iser_idm.c revision 30e7468f8f41aa30ada067b2c1d5d284046514da
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/socket.h> /* networking stuff */
#include <sys/sysmacros.h> /* offsetof */
#include <sys/ib/clients/iser/iser.h>
#include <sys/ib/clients/iser/iser_idm.h>
/*
* iSER transport routines
*
* All transport functions except iser_tgt_svc_create() are called through
* the ops vector, iser_tgt_svc_create() is called from the async handler
* inaddition to being called by the ULP
*/
static void iser_pdu_tx(idm_conn_t *ic, idm_pdu_t *pdu);
static idm_status_t iser_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb);
static idm_status_t iser_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb);
static idm_status_t iser_tgt_enable_datamover(idm_conn_t *ic);
static idm_status_t iser_ini_enable_datamover(idm_conn_t *ic);
static void iser_notice_key_values(struct idm_conn_s *ic,
nvlist_t *negotiated_nvl);
static idm_status_t iser_free_task_rsrcs(idm_task_t *idt);
static kv_status_t iser_negotiate_key_values(idm_conn_t *ic,
nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl);
static kv_status_t iser_handle_numerical(nvpair_t *nvp, uint64_t value,
const idm_kv_xlate_t *ikvx, uint64_t min_value, uint64_t max_value,
uint64_t iser_max_value, nvlist_t *request_nvl, nvlist_t *response_nvl,
nvlist_t *negotiated_nvl);
static kv_status_t iser_handle_boolean(nvpair_t *nvp, boolean_t value,
const idm_kv_xlate_t *ikvx, boolean_t iser_value, nvlist_t *request_nvl,
nvlist_t *response_nvl, nvlist_t *negotiated_nvl);
static kv_status_t iser_handle_digest(nvpair_t *choices,
const idm_kv_xlate_t *ikvx, nvlist_t *request_nvl, nvlist_t *response_nvl,
nvlist_t *negotiated_nvl);
static kv_status_t iser_handle_key(nvpair_t *nvp, const idm_kv_xlate_t *ikvx,
nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl);
static kv_status_t iser_process_request_nvlist(nvlist_t *request_nvl,
nvlist_t *response_nvl, nvlist_t *negotiated_nvl);
static boolean_t iser_conn_is_capable(idm_conn_req_t *ic,
idm_transport_caps_t *caps);
static idm_status_t iser_buf_alloc(idm_buf_t *idb, uint64_t buflen);
static idm_status_t iser_buf_setup(idm_buf_t *idb);
static void iser_buf_teardown(idm_buf_t *idb);
static void iser_buf_free(idm_buf_t *idb);
static void iser_tgt_svc_destroy(struct idm_svc_s *is);
static idm_status_t iser_tgt_svc_online(struct idm_svc_s *is);
static void iser_tgt_svc_offline(struct idm_svc_s *is);
static idm_status_t iser_tgt_conn_connect(struct idm_conn_s *ic);
static idm_status_t iser_ini_conn_create(idm_conn_req_t *cr,
struct idm_conn_s *ic);
static void iser_conn_destroy(struct idm_conn_s *ic);
static idm_status_t iser_ini_conn_connect(struct idm_conn_s *ic);
static void iser_conn_disconnect(struct idm_conn_s *ic);
/*
* iSER IDM transport operations
*/
idm_transport_ops_t iser_transport_ops = {
&iser_pdu_tx, /* it_tx_pdu */
&iser_buf_tx_to_ini, /* it_buf_tx_to_ini */
&iser_buf_rx_from_ini, /* it_buf_rx_from_ini */
NULL, /* it_rx_datain */
NULL, /* it_rx_rtt */
NULL, /* it_rx_dataout */
NULL, /* it_alloc_conn_rsrc */
NULL, /* it_free_conn_rsrc */
&iser_tgt_enable_datamover, /* it_tgt_enable_datamover */
&iser_ini_enable_datamover, /* it_ini_enable_datamover */
NULL, /* it_conn_terminate */
&iser_free_task_rsrcs, /* it_free_task_rsrc */
&iser_negotiate_key_values, /* it_negotiate_key_values */
&iser_notice_key_values, /* it_notice_key_values */
&iser_conn_is_capable, /* it_conn_is_capable */
&iser_buf_alloc, /* it_buf_alloc */
&iser_buf_free, /* it_buf_free */
&iser_buf_setup, /* it_buf_setup */
&iser_buf_teardown, /* it_buf_teardown */
&iser_tgt_svc_create, /* it_tgt_svc_create */
&iser_tgt_svc_destroy, /* it_tgt_svc_destroy */
&iser_tgt_svc_online, /* it_tgt_svc_online */
&iser_tgt_svc_offline, /* it_tgt_svc_offline */
&iser_conn_destroy, /* it_tgt_conn_destroy */
&iser_tgt_conn_connect, /* it_tgt_conn_connect */
&iser_conn_disconnect, /* it_tgt_conn_disconnect */
&iser_ini_conn_create, /* it_ini_conn_create */
&iser_conn_destroy, /* it_ini_conn_destroy */
&iser_ini_conn_connect, /* it_ini_conn_connect */
&iser_conn_disconnect /* it_ini_conn_disconnect */
};
/*
* iSER IDM transport capabilities
*/
idm_transport_caps_t iser_transport_caps = {
0 /* flags */
};
int
iser_idm_register()
{
idm_transport_attr_t attr;
idm_status_t status;
attr.type = IDM_TRANSPORT_TYPE_ISER;
attr.it_ops = &iser_transport_ops;
attr.it_caps = &iser_transport_caps;
status = idm_transport_register(&attr);
if (status != IDM_STATUS_SUCCESS) {
ISER_LOG(CE_WARN, "Failed to register iSER transport with IDM");
return (DDI_FAILURE);
}
ISER_LOG(CE_NOTE, "Registered iSER transport with IDM");
return (DDI_SUCCESS);
}
/*
* iser_ini_conn_create()
* Allocate an iSER initiator connection context
*/
static idm_status_t
iser_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic)
{
iser_chan_t *iser_chan = NULL;
iser_conn_t *iser_conn;
/* Allocate and set up a connection handle */
iser_conn = kmem_zalloc(sizeof (iser_conn_t), KM_SLEEP);
mutex_init(&iser_conn->ic_lock, NULL, MUTEX_DRIVER, NULL);
/* Allocate and open a channel to the target node */
iser_chan = iser_channel_alloc(NULL, &cr->cr_ini_dst_addr);
if (iser_chan == NULL) {
ISER_LOG(CE_WARN, "iser: failed to allocate channel");
mutex_destroy(&iser_conn->ic_lock);
kmem_free(iser_conn, sizeof (iser_conn_t));
return (IDM_STATUS_FAIL);
}
/*
* The local IP and remote IP are filled in iser_channel_alloc. The
* remote port needs to be filled in from idm_conn_req_t. The local
* port is irrelevant. Internal representation of the port in the
* IDM sockaddr structure is in network byte order. IBT expects the
* port in host byte order.
*/
switch (cr->cr_ini_dst_addr.sin.sa_family) {
case AF_INET:
iser_chan->ic_rport = ntohs(cr->cr_ini_dst_addr.sin4.sin_port);
break;
case AF_INET6:
iser_chan->ic_rport = ntohs(cr->cr_ini_dst_addr.sin6.sin6_port);
break;
default:
iser_chan->ic_rport = ISCSI_LISTEN_PORT;
}
iser_chan->ic_lport = 0;
cv_init(&iser_conn->ic_stage_cv, NULL, CV_DEFAULT, NULL);
iser_conn->ic_type = ISER_CONN_TYPE_INI;
iser_conn->ic_stage = ISER_CONN_STAGE_ALLOCATED;
iser_conn->ic_chan = iser_chan;
iser_conn->ic_idmc = ic;
/*
* Set a pointer to the iser_conn in the iser_chan for easy
* access during CM event handling
*/
iser_chan->ic_conn = iser_conn;
/* Set the iSER conn handle in the IDM conn private handle */
ic->ic_transport_private = (void *)iser_conn;
/* Set the transport header length */
ic->ic_transport_hdrlen = ISER_HEADER_LENGTH;
return (IDM_STATUS_SUCCESS);
}
/*
* iser_internal_conn_destroy()
* Tear down iSER-specific connection resources. This is used below
* in iser_conn_destroy(), but also from the CM code when we may have
* some of the connection established, but not fully connected.
*/
void
iser_internal_conn_destroy(iser_conn_t *ic)
{
mutex_enter(&ic->ic_lock);
iser_channel_free(ic->ic_chan);
if ((ic->ic_type == ISER_CONN_TYPE_TGT) &&
(ic->ic_stage == ISER_CONN_STAGE_ALLOCATED)) {
/*
* This is a target connection that has yet to be
* established. Free our reference on the target
* service handle.
*/
iser_tgt_svc_rele(ic->ic_idms->is_iser_svc);
}
cv_destroy(&ic->ic_stage_cv);
mutex_exit(&ic->ic_lock);
mutex_destroy(&ic->ic_lock);
kmem_free(ic, sizeof (iser_conn_t));
}
/*
* iser_conn_destroy()
* Tear down an initiator or target connection.
*/
static void
iser_conn_destroy(idm_conn_t *ic)
{
iser_conn_t *iser_conn;
iser_conn = (iser_conn_t *)ic->ic_transport_private;
iser_internal_conn_destroy(iser_conn);
ic->ic_transport_private = NULL;
}
/*
* iser_ini_conn_connect()
* Establish the connection referred to by the handle previously allocated via
* iser_ini_conn_create().
*/
static idm_status_t
iser_ini_conn_connect(idm_conn_t *ic)
{
iser_conn_t *iser_conn;
iser_status_t status;
iser_conn = (iser_conn_t *)ic->ic_transport_private;
status = iser_channel_open(iser_conn->ic_chan);
if (status != ISER_STATUS_SUCCESS) {
ISER_LOG(CE_WARN, "iser: failed to open channel");
return (IDM_STATUS_FAIL);
}
/*
* Set the local and remote addresses in the idm conn handle.
*/
iser_ib_conv_ibtaddr2sockaddr(&ic->ic_laddr,
&iser_conn->ic_chan->ic_localip, iser_conn->ic_chan->ic_lport);
iser_ib_conv_ibtaddr2sockaddr(&ic->ic_raddr,
&iser_conn->ic_chan->ic_remoteip, iser_conn->ic_chan->ic_rport);
mutex_enter(&iser_conn->ic_lock);
/* Hold a reference on the IDM connection handle */
idm_conn_hold(ic);
iser_conn->ic_stage = ISER_CONN_STAGE_IC_CONNECTED;
mutex_exit(&iser_conn->ic_lock);
return (IDM_STATUS_SUCCESS);
}
/*
* iser_conn_disconnect()
* Shutdown this iSER connection
*/
static void
iser_conn_disconnect(idm_conn_t *ic)
{
iser_conn_t *iser_conn;
iser_conn = (iser_conn_t *)ic->ic_transport_private;
mutex_enter(&iser_conn->ic_lock);
iser_conn->ic_stage = ISER_CONN_STAGE_CLOSING;
mutex_exit(&iser_conn->ic_lock);
/* Close the channel */
iser_channel_close(iser_conn->ic_chan);
/* Free our reference held on the IDM conn handle, and set CLOSED */
mutex_enter(&iser_conn->ic_lock);
idm_conn_rele(iser_conn->ic_idmc);
iser_conn->ic_stage = ISER_CONN_STAGE_CLOSED;
mutex_exit(&iser_conn->ic_lock);
}
/*
* iser_tgt_svc_create()
* Establish the CM service for inbound iSER service requests on the port
* indicated by sr->sr_port.
* idm_svc_req_t contains the service parameters.
*/
idm_status_t
iser_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is)
{
iser_svc_t *iser_svc;
int rc;
iser_svc = kmem_zalloc(sizeof (iser_svc_t), KM_SLEEP);
is->is_iser_svc = (void *)iser_svc;
idm_refcnt_init(&iser_svc->is_refcnt, iser_svc);
list_create(&iser_svc->is_sbindlist, sizeof (iser_sbind_t),
offsetof(iser_sbind_t, is_list_node));
iser_svc->is_svcid = ibt_get_ip_sid(IPPROTO_TCP, sr->sr_port);
/*
* Register an iSER target service for the requested port
* and set the iser_svc structure in the idm_svc handle.
*/
rc = iser_register_service(is);
if (rc != DDI_SUCCESS) {
ISER_LOG(CE_NOTE, "iser_tgt_svc_create: iser_register_service "
"failed on port (%d): rc (0x%x)", sr->sr_port, rc);
ibt_release_ip_sid(iser_svc->is_svcid);
list_destroy(&iser_svc->is_sbindlist);
idm_refcnt_destroy(&iser_svc->is_refcnt);
kmem_free(iser_svc, sizeof (iser_svc_t));
return (IDM_STATUS_FAIL);
}
return (IDM_STATUS_SUCCESS);
}
/* IDM refcnt utilities for the iSER service handle */
void
iser_tgt_svc_hold(iser_svc_t *is)
{
idm_refcnt_hold(&is->is_refcnt);
}
void
iser_tgt_svc_rele(iser_svc_t *is)
{
idm_refcnt_rele(&is->is_refcnt);
}
/*
* iser_tgt_svc_destroy()
* Teardown resources allocated in iser_tgt_svc_create()
*/
static void
iser_tgt_svc_destroy(idm_svc_t *is)
{
iser_svc_t *iser_svc;
iser_svc = (iser_svc_t *)is->is_iser_svc;
/*
* Deregister the iSER target service on this port and free
* the iser_svc structure from the idm_svc handle.
*/
iser_deregister_service(is);
/* Wait for the iSER service handle's refcnt to zero */
idm_refcnt_wait_ref(&iser_svc->is_refcnt);
list_destroy(&iser_svc->is_sbindlist);
idm_refcnt_destroy(&iser_svc->is_refcnt);
kmem_free(iser_svc, sizeof (iser_svc_t));
}
/*
* iser_tgt_svc_online()
* Bind the CM service allocated via iser_tgt_svc_create().
*/
static idm_status_t
iser_tgt_svc_online(idm_svc_t *is)
{
iser_status_t status;
mutex_enter(&is->is_mutex);
/*
* Pass the IDM service handle as the client private data for
* later use.
*/
status = iser_bind_service(is);
if (status != ISER_STATUS_SUCCESS) {
ISER_LOG(CE_NOTE, "iser_tgt_svc_online: failed bind service");
mutex_exit(&is->is_mutex);
return (IDM_STATUS_FAIL);
}
mutex_exit(&is->is_mutex);
return (IDM_STATUS_SUCCESS);
}
/*
* iser_tgt_svc_offline
* Unbind the service on all available HCA ports.
*/
static void
iser_tgt_svc_offline(idm_svc_t *is)
{
mutex_enter(&is->is_mutex);
iser_unbind_service(is);
mutex_exit(&is->is_mutex);
}
/*
* iser_tgt_conn_connect()
* Establish the connection in ic, passed from idm_tgt_conn_finish(), which
* is invoked from the SM as a result of an inbound connection request.
*/
/* ARGSUSED */
static idm_status_t
iser_tgt_conn_connect(idm_conn_t *ic)
{
/* No action required */
return (IDM_STATUS_SUCCESS);
}
/*
* iser_tgt_enable_datamover() sets the transport private data on the
* idm_conn_t and move the conn stage to indicate logged in.
*/
static idm_status_t
iser_tgt_enable_datamover(idm_conn_t *ic)
{
iser_conn_t *iser_conn;
iser_conn = (iser_conn_t *)ic->ic_transport_private;
mutex_enter(&iser_conn->ic_lock);
iser_conn->ic_stage = ISER_CONN_STAGE_LOGGED_IN;
mutex_exit(&iser_conn->ic_lock);
return (IDM_STATUS_SUCCESS);
}
/*
* iser_ini_enable_datamover() is used by the iSCSI initator to request that a
* specified iSCSI connection be transitioned to iSER-assisted mode.
* In the case of iSER, the RDMA resources for a reliable connection have
* already been allocated at this time, and the 'RDMAExtensions' is set to 'Yes'
* so no further negotiations are required at this time.
* The initiator now sends the first iSER Message - 'Hello' to the target
* and waits for the 'HelloReply' Message from the target before directing
* the initiator to go into the Full Feature Phase.
*
* No transport op is required on the target side.
*/
static idm_status_t
iser_ini_enable_datamover(idm_conn_t *ic)
{
iser_conn_t *iser_conn;
clock_t delay;
int status;
iser_conn = (iser_conn_t *)ic->ic_transport_private;
mutex_enter(&iser_conn->ic_lock);
iser_conn->ic_stage = ISER_CONN_STAGE_HELLO_SENT;
mutex_exit(&iser_conn->ic_lock);
/* Send the iSER Hello Message to the target */
status = iser_xfer_hello_msg(iser_conn->ic_chan);
if (status != ISER_STATUS_SUCCESS) {
mutex_enter(&iser_conn->ic_lock);
iser_conn->ic_stage = ISER_CONN_STAGE_HELLO_SENT_FAIL;
mutex_exit(&iser_conn->ic_lock);
return (IDM_STATUS_FAIL);
}
/*
* Acquire the iser_conn->ic_lock and wait for the iSER HelloReply
* Message from the target, i.e. iser_conn_stage_t to be set to
* ISER_CONN_STAGE_HELLOREPLY_RCV. If the handshake does not
* complete within a specified time period (.5s), then return failure.
*
*/
delay = ddi_get_lbolt() + drv_usectohz(500000);
mutex_enter(&iser_conn->ic_lock);
while ((iser_conn->ic_stage != ISER_CONN_STAGE_HELLOREPLY_RCV) &&
(ddi_get_lbolt() < delay)) {
(void) cv_timedwait(&iser_conn->ic_stage_cv,
&iser_conn->ic_lock, delay);
}
switch (iser_conn->ic_stage) {
case ISER_CONN_STAGE_HELLOREPLY_RCV:
iser_conn->ic_stage = ISER_CONN_STAGE_LOGGED_IN;
mutex_exit(&iser_conn->ic_lock);
/*
* Return suceess to indicate that the initiator connection can
* go to the next phase - FFP
*/
return (IDM_STATUS_SUCCESS);
default:
iser_conn->ic_stage = ISER_CONN_STAGE_HELLOREPLY_RCV_FAIL;
mutex_exit(&iser_conn->ic_lock);
return (IDM_STATUS_FAIL);
}
/* STATEMENT_NEVER_REACHED */
}
/*
* iser_free_task_rsrcs()
* This routine does not currently need to do anything. It is used in
* the sockets transport to explicitly complete any buffers on the task,
* but we can rely on our RCaP layer to finish up it's work without any
* intervention.
*/
/* ARGSUSED */
idm_status_t
iser_free_task_rsrcs(idm_task_t *idt)
{
return (IDM_STATUS_SUCCESS);
}
/*
* iser_negotiate_key_values() validates the key values for this connection
*/
/* ARGSUSED */
static kv_status_t
iser_negotiate_key_values(idm_conn_t *ic, nvlist_t *request_nvl,
nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
{
kv_status_t kvrc = KV_HANDLED;
/* Process the request nvlist */
kvrc = iser_process_request_nvlist(request_nvl, response_nvl,
negotiated_nvl);
/* We must be using RDMA, so set the flag on the ic handle */
ic->ic_rdma_extensions = B_TRUE;
return (kvrc);
}
/* Process a list of key=value pairs from a login request */
static kv_status_t
iser_process_request_nvlist(nvlist_t *request_nvl, nvlist_t *response_nvl,
nvlist_t *negotiated_nvl)
{
const idm_kv_xlate_t *ikvx;
char *nvp_name;
nvpair_t *nvp;
nvpair_t *next_nvp;
kv_status_t kvrc = KV_HANDLED;
boolean_t transit = B_TRUE;
/* Process the list */
nvp = nvlist_next_nvpair(request_nvl, NULL);
while (nvp != NULL) {
next_nvp = nvlist_next_nvpair(request_nvl, nvp);
nvp_name = nvpair_name(nvp);
ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name));
kvrc = iser_handle_key(nvp, ikvx, request_nvl, response_nvl,
negotiated_nvl);
if (kvrc != KV_HANDLED) {
if (kvrc == KV_HANDLED_NO_TRANSIT) {
/* we countered, clear the transit flag */
transit = B_FALSE;
} else {
/* error, bail out */
break;
}
}
nvp = next_nvp;
}
/*
* If the current kv_status_t indicates success, we've handled
* the entire list. Explicitly set kvrc to NO_TRANSIT if we've
* cleared the transit flag along the way.
*/
if ((kvrc == KV_HANDLED) && (transit == B_FALSE)) {
kvrc = KV_HANDLED_NO_TRANSIT;
}
return (kvrc);
}
/* Handle a given list, boolean or numerical key=value pair */
static kv_status_t
iser_handle_key(nvpair_t *nvp, const idm_kv_xlate_t *ikvx,
nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
{
kv_status_t kvrc = KV_UNHANDLED;
boolean_t bool_val;
uint64_t num_val;
int nvrc;
/* Retrieve values for booleans and numericals */
switch (ikvx->ik_key_id) {
/* Booleans */
case KI_RDMA_EXTENSIONS:
case KI_IMMEDIATE_DATA:
case KI_IFMARKER:
case KI_OFMARKER:
nvrc = nvpair_value_boolean_value(nvp, &bool_val);
ASSERT(nvrc == 0);
break;
/* Numericals */
case KI_INITIATOR_RECV_DATA_SEGMENT_LENGTH:
case KI_TARGET_RECV_DATA_SEGMENT_LENGTH:
case KI_MAX_OUTSTANDING_UNEXPECTED_PDUS:
nvrc = nvpair_value_uint64(nvp, &num_val);
ASSERT(nvrc == 0);
break;
default:
break;
}
/* Now handle the values according to the key name */
switch (ikvx->ik_key_id) {
case KI_HEADER_DIGEST:
case KI_DATA_DIGEST:
/* Ensure "None" */
kvrc = iser_handle_digest(nvp, ikvx, request_nvl, response_nvl,
negotiated_nvl);
break;
case KI_RDMA_EXTENSIONS:
/* Ensure "Yes" */
kvrc = iser_handle_boolean(nvp, bool_val, ikvx, B_TRUE,
request_nvl, response_nvl, negotiated_nvl);
break;
case KI_TARGET_RECV_DATA_SEGMENT_LENGTH:
/* Validate the proposed value */
kvrc = iser_handle_numerical(nvp, num_val, ikvx,
ISER_TARGET_RECV_DATA_SEGMENT_LENGTH_MIN,
ISER_TARGET_RECV_DATA_SEGMENT_LENGTH_MAX,
ISER_TARGET_RECV_DATA_SEGMENT_LENGTH_IMPL_MAX,
request_nvl, response_nvl, negotiated_nvl);
break;
case KI_INITIATOR_RECV_DATA_SEGMENT_LENGTH:
/* Validate the proposed value */
kvrc = iser_handle_numerical(nvp, num_val, ikvx,
ISER_INITIATOR_RECV_DATA_SEGMENT_LENGTH_MIN,
ISER_INITIATOR_RECV_DATA_SEGMENT_LENGTH_MAX,
ISER_INITIATOR_RECV_DATA_SEGMENT_LENGTH_IMPL_MAX,
request_nvl, response_nvl, negotiated_nvl);
break;
case KI_IMMEDIATE_DATA:
case KI_OFMARKER:
case KI_IFMARKER:
/* Ensure "No" */
kvrc = iser_handle_boolean(nvp, bool_val, ikvx, B_FALSE,
request_nvl, response_nvl, negotiated_nvl);
break;
case KI_MAX_OUTSTANDING_UNEXPECTED_PDUS:
/* Validate the proposed value */
kvrc = iser_handle_numerical(nvp, num_val, ikvx,
ISER_MAX_OUTSTANDING_UNEXPECTED_PDUS_MIN,
ISER_MAX_OUTSTANDING_UNEXPECTED_PDUS_MAX,
ISER_MAX_OUTSTANDING_UNEXPECTED_PDUS_IMPL_MAX,
request_nvl, response_nvl, negotiated_nvl);
break;
default:
/*
* All other keys, including invalid keys, will be
* handled at the client layer.
*/
kvrc = KV_HANDLED;
break;
}
return (kvrc);
}
/* Ensure that "None" is an option in the digest list, and select it */
static kv_status_t
iser_handle_digest(nvpair_t *choices, const idm_kv_xlate_t *ikvx,
nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
{
kv_status_t kvrc = KV_VALUE_ERROR;
int nvrc = 0;
nvpair_t *digest_choice;
char *digest_choice_string;
/*
* Loop through all digest choices. We need to enforce no
* "None" for both header and data digest. If we find our
* required value, add the value to our negotiated values list
* and respond with that value in the login response. If not,
* indicate a value error for the iSCSI layer to work with.
*/
digest_choice = idm_get_next_listvalue(choices, NULL);
while (digest_choice != NULL) {
nvrc = nvpair_value_string(digest_choice,
&digest_choice_string);
ASSERT(nvrc == 0);
if (strcasecmp(digest_choice_string, "none") == 0) {
/* Add to negotiated values list */
nvrc = nvlist_add_string(negotiated_nvl,
ikvx->ik_key_name, digest_choice_string);
kvrc = idm_nvstat_to_kvstat(nvrc);
if (nvrc == 0) {
/* Add to login response list */
nvrc = nvlist_add_string(response_nvl,
ikvx->ik_key_name, digest_choice_string);
kvrc = idm_nvstat_to_kvstat(nvrc);
/* Remove from the request (we've handled it) */
(void) nvlist_remove_all(request_nvl,
ikvx->ik_key_name);
}
break;
}
digest_choice = idm_get_next_listvalue(choices,
digest_choice);
}
ASSERT(digest_choice != NULL);
return (kvrc);
}
/* Validate a proposed boolean value, and set the alternate if necessary */
static kv_status_t
iser_handle_boolean(nvpair_t *nvp, boolean_t value, const idm_kv_xlate_t *ikvx,
boolean_t iser_value, nvlist_t *request_nvl, nvlist_t *response_nvl,
nvlist_t *negotiated_nvl)
{
kv_status_t kvrc;
int nvrc;
boolean_t respond;
if (value != iser_value) {
/*
* Respond back to initiator with our value, and
* set the return value to unset the transit bit.
*/
value = iser_value;
kvrc = KV_HANDLED_NO_TRANSIT;
nvrc = 0;
respond = B_TRUE;
} else {
/* Add this to our negotiated values */
nvrc = nvlist_add_nvpair(negotiated_nvl, nvp);
/* Respond if this is not a declarative */
respond = (ikvx->ik_declarative == B_FALSE);
}
/* Response of Simple-value Negotiation */
if (nvrc == 0 && respond) {
nvrc = nvlist_add_boolean_value(response_nvl,
ikvx->ik_key_name, value);
/* Remove from the request (we've handled it) */
(void) nvlist_remove_all(request_nvl, ikvx->ik_key_name);
}
if (kvrc == KV_HANDLED_NO_TRANSIT) {
return (kvrc);
}
return (idm_nvstat_to_kvstat(nvrc));
}
/*
* Validate a proposed value against the iSER and/or iSCSI RFC's minimum and
* maximum values, and set an alternate, if necessary. Note that the value
* 'iser_max_value" represents our implementation maximum (typically the max).
*/
static kv_status_t
iser_handle_numerical(nvpair_t *nvp, uint64_t value, const idm_kv_xlate_t *ikvx,
uint64_t min_value, uint64_t max_value, uint64_t iser_max_value,
nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
{
kv_status_t kvrc;
int nvrc;
boolean_t respond;
/* Validate against standard */
if ((value < min_value) || (value > max_value)) {
kvrc = KV_VALUE_ERROR;
} else {
if (value > iser_max_value) {
/*
* Respond back to initiator with our value, and
* set the return value to unset the transit bit.
*/
value = iser_max_value;
kvrc = KV_HANDLED_NO_TRANSIT;
nvrc = 0;
respond = B_TRUE;
} else {
/* Add this to our negotiated values */
nvrc = nvlist_add_nvpair(negotiated_nvl, nvp);
/* Respond if this is not a declarative */
respond = (ikvx->ik_declarative == B_FALSE);
}
/* Response of Simple-value Negotiation */
if (nvrc == 0 && respond) {
nvrc = nvlist_add_uint64(response_nvl,
ikvx->ik_key_name, value);
/* Remove from the request (we've handled it) */
(void) nvlist_remove_all(request_nvl,
ikvx->ik_key_name);
}
}
if (kvrc == KV_HANDLED_NO_TRANSIT) {
return (kvrc);
}
return (idm_nvstat_to_kvstat(nvrc));
}
/*
* iser_notice_key_values() activates the negotiated key values for
* this connection.
*/
static void
iser_notice_key_values(idm_conn_t *ic, nvlist_t *negotiated_nvl)
{
iser_conn_t *iser_conn;
boolean_t boolean_val;
uint64_t uint64_val;
int nvrc;
iser_conn = (iser_conn_t *)ic->ic_transport_private;
/*
* Validate the final negotiated operational parameters,
* and save a copy.
*/
if ((nvrc = nvlist_lookup_boolean_value(negotiated_nvl,
"HeaderDigest", &boolean_val)) != ENOENT) {
ASSERT(nvrc == 0);
iser_conn->ic_op_params.op_header_digest = boolean_val;
}
if ((nvrc = nvlist_lookup_boolean_value(negotiated_nvl,
"DataDigest", &boolean_val)) != ENOENT) {
ASSERT(nvrc == 0);
iser_conn->ic_op_params.op_data_digest = boolean_val;
}
if ((nvrc = nvlist_lookup_boolean_value(negotiated_nvl,
"RDMAExtensions", &boolean_val)) != ENOENT) {
ASSERT(nvrc == 0);
iser_conn->ic_op_params.op_rdma_extensions = boolean_val;
}
if ((nvrc = nvlist_lookup_boolean_value(negotiated_nvl,
"OFMarker", &boolean_val)) != ENOENT) {
ASSERT(nvrc == 0);
iser_conn->ic_op_params.op_ofmarker = boolean_val;
}
if ((nvrc = nvlist_lookup_boolean_value(negotiated_nvl,
"IFMarker", &boolean_val)) != ENOENT) {
ASSERT(nvrc == 0);
iser_conn->ic_op_params.op_ifmarker = boolean_val;
}
if ((nvrc = nvlist_lookup_uint64(negotiated_nvl,
"TargetRecvDataSegmentLength", &uint64_val)) != ENOENT) {
ASSERT(nvrc == 0);
iser_conn->ic_op_params.op_target_recv_data_segment_length =
uint64_val;
}
if ((nvrc = nvlist_lookup_uint64(negotiated_nvl,
"InitiatorRecvDataSegmentLength", &uint64_val)) != ENOENT) {
ASSERT(nvrc == 0);
iser_conn->ic_op_params.op_initiator_recv_data_segment_length =
uint64_val;
}
if ((nvrc = nvlist_lookup_uint64(negotiated_nvl,
"MaxOutstandingUnexpectedPDUs", &uint64_val)) != ENOENT) {
ASSERT(nvrc == 0);
iser_conn->ic_op_params.op_max_outstanding_unexpected_pdus =
uint64_val;
}
/* Test boolean values which are required by RFC 5046 */
#ifdef ISER_DEBUG
ASSERT(iser_conn->ic_op_params.op_rdma_extensions == B_TRUE);
ASSERT(iser_conn->ic_op_params.op_header_digest == B_FALSE);
ASSERT(iser_conn->ic_op_params.op_data_digest == B_FALSE);
ASSERT(iser_conn->ic_op_params.op_ofmarker == B_FALSE);
ASSERT(iser_conn->ic_op_params.op_ifmarker == B_FALSE);
#endif
}
/*
* iser_conn_is_capable() verifies that the passed connection is provided
* for by an iSER-capable link.
* NOTE: When utilizing InfiniBand RC as an RCaP, this routine will check
* if the link is on IPoIB. This only indicates a chance that the link is
* on an RCaP, and thus iSER-capable, since we may be running on an IB-Eth
* gateway, or other IB but non-RCaP link. Rather than fully establishing the
* link to verify RCaP here, we instead will return B_TRUE
* indicating the link is iSER-capable, if the link is IPoIB. If then in
* iser_ini_conn_create() the link proves not be RCaP, IDM will fall back
* to using the IDM Sockets transport.
*/
/* ARGSUSED */
static boolean_t
iser_conn_is_capable(idm_conn_req_t *cr, idm_transport_caps_t *caps)
{
/* A NULL value for laddr indicates implicit source */
return (iser_path_exists(NULL, &cr->cr_ini_dst_addr));
}
/*
* iser_pdu_tx() transmits a Control PDU via the iSER channel. We pull the
* channel out of the idm_conn_t passed in, and pass it and the pdu to the
* iser_xfer routine.
*/
static void
iser_pdu_tx(idm_conn_t *ic, idm_pdu_t *pdu)
{
iser_conn_t *iser_conn;
iser_status_t iser_status;
iser_conn = (iser_conn_t *)ic->ic_transport_private;
iser_status = iser_xfer_ctrlpdu(iser_conn->ic_chan, pdu);
if (iser_status != ISER_STATUS_SUCCESS) {
ISER_LOG(CE_WARN, "iser_pdu_tx: failed iser_xfer_ctrlpdu: "
"ic (0x%p) pdu (0x%p)", (void *) ic, (void *) pdu);
/* Fail this PDU transmission */
idm_pdu_complete(pdu, IDM_STATUS_FAIL);
}
/*
* We successfully posted this PDU for transmission.
* The completion handler will invoke idm_pdu_complete()
* with the completion status. See iser_cq.c for more
* information.
*/
}
/*
* iser_buf_tx_to_ini() transmits the data buffer encoded in idb to the
* initiator to fulfill SCSI Read commands. An iser_xfer routine is invoked
* to implement the RDMA operations.
*
* Caller holds idt->idt_mutex.
*/
static idm_status_t
iser_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb)
{
iser_status_t iser_status;
idm_status_t idm_status = IDM_STATUS_SUCCESS;
ASSERT(mutex_owned(&idt->idt_mutex));
iser_status = iser_xfer_buf_to_ini(idt, idb);
if (iser_status != ISER_STATUS_SUCCESS) {
ISER_LOG(CE_WARN, "iser_buf_tx_to_ini: failed "
"iser_xfer_buf_to_ini: idt (0x%p) idb (0x%p)",
(void *) idt, (void *) idb);
idm_status = IDM_STATUS_FAIL;
}
/*
* iSCSIt's Data Completion Notify callback is invoked from
* the Work Request Send completion Handler
*/
mutex_exit(&idt->idt_mutex);
return (idm_status);
}
/*
* iser_buf_tx_from_ini() transmits data from the initiator into the buffer
* in idb to fulfill SCSI Write commands. An iser_xfer routine is invoked
* to implement the RDMA operations.
*
* Caller holds idt->idt_mutex.
*/
static idm_status_t
iser_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb)
{
iser_status_t iser_status;
idm_status_t idm_status = IDM_STATUS_SUCCESS;
ASSERT(mutex_owned(&idt->idt_mutex));
iser_status = iser_xfer_buf_from_ini(idt, idb);
if (iser_status != ISER_STATUS_SUCCESS) {
ISER_LOG(CE_WARN, "iser_buf_tx_from_ini: failed "
"iser_xfer_buf_to_ini: idt (0x%p) idb (0x%p)",
(void *) idt, (void *) idb);
idm_status = IDM_STATUS_FAIL;
}
/*
* iSCSIt's Data Completion Notify callback is invoked from
* the Work Request Send completion Handler
*/
mutex_exit(&idt->idt_mutex);
return (idm_status);
}
/*
* iser_buf_alloc() allocates a buffer and registers it with the IBTF for
* use with iSER. Each HCA has it's own kmem cache for establishing a pool
* of registered buffers, when once initially allocated, will remain
* registered with the HCA. This routine is invoked only on the target,
* where we have the requirement to pre-allocate buffers for the upper layers.
* Note: buflen is compared to ISER_DEFAULT_BUFLEN, and allocation is failed
* if the requested buflen is larger than our default.
*/
/* ARGSUSED */
static idm_status_t
iser_buf_alloc(idm_buf_t *idb, uint64_t buflen)
{
iser_conn_t *iser_conn;
iser_hca_t *iser_hca;
iser_buf_t *iser_buf;
if (buflen > ISER_DEFAULT_BUFLEN) {
return (IDM_STATUS_FAIL);
}
iser_conn = (iser_conn_t *)idb->idb_ic->ic_transport_private;
iser_hca = iser_conn->ic_chan->ic_hca;
/*
* Allocate a buffer from this HCA's cache. Once initialized, these
* will remain allocated and registered (see above).
*/
iser_buf = kmem_cache_alloc(iser_hca->iser_buf_cache, KM_NOSLEEP);
if (iser_buf == NULL) {
ISER_LOG(CE_NOTE, "iser_buf_alloc: alloc failed");
return (IDM_STATUS_FAIL);
}
/* Set the allocated data buffer pointer in the IDM buf handle */
idb->idb_buf = iser_buf->buf;
/* Set the private buf and reg handles in the IDM buf handle */
idb->idb_buf_private = (void *)iser_buf;
idb->idb_reg_private = (void *)iser_buf->iser_mr;
return (IDM_STATUS_SUCCESS);
}
/*
* iser_buf_free() frees the buffer handle passed in. Note that the cached
* kmem object has an HCA-registered buffer in it which will not be freed.
* This allows us to build up a cache of pre-allocated and registered
* buffers for use on the target.
*/
static void
iser_buf_free(idm_buf_t *buf)
{
iser_buf_t *iser_buf;
iser_buf = buf->idb_buf_private;
kmem_cache_free(iser_buf->cache, iser_buf);
}
/*
* iser_buf_setup() is invoked on the initiator in order to register memory
* on demand for use with the iSER layer.
*/
static idm_status_t
iser_buf_setup(idm_buf_t *idb)
{
iser_conn_t *iser_conn;
iser_chan_t *iser_chan;
iser_hca_t *iser_hca;
iser_buf_t *iser_buf;
int status;
ASSERT(idb->idb_buf != NULL);
iser_conn = (iser_conn_t *)idb->idb_ic->ic_transport_private;
ASSERT(iser_conn != NULL);
iser_hca = iser_conn->ic_chan->ic_hca;
iser_chan = iser_conn->ic_chan;
ASSERT(iser_chan != NULL);
/*
* Memory registration is known to be slow, so for small
* transfers, use pre-registered memory buffers and just
* copy the data into/from them at the appropriate time
*/
if (idb->idb_buflen < ISER_BCOPY_THRESHOLD) {
iser_buf =
kmem_cache_alloc(iser_hca->iser_buf_cache, KM_NOSLEEP);
if (iser_buf == NULL) {
/* Fail over to dynamic registration */
status = iser_reg_rdma_mem(iser_chan->ic_hca, idb);
idb->idb_bufalloc = B_FALSE;
return (status);
}
/*
* Set the allocated data buffer pointer in the IDM buf handle
* Data is to be copied from/to this buffer using bcopy
*/
idb->idb_bufptr = idb->idb_buf;
idb->idb_bufbcopy = B_TRUE;
idb->idb_buf = iser_buf->buf;
/* Set the private buf and reg handles in the IDM buf handle */
idb->idb_buf_private = (void *)iser_buf;
idb->idb_reg_private = (void *)iser_buf->iser_mr;
/* Ensure bufalloc'd flag is set */
idb->idb_bufalloc = B_TRUE;
return (IDM_STATUS_SUCCESS);
} else {
/* Dynamically register the memory passed in on the idb */
status = iser_reg_rdma_mem(iser_chan->ic_hca, idb);
/* Ensure bufalloc'd flag is unset */
idb->idb_bufalloc = B_FALSE;
return (status);
}
}
/*
* iser_buf_teardown() is invoked on the initiator in order to register memory
* on demand for use with the iSER layer.
*/
static void
iser_buf_teardown(idm_buf_t *idb)
{
iser_conn_t *iser_conn;
iser_conn = (iser_conn_t *)idb->idb_ic->ic_transport_private;
/* Deregister the memory passed in on the idb */
iser_dereg_rdma_mem(iser_conn->ic_chan->ic_hca, idb);
}