voltage, gain should be reduced (gain table index increased) by:
*
* (eeprom - current) / 7
*
* If the current voltage is lower (indicator is higher) than factory
* voltage, gain should be increased (gain table index decreased) by:
*
* 2 * (current - eeprom) / 7
*
* If number of index steps in either direction turns out to be > 2,
* something is wrong ... just use 0.
*
* NOTE: Voltage compensation is independent of band/channel.
*
* NOTE: "Initialize" uCode measures current voltage, which is assumed
* to be constant after this initial measurement. Voltage
* compensation for txpower (number of steps in gain table)
* may be calculated once and used until the next uCode bootload.
*
*
* 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
* adjust txpower for each transmitter chain, so txpower is balanced
* between the two chains. There are 5 pairs of tx_atten[group][chain]
* values in "initialize alive", one pair for each of 5 channel ranges:
*
* Group 0: 5 GHz channel 34-43
* Group 1: 5 GHz channel 44-70
* Group 2: 5 GHz channel 71-124
* Group 3: 5 GHz channel 125-200
* Group 4: 2.4 GHz all channels
*
* Add the tx_atten[group][chain] value to the index for the target chain.
* The values are signed, but are in pairs of 0 and a non-negative number,
* so as to reduce gain (if necessary) of the "hotter" channel. This
* avoids any need to double-check for regulatory compliance after
* this step.
*
*
* 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
* value to the index:
*
* Hardware rev B: 9 steps (4.5 dB)
* Hardware rev C: 5 steps (2.5 dB)
*
* Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
* bits [3:2], 1 = B, 2 = C.
*
* NOTE: This compensation is in addition to any saturation backoff that
* might have been applied in an earlier step.
*
*
* 10) Select the gain table, based on band (2.4 vs 5 GHz).
*
* Limit the adjusted index to stay within the table!
*
*
* 11) Read gain table entries for DSP and radio gain, place into appropriate
* location(s) in command.
*/
enum {
HT_IE_EXT_CHANNEL_NONE = 0,
HT_IE_EXT_CHANNEL_ABOVE,
HT_IE_EXT_CHANNEL_INVALID,
HT_IE_EXT_CHANNEL_BELOW,
HT_IE_EXT_CHANNEL_MAX
};
enum {
CALIB_CH_GROUP_1 = 0,
CALIB_CH_GROUP_2 = 1,
CALIB_CH_GROUP_3 = 2,
CALIB_CH_GROUP_4 = 3,
CALIB_CH_GROUP_5 = 4,
CALIB_CH_GROUP_MAX
};
#define POWER_TABLE_NUM_HT_OFDM_ENTRIES (32)
/*
* Temperature calibration offset is 3% 0C in Kelvin
*/
#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
#define TEMPERATURE_CALIB_A_VAL 259
#define IWK_TX_POWER_TEMPERATURE_MIN (263)
#define IWK_TX_POWER_TEMPERATURE_MAX (410)
#define IWK_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
(((t) < IWK_TX_POWER_TEMPERATURE_MIN) || \
((t) > IWK_TX_POWER_TEMPERATURE_MAX))
#define IWK_TX_POWER_ILLEGAL_TEMPERATURE (300)
#define IWK_TX_POWER_TEMPERATURE_DIFFERENCE (2)
/*
* When MIMO is used (2 transmitters operating simultaneously), driver should
* limit each transmitter to deliver a max of 3 dB below the regulatory limit
* for the device. That is, half power for each transmitter, so total power
* is within regulatory limits.
*
* The value "6" represents number of steps in gain table to reduce power.
* Each step is 1/2 dB.
*/
#define IWK_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
/*
* Limit range of txpower output target to be between these values
*/
#define IWK_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
#define IWK_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
/*
* timeout equivalent to 3 minutes
*/
#define IWK_TX_POWER_TIMELIMIT_NOCALIB 1800000000
/*
* CCK gain compensation.
*
* When calculating txpowers for CCK, after making sure that the target power
* is within regulatory and saturation limits, driver must additionally
* back off gain by adding these values to the gain table index.
*/
#define IWK_TX_POWER_CCK_COMPENSATION (9)
#define IWK_TX_POWER_CCK_COMPENSATION_B_STEP (9)
#define IWK_TX_POWER_CCK_COMPENSATION_C_STEP (5)
/*
* 4965 power supply voltage compensation
*/
#define TX_POWER_IWK_VOLTAGE_CODES_PER_03V (7)
/*
* Gain tables.
*
* The following tables contain pair of values for setting txpower, i.e.
* gain settings for the output of the device's digital signal processor (DSP),
* and for the analog gain structure of the transmitter.
*
* Each entry in the gain tables represents a step of 1/2 dB. Note that these
* are *relative* steps, not indications of absolute output power. Output
* power varies with temperature, voltage, and channel frequency, and also
* requires consideration of average power (to satisfy regulatory constraints),
* and peak power (to avoid distortion of the output signal).
*
* Each entry contains two values:
* 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
* linear value that multiplies the output of the digital signal processor,
* before being sent to the analog radio.
* 2) Radio gain. This sets the analog gain of the radio Tx path.
* It is a coarser setting, and behaves in a logarithmic (dB) fashion.
*
* EEPROM contains factory calibration data for txpower. This maps actual
* measured txpower levels to gain settings in the "well known" tables
* below ("well-known" means here that both factory calibration *and* the
* driver work with the same table).
*
* There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
* has an extension (into negative indexes), in case the driver needs to
* boost power setting for high device temperatures (higher than would be
* present during factory calibration). A 5 Ghz EEPROM index of "40"
* corresponds to the 49th entry in the table used by the driver.
*/
#define MIN_TX_GAIN_INDEX (0)
#define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9)
#define MAX_TX_GAIN_INDEX_52GHZ (98)
#define MIN_TX_GAIN_52GHZ (98)
#define MAX_TX_GAIN_INDEX_24GHZ (98)
#define MIN_TX_GAIN_24GHZ (98)
#define MAX_TX_GAIN (0)
#define MAX_TX_GAIN_52GHZ_EXT (-9)
/*
* 2.4 GHz gain table
*
* Index Dsp gain Radio gain
* 0 110 0x3f
* 1 104 0x3f
* 2 98 0x3f
* 3 110 0x3e
* 4 104 0x3e
* 5 98 0x3e
* 6 110 0x3d
* 7 104 0x3d
* 8 98 0x3d
* 9 110 0x3c
* 10 104 0x3c
* 11 98 0x3c
* 12 110 0x3b
* 13 104 0x3b
* 14 98 0x3b
* 15 110 0x3a
* 16 104 0x3a
* 17 98 0x3a
* 18 110 0x39
* 19 104 0x39
* 20 98 0x39
* 21 110 0x38
* 22 104 0x38
* 23 98 0x38
* 24 110 0x37
* 25 104 0x37
* 26 98 0x37
* 27 110 0x36
* 28 104 0x36
* 29 98 0x36
* 30 110 0x35
* 31 104 0x35
* 32 98 0x35
* 33 110 0x34
* 34 104 0x34
* 35 98 0x34
* 36 110 0x33
* 37 104 0x33
* 38 98 0x33
* 39 110 0x32
* 40 104 0x32
* 41 98 0x32
* 42 110 0x31
* 43 104 0x31
* 44 98 0x31
* 45 110 0x30
* 46 104 0x30
* 47 98 0x30
* 48 110 0x6
* 49 104 0x6
* 50 98 0x6
* 51 110 0x5
* 52 104 0x5
* 53 98 0x5
* 54 110 0x4
* 55 104 0x4
* 56 98 0x4
* 57 110 0x3
* 58 104 0x3
* 59 98 0x3
* 60 110 0x2
* 61 104 0x2
* 62 98 0x2
* 63 110 0x1
* 64 104 0x1
* 65 98 0x1
* 66 110 0x0
* 67 104 0x0
* 68 98 0x0
* 69 97 0
* 70 96 0
* 71 95 0
* 72 94 0
* 73 93 0
* 74 92 0
* 75 91 0
* 76 90 0
* 77 89 0
* 78 88 0
* 79 87 0
* 80 86 0
* 81 85 0
* 82 84 0
* 83 83 0
* 84 82 0
* 85 81 0
* 86 80 0
* 87 79 0
* 88 78 0
* 89 77 0
* 90 76 0
* 91 75 0
* 92 74 0
* 93 73 0
* 94 72 0
* 95 71 0
* 96 70 0
* 97 69 0
* 98 68 0
*/
/*
* 5 GHz gain table
*
* Index Dsp gain Radio gain
* -9 123 0x3F
* -8 117 0x3F
* -7 110 0x3F
* -6 104 0x3F
* -5 98 0x3F
* -4 110 0x3E
* -3 104 0x3E
* -2 98 0x3E
* -1 110 0x3D
* 0 104 0x3D
* 1 98 0x3D
* 2 110 0x3C
* 3 104 0x3C
* 4 98 0x3C
* 5 110 0x3B
* 6 104 0x3B
* 7 98 0x3B
* 8 110 0x3A
* 9 104 0x3A
* 10 98 0x3A
* 11 110 0x39
* 12 104 0x39
* 13 98 0x39
* 14 110 0x38
* 15 104 0x38
* 16 98 0x38
* 17 110 0x37
* 18 104 0x37
* 19 98 0x37
* 20 110 0x36
* 21 104 0x36
* 22 98 0x36
* 23 110 0x35
* 24 104 0x35
* 25 98 0x35
* 26 110 0x34
* 27 104 0x34
* 28 98 0x34
* 29 110 0x33
* 30 104 0x33
* 31 98 0x33
* 32 110 0x32
* 33 104 0x32
* 34 98 0x32
* 35 110 0x31
* 36 104 0x31
* 37 98 0x31
* 38 110 0x30
* 39 104 0x30
* 40 98 0x30
* 41 110 0x25
* 42 104 0x25
* 43 98 0x25
* 44 110 0x24
* 45 104 0x24
* 46 98 0x24
* 47 110 0x23
* 48 104 0x23
* 49 98 0x23
* 50 110 0x22
* 51 104 0x18
* 52 98 0x18
* 53 110 0x17
* 54 104 0x17
* 55 98 0x17
* 56 110 0x16
* 57 104 0x16
* 58 98 0x16
* 59 110 0x15
* 60 104 0x15
* 61 98 0x15
* 62 110 0x14
* 63 104 0x14
* 64 98 0x14
* 65 110 0x13
* 66 104 0x13
* 67 98 0x13
* 68 110 0x12
* 69 104 0x08
* 70 98 0x08
* 71 110 0x07
* 72 104 0x07
* 73 98 0x07
* 74 110 0x06
* 75 104 0x06
* 76 98 0x06
* 77 110 0x05
* 78 104 0x05
* 79 98 0x05
* 80 110 0x04
* 81 104 0x04
* 82 98 0x04
* 83 110 0x03
* 84 104 0x03
* 85 98 0x03
* 86 110 0x02
* 87 104 0x02
* 88 98 0x02
* 89 110 0x01
* 90 104 0x01
* 91 98 0x01
* 92 110 0x00
* 93 104 0x00
* 94 98 0x00
* 95 93 0x00
* 96 88 0x00
* 97 83 0x00
* 98 78 0x00
*/
/*
* Sanity checks and default values for EEPROM regulatory levels.
* If EEPROM values fall outside MIN/MAX range, use default values.
*
* Regulatory limits refer to the maximum average txpower allowed by
* regulatory agencies in the geographies in which the device is meant
* to be operated. These limits are SKU-specific (i.e. geography-specific),
* and channel-specific; each channel has an individual regulatory limit
* listed in the EEPROM.
*
* Units are in half-dBm (i.e. "34" means 17 dBm).
*/
#define IWK_TX_POWER_DEFAULT_REGULATORY_24 (34)
#define IWK_TX_POWER_DEFAULT_REGULATORY_52 (34)
#define IWK_TX_POWER_REGULATORY_MIN (0)
#define IWK_TX_POWER_REGULATORY_MAX (34)
/*
* Sanity checks and default values for EEPROM saturation levels.
* If EEPROM values fall outside MIN/MAX range, use default values.
*
* Saturation is the highest level that the output power amplifier can produce
* without significant clipping distortion. This is a "peak" power level.
* Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
* require differing amounts of backoff, relative to their average power output,
* in order to avoid clipping distortion.
*
* Driver must make sure that it is violating neither the saturation limit,
* nor the regulatory limit, when calculating Tx power settings for various
* rates.
*
* Units are in half-dBm (i.e. "38" means 19 dBm).
*/
#define IWK_TX_POWER_DEFAULT_SATURATION_24 (38)
#define IWK_TX_POWER_DEFAULT_SATURATION_52 (38)
#define IWK_TX_POWER_SATURATION_MIN (20)
#define IWK_TX_POWER_SATURATION_MAX (50)
/*
* dv *0.4 = dt; so that 5 degrees temperature diff equals
* 12.5 in voltage diff
*/
#define IWK_TX_TEMPERATURE_UPDATE_LIMIT 9
#define IWK_INVALID_CHANNEL (0xffffffff)
#define IWK_TX_POWER_REGITRY_BIT (2)
#define MIN_IWK_TX_POWER_CALIB_DUR (100)
#define IWK_CCK_FROM_OFDM_POWER_DIFF (-5)
#define IWK_CCK_FROM_OFDM_INDEX_DIFF (9)
/*
* Number of entries in the gain table
*/
#define POWER_GAIN_NUM_ENTRIES 78
#define TX_POW_MAX_SESSION_NUM 5
/*
* timeout equivalent to 3 minutes
*/
#define TX_IWK_TIMELIMIT_NOCALIB 1800000000
/*
* Kedron TX_CALIB_STATES
*/
#define IWK_TX_CALIB_STATE_SEND_TX 0x00000001
#define IWK_TX_CALIB_WAIT_TX_RESPONSE 0x00000002
#define IWK_TX_CALIB_ENABLED 0x00000004
#define IWK_TX_CALIB_XVT_ON 0x00000008
#define IWK_TX_CALIB_TEMPERATURE_CORRECT 0x00000010
#define IWK_TX_CALIB_WORKING_WITH_XVT 0x00000020
#define IWK_TX_CALIB_XVT_PERIODICAL 0x00000040
#define NUM_IWK_TX_CALIB_SETTINS 5 /* Number of tx correction groups */
#define IWK_MIN_POWER_IN_VP_TABLE 1 /* 0.5dBm multiplied by 2 */
/* 20dBm - multiplied by 2 - because entries are for each 0.5dBm */
#define IWK_MAX_POWER_IN_VP_TABLE 40
#define IWK_STEP_IN_VP_TABLE 1 /* 0.5dB - multiplied by 2 */
#define IWK_NUM_POINTS_IN_VPTABLE \
(1 + IWK_MAX_POWER_IN_VP_TABLE - IWK_MIN_POWER_IN_VP_TABLE)
#define MIN_TX_GAIN_INDEX (0)
#define MAX_TX_GAIN_INDEX_52GHZ (98)
#define MIN_TX_GAIN_52GHZ (98)
#define MAX_TX_GAIN_INDEX_24GHZ (98)
#define MIN_TX_GAIN_24GHZ (98)
#define MAX_TX_GAIN (0)
/*
* Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
* and thermal Txpower calibration.
*
* When calculating txpower, driver must compensate for current device
* temperature; higher temperature requires higher gain. Driver must calculate
* current temperature (see "4965 temperature calculation"), then compare vs.
* factory calibration temperature in EEPROM; if current temperature is higher
* than factory temperature, driver must *increase* gain by proportions shown
* in table below. If current temperature is lower than factory, driver must
* *decrease* gain.
*
* Different frequency ranges require different compensation, as shown below.
*/
/*
* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB.
*/
#define CALIB_IWK_TX_ATTEN_GR1_FCH 34
#define CALIB_IWK_TX_ATTEN_GR1_LCH 43
/*
* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB.
*/
#define CALIB_IWK_TX_ATTEN_GR2_FCH 44
#define CALIB_IWK_TX_ATTEN_GR2_LCH 70
/*
* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB.
*/
#define CALIB_IWK_TX_ATTEN_GR3_FCH 71
#define CALIB_IWK_TX_ATTEN_GR3_LCH 124
/*
* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB.
*/
#define CALIB_IWK_TX_ATTEN_GR4_FCH 125
#define CALIB_IWK_TX_ATTEN_GR4_LCH 200
/*
* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB.
*/
#define CALIB_IWK_TX_ATTEN_GR5_FCH 1
#define CALIB_IWK_TX_ATTEN_GR5_LCH 20
struct iwk_tx_power {
uint8_t tx_gain; /* gain for analog radio */
uint8_t dsp_atten; /* gain for DSP */
};
struct tx_power_dual_stream {
uint16_t ramon_tx_gain;
uint16_t dsp_predis_atten;
};
union tx_power_dual_stream_u {
struct tx_power_dual_stream s;
uint32_t dw;
};
struct iwk_tx_power_db {
union tx_power_dual_stream_u
ht_ofdm_power[POWER_TABLE_NUM_HT_OFDM_ENTRIES];
union tx_power_dual_stream_u legacy_cck_power;
};
typedef struct iwk_tx_power_table_cmd {
uint8_t band;
uint8_t channel_normal_width;
uint16_t channel;
struct iwk_tx_power_db tx_power;
} iwk_tx_power_table_cmd_t;
typedef struct iwk_channel_switch_cmd {
uint8_t band;
uint8_t expect_beacon;
uint16_t channel;
uint32_t rxon_flags;
uint32_t rxon_filter_flags;
uint32_t switch_time;
struct iwk_tx_power_db tx_power;
} iwk_channel_switch_cmd_t;
struct iwk_channel_switch_notif {
uint16_t band;
uint16_t channel;
uint32_t status;
};
/*
* END TXPOWER
*/
/*
* HT flags
*/
#define RXON_FLG_CONTROL_CHANNEL_LOCATION_MSK 0x400000
#define RXON_FLG_CONTROL_CHANNEL_LOC_LOW_MSK 0x000000
#define RXON_FLG_CONTROL_CHANNEL_LOC_HIGH_MSK 0x400000
#define RXON_FLG_HT_OPERATING_MODE_POS (23)
#define RXON_FLG_HT_PROT_MSK 0x800000
#define RXON_FLG_FAT_PROT_MSK 0x1000000
#define RXON_FLG_CHANNEL_MODE_POS (25)
#define RXON_FLG_CHANNEL_MODE_MSK 0x06000000
#define RXON_FLG_CHANNEL_MODE_LEGACY_MSK 0x00000000
#define RXON_FLG_CHANNEL_MODE_PURE_40_MSK 0x02000000
#define RXON_FLG_CHANNEL_MODE_MIXED_MSK 0x04000000
#define RXON_RX_CHAIN_DRIVER_FORCE_MSK (0x1<<0)
#define RXON_RX_CHAIN_VALID_MSK (0x7<<1)
#define RXON_RX_CHAIN_VALID_POS (1)
#define RXON_RX_CHAIN_FORCE_SEL_MSK (0x7<<4)
#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK (0x7<<7)
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
#define RXON_RX_CHAIN_CNT_MSK (0x3<<10)
#define RXON_RX_CHAIN_CNT_POS (10)
#define RXON_RX_CHAIN_MIMO_CNT_MSK (0x3<<12)
#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
#define RXON_RX_CHAIN_MIMO_FORCE_MSK (0x1<<14)
#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
#define MCS_DUP_6M_PLCP 0x20
/*
* OFDM HT rate masks
*/
#define R_MCS_6M_MSK 0x1
#define R_MCS_12M_MSK 0x2
#define R_MCS_18M_MSK 0x4
#define R_MCS_24M_MSK 0x8
#define R_MCS_36M_MSK 0x10
#define R_MCS_48M_MSK 0x20
#define R_MCS_54M_MSK 0x40
#define R_MCS_60M_MSK 0x80
#define R_MCS_12M_DUAL_MSK 0x100
#define R_MCS_24M_DUAL_MSK 0x200
#define R_MCS_36M_DUAL_MSK 0x400
#define R_MCS_48M_DUAL_MSK 0x800
#define RATE_MCS_CODE_MSK 0x7
#define RATE_MCS_MIMO_POS 3
#define RATE_MCS_MIMO_MSK 0x8
#define RATE_MCS_HT_DUP_POS 5
#define RATE_MCS_HT_DUP_MSK 0x20
#define RATE_MCS_FLAGS_POS 8
#define RATE_MCS_HT_POS 8
#define RATE_MCS_HT_MSK 0x100
#define RATE_MCS_CCK_POS 9
#define RATE_MCS_CCK_MSK 0x200
#define RATE_MCS_GF_POS 10
#define RATE_MCS_GF_MSK 0x400
#define RATE_MCS_FAT_POS 11
#define RATE_MCS_FAT_MSK 0x800
#define RATE_MCS_DUP_POS 12
#define RATE_MCS_DUP_MSK 0x1000
#define RATE_MCS_SGI_POS 13
#define RATE_MCS_SGI_MSK 0x2000
#define EEPROM_SEM_TIMEOUT 10
#define EEPROM_SEM_RETRY_LIMIT 1000
/*
* Antenna masks:
* bit14:15 01 B inactive, A active
* 10 B active, A inactive
* 11 Both active
*/
#define RATE_MCS_ANT_A_POS 14
#define RATE_MCS_ANT_B_POS 15
#define RATE_MCS_ANT_A_MSK 0x4000
#define RATE_MCS_ANT_B_MSK 0x8000
#define RATE_MCS_ANT_AB_MSK 0xc000
#define is_legacy(tbl) (((tbl) == LQ_G) || ((tbl) == LQ_A))
#define is_siso(tbl) (((tbl) == LQ_SISO))
#define is_mimo(tbl) (((tbl) == LQ_MIMO))
#define is_Ht(tbl) (is_siso(tbl) || is_mimo(tbl))
#define is_a_band(tbl) (((tbl) == LQ_A))
#define is_g_and(tbl) (((tbl) == LQ_G))
/*
* RS_NEW_API: only TLC_RTS remains and moved to bit 0
*/
#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1<<0)
#define LINK_QUAL_AC_NUM 4
#define LINK_QUAL_MAX_RETRY_NUM 16
#define LINK_QUAL_ANT_A_MSK (1<<0)
#define LINK_QUAL_ANT_B_MSK (1<<1)
#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
struct iwk_link_qual_general_params {
uint8_t flags;
uint8_t mimo_delimiter;
uint8_t single_stream_ant_msk;
uint8_t dual_stream_ant_msk;
uint8_t start_rate_index[LINK_QUAL_AC_NUM];
};
struct iwk_link_qual_agg_params {
uint16_t agg_time_limit;
uint8_t agg_dis_start_th;
uint8_t agg_frame_cnt_limit;
uint32_t reserved;
};
typedef struct iwk_link_quality_cmd {
uint8_t sta_id;
uint8_t reserved1;
uint16_t control;
struct iwk_link_qual_general_params general_params;
struct iwk_link_qual_agg_params agg_params;
uint32_t rate_n_flags[LINK_QUAL_MAX_RETRY_NUM];
uint32_t reserved2;
} iwk_link_quality_cmd_t;
typedef struct iwk_rx_phy_res {
uint8_t non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
uint8_t cfg_phy_cnt; /* configurable DSP phy data byte count */
uint8_t stat_id; /* configurable DSP phy data set ID */
uint8_t reserved1;
uint32_t timestampl; /* TSF at on air rise */
uint32_t timestamph;
uint32_t beacon_time_stamp; /* beacon at on-air rise */
uint16_t phy_flags; /* general phy flags: band, modulation, ... */
uint16_t channel; /* channel number */
uint16_t non_cfg_phy[RX_RES_PHY_CNT]; /* upto 14 phy entries */
uint32_t reserved2;
struct iwk_rate rate; /* rate in ucode internal format */
uint16_t byte_count; /* frame's byte-count */
uint16_t reserved3;
} iwk_rx_phy_res_t;
struct iwk_rx_mpdu_res_start {
uint16_t byte_count;
uint16_t reserved;
};
#define IWK_AGC_DB_MASK (0x3f80) /* MASK(7,13) */
#define IWK_AGC_DB_POS (7)
/*
* Fixed (non-configurable) rx data from phy
*/
struct iwk_rx_non_cfg_phy {
uint16_t ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */
uint16_t agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */
uint8_t rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */
uint8_t pad[2];
};
/*
* Byte Count Table Entry
*
* Bit fields:
* 15-12: reserved
* 11- 0: total to-be-transmitted byte count of frame (does not include command)
*/
struct iwk_queue_byte_cnt_entry {
uint16_t val;
};
/*
* Byte Count table
*
* Each Tx queue uses a byte-count table containing 320 entries:
* one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
* duplicate the first 64 entries (to avoid wrap-around within a Tx window;
* max Tx window is 64 TFDs).
*
* When driver sets up a new TFD, it must also enter the total byte count
* of the frame to be transmitted into the corresponding entry in the byte
* count table for the chosen Tx queue. If the TFD index is 0-63, the driver
* must duplicate the byte count entry in corresponding index 256-319.
*
* "dont_care" padding puts each byte count table on a 1024-byte boundary;
* 4965 assumes tables are separated by 1024 bytes.
*/
struct iwk_sched_queue_byte_cnt_tbl {
struct iwk_queue_byte_cnt_entry tfd_offset[IWK_QUEUE_SIZE +
IWK_MAX_WIN_SIZE];
uint8_t dont_care[1024 - (IWK_QUEUE_SIZE + IWK_MAX_WIN_SIZE) *
sizeof (uint16_t)];
};
/*
* struct iwk_shared, handshake area for Tx and Rx
*
* For convenience in allocating memory, this structure combines 2 areas of
* DRAM which must be shared between driver and 4965. These do not need to
* be combined, if better allocation would result from keeping them separate:
* TODO: Split these; carried over from 3945, doesn't work well for 4965.
*
* 1) The Tx byte count tables occupy 1024 bytes each (16 KBytes total for
* 16 queues). Driver uses SCD_DRAM_BASE_ADDR to tell 4965 where to find
* the first of these tables. 4965 assumes tables are 1024 bytes apart.
*
* 2) The Rx status (val0 and val1) occupies only 8 bytes. Driver uses
* FH_RSCSR_CHNL0_STTS_WPTR_REG to tell 4965 where to find this area.
* Driver reads val0 to determine the latest Receive Buffer Descriptor (RBD)
* that has been filled by the 4965.
*
* Bit fields val0:
* 31-12: Not used
* 11- 0: Index of last filled Rx buffer descriptor (4965 writes, driver reads)
*
* Bit fields val1:
* 31- 0: Not used
*/
typedef struct iwk_shared {
struct iwk_sched_queue_byte_cnt_tbl
queues_byte_cnt_tbls[IWK_NUM_QUEUES];
uint32_t val0;
uint32_t val1;
uint32_t padding1; /* so that allocation will be aligned to 16B */
uint32_t padding2;
} iwk_shared_t;
/*
* struct iwk_tfd_frame_data
*
* Describes up to 2 buffers containing (contiguous) portions of a Tx frame.
* Each buffer must be on dword boundary.
* Up to 10 iwk_tfd_frame_data structures, describing up to 20 buffers,
* may be filled within a TFD (iwk_tfd_frame).
*
* Bit fields in tb1_addr:
* 31- 0: Tx buffer 1 address bits [31:0]
*
* Bit fields in val1:
* 31-16: Tx buffer 2 address bits [15:0]
* 15- 4: Tx buffer 1 length (bytes)
* 3- 0: Tx buffer 1 address bits [32:32]
*
* Bit fields in val2:
* 31-20: Tx buffer 2 length (bytes)
* 19- 0: Tx buffer 2 address bits [35:16]
*/
struct iwk_tfd_frame_data {
uint32_t tb1_addr;
uint32_t val1;
uint32_t val2;
};
typedef struct iwk_tx_desc {
uint32_t val0;
struct iwk_tfd_frame_data pa[10];
uint32_t reserved;
} iwk_tx_desc_t;
typedef struct iwk_tx_stat {
uint8_t frame_count;
uint8_t bt_kill_count;
uint8_t nrts;
uint8_t ntries;
struct iwk_rate rate;
uint16_t duration;
uint16_t reserved;
uint32_t pa_power1;
uint32_t pa_power2;
uint32_t status;
} iwk_tx_stat_t;
struct iwk_cmd_header {
uint8_t type;
uint8_t flags;
uint8_t idx;
uint8_t qid;
};
typedef struct iwk_rx_desc {
uint32_t len;
struct iwk_cmd_header hdr;
} iwk_rx_desc_t;
typedef struct iwk_rx_stat {
uint8_t len;
uint8_t id;
uint8_t rssi; /* received signal strength */
uint8_t agc; /* access gain control */
uint16_t signal;
uint16_t noise;
} iwk_rx_stat_t;
typedef struct iwk_rx_head {
uint16_t chan;
uint16_t flags;
uint8_t reserved;
uint8_t rate;
uint16_t len;
} iwk_rx_head_t;
typedef struct iwk_rx_tail {
uint32_t flags;
uint32_t timestampl;
uint32_t timestamph;
uint32_t tbeacon;
} iwk_rx_tail_t;
enum {
IWK_AP_ID = 0,
IWK_MULTICAST_ID,
IWK_STA_ID,
IWK_BROADCAST_ID = 31,
IWK_STATION_COUNT = 32,
IWK_INVALID_STATION
};
/*
* key flags
*/
enum {
STA_KEY_FLG_ENCRYPT_MSK = 0x7,
STA_KEY_FLG_NO_ENC = 0x0,
STA_KEY_FLG_WEP = 0x1,
STA_KEY_FLG_CCMP = 0x2,
STA_KEY_FLG_TKIP = 0x3,
STA_KEY_FLG_KEYID_POS = 8,
STA_KEY_FLG_INVALID = 0x0800,
};
/*
* modify flags
*/
enum {
STA_MODIFY_KEY_MASK = 0x01,
STA_MODIFY_TID_DISABLE_TX = 0x02,
STA_MODIFY_TX_RATE_MSK = 0x04
};
enum {
RX_RES_STATUS_NO_CRC32_ERROR = (1 << 0),
RX_RES_STATUS_NO_RXE_OVERFLOW = (1 << 1),
};
enum {
RX_RES_PHY_FLAGS_BAND_24_MSK = (1 << 0),
RX_RES_PHY_FLAGS_MOD_CCK_MSK = (1 << 1),
RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK = (1 << 2),
RX_RES_PHY_FLAGS_NARROW_BAND_MSK = (1 << 3),
RX_RES_PHY_FLAGS_ANTENNA_MSK = 0xf0,
RX_RES_STATUS_SEC_TYPE_MSK = (0x7 << 8),
RX_RES_STATUS_SEC_TYPE_NONE = (STA_KEY_FLG_NO_ENC << 8),
RX_RES_STATUS_SEC_TYPE_WEP = (STA_KEY_FLG_WEP << 8),
RX_RES_STATUS_SEC_TYPE_TKIP = (STA_KEY_FLG_TKIP << 8),
RX_RES_STATUS_SEC_TYPE_CCMP = (STA_KEY_FLG_CCMP << 8),
RX_RES_STATUS_DECRYPT_TYPE_MSK = (0x3 << 11),
RX_RES_STATUS_NOT_DECRYPT = (0x0 << 11),
RX_RES_STATUS_DECRYPT_OK = (0x3 << 11),
RX_RES_STATUS_BAD_ICV_MIC = (0x1 << 11),
RX_RES_STATUS_BAD_KEY_TTAK = (0x2 << 11),
};
enum {
REPLY_ALIVE = 0x1,
REPLY_ERROR = 0x2,
/* RXON state commands */
REPLY_RXON = 0x10,
REPLY_RXON_ASSOC = 0x11,
REPLY_QOS_PARAM = 0x13,
REPLY_RXON_TIMING = 0x14,
/* Multi-Station support */
REPLY_ADD_STA = 0x18,
REPLY_REMOVE_ALL_STA = 0x1a,
/* RX, TX */
REPLY_TX = 0x1c,
/* timers commands */
REPLY_BCON = 0x27,
REPLY_SHUTDOWN = 0x40,
/* MISC commands */
REPLY_RATE_SCALE = 0x47,
REPLY_LEDS_CMD = 0x48,
REPLY_TX_LINK_QUALITY_CMD = 0x4e,
/* 802.11h related */
RADAR_NOTIFICATION = 0x70,
REPLY_QUIET_CMD = 0x71,
REPLY_CHANNEL_SWITCH = 0x72,
CHANNEL_SWITCH_NOTIFICATION = 0x73,
REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
SPECTRUM_MEASURE_NOTIFICATION = 0x75,
/* Power Management *** */
POWER_TABLE_CMD = 0x77,
PM_SLEEP_NOTIFICATION = 0x7A,
PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
/* Scan commands and notifications */
REPLY_SCAN_CMD = 0x80,
REPLY_SCAN_ABORT_CMD = 0x81,
SCAN_START_NOTIFICATION = 0x82,
SCAN_RESULTS_NOTIFICATION = 0x83,
SCAN_COMPLETE_NOTIFICATION = 0x84,
/* IBSS/AP commands */
BEACON_NOTIFICATION = 0x90,
REPLY_TX_BEACON = 0x91,
WHO_IS_AWAKE_NOTIFICATION = 0x94,
QUIET_NOTIFICATION = 0x96,
REPLY_TX_PWR_TABLE_CMD = 0x97,
MEASURE_ABORT_NOTIFICATION = 0x99,
REPLY_CALIBRATION_TUNE = 0x9a,
/* BT config command */
REPLY_BT_CONFIG = 0x9b,
REPLY_STATISTICS_CMD = 0x9c,
STATISTICS_NOTIFICATION = 0x9d,
/* RF-KILL commands and notifications *** */
REPLY_CARD_STATE_CMD = 0xa0,
CARD_STATE_NOTIFICATION = 0xa1,
/* Missed beacons notification */
MISSED_BEACONS_NOTIFICATION = 0xa2,
MISSED_BEACONS_NOTIFICATION_TH_CMD = 0xa3,
REPLY_CT_KILL_CONFIG_CMD = 0xa4,
SENSITIVITY_CMD = 0xa8,
REPLY_PHY_CALIBRATION_CMD = 0xb0,
REPLY_4965_RX = 0xc3,
REPLY_RX_PHY_CMD = 0xc0,
REPLY_RX_MPDU_CMD = 0xc1,
REPLY_COMPRESSED_BA = 0xc5,
REPLY_MAX = 0xff
};
typedef struct iwk_cmd {
struct iwk_cmd_header hdr;
uint8_t data[1024];
} iwk_cmd_t;
/*
* Alive Command & Response
*/
#define UCODE_VALID_OK (0x1)
#define INITIALIZE_SUBTYPE (9)
struct iwk_alive_resp {
uint8_t ucode_minor;
uint8_t ucode_major;
uint16_t reserved1;
uint8_t sw_rev[8];
uint8_t ver_type;
uint8_t ver_subtype;
uint16_t reserved2;
uint32_t log_event_table_ptr;
uint32_t error_event_table_ptr;
uint32_t timestamp;
uint32_t is_valid;
};
struct iwk_init_alive_resp {
struct iwk_alive_resp s;
/* calibration values from "initialize" uCode */
uint32_t voltage; /* signed */
uint32_t therm_r1[2]; /* signed 1st for normal, 2nd for FAT channel */
uint32_t therm_r2[2]; /* signed */
uint32_t therm_r3[2]; /* signed */
uint32_t therm_r4[2]; /* signed */
/*
* signed MIMO gain comp, 5 freq groups, 2 Tx chains
*/
uint32_t tx_atten[5][2];
};
/*
* Rx config defines & structure
*/
/*
* rx_config device types
*/
enum {
RXON_DEV_TYPE_AP = 1,
RXON_DEV_TYPE_ESS = 3,
RXON_DEV_TYPE_IBSS = 4,
RXON_DEV_TYPE_SNIFFER = 6,
};
/*
* rx_config flags
*/
enum {
/* band & modulation selection */
RXON_FLG_BAND_24G_MSK = (1 << 0),
RXON_FLG_CCK_MSK = (1 << 1),
/* auto detection enable */
RXON_FLG_AUTO_DETECT_MSK = (1 << 2),
/* TGg protection when tx */
RXON_FLG_TGG_PROTECT_MSK = (1 << 3),
/* cck short slot & preamble */
RXON_FLG_SHORT_SLOT_MSK = (1 << 4),
RXON_FLG_SHORT_PREAMBLE_MSK = (1 << 5),
/* antenna selection */
RXON_FLG_DIS_DIV_MSK = (1 << 7),
RXON_FLG_ANT_SEL_MSK = 0x0f00,
RXON_FLG_ANT_A_MSK = (1 << 8),
RXON_FLG_ANT_B_MSK = (1 << 9),
/* radar detection enable */
RXON_FLG_RADAR_DETECT_MSK = (1 << 12),
RXON_FLG_TGJ_NARROW_BAND_MSK = (1 << 13),
/*
* rx response to host with 8-byte TSF
* (according to ON_AIR deassertion)
*/
RXON_FLG_TSF2HOST_MSK = (1 << 15)
};
/*
* rx_config filter flags
*/
enum {
/* accept all data frames */
RXON_FILTER_PROMISC_MSK = (1 << 0),
/* pass control & management to host */
RXON_FILTER_CTL2HOST_MSK = (1 << 1),
/* accept multi-cast */
RXON_FILTER_ACCEPT_GRP_MSK = (1 << 2),
/* don't decrypt uni-cast frames */
RXON_FILTER_DIS_DECRYPT_MSK = (1 << 3),
/* don't decrypt multi-cast frames */
RXON_FILTER_DIS_GRP_DECRYPT_MSK = (1 << 4),
/* STA is associated */
RXON_FILTER_ASSOC_MSK = (1 << 5),
/* transfer to host non bssid beacons in associated state */
RXON_FILTER_BCON_AWARE_MSK = (1 << 6)
};
/*
* structure for RXON Command & Response
*/
typedef struct iwk_rxon_cmd {
uint8_t node_addr[IEEE80211_ADDR_LEN];
uint16_t reserved1;
uint8_t bssid[IEEE80211_ADDR_LEN];
uint16_t reserved2;
uint8_t wlap_bssid[IEEE80211_ADDR_LEN];
uint16_t reserved3;
uint8_t dev_type;
uint8_t air_propagation;
uint16_t rx_chain;
uint8_t ofdm_basic_rates;
uint8_t cck_basic_rates;
uint16_t assoc_id;
uint32_t flags;
uint32_t filter_flags;
uint16_t chan;
uint8_t ofdm_ht_single_stream_basic_rates;
uint8_t ofdm_ht_dual_stream_basic_rates;
} iwk_rxon_cmd_t;
typedef struct iwk_compressed_ba_resp {
uint32_t sta_addr_lo32;
uint16_t sta_addr_hi16;
uint16_t reserved;
uint8_t sta_id;
uint8_t tid;
uint16_t ba_seq_ctl;
uint32_t ba_bitmap0;
uint32_t ba_bitmap1;
uint16_t scd_flow;
uint16_t scd_ssn;
} iwk_compressed_ba_resp_t;
#define PHY_CALIBRATE_DIFF_GAIN_CMD (7)
#define HD_TABLE_SIZE (11)
/*
* Param table within SENSITIVITY_CMD
*/
#define HD_MIN_ENERGY_CCK_DET_INDEX (0)
#define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
#define HD_OFDM_ENERGY_TH_IN_INDEX (10)
typedef struct iwk_sensitivity_cmd {
uint16_t control;
uint16_t table[HD_TABLE_SIZE];
} iwk_sensitivity_cmd_t;
typedef struct iwk_calibration_cmd {
uint8_t opCode;
uint8_t flags;
uint16_t reserved;
char diff_gain_a;
char diff_gain_b;
char diff_gain_c;
uint8_t reserved1;
} iwk_calibation_cmd_t;
typedef struct iwk_missed_beacon_notif {
uint32_t consequtive_missed_beacons;
uint32_t total_missed_becons;
uint32_t num_expected_beacons;
uint32_t num_recvd_beacons;
} iwk_missed_beacon_notif_t;
typedef struct iwk_ct_kill_config {
uint32_t reserved;
uint32_t critical_temperature_M;
uint32_t critical_temperature_R;
} iwk_ct_kill_config_t;
/*
* structure for command IWK_CMD_ASSOCIATE
*/
typedef struct iwk_assoc {
uint32_t flags;
uint32_t filter;
uint8_t ofdm_mask;
uint8_t cck_mask;
uint8_t ofdm_ht_single_stream_basic_rates;
uint8_t ofdm_ht_dual_stream_basic_rates;
uint16_t rx_chain_select_flags;
uint16_t reserved;
} iwk_assoc_t;
/*
* structure for command IWK_CMD_SET_WME
*/
typedef struct iwk_wme_setup {
uint32_t flags;
struct {
uint16_t cwmin;
uint16_t cwmax;
uint8_t aifsn;
uint8_t reserved;
uint16_t txop;
} ac[WME_NUM_AC];
} iwk_wme_setup_t;
/*
* structure for command IWK_CMD_TSF
*/
typedef struct iwk_cmd_tsf {
uint32_t timestampl;
uint32_t timestamph;
uint16_t bintval;
uint16_t atim;
uint32_t binitval;
uint16_t lintval;
uint16_t reserved;
} iwk_cmd_tsf_t;
/*
* structure for IWK_CMD_ADD_NODE
*/
typedef struct iwk_add_sta {
uint8_t control;
uint8_t reserved1[3];
uint8_t bssid[IEEE80211_ADDR_LEN];
uint16_t reserved2;
uint8_t id;
uint8_t sta_mask;
uint16_t reserved3;
uint16_t key_flags;
uint8_t tkip;
uint8_t reserved4;
uint16_t ttak[5];
uint8_t keyp;
uint8_t reserved5;
uint8_t key[16];
uint32_t flags;
uint32_t mask;
uint16_t tid;
union {
struct {
uint8_t rate;
uint8_t flags;
} s;
uint16_t rate_n_flags;
} tx_rate;
uint8_t add_imm;
uint8_t del_imm;
uint16_t add_imm_start;
uint32_t reserved7;
} iwk_add_sta_t;
/*
* Tx flags
*/
enum {
TX_CMD_FLG_RTS_MSK = (1 << 1),
TX_CMD_FLG_CTS_MSK = (1 << 2),
TX_CMD_FLG_ACK_MSK = (1 << 3),
TX_CMD_FLG_STA_RATE_MSK = (1 << 4),
TX_CMD_FLG_IMM_BA_RSP_MASK = (1 << 6),
TX_CMD_FLG_FULL_TXOP_PROT_MSK = (1 << 7),
TX_CMD_FLG_ANT_SEL_MSK = 0xf00,
TX_CMD_FLG_ANT_A_MSK = (1 << 8),
TX_CMD_FLG_ANT_B_MSK = (1 << 9),
/* ucode ignores BT priority for this frame */
TX_CMD_FLG_BT_DIS_MSK = (1 << 12),
/* ucode overrides sequence control */
TX_CMD_FLG_SEQ_CTL_MSK = (1 << 13),
/* signal that this frame is non-last MPDU */
TX_CMD_FLG_MORE_FRAG_MSK = (1 << 14),
/* calculate TSF in outgoing frame */
TX_CMD_FLG_TSF_MSK = (1 << 16),
/* activate TX calibration. */
TX_CMD_FLG_CALIB_MSK = (1 << 17),
/*
* signals that 2 bytes pad was inserted
* after the MAC header
*/
TX_CMD_FLG_MH_PAD_MSK = (1 << 20),
/* HCCA-AP - disable duration overwriting. */
TX_CMD_FLG_DUR_MSK = (1 << 25),
};
/*
* TX command security control
*/
#define TX_CMD_SEC_CCM 0x2
#define TX_CMD_SEC_TKIP 0x3
/*
* structure for command IWK_CMD_TX_DATA
*/
typedef struct iwk_tx_cmd {
uint16_t len;
uint16_t next_frame_len;
uint32_t tx_flags;
struct iwk_dram_scratch scratch;
struct iwk_rate rate;
uint8_t sta_id;
uint8_t sec_ctl;
uint8_t initial_rate_index;
uint8_t reserved;
uint8_t key[16];
uint16_t next_frame_flags;
uint16_t reserved2;
union {
uint32_t life_time;
uint32_t attempt;
} stop_time;
uint32_t dram_lsb_ptr;
uint8_t dram_msb_ptr;
uint8_t rts_retry_limit;
uint8_t data_retry_limit;
uint8_t tid_tspec;
union {
uint16_t pm_frame_timeout;
uint16_t attempt_duration;
} timeout;
uint16_t driver_txop;
} iwk_tx_cmd_t;
/*
* structure for command "TX beacon"
*/
typedef struct iwk_tx_beacon_cmd {
iwk_tx_cmd_t config;
uint16_t tim_idx;
uint8_t tim_size;
uint8_t reserved;
uint8_t bcon_frame[2342];
} iwk_tx_beacon_cmd_t;
/*
* LEDs Command & Response
* REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
*
* For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
* this command turns it on or off, or sets up a periodic blinking cycle.
*/
typedef struct iwk_led_cmd {
uint32_t interval; /* "interval" in uSec */
uint8_t id; /* 1: Activity, 2: Link, 3: Tech */
/*
* # intervals off while blinking;
* "0", with > 0 "on" value, turns LED on
*/
uint8_t off;
/*
* # intervals on while blinking;
* "0", regardless of "off", turns LED off
*/
uint8_t on;
uint8_t reserved;
} iwk_led_cmd_t;
/*
* structure for IWK_CMD_SET_POWER_MODE
*/
typedef struct iwk_powertable_cmd {
uint16_t flags;
uint8_t keep_alive_seconds;
uint8_t debug_flags;
uint32_t rx_timeout;
uint32_t tx_timeout;
uint32_t sleep[5];
uint32_t keep_alive_beacons;
} iwk_powertable_cmd_t;
struct iwk_ssid_ie {
uint8_t id;
uint8_t len;
uint8_t ssid[32];
};
/*
* structure for command IWK_CMD_SCAN
*/
typedef struct iwk_scan_hdr {
uint16_t len;
uint8_t reserved1;
uint8_t nchan;
/*
* dwell only this long on quiet chnl
* (active scan)
*/
uint16_t quiet_time;
uint16_t quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
uint16_t good_crc_th; /* passive -> active promotion threshold */
uint16_t rx_chain;
/*
* max usec to be out of associated (service)
* chnl
*/
uint32_t max_out_time;
/*
* pause scan this long when returning to svc
* chnl.
* 3945 -- 31:24 # beacons, 19:0 additional usec,
* 4965 -- 31:22 # beacons, 21:0 additional usec.
*/
uint32_t suspend_time;
uint32_t flags;
uint32_t filter_flags;
struct iwk_tx_cmd tx_cmd;
struct iwk_ssid_ie direct_scan[4];
/* followed by probe request body */
/* followed by nchan x iwk_scan_chan */
} iwk_scan_hdr_t;
typedef struct iwk_scan_chan {
uint8_t type;
uint8_t chan;
struct iwk_tx_power tpc;
uint16_t active_dwell; /* dwell time */
uint16_t passive_dwell; /* dwell time */
} iwk_scan_chan_t;
/*
* structure for IWK_CMD_BLUETOOTH
*/
typedef struct iwk_bt_cmd {
uint8_t flags;
uint8_t lead_time;
uint8_t max_kill;
uint8_t reserved;
uint32_t kill_ack_mask;
uint32_t kill_cts_mask;
} iwk_bt_cmd_t;
/*
* firmware image header
*/
typedef struct iwk_firmware_hdr {
uint32_t version;
uint32_t textsz;
uint32_t datasz;
uint32_t init_textsz;
uint32_t init_datasz;
uint32_t bootsz;
} iwk_firmware_hdr_t;
/*
* structure for IWK_START_SCAN notification
*/
typedef struct iwk_start_scan {
uint32_t timestampl;
uint32_t timestamph;
uint32_t tbeacon;
uint8_t chan;
uint8_t band;
uint16_t reserved;
uint32_t status;
} iwk_start_scan_t;
#define IWK_READ(sc, reg) \
ddi_get32((sc)->sc_handle, (uint32_t *)((sc)->sc_base + (reg)))
#define IWK_WRITE(sc, reg, val) \
ddi_put32((sc)->sc_handle, (uint32_t *)((sc)->sc_base + (reg)), (val))
#ifdef __cplusplus
}
#endif
#endif /* _IWK_HW_H_ */