iwk2.c revision 216e0daa70a0058c5dc883bc667cd6925015df0a
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2007, Intel Corporation
* All rights reserved.
*/
/*
* Copyright (c) 2006
* Copyright (c) 2007
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Intel PRO/Wireless 4965AGN(kedron) 802.11 network adapters.
*/
#include <sys/types.h>
#include <sys/byteorder.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/strsubr.h>
#include <sys/ethernet.h>
#include <inet/common.h>
#include <inet/nd.h>
#include <inet/mi.h>
#include <sys/note.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/modctl.h>
#include <sys/devops.h>
#include <sys/dlpi.h>
#include <sys/mac_provider.h>
#include <sys/mac_wifi.h>
#include <sys/net80211.h>
#include <sys/net80211_proto.h>
#include <sys/varargs.h>
#include <sys/policy.h>
#include <sys/pci.h>
#include "iwk_calibration.h"
#include "iwk_hw.h"
#include "iwk_eeprom.h"
#include "iwk2_var.h"
#include <inet/wifi_ioctl.h>
#ifdef DEBUG
#define IWK_DEBUG_80211 (1 << 0)
#define IWK_DEBUG_CMD (1 << 1)
#define IWK_DEBUG_DMA (1 << 2)
#define IWK_DEBUG_EEPROM (1 << 3)
#define IWK_DEBUG_FW (1 << 4)
#define IWK_DEBUG_HW (1 << 5)
#define IWK_DEBUG_INTR (1 << 6)
#define IWK_DEBUG_MRR (1 << 7)
#define IWK_DEBUG_PIO (1 << 8)
#define IWK_DEBUG_RX (1 << 9)
#define IWK_DEBUG_SCAN (1 << 10)
#define IWK_DEBUG_TX (1 << 11)
#define IWK_DEBUG_RATECTL (1 << 12)
#define IWK_DEBUG_RADIO (1 << 13)
#define IWK_DEBUG_RESUME (1 << 14)
#define IWK_DEBUG_CALIBRATION (1 << 15)
uint32_t iwk_dbg_flags = 0;
#define IWK_DBG(x) \
iwk_dbg x
#else
#define IWK_DBG(x)
#endif
static void *iwk_soft_state_p = NULL;
static uint8_t iwk_fw_bin [] = {
#include "fw-iw/iw4965.ucode.hex"
};
/* DMA attributes for a shared page */
static ddi_dma_attr_t sh_dma_attr = {
DMA_ATTR_V0, /* version of this structure */
0, /* lowest usable address */
0xffffffffU, /* highest usable address */
0xffffffffU, /* maximum DMAable byte count */
0x1000, /* alignment in bytes */
0x1000, /* burst sizes (any?) */
1, /* minimum transfer */
0xffffffffU, /* maximum transfer */
0xffffffffU, /* maximum segment length */
1, /* maximum number of segments */
1, /* granularity */
0, /* flags (reserved) */
};
/* DMA attributes for a keep warm DRAM descriptor */
static ddi_dma_attr_t kw_dma_attr = {
DMA_ATTR_V0, /* version of this structure */
0, /* lowest usable address */
0xffffffffU, /* highest usable address */
0xffffffffU, /* maximum DMAable byte count */
0x1000, /* alignment in bytes */
0x1000, /* burst sizes (any?) */
1, /* minimum transfer */
0xffffffffU, /* maximum transfer */
0xffffffffU, /* maximum segment length */
1, /* maximum number of segments */
1, /* granularity */
0, /* flags (reserved) */
};
/* DMA attributes for a ring descriptor */
static ddi_dma_attr_t ring_desc_dma_attr = {
DMA_ATTR_V0, /* version of this structure */
0, /* lowest usable address */
0xffffffffU, /* highest usable address */
0xffffffffU, /* maximum DMAable byte count */
0x100, /* alignment in bytes */
0x100, /* burst sizes (any?) */
1, /* minimum transfer */
0xffffffffU, /* maximum transfer */
0xffffffffU, /* maximum segment length */
1, /* maximum number of segments */
1, /* granularity */
0, /* flags (reserved) */
};
/* DMA attributes for a cmd */
static ddi_dma_attr_t cmd_dma_attr = {
DMA_ATTR_V0, /* version of this structure */
0, /* lowest usable address */
0xffffffffU, /* highest usable address */
0xffffffffU, /* maximum DMAable byte count */
4, /* alignment in bytes */
0x100, /* burst sizes (any?) */
1, /* minimum transfer */
0xffffffffU, /* maximum transfer */
0xffffffffU, /* maximum segment length */
1, /* maximum number of segments */
1, /* granularity */
0, /* flags (reserved) */
};
/* DMA attributes for a rx buffer */
static ddi_dma_attr_t rx_buffer_dma_attr = {
DMA_ATTR_V0, /* version of this structure */
0, /* lowest usable address */
0xffffffffU, /* highest usable address */
0xffffffffU, /* maximum DMAable byte count */
0x100, /* alignment in bytes */
0x100, /* burst sizes (any?) */
1, /* minimum transfer */
0xffffffffU, /* maximum transfer */
0xffffffffU, /* maximum segment length */
1, /* maximum number of segments */
1, /* granularity */
0, /* flags (reserved) */
};
/*
* DMA attributes for a tx buffer.
* the maximum number of segments is 4 for the hardware.
* now all the wifi drivers put the whole frame in a single
* descriptor, so we define the maximum number of segments 1,
* just the same as the rx_buffer. we consider leverage the HW
* ability in the future, that is why we don't define rx and tx
* buffer_dma_attr as the same.
*/
static ddi_dma_attr_t tx_buffer_dma_attr = {
DMA_ATTR_V0, /* version of this structure */
0, /* lowest usable address */
0xffffffffU, /* highest usable address */
0xffffffffU, /* maximum DMAable byte count */
4, /* alignment in bytes */
0x100, /* burst sizes (any?) */
1, /* minimum transfer */
0xffffffffU, /* maximum transfer */
0xffffffffU, /* maximum segment length */
1, /* maximum number of segments */
1, /* granularity */
0, /* flags (reserved) */
};
/* DMA attributes for text and data part in the firmware */
static ddi_dma_attr_t fw_dma_attr = {
DMA_ATTR_V0, /* version of this structure */
0, /* lowest usable address */
0xffffffffU, /* highest usable address */
0x7fffffff, /* maximum DMAable byte count */
0x10, /* alignment in bytes */
0x100, /* burst sizes (any?) */
1, /* minimum transfer */
0xffffffffU, /* maximum transfer */
0xffffffffU, /* maximum segment length */
1, /* maximum number of segments */
1, /* granularity */
0, /* flags (reserved) */
};
/* regs access attributes */
static ddi_device_acc_attr_t iwk_reg_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/* DMA access attributes for Descriptor */
static ddi_device_acc_attr_t iwk_dma_descattr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/* DMA access attributes */
static ddi_device_acc_attr_t iwk_dma_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
static int iwk_ring_init(iwk_sc_t *);
static void iwk_ring_free(iwk_sc_t *);
static int iwk_alloc_shared(iwk_sc_t *);
static void iwk_free_shared(iwk_sc_t *);
static int iwk_alloc_kw(iwk_sc_t *);
static void iwk_free_kw(iwk_sc_t *);
static int iwk_alloc_fw_dma(iwk_sc_t *);
static void iwk_free_fw_dma(iwk_sc_t *);
static int iwk_alloc_rx_ring(iwk_sc_t *);
static void iwk_reset_rx_ring(iwk_sc_t *);
static void iwk_free_rx_ring(iwk_sc_t *);
static int iwk_alloc_tx_ring(iwk_sc_t *, iwk_tx_ring_t *,
int, int);
static void iwk_reset_tx_ring(iwk_sc_t *, iwk_tx_ring_t *);
static void iwk_free_tx_ring(iwk_sc_t *, iwk_tx_ring_t *);
static ieee80211_node_t *iwk_node_alloc(ieee80211com_t *);
static void iwk_node_free(ieee80211_node_t *);
static int iwk_newstate(ieee80211com_t *, enum ieee80211_state, int);
static int iwk_key_set(ieee80211com_t *, const struct ieee80211_key *,
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void iwk_mac_access_enter(iwk_sc_t *);
static void iwk_mac_access_exit(iwk_sc_t *);
static uint32_t iwk_reg_read(iwk_sc_t *, uint32_t);
static void iwk_reg_write(iwk_sc_t *, uint32_t, uint32_t);
static void iwk_reg_write_region_4(iwk_sc_t *, uint32_t,
uint32_t *, int);
static int iwk_load_firmware(iwk_sc_t *);
static void iwk_rx_intr(iwk_sc_t *, iwk_rx_desc_t *,
iwk_rx_data_t *);
static void iwk_tx_intr(iwk_sc_t *, iwk_rx_desc_t *,
iwk_rx_data_t *);
static void iwk_cmd_intr(iwk_sc_t *, iwk_rx_desc_t *);
static uint_t iwk_intr(caddr_t, caddr_t);
static int iwk_eep_load(iwk_sc_t *sc);
static void iwk_get_mac_from_eep(iwk_sc_t *sc);
static int iwk_eep_sem_down(iwk_sc_t *sc);
static void iwk_eep_sem_up(iwk_sc_t *sc);
static uint_t iwk_rx_softintr(caddr_t, caddr_t);
static uint8_t iwk_rate_to_plcp(int);
static int iwk_cmd(iwk_sc_t *, int, const void *, int, int);
static void iwk_set_led(iwk_sc_t *, uint8_t, uint8_t, uint8_t);
static int iwk_hw_set_before_auth(iwk_sc_t *);
static int iwk_scan(iwk_sc_t *);
static int iwk_config(iwk_sc_t *);
static void iwk_stop_master(iwk_sc_t *);
static int iwk_power_up(iwk_sc_t *);
static int iwk_preinit(iwk_sc_t *);
static int iwk_init(iwk_sc_t *);
static void iwk_stop(iwk_sc_t *);
static void iwk_amrr_init(iwk_amrr_t *);
static void iwk_amrr_timeout(iwk_sc_t *);
static void iwk_amrr_ratectl(void *, ieee80211_node_t *);
static int32_t iwk_curr_tempera(iwk_sc_t *sc);
static int iwk_tx_power_calibration(iwk_sc_t *sc);
static inline int iwk_is_24G_band(iwk_sc_t *sc);
static inline int iwk_is_fat_channel(iwk_sc_t *sc);
static int iwk_txpower_grp(uint16_t channel);
static struct iwk_eep_channel *iwk_get_eep_channel(iwk_sc_t *sc,
uint16_t channel,
int is_24G, int is_fat, int is_hi_chan);
static int32_t iwk_band_number(iwk_sc_t *sc, uint16_t channel);
static int iwk_division(int32_t num, int32_t denom, int32_t *res);
static int32_t iwk_interpolate_value(int32_t x, int32_t x1, int32_t y1,
int32_t x2, int32_t y2);
static int iwk_channel_interpolate(iwk_sc_t *sc, uint16_t channel,
struct iwk_eep_calib_channel_info *chan_info);
static int32_t iwk_voltage_compensation(int32_t eep_voltage,
int32_t curr_voltage);
static int32_t iwk_min_power_index(int32_t rate_pow_idx, int32_t is_24G);
static int iwk_txpower_table_cmd_init(iwk_sc_t *sc,
struct iwk_tx_power_db *tp_db);
static void iwk_statistics_notify(iwk_sc_t *sc, iwk_rx_desc_t *desc);
static int iwk_is_associated(iwk_sc_t *sc);
static int iwk_rxgain_diff_init(iwk_sc_t *sc);
static int iwk_rxgain_diff(iwk_sc_t *sc);
static int iwk_rx_sens_init(iwk_sc_t *sc);
static int iwk_rx_sens(iwk_sc_t *sc);
static int iwk_cck_sens(iwk_sc_t *sc, uint32_t actual_rx_time);
static int iwk_ofdm_sens(iwk_sc_t *sc, uint32_t actual_rx_time);
static void iwk_recv_mgmt(struct ieee80211com *ic, mblk_t *mp,
struct ieee80211_node *in, int subtype, int rssi, uint32_t rstamp);
static void iwk_write_event_log(iwk_sc_t *);
static void iwk_write_error_log(iwk_sc_t *);
static int iwk_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int iwk_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static int iwk_quiesce(dev_info_t *dip);
/*
* GLD specific operations
*/
static int iwk_m_stat(void *arg, uint_t stat, uint64_t *val);
static int iwk_m_start(void *arg);
static void iwk_m_stop(void *arg);
static int iwk_m_unicst(void *arg, const uint8_t *macaddr);
static int iwk_m_multicst(void *arg, boolean_t add, const uint8_t *m);
static int iwk_m_promisc(void *arg, boolean_t on);
static mblk_t *iwk_m_tx(void *arg, mblk_t *mp);
static void iwk_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
static int iwk_m_setprop(void *arg, const char *pr_name,
mac_prop_id_t wldp_pr_name, uint_t wldp_length, const void *wldp_buf);
static int iwk_m_getprop(void *arg, const char *pr_name,
mac_prop_id_t wldp_pr_name, uint_t pr_flags, uint_t wldp_length,
void *wldp_buf, uint_t *perm);
static void iwk_destroy_locks(iwk_sc_t *sc);
static int iwk_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
static void iwk_thread(iwk_sc_t *sc);
static void iwk_watchdog(void *arg);
static int iwk_run_state_config_ibss(ieee80211com_t *ic);
static int iwk_run_state_config_sta(ieee80211com_t *ic);
static int iwk_fast_recover(iwk_sc_t *sc);
static int iwk_start_tx_beacon(ieee80211com_t *ic);
static int iwk_clean_add_node_ibss(struct ieee80211com *ic,
uint8_t addr[IEEE80211_ADDR_LEN], uint8_t *index2);
/*
* Supported rates for 802.11b/g modes (in 500Kbps unit).
* 11a and 11n support will be added later.
*/
static const struct ieee80211_rateset iwk_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset iwk_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
/*
* For mfthread only
*/
extern pri_t minclsyspri;
#define DRV_NAME_4965 "iwk"
/*
* Module Loading Data & Entry Points
*/
DDI_DEFINE_STREAM_OPS(iwk_devops, nulldev, nulldev, iwk_attach,
iwk_detach, nodev, NULL, D_MP, NULL, iwk_quiesce);
static struct modldrv iwk_modldrv = {
&mod_driverops,
"Intel(R) 4965AGN driver(N)",
&iwk_devops
};
static struct modlinkage iwk_modlinkage = {
MODREV_1,
&iwk_modldrv,
NULL
};
int
_init(void)
{
int status;
status = ddi_soft_state_init(&iwk_soft_state_p,
sizeof (iwk_sc_t), 1);
if (status != DDI_SUCCESS)
return (status);
mac_init_ops(&iwk_devops, DRV_NAME_4965);
status = mod_install(&iwk_modlinkage);
if (status != DDI_SUCCESS) {
mac_fini_ops(&iwk_devops);
ddi_soft_state_fini(&iwk_soft_state_p);
}
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&iwk_modlinkage);
if (status == DDI_SUCCESS) {
mac_fini_ops(&iwk_devops);
ddi_soft_state_fini(&iwk_soft_state_p);
}
return (status);
}
int
_info(struct modinfo *mip)
{
return (mod_info(&iwk_modlinkage, mip));
}
/*
* Mac Call Back entries
*/
mac_callbacks_t iwk_m_callbacks = {
MC_IOCTL | MC_SETPROP | MC_GETPROP,
iwk_m_stat,
iwk_m_start,
iwk_m_stop,
iwk_m_promisc,
iwk_m_multicst,
iwk_m_unicst,
iwk_m_tx,
iwk_m_ioctl,
NULL,
NULL,
NULL,
iwk_m_setprop,
iwk_m_getprop
};
#ifdef DEBUG
void
iwk_dbg(uint32_t flags, const char *fmt, ...)
{
va_list ap;
if (flags & iwk_dbg_flags) {
va_start(ap, fmt);
vcmn_err(CE_NOTE, fmt, ap);
va_end(ap);
}
}
#endif
/*
* device operations
*/
int
iwk_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
iwk_sc_t *sc;
ieee80211com_t *ic;
int instance, err, i;
char strbuf[32];
wifi_data_t wd = { 0 };
mac_register_t *macp;
int intr_type;
int intr_count;
int intr_actual;
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
sc = ddi_get_soft_state(iwk_soft_state_p,
ddi_get_instance(dip));
ASSERT(sc != NULL);
mutex_enter(&sc->sc_glock);
sc->sc_flags &= ~IWK_F_SUSPEND;
mutex_exit(&sc->sc_glock);
if (sc->sc_flags & IWK_F_RUNNING)
(void) iwk_init(sc);
mutex_enter(&sc->sc_glock);
sc->sc_flags |= IWK_F_LAZY_RESUME;
mutex_exit(&sc->sc_glock);
IWK_DBG((IWK_DEBUG_RESUME, "iwk: resume\n"));
return (DDI_SUCCESS);
default:
err = DDI_FAILURE;
goto attach_fail1;
}
instance = ddi_get_instance(dip);
err = ddi_soft_state_zalloc(iwk_soft_state_p, instance);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN,
"iwk_attach(): failed to allocate soft state\n");
goto attach_fail1;
}
sc = ddi_get_soft_state(iwk_soft_state_p, instance);
sc->sc_dip = dip;
err = ddi_regs_map_setup(dip, 0, &sc->sc_cfg_base, 0, 0,
&iwk_reg_accattr, &sc->sc_cfg_handle);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN,
"iwk_attach(): failed to map config spaces regs\n");
goto attach_fail2;
}
sc->sc_rev = ddi_get8(sc->sc_cfg_handle,
(uint8_t *)(sc->sc_cfg_base + PCI_CONF_REVID));
ddi_put8(sc->sc_cfg_handle, (uint8_t *)(sc->sc_cfg_base + 0x41), 0);
sc->sc_clsz = ddi_get16(sc->sc_cfg_handle,
(uint16_t *)(sc->sc_cfg_base + PCI_CONF_CACHE_LINESZ));
if (!sc->sc_clsz)
sc->sc_clsz = 16;
sc->sc_clsz = (sc->sc_clsz << 2);
sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
IEEE80211_MTU + IEEE80211_CRC_LEN +
(IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
IEEE80211_WEP_CRCLEN), sc->sc_clsz);
/*
* Map operating registers
*/
err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
0, 0, &iwk_reg_accattr, &sc->sc_handle);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN,
"iwk_attach(): failed to map device regs\n");
goto attach_fail2a;
}
err = ddi_intr_get_supported_types(dip, &intr_type);
if ((err != DDI_SUCCESS) || (!(intr_type & DDI_INTR_TYPE_FIXED))) {
cmn_err(CE_WARN, "iwk_attach(): "
"Fixed type interrupt is not supported\n");
goto attach_fail_intr_a;
}
err = ddi_intr_get_nintrs(dip, DDI_INTR_TYPE_FIXED, &intr_count);
if ((err != DDI_SUCCESS) || (intr_count != 1)) {
cmn_err(CE_WARN, "iwk_attach(): "
"No fixed interrupts\n");
goto attach_fail_intr_a;
}
sc->sc_intr_htable = kmem_zalloc(sizeof (ddi_intr_handle_t), KM_SLEEP);
err = ddi_intr_alloc(dip, sc->sc_intr_htable, DDI_INTR_TYPE_FIXED, 0,
intr_count, &intr_actual, 0);
if ((err != DDI_SUCCESS) || (intr_actual != 1)) {
cmn_err(CE_WARN, "iwk_attach(): "
"ddi_intr_alloc() failed 0x%x\n", err);
goto attach_fail_intr_b;
}
err = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_pri);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_attach(): "
"ddi_intr_get_pri() failed 0x%x\n", err);
goto attach_fail_intr_c;
}
mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(sc->sc_intr_pri));
mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(sc->sc_intr_pri));
mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(sc->sc_intr_pri));
mutex_init(&sc->sc_ibss.node_tb_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(sc->sc_intr_pri));
cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
cv_init(&sc->sc_tx_cv, "tx-ring", CV_DRIVER, NULL);
/*
* initialize the mfthread
*/
cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
sc->sc_mf_thread = NULL;
sc->sc_mf_thread_switch = 0;
/*
* Allocate shared page.
*/
err = iwk_alloc_shared(sc);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_attach(): "
"failed to allocate shared page\n");
goto attach_fail3;
}
/*
* Allocate keep warm page.
*/
err = iwk_alloc_kw(sc);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_attach(): "
"failed to allocate keep warm page\n");
goto attach_fail3a;
}
/*
* Do some necessary hardware initializations.
*/
err = iwk_preinit(sc);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_attach(): "
"failed to init hardware\n");
goto attach_fail4;
}
/* initialize EEPROM */
err = iwk_eep_load(sc); /* get hardware configurations from eeprom */
if (err != 0) {
cmn_err(CE_WARN, "iwk_attach(): failed to load eeprom\n");
goto attach_fail4;
}
if (LE_16(sc->sc_eep_map.calib_version) < EEP_TX_POWER_VERSION_NEW) {
cmn_err(CE_WARN, "older EEPROM detected\n");
goto attach_fail4;
}
iwk_get_mac_from_eep(sc);
err = iwk_ring_init(sc);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_attach(): "
"failed to allocate and initialize ring\n");
goto attach_fail4;
}
sc->sc_hdr = (iwk_firmware_hdr_t *)iwk_fw_bin;
err = iwk_alloc_fw_dma(sc);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_attach(): "
"failed to allocate firmware dma\n");
goto attach_fail5;
}
/*
* Initialize the wifi part, which will be used by
* generic layer
*/
ic = &sc->sc_ic;
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
ic->ic_maxrssi = 100; /* experimental number */
ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
/*
* use software WEP and TKIP, hardware CCMP;
*/
ic->ic_caps |= IEEE80211_C_AES_CCM;
/*
* Support WPA/WPA2
*/
ic->ic_caps |= IEEE80211_C_WPA;
/*
* support Adhoc mode
*/
ic->ic_caps |= IEEE80211_C_IBSS;
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = iwk_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = iwk_rateset_11g;
/* set supported .11b and .11g channels (1 through 11) */
for (i = 1; i <= 11; i++) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_sup_channels[i].ich_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
IEEE80211_CHAN_PASSIVE;
}
ic->ic_ibss_chan = &ic->ic_sup_channels[0];
ic->ic_xmit = iwk_send;
/*
* init Wifi layer
*/
ieee80211_attach(ic);
/*
* different instance has different WPA door
*/
(void) snprintf(ic->ic_wpadoor, MAX_IEEE80211STR, "%s_%s%d", WPA_DOOR,
ddi_driver_name(dip),
ddi_get_instance(dip));
/*
* Override 80211 default routines
*/
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwk_newstate;
ic->ic_watchdog = iwk_watchdog;
sc->sc_recv_mgmt = ic->ic_recv_mgmt;
ic->ic_recv_mgmt = iwk_recv_mgmt;
ic->ic_node_alloc = iwk_node_alloc;
ic->ic_node_free = iwk_node_free;
ic->ic_crypto.cs_key_set = iwk_key_set;
ieee80211_media_init(ic);
/*
* initialize default tx key
*/
ic->ic_def_txkey = 0;
err = ddi_intr_add_softint(dip, &sc->sc_soft_hdl, DDI_INTR_SOFTPRI_MAX,
iwk_rx_softintr, (caddr_t)sc);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_attach(): "
"add soft interrupt failed\n");
goto attach_fail7;
}
/*
* Add the interrupt handler
*/
err = ddi_intr_add_handler(sc->sc_intr_htable[0], iwk_intr,
(caddr_t)sc, NULL);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_attach(): "
"ddi_intr_add_handle() failed\n");
goto attach_fail8;
}
err = ddi_intr_enable(sc->sc_intr_htable[0]);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_attach(): "
"ddi_intr_enable() failed\n");
goto attach_fail_intr_d;
}
/*
* Initialize pointer to device specific functions
*/
wd.wd_secalloc = WIFI_SEC_NONE;
wd.wd_opmode = ic->ic_opmode;
IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
macp = mac_alloc(MAC_VERSION);
if (macp == NULL) {
cmn_err(CE_WARN,
"iwk_attach(): failed to do mac_alloc()\n");
goto attach_fail9;
}
macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
macp->m_driver = sc;
macp->m_dip = dip;
macp->m_src_addr = ic->ic_macaddr;
macp->m_callbacks = &iwk_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = IEEE80211_MTU;
macp->m_pdata = &wd;
macp->m_pdata_size = sizeof (wd);
/*
* Register the macp to mac
*/
err = mac_register(macp, &ic->ic_mach);
mac_free(macp);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN,
"iwk_attach(): failed to do mac_register()\n");
goto attach_fail9;
}
/*
* Create minor node of type DDI_NT_NET_WIFI
*/
(void) snprintf(strbuf, sizeof (strbuf), DRV_NAME_4965"%d", instance);
err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
instance + 1, DDI_NT_NET_WIFI, 0);
if (err != DDI_SUCCESS)
cmn_err(CE_WARN,
"iwk_attach(): failed to do ddi_create_minor_node()\n");
/*
* Notify link is down now
*/
mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
/*
* create the mf thread to handle the link status,
* recovery fatal error, etc.
*/
sc->sc_mf_thread_switch = 1;
if (sc->sc_mf_thread == NULL)
sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
iwk_thread, sc, 0, &p0, TS_RUN, minclsyspri);
sc->sc_flags |= IWK_F_ATTACHED;
return (DDI_SUCCESS);
attach_fail9:
(void) ddi_intr_disable(sc->sc_intr_htable[0]);
attach_fail_intr_d:
(void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
attach_fail8:
(void) ddi_intr_remove_softint(sc->sc_soft_hdl);
sc->sc_soft_hdl = NULL;
attach_fail7:
ieee80211_detach(ic);
attach_fail6:
iwk_free_fw_dma(sc);
attach_fail5:
iwk_ring_free(sc);
attach_fail4:
iwk_free_kw(sc);
attach_fail3a:
iwk_free_shared(sc);
attach_fail3:
iwk_destroy_locks(sc);
attach_fail_intr_c:
(void) ddi_intr_free(sc->sc_intr_htable[0]);
attach_fail_intr_b:
kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
attach_fail_intr_a:
ddi_regs_map_free(&sc->sc_handle);
attach_fail2a:
ddi_regs_map_free(&sc->sc_cfg_handle);
attach_fail2:
ddi_soft_state_free(iwk_soft_state_p, instance);
attach_fail1:
return (err);
}
int
iwk_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
iwk_sc_t *sc;
int err;
sc = ddi_get_soft_state(iwk_soft_state_p, ddi_get_instance(dip));
ASSERT(sc != NULL);
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
mutex_enter(&sc->sc_glock);
sc->sc_flags |= IWK_F_SUSPEND;
mutex_exit(&sc->sc_glock);
if (sc->sc_flags & IWK_F_RUNNING) {
iwk_stop(sc);
}
IWK_DBG((IWK_DEBUG_RESUME, "iwk: suspend\n"));
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
if (!(sc->sc_flags & IWK_F_ATTACHED))
return (DDI_FAILURE);
err = mac_disable(sc->sc_ic.ic_mach);
if (err != DDI_SUCCESS)
return (err);
/*
* Destroy the mf_thread
*/
mutex_enter(&sc->sc_mt_lock);
sc->sc_mf_thread_switch = 0;
while (sc->sc_mf_thread != NULL) {
if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
break;
}
mutex_exit(&sc->sc_mt_lock);
iwk_stop(sc);
DELAY(500000);
/*
* Unregiste from the MAC layer subsystem
*/
(void) mac_unregister(sc->sc_ic.ic_mach);
mutex_enter(&sc->sc_glock);
iwk_free_fw_dma(sc);
iwk_ring_free(sc);
iwk_free_kw(sc);
iwk_free_shared(sc);
mutex_exit(&sc->sc_glock);
(void) ddi_intr_disable(sc->sc_intr_htable[0]);
(void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
(void) ddi_intr_free(sc->sc_intr_htable[0]);
kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
(void) ddi_intr_remove_softint(sc->sc_soft_hdl);
sc->sc_soft_hdl = NULL;
/*
* detach ieee80211
*/
ieee80211_detach(&sc->sc_ic);
iwk_destroy_locks(sc);
ddi_regs_map_free(&sc->sc_handle);
ddi_regs_map_free(&sc->sc_cfg_handle);
ddi_remove_minor_node(dip, NULL);
ddi_soft_state_free(iwk_soft_state_p, ddi_get_instance(dip));
return (DDI_SUCCESS);
}
/*
* quiesce(9E) entry point.
*
* This function is called when the system is single-threaded at high
* PIL with preemption disabled. Therefore, this function must not be
* blocked.
*
* This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
* DDI_FAILURE indicates an error condition and should almost never happen.
*/
int
iwk_quiesce(dev_info_t *dip)
{
iwk_sc_t *sc;
sc = ddi_get_soft_state(iwk_soft_state_p, ddi_get_instance(dip));
ASSERT(sc != NULL);
/* no message prints and no lock accquisition */
#ifdef DEBUG
iwk_dbg_flags = 0;
#endif
sc->sc_flags |= IWK_F_QUIESCED;
iwk_stop(sc);
return (DDI_SUCCESS);
}
static void
iwk_destroy_locks(iwk_sc_t *sc)
{
cv_destroy(&sc->sc_mt_cv);
mutex_destroy(&sc->sc_mt_lock);
cv_destroy(&sc->sc_tx_cv);
cv_destroy(&sc->sc_cmd_cv);
cv_destroy(&sc->sc_fw_cv);
mutex_destroy(&sc->sc_tx_lock);
mutex_destroy(&sc->sc_glock);
}
/*
* Allocate an area of memory and a DMA handle for accessing it
*/
static int
iwk_alloc_dma_mem(iwk_sc_t *sc, size_t memsize,
ddi_dma_attr_t *dma_attr_p, ddi_device_acc_attr_t *acc_attr_p,
uint_t dma_flags, iwk_dma_t *dma_p)
{
caddr_t vaddr;
int err;
/*
* Allocate handle
*/
err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
if (err != DDI_SUCCESS) {
dma_p->dma_hdl = NULL;
return (DDI_FAILURE);
}
/*
* Allocate memory
*/
err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
if (err != DDI_SUCCESS) {
ddi_dma_free_handle(&dma_p->dma_hdl);
dma_p->dma_hdl = NULL;
dma_p->acc_hdl = NULL;
return (DDI_FAILURE);
}
/*
* Bind the two together
*/
dma_p->mem_va = vaddr;
err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
&dma_p->cookie, &dma_p->ncookies);
if (err != DDI_DMA_MAPPED) {
ddi_dma_mem_free(&dma_p->acc_hdl);
ddi_dma_free_handle(&dma_p->dma_hdl);
dma_p->acc_hdl = NULL;
dma_p->dma_hdl = NULL;
return (DDI_FAILURE);
}
dma_p->nslots = ~0U;
dma_p->size = ~0U;
dma_p->token = ~0U;
dma_p->offset = 0;
return (DDI_SUCCESS);
}
/*
* Free one allocated area of DMAable memory
*/
static void
iwk_free_dma_mem(iwk_dma_t *dma_p)
{
if (dma_p->dma_hdl != NULL) {
if (dma_p->ncookies) {
(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
dma_p->ncookies = 0;
}
ddi_dma_free_handle(&dma_p->dma_hdl);
dma_p->dma_hdl = NULL;
}
if (dma_p->acc_hdl != NULL) {
ddi_dma_mem_free(&dma_p->acc_hdl);
dma_p->acc_hdl = NULL;
}
}
/*
*
*/
static int
iwk_alloc_fw_dma(iwk_sc_t *sc)
{
int err = DDI_SUCCESS;
iwk_dma_t *dma_p;
char *t;
/*
* firmware image layout:
* |HDR|<-TEXT->|<-DATA->|<-INIT_TEXT->|<-INIT_DATA->|<-BOOT->|
*/
t = (char *)(sc->sc_hdr + 1);
err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
&fw_dma_attr, &iwk_dma_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&sc->sc_dma_fw_text);
dma_p = &sc->sc_dma_fw_text;
IWK_DBG((IWK_DEBUG_DMA, "text[ncookies:%d addr:%lx size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
" text dma memory");
goto fail;
}
(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->textsz));
t += LE_32(sc->sc_hdr->textsz);
err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
&fw_dma_attr, &iwk_dma_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&sc->sc_dma_fw_data);
dma_p = &sc->sc_dma_fw_data;
IWK_DBG((IWK_DEBUG_DMA, "data[ncookies:%d addr:%lx size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
" data dma memory");
goto fail;
}
(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->datasz));
err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
&fw_dma_attr, &iwk_dma_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&sc->sc_dma_fw_data_bak);
dma_p = &sc->sc_dma_fw_data_bak;
IWK_DBG((IWK_DEBUG_DMA, "data_bak[ncookies:%d addr:%lx "
"size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
" data bakeup dma memory");
goto fail;
}
(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->datasz));
t += LE_32(sc->sc_hdr->datasz);
err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->init_textsz),
&fw_dma_attr, &iwk_dma_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&sc->sc_dma_fw_init_text);
dma_p = &sc->sc_dma_fw_init_text;
IWK_DBG((IWK_DEBUG_DMA, "init_text[ncookies:%d addr:%lx "
"size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
"init text dma memory");
goto fail;
}
(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->init_textsz));
t += LE_32(sc->sc_hdr->init_textsz);
err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->init_datasz),
&fw_dma_attr, &iwk_dma_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&sc->sc_dma_fw_init_data);
dma_p = &sc->sc_dma_fw_init_data;
IWK_DBG((IWK_DEBUG_DMA, "init_data[ncookies:%d addr:%lx "
"size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
"init data dma memory");
goto fail;
}
(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->init_datasz));
sc->sc_boot = t + LE_32(sc->sc_hdr->init_datasz);
fail:
return (err);
}
static void
iwk_free_fw_dma(iwk_sc_t *sc)
{
iwk_free_dma_mem(&sc->sc_dma_fw_text);
iwk_free_dma_mem(&sc->sc_dma_fw_data);
iwk_free_dma_mem(&sc->sc_dma_fw_data_bak);
iwk_free_dma_mem(&sc->sc_dma_fw_init_text);
iwk_free_dma_mem(&sc->sc_dma_fw_init_data);
}
/*
* Allocate a shared page between host and NIC.
*/
static int
iwk_alloc_shared(iwk_sc_t *sc)
{
iwk_dma_t *dma_p;
int err = DDI_SUCCESS;
/* must be aligned on a 4K-page boundary */
err = iwk_alloc_dma_mem(sc, sizeof (iwk_shared_t),
&sh_dma_attr, &iwk_dma_descattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&sc->sc_dma_sh);
if (err != DDI_SUCCESS)
goto fail;
sc->sc_shared = (iwk_shared_t *)sc->sc_dma_sh.mem_va;
dma_p = &sc->sc_dma_sh;
IWK_DBG((IWK_DEBUG_DMA, "sh[ncookies:%d addr:%lx size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
return (err);
fail:
iwk_free_shared(sc);
return (err);
}
static void
iwk_free_shared(iwk_sc_t *sc)
{
iwk_free_dma_mem(&sc->sc_dma_sh);
}
/*
* Allocate a keep warm page.
*/
static int
iwk_alloc_kw(iwk_sc_t *sc)
{
iwk_dma_t *dma_p;
int err = DDI_SUCCESS;
/* must be aligned on a 4K-page boundary */
err = iwk_alloc_dma_mem(sc, IWK_KW_SIZE,
&kw_dma_attr, &iwk_dma_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&sc->sc_dma_kw);
if (err != DDI_SUCCESS)
goto fail;
dma_p = &sc->sc_dma_kw;
IWK_DBG((IWK_DEBUG_DMA, "kw[ncookies:%d addr:%lx size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
return (err);
fail:
iwk_free_kw(sc);
return (err);
}
static void
iwk_free_kw(iwk_sc_t *sc)
{
iwk_free_dma_mem(&sc->sc_dma_kw);
}
static int
iwk_alloc_rx_ring(iwk_sc_t *sc)
{
iwk_rx_ring_t *ring;
iwk_rx_data_t *data;
iwk_dma_t *dma_p;
int i, err = DDI_SUCCESS;
ring = &sc->sc_rxq;
ring->cur = 0;
err = iwk_alloc_dma_mem(sc, RX_QUEUE_SIZE * sizeof (uint32_t),
&ring_desc_dma_attr, &iwk_dma_descattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&ring->dma_desc);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "dma alloc rx ring desc failed\n");
goto fail;
}
ring->desc = (uint32_t *)ring->dma_desc.mem_va;
dma_p = &ring->dma_desc;
IWK_DBG((IWK_DEBUG_DMA, "rx bd[ncookies:%d addr:%lx size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
/*
* Allocate Rx buffers.
*/
for (i = 0; i < RX_QUEUE_SIZE; i++) {
data = &ring->data[i];
err = iwk_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
&rx_buffer_dma_attr, &iwk_dma_accattr,
DDI_DMA_READ | DDI_DMA_STREAMING,
&data->dma_data);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "dma alloc rx ring buf[%d] "
"failed\n", i);
goto fail;
}
/*
* the physical address bit [8-36] are used,
* instead of bit [0-31] in 3945.
*/
ring->desc[i] = (uint32_t)
(data->dma_data.cookie.dmac_address >> 8);
}
dma_p = &ring->data[0].dma_data;
IWK_DBG((IWK_DEBUG_DMA, "rx buffer[0][ncookies:%d addr:%lx "
"size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
IWK_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
return (err);
fail:
iwk_free_rx_ring(sc);
return (err);
}
static void
iwk_reset_rx_ring(iwk_sc_t *sc)
{
int n;
iwk_mac_access_enter(sc);
IWK_WRITE(sc, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
for (n = 0; n < 2000; n++) {
if (IWK_READ(sc, FH_MEM_RSSR_RX_STATUS_REG) & (1 << 24))
break;
DELAY(1000);
}
if (n == 2000)
IWK_DBG((IWK_DEBUG_DMA, "timeout resetting Rx ring\n"));
iwk_mac_access_exit(sc);
sc->sc_rxq.cur = 0;
}
static void
iwk_free_rx_ring(iwk_sc_t *sc)
{
int i;
for (i = 0; i < RX_QUEUE_SIZE; i++) {
if (sc->sc_rxq.data[i].dma_data.dma_hdl)
IWK_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
DDI_DMA_SYNC_FORCPU);
iwk_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
}
if (sc->sc_rxq.dma_desc.dma_hdl)
IWK_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
iwk_free_dma_mem(&sc->sc_rxq.dma_desc);
}
static int
iwk_alloc_tx_ring(iwk_sc_t *sc, iwk_tx_ring_t *ring,
int slots, int qid)
{
iwk_tx_data_t *data;
iwk_tx_desc_t *desc_h;
uint32_t paddr_desc_h;
iwk_cmd_t *cmd_h;
uint32_t paddr_cmd_h;
iwk_dma_t *dma_p;
int i, err = DDI_SUCCESS;
ring->qid = qid;
ring->count = TFD_QUEUE_SIZE_MAX;
ring->window = slots;
ring->queued = 0;
ring->cur = 0;
err = iwk_alloc_dma_mem(sc,
TFD_QUEUE_SIZE_MAX * sizeof (iwk_tx_desc_t),
&ring_desc_dma_attr, &iwk_dma_descattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&ring->dma_desc);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "dma alloc tx ring desc[%d] "
"failed\n", qid);
goto fail;
}
dma_p = &ring->dma_desc;
IWK_DBG((IWK_DEBUG_DMA, "tx bd[ncookies:%d addr:%lx size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
desc_h = (iwk_tx_desc_t *)ring->dma_desc.mem_va;
paddr_desc_h = ring->dma_desc.cookie.dmac_address;
err = iwk_alloc_dma_mem(sc,
TFD_QUEUE_SIZE_MAX * sizeof (iwk_cmd_t),
&cmd_dma_attr, &iwk_dma_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&ring->dma_cmd);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "dma alloc tx ring cmd[%d] "
"failed\n", qid);
goto fail;
}
dma_p = &ring->dma_cmd;
IWK_DBG((IWK_DEBUG_DMA, "tx cmd[ncookies:%d addr:%lx size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
cmd_h = (iwk_cmd_t *)ring->dma_cmd.mem_va;
paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
/*
* Allocate Tx buffers.
*/
ring->data = kmem_zalloc(sizeof (iwk_tx_data_t) * TFD_QUEUE_SIZE_MAX,
KM_NOSLEEP);
if (ring->data == NULL) {
cmn_err(CE_WARN, "could not allocate tx data slots\n");
goto fail;
}
for (i = 0; i < TFD_QUEUE_SIZE_MAX; i++) {
data = &ring->data[i];
err = iwk_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
&tx_buffer_dma_attr, &iwk_dma_accattr,
DDI_DMA_WRITE | DDI_DMA_STREAMING,
&data->dma_data);
if (err != DDI_SUCCESS) {
cmn_err(CE_WARN, "dma alloc tx ring "
"buf[%d] failed\n", i);
goto fail;
}
data->desc = desc_h + i;
data->paddr_desc = paddr_desc_h +
_PTRDIFF(data->desc, desc_h);
data->cmd = cmd_h + i; /* (i % slots); */
/* ((i % slots) * sizeof (iwk_cmd_t)); */
data->paddr_cmd = paddr_cmd_h +
_PTRDIFF(data->cmd, cmd_h);
}
dma_p = &ring->data[0].dma_data;
IWK_DBG((IWK_DEBUG_DMA, "tx buffer[0][ncookies:%d addr:%lx "
"size:%lx]\n",
dma_p->ncookies, dma_p->cookie.dmac_address,
dma_p->cookie.dmac_size));
return (err);
fail:
if (ring->data)
kmem_free(ring->data,
sizeof (iwk_tx_data_t) * TFD_QUEUE_SIZE_MAX);
iwk_free_tx_ring(sc, ring);
return (err);
}
static void
iwk_reset_tx_ring(iwk_sc_t *sc, iwk_tx_ring_t *ring)
{
iwk_tx_data_t *data;
int i, n;
iwk_mac_access_enter(sc);
IWK_WRITE(sc, IWK_FH_TCSR_CHNL_TX_CONFIG_REG(ring->qid), 0);
for (n = 0; n < 200; n++) {
if (IWK_READ(sc, IWK_FH_TSSR_TX_STATUS_REG) &
IWK_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(ring->qid))
break;
DELAY(10);
}
if (n == 200) {
IWK_DBG((IWK_DEBUG_DMA, "timeout reset tx ring %d\n",
ring->qid));
}
iwk_mac_access_exit(sc);
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
IWK_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
}
ring->queued = 0;
ring->cur = 0;
}
/*ARGSUSED*/
static void
iwk_free_tx_ring(iwk_sc_t *sc, iwk_tx_ring_t *ring)
{
int i;
if (ring->dma_desc.dma_hdl != NULL)
IWK_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
iwk_free_dma_mem(&ring->dma_desc);
if (ring->dma_cmd.dma_hdl != NULL)
IWK_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
iwk_free_dma_mem(&ring->dma_cmd);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
if (ring->data[i].dma_data.dma_hdl)
IWK_DMA_SYNC(ring->data[i].dma_data,
DDI_DMA_SYNC_FORDEV);
iwk_free_dma_mem(&ring->data[i].dma_data);
}
kmem_free(ring->data, ring->count * sizeof (iwk_tx_data_t));
}
}
static int
iwk_ring_init(iwk_sc_t *sc)
{
int i, err = DDI_SUCCESS;
for (i = 0; i < IWK_NUM_QUEUES; i++) {
if (i == IWK_CMD_QUEUE_NUM)
continue;
err = iwk_alloc_tx_ring(sc, &sc->sc_txq[i], TFD_TX_CMD_SLOTS,
i);
if (err != DDI_SUCCESS)
goto fail;
}
err = iwk_alloc_tx_ring(sc, &sc->sc_txq[IWK_CMD_QUEUE_NUM],
TFD_CMD_SLOTS, IWK_CMD_QUEUE_NUM);
if (err != DDI_SUCCESS)
goto fail;
err = iwk_alloc_rx_ring(sc);
if (err != DDI_SUCCESS)
goto fail;
return (err);
fail:
return (err);
}
static void
iwk_ring_free(iwk_sc_t *sc)
{
int i = IWK_NUM_QUEUES;
iwk_free_rx_ring(sc);
while (--i >= 0) {
iwk_free_tx_ring(sc, &sc->sc_txq[i]);
}
}
/* ARGSUSED */
static ieee80211_node_t *
iwk_node_alloc(ieee80211com_t *ic)
{
iwk_amrr_t *amrr;
amrr = kmem_zalloc(sizeof (iwk_amrr_t), KM_SLEEP);
if (amrr != NULL)
iwk_amrr_init(amrr);
return (&amrr->in);
}
static void
iwk_node_free(ieee80211_node_t *in)
{
ieee80211com_t *ic = in->in_ic;
ic->ic_node_cleanup(in);
if (in->in_wpa_ie != NULL)
ieee80211_free(in->in_wpa_ie);
kmem_free(in, sizeof (iwk_amrr_t));
}
/*ARGSUSED*/
static int
iwk_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
{
iwk_sc_t *sc = (iwk_sc_t *)ic;
ieee80211_node_t *in = ic->ic_bss;
enum ieee80211_state ostate = ic->ic_state;
int i, err = IWK_SUCCESS;
mutex_enter(&sc->sc_glock);
switch (nstate) {
case IEEE80211_S_SCAN:
switch (ostate) {
case IEEE80211_S_INIT:
{
iwk_add_sta_t node;
sc->sc_flags |= IWK_F_SCANNING;
sc->sc_scan_pending = 0;
iwk_set_led(sc, 2, 10, 2);
/*
* clear association to receive beacons from
* all BSS'es
*/
sc->sc_config.assoc_id = 0;
sc->sc_config.filter_flags &=
~LE_32(RXON_FILTER_ASSOC_MSK);
IWK_DBG((IWK_DEBUG_80211, "config chan %d "
"flags %x filter_flags %x\n", sc->sc_config.chan,
sc->sc_config.flags, sc->sc_config.filter_flags));
err = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
sizeof (iwk_rxon_cmd_t), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN,
"could not clear association\n");
sc->sc_flags &= ~IWK_F_SCANNING;
mutex_exit(&sc->sc_glock);
return (err);
}
/* add broadcast node to send probe request */
(void) memset(&node, 0, sizeof (node));
(void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN);
node.id = IWK_BROADCAST_ID;
err = iwk_cmd(sc, REPLY_ADD_STA, &node,
sizeof (node), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "could not add "
"broadcast node\n");
sc->sc_flags &= ~IWK_F_SCANNING;
mutex_exit(&sc->sc_glock);
return (err);
}
break;
}
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
case IEEE80211_S_RUN:
sc->sc_flags |= IWK_F_SCANNING;
sc->sc_scan_pending = 0;
iwk_set_led(sc, 2, 10, 2);
/* FALLTHRU */
case IEEE80211_S_SCAN:
mutex_exit(&sc->sc_glock);
/* step to next channel before actual FW scan */
err = sc->sc_newstate(ic, nstate, arg);
mutex_enter(&sc->sc_glock);
if ((err != 0) || ((err = iwk_scan(sc)) != 0)) {
cmn_err(CE_WARN,
"could not initiate scan\n");
sc->sc_flags &= ~IWK_F_SCANNING;
ieee80211_cancel_scan(ic);
}
mutex_exit(&sc->sc_glock);
return (err);
default:
break;
}
sc->sc_clk = 0;
break;
case IEEE80211_S_AUTH:
if (ostate == IEEE80211_S_SCAN) {
sc->sc_flags &= ~IWK_F_SCANNING;
}
/* reset state to handle reassociations correctly */
sc->sc_config.assoc_id = 0;
sc->sc_config.filter_flags &= ~LE_32(RXON_FILTER_ASSOC_MSK);
/*
* before sending authentication and association request frame,
* we need do something in the hardware, such as setting the
* channel same to the target AP...
*/
if ((err = iwk_hw_set_before_auth(sc)) != 0) {
cmn_err(CE_WARN, "could not setup firmware for "
"authentication\n");
mutex_exit(&sc->sc_glock);
return (err);
}
break;
case IEEE80211_S_RUN:
if (ostate == IEEE80211_S_SCAN) {
sc->sc_flags &= ~IWK_F_SCANNING;
}
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* let LED blink when monitoring */
iwk_set_led(sc, 2, 10, 10);
break;
}
IWK_DBG((IWK_DEBUG_80211, "iwk: associated."));
/* IBSS mode */
if (ic->ic_opmode == IEEE80211_M_IBSS) {
/*
* clean all nodes in ibss node table
* in order to be consistent with hardware
*/
err = iwk_run_state_config_ibss(ic);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_newstate(): "
"failed to update configuration "
"in IBSS mode\n");
mutex_exit(&sc->sc_glock);
return (err);
}
}
/* none IBSS mode */
if (ic->ic_opmode != IEEE80211_M_IBSS) {
/* update adapter's configuration */
err = iwk_run_state_config_sta(ic);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_newstate(): "
"failed to update configuration "
"in none IBSS mode\n");
mutex_exit(&sc->sc_glock);
return (err);
}
}
/* obtain current temperature of chipset */
sc->sc_tempera = iwk_curr_tempera(sc);
/*
* make Tx power calibration to determine
* the gains of DSP and radio
*/
err = iwk_tx_power_calibration(sc);
if (err) {
cmn_err(CE_WARN, "iwk_newstate(): "
"failed to set tx power table\n");
mutex_exit(&sc->sc_glock);
return (err);
}
if (ic->ic_opmode == IEEE80211_M_IBSS) {
/*
* allocate and transmit beacon frames
*/
err = iwk_start_tx_beacon(ic);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_newstate(): "
"can't transmit beacon frames\n");
mutex_exit(&sc->sc_glock);
return (err);
}
}
/* start automatic rate control */
mutex_enter(&sc->sc_mt_lock);
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
sc->sc_flags |= IWK_F_RATE_AUTO_CTL;
/* set rate to some reasonable initial value */
i = in->in_rates.ir_nrates - 1;
while (i > 0 && IEEE80211_RATE(i) > 72)
i--;
in->in_txrate = i;
} else {
sc->sc_flags &= ~IWK_F_RATE_AUTO_CTL;
}
mutex_exit(&sc->sc_mt_lock);
/* set LED on after associated */
iwk_set_led(sc, 2, 0, 1);
break;
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_SCAN) {
sc->sc_flags &= ~IWK_F_SCANNING;
}
/* set LED off after init */
iwk_set_led(sc, 2, 1, 0);
break;
case IEEE80211_S_ASSOC:
if (ostate == IEEE80211_S_SCAN) {
sc->sc_flags &= ~IWK_F_SCANNING;
}
break;
}
mutex_exit(&sc->sc_glock);
err = sc->sc_newstate(ic, nstate, arg);
if (nstate == IEEE80211_S_RUN) {
mutex_enter(&sc->sc_glock);
/*
* make initialization for Receiver
* sensitivity calibration
*/
err = iwk_rx_sens_init(sc);
if (err) {
cmn_err(CE_WARN, "iwk_newstate(): "
"failed to init RX sensitivity\n");
mutex_exit(&sc->sc_glock);
return (err);
}
/* make initialization for Receiver gain balance */
err = iwk_rxgain_diff_init(sc);
if (err) {
cmn_err(CE_WARN, "iwk_newstate(): "
"failed to init phy calibration\n");
mutex_exit(&sc->sc_glock);
return (err);
}
mutex_exit(&sc->sc_glock);
}
return (err);
}
static void
iwk_watchdog(void *arg)
{
iwk_sc_t *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
#ifdef DEBUG
timeout_id_t timeout_id = ic->ic_watchdog_timer;
#endif
ieee80211_stop_watchdog(ic);
if ((ic->ic_state != IEEE80211_S_AUTH) &&
(ic->ic_state != IEEE80211_S_ASSOC))
return;
if (ic->ic_bss->in_fails > 0) {
IWK_DBG((IWK_DEBUG_80211, "watchdog (0x%x) reset: "
"node (0x%x)\n", timeout_id, &ic->ic_bss));
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
} else {
IWK_DBG((IWK_DEBUG_80211, "watchdog (0x%x) timeout: "
"node (0x%x), retry (%d)\n",
timeout_id, &ic->ic_bss, ic->ic_bss->in_fails + 1));
ieee80211_watchdog(ic);
}
}
/*ARGSUSED*/
static int iwk_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
const uint8_t mac[IEEE80211_ADDR_LEN])
{
iwk_sc_t *sc = (iwk_sc_t *)ic;
iwk_add_sta_t node;
int err;
uint8_t index1;
switch (k->wk_cipher->ic_cipher) {
case IEEE80211_CIPHER_WEP:
case IEEE80211_CIPHER_TKIP:
return (1); /* sofeware do it. */
case IEEE80211_CIPHER_AES_CCM:
break;
default:
return (0);
}
sc->sc_config.filter_flags &= ~LE_32(RXON_FILTER_DIS_DECRYPT_MSK |
RXON_FILTER_DIS_GRP_DECRYPT_MSK);
mutex_enter(&sc->sc_glock);
/* update ap/multicast node */
(void) memset(&node, 0, sizeof (node));
if (IEEE80211_IS_MULTICAST(mac)) {
(void) memset(node.bssid, 0xff, 6);
node.id = IWK_BROADCAST_ID;
} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
mutex_exit(&sc->sc_glock);
mutex_enter(&sc->sc_ibss.node_tb_lock);
/*
* search for node in ibss node table
*/
for (index1 = IWK_STA_ID; index1 < IWK_STATION_COUNT;
index1++) {
if (sc->sc_ibss.ibss_node_tb[index1].used &&
IEEE80211_ADDR_EQ(sc->sc_ibss.
ibss_node_tb[index1].node.bssid,
mac)) {
break;
}
}
if (index1 >= IWK_BROADCAST_ID) {
cmn_err(CE_WARN, "iwk_key_set(): "
"have no this node in hardware node table\n");
mutex_exit(&sc->sc_ibss.node_tb_lock);
return (0);
} else {
/*
* configure key for given node in hardware
*/
if (k->wk_flags & IEEE80211_KEY_XMIT) {
sc->sc_ibss.ibss_node_tb[index1].
node.key_flags = 0;
sc->sc_ibss.ibss_node_tb[index1].
node.keyp = k->wk_keyix;
} else {
sc->sc_ibss.ibss_node_tb[index1].
node.key_flags = (1 << 14);
sc->sc_ibss.ibss_node_tb[index1].
node.keyp = k->wk_keyix + 4;
}
(void) memcpy(sc->sc_ibss.ibss_node_tb[index1].node.key,
k->wk_key, k->wk_keylen);
sc->sc_ibss.ibss_node_tb[index1].node.key_flags |=
(STA_KEY_FLG_CCMP | (1 << 3) | (k->wk_keyix << 8));
sc->sc_ibss.ibss_node_tb[index1].node.key_flags =
LE_16(sc->sc_ibss.ibss_node_tb[index1].
node.key_flags);
sc->sc_ibss.ibss_node_tb[index1].node.sta_mask =
STA_MODIFY_KEY_MASK;
sc->sc_ibss.ibss_node_tb[index1].node.control = 1;
mutex_enter(&sc->sc_glock);
err = iwk_cmd(sc, REPLY_ADD_STA,
&sc->sc_ibss.ibss_node_tb[index1].node,
sizeof (iwk_add_sta_t), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_key_set(): "
"failed to update IBSS node in hardware\n");
mutex_exit(&sc->sc_glock);
mutex_exit(&sc->sc_ibss.node_tb_lock);
return (0);
}
mutex_exit(&sc->sc_glock);
}
mutex_exit(&sc->sc_ibss.node_tb_lock);
return (1);
} else {
IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
node.id = IWK_AP_ID;
}
if (k->wk_flags & IEEE80211_KEY_XMIT) {
node.key_flags = 0;
node.keyp = k->wk_keyix;
} else {
node.key_flags = (1 << 14);
node.keyp = k->wk_keyix + 4;
}
(void) memcpy(node.key, k->wk_key, k->wk_keylen);
node.key_flags |= (STA_KEY_FLG_CCMP | (1 << 3) | (k->wk_keyix << 8));
node.key_flags = LE_16(node.key_flags);
node.sta_mask = STA_MODIFY_KEY_MASK;
node.control = 1;
err = iwk_cmd(sc, REPLY_ADD_STA, &node, sizeof (node), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_key_set():"
"failed to update ap node\n");
mutex_exit(&sc->sc_glock);
return (0);
}
mutex_exit(&sc->sc_glock);
return (1);
}
/*
* exclusive access to mac begin.
*/
static void
iwk_mac_access_enter(iwk_sc_t *sc)
{
uint32_t tmp;
int n;
tmp = IWK_READ(sc, CSR_GP_CNTRL);
IWK_WRITE(sc, CSR_GP_CNTRL,
tmp | CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/* wait until we succeed */
for (n = 0; n < 1000; n++) {
if ((IWK_READ(sc, CSR_GP_CNTRL) &
(CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP)) ==
CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN)
break;
DELAY(10);
}
if (n == 1000)
IWK_DBG((IWK_DEBUG_PIO, "could not lock memory\n"));
}
/*
* exclusive access to mac end.
*/
static void
iwk_mac_access_exit(iwk_sc_t *sc)
{
uint32_t tmp = IWK_READ(sc, CSR_GP_CNTRL);
IWK_WRITE(sc, CSR_GP_CNTRL,
tmp & ~CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
}
static uint32_t
iwk_mem_read(iwk_sc_t *sc, uint32_t addr)
{
IWK_WRITE(sc, HBUS_TARG_MEM_RADDR, addr);
return (IWK_READ(sc, HBUS_TARG_MEM_RDAT));
}
static void
iwk_mem_write(iwk_sc_t *sc, uint32_t addr, uint32_t data)
{
IWK_WRITE(sc, HBUS_TARG_MEM_WADDR, addr);
IWK_WRITE(sc, HBUS_TARG_MEM_WDAT, data);
}
static uint32_t
iwk_reg_read(iwk_sc_t *sc, uint32_t addr)
{
IWK_WRITE(sc, HBUS_TARG_PRPH_RADDR, addr | (3 << 24));
return (IWK_READ(sc, HBUS_TARG_PRPH_RDAT));
}
static void
iwk_reg_write(iwk_sc_t *sc, uint32_t addr, uint32_t data)
{
IWK_WRITE(sc, HBUS_TARG_PRPH_WADDR, addr | (3 << 24));
IWK_WRITE(sc, HBUS_TARG_PRPH_WDAT, data);
}
static void
iwk_reg_write_region_4(iwk_sc_t *sc, uint32_t addr,
uint32_t *data, int wlen)
{
for (; wlen > 0; wlen--, data++, addr += 4)
iwk_reg_write(sc, addr, LE_32(*data));
}
/*
* ucode load/initialization steps:
* 1) load Bootstrap State Machine (BSM) with "bootstrap" uCode image.
* BSM contains a small memory that *always* stays powered up, so it can
* retain the bootstrap program even when the card is in a power-saving
* power-down state. The BSM loads the small program into ARC processor's
* instruction memory when triggered by power-up.
* 2) load Initialize image via bootstrap program.
* The Initialize image sets up regulatory and calibration data for the
* Runtime/Protocol uCode. This sends a REPLY_ALIVE notification when completed.
* The 4965 reply contains calibration data for temperature, voltage and tx gain
* correction.
*/
static int
iwk_load_firmware(iwk_sc_t *sc)
{
uint32_t *boot_fw = (uint32_t *)sc->sc_boot;
uint32_t size = LE_32(sc->sc_hdr->bootsz);
int n, err = IWK_SUCCESS;
/*
* The physical address bit [4-35] of the initialize uCode.
* In the initialize alive notify interrupt the physical address of
* the runtime ucode will be set for loading.
*/
iwk_mac_access_enter(sc);
iwk_reg_write(sc, BSM_DRAM_INST_PTR_REG,
sc->sc_dma_fw_init_text.cookie.dmac_address >> 4);
iwk_reg_write(sc, BSM_DRAM_DATA_PTR_REG,
sc->sc_dma_fw_init_data.cookie.dmac_address >> 4);
iwk_reg_write(sc, BSM_DRAM_INST_BYTECOUNT_REG,
sc->sc_dma_fw_init_text.cookie.dmac_size);
iwk_reg_write(sc, BSM_DRAM_DATA_BYTECOUNT_REG,
sc->sc_dma_fw_init_data.cookie.dmac_size);
/* load bootstrap code into BSM memory */
iwk_reg_write_region_4(sc, BSM_SRAM_LOWER_BOUND, boot_fw,
size / sizeof (uint32_t));
iwk_reg_write(sc, BSM_WR_MEM_SRC_REG, 0);
iwk_reg_write(sc, BSM_WR_MEM_DST_REG, RTC_INST_LOWER_BOUND);
iwk_reg_write(sc, BSM_WR_DWCOUNT_REG, size / sizeof (uint32_t));
/*
* prepare to load initialize uCode
*/
iwk_reg_write(sc, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
/* wait while the adapter is busy loading the firmware */
for (n = 0; n < 1000; n++) {
if (!(iwk_reg_read(sc, BSM_WR_CTRL_REG) &
BSM_WR_CTRL_REG_BIT_START))
break;
DELAY(10);
}
if (n == 1000) {
cmn_err(CE_WARN, "timeout transferring firmware\n");
err = ETIMEDOUT;
return (err);
}
/* for future power-save mode use */
iwk_reg_write(sc, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
iwk_mac_access_exit(sc);
return (err);
}
/*ARGSUSED*/
static void
iwk_rx_intr(iwk_sc_t *sc, iwk_rx_desc_t *desc, iwk_rx_data_t *data)
{
ieee80211com_t *ic = &sc->sc_ic;
iwk_rx_ring_t *ring = &sc->sc_rxq;
iwk_rx_phy_res_t *stat;
ieee80211_node_t *in;
uint32_t *tail;
struct ieee80211_frame *wh;
mblk_t *mp;
uint16_t len, rssi, mrssi, agc;
int16_t t;
uint32_t ants, i;
struct iwk_rx_non_cfg_phy *phyinfo;
uint32_t crc;
/* assuming not 11n here. cope with 11n in phase-II */
stat = (iwk_rx_phy_res_t *)(desc + 1);
if (stat->cfg_phy_cnt > 20) {
return;
}
for (i = 0; i < RX_RES_PHY_CNT; i++)
stat->non_cfg_phy[i] = LE_16(stat->non_cfg_phy[i]);
phyinfo = (struct iwk_rx_non_cfg_phy *)stat->non_cfg_phy;
agc = (phyinfo->agc_info & IWK_AGC_DB_MASK) >> IWK_AGC_DB_POS;
mrssi = 0;
ants = (LE_16(stat->phy_flags) & RX_PHY_FLAGS_ANTENNAE_MASK) >>
RX_PHY_FLAGS_ANTENNAE_OFFSET;
for (i = 0; i < 3; i++) {
if (ants & (1 << i))
mrssi = MAX(mrssi, phyinfo->rssi_info[i << 1]);
}
t = mrssi - agc - 44; /* t is the dBM value */
/*
* convert dBm to percentage ???
*/
rssi = (100 * 75 * 75 - (-20 - t) * (15 * 75 + 62 * (-20 - t))) /
(75 * 75);
if (rssi > 100)
rssi = 100;
if (rssi < 1)
rssi = 1;
len = LE_16(stat->byte_count);
tail = (uint32_t *)((caddr_t)(stat + 1) + stat->cfg_phy_cnt + len);
bcopy(tail, &crc, 4);
IWK_DBG((IWK_DEBUG_RX, "rx intr: idx=%d phy_len=%x len=%d "
"rate=%x chan=%d tstamp=%x non_cfg_phy_count=%x "
"cfg_phy_count=%x tail=%x", ring->cur, sizeof (*stat),
len, stat->rate.r.s.rate, LE_16(stat->channel),
LE_32(stat->timestampl), stat->non_cfg_phy_cnt,
stat->cfg_phy_cnt, LE_32(crc)));
if ((len < 16) || (len > sc->sc_dmabuf_sz)) {
IWK_DBG((IWK_DEBUG_RX, "rx frame oversize\n"));
return;
}
/*
* discard Rx frames with bad CRC
*/
if ((LE_32(crc) &
(RX_RES_STATUS_NO_CRC32_ERROR | RX_RES_STATUS_NO_RXE_OVERFLOW)) !=
(RX_RES_STATUS_NO_CRC32_ERROR | RX_RES_STATUS_NO_RXE_OVERFLOW)) {
IWK_DBG((IWK_DEBUG_RX, "rx crc error tail: %x\n",
LE_32(crc)));
sc->sc_rx_err++;
return;
}
wh = (struct ieee80211_frame *)
((uint8_t *)(stat + 1)+ stat->cfg_phy_cnt);
if (*(uint8_t *)wh == IEEE80211_FC0_SUBTYPE_ASSOC_RESP) {
sc->sc_assoc_id = *((uint16_t *)(wh + 1) + 2);
IWK_DBG((IWK_DEBUG_RX, "rx : association id = %x\n",
sc->sc_assoc_id));
}
#ifdef DEBUG
if (iwk_dbg_flags & IWK_DEBUG_RX)
ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
#endif
in = ieee80211_find_rxnode(ic, wh);
mp = allocb(len, BPRI_MED);
if (mp) {
(void) memcpy(mp->b_wptr, wh, len);
mp->b_wptr += len;
/* send the frame to the 802.11 layer */
(void) ieee80211_input(ic, mp, in, rssi, 0);
} else {
sc->sc_rx_nobuf++;
IWK_DBG((IWK_DEBUG_RX,
"iwk_rx_intr(): alloc rx buf failed\n"));
}
/* release node reference */
ieee80211_free_node(in);
}
/*ARGSUSED*/
static void
iwk_tx_intr(iwk_sc_t *sc, iwk_rx_desc_t *desc, iwk_rx_data_t *data)
{
ieee80211com_t *ic = &sc->sc_ic;
iwk_tx_ring_t *ring = &sc->sc_txq[desc->hdr.qid & 0x3];
iwk_tx_stat_t *stat = (iwk_tx_stat_t *)(desc + 1);
iwk_amrr_t *amrr = (iwk_amrr_t *)ic->ic_bss;
IWK_DBG((IWK_DEBUG_TX, "tx done: qid=%d idx=%d"
" retries=%d frame_count=%x nkill=%d "
"rate=%x duration=%d status=%x\n",
desc->hdr.qid, desc->hdr.idx, stat->ntries, stat->frame_count,
stat->bt_kill_count, stat->rate.r.s.rate,
LE_16(stat->duration), LE_32(stat->status)));
amrr->txcnt++;
IWK_DBG((IWK_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
if (stat->ntries > 0) {
amrr->retrycnt++;
sc->sc_tx_retries++;
IWK_DBG((IWK_DEBUG_TX, "tx: %d retries\n",
sc->sc_tx_retries));
}
sc->sc_tx_timer = 0;
mutex_enter(&sc->sc_tx_lock);
ring->queued--;
if (ring->queued < 0)
ring->queued = 0;
if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
sc->sc_need_reschedule = 0;
mutex_exit(&sc->sc_tx_lock);
mac_tx_update(ic->ic_mach);
mutex_enter(&sc->sc_tx_lock);
}
mutex_exit(&sc->sc_tx_lock);
}
static void
iwk_cmd_intr(iwk_sc_t *sc, iwk_rx_desc_t *desc)
{
if ((desc->hdr.qid & 7) != 4) {
return;
}
mutex_enter(&sc->sc_glock);
sc->sc_flags |= IWK_F_CMD_DONE;
cv_signal(&sc->sc_cmd_cv);
mutex_exit(&sc->sc_glock);
IWK_DBG((IWK_DEBUG_CMD, "rx cmd: "
"qid=%x idx=%d flags=%x type=0x%x\n",
desc->hdr.qid, desc->hdr.idx, desc->hdr.flags,
desc->hdr.type));
}
static void
iwk_ucode_alive(iwk_sc_t *sc, iwk_rx_desc_t *desc)
{
uint32_t base, i;
struct iwk_alive_resp *ar =
(struct iwk_alive_resp *)(desc + 1);
/* the microcontroller is ready */
IWK_DBG((IWK_DEBUG_FW,
"microcode alive notification minor: %x major: %x type:"
" %x subtype: %x\n",
ar->ucode_minor, ar->ucode_minor, ar->ver_type, ar->ver_subtype));
if (LE_32(ar->is_valid) != UCODE_VALID_OK) {
IWK_DBG((IWK_DEBUG_FW,
"microcontroller initialization failed\n"));
}
if (ar->ver_subtype == INITIALIZE_SUBTYPE) {
IWK_DBG((IWK_DEBUG_FW,
"initialization alive received.\n"));
(void) memcpy(&sc->sc_card_alive_init, ar,
sizeof (struct iwk_init_alive_resp));
/* XXX get temperature */
iwk_mac_access_enter(sc);
iwk_reg_write(sc, BSM_DRAM_INST_PTR_REG,
sc->sc_dma_fw_text.cookie.dmac_address >> 4);
iwk_reg_write(sc, BSM_DRAM_DATA_PTR_REG,
sc->sc_dma_fw_data_bak.cookie.dmac_address >> 4);
iwk_reg_write(sc, BSM_DRAM_DATA_BYTECOUNT_REG,
sc->sc_dma_fw_data.cookie.dmac_size);
iwk_reg_write(sc, BSM_DRAM_INST_BYTECOUNT_REG,
sc->sc_dma_fw_text.cookie.dmac_size | 0x80000000);
iwk_mac_access_exit(sc);
} else {
IWK_DBG((IWK_DEBUG_FW, "runtime alive received.\n"));
(void) memcpy(&sc->sc_card_alive_run, ar,
sizeof (struct iwk_alive_resp));
/*
* Init SCD related registers to make Tx work. XXX
*/
iwk_mac_access_enter(sc);
/* read sram address of data base */
sc->sc_scd_base = iwk_reg_read(sc, SCD_SRAM_BASE_ADDR);
/* clear and init SCD_CONTEXT_DATA_OFFSET area. 128 bytes */
for (base = sc->sc_scd_base + SCD_CONTEXT_DATA_OFFSET, i = 0;
i < 128; i += 4)
iwk_mem_write(sc, base + i, 0);
/* clear and init SCD_TX_STTS_BITMAP_OFFSET area. 256 bytes */
for (base = sc->sc_scd_base + SCD_TX_STTS_BITMAP_OFFSET;
i < 256; i += 4)
iwk_mem_write(sc, base + i, 0);
/* clear and init SCD_TRANSLATE_TBL_OFFSET area. 32 bytes */
for (base = sc->sc_scd_base + SCD_TRANSLATE_TBL_OFFSET;
i < sizeof (uint16_t) * IWK_NUM_QUEUES; i += 4)
iwk_mem_write(sc, base + i, 0);
iwk_reg_write(sc, SCD_DRAM_BASE_ADDR,
sc->sc_dma_sh.cookie.dmac_address >> 10);
iwk_reg_write(sc, SCD_QUEUECHAIN_SEL, 0);
/* initiate the tx queues */
for (i = 0; i < IWK_NUM_QUEUES; i++) {
iwk_reg_write(sc, SCD_QUEUE_RDPTR(i), 0);
IWK_WRITE(sc, HBUS_TARG_WRPTR, (i << 8));
iwk_mem_write(sc, sc->sc_scd_base +
SCD_CONTEXT_QUEUE_OFFSET(i),
(SCD_WIN_SIZE & 0x7f));
iwk_mem_write(sc, sc->sc_scd_base +
SCD_CONTEXT_QUEUE_OFFSET(i) + sizeof (uint32_t),
(SCD_FRAME_LIMIT & 0x7f) << 16);
}
/* interrupt enable on each queue0-7 */
iwk_reg_write(sc, SCD_INTERRUPT_MASK,
(1 << IWK_NUM_QUEUES) - 1);
/* enable each channel 0-7 */
iwk_reg_write(sc, SCD_TXFACT,
SCD_TXFACT_REG_TXFIFO_MASK(0, 7));
/*
* queue 0-7 maps to FIFO 0-7 and
* all queues work under FIFO mode (none-scheduler-ack)
*/
for (i = 0; i < 7; i++) {
iwk_reg_write(sc,
SCD_QUEUE_STATUS_BITS(i),
(1 << SCD_QUEUE_STTS_REG_POS_ACTIVE)|
(i << SCD_QUEUE_STTS_REG_POS_TXF)|
SCD_QUEUE_STTS_REG_MSK);
}
iwk_mac_access_exit(sc);
sc->sc_flags |= IWK_F_FW_INIT;
cv_signal(&sc->sc_fw_cv);
}
}
static uint_t
/* LINTED: argument unused in function: unused */
iwk_rx_softintr(caddr_t arg, caddr_t unused)
{
iwk_sc_t *sc = (iwk_sc_t *)arg;
ieee80211com_t *ic = &sc->sc_ic;
iwk_rx_desc_t *desc;
iwk_rx_data_t *data;
uint32_t index;
mutex_enter(&sc->sc_glock);
if (sc->sc_rx_softint_pending != 1) {
mutex_exit(&sc->sc_glock);
return (DDI_INTR_UNCLAIMED);
}
/* disable interrupts */
IWK_WRITE(sc, CSR_INT_MASK, 0);
mutex_exit(&sc->sc_glock);
/*
* firmware has moved the index of the rx queue, driver get it,
* and deal with it.
*/
index = sc->sc_shared->val0 & 0xfff;
while (sc->sc_rxq.cur != index) {
data = &sc->sc_rxq.data[sc->sc_rxq.cur];
desc = (iwk_rx_desc_t *)data->dma_data.mem_va;
IWK_DBG((IWK_DEBUG_INTR, "rx notification index = %d"
" cur = %d qid=%x idx=%d flags=%x type=%x len=%d\n",
index, sc->sc_rxq.cur, desc->hdr.qid, desc->hdr.idx,
desc->hdr.flags, desc->hdr.type, LE_32(desc->len)));
/* a command other than a tx need to be replied */
if (!(desc->hdr.qid & 0x80) &&
(desc->hdr.type != REPLY_RX_PHY_CMD) &&
(desc->hdr.type != REPLY_TX) &&
(desc->hdr.type != REPLY_TX_PWR_TABLE_CMD) &&
(desc->hdr.type != REPLY_PHY_CALIBRATION_CMD) &&
(desc->hdr.type != SENSITIVITY_CMD))
iwk_cmd_intr(sc, desc);
switch (desc->hdr.type) {
case REPLY_4965_RX:
iwk_rx_intr(sc, desc, data);
break;
case REPLY_TX:
iwk_tx_intr(sc, desc, data);
break;
case REPLY_ALIVE:
iwk_ucode_alive(sc, desc);
break;
case CARD_STATE_NOTIFICATION:
{
uint32_t *status = (uint32_t *)(desc + 1);
IWK_DBG((IWK_DEBUG_RADIO, "state changed to %x\n",
LE_32(*status)));
if (LE_32(*status) & 1) {
/*
* the radio button has to be pushed(OFF). It
* is considered as a hw error, the
* iwk_thread() tries to recover it after the
* button is pushed again(ON)
*/
cmn_err(CE_NOTE,
"iwk_rx_softintr(): "
"Radio transmitter is off\n");
sc->sc_ostate = sc->sc_ic.ic_state;
ieee80211_new_state(&sc->sc_ic,
IEEE80211_S_INIT, -1);
sc->sc_flags |=
(IWK_F_HW_ERR_RECOVER | IWK_F_RADIO_OFF);
}
break;
}
case SCAN_START_NOTIFICATION:
{
iwk_start_scan_t *scan =
(iwk_start_scan_t *)(desc + 1);
IWK_DBG((IWK_DEBUG_SCAN,
"scanning channel %d status %x\n",
scan->chan, LE_32(scan->status)));
ic->ic_curchan = &ic->ic_sup_channels[scan->chan];
break;
}
case SCAN_COMPLETE_NOTIFICATION:
{
iwk_stop_scan_t *scan =
(iwk_stop_scan_t *)(desc + 1);
IWK_DBG((IWK_DEBUG_SCAN,
"completed channel %d (burst of %d) status %02x\n",
scan->chan, scan->nchan, scan->status));
sc->sc_scan_pending++;
break;
}
case STATISTICS_NOTIFICATION:
/* handle statistics notification */
iwk_statistics_notify(sc, desc);
break;
}
sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % RX_QUEUE_SIZE;
}
/*
* driver dealt with what reveived in rx queue and tell the information
* to the firmware.
*/
index = (index == 0) ? RX_QUEUE_SIZE - 1 : index - 1;
IWK_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, index & (~7));
mutex_enter(&sc->sc_glock);
/* re-enable interrupts */
IWK_WRITE(sc, CSR_INT_MASK, CSR_INI_SET_MASK);
sc->sc_rx_softint_pending = 0;
mutex_exit(&sc->sc_glock);
return (DDI_INTR_CLAIMED);
}
static uint_t
/* LINTED: argument unused in function: unused */
iwk_intr(caddr_t arg, caddr_t unused)
{
iwk_sc_t *sc = (iwk_sc_t *)arg;
uint32_t r, rfh;
mutex_enter(&sc->sc_glock);
if (sc->sc_flags & IWK_F_SUSPEND) {
mutex_exit(&sc->sc_glock);
return (DDI_INTR_UNCLAIMED);
}
r = IWK_READ(sc, CSR_INT);
if (r == 0 || r == 0xffffffff) {
mutex_exit(&sc->sc_glock);
return (DDI_INTR_UNCLAIMED);
}
IWK_DBG((IWK_DEBUG_INTR, "interrupt reg %x\n", r));
rfh = IWK_READ(sc, CSR_FH_INT_STATUS);
IWK_DBG((IWK_DEBUG_INTR, "FH interrupt reg %x\n", rfh));
/* disable interrupts */
IWK_WRITE(sc, CSR_INT_MASK, 0);
/* ack interrupts */
IWK_WRITE(sc, CSR_INT, r);
IWK_WRITE(sc, CSR_FH_INT_STATUS, rfh);
if (sc->sc_soft_hdl == NULL) {
mutex_exit(&sc->sc_glock);
return (DDI_INTR_CLAIMED);
}
if (r & (BIT_INT_SWERROR | BIT_INT_ERR)) {
cmn_err(CE_WARN, "fatal firmware error\n");
mutex_exit(&sc->sc_glock);
#ifdef DEBUG
/* dump event and error logs to dmesg */
iwk_write_error_log(sc);
iwk_write_event_log(sc);
#endif /* DEBUG */
iwk_stop(sc);
sc->sc_ostate = sc->sc_ic.ic_state;
/* not capable of fast recovery */
if (!IWK_CHK_FAST_RECOVER(sc))
ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
sc->sc_flags |= IWK_F_HW_ERR_RECOVER;
return (DDI_INTR_CLAIMED);
}
if (r & BIT_INT_RF_KILL) {
uint32_t tmp = IWK_READ(sc, CSR_GP_CNTRL);
if (tmp & (1 << 27))
cmn_err(CE_NOTE, "RF switch: radio on\n");
}
if ((r & (BIT_INT_FH_RX | BIT_INT_SW_RX)) ||
(rfh & FH_INT_RX_MASK)) {
sc->sc_rx_softint_pending = 1;
(void) ddi_intr_trigger_softint(sc->sc_soft_hdl, NULL);
}
if (r & BIT_INT_ALIVE) {
IWK_DBG((IWK_DEBUG_FW, "firmware initialized.\n"));
}
/* re-enable interrupts */
IWK_WRITE(sc, CSR_INT_MASK, CSR_INI_SET_MASK);
mutex_exit(&sc->sc_glock);
return (DDI_INTR_CLAIMED);
}
static uint8_t
iwk_rate_to_plcp(int rate)
{
uint8_t ret;
switch (rate) {
/* CCK rates */
case 2:
ret = 0xa;
break;
case 4:
ret = 0x14;
break;
case 11:
ret = 0x37;
break;
case 22:
ret = 0x6e;
break;
/* OFDM rates */
case 12:
ret = 0xd;
break;
case 18:
ret = 0xf;
break;
case 24:
ret = 0x5;
break;
case 36:
ret = 0x7;
break;
case 48:
ret = 0x9;
break;
case 72:
ret = 0xb;
break;
case 96:
ret = 0x1;
break;
case 108:
ret = 0x3;
break;
default:
ret = 0;
break;
}
return (ret);
}
static mblk_t *
iwk_m_tx(void *arg, mblk_t *mp)
{
iwk_sc_t *sc = (iwk_sc_t *)arg;
ieee80211com_t *ic = &sc->sc_ic;
mblk_t *next;
if (sc->sc_flags & IWK_F_SUSPEND) {
freemsgchain(mp);
return (NULL);
}
if (ic->ic_state != IEEE80211_S_RUN) {
freemsgchain(mp);
return (NULL);
}
if ((sc->sc_flags & IWK_F_HW_ERR_RECOVER) &&
IWK_CHK_FAST_RECOVER(sc)) {
IWK_DBG((IWK_DEBUG_FW, "iwk_m_tx(): hold queue\n"));
return (mp);
}
while (mp != NULL) {
next = mp->b_next;
mp->b_next = NULL;
if (iwk_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
mp->b_next = next;
break;
}
mp = next;
}
return (mp);
}
/* ARGSUSED */
static int
iwk_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
{
iwk_sc_t *sc = (iwk_sc_t *)ic;
iwk_tx_ring_t *ring;
iwk_tx_desc_t *desc;
iwk_tx_data_t *data;
iwk_cmd_t *cmd;
iwk_tx_cmd_t *tx;
ieee80211_node_t *in;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
mblk_t *m, *m0;
int rate, hdrlen, len, len0, mblen, off, err = IWK_SUCCESS;
uint16_t masks = 0;
uint8_t index, index1, index2;
ring = &sc->sc_txq[0];
data = &ring->data[ring->cur];
desc = data->desc;
cmd = data->cmd;
bzero(desc, sizeof (*desc));
bzero(cmd, sizeof (*cmd));
mutex_enter(&sc->sc_tx_lock);
if (sc->sc_flags & IWK_F_SUSPEND) {
mutex_exit(&sc->sc_tx_lock);
if ((type & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_DATA) {
freemsg(mp);
}
err = IWK_FAIL;
goto exit;
}
if (ring->queued > ring->count - 64) {
IWK_DBG((IWK_DEBUG_TX, "iwk_send(): no txbuf\n"));
sc->sc_need_reschedule = 1;
mutex_exit(&sc->sc_tx_lock);
if ((type & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_DATA) {
freemsg(mp);
}
sc->sc_tx_nobuf++;
err = IWK_FAIL;
goto exit;
}
mutex_exit(&sc->sc_tx_lock);
hdrlen = sizeof (struct ieee80211_frame);
m = allocb(msgdsize(mp) + 32, BPRI_MED);
if (m == NULL) { /* can not alloc buf, drop this package */
cmn_err(CE_WARN,
"iwk_send(): failed to allocate msgbuf\n");
freemsg(mp);
err = IWK_SUCCESS;
goto exit;
}
for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
mblen = MBLKL(m0);
(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
off += mblen;
}
m->b_wptr += off;
freemsg(mp);
wh = (struct ieee80211_frame *)m->b_rptr;
if (ic->ic_opmode == IEEE80211_M_IBSS &&
(!(IEEE80211_IS_MULTICAST(wh->i_addr1)))) {
mutex_enter(&sc->sc_glock);
mutex_enter(&sc->sc_ibss.node_tb_lock);
/*
* search for node in ibss node table
*/
for (index1 = IWK_STA_ID;
index1 < IWK_STATION_COUNT; index1++) {
if (sc->sc_ibss.ibss_node_tb[index1].used &&
IEEE80211_ADDR_EQ(sc->sc_ibss.
ibss_node_tb[index1].node.bssid,
wh->i_addr1)) {
break;
}
}
/*
* if don't find in ibss node table
*/
if (index1 >= IWK_BROADCAST_ID) {
err = iwk_clean_add_node_ibss(ic,
wh->i_addr1, &index2);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_send(): "
"failed to clean all nodes "
"and add one node\n");
mutex_exit(&sc->sc_ibss.node_tb_lock);
mutex_exit(&sc->sc_glock);
freemsg(m);
sc->sc_tx_err++;
err = IWK_SUCCESS;
goto exit;
}
index = index2;
} else {
index = index1;
}
mutex_exit(&sc->sc_ibss.node_tb_lock);
mutex_exit(&sc->sc_glock);
}
in = ieee80211_find_txnode(ic, wh->i_addr1);
if (in == NULL) {
cmn_err(CE_WARN, "iwk_send(): failed to find tx node\n");
freemsg(m);
sc->sc_tx_err++;
err = IWK_SUCCESS;
goto exit;
}
(void) ieee80211_encap(ic, m, in);
cmd->hdr.type = REPLY_TX;
cmd->hdr.flags = 0;
cmd->hdr.qid = ring->qid;
cmd->hdr.idx = ring->cur;
tx = (iwk_tx_cmd_t *)cmd->data;
tx->tx_flags = 0;
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
tx->tx_flags &= ~(LE_32(TX_CMD_FLG_ACK_MSK));
} else {
tx->tx_flags |= LE_32(TX_CMD_FLG_ACK_MSK);
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, m);
if (k == NULL) {
freemsg(m);
sc->sc_tx_err++;
err = IWK_SUCCESS;
goto exit;
}
if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
tx->sec_ctl = 2; /* for CCMP */
tx->tx_flags |= LE_32(TX_CMD_FLG_ACK_MSK);
(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
}
/* packet header may have moved, reset our local pointer */
wh = (struct ieee80211_frame *)m->b_rptr;
}
len = msgdsize(m);
#ifdef DEBUG
if (iwk_dbg_flags & IWK_DEBUG_TX)
ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
#endif
/* pickup a rate */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
/* mgmt frames are sent at 1M */
rate = in->in_rates.ir_rates[0];
} else {
/*
* do it here for the software way rate control.
* later for rate scaling in hardware.
* maybe like the following, for management frame:
* tx->initial_rate_index = LINK_QUAL_MAX_RETRY_NUM - 1;
* for data frame:
* tx->tx_flags |= (LE_32(TX_CMD_FLG_STA_RATE_MSK));
* rate = in->in_rates.ir_rates[in->in_txrate];
* tx->initial_rate_index = 1;
*
* now the txrate is determined in tx cmd flags, set to the
* max value 54M for 11g and 11M for 11b.
*/
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
rate = ic->ic_fixed_rate;
} else {
rate = in->in_rates.ir_rates[in->in_txrate];
}
}
rate &= IEEE80211_RATE_VAL;
IWK_DBG((IWK_DEBUG_TX, "tx rate[%d of %d] = %x",
in->in_txrate, in->in_rates.ir_nrates, rate));
tx->tx_flags |= (LE_32(TX_CMD_FLG_SEQ_CTL_MSK));
len0 = roundup(4 + sizeof (iwk_tx_cmd_t) + hdrlen, 4);
if (len0 != (4 + sizeof (iwk_tx_cmd_t) + hdrlen))
tx->tx_flags |= LE_32(TX_CMD_FLG_MH_PAD_MSK);
/* retrieve destination node's id */
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
tx->sta_id = IWK_BROADCAST_ID;
} else {
if (ic->ic_opmode == IEEE80211_M_IBSS)
tx->sta_id = index;
else
tx->sta_id = IWK_AP_ID;
}
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
/* tell h/w to set timestamp in probe responses */
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
tx->tx_flags |= LE_32(TX_CMD_FLG_TSF_MSK);
if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
tx->timeout.pm_frame_timeout = LE_16(3);
else
tx->timeout.pm_frame_timeout = LE_16(2);
} else
tx->timeout.pm_frame_timeout = 0;
if (rate == 2 || rate == 4 || rate == 11 || rate == 22)
masks |= RATE_MCS_CCK_MSK;
masks |= RATE_MCS_ANT_B_MSK;
tx->rate.r.rate_n_flags = LE_32(iwk_rate_to_plcp(rate) | masks);
IWK_DBG((IWK_DEBUG_TX, "tx flag = %x",
LE_32(tx->tx_flags)));
tx->rts_retry_limit = 60;
tx->data_retry_limit = 15;
tx->stop_time.life_time = LE_32(0xffffffff);
tx->len = LE_16(len);
tx->dram_lsb_ptr =
LE_32(data->paddr_cmd + 4 + offsetof(iwk_tx_cmd_t, scratch));
tx->dram_msb_ptr = 0;
tx->driver_txop = 0;
tx->next_frame_len = 0;
(void) memcpy(tx + 1, m->b_rptr, hdrlen);
m->b_rptr += hdrlen;
(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
IWK_DBG((IWK_DEBUG_TX, "sending data: qid=%d idx=%d len=%d",
ring->qid, ring->cur, len));
/*
* first segment includes the tx cmd plus the 802.11 header,
* the second includes the remaining of the 802.11 frame.
*/
desc->val0 = 2 << 24;
desc->pa[0].tb1_addr = data->paddr_cmd;
desc->pa[0].val1 = ((len0 << 4) & 0xfff0) |
((data->dma_data.cookie.dmac_address & 0xffff) << 16);
desc->pa[0].val2 =
((data->dma_data.cookie.dmac_address & 0xffff0000) >> 16) |
((len - hdrlen) << 20);
IWK_DBG((IWK_DEBUG_TX, "phy addr1 = 0x%x phy addr2 = 0x%x "
"len1 = 0x%x, len2 = 0x%x val1 = 0x%x val2 = 0x%x",
data->paddr_cmd, data->dma_data.cookie.dmac_address,
len0, len - hdrlen, LE_32(desc->pa[0].val1),
LE_32(desc->pa[0].val2)));
mutex_enter(&sc->sc_tx_lock);
ring->queued++;
mutex_exit(&sc->sc_tx_lock);
/* kick ring */
sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
tfd_offset[ring->cur].val = 8 + len;
if (ring->cur < IWK_MAX_WIN_SIZE) {
sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
tfd_offset[IWK_QUEUE_SIZE + ring->cur].val = 8 + len;
}
IWK_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
IWK_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
ring->cur = (ring->cur + 1) % ring->count;
IWK_WRITE(sc, HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
freemsg(m);
/* release node reference */
ieee80211_free_node(in);
ic->ic_stats.is_tx_bytes += len;
ic->ic_stats.is_tx_frags++;
if (sc->sc_tx_timer == 0)
sc->sc_tx_timer = 4;
exit:
return (err);
}
static void
iwk_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
{
iwk_sc_t *sc = (iwk_sc_t *)arg;
ieee80211com_t *ic = &sc->sc_ic;
enum ieee80211_opmode oldmod;
iwk_tx_power_table_cmd_t txpower;
iwk_add_sta_t node;
iwk_link_quality_cmd_t link_quality;
uint16_t masks = 0;
int i, err, err1;
oldmod = ic->ic_opmode;
err = ieee80211_ioctl(ic, wq, mp);
/*
* return to STA mode
*/
if ((0 == err || ENETRESET == err) && (oldmod != ic->ic_opmode) &&
(ic->ic_opmode == IEEE80211_M_STA)) {
/* configure rxon */
(void) memset(&sc->sc_config, 0, sizeof (iwk_rxon_cmd_t));
IEEE80211_ADDR_COPY(sc->sc_config.node_addr, ic->ic_macaddr);
IEEE80211_ADDR_COPY(sc->sc_config.wlap_bssid, ic->ic_macaddr);
sc->sc_config.chan =
LE_16(ieee80211_chan2ieee(ic, ic->ic_curchan));
sc->sc_config.flags = LE_32(RXON_FLG_TSF2HOST_MSK |
RXON_FLG_AUTO_DETECT_MSK |
RXON_FLG_BAND_24G_MSK);
sc->sc_config.flags &= LE_32(~RXON_FLG_CCK_MSK);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
sc->sc_config.dev_type = RXON_DEV_TYPE_ESS;
sc->sc_config.filter_flags |=
LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
RXON_FILTER_DIS_DECRYPT_MSK |
RXON_FILTER_DIS_GRP_DECRYPT_MSK);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
sc->sc_config.dev_type = RXON_DEV_TYPE_IBSS;
sc->sc_config.flags |=
LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
sc->sc_config.filter_flags =
LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
RXON_FILTER_DIS_DECRYPT_MSK |
RXON_FILTER_DIS_GRP_DECRYPT_MSK);
break;
case IEEE80211_M_HOSTAP:
sc->sc_config.dev_type = RXON_DEV_TYPE_AP;
break;
case IEEE80211_M_MONITOR:
sc->sc_config.dev_type = RXON_DEV_TYPE_SNIFFER;
sc->sc_config.filter_flags |=
LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
RXON_FILTER_CTL2HOST_MSK |
RXON_FILTER_PROMISC_MSK);
break;
}
sc->sc_config.cck_basic_rates = 0x0f;
sc->sc_config.ofdm_basic_rates = 0xff;
sc->sc_config.ofdm_ht_single_stream_basic_rates = 0xff;
sc->sc_config.ofdm_ht_dual_stream_basic_rates = 0xff;
/* set antenna */
mutex_enter(&sc->sc_glock);
sc->sc_config.rx_chain = LE_16(RXON_RX_CHAIN_DRIVER_FORCE_MSK |
(0x7 << RXON_RX_CHAIN_VALID_POS) |
(0x6 << RXON_RX_CHAIN_FORCE_SEL_POS) |
(0x7 << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS));
err1 = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
sizeof (iwk_rxon_cmd_t), 1);
if (err1 != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_m_ioctl(): "
"failed to set configure command"
" please run (ifconfig unplumb and"
" ifconfig plumb)\n");
}
/*
* set Tx power for 2.4GHz channels
* (need further investigation. fix tx power at present)
*/
(void) memset(&txpower, 0, sizeof (txpower));
txpower.band = 1; /* for 2.4G */
txpower.channel = sc->sc_config.chan;
txpower.channel_normal_width = 0;
for (i = 0; i < POWER_TABLE_NUM_HT_OFDM_ENTRIES; i++) {
txpower.tx_power.ht_ofdm_power[i].
s.ramon_tx_gain = LE_16(0x3f3f);
txpower.tx_power.ht_ofdm_power[i].
s.dsp_predis_atten = LE_16(110 | (110 << 8));
}
txpower.tx_power.legacy_cck_power.s.
ramon_tx_gain = LE_16(0x3f3f);
txpower.tx_power.legacy_cck_power.s.
dsp_predis_atten = LE_16(110 | (110 << 8));
err1 = iwk_cmd(sc, REPLY_TX_PWR_TABLE_CMD, &txpower,
sizeof (txpower), 1);
if (err1 != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_m_ioctl(): failed to set txpower"
" please run (ifconfig unplumb "
"and ifconfig plumb)\n");
}
/* add broadcast node so that we can send broadcast frame */
(void) memset(&node, 0, sizeof (node));
(void) memset(node.bssid, 0xff, 6);
node.id = IWK_BROADCAST_ID;
err1 = iwk_cmd(sc, REPLY_ADD_STA, &node, sizeof (node), 1);
if (err1 != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_m_ioctl(): "
"failed to add broadcast node\n");
}
/* TX_LINK_QUALITY cmd */
(void) memset(&link_quality, 0, sizeof (link_quality));
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
masks |= RATE_MCS_CCK_MSK;
masks |= RATE_MCS_ANT_B_MSK;
masks &= ~RATE_MCS_ANT_A_MSK;
link_quality.rate_n_flags[i] =
LE_32(iwk_rate_to_plcp(2) | masks);
}
link_quality.general_params.single_stream_ant_msk = 2;
link_quality.general_params.dual_stream_ant_msk = 3;
link_quality.agg_params.agg_dis_start_th = 3;
link_quality.agg_params.agg_time_limit = LE_16(4000);
link_quality.sta_id = IWK_BROADCAST_ID;
err1 = iwk_cmd(sc, REPLY_TX_LINK_QUALITY_CMD, &link_quality,
sizeof (link_quality), 1);
if (err1 != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_m_ioctl(): "
"failed to config link quality table\n");
}
mutex_exit(&sc->sc_glock);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
if (err == ENETRESET) {
/*
* This is special for the hidden AP connection.
* In any case, we should make sure only one 'scan'
* in the driver for a 'connect' CLI command. So
* when connecting to a hidden AP, the scan is just
* sent out to the air when we know the desired
* essid of the AP we want to connect.
*/
if (ic->ic_des_esslen) {
if (sc->sc_flags & IWK_F_RUNNING) {
iwk_m_stop(sc);
(void) iwk_m_start(sc);
(void) ieee80211_new_state(ic,
IEEE80211_S_SCAN, -1);
}
}
}
}
/*
* callback functions for set/get properties
*/
/* ARGSUSED */
static int
iwk_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
{
int err = 0;
iwk_sc_t *sc = (iwk_sc_t *)arg;
err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
pr_flags, wldp_length, wldp_buf, perm);
return (err);
}
static int
iwk_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, const void *wldp_buf)
{
int err;
iwk_sc_t *sc = (iwk_sc_t *)arg;
ieee80211com_t *ic = &sc->sc_ic;
err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length,
wldp_buf);
if (err == ENETRESET) {
if (ic->ic_des_esslen) {
if (sc->sc_flags & IWK_F_RUNNING) {
iwk_m_stop(sc);
(void) iwk_m_start(sc);
(void) ieee80211_new_state(ic,
IEEE80211_S_SCAN, -1);
}
}
err = 0;
}
return (err);
}
/*ARGSUSED*/
static int
iwk_m_stat(void *arg, uint_t stat, uint64_t *val)
{
iwk_sc_t *sc = (iwk_sc_t *)arg;
ieee80211com_t *ic = &sc->sc_ic;
ieee80211_node_t *in;
mutex_enter(&sc->sc_glock);
switch (stat) {
case MAC_STAT_IFSPEED:
in = ic->ic_bss;
*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
IEEE80211_RATE(in->in_txrate) :
ic->ic_fixed_rate) / 2 * 1000000;
break;
case MAC_STAT_NOXMTBUF:
*val = sc->sc_tx_nobuf;
break;
case MAC_STAT_NORCVBUF:
*val = sc->sc_rx_nobuf;
break;
case MAC_STAT_IERRORS:
*val = sc->sc_rx_err;
break;
case MAC_STAT_RBYTES:
*val = ic->ic_stats.is_rx_bytes;
break;
case MAC_STAT_IPACKETS:
*val = ic->ic_stats.is_rx_frags;
break;
case MAC_STAT_OBYTES:
*val = ic->ic_stats.is_tx_bytes;
break;
case MAC_STAT_OPACKETS:
*val = ic->ic_stats.is_tx_frags;
break;
case MAC_STAT_OERRORS:
case WIFI_STAT_TX_FAILED:
*val = sc->sc_tx_err;
break;
case WIFI_STAT_TX_RETRANS:
*val = sc->sc_tx_retries;
break;
case WIFI_STAT_FCS_ERRORS:
case WIFI_STAT_WEP_ERRORS:
case WIFI_STAT_TX_FRAGS:
case WIFI_STAT_MCAST_TX:
case WIFI_STAT_RTS_SUCCESS:
case WIFI_STAT_RTS_FAILURE:
case WIFI_STAT_ACK_FAILURE:
case WIFI_STAT_RX_FRAGS:
case WIFI_STAT_MCAST_RX:
case WIFI_STAT_RX_DUPS:
mutex_exit(&sc->sc_glock);
return (ieee80211_stat(ic, stat, val));
default:
mutex_exit(&sc->sc_glock);
return (ENOTSUP);
}
mutex_exit(&sc->sc_glock);
return (IWK_SUCCESS);
}
static int
iwk_m_start(void *arg)
{
iwk_sc_t *sc = (iwk_sc_t *)arg;
ieee80211com_t *ic = &sc->sc_ic;
int err;
err = iwk_init(sc);
if (err != IWK_SUCCESS) {
/*
* The hw init err(eg. RF is OFF). Return Success to make
* the 'plumb' succeed. The iwk_thread() tries to re-init
* background.
*/
mutex_enter(&sc->sc_glock);
sc->sc_flags |= IWK_F_HW_ERR_RECOVER;
mutex_exit(&sc->sc_glock);
return (IWK_SUCCESS);
}
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
mutex_enter(&sc->sc_glock);
sc->sc_flags |= IWK_F_RUNNING;
mutex_exit(&sc->sc_glock);
return (IWK_SUCCESS);
}
static void
iwk_m_stop(void *arg)
{
iwk_sc_t *sc = (iwk_sc_t *)arg;
ieee80211com_t *ic = &sc->sc_ic;
iwk_stop(sc);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
ieee80211_stop_watchdog(ic);
mutex_enter(&sc->sc_mt_lock);
sc->sc_flags &= ~IWK_F_HW_ERR_RECOVER;
sc->sc_flags &= ~IWK_F_RATE_AUTO_CTL;
mutex_exit(&sc->sc_mt_lock);
mutex_enter(&sc->sc_glock);
sc->sc_flags &= ~IWK_F_RUNNING;
mutex_exit(&sc->sc_glock);
}
/*ARGSUSED*/
static int
iwk_m_unicst(void *arg, const uint8_t *macaddr)
{
iwk_sc_t *sc = (iwk_sc_t *)arg;
ieee80211com_t *ic = &sc->sc_ic;
int err;
if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
mutex_enter(&sc->sc_glock);
err = iwk_config(sc);
mutex_exit(&sc->sc_glock);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN,
"iwk_m_unicst(): "
"failed to configure device\n");
goto fail;
}
}
return (IWK_SUCCESS);
fail:
return (err);
}
/*ARGSUSED*/
static int
iwk_m_multicst(void *arg, boolean_t add, const uint8_t *m)
{
return (IWK_SUCCESS);
}
/*ARGSUSED*/
static int
iwk_m_promisc(void *arg, boolean_t on)
{
return (IWK_SUCCESS);
}
static void
iwk_thread(iwk_sc_t *sc)
{
ieee80211com_t *ic = &sc->sc_ic;
clock_t clk;
int times = 0, err, n = 0, timeout = 0;
uint32_t tmp;
mutex_enter(&sc->sc_mt_lock);
while (sc->sc_mf_thread_switch) {
tmp = IWK_READ(sc, CSR_GP_CNTRL);
if (tmp & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) {
sc->sc_flags &= ~IWK_F_RADIO_OFF;
} else {
sc->sc_flags |= IWK_F_RADIO_OFF;
}
/*
* If in SUSPEND or the RF is OFF, do nothing
*/
if ((sc->sc_flags & IWK_F_SUSPEND) ||
(sc->sc_flags & IWK_F_RADIO_OFF)) {
mutex_exit(&sc->sc_mt_lock);
delay(drv_usectohz(100000));
mutex_enter(&sc->sc_mt_lock);
continue;
}
/*
* recovery fatal error
*/
if (ic->ic_mach &&
(sc->sc_flags & IWK_F_HW_ERR_RECOVER)) {
IWK_DBG((IWK_DEBUG_FW,
"iwk_thread(): "
"try to recover fatal hw error: %d\n", times++));
iwk_stop(sc);
if (IWK_CHK_FAST_RECOVER(sc)) {
/* save runtime configuration */
bcopy(&sc->sc_config, &sc->sc_config_save,
sizeof (sc->sc_config));
} else {
mutex_exit(&sc->sc_mt_lock);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
delay(drv_usectohz(2000000 + n*500000));
mutex_enter(&sc->sc_mt_lock);
}
err = iwk_init(sc);
if (err != IWK_SUCCESS) {
n++;
if (n < 20)
continue;
}
n = 0;
if (!err)
sc->sc_flags |= IWK_F_RUNNING;
if (!IWK_CHK_FAST_RECOVER(sc) ||
iwk_fast_recover(sc) != IWK_SUCCESS) {
sc->sc_flags &= ~IWK_F_HW_ERR_RECOVER;
mutex_exit(&sc->sc_mt_lock);
delay(drv_usectohz(2000000));
if (sc->sc_ostate != IEEE80211_S_INIT)
ieee80211_new_state(ic,
IEEE80211_S_SCAN, 0);
mutex_enter(&sc->sc_mt_lock);
}
}
if (ic->ic_mach && (sc->sc_flags & IWK_F_LAZY_RESUME)) {
IWK_DBG((IWK_DEBUG_RESUME,
"iwk_thread(): lazy resume\n"));
sc->sc_flags &= ~IWK_F_LAZY_RESUME;
mutex_exit(&sc->sc_mt_lock);
/*
* NB: under WPA mode, this call hangs (door problem?)
* when called in iwk_attach() and iwk_detach() while
* system is in the procedure of CPR. To be safe, let
* the thread do this.
*/
ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
mutex_enter(&sc->sc_mt_lock);
}
if (ic->ic_mach &&
(sc->sc_flags & IWK_F_SCANNING) && sc->sc_scan_pending) {
IWK_DBG((IWK_DEBUG_SCAN,
"iwk_thread(): "
"wait for probe response\n"));
sc->sc_scan_pending--;
mutex_exit(&sc->sc_mt_lock);
delay(drv_usectohz(200000));
if (sc->sc_flags & IWK_F_SCANNING)
ieee80211_next_scan(ic);
mutex_enter(&sc->sc_mt_lock);
}
/*
* rate ctl
*/
if (ic->ic_mach &&
(sc->sc_flags & IWK_F_RATE_AUTO_CTL)) {
clk = ddi_get_lbolt();
if (clk > sc->sc_clk + drv_usectohz(500000)) {
iwk_amrr_timeout(sc);
}
}
if ((ic->ic_state == IEEE80211_S_RUN) &&
(ic->ic_beaconmiss++ > 50)) { /* 5 seconds */
cmn_err(CE_WARN, "iwk: beacon missed for 5 seconds\n");
(void) ieee80211_new_state(ic,
IEEE80211_S_INIT, -1);
}
mutex_exit(&sc->sc_mt_lock);
delay(drv_usectohz(100000));
mutex_enter(&sc->sc_mt_lock);
if (sc->sc_tx_timer) {
timeout++;
if (timeout == 10) {
sc->sc_tx_timer--;
if (sc->sc_tx_timer == 0) {
sc->sc_flags |= IWK_F_HW_ERR_RECOVER;
sc->sc_ostate = IEEE80211_S_RUN;
IWK_DBG((IWK_DEBUG_FW,
"iwk_thread(): try to recover from"
" 'send fail\n"));
}
timeout = 0;
}
}
}
sc->sc_mf_thread = NULL;
cv_signal(&sc->sc_mt_cv);
mutex_exit(&sc->sc_mt_lock);
}
/*
* Send a command to the firmware.
*/
static int
iwk_cmd(iwk_sc_t *sc, int code, const void *buf, int size, int async)
{
iwk_tx_ring_t *ring = &sc->sc_txq[IWK_CMD_QUEUE_NUM];
iwk_tx_desc_t *desc;
iwk_cmd_t *cmd;
clock_t clk;
ASSERT(size <= sizeof (cmd->data));
ASSERT(mutex_owned(&sc->sc_glock));
IWK_DBG((IWK_DEBUG_CMD, "iwk_cmd() code[%d]", code));
desc = ring->data[ring->cur].desc;
cmd = ring->data[ring->cur].cmd;
cmd->hdr.type = (uint8_t)code;
cmd->hdr.flags = 0;
cmd->hdr.qid = ring->qid;
cmd->hdr.idx = ring->cur;
(void) memcpy(cmd->data, buf, size);
(void) memset(desc, 0, sizeof (*desc));
desc->val0 = 1 << 24;
desc->pa[0].tb1_addr =
(uint32_t)(ring->data[ring->cur].paddr_cmd & 0xffffffff);
desc->pa[0].val1 = ((4 + size) << 4) & 0xfff0;
/* kick cmd ring XXX */
sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
tfd_offset[ring->cur].val = 8;
if (ring->cur < IWK_MAX_WIN_SIZE) {
sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
tfd_offset[IWK_QUEUE_SIZE + ring->cur].val = 8;
}
ring->cur = (ring->cur + 1) % ring->count;
IWK_WRITE(sc, HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
if (async)
return (IWK_SUCCESS);
else {
sc->sc_flags &= ~IWK_F_CMD_DONE;
clk = ddi_get_lbolt() + drv_usectohz(2000000);
while (!(sc->sc_flags & IWK_F_CMD_DONE)) {
if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk) <
0)
break;
}
if (sc->sc_flags & IWK_F_CMD_DONE)
return (IWK_SUCCESS);
else
return (IWK_FAIL);
}
}
static void
iwk_set_led(iwk_sc_t *sc, uint8_t id, uint8_t off, uint8_t on)
{
iwk_led_cmd_t led;
led.interval = LE_32(100000); /* unit: 100ms */
led.id = id;
led.off = off;
led.on = on;
(void) iwk_cmd(sc, REPLY_LEDS_CMD, &led, sizeof (led), 1);
}
static int
iwk_hw_set_before_auth(iwk_sc_t *sc)
{
ieee80211com_t *ic = &sc->sc_ic;
ieee80211_node_t *in = ic->ic_bss;
iwk_add_sta_t node;
iwk_link_quality_cmd_t link_quality;
struct ieee80211_rateset rs;
uint16_t masks = 0, rate;
int i, err;
if (in->in_chan == IEEE80211_CHAN_ANYC) {
cmn_err(CE_WARN, "iwk_hw_set_before_auth():"
"channel (%d) isn't in proper range\n",
LE_16(ieee80211_chan2ieee(ic, in->in_chan)));
return (IWK_FAIL);
}
/* update adapter's configuration according the info of target AP */
IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
sc->sc_config.chan = LE_16(ieee80211_chan2ieee(ic, in->in_chan));
if (ic->ic_curmode == IEEE80211_MODE_11B) {
sc->sc_config.cck_basic_rates = 0x03;
sc->sc_config.ofdm_basic_rates = 0;
} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
(IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
sc->sc_config.cck_basic_rates = 0;
sc->sc_config.ofdm_basic_rates = 0x15;
} else { /* assume 802.11b/g */
sc->sc_config.cck_basic_rates = 0x0f;
sc->sc_config.ofdm_basic_rates = 0xff;
}
sc->sc_config.flags &= ~LE_32(RXON_FLG_SHORT_PREAMBLE_MSK |
RXON_FLG_SHORT_SLOT_MSK);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->sc_config.flags |= LE_32(RXON_FLG_SHORT_SLOT_MSK);
else
sc->sc_config.flags &= LE_32(~RXON_FLG_SHORT_SLOT_MSK);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->sc_config.flags |= LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
else
sc->sc_config.flags &= LE_32(~RXON_FLG_SHORT_PREAMBLE_MSK);
IWK_DBG((IWK_DEBUG_80211, "config chan %d flags %x "
"filter_flags %x cck %x ofdm %x"
" bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
LE_16(sc->sc_config.chan), LE_32(sc->sc_config.flags),
LE_32(sc->sc_config.filter_flags),
sc->sc_config.cck_basic_rates, sc->sc_config.ofdm_basic_rates,
sc->sc_config.bssid[0], sc->sc_config.bssid[1],
sc->sc_config.bssid[2], sc->sc_config.bssid[3],
sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
err = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
sizeof (iwk_rxon_cmd_t), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_hw_set_before_auth():"
" failed to config chan%d\n",
sc->sc_config.chan);
return (err);
}
/* obtain current temperature of chipset */
sc->sc_tempera = iwk_curr_tempera(sc);
/* make Tx power calibration to determine the gains of DSP and radio */
err = iwk_tx_power_calibration(sc);
if (err) {
cmn_err(CE_WARN, "iwk_hw_set_before_auth():"
"failed to set tx power table\n");
return (err);
}
/* add default AP node */
(void) memset(&node, 0, sizeof (node));
IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
node.id = IWK_AP_ID;
err = iwk_cmd(sc, REPLY_ADD_STA, &node, sizeof (node), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_hw_set_before_auth(): "
"failed to add BSS node\n");
return (err);
}
/* TX_LINK_QUALITY cmd */
(void) memset(&link_quality, 0, sizeof (link_quality));
rs = ic->ic_sup_rates[ieee80211_chan2mode(ic, ic->ic_curchan)];
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
if (i < rs.ir_nrates)
rate = rs.ir_rates[rs.ir_nrates - i];
else
rate = 2;
if (rate == 2 || rate == 4 || rate == 11 || rate == 22)
masks |= RATE_MCS_CCK_MSK;
masks |= RATE_MCS_ANT_B_MSK;
masks &= ~RATE_MCS_ANT_A_MSK;
link_quality.rate_n_flags[i] =
LE_32(iwk_rate_to_plcp(rate) | masks);
}
link_quality.general_params.single_stream_ant_msk = 2;
link_quality.general_params.dual_stream_ant_msk = 3;
link_quality.agg_params.agg_dis_start_th = 3;
link_quality.agg_params.agg_time_limit = LE_16(4000);
link_quality.sta_id = IWK_AP_ID;
err = iwk_cmd(sc, REPLY_TX_LINK_QUALITY_CMD, &link_quality,
sizeof (link_quality), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_hw_set_before_auth(): "
"failed to config link quality table\n");
return (err);
}
return (IWK_SUCCESS);
}
/*
* Send a scan request(assembly scan cmd) to the firmware.
*/
static int
iwk_scan(iwk_sc_t *sc)
{
ieee80211com_t *ic = &sc->sc_ic;
iwk_tx_ring_t *ring = &sc->sc_txq[IWK_CMD_QUEUE_NUM];
iwk_tx_desc_t *desc;
iwk_tx_data_t *data;
iwk_cmd_t *cmd;
iwk_scan_hdr_t *hdr;
iwk_scan_chan_t *chan;
struct ieee80211_frame *wh;
ieee80211_node_t *in = ic->ic_bss;
uint8_t essid[IEEE80211_NWID_LEN+1];
struct ieee80211_rateset *rs;
enum ieee80211_phymode mode;
uint8_t *frm;
int i, pktlen, nrates;
data = &ring->data[ring->cur];
desc = data->desc;
cmd = (iwk_cmd_t *)data->dma_data.mem_va;
cmd->hdr.type = REPLY_SCAN_CMD;
cmd->hdr.flags = 0;
cmd->hdr.qid = ring->qid;
cmd->hdr.idx = ring->cur | 0x40;
hdr = (iwk_scan_hdr_t *)cmd->data;
(void) memset(hdr, 0, sizeof (iwk_scan_hdr_t));
hdr->nchan = 1;
hdr->quiet_time = LE_16(50);
hdr->quiet_plcp_th = LE_16(1);
hdr->flags = LE_32(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK);
hdr->rx_chain = LE_16(RXON_RX_CHAIN_DRIVER_FORCE_MSK |
(0x7 << RXON_RX_CHAIN_VALID_POS) |
(0x6 << RXON_RX_CHAIN_FORCE_SEL_POS) |
(0x7 << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS));
hdr->tx_cmd.tx_flags = LE_32(TX_CMD_FLG_SEQ_CTL_MSK);
hdr->tx_cmd.sta_id = IWK_BROADCAST_ID;
hdr->tx_cmd.stop_time.life_time = LE_32(0xffffffff);
hdr->tx_cmd.tx_flags |= LE_32(0x200);
hdr->tx_cmd.rate.r.rate_n_flags = LE_32(iwk_rate_to_plcp(2));
hdr->tx_cmd.rate.r.rate_n_flags |=
LE_32(RATE_MCS_ANT_B_MSK|RATE_MCS_CCK_MSK);
hdr->direct_scan[0].len = ic->ic_des_esslen;
hdr->direct_scan[0].id = IEEE80211_ELEMID_SSID;
if (ic->ic_des_esslen) {
bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
essid[ic->ic_des_esslen] = '\0';
IWK_DBG((IWK_DEBUG_SCAN, "directed scan %s\n", essid));
bcopy(ic->ic_des_essid, hdr->direct_scan[0].ssid,
ic->ic_des_esslen);
} else {
bzero(hdr->direct_scan[0].ssid,
sizeof (hdr->direct_scan[0].ssid));
}
/*
* a probe request frame is required after the REPLY_SCAN_CMD
*/
wh = (struct ieee80211_frame *)(hdr + 1);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
(void) memset(wh->i_addr1, 0xff, 6);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
(void) memset(wh->i_addr3, 0xff, 6);
*(uint16_t *)&wh->i_dur[0] = 0;
*(uint16_t *)&wh->i_seq[0] = 0;
frm = (uint8_t *)(wh + 1);
/* essid IE */
if (in->in_esslen) {
bcopy(in->in_essid, essid, in->in_esslen);
essid[in->in_esslen] = '\0';
IWK_DBG((IWK_DEBUG_SCAN, "probe with ESSID %s\n",
essid));
}
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = in->in_esslen;
(void) memcpy(frm, in->in_essid, in->in_esslen);
frm += in->in_esslen;
mode = ieee80211_chan2mode(ic, ic->ic_curchan);
rs = &ic->ic_sup_rates[mode];
/* supported rates IE */
*frm++ = IEEE80211_ELEMID_RATES;
nrates = rs->ir_nrates;
if (nrates > IEEE80211_RATE_SIZE)
nrates = IEEE80211_RATE_SIZE;
*frm++ = (uint8_t)nrates;
(void) memcpy(frm, rs->ir_rates, nrates);
frm += nrates;
/* supported xrates IE */
if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
*frm++ = IEEE80211_ELEMID_XRATES;
*frm++ = (uint8_t)nrates;
(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
frm += nrates;
}
/* optionnal IE (usually for wpa) */
if (ic->ic_opt_ie != NULL) {
(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
frm += ic->ic_opt_ie_len;
}
/* setup length of probe request */
hdr->tx_cmd.len = LE_16(_PTRDIFF(frm, wh));
hdr->len = LE_16(hdr->nchan * sizeof (iwk_scan_chan_t) +
LE_16(hdr->tx_cmd.len) + sizeof (iwk_scan_hdr_t));
/*
* the attribute of the scan channels are required after the probe
* request frame.
*/
chan = (iwk_scan_chan_t *)frm;
for (i = 1; i <= hdr->nchan; i++, chan++) {
if (ic->ic_des_esslen) {
chan->type = 3;
} else {
chan->type = 1;
}
chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
chan->tpc.tx_gain = 0x3f;
chan->tpc.dsp_atten = 110;
chan->active_dwell = LE_16(50);
chan->passive_dwell = LE_16(120);
frm += sizeof (iwk_scan_chan_t);
}
pktlen = _PTRDIFF(frm, cmd);
(void) memset(desc, 0, sizeof (*desc));
desc->val0 = 1 << 24;
desc->pa[0].tb1_addr =
(uint32_t)(data->dma_data.cookie.dmac_address & 0xffffffff);
desc->pa[0].val1 = (pktlen << 4) & 0xfff0;
/*
* maybe for cmd, filling the byte cnt table is not necessary.
* anyway, we fill it here.
*/
sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
tfd_offset[ring->cur].val = 8;
if (ring->cur < IWK_MAX_WIN_SIZE) {
sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
tfd_offset[IWK_QUEUE_SIZE + ring->cur].val = 8;
}
/* kick cmd ring */
ring->cur = (ring->cur + 1) % ring->count;
IWK_WRITE(sc, HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
return (IWK_SUCCESS);
}
static int
iwk_config(iwk_sc_t *sc)
{
ieee80211com_t *ic = &sc->sc_ic;
iwk_powertable_cmd_t powertable;
iwk_bt_cmd_t bt;
iwk_add_sta_t node;
iwk_link_quality_cmd_t link_quality;
int i, err;
uint16_t masks = 0;
/*
* set power mode. Disable power management at present, do it later
*/
(void) memset(&powertable, 0, sizeof (powertable));
powertable.flags = LE_16(0x8);
err = iwk_cmd(sc, POWER_TABLE_CMD, &powertable,
sizeof (powertable), 0);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_config(): failed to set power mode\n");
return (err);
}
/* configure bt coexistence */
(void) memset(&bt, 0, sizeof (bt));
bt.flags = 3;
bt.lead_time = 0xaa;
bt.max_kill = 1;
err = iwk_cmd(sc, REPLY_BT_CONFIG, &bt,
sizeof (bt), 0);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN,
"iwk_config(): "
"failed to configurate bt coexistence\n");
return (err);
}
/* configure rxon */
(void) memset(&sc->sc_config, 0, sizeof (iwk_rxon_cmd_t));
IEEE80211_ADDR_COPY(sc->sc_config.node_addr, ic->ic_macaddr);
IEEE80211_ADDR_COPY(sc->sc_config.wlap_bssid, ic->ic_macaddr);
sc->sc_config.chan = LE_16(ieee80211_chan2ieee(ic, ic->ic_curchan));
sc->sc_config.flags = LE_32(RXON_FLG_TSF2HOST_MSK |
RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_BAND_24G_MSK);
sc->sc_config.flags &= LE_32(~RXON_FLG_CCK_MSK);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
sc->sc_config.dev_type = RXON_DEV_TYPE_ESS;
sc->sc_config.filter_flags |= LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
RXON_FILTER_DIS_DECRYPT_MSK |
RXON_FILTER_DIS_GRP_DECRYPT_MSK);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
sc->sc_config.dev_type = RXON_DEV_TYPE_IBSS;
sc->sc_config.flags |= LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
sc->sc_config.filter_flags = LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
RXON_FILTER_DIS_DECRYPT_MSK |
RXON_FILTER_DIS_GRP_DECRYPT_MSK);
break;
case IEEE80211_M_HOSTAP:
sc->sc_config.dev_type = RXON_DEV_TYPE_AP;
break;
case IEEE80211_M_MONITOR:
sc->sc_config.dev_type = RXON_DEV_TYPE_SNIFFER;
sc->sc_config.filter_flags |= LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
RXON_FILTER_CTL2HOST_MSK | RXON_FILTER_PROMISC_MSK);
break;
}
sc->sc_config.cck_basic_rates = 0x0f;
sc->sc_config.ofdm_basic_rates = 0xff;
sc->sc_config.ofdm_ht_single_stream_basic_rates = 0xff;
sc->sc_config.ofdm_ht_dual_stream_basic_rates = 0xff;
/* set antenna */
sc->sc_config.rx_chain = LE_16(RXON_RX_CHAIN_DRIVER_FORCE_MSK |
(0x7 << RXON_RX_CHAIN_VALID_POS) |
(0x6 << RXON_RX_CHAIN_FORCE_SEL_POS) |
(0x7 << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS));
err = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
sizeof (iwk_rxon_cmd_t), 0);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_config(): "
"failed to set configure command\n");
return (err);
}
/* obtain current temperature of chipset */
sc->sc_tempera = iwk_curr_tempera(sc);
/* make Tx power calibration to determine the gains of DSP and radio */
err = iwk_tx_power_calibration(sc);
if (err) {
cmn_err(CE_WARN, "iwk_config(): "
"failed to set tx power table\n");
return (err);
}
/* add broadcast node so that we can send broadcast frame */
(void) memset(&node, 0, sizeof (node));
(void) memset(node.bssid, 0xff, 6);
node.id = IWK_BROADCAST_ID;
err = iwk_cmd(sc, REPLY_ADD_STA, &node, sizeof (node), 0);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_config(): "
"failed to add broadcast node\n");
return (err);
}
/* TX_LINK_QUALITY cmd ? */
(void) memset(&link_quality, 0, sizeof (link_quality));
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
masks |= RATE_MCS_CCK_MSK;
masks |= RATE_MCS_ANT_B_MSK;
masks &= ~RATE_MCS_ANT_A_MSK;
link_quality.rate_n_flags[i] =
LE_32(iwk_rate_to_plcp(2) | masks);
}
link_quality.general_params.single_stream_ant_msk = 2;
link_quality.general_params.dual_stream_ant_msk = 3;
link_quality.agg_params.agg_dis_start_th = 3;
link_quality.agg_params.agg_time_limit = LE_16(4000);
link_quality.sta_id = IWK_BROADCAST_ID;
err = iwk_cmd(sc, REPLY_TX_LINK_QUALITY_CMD, &link_quality,
sizeof (link_quality), 0);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_config(): "
"failed to config link quality table\n");
return (err);
}
return (IWK_SUCCESS);
}
static void
iwk_stop_master(iwk_sc_t *sc)
{
uint32_t tmp;
int n;
tmp = IWK_READ(sc, CSR_RESET);
IWK_WRITE(sc, CSR_RESET, tmp | CSR_RESET_REG_FLAG_STOP_MASTER);
tmp = IWK_READ(sc, CSR_GP_CNTRL);
if ((tmp & CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE) ==
CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE)
return;
for (n = 0; n < 2000; n++) {
if (IWK_READ(sc, CSR_RESET) &
CSR_RESET_REG_FLAG_MASTER_DISABLED)
break;
DELAY(1000);
}
if (n == 2000)
IWK_DBG((IWK_DEBUG_HW,
"timeout waiting for master stop\n"));
}
static int
iwk_power_up(iwk_sc_t *sc)
{
uint32_t tmp;
iwk_mac_access_enter(sc);
tmp = iwk_reg_read(sc, ALM_APMG_PS_CTL);
tmp &= ~APMG_PS_CTRL_REG_MSK_POWER_SRC;
tmp |= APMG_PS_CTRL_REG_VAL_POWER_SRC_VMAIN;
iwk_reg_write(sc, ALM_APMG_PS_CTL, tmp);
iwk_mac_access_exit(sc);
DELAY(5000);
return (IWK_SUCCESS);
}
static int
iwk_preinit(iwk_sc_t *sc)
{
uint32_t tmp;
int n;
uint8_t vlink;
/* clear any pending interrupts */
IWK_WRITE(sc, CSR_INT, 0xffffffff);
tmp = IWK_READ(sc, CSR_GIO_CHICKEN_BITS);
IWK_WRITE(sc, CSR_GIO_CHICKEN_BITS,
tmp | CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
tmp = IWK_READ(sc, CSR_GP_CNTRL);
IWK_WRITE(sc, CSR_GP_CNTRL, tmp | CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
/* wait for clock ready */
for (n = 0; n < 1000; n++) {
if (IWK_READ(sc, CSR_GP_CNTRL) &
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY)
break;
DELAY(10);
}
if (n == 1000) {
cmn_err(CE_WARN,
"iwk_preinit(): timeout waiting for clock ready\n");
return (ETIMEDOUT);
}
iwk_mac_access_enter(sc);
tmp = iwk_reg_read(sc, APMG_CLK_CTRL_REG);
iwk_reg_write(sc, APMG_CLK_CTRL_REG, tmp |
APMG_CLK_REG_VAL_DMA_CLK_RQT | APMG_CLK_REG_VAL_BSM_CLK_RQT);
DELAY(20);
tmp = iwk_reg_read(sc, ALM_APMG_PCIDEV_STT);
iwk_reg_write(sc, ALM_APMG_PCIDEV_STT, tmp |
APMG_DEV_STATE_REG_VAL_L1_ACTIVE_DISABLE);
iwk_mac_access_exit(sc);
IWK_WRITE(sc, CSR_INT_COALESCING, 512 / 32); /* ??? */
(void) iwk_power_up(sc);
if ((sc->sc_rev & 0x80) == 0x80 && (sc->sc_rev & 0x7f) < 8) {
tmp = ddi_get32(sc->sc_cfg_handle,
(uint32_t *)(sc->sc_cfg_base + 0xe8));
ddi_put32(sc->sc_cfg_handle,
(uint32_t *)(sc->sc_cfg_base + 0xe8),
tmp & ~(1 << 11));
}
vlink = ddi_get8(sc->sc_cfg_handle,
(uint8_t *)(sc->sc_cfg_base + 0xf0));
ddi_put8(sc->sc_cfg_handle, (uint8_t *)(sc->sc_cfg_base + 0xf0),
vlink & ~2);
tmp = IWK_READ(sc, CSR_SW_VER);
tmp |= CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
CSR_HW_IF_CONFIG_REG_BIT_MAC_SI |
CSR_HW_IF_CONFIG_REG_BIT_KEDRON_R;
IWK_WRITE(sc, CSR_SW_VER, tmp);
/* make sure power supply on each part of the hardware */
iwk_mac_access_enter(sc);
tmp = iwk_reg_read(sc, ALM_APMG_PS_CTL);
tmp |= APMG_PS_CTRL_REG_VAL_ALM_R_RESET_REQ;
iwk_reg_write(sc, ALM_APMG_PS_CTL, tmp);
DELAY(5);
tmp = iwk_reg_read(sc, ALM_APMG_PS_CTL);
tmp &= ~APMG_PS_CTRL_REG_VAL_ALM_R_RESET_REQ;
iwk_reg_write(sc, ALM_APMG_PS_CTL, tmp);
iwk_mac_access_exit(sc);
return (IWK_SUCCESS);
}
/*
* set up semphore flag to own EEPROM
*/
static int iwk_eep_sem_down(iwk_sc_t *sc)
{
int count1, count2;
uint32_t tmp;
for (count1 = 0; count1 < 1000; count1++) {
tmp = IWK_READ(sc, CSR_HW_IF_CONFIG_REG);
IWK_WRITE(sc, CSR_HW_IF_CONFIG_REG,
tmp | CSR_HW_IF_CONFIG_REG_EEP_SEM);
for (count2 = 0; count2 < 2; count2++) {
if (IWK_READ(sc, CSR_HW_IF_CONFIG_REG) &
CSR_HW_IF_CONFIG_REG_EEP_SEM)
return (IWK_SUCCESS);
DELAY(10000);
}
}
return (IWK_FAIL);
}
/*
* reset semphore flag to release EEPROM
*/
static void iwk_eep_sem_up(iwk_sc_t *sc)
{
uint32_t tmp;
tmp = IWK_READ(sc, CSR_HW_IF_CONFIG_REG);
IWK_WRITE(sc, CSR_HW_IF_CONFIG_REG,
tmp & (~CSR_HW_IF_CONFIG_REG_EEP_SEM));
}
/*
* This function load all infomation in eeprom into iwk_eep
* structure in iwk_sc_t structure
*/
static int iwk_eep_load(iwk_sc_t *sc)
{
int i, rr;
uint32_t rv, tmp, eep_gp;
uint16_t addr, eep_sz = sizeof (sc->sc_eep_map);
uint16_t *eep_p = (uint16_t *)&sc->sc_eep_map;
/* read eeprom gp register in CSR */
eep_gp = IWK_READ(sc, CSR_EEPROM_GP);
if ((eep_gp & CSR_EEPROM_GP_VALID_MSK) ==
CSR_EEPROM_GP_BAD_SIGNATURE) {
cmn_err(CE_WARN, "EEPROM not found\n");
return (IWK_FAIL);
}
rr = iwk_eep_sem_down(sc);
if (rr != 0) {
cmn_err(CE_WARN, "failed to own EEPROM\n");
return (IWK_FAIL);
}
for (addr = 0; addr < eep_sz; addr += 2) {
IWK_WRITE(sc, CSR_EEPROM_REG, addr<<1);
tmp = IWK_READ(sc, CSR_EEPROM_REG);
IWK_WRITE(sc, CSR_EEPROM_REG, tmp & ~(0x2));
for (i = 0; i < 10; i++) {
rv = IWK_READ(sc, CSR_EEPROM_REG);
if (rv & 1)
break;
DELAY(10);
}
if (!(rv & 1)) {
cmn_err(CE_WARN, "time out when read EEPROM\n");
iwk_eep_sem_up(sc);
return (IWK_FAIL);
}
eep_p[addr/2] = LE_16(rv >> 16);
}
iwk_eep_sem_up(sc);
return (IWK_SUCCESS);
}
/*
* init mac address in ieee80211com_t struct
*/
static void iwk_get_mac_from_eep(iwk_sc_t *sc)
{
ieee80211com_t *ic = &sc->sc_ic;
struct iwk_eep *ep = &sc->sc_eep_map;
IEEE80211_ADDR_COPY(ic->ic_macaddr, ep->mac_address);
IWK_DBG((IWK_DEBUG_EEPROM, "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
ic->ic_macaddr[0], ic->ic_macaddr[1], ic->ic_macaddr[2],
ic->ic_macaddr[3], ic->ic_macaddr[4], ic->ic_macaddr[5]));
}
static int
iwk_init(iwk_sc_t *sc)
{
int qid, n, err;
clock_t clk;
uint32_t tmp;
mutex_enter(&sc->sc_glock);
sc->sc_flags &= ~IWK_F_FW_INIT;
(void) iwk_preinit(sc);
tmp = IWK_READ(sc, CSR_GP_CNTRL);
if (!(tmp & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)) {
cmn_err(CE_NOTE, "iwk_init(): Radio transmitter is off\n");
goto fail1;
}
/* init Rx ring */
iwk_mac_access_enter(sc);
IWK_WRITE(sc, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
IWK_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
IWK_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
sc->sc_rxq.dma_desc.cookie.dmac_address >> 8);
IWK_WRITE(sc, FH_RSCSR_CHNL0_STTS_WPTR_REG,
((uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
offsetof(struct iwk_shared, val0)) >> 4));
IWK_WRITE(sc, FH_MEM_RCSR_CHNL0_CONFIG_REG,
FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
IWK_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |
(RX_QUEUE_SIZE_LOG <<
FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT));
iwk_mac_access_exit(sc);
IWK_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_WPTR_REG,
(RX_QUEUE_SIZE - 1) & ~0x7);
/* init Tx rings */
iwk_mac_access_enter(sc);
iwk_reg_write(sc, SCD_TXFACT, 0);
/* keep warm page */
iwk_reg_write(sc, IWK_FH_KW_MEM_ADDR_REG,
sc->sc_dma_kw.cookie.dmac_address >> 4);
for (qid = 0; qid < IWK_NUM_QUEUES; qid++) {
IWK_WRITE(sc, FH_MEM_CBBC_QUEUE(qid),
sc->sc_txq[qid].dma_desc.cookie.dmac_address >> 8);
IWK_WRITE(sc, IWK_FH_TCSR_CHNL_TX_CONFIG_REG(qid),
IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL);
}
iwk_mac_access_exit(sc);
/* clear "radio off" and "disable command" bits */
IWK_WRITE(sc, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
IWK_WRITE(sc, CSR_UCODE_DRV_GP1_CLR,
CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
/* clear any pending interrupts */
IWK_WRITE(sc, CSR_INT, 0xffffffff);
/* enable interrupts */
IWK_WRITE(sc, CSR_INT_MASK, CSR_INI_SET_MASK);
IWK_WRITE(sc, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
IWK_WRITE(sc, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
/*
* backup ucode data part for future use.
*/
(void) memcpy(sc->sc_dma_fw_data_bak.mem_va,
sc->sc_dma_fw_data.mem_va,
sc->sc_dma_fw_data.alength);
for (n = 0; n < 2; n++) {
/* load firmware init segment into NIC */
err = iwk_load_firmware(sc);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_init(): "
"failed to setup boot firmware\n");
continue;
}
/* now press "execute" start running */
IWK_WRITE(sc, CSR_RESET, 0);
break;
}
if (n == 2) {
cmn_err(CE_WARN, "iwk_init(): failed to load firmware\n");
goto fail1;
}
/* ..and wait at most one second for adapter to initialize */
clk = ddi_get_lbolt() + drv_usectohz(2000000);
while (!(sc->sc_flags & IWK_F_FW_INIT)) {
if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
break;
}
if (!(sc->sc_flags & IWK_F_FW_INIT)) {
cmn_err(CE_WARN,
"iwk_init(): timeout waiting for firmware init\n");
goto fail1;
}
/*
* at this point, the firmware is loaded OK, then config the hardware
* with the ucode API, including rxon, txpower, etc.
*/
err = iwk_config(sc);
if (err) {
cmn_err(CE_WARN, "iwk_init(): failed to configure device\n");
goto fail1;
}
/* at this point, hardware may receive beacons :) */
mutex_exit(&sc->sc_glock);
return (IWK_SUCCESS);
fail1:
err = IWK_FAIL;
mutex_exit(&sc->sc_glock);
return (err);
}
static void
iwk_stop(iwk_sc_t *sc)
{
uint32_t tmp;
int i;
if (!(sc->sc_flags & IWK_F_QUIESCED))
mutex_enter(&sc->sc_glock);
IWK_WRITE(sc, CSR_RESET, CSR_RESET_REG_FLAG_NEVO_RESET);
/* disable interrupts */
IWK_WRITE(sc, CSR_INT_MASK, 0);
IWK_WRITE(sc, CSR_INT, CSR_INI_SET_MASK);
IWK_WRITE(sc, CSR_FH_INT_STATUS, 0xffffffff);
/* reset all Tx rings */
for (i = 0; i < IWK_NUM_QUEUES; i++)
iwk_reset_tx_ring(sc, &sc->sc_txq[i]);
/* reset Rx ring */
iwk_reset_rx_ring(sc);
iwk_mac_access_enter(sc);
iwk_reg_write(sc, ALM_APMG_CLK_DIS, APMG_CLK_REG_VAL_DMA_CLK_RQT);
iwk_mac_access_exit(sc);
DELAY(5);
iwk_stop_master(sc);
sc->sc_tx_timer = 0;
sc->sc_flags &= ~IWK_F_SCANNING;
sc->sc_scan_pending = 0;
tmp = IWK_READ(sc, CSR_RESET);
IWK_WRITE(sc, CSR_RESET, tmp | CSR_RESET_REG_FLAG_SW_RESET);
if (!(sc->sc_flags & IWK_F_QUIESCED))
mutex_exit(&sc->sc_glock);
}
/*
* Naive implementation of the Adaptive Multi Rate Retry algorithm:
* "IEEE 802.11 Rate Adaptation: A Practical Approach"
* Mathieu Lacage, Hossein Manshaei, Thierry Turletti
* INRIA Sophia - Projet Planete
* http://www-sop.inria.fr/rapports/sophia/RR-5208.html
*/
#define is_success(amrr) \
((amrr)->retrycnt < (amrr)->txcnt / 10)
#define is_failure(amrr) \
((amrr)->retrycnt > (amrr)->txcnt / 3)
#define is_enough(amrr) \
((amrr)->txcnt > 100)
#define is_min_rate(in) \
((in)->in_txrate == 0)
#define is_max_rate(in) \
((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
#define increase_rate(in) \
((in)->in_txrate++)
#define decrease_rate(in) \
((in)->in_txrate--)
#define reset_cnt(amrr) \
{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
#define IWK_AMRR_MIN_SUCCESS_THRESHOLD 1
#define IWK_AMRR_MAX_SUCCESS_THRESHOLD 15
static void
iwk_amrr_init(iwk_amrr_t *amrr)
{
amrr->success = 0;
amrr->recovery = 0;
amrr->txcnt = amrr->retrycnt = 0;
amrr->success_threshold = IWK_AMRR_MIN_SUCCESS_THRESHOLD;
}
static void
iwk_amrr_timeout(iwk_sc_t *sc)
{
ieee80211com_t *ic = &sc->sc_ic;
IWK_DBG((IWK_DEBUG_RATECTL, "iwk_amrr_timeout() enter\n"));
if (ic->ic_opmode == IEEE80211_M_STA)
iwk_amrr_ratectl(NULL, ic->ic_bss);
else
ieee80211_iterate_nodes(&ic->ic_sta, iwk_amrr_ratectl, NULL);
sc->sc_clk = ddi_get_lbolt();
}
/* ARGSUSED */
static void
iwk_amrr_ratectl(void *arg, ieee80211_node_t *in)
{
iwk_amrr_t *amrr = (iwk_amrr_t *)in;
int need_change = 0;
if (is_success(amrr) && is_enough(amrr)) {
amrr->success++;
if (amrr->success >= amrr->success_threshold &&
!is_max_rate(in)) {
amrr->recovery = 1;
amrr->success = 0;
increase_rate(in);
IWK_DBG((IWK_DEBUG_RATECTL,
"AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
in->in_txrate, amrr->txcnt, amrr->retrycnt));
need_change = 1;
} else {
amrr->recovery = 0;
}
} else if (is_failure(amrr)) {
amrr->success = 0;
if (!is_min_rate(in)) {
if (amrr->recovery) {
amrr->success_threshold++;
if (amrr->success_threshold >
IWK_AMRR_MAX_SUCCESS_THRESHOLD)
amrr->success_threshold =
IWK_AMRR_MAX_SUCCESS_THRESHOLD;
} else {
amrr->success_threshold =
IWK_AMRR_MIN_SUCCESS_THRESHOLD;
}
decrease_rate(in);
IWK_DBG((IWK_DEBUG_RATECTL,
"AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
in->in_txrate, amrr->txcnt, amrr->retrycnt));
need_change = 1;
}
amrr->recovery = 0; /* paper is incorrect */
}
if (is_enough(amrr) || need_change)
reset_cnt(amrr);
}
/*
* calculate 4965 chipset's kelvin temperature according to
* the data of init alive and satistics notification.
* The details is described in iwk_calibration.h file
*/
static int32_t iwk_curr_tempera(iwk_sc_t *sc)
{
int32_t tempera;
int32_t r1, r2, r3;
uint32_t r4_u;
int32_t r4_s;
if (iwk_is_fat_channel(sc)) {
r1 = (int32_t)LE_32(sc->sc_card_alive_init.therm_r1[1]);
r2 = (int32_t)LE_32(sc->sc_card_alive_init.therm_r2[1]);
r3 = (int32_t)LE_32(sc->sc_card_alive_init.therm_r3[1]);
r4_u = LE_32(sc->sc_card_alive_init.therm_r4[1]);
} else {
r1 = (int32_t)LE_32(sc->sc_card_alive_init.therm_r1[0]);
r2 = (int32_t)LE_32(sc->sc_card_alive_init.therm_r2[0]);
r3 = (int32_t)LE_32(sc->sc_card_alive_init.therm_r3[0]);
r4_u = LE_32(sc->sc_card_alive_init.therm_r4[0]);
}
if (sc->sc_flags & IWK_F_STATISTICS) {
r4_s = (int32_t)(LE_32(sc->sc_statistics.general.temperature) <<
(31-23)) >> (31-23);
} else {
r4_s = (int32_t)(r4_u << (31-23)) >> (31-23);
}
IWK_DBG((IWK_DEBUG_CALIBRATION, "temperature R[1-4]: %d %d %d %d\n",
r1, r2, r3, r4_s));
if (r3 == r1) {
cmn_err(CE_WARN, "iwk_curr_tempera(): "
"failed to calculate temperature"
"because r3 = r1\n");
return (DDI_FAILURE);
}
tempera = TEMPERATURE_CALIB_A_VAL * (r4_s - r2);
tempera /= (r3 - r1);
tempera = (tempera*97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
IWK_DBG((IWK_DEBUG_CALIBRATION, "calculated temperature: %dK, %dC\n",
tempera, KELVIN_TO_CELSIUS(tempera)));
return (tempera);
}
/* Determine whether 4965 is using 2.4 GHz band */
static inline int iwk_is_24G_band(iwk_sc_t *sc)
{
return (LE_32(sc->sc_config.flags) & RXON_FLG_BAND_24G_MSK);
}
/* Determine whether 4965 is using fat channel */
static inline int iwk_is_fat_channel(iwk_sc_t *sc)
{
return ((LE_32(sc->sc_config.flags) &
RXON_FLG_CHANNEL_MODE_PURE_40_MSK) ||
(LE_32(sc->sc_config.flags) & RXON_FLG_CHANNEL_MODE_MIXED_MSK));
}
/*
* In MIMO mode, determine which group 4965's current channel belong to.
* For more infomation about "channel group",
* please refer to iwk_calibration.h file
*/
static int iwk_txpower_grp(uint16_t channel)
{
if (channel >= CALIB_IWK_TX_ATTEN_GR5_FCH &&
channel <= CALIB_IWK_TX_ATTEN_GR5_LCH) {
return (CALIB_CH_GROUP_5);
}
if (channel >= CALIB_IWK_TX_ATTEN_GR1_FCH &&
channel <= CALIB_IWK_TX_ATTEN_GR1_LCH) {
return (CALIB_CH_GROUP_1);
}
if (channel >= CALIB_IWK_TX_ATTEN_GR2_FCH &&
channel <= CALIB_IWK_TX_ATTEN_GR2_LCH) {
return (CALIB_CH_GROUP_2);
}
if (channel >= CALIB_IWK_TX_ATTEN_GR3_FCH &&
channel <= CALIB_IWK_TX_ATTEN_GR3_LCH) {
return (CALIB_CH_GROUP_3);
}
if (channel >= CALIB_IWK_TX_ATTEN_GR4_FCH &&
channel <= CALIB_IWK_TX_ATTEN_GR4_LCH) {
return (CALIB_CH_GROUP_4);
}
cmn_err(CE_WARN, "iwk_txpower_grp(): "
"can't find txpower group for channel %d.\n", channel);
return (DDI_FAILURE);
}
/* 2.4 GHz */
static uint16_t iwk_eep_band_1[14] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
};
/* 5.2 GHz bands */
static uint16_t iwk_eep_band_2[13] = {
183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
};
static uint16_t iwk_eep_band_3[12] = {
34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
};
static uint16_t iwk_eep_band_4[11] = {
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
};
static uint16_t iwk_eep_band_5[6] = {
145, 149, 153, 157, 161, 165
};
static uint16_t iwk_eep_band_6[7] = {
1, 2, 3, 4, 5, 6, 7
};
static uint16_t iwk_eep_band_7[11] = {
36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
};
/* Get regulatory data from eeprom for a given channel */
static struct iwk_eep_channel *iwk_get_eep_channel(iwk_sc_t *sc,
uint16_t channel,
int is_24G, int is_fat, int is_hi_chan)
{
int32_t i;
uint16_t chan;
if (is_fat) { /* 11n mode */
if (is_hi_chan) {
chan = channel - 4;
} else {
chan = channel;
}
for (i = 0; i < 7; i++) {
if (iwk_eep_band_6[i] == chan) {
return (&sc->sc_eep_map.band_24_channels[i]);
}
}
for (i = 0; i < 11; i++) {
if (iwk_eep_band_7[i] == chan) {
return (&sc->sc_eep_map.band_52_channels[i]);
}
}
} else if (is_24G) { /* 2.4 GHz band */
for (i = 0; i < 14; i++) {
if (iwk_eep_band_1[i] == channel) {
return (&sc->sc_eep_map.band_1_channels[i]);
}
}
} else { /* 5 GHz band */
for (i = 0; i < 13; i++) {
if (iwk_eep_band_2[i] == channel) {
return (&sc->sc_eep_map.band_2_channels[i]);
}
}
for (i = 0; i < 12; i++) {
if (iwk_eep_band_3[i] == channel) {
return (&sc->sc_eep_map.band_3_channels[i]);
}
}
for (i = 0; i < 11; i++) {
if (iwk_eep_band_4[i] == channel) {
return (&sc->sc_eep_map.band_4_channels[i]);
}
}
for (i = 0; i < 6; i++) {
if (iwk_eep_band_5[i] == channel) {
return (&sc->sc_eep_map.band_5_channels[i]);
}
}
}
return (NULL);
}
/*
* Determine which subband a given channel belongs
* to in 2.4 GHz or 5 GHz band
*/
static int32_t iwk_band_number(iwk_sc_t *sc, uint16_t channel)
{
int32_t b_n = -1;
for (b_n = 0; b_n < EEP_TX_POWER_BANDS; b_n++) {
if (0 == sc->sc_eep_map.calib_info.band_info_tbl[b_n].ch_from) {
continue;
}
if ((channel >=
(uint16_t)sc->sc_eep_map.calib_info.
band_info_tbl[b_n].ch_from) &&
(channel <=
(uint16_t)sc->sc_eep_map.calib_info.
band_info_tbl[b_n].ch_to)) {
break;
}
}
return (b_n);
}
/* Make a special division for interpolation operation */
static int iwk_division(int32_t num, int32_t denom, int32_t *res)
{
int32_t sign = 1;
if (num < 0) {
sign = -sign;
num = -num;
}
if (denom < 0) {
sign = -sign;
denom = -denom;
}
*res = ((num*2 + denom) / (denom*2)) * sign;
return (IWK_SUCCESS);
}
/* Make interpolation operation */
static int32_t iwk_interpolate_value(int32_t x, int32_t x1, int32_t y1,
int32_t x2, int32_t y2)
{
int32_t val;
if (x2 == x1) {
return (y1);
} else {
(void) iwk_division((x2-x)*(y1-y2), (x2-x1), &val);
return (val + y2);
}
}
/* Get interpolation measurement data of a given channel for all chains. */
static int iwk_channel_interpolate(iwk_sc_t *sc, uint16_t channel,
struct iwk_eep_calib_channel_info *chan_info)
{
int32_t ban_n;
uint32_t ch1_n, ch2_n;
int32_t c, m;
struct iwk_eep_calib_measure *m1_p, *m2_p, *m_p;
/* determine subband number */
ban_n = iwk_band_number(sc, channel);
if (ban_n >= EEP_TX_POWER_BANDS) {
return (DDI_FAILURE);
}
ch1_n =
(uint32_t)sc->sc_eep_map.calib_info.band_info_tbl[ban_n].ch1.ch_num;
ch2_n =
(uint32_t)sc->sc_eep_map.calib_info.band_info_tbl[ban_n].ch2.ch_num;
chan_info->ch_num = (uint8_t)channel; /* given channel number */
/*
* go through all chains on chipset
*/
for (c = 0; c < EEP_TX_POWER_TX_CHAINS; c++) {
/*
* go through all factory measurements
*/
for (m = 0; m < EEP_TX_POWER_MEASUREMENTS; m++) {
m1_p =
&(sc->sc_eep_map.calib_info.
band_info_tbl[ban_n].ch1.measure[c][m]);
m2_p =
&(sc->sc_eep_map.calib_info.band_info_tbl[ban_n].
ch2.measure[c][m]);
m_p = &(chan_info->measure[c][m]);
/*
* make interpolation to get actual
* Tx power for given channel
*/
m_p->actual_pow = iwk_interpolate_value(channel,
ch1_n, m1_p->actual_pow,
ch2_n, m2_p->actual_pow);
/* make interpolation to get index into gain table */
m_p->gain_idx = iwk_interpolate_value(channel,
ch1_n, m1_p->gain_idx,
ch2_n, m2_p->gain_idx);
/* make interpolation to get chipset temperature */
m_p->temperature = iwk_interpolate_value(channel,
ch1_n, m1_p->temperature,
ch2_n, m2_p->temperature);
/*
* make interpolation to get power
* amp detector level
*/
m_p->pa_det = iwk_interpolate_value(channel, ch1_n,
m1_p->pa_det,
ch2_n, m2_p->pa_det);
}
}
return (IWK_SUCCESS);
}
/*
* Calculate voltage compensation for Tx power. For more infomation,
* please refer to iwk_calibration.h file
*/
static int32_t iwk_voltage_compensation(int32_t eep_voltage,
int32_t curr_voltage)
{
int32_t vol_comp = 0;
if ((TX_POWER_IWK_ILLEGAL_VOLTAGE == eep_voltage) ||
(TX_POWER_IWK_ILLEGAL_VOLTAGE == curr_voltage)) {
return (vol_comp);
}
(void) iwk_division(curr_voltage-eep_voltage,
TX_POWER_IWK_VOLTAGE_CODES_PER_03V, &vol_comp);
if (curr_voltage > eep_voltage) {
vol_comp *= 2;
}
if ((vol_comp < -2) || (vol_comp > 2)) {
vol_comp = 0;
}
return (vol_comp);
}
/*
* Thermal compensation values for txpower for various frequency ranges ...
* ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust
*/
static struct iwk_txpower_tempera_comp {
int32_t degrees_per_05db_a;
int32_t degrees_per_05db_a_denom;
} txpower_tempera_comp_table[CALIB_CH_GROUP_MAX] = {
{9, 2}, /* group 0 5.2, ch 34-43 */
{4, 1}, /* group 1 5.2, ch 44-70 */
{4, 1}, /* group 2 5.2, ch 71-124 */
{4, 1}, /* group 3 5.2, ch 125-200 */
{3, 1} /* group 4 2.4, ch all */
};
/*
* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
* for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates.
*/
static int32_t back_off_table[] = {
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 20 MHz */
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 20 MHz */
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 40 MHz */
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 40 MHz */
10 /* CCK */
};
/* determine minimum Tx power index in gain table */
static int32_t iwk_min_power_index(int32_t rate_pow_idx, int32_t is_24G)
{
if ((!is_24G) && ((rate_pow_idx & 7) <= 4)) {
return (MIN_TX_GAIN_INDEX_52GHZ_EXT);
}
return (MIN_TX_GAIN_INDEX);
}
/*
* Determine DSP and radio gain according to temperature and other factors.
* This function is the majority of Tx power calibration
*/
static int iwk_txpower_table_cmd_init(iwk_sc_t *sc,
struct iwk_tx_power_db *tp_db)
{
int is_24G, is_fat, is_high_chan, is_mimo;
int c, r;
int32_t target_power;
int32_t tx_grp = CALIB_CH_GROUP_MAX;
uint16_t channel;
uint8_t saturation_power;
int32_t regu_power;
int32_t curr_regu_power;
struct iwk_eep_channel *eep_chan_p;
struct iwk_eep_calib_channel_info eep_chan_calib;
int32_t eep_voltage, init_voltage;
int32_t voltage_compensation;
int32_t temperature;
int32_t degrees_per_05db_num;
int32_t degrees_per_05db_denom;
struct iwk_eep_calib_measure *measure_p;
int32_t interpo_temp;
int32_t power_limit;
int32_t atten_value;
int32_t tempera_comp[2];
int32_t interpo_gain_idx[2];
int32_t interpo_actual_pow[2];
union iwk_tx_power_dual_stream txpower_gains;
int32_t txpower_gains_idx;
channel = LE_16(sc->sc_config.chan);
/* 2.4 GHz or 5 GHz band */
is_24G = iwk_is_24G_band(sc);
/* fat channel or not */
is_fat = iwk_is_fat_channel(sc);
/*
* using low half channel number or high half channel number
* identify fat channel
*/
if (is_fat && (LE_32(sc->sc_config.flags) &
RXON_FLG_CONTROL_CHANNEL_LOC_HIGH_MSK)) {
is_high_chan = 1;
}
if ((channel > 0) && (channel < 200)) {
/* get regulatory channel data from eeprom */
eep_chan_p = iwk_get_eep_channel(sc, channel, is_24G,
is_fat, is_high_chan);
if (NULL == eep_chan_p) {
cmn_err(CE_WARN,
"iwk_txpower_table_cmd_init(): "
"can't get channel infomation\n");
return (DDI_FAILURE);
}
} else {
cmn_err(CE_WARN, "iwk_txpower_table_cmd_init(): "
"channel(%d) isn't in proper range\n",
channel);
return (DDI_FAILURE);
}
/* initial value of Tx power */
sc->sc_user_txpower = (int32_t)eep_chan_p->max_power_avg;
if (sc->sc_user_txpower < IWK_TX_POWER_TARGET_POWER_MIN) {
cmn_err(CE_WARN, "iwk_txpower_table_cmd_init(): "
"user TX power is too weak\n");
return (DDI_FAILURE);
} else if (sc->sc_user_txpower > IWK_TX_POWER_TARGET_POWER_MAX) {
cmn_err(CE_WARN, "iwk_txpower_table_cmd_init(): "
"user TX power is too strong\n");
return (DDI_FAILURE);
}
target_power = 2 * sc->sc_user_txpower;
/* determine which group current channel belongs to */
tx_grp = iwk_txpower_grp(channel);
if (tx_grp < 0) {
return (tx_grp);
}
if (is_fat) {
if (is_high_chan) {
channel -= 2;
} else {
channel += 2;
}
}
/* determine saturation power */
if (is_24G) {
saturation_power =
sc->sc_eep_map.calib_info.saturation_power24;
} else {
saturation_power =
sc->sc_eep_map.calib_info.saturation_power52;
}
if (saturation_power < IWK_TX_POWER_SATURATION_MIN ||
saturation_power > IWK_TX_POWER_SATURATION_MAX) {
if (is_24G) {
saturation_power = IWK_TX_POWER_DEFAULT_SATURATION_24;
} else {
saturation_power = IWK_TX_POWER_DEFAULT_SATURATION_52;
}
}
/* determine regulatory power */
regu_power = (int32_t)eep_chan_p->max_power_avg * 2;
if ((regu_power < IWK_TX_POWER_REGULATORY_MIN) ||
(regu_power > IWK_TX_POWER_REGULATORY_MAX)) {
if (is_24G) {
regu_power = IWK_TX_POWER_DEFAULT_REGULATORY_24;
} else {
regu_power = IWK_TX_POWER_DEFAULT_REGULATORY_52;
}
}
/*
* get measurement data for current channel
* suach as temperature,index to gain table,actual Tx power
*/
(void) iwk_channel_interpolate(sc, channel, &eep_chan_calib);
eep_voltage = (int32_t)LE_16(sc->sc_eep_map.calib_info.voltage);
init_voltage = (int32_t)LE_32(sc->sc_card_alive_init.voltage);
/* calculate voltage compensation to Tx power */
voltage_compensation =
iwk_voltage_compensation(eep_voltage, init_voltage);
if (sc->sc_tempera >= IWK_TX_POWER_TEMPERATURE_MIN) {
temperature = sc->sc_tempera;
} else {
temperature = IWK_TX_POWER_TEMPERATURE_MIN;
}
if (sc->sc_tempera <= IWK_TX_POWER_TEMPERATURE_MAX) {
temperature = sc->sc_tempera;
} else {
temperature = IWK_TX_POWER_TEMPERATURE_MAX;
}
temperature = KELVIN_TO_CELSIUS(temperature);
degrees_per_05db_num =
txpower_tempera_comp_table[tx_grp].degrees_per_05db_a;
degrees_per_05db_denom =
txpower_tempera_comp_table[tx_grp].degrees_per_05db_a_denom;
for (c = 0; c < 2; c++) { /* go through all chains */
measure_p = &eep_chan_calib.measure[c][1];
interpo_temp = measure_p->temperature;
/* determine temperature compensation to Tx power */
(void) iwk_division(
(temperature-interpo_temp)*degrees_per_05db_denom,
degrees_per_05db_num, &tempera_comp[c]);
interpo_gain_idx[c] = measure_p->gain_idx;
interpo_actual_pow[c] = measure_p->actual_pow;
}
/*
* go through all rate entries in Tx power table
*/
for (r = 0; r < POWER_TABLE_NUM_ENTRIES; r++) {
if (r & 0x8) {
/* need to lower regulatory power for MIMO mode */
curr_regu_power = regu_power -
IWK_TX_POWER_MIMO_REGULATORY_COMPENSATION;
is_mimo = 1;
} else {
curr_regu_power = regu_power;
is_mimo = 0;
}
power_limit = saturation_power - back_off_table[r];
if (power_limit > curr_regu_power) {
/* final Tx power limit */
power_limit = curr_regu_power;
}
if (target_power > power_limit) {
target_power = power_limit; /* final target Tx power */
}
for (c = 0; c < 2; c++) { /* go through all Tx chains */
if (is_mimo) {
atten_value =
LE_32(sc->sc_card_alive_init.
tx_atten[tx_grp][c]);
} else {
atten_value = 0;
}
/*
* calculate index in gain table
* this step is very important
*/
txpower_gains_idx = interpo_gain_idx[c] -
(target_power - interpo_actual_pow[c]) -
tempera_comp[c] - voltage_compensation +
atten_value;
if (txpower_gains_idx <
iwk_min_power_index(r, is_24G)) {
txpower_gains_idx =
iwk_min_power_index(r, is_24G);
}
if (!is_24G) {
/*
* support negative index for 5 GHz
* band
*/
txpower_gains_idx += 9;
}
if (POWER_TABLE_CCK_ENTRY == r) {
/* for CCK mode, make necessary attenuaton */
txpower_gains_idx +=
IWK_TX_POWER_CCK_COMPENSATION_C_STEP;
}
if (txpower_gains_idx > 107) {
txpower_gains_idx = 107;
} else if (txpower_gains_idx < 0) {
txpower_gains_idx = 0;
}
/* search DSP and radio gains in gain table */
txpower_gains.s.radio_tx_gain[c] =
gains_table[is_24G][txpower_gains_idx].radio;
txpower_gains.s.dsp_predis_atten[c] =
gains_table[is_24G][txpower_gains_idx].dsp;
IWK_DBG((IWK_DEBUG_CALIBRATION,
"rate_index: %d, "
"gain_index %d, c: %d,is_mimo: %d\n",
r, txpower_gains_idx, c, is_mimo));
}
/* initialize Tx power table */
if (r < POWER_TABLE_NUM_HT_OFDM_ENTRIES) {
tp_db->ht_ofdm_power[r].dw = LE_32(txpower_gains.dw);
} else {
tp_db->legacy_cck_power.dw = LE_32(txpower_gains.dw);
}
}
return (IWK_SUCCESS);
}
/*
* make Tx power calibration to adjust Tx power.
* This is completed by sending out Tx power table command.
*/
static int iwk_tx_power_calibration(iwk_sc_t *sc)
{
iwk_tx_power_table_cmd_t cmd;
int rv;
if (sc->sc_flags & IWK_F_SCANNING) {
return (IWK_SUCCESS);
}
/* necessary initialization to Tx power table command */
cmd.band = (uint8_t)iwk_is_24G_band(sc);
cmd.channel = sc->sc_config.chan;
cmd.channel_normal_width = 0;
/* initialize Tx power table */
rv = iwk_txpower_table_cmd_init(sc, &cmd.tx_power);
if (rv) {
cmn_err(CE_NOTE, "rv= %d\n", rv);
return (rv);
}
/* send out Tx power table command */
rv = iwk_cmd(sc, REPLY_TX_PWR_TABLE_CMD, &cmd, sizeof (cmd), 1);
if (rv) {
return (rv);
}
/* record current temperature */
sc->sc_last_tempera = sc->sc_tempera;
return (IWK_SUCCESS);
}
/* This function is the handler of statistics notification from uCode */
static void iwk_statistics_notify(iwk_sc_t *sc, iwk_rx_desc_t *desc)
{
int is_diff;
struct iwk_notif_statistics *statistics_p =
(struct iwk_notif_statistics *)(desc + 1);
mutex_enter(&sc->sc_glock);
is_diff = (sc->sc_statistics.general.temperature !=
statistics_p->general.temperature) ||
(LE_32(sc->sc_statistics.flag) &
STATISTICS_REPLY_FLG_FAT_MODE_MSK) !=
(LE_32(statistics_p->flag) & STATISTICS_REPLY_FLG_FAT_MODE_MSK);
/* update statistics data */
(void) memcpy(&sc->sc_statistics, statistics_p,
sizeof (struct iwk_notif_statistics));
sc->sc_flags |= IWK_F_STATISTICS;
if (!(sc->sc_flags & IWK_F_SCANNING)) {
/* make Receiver gain balance calibration */
(void) iwk_rxgain_diff(sc);
/* make Receiver sensitivity calibration */
(void) iwk_rx_sens(sc);
}
if (!is_diff) {
mutex_exit(&sc->sc_glock);
return;
}
/* calibration current temperature of 4965 chipset */
sc->sc_tempera = iwk_curr_tempera(sc);
/* distinct temperature change will trigger Tx power calibration */
if (((sc->sc_tempera - sc->sc_last_tempera) >= 3) ||
((sc->sc_last_tempera - sc->sc_tempera) >= 3)) {
/* make Tx power calibration */
(void) iwk_tx_power_calibration(sc);
}
mutex_exit(&sc->sc_glock);
}
/* Determine this station is in associated state or not */
static int iwk_is_associated(iwk_sc_t *sc)
{
return (LE_32(sc->sc_config.filter_flags) & RXON_FILTER_ASSOC_MSK);
}
/* Make necessary preparation for Receiver gain balance calibration */
static int iwk_rxgain_diff_init(iwk_sc_t *sc)
{
int i, rv;
struct iwk_calibration_cmd cmd;
struct iwk_rx_gain_diff *gain_diff_p;
gain_diff_p = &sc->sc_rxgain_diff;
(void) memset(gain_diff_p, 0, sizeof (struct iwk_rx_gain_diff));
(void) memset(&cmd, 0, sizeof (struct iwk_calibration_cmd));
for (i = 0; i < RX_CHAINS_NUM; i++) {
gain_diff_p->gain_diff_chain[i] = CHAIN_GAIN_DIFF_INIT_VAL;
}
if (iwk_is_associated(sc)) {
cmd.opCode = PHY_CALIBRATE_DIFF_GAIN_CMD;
cmd.diff_gain_a = 0;
cmd.diff_gain_b = 0;
cmd.diff_gain_c = 0;
/* assume the gains of every Rx chains is balanceable */
rv = iwk_cmd(sc, REPLY_PHY_CALIBRATION_CMD, &cmd,
sizeof (cmd), 1);
if (rv) {
return (rv);
}
gain_diff_p->state = IWK_GAIN_DIFF_ACCUMULATE;
}
return (IWK_SUCCESS);
}
/*
* make Receiver gain balance to balance Rx gain between Rx chains
* and determine which chain is disconnected
*/
static int iwk_rxgain_diff(iwk_sc_t *sc)
{
int i, is_24G, rv;
int max_beacon_chain_n;
int min_noise_chain_n;
uint16_t channel_n;
int32_t beacon_diff;
int32_t noise_diff;
uint32_t noise_chain_a, noise_chain_b, noise_chain_c;
uint32_t beacon_chain_a, beacon_chain_b, beacon_chain_c;
struct iwk_calibration_cmd cmd;
uint32_t beacon_aver[RX_CHAINS_NUM] = {0xFFFFFFFF};
uint32_t noise_aver[RX_CHAINS_NUM] = {0xFFFFFFFF};
struct statistics_rx_non_phy *rx_general_p =
&sc->sc_statistics.rx.general;
struct iwk_rx_gain_diff *gain_diff_p = &sc->sc_rxgain_diff;
if (INTERFERENCE_DATA_AVAILABLE !=
LE_32(rx_general_p->interference_data_flag)) {
return (IWK_SUCCESS);
}
if (IWK_GAIN_DIFF_ACCUMULATE != gain_diff_p->state) {
return (IWK_SUCCESS);
}
is_24G = iwk_is_24G_band(sc);
channel_n = sc->sc_config.chan; /* channel number */
if ((channel_n != (LE_32(sc->sc_statistics.flag) >> 16)) ||
((STATISTICS_REPLY_FLG_BAND_24G_MSK ==
(LE_32(sc->sc_statistics.flag) &
STATISTICS_REPLY_FLG_BAND_24G_MSK)) &&
!is_24G)) {
return (IWK_SUCCESS);
}
/* Rx chain's noise strength from statistics notification */
noise_chain_a = LE_32(rx_general_p->beacon_silence_rssi_a) & 0xFF;
noise_chain_b = LE_32(rx_general_p->beacon_silence_rssi_b) & 0xFF;
noise_chain_c = LE_32(rx_general_p->beacon_silence_rssi_c) & 0xFF;
/* Rx chain's beacon strength from statistics notification */
beacon_chain_a = LE_32(rx_general_p->beacon_rssi_a) & 0xFF;
beacon_chain_b = LE_32(rx_general_p->beacon_rssi_b) & 0xFF;
beacon_chain_c = LE_32(rx_general_p->beacon_rssi_c) & 0xFF;
gain_diff_p->beacon_count++;
/* accumulate chain's noise strength */
gain_diff_p->noise_stren_a += noise_chain_a;
gain_diff_p->noise_stren_b += noise_chain_b;
gain_diff_p->noise_stren_c += noise_chain_c;
/* accumulate chain's beacon strength */
gain_diff_p->beacon_stren_a += beacon_chain_a;
gain_diff_p->beacon_stren_b += beacon_chain_b;
gain_diff_p->beacon_stren_c += beacon_chain_c;
if (BEACON_NUM_20 == gain_diff_p->beacon_count) {
/* calculate average beacon strength */
beacon_aver[0] = (gain_diff_p->beacon_stren_a) / BEACON_NUM_20;
beacon_aver[1] = (gain_diff_p->beacon_stren_b) / BEACON_NUM_20;
beacon_aver[2] = (gain_diff_p->beacon_stren_c) / BEACON_NUM_20;
/* calculate average noise strength */
noise_aver[0] = (gain_diff_p->noise_stren_a) / BEACON_NUM_20;
noise_aver[1] = (gain_diff_p->noise_stren_b) / BEACON_NUM_20;
noise_aver[2] = (gain_diff_p->noise_stren_b) / BEACON_NUM_20;
/* determine maximum beacon strength among 3 chains */
if ((beacon_aver[0] >= beacon_aver[1]) &&
(beacon_aver[0] >= beacon_aver[2])) {
max_beacon_chain_n = 0;
gain_diff_p->connected_chains = 1 << 0;
} else if (beacon_aver[1] >= beacon_aver[2]) {
max_beacon_chain_n = 1;
gain_diff_p->connected_chains = 1 << 1;
} else {
max_beacon_chain_n = 2;
gain_diff_p->connected_chains = 1 << 2;
}
/* determine which chain is disconnected */
for (i = 0; i < RX_CHAINS_NUM; i++) {
if (i != max_beacon_chain_n) {
beacon_diff = beacon_aver[max_beacon_chain_n] -
beacon_aver[i];
if (beacon_diff > MAX_ALLOWED_DIFF) {
gain_diff_p->disconnect_chain[i] = 1;
} else {
gain_diff_p->connected_chains |=
(1 << i);
}
}
}
/*
* if chain A and B are both disconnected,
* assume the stronger in beacon strength is connected
*/
if (gain_diff_p->disconnect_chain[0] &&
gain_diff_p->disconnect_chain[1]) {
if (beacon_aver[0] >= beacon_aver[1]) {
gain_diff_p->disconnect_chain[0] = 0;
gain_diff_p->connected_chains |= (1 << 0);
} else {
gain_diff_p->disconnect_chain[1] = 0;
gain_diff_p->connected_chains |= (1 << 1);
}
}
/* determine minimum noise strength among 3 chains */
if (!gain_diff_p->disconnect_chain[0]) {
min_noise_chain_n = 0;
for (i = 0; i < RX_CHAINS_NUM; i++) {
if (!gain_diff_p->disconnect_chain[i] &&
(noise_aver[i] <=
noise_aver[min_noise_chain_n])) {
min_noise_chain_n = i;
}
}
} else {
min_noise_chain_n = 1;
for (i = 0; i < RX_CHAINS_NUM; i++) {
if (!gain_diff_p->disconnect_chain[i] &&
(noise_aver[i] <=
noise_aver[min_noise_chain_n])) {
min_noise_chain_n = i;
}
}
}
gain_diff_p->gain_diff_chain[min_noise_chain_n] = 0;
/* determine gain difference between chains */
for (i = 0; i < RX_CHAINS_NUM; i++) {
if (!gain_diff_p->disconnect_chain[i] &&
(CHAIN_GAIN_DIFF_INIT_VAL ==
gain_diff_p->gain_diff_chain[i])) {
noise_diff = noise_aver[i] -
noise_aver[min_noise_chain_n];
gain_diff_p->gain_diff_chain[i] =
(uint8_t)((noise_diff * 10) / 15);
if (gain_diff_p->gain_diff_chain[i] > 3) {
gain_diff_p->gain_diff_chain[i] = 3;
}
gain_diff_p->gain_diff_chain[i] |= (1 << 2);
} else {
gain_diff_p->gain_diff_chain[i] = 0;
}
}
if (!gain_diff_p->gain_diff_send) {
gain_diff_p->gain_diff_send = 1;
(void) memset(&cmd, 0, sizeof (cmd));
cmd.opCode = PHY_CALIBRATE_DIFF_GAIN_CMD;
cmd.diff_gain_a = gain_diff_p->gain_diff_chain[0];
cmd.diff_gain_b = gain_diff_p->gain_diff_chain[1];
cmd.diff_gain_c = gain_diff_p->gain_diff_chain[2];
/*
* send out PHY calibration command to
* adjust every chain's Rx gain
*/
rv = iwk_cmd(sc, REPLY_PHY_CALIBRATION_CMD,
&cmd, sizeof (cmd), 1);
if (rv) {
return (rv);
}
gain_diff_p->state = IWK_GAIN_DIFF_CALIBRATED;
}
gain_diff_p->beacon_stren_a = 0;
gain_diff_p->beacon_stren_b = 0;
gain_diff_p->beacon_stren_c = 0;
gain_diff_p->noise_stren_a = 0;
gain_diff_p->noise_stren_b = 0;
gain_diff_p->noise_stren_c = 0;
}
return (IWK_SUCCESS);
}
/* Make necessary preparation for Receiver sensitivity calibration */
static int iwk_rx_sens_init(iwk_sc_t *sc)
{
int i, rv;
struct iwk_rx_sensitivity_cmd cmd;
struct iwk_rx_sensitivity *rx_sens_p = &sc->sc_rx_sens;
(void) memset(&cmd, 0, sizeof (struct iwk_rx_sensitivity_cmd));
(void) memset(rx_sens_p, 0, sizeof (struct iwk_rx_sensitivity));
rx_sens_p->auto_corr_ofdm_x4 = 90;
rx_sens_p->auto_corr_mrc_ofdm_x4 = 170;
rx_sens_p->auto_corr_ofdm_x1 = 105;
rx_sens_p->auto_corr_mrc_ofdm_x1 = 220;
rx_sens_p->auto_corr_cck_x4 = 125;
rx_sens_p->auto_corr_mrc_cck_x4 = 200;
rx_sens_p->min_energy_det_cck = 100;
rx_sens_p->flags &= (~IWK_SENSITIVITY_CALIB_ALLOW_MSK);
rx_sens_p->flags &= (~IWK_SENSITIVITY_OFDM_UPDATE_MSK);
rx_sens_p->flags &= (~IWK_SENSITIVITY_CCK_UPDATE_MSK);
rx_sens_p->last_bad_plcp_cnt_ofdm = 0;
rx_sens_p->last_false_alarm_cnt_ofdm = 0;
rx_sens_p->last_bad_plcp_cnt_cck = 0;
rx_sens_p->last_false_alarm_cnt_cck = 0;
rx_sens_p->cck_curr_state = IWK_TOO_MANY_FALSE_ALARM;
rx_sens_p->cck_prev_state = IWK_TOO_MANY_FALSE_ALARM;
rx_sens_p->cck_no_false_alarm_num = 0;
rx_sens_p->cck_beacon_idx = 0;
for (i = 0; i < 10; i++) {
rx_sens_p->cck_beacon_min[i] = 0;
}
rx_sens_p->cck_noise_idx = 0;
rx_sens_p->cck_noise_ref = 0;
for (i = 0; i < 20; i++) {
rx_sens_p->cck_noise_max[i] = 0;
}
rx_sens_p->cck_noise_diff = 0;
rx_sens_p->cck_no_false_alarm_num = 0;
cmd.control = LE_16(IWK_SENSITIVITY_CONTROL_WORK_TABLE);
cmd.table[AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
LE_16(rx_sens_p->auto_corr_ofdm_x4);
cmd.table[AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
LE_16(rx_sens_p->auto_corr_mrc_ofdm_x4);
cmd.table[AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
LE_16(rx_sens_p->auto_corr_ofdm_x1);
cmd.table[AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
LE_16(rx_sens_p->auto_corr_mrc_ofdm_x1);
cmd.table[AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
LE_16(rx_sens_p->auto_corr_cck_x4);
cmd.table[AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
LE_16(rx_sens_p->auto_corr_mrc_cck_x4);
cmd.table[MIN_ENERGY_CCK_DET_IDX] =
LE_16(rx_sens_p->min_energy_det_cck);
cmd.table[MIN_ENERGY_OFDM_DET_IDX] = LE_16(100);
cmd.table[BARKER_CORR_TH_ADD_MIN_IDX] = LE_16(190);
cmd.table[BARKER_CORR_TH_ADD_MIN_MRC_IDX] = LE_16(390);
cmd.table[PTAM_ENERGY_TH_IDX] = LE_16(62);
/* at first, set up Rx to maximum sensitivity */
rv = iwk_cmd(sc, SENSITIVITY_CMD, &cmd, sizeof (cmd), 1);
if (rv) {
cmn_err(CE_WARN, "iwk_rx_sens_init(): "
"in the process of initialization, "
"failed to send rx sensitivity command\n");
return (rv);
}
rx_sens_p->flags |= IWK_SENSITIVITY_CALIB_ALLOW_MSK;
return (IWK_SUCCESS);
}
/*
* make Receiver sensitivity calibration to adjust every chain's Rx sensitivity.
* for more infomation, please refer to iwk_calibration.h file
*/
static int iwk_rx_sens(iwk_sc_t *sc)
{
int rv;
uint32_t actual_rx_time;
struct statistics_rx_non_phy *rx_general_p =
&sc->sc_statistics.rx.general;
struct iwk_rx_sensitivity *rx_sens_p = &sc->sc_rx_sens;
struct iwk_rx_sensitivity_cmd cmd;
if (!(rx_sens_p->flags & IWK_SENSITIVITY_CALIB_ALLOW_MSK)) {
cmn_err(CE_WARN, "iwk_rx_sens(): "
"sensitivity initialization has not finished.\n");
return (DDI_FAILURE);
}
if (INTERFERENCE_DATA_AVAILABLE !=
LE_32(rx_general_p->interference_data_flag)) {
cmn_err(CE_WARN, "iwk_rx_sens(): "
"can't make rx sensitivity calibration,"
"because of invalid statistics\n");
return (DDI_FAILURE);
}
actual_rx_time = LE_32(rx_general_p->channel_load);
if (!actual_rx_time) {
IWK_DBG((IWK_DEBUG_CALIBRATION, "iwk_rx_sens(): "
"can't make rx sensitivity calibration,"
"because has not enough rx time\n"));
return (DDI_FAILURE);
}
/* make Rx sensitivity calibration for OFDM mode */
rv = iwk_ofdm_sens(sc, actual_rx_time);
if (rv) {
return (rv);
}
/* make Rx sensitivity calibration for CCK mode */
rv = iwk_cck_sens(sc, actual_rx_time);
if (rv) {
return (rv);
}
/*
* if the sum of false alarm had not changed, nothing will be done
*/
if ((!(rx_sens_p->flags & IWK_SENSITIVITY_OFDM_UPDATE_MSK)) &&
(!(rx_sens_p->flags & IWK_SENSITIVITY_CCK_UPDATE_MSK))) {
return (IWK_SUCCESS);
}
cmd.control = IWK_SENSITIVITY_CONTROL_WORK_TABLE;
cmd.table[AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
rx_sens_p->auto_corr_ofdm_x4;
cmd.table[AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
rx_sens_p->auto_corr_mrc_ofdm_x4;
cmd.table[AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
rx_sens_p->auto_corr_ofdm_x1;
cmd.table[AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
rx_sens_p->auto_corr_mrc_ofdm_x1;
cmd.table[AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
rx_sens_p->auto_corr_cck_x4;
cmd.table[AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
rx_sens_p->auto_corr_mrc_cck_x4;
cmd.table[MIN_ENERGY_CCK_DET_IDX] =
rx_sens_p->min_energy_det_cck;
cmd.table[MIN_ENERGY_OFDM_DET_IDX] = 100;
cmd.table[BARKER_CORR_TH_ADD_MIN_IDX] = 190;
cmd.table[BARKER_CORR_TH_ADD_MIN_MRC_IDX] = 390;
cmd.table[PTAM_ENERGY_TH_IDX] = 62;
/*
* send sensitivity command to complete actual sensitivity calibration
*/
rv = iwk_cmd(sc, SENSITIVITY_CMD, &cmd, sizeof (cmd), 1);
if (rv) {
cmn_err(CE_WARN, "iwk_rx_sens(): "
"fail to send rx sensitivity command\n");
return (rv);
}
return (IWK_SUCCESS);
}
/*
* make Rx sensitivity calibration for CCK mode.
* This is preparing parameters for Sensitivity command
*/
static int iwk_cck_sens(iwk_sc_t *sc, uint32_t actual_rx_time)
{
int i;
uint8_t noise_a, noise_b, noise_c;
uint8_t max_noise_abc, max_noise_20;
uint32_t beacon_a, beacon_b, beacon_c;
uint32_t min_beacon_abc, max_beacon_10;
uint32_t cck_fa, cck_bp;
uint32_t cck_sum_fa_bp;
uint32_t temp;
struct statistics_rx_non_phy *rx_general_p =
&sc->sc_statistics.rx.general;
struct iwk_rx_sensitivity *rx_sens_p = &sc->sc_rx_sens;
cck_fa = LE_32(sc->sc_statistics.rx.cck.false_alarm_cnt);
cck_bp = LE_32(sc->sc_statistics.rx.cck.plcp_err);
/* accumulate false alarm */
if (rx_sens_p->last_false_alarm_cnt_cck > cck_fa) {
temp = rx_sens_p->last_false_alarm_cnt_cck;
rx_sens_p->last_false_alarm_cnt_cck = cck_fa;
cck_fa += (0xFFFFFFFF - temp);
} else {
cck_fa -= rx_sens_p->last_false_alarm_cnt_cck;
rx_sens_p->last_false_alarm_cnt_cck += cck_fa;
}
/* accumulate bad plcp */
if (rx_sens_p->last_bad_plcp_cnt_cck > cck_bp) {
temp = rx_sens_p->last_bad_plcp_cnt_cck;
rx_sens_p->last_bad_plcp_cnt_cck = cck_bp;
cck_bp += (0xFFFFFFFF - temp);
} else {
cck_bp -= rx_sens_p->last_bad_plcp_cnt_cck;
rx_sens_p->last_bad_plcp_cnt_cck += cck_bp;
}
/*
* calculate relative value
*/
cck_sum_fa_bp = (cck_fa + cck_bp) * 200 * 1024;
rx_sens_p->cck_noise_diff = 0;
noise_a =
(uint8_t)((LE_32(rx_general_p->beacon_silence_rssi_a) & 0xFF00) >>
8);
noise_b =
(uint8_t)((LE_32(rx_general_p->beacon_silence_rssi_b) & 0xFF00) >>
8);
noise_c =
(uint8_t)((LE_32(rx_general_p->beacon_silence_rssi_c) & 0xFF00) >>
8);
beacon_a = LE_32(rx_general_p->beacon_energy_a);
beacon_b = LE_32(rx_general_p->beacon_energy_b);
beacon_c = LE_32(rx_general_p->beacon_energy_c);
/* determine maximum noise among 3 chains */
if ((noise_a >= noise_b) && (noise_a >= noise_c)) {
max_noise_abc = noise_a;
} else if (noise_b >= noise_c) {
max_noise_abc = noise_b;
} else {
max_noise_abc = noise_c;
}
/* record maximum noise among 3 chains */
rx_sens_p->cck_noise_max[rx_sens_p->cck_noise_idx] = max_noise_abc;
rx_sens_p->cck_noise_idx++;
if (rx_sens_p->cck_noise_idx >= 20) {
rx_sens_p->cck_noise_idx = 0;
}
/* determine maximum noise among 20 max noise */
max_noise_20 = rx_sens_p->cck_noise_max[0];
for (i = 0; i < 20; i++) {
if (rx_sens_p->cck_noise_max[i] >= max_noise_20) {
max_noise_20 = rx_sens_p->cck_noise_max[i];
}
}
/* determine minimum beacon among 3 chains */
if ((beacon_a <= beacon_b) && (beacon_a <= beacon_c)) {
min_beacon_abc = beacon_a;
} else if (beacon_b <= beacon_c) {
min_beacon_abc = beacon_b;
} else {
min_beacon_abc = beacon_c;
}
/* record miminum beacon among 3 chains */
rx_sens_p->cck_beacon_min[rx_sens_p->cck_beacon_idx] = min_beacon_abc;
rx_sens_p->cck_beacon_idx++;
if (rx_sens_p->cck_beacon_idx >= 10) {
rx_sens_p->cck_beacon_idx = 0;
}
/* determine maximum beacon among 10 miminum beacon among 3 chains */
max_beacon_10 = rx_sens_p->cck_beacon_min[0];
for (i = 0; i < 10; i++) {
if (rx_sens_p->cck_beacon_min[i] >= max_beacon_10) {
max_beacon_10 = rx_sens_p->cck_beacon_min[i];
}
}
/* add a little margin */
max_beacon_10 += 6;
/* record the count of having no false alarms */
if (cck_sum_fa_bp < (5 * actual_rx_time)) {
rx_sens_p->cck_no_false_alarm_num++;
} else {
rx_sens_p->cck_no_false_alarm_num = 0;
}
/*
* adjust parameters in sensitivity command
* according to different status.
* for more infomation, please refer to iwk_calibration.h file
*/
if (cck_sum_fa_bp > (50 * actual_rx_time)) {
rx_sens_p->cck_curr_state = IWK_TOO_MANY_FALSE_ALARM;
if (rx_sens_p->auto_corr_cck_x4 > 160) {
rx_sens_p->cck_noise_ref = max_noise_20;
if (rx_sens_p->min_energy_det_cck > 2) {
rx_sens_p->min_energy_det_cck -= 2;
}
}
if (rx_sens_p->auto_corr_cck_x4 < 160) {
rx_sens_p->auto_corr_cck_x4 = 160 + 1;
} else {
if ((rx_sens_p->auto_corr_cck_x4 + 3) < 200) {
rx_sens_p->auto_corr_cck_x4 += 3;
} else {
rx_sens_p->auto_corr_cck_x4 = 200;
}
}
if ((rx_sens_p->auto_corr_mrc_cck_x4 + 3) < 400) {
rx_sens_p->auto_corr_mrc_cck_x4 += 3;
} else {
rx_sens_p->auto_corr_mrc_cck_x4 = 400;
}
rx_sens_p->flags |= IWK_SENSITIVITY_CCK_UPDATE_MSK;
} else if (cck_sum_fa_bp < (5 * actual_rx_time)) {
rx_sens_p->cck_curr_state = IWK_TOO_FEW_FALSE_ALARM;
rx_sens_p->cck_noise_diff = (int32_t)rx_sens_p->cck_noise_ref -
(int32_t)max_noise_20;
if ((rx_sens_p->cck_prev_state != IWK_TOO_MANY_FALSE_ALARM) &&
((rx_sens_p->cck_noise_diff > 2) ||
(rx_sens_p->cck_no_false_alarm_num > 100))) {
if ((rx_sens_p->min_energy_det_cck + 2) < 97) {
rx_sens_p->min_energy_det_cck += 2;
} else {
rx_sens_p->min_energy_det_cck = 97;
}
if ((rx_sens_p->auto_corr_cck_x4 - 3) > 125) {
rx_sens_p->auto_corr_cck_x4 -= 3;
} else {
rx_sens_p->auto_corr_cck_x4 = 125;
}
if ((rx_sens_p->auto_corr_mrc_cck_x4 -3) > 200) {
rx_sens_p->auto_corr_mrc_cck_x4 -= 3;
} else {
rx_sens_p->auto_corr_mrc_cck_x4 = 200;
}
rx_sens_p->flags |= IWK_SENSITIVITY_CCK_UPDATE_MSK;
} else {
rx_sens_p->flags &= (~IWK_SENSITIVITY_CCK_UPDATE_MSK);
}
} else {
rx_sens_p->cck_curr_state = IWK_GOOD_RANGE_FALSE_ALARM;
rx_sens_p->cck_noise_ref = max_noise_20;
if (IWK_TOO_MANY_FALSE_ALARM == rx_sens_p->cck_prev_state) {
rx_sens_p->min_energy_det_cck -= 8;
}
rx_sens_p->flags &= (~IWK_SENSITIVITY_CCK_UPDATE_MSK);
}
if (rx_sens_p->min_energy_det_cck < max_beacon_10) {
rx_sens_p->min_energy_det_cck = (uint16_t)max_beacon_10;
}
rx_sens_p->cck_prev_state = rx_sens_p->cck_curr_state;
return (IWK_SUCCESS);
}
/*
* make Rx sensitivity calibration for OFDM mode.
* This is preparing parameters for Sensitivity command
*/
static int iwk_ofdm_sens(iwk_sc_t *sc, uint32_t actual_rx_time)
{
uint32_t temp;
uint16_t temp1;
uint32_t ofdm_fa, ofdm_bp;
uint32_t ofdm_sum_fa_bp;
struct iwk_rx_sensitivity *rx_sens_p = &sc->sc_rx_sens;
ofdm_fa = LE_32(sc->sc_statistics.rx.ofdm.false_alarm_cnt);
ofdm_bp = LE_32(sc->sc_statistics.rx.ofdm.plcp_err);
/* accumulate false alarm */
if (rx_sens_p->last_false_alarm_cnt_ofdm > ofdm_fa) {
temp = rx_sens_p->last_false_alarm_cnt_ofdm;
rx_sens_p->last_false_alarm_cnt_ofdm = ofdm_fa;
ofdm_fa += (0xFFFFFFFF - temp);
} else {
ofdm_fa -= rx_sens_p->last_false_alarm_cnt_ofdm;
rx_sens_p->last_false_alarm_cnt_ofdm += ofdm_fa;
}
/* accumulate bad plcp */
if (rx_sens_p->last_bad_plcp_cnt_ofdm > ofdm_bp) {
temp = rx_sens_p->last_bad_plcp_cnt_ofdm;
rx_sens_p->last_bad_plcp_cnt_ofdm = ofdm_bp;
ofdm_bp += (0xFFFFFFFF - temp);
} else {
ofdm_bp -= rx_sens_p->last_bad_plcp_cnt_ofdm;
rx_sens_p->last_bad_plcp_cnt_ofdm += ofdm_bp;
}
ofdm_sum_fa_bp = (ofdm_fa + ofdm_bp) * 200 * 1024; /* relative value */
/*
* adjust parameter in sensitivity command according to different status
*/
if (ofdm_sum_fa_bp > (50 * actual_rx_time)) {
temp1 = rx_sens_p->auto_corr_ofdm_x4 + 1;
rx_sens_p->auto_corr_ofdm_x4 = (temp1 <= 120) ? temp1 : 120;
temp1 = rx_sens_p->auto_corr_mrc_ofdm_x4 + 1;
rx_sens_p->auto_corr_mrc_ofdm_x4 =
(temp1 <= 210) ? temp1 : 210;
temp1 = rx_sens_p->auto_corr_ofdm_x1 + 1;
rx_sens_p->auto_corr_ofdm_x1 = (temp1 <= 140) ? temp1 : 140;
temp1 = rx_sens_p->auto_corr_mrc_ofdm_x1 + 1;
rx_sens_p->auto_corr_mrc_ofdm_x1 =
(temp1 <= 270) ? temp1 : 270;
rx_sens_p->flags |= IWK_SENSITIVITY_OFDM_UPDATE_MSK;
} else if (ofdm_sum_fa_bp < (5 * actual_rx_time)) {
temp1 = rx_sens_p->auto_corr_ofdm_x4 - 1;
rx_sens_p->auto_corr_ofdm_x4 = (temp1 >= 85) ? temp1 : 85;
temp1 = rx_sens_p->auto_corr_mrc_ofdm_x4 - 1;
rx_sens_p->auto_corr_mrc_ofdm_x4 =
(temp1 >= 170) ? temp1 : 170;
temp1 = rx_sens_p->auto_corr_ofdm_x1 - 1;
rx_sens_p->auto_corr_ofdm_x1 = (temp1 >= 105) ? temp1 : 105;
temp1 = rx_sens_p->auto_corr_mrc_ofdm_x1 - 1;
rx_sens_p->auto_corr_mrc_ofdm_x1 =
(temp1 >= 220) ? temp1 : 220;
rx_sens_p->flags |= IWK_SENSITIVITY_OFDM_UPDATE_MSK;
} else {
rx_sens_p->flags &= (~IWK_SENSITIVITY_OFDM_UPDATE_MSK);
}
return (IWK_SUCCESS);
}
/*
* additional process to management frames
*/
static void iwk_recv_mgmt(struct ieee80211com *ic, mblk_t *mp,
struct ieee80211_node *in,
int subtype, int rssi, uint32_t rstamp)
{
iwk_sc_t *sc = (iwk_sc_t *)ic;
struct ieee80211_frame *wh;
uint8_t index1, index2;
int err;
sc->sc_recv_mgmt(ic, mp, in, subtype, rssi, rstamp);
mutex_enter(&sc->sc_glock);
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_BEACON:
if (sc->sc_ibss.ibss_beacon.syncbeacon && in == ic->ic_bss &&
ic->ic_state == IEEE80211_S_RUN) {
if (ieee80211_beacon_update(ic, in,
&sc->sc_ibss.ibss_beacon.iwk_boff,
sc->sc_ibss.ibss_beacon.mp, 0)) {
bcopy(sc->sc_ibss.ibss_beacon.mp->b_rptr,
sc->sc_ibss.ibss_beacon.beacon_cmd.
bcon_frame,
MBLKL(sc->sc_ibss.ibss_beacon.mp));
}
err = iwk_cmd(sc, REPLY_TX_BEACON,
&sc->sc_ibss.ibss_beacon.beacon_cmd,
sc->sc_ibss.ibss_beacon.beacon_cmd_len, 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_recv_mgmt(): "
"failed to TX beacon.\n");
}
sc->sc_ibss.ibss_beacon.syncbeacon = 0;
}
if (ic->ic_opmode == IEEE80211_M_IBSS &&
ic->ic_state == IEEE80211_S_RUN) {
wh = (struct ieee80211_frame *)mp->b_rptr;
mutex_enter(&sc->sc_ibss.node_tb_lock);
/*
* search for node in ibss node table
*/
for (index1 = IWK_STA_ID; index1 < IWK_STATION_COUNT;
index1++) {
if (sc->sc_ibss.ibss_node_tb[index1].used &&
IEEE80211_ADDR_EQ(sc->sc_ibss.
ibss_node_tb[index1].node.bssid,
wh->i_addr2)) {
break;
}
}
/*
* if don't find in ibss node table
*/
if (index1 >= IWK_BROADCAST_ID) {
err = iwk_clean_add_node_ibss(ic,
wh->i_addr2, &index2);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_recv_mgmt(): "
"failed to clean all nodes "
"and add one node\n");
}
}
mutex_exit(&sc->sc_ibss.node_tb_lock);
}
break;
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
break;
}
mutex_exit(&sc->sc_glock);
}
/*
* 1) log_event_table_ptr indicates base of the event log. This traces
* a 256-entry history of uCode execution within a circular buffer.
* Its header format is:
*
* uint32_t log_size; log capacity (in number of entries)
* uint32_t type; (1) timestamp with each entry, (0) no timestamp
* uint32_t wraps; # times uCode has wrapped to top of circular buffer
* uint32_t write_index; next circular buffer entry that uCode would fill
*
* The header is followed by the circular buffer of log entries. Entries
* with timestamps have the following format:
*
* uint32_t event_id; range 0 - 1500
* uint32_t timestamp; low 32 bits of TSF (of network, if associated)
* uint32_t data; event_id-specific data value
*
* Entries without timestamps contain only event_id and data.
*/
/*
* iwk_write_event_log - Write event log to dmesg
*/
static void iwk_write_event_log(iwk_sc_t *sc)
{
uint32_t log_event_table_ptr; /* Start address of event table */
uint32_t startptr; /* Start address of log data */
uint32_t logptr; /* address of log data entry */
uint32_t i, n, num_events;
uint32_t event_id, data1, data2; /* log data */
uint32_t log_size; /* log capacity (in number of entries) */
uint32_t type; /* (1)timestamp with each entry,(0) no timestamp */
uint32_t wraps; /* # times uCode has wrapped to */
/* the top of circular buffer */
uint32_t idx; /* index of entry to be filled in next */
log_event_table_ptr = LE_32(sc->sc_card_alive_run.log_event_table_ptr);
if (!(log_event_table_ptr)) {
IWK_DBG((IWK_DEBUG_EEPROM, "NULL event table pointer\n"));
return;
}
iwk_mac_access_enter(sc);
/* Read log header */
log_size = iwk_mem_read(sc, log_event_table_ptr);
log_event_table_ptr += sizeof (uint32_t); /* addr of "type" */
type = iwk_mem_read(sc, log_event_table_ptr);
log_event_table_ptr += sizeof (uint32_t); /* addr of "wraps" */
wraps = iwk_mem_read(sc, log_event_table_ptr);
log_event_table_ptr += sizeof (uint32_t); /* addr of "idx" */
idx = iwk_mem_read(sc, log_event_table_ptr);
startptr = log_event_table_ptr +
sizeof (uint32_t); /* addr of start of log data */
if (!log_size & !wraps) {
IWK_DBG((IWK_DEBUG_EEPROM, "Empty log\n"));
iwk_mac_access_exit(sc);
return;
}
if (!wraps) {
num_events = idx;
logptr = startptr;
} else {
num_events = log_size - idx;
n = type ? 2 : 3;
logptr = startptr + (idx * n * sizeof (uint32_t));
}
for (i = 0; i < num_events; i++) {
event_id = iwk_mem_read(sc, logptr);
logptr += sizeof (uint32_t);
data1 = iwk_mem_read(sc, logptr);
logptr += sizeof (uint32_t);
if (type == 0) { /* no timestamp */
IWK_DBG((IWK_DEBUG_EEPROM, "Event ID=%d, Data=%x0x",
event_id, data1));
} else { /* timestamp */
data2 = iwk_mem_read(sc, logptr);
IWK_DBG((IWK_DEBUG_EEPROM,
"Time=%d, Event ID=%d, Data=0x%x\n",
data1, event_id, data2));
logptr += sizeof (uint32_t);
}
}
/*
* Print the wrapped around entries, if any
*/
if (wraps) {
logptr = startptr;
for (i = 0; i < idx; i++) {
event_id = iwk_mem_read(sc, logptr);
logptr += sizeof (uint32_t);
data1 = iwk_mem_read(sc, logptr);
logptr += sizeof (uint32_t);
if (type == 0) { /* no timestamp */
IWK_DBG((IWK_DEBUG_EEPROM,
"Event ID=%d, Data=%x0x", event_id, data1));
} else { /* timestamp */
data2 = iwk_mem_read(sc, logptr);
IWK_DBG((IWK_DEBUG_EEPROM,
"Time = %d, Event ID=%d, Data=0x%x\n",
data1, event_id, data2));
logptr += sizeof (uint32_t);
}
}
}
iwk_mac_access_exit(sc);
}
/*
* error_event_table_ptr indicates base of the error log. This contains
* information about any uCode error that occurs. For 4965, the format is:
*
* uint32_t valid; (nonzero) valid, (0) log is empty
* uint32_t error_id; type of error
* uint32_t pc; program counter
* uint32_t blink1; branch link
* uint32_t blink2; branch link
* uint32_t ilink1; interrupt link
* uint32_t ilink2; interrupt link
* uint32_t data1; error-specific data
* uint32_t data2; error-specific data
* uint32_t line; source code line of error
* uint32_t bcon_time; beacon timer
* uint32_t tsf_low; network timestamp function timer
* uint32_t tsf_hi; network timestamp function timer
*/
/*
* iwk_write_error_log - Write error log to dmesg
*/
static void iwk_write_error_log(iwk_sc_t *sc)
{
uint32_t err_ptr; /* Start address of error log */
uint32_t valid; /* is error log valid */
err_ptr = LE_32(sc->sc_card_alive_run.error_event_table_ptr);
if (!(err_ptr)) {
IWK_DBG((IWK_DEBUG_EEPROM, "NULL error table pointer\n"));
return;
}
iwk_mac_access_enter(sc);
valid = iwk_mem_read(sc, err_ptr);
if (!(valid)) {
IWK_DBG((IWK_DEBUG_EEPROM, "Error data not valid\n"));
iwk_mac_access_exit(sc);
return;
}
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM, "err=%d ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM, "pc=0x%X ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM,
"branch link1=0x%X ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM,
"branch link2=0x%X ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM,
"interrupt link1=0x%X ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM,
"interrupt link2=0x%X ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM, "data1=0x%X ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM, "data2=0x%X ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM, "line=%d ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM, "bcon_time=%d ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM, "tsf_low=%d ", iwk_mem_read(sc, err_ptr)));
err_ptr += sizeof (uint32_t);
IWK_DBG((IWK_DEBUG_EEPROM, "tsf_hi=%d\n", iwk_mem_read(sc, err_ptr)));
iwk_mac_access_exit(sc);
}
static int
iwk_run_state_config_ibss(ieee80211com_t *ic)
{
iwk_sc_t *sc = (iwk_sc_t *)ic;
ieee80211_node_t *in = ic->ic_bss;
int i, err = IWK_SUCCESS;
mutex_enter(&sc->sc_ibss.node_tb_lock);
/*
* clean all nodes in ibss node table assure be
* consistent with hardware
*/
for (i = IWK_STA_ID; i < IWK_STATION_COUNT; i++) {
sc->sc_ibss.ibss_node_tb[i].used = 0;
(void) memset(&sc->sc_ibss.ibss_node_tb[i].node,
0,
sizeof (iwk_add_sta_t));
}
sc->sc_ibss.node_number = 0;
mutex_exit(&sc->sc_ibss.node_tb_lock);
/*
* configure RX and TX
*/
sc->sc_config.dev_type = RXON_DEV_TYPE_IBSS;
sc->sc_config.flags |= LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
sc->sc_config.filter_flags =
LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
RXON_FILTER_DIS_DECRYPT_MSK |
RXON_FILTER_DIS_GRP_DECRYPT_MSK);
sc->sc_config.assoc_id = 0;
IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
sc->sc_config.chan = LE_16(ieee80211_chan2ieee(ic,
in->in_chan));
if (ic->ic_curmode == IEEE80211_MODE_11B) {
sc->sc_config.cck_basic_rates = 0x03;
sc->sc_config.ofdm_basic_rates = 0;
} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
(IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
sc->sc_config.cck_basic_rates = 0;
sc->sc_config.ofdm_basic_rates = 0x15;
} else {
sc->sc_config.cck_basic_rates = 0x0f;
sc->sc_config.ofdm_basic_rates = 0xff;
}
sc->sc_config.flags &=
~LE_32(RXON_FLG_SHORT_PREAMBLE_MSK |
RXON_FLG_SHORT_SLOT_MSK);
if (ic->ic_flags & IEEE80211_F_SHSLOT) {
sc->sc_config.flags |=
LE_32(RXON_FLG_SHORT_SLOT_MSK);
}
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
sc->sc_config.flags |=
LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
}
sc->sc_config.filter_flags |=
LE_32(RXON_FILTER_ASSOC_MSK);
err = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
sizeof (iwk_rxon_cmd_t), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_run_state_config_ibss(): "
"failed to update configuration.\n");
return (err);
}
return (err);
}
static int
iwk_run_state_config_sta(ieee80211com_t *ic)
{
iwk_sc_t *sc = (iwk_sc_t *)ic;
ieee80211_node_t *in = ic->ic_bss;
int err = IWK_SUCCESS;
/* update adapter's configuration */
if (sc->sc_assoc_id != in->in_associd) {
cmn_err(CE_WARN, "iwk_run_state_config_sta(): "
"associate ID mismatch: expected %d, "
"got %d\n",
in->in_associd, sc->sc_assoc_id);
}
sc->sc_config.assoc_id = LE_16(in->in_associd & 0x3fff);
/*
* short preamble/slot time are
* negotiated when associating
*/
sc->sc_config.flags &=
~LE_32(RXON_FLG_SHORT_PREAMBLE_MSK |
RXON_FLG_SHORT_SLOT_MSK);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->sc_config.flags |=
LE_32(RXON_FLG_SHORT_SLOT_MSK);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->sc_config.flags |=
LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
sc->sc_config.filter_flags |=
LE_32(RXON_FILTER_ASSOC_MSK);
if (ic->ic_opmode != IEEE80211_M_STA)
sc->sc_config.filter_flags |=
LE_32(RXON_FILTER_BCON_AWARE_MSK);
IWK_DBG((IWK_DEBUG_80211, "config chan %d flags %x"
" filter_flags %x\n",
sc->sc_config.chan, sc->sc_config.flags,
sc->sc_config.filter_flags));
err = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
sizeof (iwk_rxon_cmd_t), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_run_state_config_sta(): "
"failed to update configuration\n");
return (err);
}
return (err);
}
static int
iwk_fast_recover(iwk_sc_t *sc)
{
ieee80211com_t *ic = &sc->sc_ic;
int err;
mutex_enter(&sc->sc_glock);
/* restore runtime configuration */
bcopy(&sc->sc_config_save, &sc->sc_config,
sizeof (sc->sc_config));
/* reset state to handle reassociations correctly */
sc->sc_config.assoc_id = 0;
sc->sc_config.filter_flags &=
~LE_32(RXON_FILTER_ASSOC_MSK);
if ((err = iwk_hw_set_before_auth(sc)) != 0) {
cmn_err(CE_WARN, "iwk_fast_recover(): "
"failed to setup authentication\n");
mutex_exit(&sc->sc_glock);
return (err);
}
bcopy(&sc->sc_config_save, &sc->sc_config,
sizeof (sc->sc_config));
/* update adapter's configuration */
err = iwk_run_state_config_sta(ic);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_fast_recover(): "
"failed to setup association\n");
mutex_exit(&sc->sc_glock);
return (err);
}
/* obtain current temperature of chipset */
sc->sc_tempera = iwk_curr_tempera(sc);
/*
* make Tx power calibration to determine
* the gains of DSP and radio
*/
err = iwk_tx_power_calibration(sc);
if (err) {
cmn_err(CE_WARN, "iwk_fast_recover(): "
"failed to set tx power table\n");
mutex_exit(&sc->sc_glock);
return (err);
}
/*
* make initialization for Receiver
* sensitivity calibration
*/
err = iwk_rx_sens_init(sc);
if (err) {
cmn_err(CE_WARN, "iwk_fast_recover(): "
"failed to init RX sensitivity\n");
mutex_exit(&sc->sc_glock);
return (err);
}
/* make initialization for Receiver gain balance */
err = iwk_rxgain_diff_init(sc);
if (err) {
cmn_err(CE_WARN, "iwk_fast_recover(): "
"failed to init phy calibration\n");
mutex_exit(&sc->sc_glock);
return (err);
}
/* set LED on */
iwk_set_led(sc, 2, 0, 1);
mutex_exit(&sc->sc_glock);
/* update keys */
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
for (int i = 0; i < IEEE80211_KEY_MAX; i++) {
if (ic->ic_nw_keys[i].wk_keyix == IEEE80211_KEYIX_NONE)
continue;
err = iwk_key_set(ic, &ic->ic_nw_keys[i],
ic->ic_bss->in_macaddr);
/* failure */
if (err == 0) {
cmn_err(CE_WARN, "iwk_fast_recover(): "
"failed to setup hardware keys\n");
return (IWK_FAIL);
}
}
}
sc->sc_flags &= ~IWK_F_HW_ERR_RECOVER;
/* start queue */
IWK_DBG((IWK_DEBUG_FW, "iwk_fast_recover(): resume xmit\n"));
mac_tx_update(ic->ic_mach);
return (IWK_SUCCESS);
}
static int
iwk_start_tx_beacon(ieee80211com_t *ic)
{
iwk_sc_t *sc = (iwk_sc_t *)ic;
ieee80211_node_t *in = ic->ic_bss;
int err = IWK_SUCCESS;
iwk_tx_beacon_cmd_t *tx_beacon_p;
uint16_t masks = 0;
mblk_t *mp;
int rate;
/*
* allocate and transmit beacon frames
*/
tx_beacon_p = &sc->sc_ibss.ibss_beacon.beacon_cmd;
(void) memset(tx_beacon_p, 0,
sizeof (iwk_tx_beacon_cmd_t));
rate = 0;
masks = 0;
tx_beacon_p->config.sta_id = IWK_BROADCAST_ID;
tx_beacon_p->config.stop_time.life_time =
LE_32(0xffffffff);
if (sc->sc_ibss.ibss_beacon.mp != NULL) {
freemsg(sc->sc_ibss.ibss_beacon.mp);
sc->sc_ibss.ibss_beacon.mp = NULL;
}
sc->sc_ibss.ibss_beacon.mp =
ieee80211_beacon_alloc(ic, in,
&sc->sc_ibss.ibss_beacon.iwk_boff);
if (sc->sc_ibss.ibss_beacon.mp == NULL) {
cmn_err(CE_WARN, "iwk_start_tx_beacon(): "
"failed to get beacon frame.\n");
return (IWK_FAIL);
}
mp = sc->sc_ibss.ibss_beacon.mp;
ASSERT(mp->b_cont == NULL);
bcopy(mp->b_rptr, tx_beacon_p->bcon_frame, MBLKL(mp));
tx_beacon_p->config.len = LE_16((uint16_t)(MBLKL(mp)));
sc->sc_ibss.ibss_beacon.beacon_cmd_len =
sizeof (iwk_tx_cmd_t) +
4 + LE_16(tx_beacon_p->config.len);
/*
* beacons are sent at 1M
*/
rate = in->in_rates.ir_rates[0];
rate &= IEEE80211_RATE_VAL;
if (2 == rate || 4 == rate || 11 == rate ||
22 == rate) {
masks |= RATE_MCS_CCK_MSK;
}
masks |= RATE_MCS_ANT_B_MSK;
tx_beacon_p->config.rate.r.rate_n_flags =
LE_32(iwk_rate_to_plcp(rate) | masks);
tx_beacon_p->config.tx_flags =
LE_32(TX_CMD_FLG_SEQ_CTL_MSK | TX_CMD_FLG_TSF_MSK);
if (ic->ic_bss->in_tstamp.tsf != 0) {
sc->sc_ibss.ibss_beacon.syncbeacon = 1;
} else {
if (ieee80211_beacon_update(ic, in,
&sc->sc_ibss.ibss_beacon.iwk_boff,
mp, 0)) {
bcopy(mp->b_rptr,
tx_beacon_p->bcon_frame,
MBLKL(mp));
}
err = iwk_cmd(sc, REPLY_TX_BEACON,
tx_beacon_p,
sc->sc_ibss.ibss_beacon.beacon_cmd_len,
1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_start_tx_beacon(): "
"failed to TX beacon.\n");
return (err);
}
sc->sc_ibss.ibss_beacon.syncbeacon = 0;
}
return (err);
}
static int
iwk_clean_add_node_ibss(struct ieee80211com *ic,
uint8_t addr[IEEE80211_ADDR_LEN], uint8_t *index2)
{
iwk_sc_t *sc = (iwk_sc_t *)ic;
uint8_t index;
iwk_add_sta_t bc_node;
iwk_link_quality_cmd_t bc_link_quality;
iwk_link_quality_cmd_t link_quality;
uint16_t bc_masks = 0;
uint16_t masks = 0;
int i, rate;
struct ieee80211_rateset rs;
iwk_ibss_node_t *ibss_node_p;
int err = IWK_SUCCESS;
/*
* find a location that is not
* used in ibss node table
*/
for (index = IWK_STA_ID;
index < IWK_STATION_COUNT; index++) {
if (!sc->sc_ibss.ibss_node_tb[index].used) {
break;
}
}
/*
* if have too many nodes in hardware, clean up
*/
if (index < IWK_BROADCAST_ID &&
sc->sc_ibss.node_number >= 25) {
if (iwk_cmd(sc, REPLY_REMOVE_ALL_STA,
NULL, 0, 1) != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_clean_add_node_ibss(): "
"failed to remove all nodes in hardware\n");
return (IWK_FAIL);
}
for (i = IWK_STA_ID; i < IWK_STATION_COUNT; i++) {
sc->sc_ibss.ibss_node_tb[i].used = 0;
(void) memset(&sc->sc_ibss.ibss_node_tb[i].node,
0, sizeof (iwk_add_sta_t));
}
sc->sc_ibss.node_number = 0;
/*
* add broadcast node so that we
* can send broadcast frame
*/
(void) memset(&bc_node, 0, sizeof (bc_node));
(void) memset(bc_node.bssid, 0xff, 6);
bc_node.id = IWK_BROADCAST_ID;
err = iwk_cmd(sc, REPLY_ADD_STA, &bc_node, sizeof (bc_node), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_clean_add_node_ibss(): "
"failed to add broadcast node\n");
return (err);
}
/* TX_LINK_QUALITY cmd */
(void) memset(&bc_link_quality, 0, sizeof (bc_link_quality));
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
bc_masks |= RATE_MCS_CCK_MSK;
bc_masks |= RATE_MCS_ANT_B_MSK;
bc_masks &= ~RATE_MCS_ANT_A_MSK;
bc_link_quality.rate_n_flags[i] =
LE_32(iwk_rate_to_plcp(2) | bc_masks);
}
bc_link_quality.general_params.single_stream_ant_msk = 2;
bc_link_quality.general_params.dual_stream_ant_msk = 3;
bc_link_quality.agg_params.agg_dis_start_th = 3;
bc_link_quality.agg_params.agg_time_limit = LE_16(4000);
bc_link_quality.sta_id = IWK_BROADCAST_ID;
err = iwk_cmd(sc, REPLY_TX_LINK_QUALITY_CMD,
&bc_link_quality, sizeof (bc_link_quality), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_clean_add_node_ibss(): "
"failed to config link quality table\n");
return (err);
}
}
if (index >= IWK_BROADCAST_ID) {
cmn_err(CE_WARN, "iwk_clean_add_node_ibss(): "
"the count of node in hardware is too much\n");
return (IWK_FAIL);
}
/*
* add a node into hardware
*/
ibss_node_p = &sc->sc_ibss.ibss_node_tb[index];
ibss_node_p->used = 1;
(void) memset(&ibss_node_p->node, 0,
sizeof (iwk_add_sta_t));
IEEE80211_ADDR_COPY(ibss_node_p->node.bssid, addr);
ibss_node_p->node.id = index;
ibss_node_p->node.control = 0;
ibss_node_p->node.flags = 0;
err = iwk_cmd(sc, REPLY_ADD_STA, &ibss_node_p->node,
sizeof (iwk_add_sta_t), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_clean_add_node_ibss(): "
"failed to add IBSS node\n");
ibss_node_p->used = 0;
(void) memset(&ibss_node_p->node, 0,
sizeof (iwk_add_sta_t));
return (err);
}
sc->sc_ibss.node_number++;
(void) memset(&link_quality, 0, sizeof (link_quality));
rs = ic->ic_sup_rates[ieee80211_chan2mode(ic,
ic->ic_curchan)];
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
if (i < rs.ir_nrates) {
rate = rs.
ir_rates[rs.ir_nrates - i];
} else {
rate = 2;
}
if (2 == rate || 4 == rate ||
11 == rate || 22 == rate) {
masks |= RATE_MCS_CCK_MSK;
}
masks |= RATE_MCS_ANT_B_MSK;
masks &= ~RATE_MCS_ANT_A_MSK;
link_quality.rate_n_flags[i] =
LE_32(iwk_rate_to_plcp(rate) | masks);
}
link_quality.general_params.single_stream_ant_msk = 2;
link_quality.general_params.dual_stream_ant_msk = 3;
link_quality.agg_params.agg_dis_start_th = 3;
link_quality.agg_params.agg_time_limit = LE_16(4000);
link_quality.sta_id = ibss_node_p->node.id;
err = iwk_cmd(sc, REPLY_TX_LINK_QUALITY_CMD,
&link_quality, sizeof (link_quality), 1);
if (err != IWK_SUCCESS) {
cmn_err(CE_WARN, "iwk_clean_add_node_ibss(): "
"failed to set up TX link quality\n");
ibss_node_p->used = 0;
(void) memset(ibss_node_p->node.bssid, 0, 6);
return (err);
}
*index2 = index;
return (err);
}