rds_recv.c revision 5e12ddada2833f3aa285210603ce9aaeb8be35cc
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* This file contains code imported from the OFED rds source file recv.c
* Oracle elects to have and use the contents of rds_recv.c under and governed
* by the OpenIB.org BSD license (see below for full license text). However,
* the following notice accompanied the original version of this file:
*/
/*
* Copyright (c) 2006 Oracle. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <sys/rds.h>
#include <sys/ib/clients/rdsv3/rdsv3.h>
#include <sys/ib/clients/rdsv3/rdma.h>
#include <sys/ib/clients/rdsv3/rdsv3_debug.h>
void
rdsv3_inc_init(struct rdsv3_incoming *inc, struct rdsv3_connection *conn,
uint32_be_t saddr)
{
RDSV3_DPRINTF5("rdsv3_inc_init", "Enter(inc: %p, conn: %p)", inc, conn);
inc->i_refcount = 1;
list_link_init(&inc->i_item);
inc->i_conn = conn;
inc->i_saddr = saddr;
inc->i_rdma_cookie = 0;
}
void
rdsv3_inc_addref(struct rdsv3_incoming *inc)
{
RDSV3_DPRINTF4("rdsv3_inc_addref",
"addref inc %p ref %d", inc, atomic_get(&inc->i_refcount));
atomic_add_32(&inc->i_refcount, 1);
}
void
rdsv3_inc_put(struct rdsv3_incoming *inc)
{
RDSV3_DPRINTF4("rdsv3_inc_put", "put inc %p ref %d",
inc, atomic_get(&inc->i_refcount));
if (atomic_dec_and_test(&inc->i_refcount)) {
ASSERT(!list_link_active(&inc->i_item));
inc->i_conn->c_trans->inc_free(inc);
}
}
/*ARGSUSED*/
static void
rdsv3_recv_rcvbuf_delta(struct rdsv3_sock *rs, struct rsock *sk,
struct rdsv3_cong_map *map,
int delta, uint16_be_t port)
{
int now_congested;
RDSV3_DPRINTF4("rdsv3_recv_rcvbuf_delta",
"Enter(rs: %p, map: %p, delta: %d, port: %d)",
rs, map, delta, port);
if (delta == 0)
return;
rs->rs_rcv_bytes += delta;
now_congested = rs->rs_rcv_bytes > rdsv3_sk_rcvbuf(rs);
RDSV3_DPRINTF5("rdsv3_recv_rcvbuf_delta",
"rs %p (%u.%u.%u.%u:%u) recv bytes %d buf %d "
"now_cong %d delta %d",
rs, NIPQUAD(rs->rs_bound_addr),
(int)ntohs(rs->rs_bound_port), rs->rs_rcv_bytes,
rdsv3_sk_rcvbuf(rs), now_congested, delta);
/* wasn't -> am congested */
if (!rs->rs_congested && now_congested) {
rs->rs_congested = 1;
rdsv3_cong_set_bit(map, port);
rdsv3_cong_queue_updates(map);
}
/* was -> aren't congested */
/*
* Require more free space before reporting uncongested to prevent
* bouncing cong/uncong state too often
*/
else if (rs->rs_congested &&
(rs->rs_rcv_bytes < (rdsv3_sk_rcvbuf(rs)/2))) {
rs->rs_congested = 0;
rdsv3_cong_clear_bit(map, port);
rdsv3_cong_queue_updates(map);
}
/* do nothing if no change in cong state */
RDSV3_DPRINTF4("rdsv3_recv_rcvbuf_delta", "Return(rs: %p)", rs);
}
/*
* Process all extension headers that come with this message.
*/
static void
rdsv3_recv_incoming_exthdrs(struct rdsv3_incoming *inc, struct rdsv3_sock *rs)
{
struct rdsv3_header *hdr = &inc->i_hdr;
unsigned int pos = 0, type, len;
union {
struct rdsv3_ext_header_version version;
struct rdsv3_ext_header_rdma rdma;
struct rdsv3_ext_header_rdma_dest rdma_dest;
} buffer;
RDSV3_DPRINTF4("rdsv3_recv_incoming_exthdrs", "Enter");
while (1) {
len = sizeof (buffer);
type = rdsv3_message_next_extension(hdr, &pos, &buffer, &len);
if (type == RDSV3_EXTHDR_NONE)
break;
RDSV3_DPRINTF4("recv_incoming_exthdrs", "type %d", type);
/* Process extension header here */
switch (type) {
case RDSV3_EXTHDR_RDMA:
rdsv3_rdma_unuse(rs, ntohl(buffer.rdma.h_rdma_rkey),
0);
break;
case RDSV3_EXTHDR_RDMA_DEST:
/*
* We ignore the size for now. We could stash it
* somewhere and use it for error checking.
*/
inc->i_rdma_cookie = rdsv3_rdma_make_cookie(
ntohl(buffer.rdma_dest.h_rdma_rkey),
ntohl(buffer.rdma_dest.h_rdma_offset));
break;
}
}
RDSV3_DPRINTF4("rdsv3_recv_incoming_exthdrs", "Return");
}
/*
* The transport must make sure that this is serialized against other
* rx and conn reset on this specific conn.
*
* We currently assert that only one fragmented message will be sent
* down a connection at a time. This lets us reassemble in the conn
* instead of per-flow which means that we don't have to go digging through
* flows to tear down partial reassembly progress on conn failure and
* we save flow lookup and locking for each frag arrival. It does mean
* that small messages will wait behind large ones. Fragmenting at all
* is only to reduce the memory consumption of pre-posted buffers.
*
* The caller passes in saddr and daddr instead of us getting it from the
* conn. This lets loopback, who only has one conn for both directions,
* tell us which roles the addrs in the conn are playing for this message.
*/
/* ARGSUSED */
void
rdsv3_recv_incoming(struct rdsv3_connection *conn, uint32_be_t saddr,
uint32_be_t daddr, struct rdsv3_incoming *inc, int gfp)
{
struct rdsv3_sock *rs = NULL;
struct rsock *sk;
inc->i_conn = conn;
inc->i_rx_jiffies = jiffies;
RDSV3_DPRINTF5("rdsv3_recv_incoming",
"conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
"flags 0x%x rx_jiffies %lu", conn,
(unsigned long long)conn->c_next_rx_seq,
inc,
(unsigned long long)ntohll(inc->i_hdr.h_sequence),
ntohl(inc->i_hdr.h_len),
ntohs(inc->i_hdr.h_sport),
ntohs(inc->i_hdr.h_dport),
inc->i_hdr.h_flags,
inc->i_rx_jiffies);
/*
* Sequence numbers should only increase. Messages get their
* sequence number as they're queued in a sending conn. They
* can be dropped, though, if the sending socket is closed before
* they hit the wire. So sequence numbers can skip forward
* under normal operation. They can also drop back in the conn
* failover case as previously sent messages are resent down the
* new instance of a conn. We drop those, otherwise we have
* to assume that the next valid seq does not come after a
* hole in the fragment stream.
*
* The headers don't give us a way to realize if fragments of
* a message have been dropped. We assume that frags that arrive
* to a flow are part of the current message on the flow that is
* being reassembled. This means that senders can't drop messages
* from the sending conn until all their frags are sent.
*
* XXX we could spend more on the wire to get more robust failure
* detection, arguably worth it to avoid data corruption.
*/
if (ntohll(inc->i_hdr.h_sequence) < conn->c_next_rx_seq &&
(inc->i_hdr.h_flags & RDSV3_FLAG_RETRANSMITTED)) {
rdsv3_stats_inc(s_recv_drop_old_seq);
goto out;
}
conn->c_next_rx_seq = ntohll(inc->i_hdr.h_sequence) + 1;
if (rdsv3_sysctl_ping_enable && inc->i_hdr.h_dport == 0) {
rdsv3_stats_inc(s_recv_ping);
(void) rdsv3_send_pong(conn, inc->i_hdr.h_sport);
goto out;
}
rs = rdsv3_find_bound(conn, inc->i_hdr.h_dport);
if (!rs) {
rdsv3_stats_inc(s_recv_drop_no_sock);
goto out;
}
/* Process extension headers */
rdsv3_recv_incoming_exthdrs(inc, rs);
/* We can be racing with rdsv3_release() which marks the socket dead. */
sk = rdsv3_rs_to_sk(rs);
/* serialize with rdsv3_release -> sock_orphan */
rw_enter(&rs->rs_recv_lock, RW_WRITER);
if (!rdsv3_sk_sock_flag(sk, SOCK_DEAD)) {
int error, bytes;
RDSV3_DPRINTF5("rdsv3_recv_incoming",
"adding inc %p to rs %p's recv queue", inc, rs);
rdsv3_stats_inc(s_recv_queued);
rdsv3_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
ntohl(inc->i_hdr.h_len),
inc->i_hdr.h_dport);
rdsv3_inc_addref(inc);
list_insert_tail(&rs->rs_recv_queue, inc);
bytes = rs->rs_rcv_bytes;
rw_exit(&rs->rs_recv_lock);
__rdsv3_wake_sk_sleep(sk);
/* wake up anyone waiting in poll */
sk->sk_upcalls->su_recv(sk->sk_upper_handle, NULL,
bytes, 0, &error, NULL);
if (error != 0) {
RDSV3_DPRINTF2("rdsv3_recv_incoming",
"su_recv returned: %d", error);
}
} else {
rdsv3_stats_inc(s_recv_drop_dead_sock);
rw_exit(&rs->rs_recv_lock);
}
out:
if (rs)
rdsv3_sock_put(rs);
}
/*
* be very careful here. This is being called as the condition in
* wait_event_*() needs to cope with being called many times.
*/
static int
rdsv3_next_incoming(struct rdsv3_sock *rs, struct rdsv3_incoming **inc)
{
if (!*inc) {
rw_enter(&rs->rs_recv_lock, RW_READER);
if (!list_is_empty(&rs->rs_recv_queue)) {
*inc = list_head(&rs->rs_recv_queue);
rdsv3_inc_addref(*inc);
}
rw_exit(&rs->rs_recv_lock);
}
return (*inc != NULL);
}
static int
rdsv3_still_queued(struct rdsv3_sock *rs, struct rdsv3_incoming *inc,
int drop)
{
struct rsock *sk = rdsv3_rs_to_sk(rs);
int ret = 0;
RDSV3_DPRINTF4("rdsv3_still_queued", "Enter rs: %p inc: %p drop: %d",
rs, inc, drop);
rw_enter(&rs->rs_recv_lock, RW_WRITER);
if (list_link_active(&inc->i_item)) {
ret = 1;
if (drop) {
/* XXX make sure this i_conn is reliable */
rdsv3_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
-ntohl(inc->i_hdr.h_len),
inc->i_hdr.h_dport);
list_remove_node(&inc->i_item);
rdsv3_inc_put(inc);
}
}
rw_exit(&rs->rs_recv_lock);
RDSV3_DPRINTF5("rdsv3_still_queued",
"inc %p rs %p still %d dropped %d", inc, rs, ret, drop);
return (ret);
}
/*
* Pull errors off the error queue.
* If msghdr is NULL, we will just purge the error queue.
*/
int
rdsv3_notify_queue_get(struct rdsv3_sock *rs, struct msghdr *msghdr)
{
struct rdsv3_notifier *notifier;
struct rds_rdma_notify cmsg;
unsigned int count = 0, max_messages = ~0U;
list_t copy;
int err = 0;
RDSV3_DPRINTF4("rdsv3_notify_queue_get", "Enter(rs: %p)", rs);
list_create(&copy, sizeof (struct rdsv3_notifier),
offsetof(struct rdsv3_notifier, n_list));
/*
* put_cmsg copies to user space and thus may sleep. We can't do this
* with rs_lock held, so first grab as many notifications as we can
* stuff
* in the user provided cmsg buffer. We don't try to copy more, to avoid
* losing notifications - except when the buffer is so small that
* it wouldn't
* even hold a single notification. Then we give him as much of this
* single
* msg as we can squeeze in, and set MSG_CTRUNC.
*/
if (msghdr) {
max_messages =
msghdr->msg_controllen / CMSG_SPACE(sizeof (cmsg));
if (!max_messages)
max_messages = 1;
}
mutex_enter(&rs->rs_lock);
while (!list_is_empty(&rs->rs_notify_queue) && count < max_messages) {
notifier = list_remove_head(&rs->rs_notify_queue);
list_insert_tail(&copy, notifier);
count++;
}
mutex_exit(&rs->rs_lock);
if (!count)
return (0);
while (!list_is_empty(&copy)) {
notifier = list_remove_head(&copy);
if (msghdr) {
cmsg.user_token = notifier->n_user_token;
cmsg.status = notifier->n_status;
err = rdsv3_put_cmsg(msghdr, SOL_RDS,
RDS_CMSG_RDMA_STATUS, sizeof (cmsg), &cmsg);
if (err)
break;
}
kmem_free(notifier, sizeof (struct rdsv3_notifier));
}
/*
* If we bailed out because of an error in put_cmsg,
* we may be left with one or more notifications that we
* didn't process. Return them to the head of the list.
*/
if (!list_is_empty(&copy)) {
mutex_enter(&rs->rs_lock);
list_splice(&copy, &rs->rs_notify_queue);
mutex_exit(&rs->rs_lock);
}
RDSV3_DPRINTF4("rdsv3_notify_queue_get", "Return(rs: %p)", rs);
return (err);
}
/*
* Queue a congestion notification
*/
static int
rdsv3_notify_cong(struct rdsv3_sock *rs, struct msghdr *msghdr)
{
uint64_t notify = rs->rs_cong_notify;
int err;
err = rdsv3_put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE,
sizeof (notify), &notify);
if (err)
return (err);
mutex_enter(&rs->rs_lock);
rs->rs_cong_notify &= ~notify;
mutex_exit(&rs->rs_lock);
return (0);
}
/*
* Receive any control messages.
*/
static int
rdsv3_cmsg_recv(struct rdsv3_incoming *inc, struct msghdr *msg)
{
int ret = 0;
if (inc->i_rdma_cookie) {
ret = rdsv3_put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST,
sizeof (inc->i_rdma_cookie), &inc->i_rdma_cookie);
}
return (ret);
}
int
rdsv3_recvmsg(struct rdsv3_sock *rs, uio_t *uio,
struct nmsghdr *msg, size_t size, int msg_flags)
{
struct rsock *sk = rdsv3_rs_to_sk(rs);
long timeo;
int ret = 0;
struct sockaddr_in *sin = NULL;
struct rdsv3_incoming *inc = NULL;
boolean_t nonblock = B_FALSE;
RDSV3_DPRINTF4("rdsv3_recvmsg",
"Enter(rs: %p size: %d msg_flags: 0x%x)", rs, size, msg_flags);
if ((uio->uio_fmode & (FNDELAY | FNONBLOCK)) ||
(msg_flags & MSG_DONTWAIT))
nonblock = B_TRUE;
/* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
timeo = rdsv3_rcvtimeo(sk, nonblock);
if (msg_flags & MSG_OOB)
goto out;
/* mark the first cmsg position */
if (msg) {
msg->msg_control = NULL;
}
while (1) {
/*
* If there are pending notifications, do those -
* and nothing else
*/
if (!list_is_empty(&rs->rs_notify_queue)) {
ret = rdsv3_notify_queue_get(rs, msg);
if (msg && msg->msg_namelen) {
sin = kmem_zalloc(sizeof (struct sockaddr_in),
KM_SLEEP);
sin->sin_family = AF_INET_OFFLOAD;
if (inc) {
sin->sin_port = inc->i_hdr.h_sport;
sin->sin_addr.s_addr = inc->i_saddr;
}
msg->msg_namelen = sizeof (struct sockaddr_in);
msg->msg_name = sin;
}
break;
}
if (rs->rs_cong_notify) {
ret = rdsv3_notify_cong(rs, msg);
goto out;
}
if (!rdsv3_next_incoming(rs, &inc)) {
if (nonblock) {
ret = -EAGAIN;
break;
}
RDSV3_DPRINTF3("rdsv3_recvmsg",
"Before wait (rs: %p)", rs);
#if 0
ret = rdsv3_wait_sig(sk->sk_sleep,
!(list_is_empty(&rs->rs_notify_queue) &&
!rs->rs_cong_notify &&
!rdsv3_next_incoming(rs, &inc)));
if (ret == 0) {
/* signal/timeout pending */
RDSV3_DPRINTF2("rdsv3_recvmsg",
"woke due to signal");
ret = -ERESTART;
}
#else
mutex_enter(&sk->sk_sleep->waitq_mutex);
sk->sk_sleep->waitq_waiters++;
while ((list_is_empty(&rs->rs_notify_queue) &&
!rs->rs_cong_notify &&
!rdsv3_next_incoming(rs, &inc))) {
ret = cv_wait_sig(&sk->sk_sleep->waitq_cv,
&sk->sk_sleep->waitq_mutex);
if (ret == 0) {
/* signal/timeout pending */
RDSV3_DPRINTF2("rdsv3_recvmsg",
"woke due to signal");
ret = -EINTR;
break;
}
}
sk->sk_sleep->waitq_waiters--;
mutex_exit(&sk->sk_sleep->waitq_mutex);
#endif
RDSV3_DPRINTF5("rdsv3_recvmsg",
"recvmsg woke rs: %p inc %p ret %d",
rs, inc, -ret);
if (ret < 0)
break;
/*
* if the wakeup was due to rs_notify_queue or
* rs_cong_notify then we need to handle those first.
*/
continue;
}
RDSV3_DPRINTF5("rdsv3_recvmsg",
"copying inc %p from %u.%u.%u.%u:%u to user", inc,
NIPQUAD(inc->i_conn->c_faddr),
ntohs(inc->i_hdr.h_sport));
ret = inc->i_conn->c_trans->inc_copy_to_user(inc, uio, size);
if (ret < 0)
break;
/*
* if the message we just copied isn't at the head of the
* recv queue then someone else raced us to return it, try
* to get the next message.
*/
if (!rdsv3_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) {
rdsv3_inc_put(inc);
inc = NULL;
rdsv3_stats_inc(s_recv_deliver_raced);
continue;
}
if (ret < ntohl(inc->i_hdr.h_len)) {
if (msg_flags & MSG_TRUNC)
ret = ntohl(inc->i_hdr.h_len);
msg->msg_flags |= MSG_TRUNC;
}
if (rdsv3_cmsg_recv(inc, msg)) {
ret = -EFAULT;
goto out;
}
rdsv3_stats_inc(s_recv_delivered);
if (msg->msg_namelen) {
sin = kmem_alloc(sizeof (struct sockaddr_in), KM_SLEEP);
sin->sin_family = AF_INET_OFFLOAD;
sin->sin_port = inc->i_hdr.h_sport;
sin->sin_addr.s_addr = inc->i_saddr;
(void) memset(sin->sin_zero, 0,
sizeof (sin->sin_zero));
msg->msg_namelen = sizeof (struct sockaddr_in);
msg->msg_name = sin;
}
break;
}
if (inc)
rdsv3_inc_put(inc);
out:
if (msg && msg->msg_control == NULL)
msg->msg_controllen = 0;
RDSV3_DPRINTF4("rdsv3_recvmsg", "Return(rs: %p, ret: %d)", rs, ret);
return (ret);
}
/*
* The socket is being shut down and we're asked to drop messages that were
* queued for recvmsg. The caller has unbound the socket so the receive path
* won't queue any more incoming fragments or messages on the socket.
*/
void
rdsv3_clear_recv_queue(struct rdsv3_sock *rs)
{
struct rsock *sk = rdsv3_rs_to_sk(rs);
struct rdsv3_incoming *inc, *tmp;
RDSV3_DPRINTF4("rdsv3_clear_recv_queue", "Enter(rs: %p)", rs);
rw_enter(&rs->rs_recv_lock, RW_WRITER);
RDSV3_FOR_EACH_LIST_NODE_SAFE(inc, tmp, &rs->rs_recv_queue, i_item) {
rdsv3_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
-ntohl(inc->i_hdr.h_len),
inc->i_hdr.h_dport);
list_remove_node(&inc->i_item);
rdsv3_inc_put(inc);
}
rw_exit(&rs->rs_recv_lock);
RDSV3_DPRINTF4("rdsv3_clear_recv_queue", "Return(rs: %p)", rs);
}
/*
* inc->i_saddr isn't used here because it is only set in the receive
* path.
*/
void
rdsv3_inc_info_copy(struct rdsv3_incoming *inc,
struct rdsv3_info_iterator *iter,
uint32_be_t saddr, uint32_be_t daddr, int flip)
{
struct rds_info_message minfo;
minfo.seq = ntohll(inc->i_hdr.h_sequence);
minfo.len = ntohl(inc->i_hdr.h_len);
if (flip) {
minfo.laddr = daddr;
minfo.faddr = saddr;
minfo.lport = inc->i_hdr.h_dport;
minfo.fport = inc->i_hdr.h_sport;
} else {
minfo.laddr = saddr;
minfo.faddr = daddr;
minfo.lport = inc->i_hdr.h_sport;
minfo.fport = inc->i_hdr.h_dport;
}
rdsv3_info_copy(iter, &minfo, sizeof (minfo));
}