igb_main.c revision 837c1ac4e72b7d86278cca88b1075af557f7d161
/*
* CDDL HEADER START
*
* Copyright(c) 2007-2009 Intel Corporation. All rights reserved.
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at:
* http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When using or redistributing this file, you may do so under the
* License only. No other modification of this header is permitted.
*
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include "igb_sw.h"
static char ident[] = "Intel 1Gb Ethernet";
static char igb_version[] = "igb 1.1.9";
/*
* Local function protoypes
*/
static int igb_register_mac(igb_t *);
static int igb_identify_hardware(igb_t *);
static int igb_regs_map(igb_t *);
static void igb_init_properties(igb_t *);
static int igb_init_driver_settings(igb_t *);
static void igb_init_locks(igb_t *);
static void igb_destroy_locks(igb_t *);
static int igb_init_mac_address(igb_t *);
static int igb_init(igb_t *);
static int igb_init_adapter(igb_t *);
static void igb_stop_adapter(igb_t *);
static int igb_reset(igb_t *);
static void igb_tx_clean(igb_t *);
static boolean_t igb_tx_drain(igb_t *);
static boolean_t igb_rx_drain(igb_t *);
static int igb_alloc_rings(igb_t *);
static void igb_free_rings(igb_t *);
static void igb_setup_rings(igb_t *);
static void igb_setup_rx(igb_t *);
static void igb_setup_tx(igb_t *);
static void igb_setup_rx_ring(igb_rx_ring_t *);
static void igb_setup_tx_ring(igb_tx_ring_t *);
static void igb_setup_rss(igb_t *);
static void igb_setup_mac_rss_classify(igb_t *);
static void igb_setup_mac_classify(igb_t *);
static void igb_init_unicst(igb_t *);
static void igb_setup_multicst(igb_t *);
static void igb_get_phy_state(igb_t *);
static void igb_get_conf(igb_t *);
static int igb_get_prop(igb_t *, char *, int, int, int);
static boolean_t igb_is_link_up(igb_t *);
static boolean_t igb_link_check(igb_t *);
static void igb_local_timer(void *);
static void igb_arm_watchdog_timer(igb_t *);
static void igb_start_watchdog_timer(igb_t *);
static void igb_restart_watchdog_timer(igb_t *);
static void igb_stop_watchdog_timer(igb_t *);
static void igb_disable_adapter_interrupts(igb_t *);
static void igb_enable_adapter_interrupts_82575(igb_t *);
static void igb_enable_adapter_interrupts_82576(igb_t *);
static void igb_enable_adapter_interrupts_82580(igb_t *);
static boolean_t is_valid_mac_addr(uint8_t *);
static boolean_t igb_stall_check(igb_t *);
static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
static void igb_set_external_loopback(igb_t *);
static void igb_set_internal_mac_loopback(igb_t *);
static void igb_set_internal_phy_loopback(igb_t *);
static void igb_set_internal_serdes_loopback(igb_t *);
static boolean_t igb_find_mac_address(igb_t *);
static int igb_alloc_intrs(igb_t *);
static int igb_alloc_intr_handles(igb_t *, int);
static int igb_add_intr_handlers(igb_t *);
static void igb_rem_intr_handlers(igb_t *);
static void igb_rem_intrs(igb_t *);
static int igb_enable_intrs(igb_t *);
static int igb_disable_intrs(igb_t *);
static void igb_setup_msix_82575(igb_t *);
static void igb_setup_msix_82576(igb_t *);
static void igb_setup_msix_82580(igb_t *);
static uint_t igb_intr_legacy(void *, void *);
static uint_t igb_intr_msi(void *, void *);
static uint_t igb_intr_rx(void *, void *);
static uint_t igb_intr_tx(void *, void *);
static uint_t igb_intr_tx_other(void *, void *);
static void igb_intr_rx_work(igb_rx_ring_t *);
static void igb_intr_tx_work(igb_tx_ring_t *);
static void igb_intr_link_work(igb_t *);
static void igb_get_driver_control(struct e1000_hw *);
static void igb_release_driver_control(struct e1000_hw *);
static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
static int igb_resume(dev_info_t *);
static int igb_suspend(dev_info_t *);
static int igb_quiesce(dev_info_t *);
static void igb_unconfigure(dev_info_t *, igb_t *);
static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
const void *);
static void igb_fm_init(igb_t *);
static void igb_fm_fini(igb_t *);
static void igb_release_multicast(igb_t *);
static struct cb_ops igb_cb_ops = {
nulldev, /* cb_open */
nulldev, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
nodev, /* cb_read */
nodev, /* cb_write */
nodev, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
NULL, /* cb_stream */
D_MP | D_HOTPLUG, /* cb_flag */
CB_REV, /* cb_rev */
nodev, /* cb_aread */
nodev /* cb_awrite */
};
static struct dev_ops igb_dev_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
NULL, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo_probe */
igb_attach, /* devo_attach */
igb_detach, /* devo_detach */
nodev, /* devo_reset */
&igb_cb_ops, /* devo_cb_ops */
NULL, /* devo_bus_ops */
ddi_power, /* devo_power */
igb_quiesce, /* devo_quiesce */
};
static struct modldrv igb_modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
ident, /* Discription string */
&igb_dev_ops, /* driver ops */
};
static struct modlinkage igb_modlinkage = {
MODREV_1, &igb_modldrv, NULL
};
/* Access attributes for register mapping */
ddi_device_acc_attr_t igb_regs_acc_attr = {
DDI_DEVICE_ATTR_V1,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_FLAGERR_ACC
};
#define IGB_M_CALLBACK_FLAGS (MC_IOCTL | MC_GETCAPAB)
static mac_callbacks_t igb_m_callbacks = {
IGB_M_CALLBACK_FLAGS,
igb_m_stat,
igb_m_start,
igb_m_stop,
igb_m_promisc,
igb_m_multicst,
NULL,
NULL,
igb_m_ioctl,
igb_m_getcapab
};
/*
* Initialize capabilities of each supported adapter type
*/
static adapter_info_t igb_82575_cap = {
/* limits */
4, /* maximum number of rx queues */
1, /* minimum number of rx queues */
4, /* default number of rx queues */
4, /* maximum number of tx queues */
1, /* minimum number of tx queues */
4, /* default number of tx queues */
65535, /* maximum interrupt throttle rate */
0, /* minimum interrupt throttle rate */
200, /* default interrupt throttle rate */
/* function pointers */
igb_enable_adapter_interrupts_82575,
igb_setup_msix_82575,
/* capabilities */
(IGB_FLAG_HAS_DCA | /* capability flags */
IGB_FLAG_VMDQ_POOL),
0xffc00000 /* mask for RXDCTL register */
};
static adapter_info_t igb_82576_cap = {
/* limits */
16, /* maximum number of rx queues */
1, /* minimum number of rx queues */
4, /* default number of rx queues */
16, /* maximum number of tx queues */
1, /* minimum number of tx queues */
4, /* default number of tx queues */
65535, /* maximum interrupt throttle rate */
0, /* minimum interrupt throttle rate */
200, /* default interrupt throttle rate */
/* function pointers */
igb_enable_adapter_interrupts_82576,
igb_setup_msix_82576,
/* capabilities */
(IGB_FLAG_HAS_DCA | /* capability flags */
IGB_FLAG_VMDQ_POOL |
IGB_FLAG_NEED_CTX_IDX),
0xffe00000 /* mask for RXDCTL register */
};
static adapter_info_t igb_82580_cap = {
/* limits */
8, /* maximum number of rx queues */
1, /* minimum number of rx queues */
4, /* default number of rx queues */
8, /* maximum number of tx queues */
1, /* minimum number of tx queues */
4, /* default number of tx queues */
65535, /* maximum interrupt throttle rate */
0, /* minimum interrupt throttle rate */
200, /* default interrupt throttle rate */
/* function pointers */
igb_enable_adapter_interrupts_82580,
igb_setup_msix_82580,
/* capabilities */
(IGB_FLAG_HAS_DCA | /* capability flags */
IGB_FLAG_VMDQ_POOL |
IGB_FLAG_NEED_CTX_IDX),
0xffe00000 /* mask for RXDCTL register */
};
/*
* Module Initialization Functions
*/
int
_init(void)
{
int status;
mac_init_ops(&igb_dev_ops, MODULE_NAME);
status = mod_install(&igb_modlinkage);
if (status != DDI_SUCCESS) {
mac_fini_ops(&igb_dev_ops);
}
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&igb_modlinkage);
if (status == DDI_SUCCESS) {
mac_fini_ops(&igb_dev_ops);
}
return (status);
}
int
_info(struct modinfo *modinfop)
{
int status;
status = mod_info(&igb_modlinkage, modinfop);
return (status);
}
/*
* igb_attach - driver attach
*
* This function is the device specific initialization entry
* point. This entry point is required and must be written.
* The DDI_ATTACH command must be provided in the attach entry
* point. When attach() is called with cmd set to DDI_ATTACH,
* all normal kernel services (such as kmem_alloc(9F)) are
* available for use by the driver.
*
* The attach() function will be called once for each instance
* of the device on the system with cmd set to DDI_ATTACH.
* Until attach() succeeds, the only driver entry points which
* may be called are open(9E) and getinfo(9E).
*/
static int
igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
{
igb_t *igb;
struct igb_osdep *osdep;
struct e1000_hw *hw;
int instance;
/*
* Check the command and perform corresponding operations
*/
switch (cmd) {
default:
return (DDI_FAILURE);
case DDI_RESUME:
return (igb_resume(devinfo));
case DDI_ATTACH:
break;
}
/* Get the device instance */
instance = ddi_get_instance(devinfo);
/* Allocate memory for the instance data structure */
igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
igb->dip = devinfo;
igb->instance = instance;
hw = &igb->hw;
osdep = &igb->osdep;
hw->back = osdep;
osdep->igb = igb;
/* Attach the instance pointer to the dev_info data structure */
ddi_set_driver_private(devinfo, igb);
/* Initialize for fma support */
igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
0, 0x0f,
DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
igb_fm_init(igb);
igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
/*
* Map PCI config space registers
*/
if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
igb_error(igb, "Failed to map PCI configurations");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
/*
* Identify the chipset family
*/
if (igb_identify_hardware(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to identify hardware");
goto attach_fail;
}
/*
* Map device registers
*/
if (igb_regs_map(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to map device registers");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
/*
* Initialize driver parameters
*/
igb_init_properties(igb);
igb->attach_progress |= ATTACH_PROGRESS_PROPS;
/*
* Allocate interrupts
*/
if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to allocate interrupts");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
/*
* Allocate rx/tx rings based on the ring numbers.
* The actual numbers of rx/tx rings are decided by the number of
* allocated interrupt vectors, so we should allocate the rings after
* interrupts are allocated.
*/
if (igb_alloc_rings(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to allocate rx/tx rings or groups");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
/*
* Add interrupt handlers
*/
if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to add interrupt handlers");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
/*
* Initialize driver parameters
*/
if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to initialize driver settings");
goto attach_fail;
}
if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
goto attach_fail;
}
/*
* Initialize mutexes for this device.
* Do this before enabling the interrupt handler and
* register the softint to avoid the condition where
* interrupt handler can try using uninitialized mutex
*/
igb_init_locks(igb);
igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
/*
* Allocate DMA resources
*/
if (igb_alloc_dma(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to allocate DMA resources");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_ALLOC_DMA;
/*
* Initialize the adapter and setup the rx/tx rings
*/
if (igb_init(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to initialize adapter");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
/*
* Initialize statistics
*/
if (igb_init_stats(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to initialize statistics");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_STATS;
/*
* Initialize NDD parameters
*/
if (igb_nd_init(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to initialize ndd");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_NDD;
/*
* Register the driver to the MAC
*/
if (igb_register_mac(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to register MAC");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_MAC;
/*
* Now that mutex locks are initialized, and the chip is also
* initialized, enable interrupts.
*/
if (igb_enable_intrs(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to enable DDI interrupts");
goto attach_fail;
}
igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
igb_log(igb, "%s", igb_version);
igb->igb_state |= IGB_INITIALIZED;
return (DDI_SUCCESS);
attach_fail:
igb_unconfigure(devinfo, igb);
return (DDI_FAILURE);
}
/*
* igb_detach - driver detach
*
* The detach() function is the complement of the attach routine.
* If cmd is set to DDI_DETACH, detach() is used to remove the
* state associated with a given instance of a device node
* prior to the removal of that instance from the system.
*
* The detach() function will be called once for each instance
* of the device for which there has been a successful attach()
* once there are no longer any opens on the device.
*
* Interrupts routine are disabled, All memory allocated by this
* driver are freed.
*/
static int
igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
{
igb_t *igb;
/*
* Check detach command
*/
switch (cmd) {
default:
return (DDI_FAILURE);
case DDI_SUSPEND:
return (igb_suspend(devinfo));
case DDI_DETACH:
break;
}
/*
* Get the pointer to the driver private data structure
*/
igb = (igb_t *)ddi_get_driver_private(devinfo);
if (igb == NULL)
return (DDI_FAILURE);
/*
* Unregister MAC. If failed, we have to fail the detach
*/
if (mac_unregister(igb->mac_hdl) != 0) {
igb_error(igb, "Failed to unregister MAC");
return (DDI_FAILURE);
}
igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
/*
* If the device is still running, it needs to be stopped first.
* This check is necessary because under some specific circumstances,
* the detach routine can be called without stopping the interface
* first.
*/
mutex_enter(&igb->gen_lock);
if (igb->igb_state & IGB_STARTED) {
igb->igb_state &= ~IGB_STARTED;
igb_stop(igb);
mutex_exit(&igb->gen_lock);
/* Disable and stop the watchdog timer */
igb_disable_watchdog_timer(igb);
} else
mutex_exit(&igb->gen_lock);
/*
* Check if there are still rx buffers held by the upper layer.
* If so, fail the detach.
*/
if (!igb_rx_drain(igb))
return (DDI_FAILURE);
/*
* Do the remaining unconfigure routines
*/
igb_unconfigure(devinfo, igb);
return (DDI_SUCCESS);
}
/*
* quiesce(9E) entry point.
*
* This function is called when the system is single-threaded at high
* PIL with preemption disabled. Therefore, this function must not be
* blocked.
*
* This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
* DDI_FAILURE indicates an error condition and should almost never happen.
*/
static int
igb_quiesce(dev_info_t *devinfo)
{
igb_t *igb;
struct e1000_hw *hw;
igb = (igb_t *)ddi_get_driver_private(devinfo);
if (igb == NULL)
return (DDI_FAILURE);
hw = &igb->hw;
/*
* Disable the adapter interrupts
*/
igb_disable_adapter_interrupts(igb);
/* Tell firmware driver is no longer in control */
igb_release_driver_control(hw);
/*
* Reset the chipset
*/
(void) e1000_reset_hw(hw);
/*
* Reset PHY if possible
*/
if (e1000_check_reset_block(hw) == E1000_SUCCESS)
(void) e1000_phy_hw_reset(hw);
return (DDI_SUCCESS);
}
/*
* igb_unconfigure - release all resources held by this instance
*/
static void
igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
{
/*
* Disable interrupt
*/
if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
(void) igb_disable_intrs(igb);
}
/*
* Unregister MAC
*/
if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
(void) mac_unregister(igb->mac_hdl);
}
/*
* Free ndd parameters
*/
if (igb->attach_progress & ATTACH_PROGRESS_NDD) {
igb_nd_cleanup(igb);
}
/*
* Free statistics
*/
if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
kstat_delete((kstat_t *)igb->igb_ks);
}
/*
* Remove interrupt handlers
*/
if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
igb_rem_intr_handlers(igb);
}
/*
* Remove interrupts
*/
if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
igb_rem_intrs(igb);
}
/*
* Remove driver properties
*/
if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
(void) ddi_prop_remove_all(devinfo);
}
/*
* Release the DMA resources of rx/tx rings
*/
if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_DMA) {
igb_free_dma(igb);
}
/*
* Stop the adapter
*/
if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
mutex_enter(&igb->gen_lock);
igb_stop_adapter(igb);
mutex_exit(&igb->gen_lock);
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
}
/*
* Free multicast table
*/
igb_release_multicast(igb);
/*
* Free register handle
*/
if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
if (igb->osdep.reg_handle != NULL)
ddi_regs_map_free(&igb->osdep.reg_handle);
}
/*
* Free PCI config handle
*/
if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
if (igb->osdep.cfg_handle != NULL)
pci_config_teardown(&igb->osdep.cfg_handle);
}
/*
* Free locks
*/
if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
igb_destroy_locks(igb);
}
/*
* Free the rx/tx rings
*/
if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
igb_free_rings(igb);
}
/*
* Remove FMA
*/
if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
igb_fm_fini(igb);
}
/*
* Free the driver data structure
*/
kmem_free(igb, sizeof (igb_t));
ddi_set_driver_private(devinfo, NULL);
}
/*
* igb_register_mac - Register the driver and its function pointers with
* the GLD interface
*/
static int
igb_register_mac(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
mac_register_t *mac;
int status;
if ((mac = mac_alloc(MAC_VERSION)) == NULL)
return (IGB_FAILURE);
mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
mac->m_driver = igb;
mac->m_dip = igb->dip;
mac->m_src_addr = hw->mac.addr;
mac->m_callbacks = &igb_m_callbacks;
mac->m_min_sdu = 0;
mac->m_max_sdu = igb->max_frame_size -
sizeof (struct ether_vlan_header) - ETHERFCSL;
mac->m_margin = VLAN_TAGSZ;
mac->m_v12n = MAC_VIRT_LEVEL1;
status = mac_register(mac, &igb->mac_hdl);
mac_free(mac);
return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
}
/*
* igb_identify_hardware - Identify the type of the chipset
*/
static int
igb_identify_hardware(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
struct igb_osdep *osdep = &igb->osdep;
/*
* Get the device id
*/
hw->vendor_id =
pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
hw->device_id =
pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
hw->revision_id =
pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
hw->subsystem_device_id =
pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
hw->subsystem_vendor_id =
pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
/*
* Set the mac type of the adapter based on the device id
*/
if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
return (IGB_FAILURE);
}
/*
* Install adapter capabilities based on mac type
*/
switch (hw->mac.type) {
case e1000_82575:
igb->capab = &igb_82575_cap;
break;
case e1000_82576:
igb->capab = &igb_82576_cap;
break;
case e1000_82580:
igb->capab = &igb_82580_cap;
break;
default:
return (IGB_FAILURE);
}
return (IGB_SUCCESS);
}
/*
* igb_regs_map - Map the device registers
*/
static int
igb_regs_map(igb_t *igb)
{
dev_info_t *devinfo = igb->dip;
struct e1000_hw *hw = &igb->hw;
struct igb_osdep *osdep = &igb->osdep;
off_t mem_size;
/*
* First get the size of device registers to be mapped.
*/
if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
DDI_SUCCESS) {
return (IGB_FAILURE);
}
/*
* Call ddi_regs_map_setup() to map registers
*/
if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
(caddr_t *)&hw->hw_addr, 0,
mem_size, &igb_regs_acc_attr,
&osdep->reg_handle)) != DDI_SUCCESS) {
return (IGB_FAILURE);
}
return (IGB_SUCCESS);
}
/*
* igb_init_properties - Initialize driver properties
*/
static void
igb_init_properties(igb_t *igb)
{
/*
* Get conf file properties, including link settings
* jumbo frames, ring number, descriptor number, etc.
*/
igb_get_conf(igb);
}
/*
* igb_init_driver_settings - Initialize driver settings
*
* The settings include hardware function pointers, bus information,
* rx/tx rings settings, link state, and any other parameters that
* need to be setup during driver initialization.
*/
static int
igb_init_driver_settings(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
igb_rx_ring_t *rx_ring;
igb_tx_ring_t *tx_ring;
uint32_t rx_size;
uint32_t tx_size;
int i;
/*
* Initialize chipset specific hardware function pointers
*/
if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
return (IGB_FAILURE);
}
/*
* Get bus information
*/
if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
return (IGB_FAILURE);
}
/*
* Get the system page size
*/
igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
/*
* Set rx buffer size
* The IP header alignment room is counted in the calculation.
* The rx buffer size is in unit of 1K that is required by the
* chipset hardware.
*/
rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
igb->rx_buf_size = ((rx_size >> 10) +
((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
/*
* Set tx buffer size
*/
tx_size = igb->max_frame_size;
igb->tx_buf_size = ((tx_size >> 10) +
((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
/*
* Initialize rx/tx rings parameters
*/
for (i = 0; i < igb->num_rx_rings; i++) {
rx_ring = &igb->rx_rings[i];
rx_ring->index = i;
rx_ring->igb = igb;
rx_ring->ring_size = igb->rx_ring_size;
rx_ring->free_list_size = igb->rx_ring_size;
rx_ring->copy_thresh = igb->rx_copy_thresh;
rx_ring->limit_per_intr = igb->rx_limit_per_intr;
}
for (i = 0; i < igb->num_tx_rings; i++) {
tx_ring = &igb->tx_rings[i];
tx_ring->index = i;
tx_ring->igb = igb;
if (igb->tx_head_wb_enable)
tx_ring->tx_recycle = igb_tx_recycle_head_wb;
else
tx_ring->tx_recycle = igb_tx_recycle_legacy;
tx_ring->ring_size = igb->tx_ring_size;
tx_ring->free_list_size = igb->tx_ring_size +
(igb->tx_ring_size >> 1);
tx_ring->copy_thresh = igb->tx_copy_thresh;
tx_ring->recycle_thresh = igb->tx_recycle_thresh;
tx_ring->overload_thresh = igb->tx_overload_thresh;
tx_ring->resched_thresh = igb->tx_resched_thresh;
}
/*
* Initialize values of interrupt throttling rates
*/
for (i = 1; i < MAX_NUM_EITR; i++)
igb->intr_throttling[i] = igb->intr_throttling[0];
/*
* The initial link state should be "unknown"
*/
igb->link_state = LINK_STATE_UNKNOWN;
return (IGB_SUCCESS);
}
/*
* igb_init_locks - Initialize locks
*/
static void
igb_init_locks(igb_t *igb)
{
igb_rx_ring_t *rx_ring;
igb_tx_ring_t *tx_ring;
int i;
for (i = 0; i < igb->num_rx_rings; i++) {
rx_ring = &igb->rx_rings[i];
mutex_init(&rx_ring->rx_lock, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
mutex_init(&rx_ring->recycle_lock, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
}
for (i = 0; i < igb->num_tx_rings; i++) {
tx_ring = &igb->tx_rings[i];
mutex_init(&tx_ring->tx_lock, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
mutex_init(&tx_ring->recycle_lock, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
mutex_init(&tx_ring->tcb_head_lock, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
mutex_init(&tx_ring->tcb_tail_lock, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
}
mutex_init(&igb->gen_lock, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
mutex_init(&igb->watchdog_lock, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
}
/*
* igb_destroy_locks - Destroy locks
*/
static void
igb_destroy_locks(igb_t *igb)
{
igb_rx_ring_t *rx_ring;
igb_tx_ring_t *tx_ring;
int i;
for (i = 0; i < igb->num_rx_rings; i++) {
rx_ring = &igb->rx_rings[i];
mutex_destroy(&rx_ring->rx_lock);
mutex_destroy(&rx_ring->recycle_lock);
}
for (i = 0; i < igb->num_tx_rings; i++) {
tx_ring = &igb->tx_rings[i];
mutex_destroy(&tx_ring->tx_lock);
mutex_destroy(&tx_ring->recycle_lock);
mutex_destroy(&tx_ring->tcb_head_lock);
mutex_destroy(&tx_ring->tcb_tail_lock);
}
mutex_destroy(&igb->gen_lock);
mutex_destroy(&igb->watchdog_lock);
}
static int
igb_resume(dev_info_t *devinfo)
{
igb_t *igb;
igb = (igb_t *)ddi_get_driver_private(devinfo);
if (igb == NULL)
return (DDI_FAILURE);
mutex_enter(&igb->gen_lock);
if (igb->igb_state & IGB_STARTED) {
if (igb_start(igb) != IGB_SUCCESS) {
mutex_exit(&igb->gen_lock);
return (DDI_FAILURE);
}
/*
* Enable and start the watchdog timer
*/
igb_enable_watchdog_timer(igb);
}
igb->igb_state &= ~IGB_SUSPENDED;
mutex_exit(&igb->gen_lock);
return (DDI_SUCCESS);
}
static int
igb_suspend(dev_info_t *devinfo)
{
igb_t *igb;
igb = (igb_t *)ddi_get_driver_private(devinfo);
if (igb == NULL)
return (DDI_FAILURE);
mutex_enter(&igb->gen_lock);
igb->igb_state |= IGB_SUSPENDED;
if (!(igb->igb_state & IGB_STARTED)) {
mutex_exit(&igb->gen_lock);
return (DDI_SUCCESS);
}
igb_stop(igb);
mutex_exit(&igb->gen_lock);
/*
* Disable and stop the watchdog timer
*/
igb_disable_watchdog_timer(igb);
return (DDI_SUCCESS);
}
static int
igb_init(igb_t *igb)
{
int i;
mutex_enter(&igb->gen_lock);
/*
* Initilize the adapter
*/
if (igb_init_adapter(igb) != IGB_SUCCESS) {
mutex_exit(&igb->gen_lock);
igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
return (IGB_FAILURE);
}
/*
* Setup the rx/tx rings
*/
for (i = 0; i < igb->num_rx_rings; i++)
mutex_enter(&igb->rx_rings[i].rx_lock);
for (i = 0; i < igb->num_tx_rings; i++)
mutex_enter(&igb->tx_rings[i].tx_lock);
igb_setup_rings(igb);
for (i = igb->num_tx_rings - 1; i >= 0; i--)
mutex_exit(&igb->tx_rings[i].tx_lock);
for (i = igb->num_rx_rings - 1; i >= 0; i--)
mutex_exit(&igb->rx_rings[i].rx_lock);
mutex_exit(&igb->gen_lock);
return (IGB_SUCCESS);
}
/*
* igb_init_mac_address - Initialize the default MAC address
*
* On success, the MAC address is entered in the igb->hw.mac.addr
* and hw->mac.perm_addr fields and the adapter's RAR(0) receive
* address register.
*
* Important side effects:
* 1. adapter is reset - this is required to put it in a known state.
* 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
* MAC address and all default settings are stored, so a valid checksum
* is required.
*/
static int
igb_init_mac_address(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
ASSERT(mutex_owned(&igb->gen_lock));
/*
* Reset chipset to put the hardware in a known state
* before we try to get MAC address from NVM.
*/
if (e1000_reset_hw(hw) != E1000_SUCCESS) {
igb_error(igb, "Adapter reset failed.");
goto init_mac_fail;
}
/*
* NVM validation
*/
if (e1000_validate_nvm_checksum(hw) < 0) {
/*
* Some PCI-E parts fail the first check due to
* the link being in sleep state. Call it again,
* if it fails a second time its a real issue.
*/
if (e1000_validate_nvm_checksum(hw) < 0) {
igb_error(igb,
"Invalid NVM checksum. Please contact "
"the vendor to update the NVM.");
goto init_mac_fail;
}
}
/*
* Get the mac address
* This function should handle SPARC case correctly.
*/
if (!igb_find_mac_address(igb)) {
igb_error(igb, "Failed to get the mac address");
goto init_mac_fail;
}
/* Validate mac address */
if (!is_valid_mac_addr(hw->mac.addr)) {
igb_error(igb, "Invalid mac address");
goto init_mac_fail;
}
return (IGB_SUCCESS);
init_mac_fail:
return (IGB_FAILURE);
}
/*
* igb_init_adapter - Initialize the adapter
*/
static int
igb_init_adapter(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint32_t pba;
uint32_t high_water;
int i;
ASSERT(mutex_owned(&igb->gen_lock));
/*
* In order to obtain the default MAC address, this will reset the
* adapter and validate the NVM that the address and many other
* default settings come from.
*/
if (igb_init_mac_address(igb) != IGB_SUCCESS) {
igb_error(igb, "Failed to initialize MAC address");
goto init_adapter_fail;
}
/*
* Setup flow control
*
* These parameters set thresholds for the adapter's generation(Tx)
* and response(Rx) to Ethernet PAUSE frames. These are just threshold
* settings. Flow control is enabled or disabled in the configuration
* file.
* High-water mark is set down from the top of the rx fifo (not
* sensitive to max_frame_size) and low-water is set just below
* high-water mark.
* The high water mark must be low enough to fit one full frame above
* it in the rx FIFO. Should be the lower of:
* 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
* frame.
*/
/*
* The default setting of PBA is correct for 82575 and other supported
* adapters do not have the E1000_PBA register, so PBA value is only
* used for calculation here and is never written to the adapter.
*/
if (hw->mac.type == e1000_82575) {
pba = E1000_PBA_34K;
} else {
pba = E1000_PBA_64K;
}
high_water = min(((pba << 10) * 9 / 10),
((pba << 10) - igb->max_frame_size));
if (hw->mac.type == e1000_82575) {
/* 8-byte granularity */
hw->fc.high_water = high_water & 0xFFF8;
hw->fc.low_water = hw->fc.high_water - 8;
} else {
/* 16-byte granularity */
hw->fc.high_water = high_water & 0xFFF0;
hw->fc.low_water = hw->fc.high_water - 16;
}
hw->fc.pause_time = E1000_FC_PAUSE_TIME;
hw->fc.send_xon = B_TRUE;
(void) e1000_validate_mdi_setting(hw);
/*
* Reset the chipset hardware the second time to put PBA settings
* into effect.
*/
if (e1000_reset_hw(hw) != E1000_SUCCESS) {
igb_error(igb, "Second reset failed");
goto init_adapter_fail;
}
/*
* Don't wait for auto-negotiation to complete
*/
hw->phy.autoneg_wait_to_complete = B_FALSE;
/*
* Copper options
*/
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = 0; /* AUTO_ALL_MODES */
hw->phy.disable_polarity_correction = B_FALSE;
hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
}
/*
* Initialize link settings
*/
(void) igb_setup_link(igb, B_FALSE);
/*
* Configure/Initialize hardware
*/
if (e1000_init_hw(hw) != E1000_SUCCESS) {
igb_error(igb, "Failed to initialize hardware");
goto init_adapter_fail;
}
/*
* Disable wakeup control by default
*/
E1000_WRITE_REG(hw, E1000_WUC, 0);
/*
* Record phy info in hw struct
*/
(void) e1000_get_phy_info(hw);
/*
* Make sure driver has control
*/
igb_get_driver_control(hw);
/*
* Restore LED settings to the default from EEPROM
* to meet the standard for Sun platforms.
*/
(void) e1000_cleanup_led(hw);
/*
* Setup MSI-X interrupts
*/
if (igb->intr_type == DDI_INTR_TYPE_MSIX)
igb->capab->setup_msix(igb);
/*
* Initialize unicast addresses.
*/
igb_init_unicst(igb);
/*
* Setup and initialize the mctable structures.
*/
igb_setup_multicst(igb);
/*
* Set interrupt throttling rate
*/
for (i = 0; i < igb->intr_cnt; i++)
E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
/*
* Save the state of the phy
*/
igb_get_phy_state(igb);
return (IGB_SUCCESS);
init_adapter_fail:
/*
* Reset PHY if possible
*/
if (e1000_check_reset_block(hw) == E1000_SUCCESS)
(void) e1000_phy_hw_reset(hw);
return (IGB_FAILURE);
}
/*
* igb_stop_adapter - Stop the adapter
*/
static void
igb_stop_adapter(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
ASSERT(mutex_owned(&igb->gen_lock));
/* Tell firmware driver is no longer in control */
igb_release_driver_control(hw);
/*
* Reset the chipset
*/
if (e1000_reset_hw(hw) != E1000_SUCCESS) {
igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
}
/*
* e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
*/
}
/*
* igb_reset - Reset the chipset and restart the driver.
*
* It involves stopping and re-starting the chipset,
* and re-configuring the rx/tx rings.
*/
static int
igb_reset(igb_t *igb)
{
int i;
mutex_enter(&igb->gen_lock);
ASSERT(igb->igb_state & IGB_STARTED);
/*
* Disable the adapter interrupts to stop any rx/tx activities
* before draining pending data and resetting hardware.
*/
igb_disable_adapter_interrupts(igb);
/*
* Drain the pending transmit packets
*/
(void) igb_tx_drain(igb);
for (i = 0; i < igb->num_rx_rings; i++)
mutex_enter(&igb->rx_rings[i].rx_lock);
for (i = 0; i < igb->num_tx_rings; i++)
mutex_enter(&igb->tx_rings[i].tx_lock);
/*
* Stop the adapter
*/
igb_stop_adapter(igb);
/*
* Clean the pending tx data/resources
*/
igb_tx_clean(igb);
/*
* Start the adapter
*/
if (igb_init_adapter(igb) != IGB_SUCCESS) {
igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
goto reset_failure;
}
/*
* Setup the rx/tx rings
*/
igb_setup_rings(igb);
/*
* Enable adapter interrupts
* The interrupts must be enabled after the driver state is START
*/
igb->capab->enable_intr(igb);
if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
goto reset_failure;
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
goto reset_failure;
for (i = igb->num_tx_rings - 1; i >= 0; i--)
mutex_exit(&igb->tx_rings[i].tx_lock);
for (i = igb->num_rx_rings - 1; i >= 0; i--)
mutex_exit(&igb->rx_rings[i].rx_lock);
mutex_exit(&igb->gen_lock);
return (IGB_SUCCESS);
reset_failure:
for (i = igb->num_tx_rings - 1; i >= 0; i--)
mutex_exit(&igb->tx_rings[i].tx_lock);
for (i = igb->num_rx_rings - 1; i >= 0; i--)
mutex_exit(&igb->rx_rings[i].rx_lock);
mutex_exit(&igb->gen_lock);
ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
return (IGB_FAILURE);
}
/*
* igb_tx_clean - Clean the pending transmit packets and DMA resources
*/
static void
igb_tx_clean(igb_t *igb)
{
igb_tx_ring_t *tx_ring;
tx_control_block_t *tcb;
link_list_t pending_list;
uint32_t desc_num;
int i, j;
LINK_LIST_INIT(&pending_list);
for (i = 0; i < igb->num_tx_rings; i++) {
tx_ring = &igb->tx_rings[i];
mutex_enter(&tx_ring->recycle_lock);
/*
* Clean the pending tx data - the pending packets in the
* work_list that have no chances to be transmitted again.
*
* We must ensure the chipset is stopped or the link is down
* before cleaning the transmit packets.
*/
desc_num = 0;
for (j = 0; j < tx_ring->ring_size; j++) {
tcb = tx_ring->work_list[j];
if (tcb != NULL) {
desc_num += tcb->desc_num;
tx_ring->work_list[j] = NULL;
igb_free_tcb(tcb);
LIST_PUSH_TAIL(&pending_list, &tcb->link);
}
}
if (desc_num > 0) {
atomic_add_32(&tx_ring->tbd_free, desc_num);
ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
/*
* Reset the head and tail pointers of the tbd ring;
* Reset the head write-back if it is enabled.
*/
tx_ring->tbd_head = 0;
tx_ring->tbd_tail = 0;
if (igb->tx_head_wb_enable)
*tx_ring->tbd_head_wb = 0;
E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
}
mutex_exit(&tx_ring->recycle_lock);
/*
* Add the tx control blocks in the pending list to
* the free list.
*/
igb_put_free_list(tx_ring, &pending_list);
}
}
/*
* igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
*/
static boolean_t
igb_tx_drain(igb_t *igb)
{
igb_tx_ring_t *tx_ring;
boolean_t done;
int i, j;
/*
* Wait for a specific time to allow pending tx packets
* to be transmitted.
*
* Check the counter tbd_free to see if transmission is done.
* No lock protection is needed here.
*
* Return B_TRUE if all pending packets have been transmitted;
* Otherwise return B_FALSE;
*/
for (i = 0; i < TX_DRAIN_TIME; i++) {
done = B_TRUE;
for (j = 0; j < igb->num_tx_rings; j++) {
tx_ring = &igb->tx_rings[j];
done = done &&
(tx_ring->tbd_free == tx_ring->ring_size);
}
if (done)
break;
msec_delay(1);
}
return (done);
}
/*
* igb_rx_drain - Wait for all rx buffers to be released by upper layer
*/
static boolean_t
igb_rx_drain(igb_t *igb)
{
igb_rx_ring_t *rx_ring;
boolean_t done;
int i, j;
/*
* Polling the rx free list to check if those rx buffers held by
* the upper layer are released.
*
* Check the counter rcb_free to see if all pending buffers are
* released. No lock protection is needed here.
*
* Return B_TRUE if all pending buffers have been released;
* Otherwise return B_FALSE;
*/
for (i = 0; i < RX_DRAIN_TIME; i++) {
done = B_TRUE;
for (j = 0; j < igb->num_rx_rings; j++) {
rx_ring = &igb->rx_rings[j];
done = done &&
(rx_ring->rcb_free == rx_ring->free_list_size);
}
if (done)
break;
msec_delay(1);
}
return (done);
}
/*
* igb_start - Start the driver/chipset
*/
int
igb_start(igb_t *igb)
{
int i;
ASSERT(mutex_owned(&igb->gen_lock));
for (i = 0; i < igb->num_rx_rings; i++)
mutex_enter(&igb->rx_rings[i].rx_lock);
for (i = 0; i < igb->num_tx_rings; i++)
mutex_enter(&igb->tx_rings[i].tx_lock);
/*
* Start the adapter
*/
if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
if (igb_init_adapter(igb) != IGB_SUCCESS) {
igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
goto start_failure;
}
igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
/*
* Setup the rx/tx rings
*/
igb_setup_rings(igb);
}
/*
* Enable adapter interrupts
* The interrupts must be enabled after the driver state is START
*/
igb->capab->enable_intr(igb);
if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
goto start_failure;
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
goto start_failure;
for (i = igb->num_tx_rings - 1; i >= 0; i--)
mutex_exit(&igb->tx_rings[i].tx_lock);
for (i = igb->num_rx_rings - 1; i >= 0; i--)
mutex_exit(&igb->rx_rings[i].rx_lock);
return (IGB_SUCCESS);
start_failure:
for (i = igb->num_tx_rings - 1; i >= 0; i--)
mutex_exit(&igb->tx_rings[i].tx_lock);
for (i = igb->num_rx_rings - 1; i >= 0; i--)
mutex_exit(&igb->rx_rings[i].rx_lock);
ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
return (IGB_FAILURE);
}
/*
* igb_stop - Stop the driver/chipset
*/
void
igb_stop(igb_t *igb)
{
int i;
ASSERT(mutex_owned(&igb->gen_lock));
igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
/*
* Disable the adapter interrupts
*/
igb_disable_adapter_interrupts(igb);
/*
* Drain the pending tx packets
*/
(void) igb_tx_drain(igb);
for (i = 0; i < igb->num_rx_rings; i++)
mutex_enter(&igb->rx_rings[i].rx_lock);
for (i = 0; i < igb->num_tx_rings; i++)
mutex_enter(&igb->tx_rings[i].tx_lock);
/*
* Stop the adapter
*/
igb_stop_adapter(igb);
/*
* Clean the pending tx data/resources
*/
igb_tx_clean(igb);
for (i = igb->num_tx_rings - 1; i >= 0; i--)
mutex_exit(&igb->tx_rings[i].tx_lock);
for (i = igb->num_rx_rings - 1; i >= 0; i--)
mutex_exit(&igb->rx_rings[i].rx_lock);
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
}
/*
* igb_alloc_rings - Allocate memory space for rx/tx rings
*/
static int
igb_alloc_rings(igb_t *igb)
{
/*
* Allocate memory space for rx rings
*/
igb->rx_rings = kmem_zalloc(
sizeof (igb_rx_ring_t) * igb->num_rx_rings,
KM_NOSLEEP);
if (igb->rx_rings == NULL) {
return (IGB_FAILURE);
}
/*
* Allocate memory space for tx rings
*/
igb->tx_rings = kmem_zalloc(
sizeof (igb_tx_ring_t) * igb->num_tx_rings,
KM_NOSLEEP);
if (igb->tx_rings == NULL) {
kmem_free(igb->rx_rings,
sizeof (igb_rx_ring_t) * igb->num_rx_rings);
igb->rx_rings = NULL;
return (IGB_FAILURE);
}
/*
* Allocate memory space for rx ring groups
*/
igb->rx_groups = kmem_zalloc(
sizeof (igb_rx_group_t) * igb->num_rx_groups,
KM_NOSLEEP);
if (igb->rx_groups == NULL) {
kmem_free(igb->rx_rings,
sizeof (igb_rx_ring_t) * igb->num_rx_rings);
kmem_free(igb->tx_rings,
sizeof (igb_tx_ring_t) * igb->num_tx_rings);
igb->rx_rings = NULL;
igb->tx_rings = NULL;
return (IGB_FAILURE);
}
return (IGB_SUCCESS);
}
/*
* igb_free_rings - Free the memory space of rx/tx rings.
*/
static void
igb_free_rings(igb_t *igb)
{
if (igb->rx_rings != NULL) {
kmem_free(igb->rx_rings,
sizeof (igb_rx_ring_t) * igb->num_rx_rings);
igb->rx_rings = NULL;
}
if (igb->tx_rings != NULL) {
kmem_free(igb->tx_rings,
sizeof (igb_tx_ring_t) * igb->num_tx_rings);
igb->tx_rings = NULL;
}
if (igb->rx_groups != NULL) {
kmem_free(igb->rx_groups,
sizeof (igb_rx_group_t) * igb->num_rx_groups);
igb->rx_groups = NULL;
}
}
/*
* igb_setup_rings - Setup rx/tx rings
*/
static void
igb_setup_rings(igb_t *igb)
{
/*
* Setup the rx/tx rings, including the following:
*
* 1. Setup the descriptor ring and the control block buffers;
* 2. Initialize necessary registers for receive/transmit;
* 3. Initialize software pointers/parameters for receive/transmit;
*/
igb_setup_rx(igb);
igb_setup_tx(igb);
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
}
static void
igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
{
igb_t *igb = rx_ring->igb;
struct e1000_hw *hw = &igb->hw;
rx_control_block_t *rcb;
union e1000_adv_rx_desc *rbd;
uint32_t size;
uint32_t buf_low;
uint32_t buf_high;
uint32_t rxdctl;
int i;
ASSERT(mutex_owned(&rx_ring->rx_lock));
ASSERT(mutex_owned(&igb->gen_lock));
/*
* Initialize descriptor ring with buffer addresses
*/
for (i = 0; i < igb->rx_ring_size; i++) {
rcb = rx_ring->work_list[i];
rbd = &rx_ring->rbd_ring[i];
rbd->read.pkt_addr = rcb->rx_buf.dma_address;
rbd->read.hdr_addr = NULL;
}
/*
* Initialize the base address registers
*/
buf_low = (uint32_t)rx_ring->rbd_area.dma_address;
buf_high = (uint32_t)(rx_ring->rbd_area.dma_address >> 32);
E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
/*
* Initialize the length register
*/
size = rx_ring->ring_size * sizeof (union e1000_adv_rx_desc);
E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
/*
* Initialize buffer size & descriptor type
*/
E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
/*
* Setup the Receive Descriptor Control Register (RXDCTL)
*/
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
rxdctl &= igb->capab->rxdctl_mask;
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
rxdctl |= 16; /* pthresh */
rxdctl |= 8 << 8; /* hthresh */
rxdctl |= 1 << 16; /* wthresh */
E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
rx_ring->rbd_next = 0;
/*
* Note: Considering the case that the chipset is being reset
* and there are still some buffers held by the upper layer,
* we should not reset the values of rcb_head, rcb_tail and
* rcb_free;
*/
if (igb->igb_state == IGB_UNKNOWN) {
rx_ring->rcb_head = 0;
rx_ring->rcb_tail = 0;
rx_ring->rcb_free = rx_ring->free_list_size;
}
}
static void
igb_setup_rx(igb_t *igb)
{
igb_rx_ring_t *rx_ring;
igb_rx_group_t *rx_group;
struct e1000_hw *hw = &igb->hw;
uint32_t rctl, rxcsum;
uint32_t ring_per_group;
int i;
/*
* Setup the Receive Control Register (RCTL), and enable the
* receiver. The initial configuration is to: enable the receiver,
* accept broadcasts, discard bad packets, accept long packets,
* disable VLAN filter checking, and set receive buffer size to
* 2k. For 82575, also set the receive descriptor minimum
* threshold size to 1/2 the ring.
*/
rctl = E1000_READ_REG(hw, E1000_RCTL);
/*
* Clear the field used for wakeup control. This driver doesn't do
* wakeup but leave this here for completeness.
*/
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
rctl |= (E1000_RCTL_EN | /* Enable Receive Unit */
E1000_RCTL_BAM | /* Accept Broadcast Packets */
E1000_RCTL_LPE | /* Large Packet Enable */
/* Multicast filter offset */
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
E1000_RCTL_RDMTS_HALF | /* rx descriptor threshold */
E1000_RCTL_SECRC); /* Strip Ethernet CRC */
for (i = 0; i < igb->num_rx_groups; i++) {
rx_group = &igb->rx_groups[i];
rx_group->index = i;
rx_group->igb = igb;
}
/*
* Set up all rx descriptor rings - must be called before receive unit
* enabled.
*/
ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
for (i = 0; i < igb->num_rx_rings; i++) {
rx_ring = &igb->rx_rings[i];
igb_setup_rx_ring(rx_ring);
/*
* Map a ring to a group by assigning a group index
*/
rx_ring->group_index = i / ring_per_group;
}
/*
* Setup the Rx Long Packet Max Length register
*/
E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
/*
* Hardware checksum settings
*/
if (igb->rx_hcksum_enable) {
rxcsum =
E1000_RXCSUM_TUOFL | /* TCP/UDP checksum */
E1000_RXCSUM_IPOFL; /* IP checksum */
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
}
/*
* Setup classify and RSS for multiple receive queues
*/
switch (igb->vmdq_mode) {
case E1000_VMDQ_OFF:
/*
* One ring group, only RSS is needed when more than
* one ring enabled.
*/
if (igb->num_rx_rings > 1)
igb_setup_rss(igb);
break;
case E1000_VMDQ_MAC:
/*
* Multiple groups, each group has one ring,
* only the MAC classification is needed.
*/
igb_setup_mac_classify(igb);
break;
case E1000_VMDQ_MAC_RSS:
/*
* Multiple groups and multiple rings, both
* MAC classification and RSS are needed.
*/
igb_setup_mac_rss_classify(igb);
break;
}
/*
* Enable the receive unit - must be done after all
* the rx setup above.
*/
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/*
* Initialize all adapter ring head & tail pointers - must
* be done after receive unit is enabled
*/
for (i = 0; i < igb->num_rx_rings; i++) {
rx_ring = &igb->rx_rings[i];
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
E1000_WRITE_REG(hw, E1000_RDT(i), rx_ring->ring_size - 1);
}
/*
* 82575 with manageability enabled needs a special flush to make
* sure the fifos start clean.
*/
if ((hw->mac.type == e1000_82575) &&
(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
e1000_rx_fifo_flush_82575(hw);
}
}
static void
igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
{
igb_t *igb = tx_ring->igb;
struct e1000_hw *hw = &igb->hw;
uint32_t size;
uint32_t buf_low;
uint32_t buf_high;
uint32_t reg_val;
ASSERT(mutex_owned(&tx_ring->tx_lock));
ASSERT(mutex_owned(&igb->gen_lock));
/*
* Initialize the length register
*/
size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
/*
* Initialize the base address registers
*/
buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
/*
* Setup head & tail pointers
*/
E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
/*
* Setup head write-back
*/
if (igb->tx_head_wb_enable) {
/*
* The memory of the head write-back is allocated using
* the extra tbd beyond the tail of the tbd ring.
*/
tx_ring->tbd_head_wb = (uint32_t *)
((uintptr_t)tx_ring->tbd_area.address + size);
*tx_ring->tbd_head_wb = 0;
buf_low = (uint32_t)
(tx_ring->tbd_area.dma_address + size);
buf_high = (uint32_t)
((tx_ring->tbd_area.dma_address + size) >> 32);
/* Set the head write-back enable bit */
buf_low |= E1000_TX_HEAD_WB_ENABLE;
E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
/*
* Turn off relaxed ordering for head write back or it will
* cause problems with the tx recycling
*/
reg_val = E1000_READ_REG(hw,
E1000_DCA_TXCTRL(tx_ring->index));
reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
E1000_WRITE_REG(hw,
E1000_DCA_TXCTRL(tx_ring->index), reg_val);
} else {
tx_ring->tbd_head_wb = NULL;
}
tx_ring->tbd_head = 0;
tx_ring->tbd_tail = 0;
tx_ring->tbd_free = tx_ring->ring_size;
/*
* Note: for the case that the chipset is being reset, we should not
* reset the values of tcb_head, tcb_tail. And considering there might
* still be some packets kept in the pending_list, we should not assert
* (tcb_free == free_list_size) here.
*/
if (igb->igb_state == IGB_UNKNOWN) {
tx_ring->tcb_head = 0;
tx_ring->tcb_tail = 0;
tx_ring->tcb_free = tx_ring->free_list_size;
}
/*
* Enable TXDCTL per queue
*/
reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
/*
* Initialize hardware checksum offload settings
*/
bzero(&tx_ring->tx_context, sizeof (tx_context_t));
}
static void
igb_setup_tx(igb_t *igb)
{
igb_tx_ring_t *tx_ring;
struct e1000_hw *hw = &igb->hw;
uint32_t reg_val;
int i;
for (i = 0; i < igb->num_tx_rings; i++) {
tx_ring = &igb->tx_rings[i];
igb_setup_tx_ring(tx_ring);
}
/*
* Setup the Transmit Control Register (TCTL)
*/
reg_val = E1000_READ_REG(hw, E1000_TCTL);
reg_val &= ~E1000_TCTL_CT;
reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
/* Enable transmits */
reg_val |= E1000_TCTL_EN;
E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
}
/*
* igb_setup_rss - Setup receive-side scaling feature
*/
static void
igb_setup_rss(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint32_t i, mrqc, rxcsum;
int shift = 0;
uint32_t random;
union e1000_reta {
uint32_t dword;
uint8_t bytes[4];
} reta;
/* Setup the Redirection Table */
if (hw->mac.type == e1000_82576) {
shift = 3;
} else if (hw->mac.type == e1000_82575) {
shift = 6;
}
for (i = 0; i < (32 * 4); i++) {
reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
if ((i & 3) == 3) {
E1000_WRITE_REG(hw,
(E1000_RETA(0) + (i & ~3)), reta.dword);
}
}
/* Fill out hash function seeds */
for (i = 0; i < 10; i++) {
(void) random_get_pseudo_bytes((uint8_t *)&random,
sizeof (uint32_t));
E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
}
/* Setup the Multiple Receive Queue Control register */
mrqc = E1000_MRQC_ENABLE_RSS_4Q;
mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV4_TCP |
E1000_MRQC_RSS_FIELD_IPV6 |
E1000_MRQC_RSS_FIELD_IPV6_TCP |
E1000_MRQC_RSS_FIELD_IPV4_UDP |
E1000_MRQC_RSS_FIELD_IPV6_UDP |
E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
/*
* Disable Packet Checksum to enable RSS for multiple receive queues.
*
* The Packet Checksum is not ethernet CRC. It is another kind of
* checksum offloading provided by the 82575 chipset besides the IP
* header checksum offloading and the TCP/UDP checksum offloading.
* The Packet Checksum is by default computed over the entire packet
* from the first byte of the DA through the last byte of the CRC,
* including the Ethernet and IP headers.
*
* It is a hardware limitation that Packet Checksum is mutually
* exclusive with RSS.
*/
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
}
/*
* igb_setup_mac_rss_classify - Setup MAC classification and rss
*/
static void
igb_setup_mac_rss_classify(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint32_t i, mrqc, vmdctl, rxcsum;
uint32_t ring_per_group;
int shift_group0, shift_group1;
uint32_t random;
union e1000_reta {
uint32_t dword;
uint8_t bytes[4];
} reta;
ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
/* Setup the Redirection Table, it is shared between two groups */
shift_group0 = 2;
shift_group1 = 6;
for (i = 0; i < (32 * 4); i++) {
reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
((ring_per_group + (i % ring_per_group)) << shift_group1);
if ((i & 3) == 3) {
E1000_WRITE_REG(hw,
(E1000_RETA(0) + (i & ~3)), reta.dword);
}
}
/* Fill out hash function seeds */
for (i = 0; i < 10; i++) {
(void) random_get_pseudo_bytes((uint8_t *)&random,
sizeof (uint32_t));
E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
}
/*
* Setup the Multiple Receive Queue Control register,
* enable VMDq based on packet destination MAC address and RSS.
*/
mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV4_TCP |
E1000_MRQC_RSS_FIELD_IPV6 |
E1000_MRQC_RSS_FIELD_IPV6_TCP |
E1000_MRQC_RSS_FIELD_IPV4_UDP |
E1000_MRQC_RSS_FIELD_IPV6_UDP |
E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
/* Define the default group and default queues */
vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
/*
* Disable Packet Checksum to enable RSS for multiple receive queues.
*
* The Packet Checksum is not ethernet CRC. It is another kind of
* checksum offloading provided by the 82575 chipset besides the IP
* header checksum offloading and the TCP/UDP checksum offloading.
* The Packet Checksum is by default computed over the entire packet
* from the first byte of the DA through the last byte of the CRC,
* including the Ethernet and IP headers.
*
* It is a hardware limitation that Packet Checksum is mutually
* exclusive with RSS.
*/
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
}
/*
* igb_setup_mac_classify - Setup MAC classification feature
*/
static void
igb_setup_mac_classify(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint32_t mrqc, rxcsum;
/*
* Setup the Multiple Receive Queue Control register,
* enable VMDq based on packet destination MAC address.
*/
mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
/*
* Disable Packet Checksum to enable RSS for multiple receive queues.
*
* The Packet Checksum is not ethernet CRC. It is another kind of
* checksum offloading provided by the 82575 chipset besides the IP
* header checksum offloading and the TCP/UDP checksum offloading.
* The Packet Checksum is by default computed over the entire packet
* from the first byte of the DA through the last byte of the CRC,
* including the Ethernet and IP headers.
*
* It is a hardware limitation that Packet Checksum is mutually
* exclusive with RSS.
*/
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
}
/*
* igb_init_unicst - Initialize the unicast addresses
*/
static void
igb_init_unicst(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
int slot;
/*
* Here we should consider two situations:
*
* 1. Chipset is initialized the first time
* Initialize the multiple unicast addresses, and
* save the default MAC address.
*
* 2. Chipset is reset
* Recover the multiple unicast addresses from the
* software data structure to the RAR registers.
*/
/*
* Clear the default MAC address in the RAR0 rgister,
* which is loaded from EEPROM when system boot or chipreset,
* this will cause the conficts with add_mac/rem_mac entry
* points when VMDq is enabled. For this reason, the RAR0
* must be cleared for both cases mentioned above.
*/
e1000_rar_clear(hw, 0);
if (!igb->unicst_init) {
/* Initialize the multiple unicast addresses */
igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
igb->unicst_avail = igb->unicst_total;
for (slot = 0; slot < igb->unicst_total; slot++)
igb->unicst_addr[slot].mac.set = 0;
igb->unicst_init = B_TRUE;
} else {
/* Re-configure the RAR registers */
for (slot = 0; slot < igb->unicst_total; slot++) {
e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
slot, igb->vmdq_mode,
igb->unicst_addr[slot].mac.group_index);
}
}
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
}
/*
* igb_unicst_find - Find the slot for the specified unicast address
*/
int
igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
{
int slot;
ASSERT(mutex_owned(&igb->gen_lock));
for (slot = 0; slot < igb->unicst_total; slot++) {
if (bcmp(igb->unicst_addr[slot].mac.addr,
mac_addr, ETHERADDRL) == 0)
return (slot);
}
return (-1);
}
/*
* igb_unicst_set - Set the unicast address to the specified slot
*/
int
igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
int slot)
{
struct e1000_hw *hw = &igb->hw;
ASSERT(mutex_owned(&igb->gen_lock));
/*
* Save the unicast address in the software data structure
*/
bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
/*
* Set the unicast address to the RAR register
*/
e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
return (EIO);
}
return (0);
}
/*
* igb_multicst_add - Add a multicst address
*/
int
igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
{
struct ether_addr *new_table;
size_t new_len;
size_t old_len;
ASSERT(mutex_owned(&igb->gen_lock));
if ((multiaddr[0] & 01) == 0) {
igb_error(igb, "Illegal multicast address");
return (EINVAL);
}
if (igb->mcast_count >= igb->mcast_max_num) {
igb_error(igb, "Adapter requested more than %d mcast addresses",
igb->mcast_max_num);
return (ENOENT);
}
if (igb->mcast_count == igb->mcast_alloc_count) {
old_len = igb->mcast_alloc_count *
sizeof (struct ether_addr);
new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
sizeof (struct ether_addr);
new_table = kmem_alloc(new_len, KM_NOSLEEP);
if (new_table == NULL) {
igb_error(igb,
"Not enough memory to alloc mcast table");
return (ENOMEM);
}
if (igb->mcast_table != NULL) {
bcopy(igb->mcast_table, new_table, old_len);
kmem_free(igb->mcast_table, old_len);
}
igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
igb->mcast_table = new_table;
}
bcopy(multiaddr,
&igb->mcast_table[igb->mcast_count], ETHERADDRL);
igb->mcast_count++;
/*
* Update the multicast table in the hardware
*/
igb_setup_multicst(igb);
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
return (EIO);
}
return (0);
}
/*
* igb_multicst_remove - Remove a multicst address
*/
int
igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
{
struct ether_addr *new_table;
size_t new_len;
size_t old_len;
int i;
ASSERT(mutex_owned(&igb->gen_lock));
for (i = 0; i < igb->mcast_count; i++) {
if (bcmp(multiaddr, &igb->mcast_table[i],
ETHERADDRL) == 0) {
for (i++; i < igb->mcast_count; i++) {
igb->mcast_table[i - 1] =
igb->mcast_table[i];
}
igb->mcast_count--;
break;
}
}
if ((igb->mcast_alloc_count - igb->mcast_count) >
MCAST_ALLOC_COUNT) {
old_len = igb->mcast_alloc_count *
sizeof (struct ether_addr);
new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
sizeof (struct ether_addr);
new_table = kmem_alloc(new_len, KM_NOSLEEP);
if (new_table != NULL) {
bcopy(igb->mcast_table, new_table, new_len);
kmem_free(igb->mcast_table, old_len);
igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
igb->mcast_table = new_table;
}
}
/*
* Update the multicast table in the hardware
*/
igb_setup_multicst(igb);
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
return (EIO);
}
return (0);
}
static void
igb_release_multicast(igb_t *igb)
{
if (igb->mcast_table != NULL) {
kmem_free(igb->mcast_table,
igb->mcast_alloc_count * sizeof (struct ether_addr));
igb->mcast_table = NULL;
}
}
/*
* igb_setup_multicast - setup multicast data structures
*
* This routine initializes all of the multicast related structures
* and save them in the hardware registers.
*/
static void
igb_setup_multicst(igb_t *igb)
{
uint8_t *mc_addr_list;
uint32_t mc_addr_count;
struct e1000_hw *hw = &igb->hw;
ASSERT(mutex_owned(&igb->gen_lock));
ASSERT(igb->mcast_count <= igb->mcast_max_num);
mc_addr_list = (uint8_t *)igb->mcast_table;
mc_addr_count = igb->mcast_count;
/*
* Update the multicase addresses to the MTA registers
*/
e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
}
/*
* igb_get_conf - Get driver configurations set in driver.conf
*
* This routine gets user-configured values out of the configuration
* file igb.conf.
*
* For each configurable value, there is a minimum, a maximum, and a
* default.
* If user does not configure a value, use the default.
* If user configures below the minimum, use the minumum.
* If user configures above the maximum, use the maxumum.
*/
static void
igb_get_conf(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint32_t default_mtu;
uint32_t flow_control;
uint32_t ring_per_group;
int i;
/*
* igb driver supports the following user configurations:
*
* Link configurations:
* adv_autoneg_cap
* adv_1000fdx_cap
* adv_100fdx_cap
* adv_100hdx_cap
* adv_10fdx_cap
* adv_10hdx_cap
* Note: 1000hdx is not supported.
*
* Jumbo frame configuration:
* default_mtu
*
* Ethernet flow control configuration:
* flow_control
*
* Multiple rings configurations:
* tx_queue_number
* tx_ring_size
* rx_queue_number
* rx_ring_size
*
* Call igb_get_prop() to get the value for a specific
* configuration parameter.
*/
/*
* Link configurations
*/
igb->param_adv_autoneg_cap = igb_get_prop(igb,
PROP_ADV_AUTONEG_CAP, 0, 1, 1);
igb->param_adv_1000fdx_cap = igb_get_prop(igb,
PROP_ADV_1000FDX_CAP, 0, 1, 1);
igb->param_adv_100fdx_cap = igb_get_prop(igb,
PROP_ADV_100FDX_CAP, 0, 1, 1);
igb->param_adv_100hdx_cap = igb_get_prop(igb,
PROP_ADV_100HDX_CAP, 0, 1, 1);
igb->param_adv_10fdx_cap = igb_get_prop(igb,
PROP_ADV_10FDX_CAP, 0, 1, 1);
igb->param_adv_10hdx_cap = igb_get_prop(igb,
PROP_ADV_10HDX_CAP, 0, 1, 1);
/*
* Jumbo frame configurations
*/
default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
MIN_MTU, MAX_MTU, DEFAULT_MTU);
igb->max_frame_size = default_mtu +
sizeof (struct ether_vlan_header) + ETHERFCSL;
/*
* Ethernet flow control configuration
*/
flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
e1000_fc_none, 4, e1000_fc_full);
if (flow_control == 4)
flow_control = e1000_fc_default;
hw->fc.requested_mode = flow_control;
/*
* Multiple rings configurations
*/
igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
/*
* Currently we do not support VMDq for 82576 and 82580.
* If it is e1000_82576, set num_rx_groups to 1.
*/
if (hw->mac.type >= e1000_82576)
igb->num_rx_groups = 1;
if (igb->mr_enable) {
igb->num_tx_rings = igb->capab->def_tx_que_num;
igb->num_rx_rings = igb->capab->def_rx_que_num;
} else {
igb->num_tx_rings = 1;
igb->num_rx_rings = 1;
if (igb->num_rx_groups > 1) {
igb_error(igb,
"Invalid rx groups number. Please enable multiple "
"rings first");
igb->num_rx_groups = 1;
}
}
/*
* Check the divisibility between rx rings and rx groups.
*/
for (i = igb->num_rx_groups; i > 0; i--) {
if ((igb->num_rx_rings % i) == 0)
break;
}
if (i != igb->num_rx_groups) {
igb_error(igb,
"Invalid rx groups number. Downgrade the rx group "
"number to %d.", i);
igb->num_rx_groups = i;
}
/*
* Get the ring number per group.
*/
ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
if (igb->num_rx_groups == 1) {
/*
* One rx ring group, the rx ring number is num_rx_rings.
*/
igb->vmdq_mode = E1000_VMDQ_OFF;
} else if (ring_per_group == 1) {
/*
* Multiple rx groups, each group has one rx ring.
*/
igb->vmdq_mode = E1000_VMDQ_MAC;
} else {
/*
* Multiple groups and multiple rings.
*/
igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
}
/*
* Tunable used to force an interrupt type. The only use is
* for testing of the lesser interrupt types.
* 0 = don't force interrupt type
* 1 = force interrupt type MSIX
* 2 = force interrupt type MSI
* 3 = force interrupt type Legacy
*/
igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
0, 1, 1);
igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
0, 1, 1);
igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
0, 1, 1);
igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
0, 1, 1);
/*
* igb LSO needs the tx h/w checksum support.
* Here LSO will be disabled if tx h/w checksum has been disabled.
*/
if (igb->tx_hcksum_enable == B_FALSE)
igb->lso_enable = B_FALSE;
igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
DEFAULT_TX_COPY_THRESHOLD);
igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
DEFAULT_TX_RECYCLE_THRESHOLD);
igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
DEFAULT_TX_OVERLOAD_THRESHOLD);
igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
MIN_TX_RESCHED_THRESHOLD, MAX_TX_RESCHED_THRESHOLD,
DEFAULT_TX_RESCHED_THRESHOLD);
igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
DEFAULT_RX_COPY_THRESHOLD);
igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
DEFAULT_RX_LIMIT_PER_INTR);
igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
igb->capab->min_intr_throttle,
igb->capab->max_intr_throttle,
igb->capab->def_intr_throttle);
/*
* Max number of multicast addresses
*/
igb->mcast_max_num =
igb_get_prop(igb, PROP_MCAST_MAX_NUM,
MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
}
/*
* igb_get_prop - Get a property value out of the configuration file igb.conf
*
* Caller provides the name of the property, a default value, a minimum
* value, and a maximum value.
*
* Return configured value of the property, with default, minimum and
* maximum properly applied.
*/
static int
igb_get_prop(igb_t *igb,
char *propname, /* name of the property */
int minval, /* minimum acceptable value */
int maxval, /* maximim acceptable value */
int defval) /* default value */
{
int value;
/*
* Call ddi_prop_get_int() to read the conf settings
*/
value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
DDI_PROP_DONTPASS, propname, defval);
if (value > maxval)
value = maxval;
if (value < minval)
value = minval;
return (value);
}
/*
* igb_setup_link - Using the link properties to setup the link
*/
int
igb_setup_link(igb_t *igb, boolean_t setup_hw)
{
struct e1000_mac_info *mac;
struct e1000_phy_info *phy;
boolean_t invalid;
mac = &igb->hw.mac;
phy = &igb->hw.phy;
invalid = B_FALSE;
if (igb->param_adv_autoneg_cap == 1) {
mac->autoneg = B_TRUE;
phy->autoneg_advertised = 0;
/*
* 1000hdx is not supported for autonegotiation
*/
if (igb->param_adv_1000fdx_cap == 1)
phy->autoneg_advertised |= ADVERTISE_1000_FULL;
if (igb->param_adv_100fdx_cap == 1)
phy->autoneg_advertised |= ADVERTISE_100_FULL;
if (igb->param_adv_100hdx_cap == 1)
phy->autoneg_advertised |= ADVERTISE_100_HALF;
if (igb->param_adv_10fdx_cap == 1)
phy->autoneg_advertised |= ADVERTISE_10_FULL;
if (igb->param_adv_10hdx_cap == 1)
phy->autoneg_advertised |= ADVERTISE_10_HALF;
if (phy->autoneg_advertised == 0)
invalid = B_TRUE;
} else {
mac->autoneg = B_FALSE;
/*
* 1000fdx and 1000hdx are not supported for forced link
*/
if (igb->param_adv_100fdx_cap == 1)
mac->forced_speed_duplex = ADVERTISE_100_FULL;
else if (igb->param_adv_100hdx_cap == 1)
mac->forced_speed_duplex = ADVERTISE_100_HALF;
else if (igb->param_adv_10fdx_cap == 1)
mac->forced_speed_duplex = ADVERTISE_10_FULL;
else if (igb->param_adv_10hdx_cap == 1)
mac->forced_speed_duplex = ADVERTISE_10_HALF;
else
invalid = B_TRUE;
}
if (invalid) {
igb_notice(igb, "Invalid link settings. Setup link to "
"autonegotiation with full link capabilities.");
mac->autoneg = B_TRUE;
phy->autoneg_advertised = ADVERTISE_1000_FULL |
ADVERTISE_100_FULL | ADVERTISE_100_HALF |
ADVERTISE_10_FULL | ADVERTISE_10_HALF;
}
if (setup_hw) {
if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
return (IGB_FAILURE);
}
return (IGB_SUCCESS);
}
/*
* igb_is_link_up - Check if the link is up
*/
static boolean_t
igb_is_link_up(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
boolean_t link_up = B_FALSE;
ASSERT(mutex_owned(&igb->gen_lock));
/*
* get_link_status is set in the interrupt handler on link-status-change
* or rx sequence error interrupt. get_link_status will stay
* false until the e1000_check_for_link establishes link only
* for copper adapters.
*/
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (hw->mac.get_link_status) {
(void) e1000_check_for_link(hw);
link_up = !hw->mac.get_link_status;
} else {
link_up = B_TRUE;
}
break;
case e1000_media_type_fiber:
(void) e1000_check_for_link(hw);
link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
(void) e1000_check_for_link(hw);
link_up = hw->mac.serdes_has_link;
break;
}
return (link_up);
}
/*
* igb_link_check - Link status processing
*/
static boolean_t
igb_link_check(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint16_t speed = 0, duplex = 0;
boolean_t link_changed = B_FALSE;
ASSERT(mutex_owned(&igb->gen_lock));
if (igb_is_link_up(igb)) {
/*
* The Link is up, check whether it was marked as down earlier
*/
if (igb->link_state != LINK_STATE_UP) {
(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
igb->link_speed = speed;
igb->link_duplex = duplex;
igb->link_state = LINK_STATE_UP;
igb->link_down_timeout = 0;
link_changed = B_TRUE;
}
} else {
if (igb->link_state != LINK_STATE_DOWN) {
igb->link_speed = 0;
igb->link_duplex = 0;
igb->link_state = LINK_STATE_DOWN;
link_changed = B_TRUE;
}
if (igb->igb_state & IGB_STARTED) {
if (igb->link_down_timeout < MAX_LINK_DOWN_TIMEOUT) {
igb->link_down_timeout++;
} else if (igb->link_down_timeout ==
MAX_LINK_DOWN_TIMEOUT) {
igb_tx_clean(igb);
igb->link_down_timeout++;
}
}
}
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
return (link_changed);
}
/*
* igb_local_timer - driver watchdog function
*
* This function will handle the hardware stall check, link status
* check and other routines.
*/
static void
igb_local_timer(void *arg)
{
igb_t *igb = (igb_t *)arg;
boolean_t link_changed = B_FALSE;
if (igb_stall_check(igb))
igb->igb_state |= IGB_STALL;
if (igb->igb_state & IGB_STALL) {
igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
igb->reset_count++;
igb->igb_state &= ~IGB_STALL;
if (igb_reset(igb) == IGB_SUCCESS)
ddi_fm_service_impact(igb->dip,
DDI_SERVICE_RESTORED);
}
mutex_enter(&igb->gen_lock);
if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
link_changed = igb_link_check(igb);
mutex_exit(&igb->gen_lock);
if (link_changed)
mac_link_update(igb->mac_hdl, igb->link_state);
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
igb_restart_watchdog_timer(igb);
}
/*
* igb_stall_check - check for transmit stall
*
* This function checks if the adapter is stalled (in transmit).
*
* It is called each time the watchdog timeout is invoked.
* If the transmit descriptor reclaim continuously fails,
* the watchdog value will increment by 1. If the watchdog
* value exceeds the threshold, the igb is assumed to
* have stalled and need to be reset.
*/
static boolean_t
igb_stall_check(igb_t *igb)
{
igb_tx_ring_t *tx_ring;
struct e1000_hw *hw = &igb->hw;
boolean_t result;
int i;
if (igb->link_state != LINK_STATE_UP)
return (B_FALSE);
/*
* If any tx ring is stalled, we'll reset the chipset
*/
result = B_FALSE;
for (i = 0; i < igb->num_tx_rings; i++) {
tx_ring = &igb->tx_rings[i];
if (tx_ring->recycle_fail > 0)
tx_ring->stall_watchdog++;
else
tx_ring->stall_watchdog = 0;
if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
result = B_TRUE;
if (hw->mac.type == e1000_82580) {
hw->dev_spec._82575.global_device_reset
= B_TRUE;
}
break;
}
}
if (result) {
tx_ring->stall_watchdog = 0;
tx_ring->recycle_fail = 0;
}
return (result);
}
/*
* is_valid_mac_addr - Check if the mac address is valid
*/
static boolean_t
is_valid_mac_addr(uint8_t *mac_addr)
{
const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
const uint8_t addr_test2[6] =
{ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
!(bcmp(addr_test2, mac_addr, ETHERADDRL)))
return (B_FALSE);
return (B_TRUE);
}
static boolean_t
igb_find_mac_address(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
#ifdef __sparc
uchar_t *bytes;
struct ether_addr sysaddr;
uint_t nelts;
int err;
boolean_t found = B_FALSE;
/*
* The "vendor's factory-set address" may already have
* been extracted from the chip, but if the property
* "local-mac-address" is set we use that instead.
*
* We check whether it looks like an array of 6
* bytes (which it should, if OBP set it). If we can't
* make sense of it this way, we'll ignore it.
*/
err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
if (err == DDI_PROP_SUCCESS) {
if (nelts == ETHERADDRL) {
while (nelts--)
hw->mac.addr[nelts] = bytes[nelts];
found = B_TRUE;
}
ddi_prop_free(bytes);
}
/*
* Look up the OBP property "local-mac-address?". If the user has set
* 'local-mac-address? = false', use "the system address" instead.
*/
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
"local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
if (localetheraddr(NULL, &sysaddr) != 0) {
bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
found = B_TRUE;
}
}
ddi_prop_free(bytes);
}
/*
* Finally(!), if there's a valid "mac-address" property (created
* if we netbooted from this interface), we must use this instead
* of any of the above to ensure that the NFS/install server doesn't
* get confused by the address changing as Solaris takes over!
*/
err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
if (err == DDI_PROP_SUCCESS) {
if (nelts == ETHERADDRL) {
while (nelts--)
hw->mac.addr[nelts] = bytes[nelts];
found = B_TRUE;
}
ddi_prop_free(bytes);
}
if (found) {
bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
return (B_TRUE);
}
#endif
/*
* Read the device MAC address from the EEPROM
*/
if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
return (B_FALSE);
return (B_TRUE);
}
#pragma inline(igb_arm_watchdog_timer)
static void
igb_arm_watchdog_timer(igb_t *igb)
{
/*
* Fire a watchdog timer
*/
igb->watchdog_tid =
timeout(igb_local_timer,
(void *)igb, 1 * drv_usectohz(1000000));
}
/*
* igb_enable_watchdog_timer - Enable and start the driver watchdog timer
*/
void
igb_enable_watchdog_timer(igb_t *igb)
{
mutex_enter(&igb->watchdog_lock);
if (!igb->watchdog_enable) {
igb->watchdog_enable = B_TRUE;
igb->watchdog_start = B_TRUE;
igb_arm_watchdog_timer(igb);
}
mutex_exit(&igb->watchdog_lock);
}
/*
* igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
*/
void
igb_disable_watchdog_timer(igb_t *igb)
{
timeout_id_t tid;
mutex_enter(&igb->watchdog_lock);
igb->watchdog_enable = B_FALSE;
igb->watchdog_start = B_FALSE;
tid = igb->watchdog_tid;
igb->watchdog_tid = 0;
mutex_exit(&igb->watchdog_lock);
if (tid != 0)
(void) untimeout(tid);
}
/*
* igb_start_watchdog_timer - Start the driver watchdog timer
*/
static void
igb_start_watchdog_timer(igb_t *igb)
{
mutex_enter(&igb->watchdog_lock);
if (igb->watchdog_enable) {
if (!igb->watchdog_start) {
igb->watchdog_start = B_TRUE;
igb_arm_watchdog_timer(igb);
}
}
mutex_exit(&igb->watchdog_lock);
}
/*
* igb_restart_watchdog_timer - Restart the driver watchdog timer
*/
static void
igb_restart_watchdog_timer(igb_t *igb)
{
mutex_enter(&igb->watchdog_lock);
if (igb->watchdog_start)
igb_arm_watchdog_timer(igb);
mutex_exit(&igb->watchdog_lock);
}
/*
* igb_stop_watchdog_timer - Stop the driver watchdog timer
*/
static void
igb_stop_watchdog_timer(igb_t *igb)
{
timeout_id_t tid;
mutex_enter(&igb->watchdog_lock);
igb->watchdog_start = B_FALSE;
tid = igb->watchdog_tid;
igb->watchdog_tid = 0;
mutex_exit(&igb->watchdog_lock);
if (tid != 0)
(void) untimeout(tid);
}
/*
* igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
*/
static void
igb_disable_adapter_interrupts(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
/*
* Set the IMC register to mask all the interrupts,
* including the tx interrupts.
*/
E1000_WRITE_REG(hw, E1000_IMC, ~0);
E1000_WRITE_REG(hw, E1000_IAM, 0);
/*
* Additional disabling for MSI-X
*/
if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
E1000_WRITE_REG(hw, E1000_EIMC, ~0);
E1000_WRITE_REG(hw, E1000_EIAC, 0);
E1000_WRITE_REG(hw, E1000_EIAM, 0);
}
E1000_WRITE_FLUSH(hw);
}
/*
* igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
*/
static void
igb_enable_adapter_interrupts_82580(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
/* Clear any pending interrupts */
(void) E1000_READ_REG(hw, E1000_ICR);
igb->ims_mask |= E1000_IMS_DRSTA;
if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
/* Interrupt enabling for MSI-X */
E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
} else { /* Interrupt enabling for MSI and legacy */
E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
igb->ims_mask |= E1000_IMS_DRSTA;
E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
}
/* Disable auto-mask for ICR interrupt bits */
E1000_WRITE_REG(hw, E1000_IAM, 0);
E1000_WRITE_FLUSH(hw);
}
/*
* igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
*/
static void
igb_enable_adapter_interrupts_82576(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
/* Clear any pending interrupts */
(void) E1000_READ_REG(hw, E1000_ICR);
if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
/* Interrupt enabling for MSI-X */
E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
igb->ims_mask = E1000_IMS_LSC;
E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
} else {
/* Interrupt enabling for MSI and legacy */
E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
E1000_WRITE_REG(hw, E1000_IMS,
(IMS_ENABLE_MASK | E1000_IMS_TXQE));
}
/* Disable auto-mask for ICR interrupt bits */
E1000_WRITE_REG(hw, E1000_IAM, 0);
E1000_WRITE_FLUSH(hw);
}
/*
* igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
*/
static void
igb_enable_adapter_interrupts_82575(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint32_t reg;
/* Clear any pending interrupts */
(void) E1000_READ_REG(hw, E1000_ICR);
if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
/* Interrupt enabling for MSI-X */
E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
igb->ims_mask = E1000_IMS_LSC;
E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
/* Enable MSI-X PBA support */
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg |= E1000_CTRL_EXT_PBA_CLR;
/* Non-selective interrupt clear-on-read */
reg |= E1000_CTRL_EXT_IRCA; /* Called NSICR in the EAS */
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
} else {
/* Interrupt enabling for MSI and legacy */
igb->ims_mask = IMS_ENABLE_MASK;
E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
}
E1000_WRITE_FLUSH(hw);
}
/*
* Loopback Support
*/
static lb_property_t lb_normal =
{ normal, "normal", IGB_LB_NONE };
static lb_property_t lb_external =
{ external, "External", IGB_LB_EXTERNAL };
static lb_property_t lb_mac =
{ internal, "MAC", IGB_LB_INTERNAL_MAC };
static lb_property_t lb_phy =
{ internal, "PHY", IGB_LB_INTERNAL_PHY };
static lb_property_t lb_serdes =
{ internal, "SerDes", IGB_LB_INTERNAL_SERDES };
enum ioc_reply
igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
{
lb_info_sz_t *lbsp;
lb_property_t *lbpp;
struct e1000_hw *hw;
uint32_t *lbmp;
uint32_t size;
uint32_t value;
hw = &igb->hw;
if (mp->b_cont == NULL)
return (IOC_INVAL);
switch (iocp->ioc_cmd) {
default:
return (IOC_INVAL);
case LB_GET_INFO_SIZE:
size = sizeof (lb_info_sz_t);
if (iocp->ioc_count != size)
return (IOC_INVAL);
value = sizeof (lb_normal);
value += sizeof (lb_mac);
if (hw->phy.media_type == e1000_media_type_copper)
value += sizeof (lb_phy);
else
value += sizeof (lb_serdes);
value += sizeof (lb_external);
lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
*lbsp = value;
break;
case LB_GET_INFO:
value = sizeof (lb_normal);
value += sizeof (lb_mac);
if (hw->phy.media_type == e1000_media_type_copper)
value += sizeof (lb_phy);
else
value += sizeof (lb_serdes);
value += sizeof (lb_external);
size = value;
if (iocp->ioc_count != size)
return (IOC_INVAL);
value = 0;
lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
lbpp[value++] = lb_normal;
lbpp[value++] = lb_mac;
if (hw->phy.media_type == e1000_media_type_copper)
lbpp[value++] = lb_phy;
else
lbpp[value++] = lb_serdes;
lbpp[value++] = lb_external;
break;
case LB_GET_MODE:
size = sizeof (uint32_t);
if (iocp->ioc_count != size)
return (IOC_INVAL);
lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
*lbmp = igb->loopback_mode;
break;
case LB_SET_MODE:
size = 0;
if (iocp->ioc_count != sizeof (uint32_t))
return (IOC_INVAL);
lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
if (!igb_set_loopback_mode(igb, *lbmp))
return (IOC_INVAL);
break;
}
iocp->ioc_count = size;
iocp->ioc_error = 0;
if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
return (IOC_INVAL);
}
return (IOC_REPLY);
}
/*
* igb_set_loopback_mode - Setup loopback based on the loopback mode
*/
static boolean_t
igb_set_loopback_mode(igb_t *igb, uint32_t mode)
{
struct e1000_hw *hw;
if (mode == igb->loopback_mode)
return (B_TRUE);
hw = &igb->hw;
igb->loopback_mode = mode;
if (mode == IGB_LB_NONE) {
/* Reset the chip */
hw->phy.autoneg_wait_to_complete = B_TRUE;
(void) igb_reset(igb);
hw->phy.autoneg_wait_to_complete = B_FALSE;
return (B_TRUE);
}
mutex_enter(&igb->gen_lock);
switch (mode) {
default:
mutex_exit(&igb->gen_lock);
return (B_FALSE);
case IGB_LB_EXTERNAL:
igb_set_external_loopback(igb);
break;
case IGB_LB_INTERNAL_MAC:
igb_set_internal_mac_loopback(igb);
break;
case IGB_LB_INTERNAL_PHY:
igb_set_internal_phy_loopback(igb);
break;
case IGB_LB_INTERNAL_SERDES:
igb_set_internal_serdes_loopback(igb);
break;
}
mutex_exit(&igb->gen_lock);
return (B_TRUE);
}
/*
* igb_set_external_loopback - Set the external loopback mode
*/
static void
igb_set_external_loopback(igb_t *igb)
{
struct e1000_hw *hw;
hw = &igb->hw;
/* Set phy to known state */
(void) e1000_phy_hw_reset(hw);
(void) e1000_write_phy_reg(hw, 0x0, 0x0140);
(void) e1000_write_phy_reg(hw, 0x9, 0x1b00);
(void) e1000_write_phy_reg(hw, 0x12, 0x1610);
(void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
}
/*
* igb_set_internal_mac_loopback - Set the internal MAC loopback mode
*/
static void
igb_set_internal_mac_loopback(igb_t *igb)
{
struct e1000_hw *hw;
uint32_t ctrl;
uint32_t rctl;
uint32_t ctrl_ext;
uint16_t phy_ctrl;
uint16_t phy_status;
hw = &igb->hw;
(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
/* Set link mode to PHY (00b) in the Extended Control register */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
/* Set the Device Control register */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
if (!(phy_status & MII_SR_LINK_STATUS))
ctrl |= E1000_CTRL_ILOS; /* Set ILOS when the link is down */
ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl |= (E1000_CTRL_SLU | /* Force link up */
E1000_CTRL_FRCSPD | /* Force speed */
E1000_CTRL_FRCDPX | /* Force duplex */
E1000_CTRL_SPD_1000 | /* Force speed to 1000 */
E1000_CTRL_FD); /* Force full duplex */
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
/* Set the Receive Control register */
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= ~E1000_RCTL_LBM_TCVR;
rctl |= E1000_RCTL_LBM_MAC;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
/*
* igb_set_internal_phy_loopback - Set the internal PHY loopback mode
*/
static void
igb_set_internal_phy_loopback(igb_t *igb)
{
struct e1000_hw *hw;
uint32_t ctrl_ext;
uint16_t phy_ctrl;
uint16_t phy_pconf;
hw = &igb->hw;
/* Set link mode to PHY (00b) in the Extended Control register */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
/*
* Set PHY control register (0x4140):
* Set full duplex mode
* Set loopback bit
* Clear auto-neg enable bit
* Set PHY speed
*/
phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
/* Set the link disable bit in the Port Configuration register */
(void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
phy_pconf |= (uint16_t)1 << 14;
(void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
}
/*
* igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
*/
static void
igb_set_internal_serdes_loopback(igb_t *igb)
{
struct e1000_hw *hw;
uint32_t ctrl_ext;
uint32_t ctrl;
uint32_t pcs_lctl;
uint32_t connsw;
hw = &igb->hw;
/* Set link mode to SerDes (11b) in the Extended Control register */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
/* Configure the SerDes to loopback */
E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
/* Set Device Control register */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl |= (E1000_CTRL_FD | /* Force full duplex */
E1000_CTRL_SLU); /* Force link up */
ctrl &= ~(E1000_CTRL_RFCE | /* Disable receive flow control */
E1000_CTRL_TFCE | /* Disable transmit flow control */
E1000_CTRL_LRST); /* Clear link reset */
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
/* Set PCS Link Control register */
pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
E1000_PCS_LCTL_FSD |
E1000_PCS_LCTL_FDV_FULL |
E1000_PCS_LCTL_FLV_LINK_UP);
pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
/* Set the Copper/Fiber Switch Control - CONNSW register */
connsw = E1000_READ_REG(hw, E1000_CONNSW);
connsw &= ~E1000_CONNSW_ENRGSRC;
E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
}
#pragma inline(igb_intr_rx_work)
/*
* igb_intr_rx_work - rx processing of ISR
*/
static void
igb_intr_rx_work(igb_rx_ring_t *rx_ring)
{
mblk_t *mp;
mutex_enter(&rx_ring->rx_lock);
mp = igb_rx(rx_ring, IGB_NO_POLL);
mutex_exit(&rx_ring->rx_lock);
if (mp != NULL)
mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
rx_ring->ring_gen_num);
}
#pragma inline(igb_intr_tx_work)
/*
* igb_intr_tx_work - tx processing of ISR
*/
static void
igb_intr_tx_work(igb_tx_ring_t *tx_ring)
{
/* Recycle the tx descriptors */
tx_ring->tx_recycle(tx_ring);
/* Schedule the re-transmit */
if (tx_ring->reschedule &&
(tx_ring->tbd_free >= tx_ring->resched_thresh)) {
tx_ring->reschedule = B_FALSE;
mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
IGB_DEBUG_STAT(tx_ring->stat_reschedule);
}
}
#pragma inline(igb_intr_link_work)
/*
* igb_intr_link_work - link-status-change processing of ISR
*/
static void
igb_intr_link_work(igb_t *igb)
{
boolean_t link_changed;
igb_stop_watchdog_timer(igb);
mutex_enter(&igb->gen_lock);
/*
* Because we got a link-status-change interrupt, force
* e1000_check_for_link() to look at phy
*/
igb->hw.mac.get_link_status = B_TRUE;
/* igb_link_check takes care of link status change */
link_changed = igb_link_check(igb);
/* Get new phy state */
igb_get_phy_state(igb);
mutex_exit(&igb->gen_lock);
if (link_changed)
mac_link_update(igb->mac_hdl, igb->link_state);
igb_start_watchdog_timer(igb);
}
/*
* igb_intr_legacy - Interrupt handler for legacy interrupts
*/
static uint_t
igb_intr_legacy(void *arg1, void *arg2)
{
igb_t *igb = (igb_t *)arg1;
igb_tx_ring_t *tx_ring;
uint32_t icr;
mblk_t *mp;
boolean_t tx_reschedule;
boolean_t link_changed;
uint_t result;
_NOTE(ARGUNUSED(arg2));
mutex_enter(&igb->gen_lock);
if (igb->igb_state & IGB_SUSPENDED) {
mutex_exit(&igb->gen_lock);
return (DDI_INTR_UNCLAIMED);
}
mp = NULL;
tx_reschedule = B_FALSE;
link_changed = B_FALSE;
icr = E1000_READ_REG(&igb->hw, E1000_ICR);
if (icr & E1000_ICR_INT_ASSERTED) {
/*
* E1000_ICR_INT_ASSERTED bit was set:
* Read(Clear) the ICR, claim this interrupt,
* look for work to do.
*/
ASSERT(igb->num_rx_rings == 1);
ASSERT(igb->num_tx_rings == 1);
/* Make sure all interrupt causes cleared */
(void) E1000_READ_REG(&igb->hw, E1000_EICR);
if (icr & E1000_ICR_RXT0) {
mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
}
if (icr & E1000_ICR_TXDW) {
tx_ring = &igb->tx_rings[0];
/* Recycle the tx descriptors */
tx_ring->tx_recycle(tx_ring);
/* Schedule the re-transmit */
tx_reschedule = (tx_ring->reschedule &&
(tx_ring->tbd_free >= tx_ring->resched_thresh));
}
if (icr & E1000_ICR_LSC) {
/*
* Because we got a link-status-change interrupt, force
* e1000_check_for_link() to look at phy
*/
igb->hw.mac.get_link_status = B_TRUE;
/* igb_link_check takes care of link status change */
link_changed = igb_link_check(igb);
/* Get new phy state */
igb_get_phy_state(igb);
}
if (icr & E1000_ICR_DRSTA) {
/* 82580 Full Device Reset needed */
igb->igb_state |= IGB_STALL;
}
result = DDI_INTR_CLAIMED;
} else {
/*
* E1000_ICR_INT_ASSERTED bit was not set:
* Don't claim this interrupt.
*/
result = DDI_INTR_UNCLAIMED;
}
mutex_exit(&igb->gen_lock);
/*
* Do the following work outside of the gen_lock
*/
if (mp != NULL)
mac_rx(igb->mac_hdl, NULL, mp);
if (tx_reschedule) {
tx_ring->reschedule = B_FALSE;
mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
IGB_DEBUG_STAT(tx_ring->stat_reschedule);
}
if (link_changed)
mac_link_update(igb->mac_hdl, igb->link_state);
return (result);
}
/*
* igb_intr_msi - Interrupt handler for MSI
*/
static uint_t
igb_intr_msi(void *arg1, void *arg2)
{
igb_t *igb = (igb_t *)arg1;
uint32_t icr;
_NOTE(ARGUNUSED(arg2));
icr = E1000_READ_REG(&igb->hw, E1000_ICR);
/* Make sure all interrupt causes cleared */
(void) E1000_READ_REG(&igb->hw, E1000_EICR);
/*
* For MSI interrupt, we have only one vector,
* so we have only one rx ring and one tx ring enabled.
*/
ASSERT(igb->num_rx_rings == 1);
ASSERT(igb->num_tx_rings == 1);
if (icr & E1000_ICR_RXT0) {
igb_intr_rx_work(&igb->rx_rings[0]);
}
if (icr & E1000_ICR_TXDW) {
igb_intr_tx_work(&igb->tx_rings[0]);
}
if (icr & E1000_ICR_LSC) {
igb_intr_link_work(igb);
}
if (icr & E1000_ICR_DRSTA) {
/* 82580 Full Device Reset needed */
igb->igb_state |= IGB_STALL;
}
return (DDI_INTR_CLAIMED);
}
/*
* igb_intr_rx - Interrupt handler for rx
*/
static uint_t
igb_intr_rx(void *arg1, void *arg2)
{
igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
_NOTE(ARGUNUSED(arg2));
/*
* Only used via MSI-X vector so don't check cause bits
* and only clean the given ring.
*/
igb_intr_rx_work(rx_ring);
return (DDI_INTR_CLAIMED);
}
/*
* igb_intr_tx - Interrupt handler for tx
*/
static uint_t
igb_intr_tx(void *arg1, void *arg2)
{
igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
_NOTE(ARGUNUSED(arg2));
/*
* Only used via MSI-X vector so don't check cause bits
* and only clean the given ring.
*/
igb_intr_tx_work(tx_ring);
return (DDI_INTR_CLAIMED);
}
/*
* igb_intr_tx_other - Interrupt handler for both tx and other
*
*/
static uint_t
igb_intr_tx_other(void *arg1, void *arg2)
{
igb_t *igb = (igb_t *)arg1;
uint32_t icr;
_NOTE(ARGUNUSED(arg2));
icr = E1000_READ_REG(&igb->hw, E1000_ICR);
/*
* Look for tx reclaiming work first. Remember, in the
* case of only interrupt sharing, only one tx ring is
* used
*/
igb_intr_tx_work(&igb->tx_rings[0]);
/*
* Check for "other" causes.
*/
if (icr & E1000_ICR_LSC) {
igb_intr_link_work(igb);
}
/*
* The DOUTSYNC bit indicates a tx packet dropped because
* DMA engine gets "out of sync". There isn't a real fix
* for this. The Intel recommendation is to count the number
* of occurrences so user can detect when it is happening.
* The issue is non-fatal and there's no recovery action
* available.
*/
if (icr & E1000_ICR_DOUTSYNC) {
IGB_STAT(igb->dout_sync);
}
if (icr & E1000_ICR_DRSTA) {
/* 82580 Full Device Reset needed */
igb->igb_state |= IGB_STALL;
}
return (DDI_INTR_CLAIMED);
}
/*
* igb_alloc_intrs - Allocate interrupts for the driver
*
* Normal sequence is to try MSI-X; if not sucessful, try MSI;
* if not successful, try Legacy.
* igb->intr_force can be used to force sequence to start with
* any of the 3 types.
* If MSI-X is not used, number of tx/rx rings is forced to 1.
*/
static int
igb_alloc_intrs(igb_t *igb)
{
dev_info_t *devinfo;
int intr_types;
int rc;
devinfo = igb->dip;
/* Get supported interrupt types */
rc = ddi_intr_get_supported_types(devinfo, &intr_types);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Get supported interrupt types failed: %d", rc);
return (IGB_FAILURE);
}
IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
igb->intr_type = 0;
/* Install MSI-X interrupts */
if ((intr_types & DDI_INTR_TYPE_MSIX) &&
(igb->intr_force <= IGB_INTR_MSIX)) {
rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
if (rc == IGB_SUCCESS)
return (IGB_SUCCESS);
igb_log(igb,
"Allocate MSI-X failed, trying MSI interrupts...");
}
/* MSI-X not used, force rings to 1 */
igb->num_rx_rings = 1;
igb->num_tx_rings = 1;
igb_log(igb,
"MSI-X not used, force rx and tx queue number to 1");
/* Install MSI interrupts */
if ((intr_types & DDI_INTR_TYPE_MSI) &&
(igb->intr_force <= IGB_INTR_MSI)) {
rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
if (rc == IGB_SUCCESS)
return (IGB_SUCCESS);
igb_log(igb,
"Allocate MSI failed, trying Legacy interrupts...");
}
/* Install legacy interrupts */
if (intr_types & DDI_INTR_TYPE_FIXED) {
rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
if (rc == IGB_SUCCESS)
return (IGB_SUCCESS);
igb_log(igb,
"Allocate Legacy interrupts failed");
}
/* If none of the 3 types succeeded, return failure */
return (IGB_FAILURE);
}
/*
* igb_alloc_intr_handles - Allocate interrupt handles.
*
* For legacy and MSI, only 1 handle is needed. For MSI-X,
* if fewer than 2 handles are available, return failure.
* Upon success, this sets the number of Rx rings to a number that
* matches the handles available for Rx interrupts.
*/
static int
igb_alloc_intr_handles(igb_t *igb, int intr_type)
{
dev_info_t *devinfo;
int orig, request, count, avail, actual;
int diff, minimum;
int rc;
devinfo = igb->dip;
switch (intr_type) {
case DDI_INTR_TYPE_FIXED:
request = 1; /* Request 1 legacy interrupt handle */
minimum = 1;
IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
break;
case DDI_INTR_TYPE_MSI:
request = 1; /* Request 1 MSI interrupt handle */
minimum = 1;
IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
break;
case DDI_INTR_TYPE_MSIX:
/*
* Number of vectors for the adapter is
* # rx rings + # tx rings
* One of tx vectors is for tx & other
*/
request = igb->num_rx_rings + igb->num_tx_rings;
orig = request;
minimum = 2;
IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
break;
default:
igb_log(igb,
"invalid call to igb_alloc_intr_handles(): %d\n",
intr_type);
return (IGB_FAILURE);
}
IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d minimum: %d",
request, minimum);
/*
* Get number of supported interrupts
*/
rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
if ((rc != DDI_SUCCESS) || (count < minimum)) {
igb_log(igb,
"Get supported interrupt number failed. "
"Return: %d, count: %d", rc, count);
return (IGB_FAILURE);
}
IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
/*
* Get number of available interrupts
*/
rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
if ((rc != DDI_SUCCESS) || (avail < minimum)) {
igb_log(igb,
"Get available interrupt number failed. "
"Return: %d, available: %d", rc, avail);
return (IGB_FAILURE);
}
IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
if (avail < request) {
igb_log(igb, "Request %d handles, %d available",
request, avail);
request = avail;
}
actual = 0;
igb->intr_cnt = 0;
/*
* Allocate an array of interrupt handles
*/
igb->intr_size = request * sizeof (ddi_intr_handle_t);
igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
request, &actual, DDI_INTR_ALLOC_NORMAL);
if (rc != DDI_SUCCESS) {
igb_log(igb, "Allocate interrupts failed. "
"return: %d, request: %d, actual: %d",
rc, request, actual);
goto alloc_handle_fail;
}
IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
igb->intr_cnt = actual;
if (actual < minimum) {
igb_log(igb, "Insufficient interrupt handles allocated: %d",
actual);
goto alloc_handle_fail;
}
/*
* For MSI-X, actual might force us to reduce number of tx & rx rings
*/
if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
diff = orig - actual;
if (diff < igb->num_tx_rings) {
igb_log(igb,
"MSI-X vectors force Tx queue number to %d",
igb->num_tx_rings - diff);
igb->num_tx_rings -= diff;
} else {
igb_log(igb,
"MSI-X vectors force Tx queue number to 1");
igb->num_tx_rings = 1;
igb_log(igb,
"MSI-X vectors force Rx queue number to %d",
actual - 1);
igb->num_rx_rings = actual - 1;
}
}
/*
* Get priority for first vector, assume remaining are all the same
*/
rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Get interrupt priority failed: %d", rc);
goto alloc_handle_fail;
}
rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Get interrupt cap failed: %d", rc);
goto alloc_handle_fail;
}
igb->intr_type = intr_type;
return (IGB_SUCCESS);
alloc_handle_fail:
igb_rem_intrs(igb);
return (IGB_FAILURE);
}
/*
* igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
*
* Before adding the interrupt handlers, the interrupt vectors have
* been allocated, and the rx/tx rings have also been allocated.
*/
static int
igb_add_intr_handlers(igb_t *igb)
{
igb_rx_ring_t *rx_ring;
igb_tx_ring_t *tx_ring;
int vector;
int rc;
int i;
vector = 0;
switch (igb->intr_type) {
case DDI_INTR_TYPE_MSIX:
/* Add interrupt handler for tx + other */
tx_ring = &igb->tx_rings[0];
rc = ddi_intr_add_handler(igb->htable[vector],
(ddi_intr_handler_t *)igb_intr_tx_other,
(void *)igb, NULL);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Add tx/other interrupt handler failed: %d", rc);
return (IGB_FAILURE);
}
tx_ring->intr_vector = vector;
vector++;
/* Add interrupt handler for each rx ring */
for (i = 0; i < igb->num_rx_rings; i++) {
rx_ring = &igb->rx_rings[i];
rc = ddi_intr_add_handler(igb->htable[vector],
(ddi_intr_handler_t *)igb_intr_rx,
(void *)rx_ring, NULL);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Add rx interrupt handler failed. "
"return: %d, rx ring: %d", rc, i);
for (vector--; vector >= 0; vector--) {
(void) ddi_intr_remove_handler(
igb->htable[vector]);
}
return (IGB_FAILURE);
}
rx_ring->intr_vector = vector;
vector++;
}
/* Add interrupt handler for each tx ring from 2nd ring */
for (i = 1; i < igb->num_tx_rings; i++) {
tx_ring = &igb->tx_rings[i];
rc = ddi_intr_add_handler(igb->htable[vector],
(ddi_intr_handler_t *)igb_intr_tx,
(void *)tx_ring, NULL);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Add tx interrupt handler failed. "
"return: %d, tx ring: %d", rc, i);
for (vector--; vector >= 0; vector--) {
(void) ddi_intr_remove_handler(
igb->htable[vector]);
}
return (IGB_FAILURE);
}
tx_ring->intr_vector = vector;
vector++;
}
break;
case DDI_INTR_TYPE_MSI:
/* Add interrupt handlers for the only vector */
rc = ddi_intr_add_handler(igb->htable[vector],
(ddi_intr_handler_t *)igb_intr_msi,
(void *)igb, NULL);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Add MSI interrupt handler failed: %d", rc);
return (IGB_FAILURE);
}
rx_ring = &igb->rx_rings[0];
rx_ring->intr_vector = vector;
vector++;
break;
case DDI_INTR_TYPE_FIXED:
/* Add interrupt handlers for the only vector */
rc = ddi_intr_add_handler(igb->htable[vector],
(ddi_intr_handler_t *)igb_intr_legacy,
(void *)igb, NULL);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Add legacy interrupt handler failed: %d", rc);
return (IGB_FAILURE);
}
rx_ring = &igb->rx_rings[0];
rx_ring->intr_vector = vector;
vector++;
break;
default:
return (IGB_FAILURE);
}
ASSERT(vector == igb->intr_cnt);
return (IGB_SUCCESS);
}
/*
* igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
*
* For each vector enabled on the adapter, Set the MSIXBM register accordingly
*/
static void
igb_setup_msix_82575(igb_t *igb)
{
uint32_t eims = 0;
int i, vector;
struct e1000_hw *hw = &igb->hw;
/*
* Set vector for tx ring 0 and other causes.
* NOTE assumption that it is vector 0.
*/
vector = 0;
igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
vector++;
for (i = 0; i < igb->num_rx_rings; i++) {
/*
* Set vector for each rx ring
*/
eims = (E1000_EICR_RX_QUEUE0 << i);
E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
/*
* Accumulate bits to enable in
* igb_enable_adapter_interrupts_82575()
*/
igb->eims_mask |= eims;
vector++;
}
for (i = 1; i < igb->num_tx_rings; i++) {
/*
* Set vector for each tx ring from 2nd tx ring
*/
eims = (E1000_EICR_TX_QUEUE0 << i);
E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
/*
* Accumulate bits to enable in
* igb_enable_adapter_interrupts_82575()
*/
igb->eims_mask |= eims;
vector++;
}
ASSERT(vector == igb->intr_cnt);
/*
* Disable IAM for ICR interrupt bits
*/
E1000_WRITE_REG(hw, E1000_IAM, 0);
E1000_WRITE_FLUSH(hw);
}
/*
* igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
*
* 82576 uses a table based method for assigning vectors. Each queue has a
* single entry in the table to which we write a vector number along with a
* "valid" bit. The entry is a single byte in a 4-byte register. Vectors
* take a different position in the 4-byte register depending on whether
* they are numbered above or below 8.
*/
static void
igb_setup_msix_82576(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint32_t ivar, index, vector;
int i;
/* must enable msi-x capability before IVAR settings */
E1000_WRITE_REG(hw, E1000_GPIE,
(E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
/*
* Set vector for tx ring 0 and other causes.
* NOTE assumption that it is vector 0.
* This is also interdependent with installation of interrupt service
* routines in igb_add_intr_handlers().
*/
/* assign "other" causes to vector 0 */
vector = 0;
ivar = ((vector | E1000_IVAR_VALID) << 8);
E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
/* assign tx ring 0 to vector 0 */
ivar = ((vector | E1000_IVAR_VALID) << 8);
E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
/* prepare to enable tx & other interrupt causes */
igb->eims_mask = (1 << vector);
vector ++;
for (i = 0; i < igb->num_rx_rings; i++) {
/*
* Set vector for each rx ring
*/
index = (i & 0x7);
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
if (i < 8) {
/* vector goes into low byte of register */
ivar = ivar & 0xFFFFFF00;
ivar |= (vector | E1000_IVAR_VALID);
} else {
/* vector goes into third byte of register */
ivar = ivar & 0xFF00FFFF;
ivar |= ((vector | E1000_IVAR_VALID) << 16);
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
/* Accumulate interrupt-cause bits to enable */
igb->eims_mask |= (1 << vector);
vector ++;
}
for (i = 1; i < igb->num_tx_rings; i++) {
/*
* Set vector for each tx ring from 2nd tx ring.
* Note assumption that tx vectors numericall follow rx vectors.
*/
index = (i & 0x7);
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
if (i < 8) {
/* vector goes into second byte of register */
ivar = ivar & 0xFFFF00FF;
ivar |= ((vector | E1000_IVAR_VALID) << 8);
} else {
/* vector goes into fourth byte of register */
ivar = ivar & 0x00FFFFFF;
ivar |= (vector | E1000_IVAR_VALID) << 24;
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
/* Accumulate interrupt-cause bits to enable */
igb->eims_mask |= (1 << vector);
vector ++;
}
ASSERT(vector == igb->intr_cnt);
}
/*
* igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
*
* 82580 uses same table approach at 82576 but has fewer entries. Each
* queue has a single entry in the table to which we write a vector number
* along with a "valid" bit. Vectors take a different position in the
* register depending on * whether * they are numbered above or below 4.
*/
static void
igb_setup_msix_82580(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint32_t ivar, index, vector;
int i;
/* must enable msi-x capability before IVAR settings */
E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
/*
* Set vector for tx ring 0 and other causes.
* NOTE assumption that it is vector 0.
* This is also interdependent with installation of interrupt service
* routines in igb_add_intr_handlers().
*/
/* assign "other" causes to vector 0 */
vector = 0;
ivar = ((vector | E1000_IVAR_VALID) << 8);
E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
/* assign tx ring 0 to vector 0 */
ivar = ((vector | E1000_IVAR_VALID) << 8);
E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
/* prepare to enable tx & other interrupt causes */
igb->eims_mask = (1 << vector);
vector ++;
for (i = 0; i < igb->num_rx_rings; i++) {
/*
* Set vector for each rx ring
*/
index = (i >> 1);
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
if (i & 1) {
/* vector goes into third byte of register */
ivar = ivar & 0xFF00FFFF;
ivar |= ((vector | E1000_IVAR_VALID) << 16);
} else {
/* vector goes into low byte of register */
ivar = ivar & 0xFFFFFF00;
ivar |= (vector | E1000_IVAR_VALID);
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
/* Accumulate interrupt-cause bits to enable */
igb->eims_mask |= (1 << vector);
vector ++;
}
for (i = 1; i < igb->num_tx_rings; i++) {
/*
* Set vector for each tx ring from 2nd tx ring.
* Note assumption that tx vectors numericall follow rx vectors.
*/
index = (i >> 1);
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
if (i & 1) {
/* vector goes into high byte of register */
ivar = ivar & 0x00FFFFFF;
ivar |= ((vector | E1000_IVAR_VALID) << 24);
} else {
/* vector goes into second byte of register */
ivar = ivar & 0xFFFF00FF;
ivar |= (vector | E1000_IVAR_VALID) << 8;
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
/* Accumulate interrupt-cause bits to enable */
igb->eims_mask |= (1 << vector);
vector ++;
}
ASSERT(vector == igb->intr_cnt);
}
/*
* igb_rem_intr_handlers - remove the interrupt handlers
*/
static void
igb_rem_intr_handlers(igb_t *igb)
{
int i;
int rc;
for (i = 0; i < igb->intr_cnt; i++) {
rc = ddi_intr_remove_handler(igb->htable[i]);
if (rc != DDI_SUCCESS) {
IGB_DEBUGLOG_1(igb,
"Remove intr handler failed: %d", rc);
}
}
}
/*
* igb_rem_intrs - remove the allocated interrupts
*/
static void
igb_rem_intrs(igb_t *igb)
{
int i;
int rc;
for (i = 0; i < igb->intr_cnt; i++) {
rc = ddi_intr_free(igb->htable[i]);
if (rc != DDI_SUCCESS) {
IGB_DEBUGLOG_1(igb,
"Free intr failed: %d", rc);
}
}
kmem_free(igb->htable, igb->intr_size);
igb->htable = NULL;
}
/*
* igb_enable_intrs - enable all the ddi interrupts
*/
static int
igb_enable_intrs(igb_t *igb)
{
int i;
int rc;
/* Enable interrupts */
if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_enable() for MSI */
rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Enable block intr failed: %d", rc);
return (IGB_FAILURE);
}
} else {
/* Call ddi_intr_enable() for Legacy/MSI non block enable */
for (i = 0; i < igb->intr_cnt; i++) {
rc = ddi_intr_enable(igb->htable[i]);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Enable intr failed: %d", rc);
return (IGB_FAILURE);
}
}
}
return (IGB_SUCCESS);
}
/*
* igb_disable_intrs - disable all the ddi interrupts
*/
static int
igb_disable_intrs(igb_t *igb)
{
int i;
int rc;
/* Disable all interrupts */
if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Disable block intr failed: %d", rc);
return (IGB_FAILURE);
}
} else {
for (i = 0; i < igb->intr_cnt; i++) {
rc = ddi_intr_disable(igb->htable[i]);
if (rc != DDI_SUCCESS) {
igb_log(igb,
"Disable intr failed: %d", rc);
return (IGB_FAILURE);
}
}
}
return (IGB_SUCCESS);
}
/*
* igb_get_phy_state - Get and save the parameters read from PHY registers
*/
static void
igb_get_phy_state(igb_t *igb)
{
struct e1000_hw *hw = &igb->hw;
uint16_t phy_ctrl;
uint16_t phy_status;
uint16_t phy_an_adv;
uint16_t phy_an_exp;
uint16_t phy_ext_status;
uint16_t phy_1000t_ctrl;
uint16_t phy_1000t_status;
uint16_t phy_lp_able;
ASSERT(mutex_owned(&igb->gen_lock));
(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_1000t_status);
(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
igb->param_autoneg_cap =
(phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
igb->param_pause_cap =
(phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
igb->param_asym_pause_cap =
(phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
igb->param_1000fdx_cap = ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
(phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
igb->param_1000hdx_cap = ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
(phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
igb->param_100t4_cap =
(phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
(phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
(phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
igb->param_10fdx_cap =
(phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
igb->param_10hdx_cap =
(phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
igb->param_rem_fault =
(phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
igb->param_adv_autoneg_cap = hw->mac.autoneg;
igb->param_adv_pause_cap =
(phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
igb->param_adv_asym_pause_cap =
(phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
igb->param_adv_1000hdx_cap =
(phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
igb->param_adv_100t4_cap =
(phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
igb->param_adv_rem_fault =
(phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
if (igb->param_adv_autoneg_cap == 1) {
igb->param_adv_1000fdx_cap =
(phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
igb->param_adv_100fdx_cap =
(phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
igb->param_adv_100hdx_cap =
(phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
igb->param_adv_10fdx_cap =
(phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
igb->param_adv_10hdx_cap =
(phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
}
igb->param_lp_autoneg_cap =
(phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
igb->param_lp_pause_cap =
(phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
igb->param_lp_asym_pause_cap =
(phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
igb->param_lp_1000fdx_cap =
(phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
igb->param_lp_1000hdx_cap =
(phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
igb->param_lp_100t4_cap =
(phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
igb->param_lp_100fdx_cap =
(phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
igb->param_lp_100hdx_cap =
(phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
igb->param_lp_10fdx_cap =
(phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
igb->param_lp_10hdx_cap =
(phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
igb->param_lp_rem_fault =
(phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
}
/*
* igb_get_driver_control
*/
static void
igb_get_driver_control(struct e1000_hw *hw)
{
uint32_t ctrl_ext;
/* Notify firmware that driver is in control of device */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
}
/*
* igb_release_driver_control
*/
static void
igb_release_driver_control(struct e1000_hw *hw)
{
uint32_t ctrl_ext;
/* Notify firmware that driver is no longer in control of device */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
}
/*
* igb_atomic_reserve - Atomic decrease operation
*/
int
igb_atomic_reserve(uint32_t *count_p, uint32_t n)
{
uint32_t oldval;
uint32_t newval;
/* ATOMICALLY */
do {
oldval = *count_p;
if (oldval < n)
return (-1);
newval = oldval - n;
} while (atomic_cas_32(count_p, oldval, newval) != oldval);
return (newval);
}
/*
* FMA support
*/
int
igb_check_acc_handle(ddi_acc_handle_t handle)
{
ddi_fm_error_t de;
ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
return (de.fme_status);
}
int
igb_check_dma_handle(ddi_dma_handle_t handle)
{
ddi_fm_error_t de;
ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
return (de.fme_status);
}
/*
* The IO fault service error handling callback function
*/
/*ARGSUSED*/
static int
igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
{
/*
* as the driver can always deal with an error in any dma or
* access handle, we can just return the fme_status value.
*/
pci_ereport_post(dip, err, NULL);
return (err->fme_status);
}
static void
igb_fm_init(igb_t *igb)
{
ddi_iblock_cookie_t iblk;
int fma_dma_flag;
/* Only register with IO Fault Services if we have some capability */
if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
} else {
igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
}
if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
fma_dma_flag = 1;
} else {
fma_dma_flag = 0;
}
(void) igb_set_fma_flags(fma_dma_flag);
if (igb->fm_capabilities) {
/* Register capabilities with IO Fault Services */
ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
/*
* Initialize pci ereport capabilities if ereport capable
*/
if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
DDI_FM_ERRCB_CAP(igb->fm_capabilities))
pci_ereport_setup(igb->dip);
/*
* Register error callback if error callback capable
*/
if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
ddi_fm_handler_register(igb->dip,
igb_fm_error_cb, (void*) igb);
}
}
static void
igb_fm_fini(igb_t *igb)
{
/* Only unregister FMA capabilities if we registered some */
if (igb->fm_capabilities) {
/*
* Release any resources allocated by pci_ereport_setup()
*/
if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
DDI_FM_ERRCB_CAP(igb->fm_capabilities))
pci_ereport_teardown(igb->dip);
/*
* Un-register error callback if error callback capable
*/
if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
ddi_fm_handler_unregister(igb->dip);
/* Unregister from IO Fault Services */
ddi_fm_fini(igb->dip);
}
}
void
igb_fm_ereport(igb_t *igb, char *detail)
{
uint64_t ena;
char buf[FM_MAX_CLASS];
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
ena = fm_ena_generate(0, FM_ENA_FMT1);
if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
}
}