af_rds.c revision b27516f55237249607f754e6e42e865f12456675
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright (c) 2006 Oracle. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/modctl.h>
#include <sys/rds.h>
#include <sys/stropts.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/sysmacros.h>
#include <inet/ip.h>
#include <net/if_types.h>
#include <sys/ib/clients/rdsv3/rdsv3.h>
#include <sys/ib/clients/rdsv3/rdma.h>
#include <sys/ib/clients/rdsv3/rdma_transport.h>
#include <sys/ib/clients/rdsv3/rdsv3_debug.h>
extern void rdsv3_remove_bound(struct rdsv3_sock *rds);
extern int rdsv3_verify_bind_address(ipaddr_t addr);
extern ddi_taskq_t *rdsv3_taskq;
extern struct rdma_cm_id *rdsv3_rdma_listen_id;
/* this is just used for stats gathering :/ */
kmutex_t rdsv3_sock_lock;
static unsigned long rdsv3_sock_count;
list_t rdsv3_sock_list;
rdsv3_wait_queue_t rdsv3_poll_waitq;
/*
* This is called as the final descriptor referencing this socket is closed.
* We have to unbind the socket so that another socket can be bound to the
* address it was using.
*
* We have to be careful about racing with the incoming path. sock_orphan()
* sets SOCK_DEAD and we use that as an indicator to the rx path that new
* messages shouldn't be queued.
*/
/* ARGSUSED */
static int
rdsv3_release(sock_lower_handle_t proto_handle, int flgs, cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs;
if (sk == NULL)
goto out;
rs = rdsv3_sk_to_rs(sk);
RDSV3_DPRINTF4("rdsv3_release", "Enter(rs: %p, sk: %p)", rs, sk);
rdsv3_sk_sock_orphan(sk);
rdsv3_cong_remove_socket(rs);
rdsv3_remove_bound(rs);
/*
* Note - rdsv3_clear_recv_queue grabs rs_recv_lock, so
* that ensures the recv path has completed messing
* with the socket.
*/
rdsv3_clear_recv_queue(rs);
rdsv3_send_drop_to(rs, NULL);
rdsv3_rdma_drop_keys(rs);
(void) rdsv3_notify_queue_get(rs, NULL);
mutex_enter(&rdsv3_sock_lock);
list_remove_node(&rs->rs_item);
rdsv3_sock_count--;
mutex_exit(&rdsv3_sock_lock);
while (sk->sk_refcount > 1) {
/* wait for 1 sec and try again */
delay(drv_usectohz(1000000));
}
/* this will free the rs and sk */
rdsv3_sk_sock_put(sk);
RDSV3_DPRINTF4("rdsv3_release", "Return (rds: %p)", rs);
out:
return (0);
}
void
__rdsv3_wake_sk_sleep(struct rsock *sk)
{
/* wakup anyone waiting in recvmsg */
if (!rdsv3_sk_sock_flag(sk, SOCK_DEAD) && sk->sk_sleep)
rdsv3_wake_up(sk->sk_sleep);
}
/*
* Careful not to race with rdsv3_release -> sock_orphan which clears sk_sleep.
* _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
* to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
* this seems more conservative.
* NB - normally, one would use sk_callback_lock for this, but we can
* get here from interrupts, whereas the network code grabs sk_callback_lock
* with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
*/
void
rdsv3_wake_sk_sleep(struct rdsv3_sock *rs)
{
RDSV3_DPRINTF4("rdsv3_wake_sk_sleep", "Enter(rs: %p)", rs);
rw_enter(&rs->rs_recv_lock, RW_READER);
__rdsv3_wake_sk_sleep(rdsv3_rs_to_sk(rs));
rw_exit(&rs->rs_recv_lock);
}
/*ARGSUSED*/
static int
rdsv3_getname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
socklen_t *addr_len, cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
RDSV3_DPRINTF4("rdsv3_getname", "Enter(rs: %p, port: %d)", rs,
rs->rs_bound_port);
sin->sin_port = rs->rs_bound_port;
sin->sin_addr.s_addr = rs->rs_bound_addr;
sin->sin_family = AF_INET_OFFLOAD;
*addr_len = sizeof (*sin);
return (0);
}
/*
* RDS' poll is without a doubt the least intuitive part of the interface,
* as POLLIN and POLLOUT do not behave entirely as you would expect from
* a network protocol.
*
* POLLIN is asserted if
* - there is data on the receive queue.
* - to signal that a previously congested destination may have become
* uncongested
* - A notification has been queued to the socket (this can be a congestion
* update, or a RDMA completion).
*
* POLLOUT is asserted if there is room on the send queue. This does not mean
* however, that the next sendmsg() call will succeed. If the application tries
* to send to a congested destination, the system call may still fail (and
* return ENOBUFS).
*/
/* ARGSUSED */
static short
rdsv3_poll(sock_lower_handle_t proto_handle, short events, int anyyet,
cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
unsigned short mask = 0;
#if 0
RDSV3_DPRINTF4("rdsv3_poll", "enter(%p %x %d)", rs, events, anyyet);
#endif
/*
* If rs_seen_congestion is on, wait until it's off.
* This is implemented for the following OFED code.
* if (rs->rs_seen_congestion)
* poll_wait(file, &rds_poll_waitq, wait);
*/
mutex_enter(&rdsv3_poll_waitq.waitq_mutex);
while (rs->rs_seen_congestion) {
cv_wait(&rdsv3_poll_waitq.waitq_cv,
&rdsv3_poll_waitq.waitq_mutex);
}
mutex_exit(&rdsv3_poll_waitq.waitq_mutex);
rw_enter(&rs->rs_recv_lock, RW_READER);
if (!rs->rs_cong_monitor) {
/*
* When a congestion map was updated, we signal POLLIN for
* "historical" reasons. Applications can also poll for
* WRBAND instead.
*/
if (rdsv3_cong_updated_since(&rs->rs_cong_track))
mask |= (POLLIN | POLLRDNORM | POLLWRBAND);
} else {
mutex_enter(&rs->rs_lock);
if (rs->rs_cong_notify)
mask |= (POLLIN | POLLRDNORM);
mutex_exit(&rs->rs_lock);
}
if (!list_is_empty(&rs->rs_recv_queue) ||
!list_is_empty(&rs->rs_notify_queue))
mask |= (POLLIN | POLLRDNORM);
if (rs->rs_snd_bytes < rdsv3_sk_sndbuf(rs))
mask |= (POLLOUT | POLLWRNORM);
rw_exit(&rs->rs_recv_lock);
/* clear state any time we wake a seen-congested socket */
if (mask) {
mutex_enter(&rdsv3_poll_waitq.waitq_mutex);
rs->rs_seen_congestion = 0;
mutex_exit(&rdsv3_poll_waitq.waitq_mutex);
}
#if 0
RDSV3_DPRINTF4("rdsv3_poll", "return(%p %x)", rs, mask);
#endif
return (mask);
}
/* ARGSUSED */
static int
rdsv3_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
int mode, int32_t *rvalp, cred_t *cr)
{
ksocket_t so4;
struct lifconf lifc;
struct lifreq lifr, *lifrp;
struct ifconf ifc;
struct ifreq ifr;
int rval = 0, rc, len;
int numifs;
int bufsize;
void *buf;
RDSV3_DPRINTF4("rdsv3_ioctl", "enter: cmd: %d", cmd);
/* Only ipv4 for now */
rval = ksocket_socket(&so4, PF_INET, SOCK_DGRAM, 0, KSOCKET_NOSLEEP,
CRED());
if (rval != 0) {
RDSV3_DPRINTF2("rdsv3_ioctl", "ksocket_socket returned %d",
rval);
return (rval);
}
switch (cmd) {
case SIOCGLIFNUM :
case SIOCGIFNUM :
rval = rdsv3_do_ip_ioctl(so4, &buf, &bufsize, &numifs);
if (rval != 0) break;
if (cmd == SIOCGLIFNUM) {
struct lifnum lifn;
lifn.lifn_family = AF_INET_OFFLOAD;
lifn.lifn_flags = 0;
lifn.lifn_count = numifs;
(void) ddi_copyout(&lifn, (void *)arg,
sizeof (struct lifnum), 0);
} else {
len = 0;
for (lifrp = (struct lifreq *)buf, rc = 0; rc < numifs;
rc++, lifrp++) {
if (strlen(lifrp->lifr_name) <= IFNAMSIZ) {
len++;
}
}
(void) ddi_copyout(&len, (void *)arg,
sizeof (int), 0);
}
kmem_free(buf, bufsize);
break;
case SIOCGLIFCONF :
if (ddi_copyin((void *)arg, &lifc, sizeof (struct lifconf), 0)
!= 0) {
RDSV3_DPRINTF2("rdsv3_ioctl", "ddi_copyin failed lifc");
rval = EFAULT;
break;
}
rval = rdsv3_do_ip_ioctl(so4, &buf, &bufsize, &numifs);
if (rval != 0) {
RDSV3_DPRINTF2("rdsv3_ioctl",
"rdsv3_do_ip_ioctl failed: %d", rval);
break;
}
if ((lifc.lifc_len > 0) && (numifs > 0)) {
if (ddi_copyout(buf, (void *)lifc.lifc_req,
(lifc.lifc_len < bufsize) ? lifc.lifc_len :
bufsize, 0) != 0) {
RDSV3_DPRINTF2("rdsv3_ioctl",
"copyout of records failed");
rval = EFAULT;
}
}
lifc.lifc_len = bufsize;
if (ddi_copyout(&lifc, (void *)arg, sizeof (struct lifconf),
0) != 0) {
RDSV3_DPRINTF2("rdsv3_ioctl",
"copyout of lifconf failed");
rval = EFAULT;
}
kmem_free(buf, bufsize);
break;
case SIOCGIFCONF :
case O_SIOCGIFCONF :
if (ddi_copyin((void *)arg, &ifc, sizeof (struct ifconf), 0)
!= 0) {
RDSV3_DPRINTF2("rdsv3_ioctl", "ddi_copyin failed ifc");
rval = EFAULT;
break;
}
RDSV3_DPRINTF2("rdsv3_ioctl",
"O_SIOCGIFCONF: ifc_len: %d, req: %p",
ifc.ifc_len, ifc.ifc_req);
rval = rdsv3_do_ip_ioctl_old(so4, &buf, &bufsize, &numifs);
if (rval != 0) {
RDSV3_DPRINTF2("rdsv3_ioctl",
"rdsv3_do_ip_ioctl_old failed: %d", rval);
break;
}
if ((ifc.ifc_len > 0) && (numifs > 0)) {
if (ddi_copyout(buf, (void *)ifc.ifc_req,
(ifc.ifc_len < bufsize) ? ifc.ifc_len :
bufsize, 0) != 0) {
RDSV3_DPRINTF2("rdsv3_ioctl",
"copyout of records failed");
rval = EFAULT;
}
}
ifc.ifc_len = bufsize;
if (ddi_copyout(&ifc, (void *)arg, sizeof (struct ifconf),
0) != 0) {
RDSV3_DPRINTF2("rdsv3_ioctl",
"copyout of ifconf failed");
rval = EFAULT;
}
kmem_free(buf, bufsize);
break;
case SIOCGLIFFLAGS :
case SIOCSLIFFLAGS :
case SIOCGLIFMTU :
case SIOCGLIFNETMASK :
case SIOCGLIFINDEX :
if (ddi_copyin((void *)arg, &lifr, sizeof (struct lifreq), 0)
!= 0) {
RDSV3_DPRINTF2("rdsv3_ioctl", "ddi_copyin failed lifr");
rval = EFAULT;
break;
}
rc = ksocket_ioctl(so4, cmd, (intptr_t)&lifr, &rval, CRED());
if (rc != 0) {
RDSV3_DPRINTF2("rdsv3_ioctl",
"ksocket_ioctl failed: %d, name: %s cmd: 0x%x",
rc, lifr.lifr_name, cmd);
break;
}
(void) ddi_copyout(&lifr, (void *)arg,
sizeof (struct lifreq), 0);
break;
case SIOCGIFFLAGS :
case SIOCSIFFLAGS :
case SIOCGIFMTU :
case SIOCGIFNETMASK :
case SIOCGIFINDEX :
if (ddi_copyin((void *)arg, &ifr, sizeof (struct ifreq), 0)
!= 0) {
RDSV3_DPRINTF2("rdsv3_ioctl", "ddi_copyin failed ifr");
rval = EFAULT;
break;
}
RDSV3_DPRINTF2("rdsv3_ioctl", "1. name: %s", ifr.ifr_name);
rc = ksocket_ioctl(so4, cmd, (intptr_t)&ifr, &rval, CRED());
if (rc != 0) {
RDSV3_DPRINTF2("rdsv3_ioctl",
"ksocket_ioctl failed: %d, name: %s cmd: 0x%x",
rc, ifr.ifr_name, cmd);
break;
}
RDSV3_DPRINTF2("rdsv3_ioctl", "2. name: %s", ifr.ifr_name);
(void) ddi_copyout(&ifr, (void *)arg,
sizeof (struct ifreq), 0);
break;
default:
if ((cmd >= RDSV3_INFO_FIRST) &&
(cmd <= RDSV3_INFO_LAST)) {
return (rdsv3_info_ioctl((struct rsock *)proto_handle,
cmd, (char *)arg, rvalp));
}
RDSV3_DPRINTF2("rdsv3_ioctl", "Unknown ioctl cmd: %d", cmd);
cmn_err(CE_CONT, "unsupported IOCTL cmd: %d \n", cmd);
rval = EOPNOTSUPP;
}
(void) ksocket_close(so4, CRED());
RDSV3_DPRINTF4("rdsv3_ioctl", "return: %d cmd: %d", rval, cmd);
*rvalp = rval;
return (rval);
}
static int
rdsv3_cancel_sent_to(struct rdsv3_sock *rs, char *optval, int len)
{
struct sockaddr_in sin;
/* racing with another thread binding seems ok here */
if (rs->rs_bound_addr == 0)
return (-ENOTCONN); /* XXX not a great errno */
if (len < sizeof (struct sockaddr_in))
return (-EINVAL);
if (ddi_copyin((void *)optval, &sin, sizeof (struct sockaddr_in),
0) != 0) {
RDSV3_DPRINTF2("rdsv3_cancel_sent_to", "ddi_copyin failed sin");
return (-EFAULT);
}
rdsv3_send_drop_to(rs, &sin);
return (0);
}
static int
rdsv3_set_bool_option(unsigned char *optvar, char *optval, int optlen)
{
int value = *optval;
if (optlen < sizeof (int))
return (-EINVAL);
*optvar = !!value;
return (0);
}
static int
rdsv3_cong_monitor(struct rdsv3_sock *rs, char *optval, int optlen)
{
int ret;
ret = rdsv3_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
if (ret == 0) {
if (rs->rs_cong_monitor) {
rdsv3_cong_add_socket(rs);
} else {
rdsv3_cong_remove_socket(rs);
rs->rs_cong_mask = 0;
rs->rs_cong_notify = 0;
}
}
return (ret);
}
/*ARGSUSED*/
static int
rdsv3_setsockopt(sock_lower_handle_t proto_handle, int level,
int optname, const void *optval, socklen_t optlen, cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
int ret = 0;
RDSV3_DPRINTF4("rdsv3_setsockopt", "enter(%p %d %d)",
rs, level, optname);
switch (optname) {
case RDSV3_CANCEL_SENT_TO:
ret = rdsv3_cancel_sent_to(rs, (char *)optval, optlen);
break;
case RDSV3_GET_MR:
ret = rdsv3_get_mr(rs, optval, optlen);
break;
case RDSV3_GET_MR_FOR_DEST:
ret = rdsv3_get_mr_for_dest(rs, optval, optlen);
break;
case RDSV3_FREE_MR:
ret = rdsv3_free_mr(rs, optval, optlen);
break;
case RDSV3_RECVERR:
ret = rdsv3_set_bool_option(&rs->rs_recverr,
(char *)optval, optlen);
break;
case RDSV3_CONG_MONITOR:
ret = rdsv3_cong_monitor(rs, (char *)optval, optlen);
break;
case SO_SNDBUF:
sk->sk_sndbuf = *(uint_t *)optval;
return (ret);
case SO_RCVBUF:
sk->sk_rcvbuf = *(uint_t *)optval;
return (ret);
default:
#if 1
break;
#else
ret = -ENOPROTOOPT;
#endif
}
out:
return (ret);
}
/* XXX */
/*ARGSUSED*/
static int
rdsv3_getsockopt(sock_lower_handle_t proto_handle, int level,
int optname, void *optval, socklen_t *optlen, cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
int ret = 0;
RDSV3_DPRINTF4("rdsv3_getsockopt", "enter(%p %d %d)",
rs, optname, *optlen);
switch (optname) {
case SO_SNDBUF:
RDSV3_DPRINTF4("rdsv3_getsockopt", "SO_SNDBUF(%d)",
sk->sk_sndbuf);
if (*optlen != 0) {
*((int *)optval) = sk->sk_sndbuf;
*optlen = sizeof (uint_t);
}
return (ret);
case SO_RCVBUF:
RDSV3_DPRINTF4("rdsv3_getsockopt", "SO_RCVBUF(%d)",
sk->sk_rcvbuf);
if (*optlen != 0) {
*((int *)optval) = sk->sk_rcvbuf;
*optlen = sizeof (uint_t);
}
return (ret);
case RDSV3_RECVERR:
RDSV3_DPRINTF4("rdsv3_getsockopt", "RDSV3_RECVERR(%d)",
rs->rs_recverr);
if (*optlen < sizeof (int))
return (-EINVAL);
else {
*(int *)optval = rs->rs_recverr;
*optlen = sizeof (int);
}
return (0);
default:
RDSV3_DPRINTF2("rdsv3_getsockopt",
"Unknown: level: %d optname: %d", level, optname);
ret = -ENOPROTOOPT;
}
RDSV3_DPRINTF4("rdsv3_getsockopt", "return(%p %d %d)",
rs, optname, ret);
return (ret);
}
/*ARGSUSED*/
static int rdsv3_connect(sock_lower_handle_t proto_handle,
const struct sockaddr *addr, socklen_t addr_len, sock_connid_t *conn,
cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
int ret = 0;
RDSV3_DPRINTF4("rdsv3_connect", "Enter(rs: %p)", rs);
mutex_enter(&sk->sk_lock);
if (addr_len != sizeof (struct sockaddr_in)) {
ret = -EINVAL;
goto out;
}
if (sin->sin_family != AF_INET_OFFLOAD) {
ret = -EAFNOSUPPORT;
goto out;
}
if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
ret = -EDESTADDRREQ;
goto out;
}
rs->rs_conn_addr = sin->sin_addr.s_addr;
rs->rs_conn_port = sin->sin_port;
sk->sk_upcalls->su_connected(sk->sk_upper_handle, 0, NULL, -1);
RDSV3_DPRINTF4("rdsv3_connect", "Return(rs: %p)", rs);
out:
mutex_exit(&sk->sk_lock);
return (ret);
}
/*ARGSUSED*/
static int
rdsv3_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
RDSV3_DPRINTF4("rdsv3_shutdown", "Enter(rs: %p)", rs);
return (0);
}
/*ARGSUSED*/
void
rdsv3_activate(sock_lower_handle_t proto_handle,
sock_upper_handle_t sock_handle, sock_upcalls_t *sock_upcalls,
int flags, cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
RDSV3_DPRINTF4("rdsv3_activate", "Enter(rs: %p)", rs);
sk->sk_upcalls = sock_upcalls;
sk->sk_upper_handle = sock_handle;
RDSV3_DPRINTF4("rdsv3_activate", "Return (rs: %p)", rs);
}
/* ARGSUSED */
int
rdsv3_send_uio(sock_lower_handle_t proto_handle, uio_t *uio,
struct nmsghdr *msg, cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
int ret;
RDSV3_DPRINTF4("rdsv3_send_uio", "Enter(rs: %p)", rs);
ret = rdsv3_sendmsg(rs, uio, msg, uio->uio_resid);
RDSV3_DPRINTF4("rdsv3_send_uio", "Return(rs: %p ret %d)", rs, ret);
if (ret < 0) {
return (-ret);
}
return (0);
}
/* ARGSUSED */
int
rdsv3_recv_uio(sock_lower_handle_t proto_handle, uio_t *uio,
struct nmsghdr *msg, cred_t *cr)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
int ret;
RDSV3_DPRINTF4("rdsv3_recv_uio", "Enter (rs: %p)", rs);
ret = rdsv3_recvmsg(rs, uio, msg, uio->uio_resid, msg->msg_flags);
RDSV3_DPRINTF4("rdsv3_recv_uio", "Return(rs: %p ret %d)", rs, ret);
if (ret < 0) {
return (-ret);
}
return (0);
}
/*ARGSUSED*/
int
rdsv3_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
socklen_t *addr_len, cred_t *cr)
{
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
RDSV3_DPRINTF2("rdsv3_getpeername", "enter(rs: %p)", rs);
(void) memset(sin->sin_zero, 0, sizeof (sin->sin_zero));
/* racey, don't care */
if (!rs->rs_conn_addr)
return (-ENOTCONN);
sin->sin_port = rs->rs_conn_port;
sin->sin_addr.s_addr = rs->rs_conn_addr;
sin->sin_family = AF_INET_OFFLOAD;
*addr_len = sizeof (*sin);
return (0);
}
void
rdsv3_clrflowctrl(sock_lower_handle_t proto_handle)
{
struct rsock *sk = (struct rsock *)proto_handle;
struct rdsv3_sock *rs = rdsv3_sk_to_rs(sk);
RDSV3_DPRINTF2("rdsv3_clrflowctrl", "enter(rs: %p)", rs);
}
#ifndef __lock_lint
static struct sock_downcalls_s rdsv3_sock_downcalls = {
.sd_close = rdsv3_release,
.sd_bind = rdsv3_bind,
.sd_connect = rdsv3_connect,
.sd_accept = NULL,
.sd_getsockname = rdsv3_getname,
.sd_poll = rdsv3_poll,
.sd_ioctl = rdsv3_ioctl,
.sd_listen = NULL,
.sd_shutdown = rdsv3_shutdown,
.sd_setsockopt = rdsv3_setsockopt,
.sd_getsockopt = rdsv3_getsockopt,
.sd_send_uio = rdsv3_send_uio,
.sd_recv_uio = rdsv3_recv_uio,
.sd_activate = rdsv3_activate,
.sd_getpeername = rdsv3_getpeername,
.sd_send = NULL,
.sd_clr_flowctrl = NULL
};
#else
static struct sock_downcalls_s rdsv3_sock_downcalls = {
rdsv3_activate,
NULL,
rdsv3_bind,
NULL,
rdsv3_connect,
rdsv3_getpeername,
rdsv3_getname,
rdsv3_getsockopt,
rdsv3_setsockopt,
NULL,
rdsv3_send_uio,
rdsv3_recv_uio,
rdsv3_poll,
rdsv3_shutdown,
NULL,
rdsv3_ioctl,
rdsv3_release
};
#endif
sock_lower_handle_t
rdsv3_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
uint_t *smodep, int *errorp, int flags, cred_t *credp)
{
struct rdsv3_sock *rs;
struct rsock *sk;
RDSV3_DPRINTF4("rdsv3_create", "Enter (family: %d type: %d, proto: %d "
"flags: %d", family, type, proto, flags);
sk = rdsv3_sk_alloc();
if (sk == NULL)
return (NULL);
rdsv3_sock_init_data(sk);
rs = rdsv3_sk_to_rs(sk);
rs->rs_sk = sk;
mutex_init(&rs->rs_lock, NULL, MUTEX_DRIVER, NULL);
rw_init(&rs->rs_recv_lock, NULL, RW_DRIVER, NULL);
list_create(&rs->rs_send_queue, sizeof (struct rdsv3_message),
offsetof(struct rdsv3_message, m_sock_item));
list_create(&rs->rs_recv_queue, sizeof (struct rdsv3_incoming),
offsetof(struct rdsv3_incoming, i_item));
list_create(&rs->rs_notify_queue, sizeof (struct rdsv3_notifier),
offsetof(struct rdsv3_notifier, n_list));
mutex_init(&rs->rs_rdma_lock, NULL, MUTEX_DRIVER, NULL);
avl_create(&rs->rs_rdma_keys, rdsv3_mr_compare,
sizeof (struct rdsv3_mr), offsetof(struct rdsv3_mr, r_rb_node));
mutex_init(&rs->rs_conn_lock, NULL, MUTEX_DRIVER, NULL);
rs->rs_cred = credp;
rs->rs_zoneid = getzoneid();
crhold(credp);
mutex_enter(&rdsv3_sock_lock);
list_insert_tail(&rdsv3_sock_list, rs);
rdsv3_sock_count++;
/* Initialize RDMA/IB on the 1st socket if not done at attach */
if (rdsv3_sock_count == 1) {
rdsv3_rdma_init();
}
mutex_exit(&rdsv3_sock_lock);
*errorp = 0;
*smodep = SM_ATOMIC;
*sock_downcalls = &rdsv3_sock_downcalls;
RDSV3_DPRINTF4("rdsv3_create", "Return: %p", rs);
return ((sock_lower_handle_t)rdsv3_rs_to_sk(rs));
}
void
rdsv3_sock_addref(struct rdsv3_sock *rs)
{
RDSV3_DPRINTF4("rdsv3_sock_addref", "Enter(rs: %p)", rs);
rdsv3_sk_sock_hold(rdsv3_rs_to_sk(rs));
}
void
rdsv3_sock_put(struct rdsv3_sock *rs)
{
RDSV3_DPRINTF4("rdsv3_sock_put", "Enter(rs: %p)", rs);
rdsv3_sk_sock_put(rdsv3_rs_to_sk(rs));
}
static void
rdsv3_sock_inc_info(struct rsock *sock, unsigned int len,
struct rdsv3_info_iterator *iter, struct rdsv3_info_lengths *lens)
{
struct rdsv3_sock *rs;
struct rdsv3_incoming *inc;
unsigned int total = 0;
RDSV3_DPRINTF4("rdsv3_sock_inc_info", "Enter(rs: %p)",
rdsv3_sk_to_rs(sock));
len /= sizeof (struct rdsv3_info_message);
mutex_enter(&rdsv3_sock_lock);
RDSV3_FOR_EACH_LIST_NODE(rs, &rdsv3_sock_list, rs_item) {
rw_enter(&rs->rs_recv_lock, RW_READER);
/* XXX too lazy to maintain counts.. */
RDSV3_FOR_EACH_LIST_NODE(inc, &rs->rs_recv_queue, i_item) {
total++;
if (total <= len)
rdsv3_inc_info_copy(inc, iter, inc->i_saddr,
rs->rs_bound_addr, 1);
}
rw_exit(&rs->rs_recv_lock);
}
mutex_exit(&rdsv3_sock_lock);
lens->nr = total;
lens->each = sizeof (struct rdsv3_info_message);
RDSV3_DPRINTF4("rdsv3_sock_inc_info", "return(rs: %p)",
rdsv3_sk_to_rs(sock));
}
static void
rdsv3_sock_info(struct rsock *sock, unsigned int len,
struct rdsv3_info_iterator *iter, struct rdsv3_info_lengths *lens)
{
struct rdsv3_info_socket sinfo;
struct rdsv3_sock *rs;
unsigned long bytes;
RDSV3_DPRINTF4("rdsv3_sock_info", "Enter(rs: %p)",
rdsv3_sk_to_rs(sock));
len /= sizeof (struct rdsv3_info_socket);
mutex_enter(&rdsv3_sock_lock);
if ((len < rdsv3_sock_count) || (iter->addr == NULL))
goto out;
bytes = sizeof (struct rdsv3_info_socket);
RDSV3_FOR_EACH_LIST_NODE(rs, &rdsv3_sock_list, rs_item) {
sinfo.sndbuf = rdsv3_sk_sndbuf(rs);
sinfo.rcvbuf = rdsv3_sk_rcvbuf(rs);
sinfo.bound_addr = rs->rs_bound_addr;
sinfo.connected_addr = rs->rs_conn_addr;
sinfo.bound_port = rs->rs_bound_port;
sinfo.connected_port = rs->rs_conn_port;
rdsv3_info_copy(iter, &sinfo, bytes);
}
RDSV3_DPRINTF4("rdsv3_sock_info", "Return(rs: %p)",
rdsv3_sk_to_rs(sock));
out:
lens->nr = rdsv3_sock_count;
lens->each = sizeof (struct rdsv3_info_socket);
mutex_exit(&rdsv3_sock_lock);
}
rdsv3_delayed_work_t *rdsv3_rdma_dwp = NULL;
uint_t rdsv3_rdma_init_delay = 5; /* secs */
extern void rdsv3_rdma_init_worker(struct rdsv3_work_s *work);
void
rdsv3_exit(void)
{
RDSV3_DPRINTF4("rdsv3_exit", "Enter");
if (rdsv3_rdma_dwp) {
rdsv3_cancel_delayed_work(rdsv3_rdma_dwp);
}
(void) ddi_taskq_dispatch(rdsv3_taskq, rdsv3_rdma_exit,
NULL, DDI_SLEEP);
while (rdsv3_rdma_listen_id != NULL) {
#ifndef __lock_lint
RDSV3_DPRINTF5("rdsv3", "%s-%d Waiting for rdsv3_rdma_exit",
__func__, __LINE__);
#endif
delay(drv_usectohz(1000));
}
rdsv3_conn_exit();
rdsv3_cong_exit();
rdsv3_sysctl_exit();
rdsv3_threads_exit();
rdsv3_stats_exit();
rdsv3_info_deregister_func(RDSV3_INFO_SOCKETS, rdsv3_sock_info);
rdsv3_info_deregister_func(RDSV3_INFO_RECV_MESSAGES,
rdsv3_sock_inc_info);
if (rdsv3_rdma_dwp) {
kmem_free(rdsv3_rdma_dwp, sizeof (rdsv3_delayed_work_t));
rdsv3_rdma_dwp = NULL;
}
RDSV3_DPRINTF4("rdsv3_exit", "Return");
}
/*ARGSUSED*/
int
rdsv3_init()
{
int ret;
RDSV3_DPRINTF4("rdsv3_init", "Enter");
rdsv3_cong_init();
ret = rdsv3_conn_init();
if (ret)
goto out;
ret = rdsv3_threads_init();
if (ret)
goto out_conn;
ret = rdsv3_sysctl_init();
if (ret)
goto out_threads;
ret = rdsv3_stats_init();
if (ret)
goto out_sysctl;
rdsv3_info_register_func(RDSV3_INFO_SOCKETS, rdsv3_sock_info);
rdsv3_info_register_func(RDSV3_INFO_RECV_MESSAGES, rdsv3_sock_inc_info);
/* rdsv3_rdma_init need to be called with a little delay */
rdsv3_rdma_dwp = kmem_zalloc(sizeof (rdsv3_delayed_work_t), KM_SLEEP);
RDSV3_INIT_DELAYED_WORK(rdsv3_rdma_dwp, rdsv3_rdma_init_worker);
rdsv3_queue_delayed_work(rdsv3_wq, rdsv3_rdma_dwp,
rdsv3_rdma_init_delay);
RDSV3_DPRINTF4("rdsv3_init", "Return");
goto out;
out_stats:
rdsv3_stats_exit();
out_sysctl:
rdsv3_sysctl_exit();
out_threads:
rdsv3_threads_exit();
out_conn:
rdsv3_conn_exit();
rdsv3_cong_exit();
out:
return (ret);
}