fcip.c revision fcf3ce441efd61da9bb2884968af01cb7c1452cc
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* SunOS 5.x Multithreaded STREAMS DLPI FCIP Module
* This is a pseudo driver module to handle encapsulation of IP and ARP
* datagrams over FibreChannel interfaces. FCIP is a cloneable STREAMS
* driver module which interfaces with IP/ARP using DLPI. This module
* is a Style-2 DLS provider.
*
* The implementation of this module is based on RFC 2625 which gives
* details on the encapsulation of IP/ARP data over FibreChannel.
* The fcip module needs to resolve an IP address to a port address before
* sending data to a destination port. A FC device port has 2 addresses
* associated with it: A 8 byte World Wide unique Port Name and a 3 byte
* volatile Port number or Port_ID.
*
* The mapping between a IP address and the World Wide Port Name is handled
* by the ARP layer since the IP over FC draft requires the MAC address to
* be the least significant six bytes of the WorldWide Port Names. The
* fcip module however needs to identify the destination port uniquely when
* the destination FC device has multiple FC ports.
*
* The FC layer mapping between the World Wide Port Name and the Port_ID
* will be handled through the use of a fabric name server or through the
* use of the FARP ELS command as described in the draft. Since the Port_IDs
* are volatile, the mapping between the World Wide Port Name and Port_IDs
* must be maintained and validated before use each time a datagram
* needs to be sent to the destination ports. The FC transport module
* informs the fcip module of all changes to states of ports on the
* fabric through registered callbacks. This enables the fcip module
* to maintain the WW_PN to Port_ID mappings current.
*
* For details on how this module interfaces with the FibreChannel Transport
* modules, refer to PSARC/1997/385. Chapter 3 of the FibreChannel Transport
* Programming guide details the APIs between ULPs and the Transport.
*
* Now for some Caveats:
*
* RFC 2625 requires that a FibreChannel Port name (the Port WWN) have
* the NAA bits set to '0001' indicating a IEEE 48bit address which
* corresponds to a ULA (Universal LAN MAC address). But with FibreChannel
* adapters containing 2 or more ports, IEEE naming cannot identify the
* ports on an adapter uniquely so we will in the first implementation
* be operating only on Port 0 of each adapter.
*/
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include <sys/time.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/user.h>
#include <sys/stropts.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/strsubr.h>
#include <sys/cmn_err.h>
#include <sys/cpu.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ksynch.h>
#include <sys/stat.h>
#include <sys/kstat.h>
#include <sys/vtrace.h>
#include <sys/strsun.h>
#include <sys/varargs.h>
#include <sys/modctl.h>
#include <sys/thread.h>
#include <sys/var.h>
#include <sys/proc.h>
#include <inet/common.h>
#include <netinet/ip6.h>
#include <inet/ip.h>
#include <inet/arp.h>
#include <inet/mi.h>
#include <inet/nd.h>
#include <sys/dlpi.h>
#include <sys/ethernet.h>
#include <sys/file.h>
#include <sys/syslog.h>
#include <sys/disp.h>
#include <sys/taskq.h>
/*
* Leadville includes
*/
#include <sys/fibre-channel/fc.h>
#include <sys/fibre-channel/impl/fc_ulpif.h>
#include <sys/fibre-channel/ulp/fcip.h>
/*
* TNF Probe/trace facility include
*/
#if defined(lint) || defined(FCIP_TNF_ENABLED)
#include <sys/tnf_probe.h>
#endif
#define FCIP_ESBALLOC
/*
* Function prototypes
*/
/* standard loadable modules entry points */
static int fcip_attach(dev_info_t *, ddi_attach_cmd_t);
static int fcip_detach(dev_info_t *, ddi_detach_cmd_t);
static void fcip_dodetach(struct fcipstr *slp);
static int fcip_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
void *arg, void **result);
/* streams specific */
static void fcip_setipq(struct fcip *fptr);
static int fcip_wput(queue_t *, mblk_t *);
static int fcip_wsrv(queue_t *);
static void fcip_proto(queue_t *, mblk_t *);
static void fcip_ioctl(queue_t *, mblk_t *);
static int fcip_open(queue_t *wq, dev_t *devp, int flag,
int sflag, cred_t *credp);
static int fcip_close(queue_t *rq, int flag, int otyp, cred_t *credp);
static int fcip_start(queue_t *wq, mblk_t *mp, struct fcip *fptr,
struct fcip_dest *fdestp, int flags);
static void fcip_sendup(struct fcip *fptr, mblk_t *mp,
struct fcipstr *(*acceptfunc)());
static struct fcipstr *fcip_accept(struct fcipstr *slp, struct fcip *fptr,
int type, la_wwn_t *dhostp);
static mblk_t *fcip_addudind(struct fcip *fptr, mblk_t *mp,
fcph_network_hdr_t *nhdr, int type);
static int fcip_setup_mac_addr(struct fcip *fptr);
static void fcip_kstat_init(struct fcip *fptr);
static int fcip_stat_update(kstat_t *, int);
/* dlpi specific */
static void fcip_spareq(queue_t *wq, mblk_t *mp);
static void fcip_pareq(queue_t *wq, mblk_t *mp);
static void fcip_ubreq(queue_t *wq, mblk_t *mp);
static void fcip_breq(queue_t *wq, mblk_t *mp);
static void fcip_dreq(queue_t *wq, mblk_t *mp);
static void fcip_areq(queue_t *wq, mblk_t *mp);
static void fcip_udreq(queue_t *wq, mblk_t *mp);
static void fcip_ireq(queue_t *wq, mblk_t *mp);
static void fcip_dl_ioc_hdr_info(queue_t *wq, mblk_t *mp);
/* solaris sundry, DR/CPR etc */
static int fcip_cache_constructor(void *buf, void *arg, int size);
static void fcip_cache_destructor(void *buf, void *size);
static int fcip_handle_suspend(fcip_port_info_t *fport, fc_detach_cmd_t cmd);
static int fcip_handle_resume(fcip_port_info_t *fport,
fc_ulp_port_info_t *port_info, fc_attach_cmd_t cmd);
static fcip_port_info_t *fcip_softstate_free(fcip_port_info_t *fport);
static int fcip_port_attach_handler(struct fcip *fptr);
/*
* ulp - transport interface function prototypes
*/
static int fcip_port_attach(opaque_t ulp_handle, fc_ulp_port_info_t *,
fc_attach_cmd_t cmd, uint32_t sid);
static int fcip_port_detach(opaque_t ulp_handle, fc_ulp_port_info_t *,
fc_detach_cmd_t cmd);
static int fcip_port_ioctl(opaque_t ulp_handle, opaque_t port_handle,
dev_t dev, int cmd, intptr_t data, int mode, cred_t *credp, int *rval,
uint32_t claimed);
static void fcip_statec_cb(opaque_t ulp_handle, opaque_t phandle,
uint32_t port_state, uint32_t port_top, fc_portmap_t changelist[],
uint32_t listlen, uint32_t sid);
static int fcip_els_cb(opaque_t ulp_handle, opaque_t phandle,
fc_unsol_buf_t *buf, uint32_t claimed);
static int fcip_data_cb(opaque_t ulp_handle, opaque_t phandle,
fc_unsol_buf_t *payload, uint32_t claimed);
/* Routing table specific */
static void fcip_handle_topology(struct fcip *fptr);
static int fcip_init_port(struct fcip *fptr);
struct fcip_routing_table *fcip_lookup_rtable(struct fcip *fptr,
la_wwn_t *pwwn, int matchflag);
static void fcip_rt_update(struct fcip *fptr, fc_portmap_t *devlist,
uint32_t listlen);
static void fcip_rt_flush(struct fcip *fptr);
static void fcip_rte_remove_deferred(void *arg);
static int fcip_do_plogi(struct fcip *fptr, struct fcip_routing_table *frp);
/* dest table specific */
static struct fcip_dest *fcip_get_dest(struct fcip *fptr,
la_wwn_t *dlphys);
static struct fcip_dest *fcip_add_dest(struct fcip *fptr,
struct fcip_routing_table *frp);
static int fcip_dest_add_broadcast_entry(struct fcip *fptr, int new_flag);
static uint32_t fcip_get_broadcast_did(struct fcip *fptr);
static void fcip_cleanup_dest(struct fcip *fptr);
/* helper functions */
static fcip_port_info_t *fcip_get_port(opaque_t phandle);
static int fcip_wwn_compare(la_wwn_t *wwn1, la_wwn_t *wwn2, int flag);
static void fcip_ether_to_str(struct ether_addr *e, caddr_t s);
static int fcip_port_get_num_pkts(struct fcip *fptr);
static int fcip_check_port_busy(struct fcip *fptr);
static void fcip_check_remove_minor_node(void);
static int fcip_set_wwn(la_wwn_t *pwwn);
static int fcip_plogi_in_progress(struct fcip *fptr);
static int fcip_check_port_exists(struct fcip *fptr);
static int fcip_is_supported_fc_topology(int fc_topology);
/* pkt specific */
static fcip_pkt_t *fcip_pkt_alloc(struct fcip *fptr, mblk_t *bp,
int flags, int datalen);
static void fcip_pkt_free(struct fcip_pkt *fcip_pkt, int flags);
static fcip_pkt_t *fcip_ipkt_alloc(struct fcip *fptr, int cmdlen,
int resplen, opaque_t pd, int flags);
static void fcip_ipkt_free(fcip_pkt_t *fcip_pkt);
static void fcip_ipkt_callback(fc_packet_t *fc_pkt);
static void fcip_free_pkt_dma(fcip_pkt_t *fcip_pkt);
static void fcip_pkt_callback(fc_packet_t *fc_pkt);
static void fcip_init_unicast_pkt(fcip_pkt_t *fcip_pkt, fc_portid_t sid,
fc_portid_t did, void (*comp) ());
static int fcip_transport(fcip_pkt_t *fcip_pkt);
static void fcip_pkt_timeout(void *arg);
static void fcip_timeout(void *arg);
static void fcip_fdestp_enqueue_pkt(struct fcip_dest *fdestp,
fcip_pkt_t *fcip_pkt);
static int fcip_fdestp_dequeue_pkt(struct fcip_dest *fdestp,
fcip_pkt_t *fcip_pkt);
static int fcip_sendup_constructor(void *buf, void *arg, int flags);
static void fcip_sendup_thr(void *arg);
static int fcip_sendup_alloc_enque(struct fcip *ftpr, mblk_t *mp,
struct fcipstr *(*f)());
/*
* zero copy inbound data handling
*/
#ifdef FCIP_ESBALLOC
static void fcip_ubfree(char *arg);
#endif /* FCIP_ESBALLOC */
#if !defined(FCIP_ESBALLOC)
static void *fcip_allocb(size_t size, uint_t pri);
#endif
/* FCIP FARP support functions */
static struct fcip_dest *fcip_do_farp(struct fcip *fptr, la_wwn_t *pwwn,
char *ip_addr, size_t ip_addr_len, int flags);
static void fcip_init_broadcast_pkt(fcip_pkt_t *fcip_pkt, void (*comp) (),
int is_els);
static int fcip_handle_farp_request(struct fcip *fptr, la_els_farp_t *fcmd);
static int fcip_handle_farp_response(struct fcip *fptr, la_els_farp_t *fcmd);
static void fcip_cache_arp_broadcast(struct fcip *ftpr, fc_unsol_buf_t *buf);
static void fcip_port_ns(void *arg);
#ifdef DEBUG
#include <sys/debug.h>
#define FCIP_DEBUG_DEFAULT 0x1
#define FCIP_DEBUG_ATTACH 0x2
#define FCIP_DEBUG_INIT 0x4
#define FCIP_DEBUG_DETACH 0x8
#define FCIP_DEBUG_DLPI 0x10
#define FCIP_DEBUG_ELS 0x20
#define FCIP_DEBUG_DOWNSTREAM 0x40
#define FCIP_DEBUG_UPSTREAM 0x80
#define FCIP_DEBUG_MISC 0x100
#define FCIP_DEBUG_STARTUP (FCIP_DEBUG_ATTACH|FCIP_DEBUG_INIT)
#define FCIP_DEBUG_DATAOUT (FCIP_DEBUG_DLPI|FCIP_DEBUG_DOWNSTREAM)
#define FCIP_DEBUG_DATAIN (FCIP_DEBUG_ELS|FCIP_DEBUG_UPSTREAM)
static int fcip_debug = FCIP_DEBUG_DEFAULT;
#define FCIP_DEBUG(level, args) \
if (fcip_debug & (level)) cmn_err args;
#else /* DEBUG */
#define FCIP_DEBUG(level, args) /* do nothing */
#endif /* DEBUG */
#define KIOIP KSTAT_INTR_PTR(fcip->fcip_intrstats)
/*
* Endian independent ethernet to WWN copy
*/
#define ether_to_wwn(E, W) \
bzero((void *)(W), sizeof (la_wwn_t)); \
bcopy((void *)(E), (void *)&((W)->raw_wwn[2]), ETHERADDRL); \
(W)->raw_wwn[0] |= 0x10
/*
* wwn_to_ether : Endian independent, copies a WWN to struct ether_addr.
* The args to the macro are pointers to WWN and ether_addr structures
*/
#define wwn_to_ether(W, E) \
bcopy((void *)&((W)->raw_wwn[2]), (void *)E, ETHERADDRL)
/*
* The module_info structure contains identification and limit values.
* All queues associated with a certain driver share the same module_info
* structures. This structure defines the characteristics of that driver/
* module's queues. The module name must be unique. The max and min packet
* sizes limit the no. of characters in M_DATA messages. The Hi and Lo
* water marks are for flow control when a module has a service procedure.
*/
static struct module_info fcipminfo = {
FCIPIDNUM, /* mi_idnum : Module ID num */
FCIPNAME, /* mi_idname: Module Name */
FCIPMINPSZ, /* mi_minpsz: Min packet size */
FCIPMAXPSZ, /* mi_maxpsz: Max packet size */
FCIPHIWAT, /* mi_hiwat : High water mark */
FCIPLOWAT /* mi_lowat : Low water mark */
};
/*
* The qinit structres contain the module put, service. open and close
* procedure pointers. All modules and drivers with the same streamtab
* file (i.e same fmodsw or cdevsw entry points) point to the same
* upstream (read) and downstream (write) qinit structs.
*/
static struct qinit fcip_rinit = {
NULL, /* qi_putp */
NULL, /* qi_srvp */
fcip_open, /* qi_qopen */
fcip_close, /* qi_qclose */
NULL, /* qi_qadmin */
&fcipminfo, /* qi_minfo */
NULL /* qi_mstat */
};
static struct qinit fcip_winit = {
fcip_wput, /* qi_putp */
fcip_wsrv, /* qi_srvp */
NULL, /* qi_qopen */
NULL, /* qi_qclose */
NULL, /* qi_qadmin */
&fcipminfo, /* qi_minfo */
NULL /* qi_mstat */
};
/*
* streamtab contains pointers to the read and write qinit structures
*/
static struct streamtab fcip_info = {
&fcip_rinit, /* st_rdinit */
&fcip_winit, /* st_wrinit */
NULL, /* st_muxrinit */
NULL, /* st_muxwrinit */
};
static struct cb_ops fcip_cb_ops = {
nodev, /* open */
nodev, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
nodev, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* cb_prop_op */
&fcip_info, /* streamtab */
D_MP | D_HOTPLUG, /* Driver compatibility flag */
CB_REV, /* rev */
nodev, /* int (*cb_aread)() */
nodev /* int (*cb_awrite)() */
};
/*
* autoconfiguration routines.
*/
static struct dev_ops fcip_ops = {
DEVO_REV, /* devo_rev, */
0, /* refcnt */
fcip_getinfo, /* info */
nulldev, /* identify */
nulldev, /* probe */
fcip_attach, /* attach */
fcip_detach, /* detach */
nodev, /* RESET */
&fcip_cb_ops, /* driver operations */
NULL, /* bus operations */
ddi_power /* power management */
};
#define FCIP_VERSION "1.61"
#define FCIP_NAME "SunFC FCIP v" FCIP_VERSION
#define PORT_DRIVER "fp"
#define GETSTRUCT(struct, number) \
((struct *)kmem_zalloc((size_t)(sizeof (struct) * (number)), \
KM_SLEEP))
static struct modldrv modldrv = {
&mod_driverops, /* Type of module - driver */
FCIP_NAME, /* Name of module */
&fcip_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modldrv, NULL
};
/*
* Now for some global statics
*/
static uint32_t fcip_ub_nbufs = FCIP_UB_NBUFS;
static uint32_t fcip_ub_size = FCIP_UB_SIZE;
static int fcip_pkt_ttl_ticks = FCIP_PKT_TTL;
static int fcip_tick_incr = 1;
static int fcip_wait_cmds = FCIP_WAIT_CMDS;
static int fcip_num_attaching = 0;
static int fcip_port_attach_pending = 0;
static int fcip_create_nodes_on_demand = 1; /* keep it similar to fcp */
static int fcip_cache_on_arp_broadcast = 0;
static int fcip_farp_supported = 0;
static int fcip_minor_node_created = 0;
/*
* Supported FCAs
*/
#define QLC_PORT_1_ID_BITS 0x100
#define QLC_PORT_2_ID_BITS 0x101
#define QLC_PORT_NAA 0x2
#define QLC_MODULE_NAME "qlc"
#define IS_QLC_PORT(port_dip) \
(strcmp(ddi_driver_name(ddi_get_parent((port_dip))),\
QLC_MODULE_NAME) == 0)
/*
* fcip softstate structures head.
*/
static void *fcip_softp = NULL;
/*
* linked list of active (inuse) driver streams
*/
static int fcip_num_instances = 0;
static dev_info_t *fcip_module_dip = (dev_info_t *)0;
/*
* Ethernet broadcast address: Broadcast addressing in IP over fibre
* channel should be the IEEE ULA (also the low 6 bytes of the Port WWN).
*
* The broadcast addressing varies for differing topologies a node may be in:
* - On a private loop the ARP broadcast is a class 3 sequence sent
* using OPNfr (Open Broadcast Replicate primitive) followed by
* the ARP frame to D_ID 0xFFFFFF
*
* - On a public Loop the broadcast sequence is sent to AL_PA 0x00
* (no OPNfr primitive).
*
* - For direct attach and point to point topologies we just send
* the frame to D_ID 0xFFFFFF
*
* For public loop the handling would probably be different - for now
* I'll just declare this struct - It can be deleted if not necessary.
*
*/
/*
* DL_INFO_ACK template for the fcip module. The dl_info_ack_t structure is
* returned as a part of an DL_INFO_ACK message which is a M_PCPROTO message
* returned in response to a DL_INFO_REQ message sent to us from a DLS user
* Let us fake an ether header as much as possible.
*
* dl_addr_length is the Provider's DLSAP addr which is SAP addr +
* Physical addr of the provider. We set this to
* ushort_t + sizeof (la_wwn_t) for Fibre Channel ports.
* dl_mac_type Lets just use DL_ETHER - we can try using DL_IPFC, a new
* dlpi.h define later.
* dl_sap_length -2 indicating the SAP address follows the Physical addr
* component in the DLSAP addr.
* dl_service_mode: DLCLDS - connectionless data link service.
*
*/
static dl_info_ack_t fcip_infoack = {
DL_INFO_ACK, /* dl_primitive */
FCIPMTU, /* dl_max_sdu */
0, /* dl_min_sdu */
FCIPADDRL, /* dl_addr_length */
DL_ETHER, /* dl_mac_type */
0, /* dl_reserved */
0, /* dl_current_state */
-2, /* dl_sap_length */
DL_CLDLS, /* dl_service_mode */
0, /* dl_qos_length */
0, /* dl_qos_offset */
0, /* dl_range_length */
0, /* dl_range_offset */
DL_STYLE2, /* dl_provider_style */
sizeof (dl_info_ack_t), /* dl_addr_offset */
DL_VERSION_2, /* dl_version */
ETHERADDRL, /* dl_brdcst_addr_length */
sizeof (dl_info_ack_t) + FCIPADDRL, /* dl_brdcst_addr_offset */
0 /* dl_growth */
};
/*
* FCIP broadcast address definition.
*/
static struct ether_addr fcipnhbroadcastaddr = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
/*
* RFC2625 requires the broadcast ARP address in the ARP data payload to
* be set to 0x00 00 00 00 00 00 for ARP broadcast packets
*/
static struct ether_addr fcip_arpbroadcast_addr = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
#define ether_bcopy(src, dest) bcopy((src), (dest), ETHERADDRL);
/*
* global kernel locks
*/
static kcondvar_t fcip_global_cv;
static kmutex_t fcip_global_mutex;
/*
* fctl external defines
*/
extern int fc_ulp_add(fc_ulp_modinfo_t *);
/*
* fctl data structures
*/
#define FCIP_REV 0x07
/* linked list of port info structures */
static fcip_port_info_t *fcip_port_head = NULL;
/* linked list of fcip structures */
static struct fcipstr *fcipstrup = NULL;
static krwlock_t fcipstruplock;
/*
* Module information structure. This structure gives the FC Transport modules
* information about an ULP that registers with it.
*/
static fc_ulp_modinfo_t fcip_modinfo = {
0, /* for xref checks? */
FCTL_ULP_MODREV_4, /* FCIP revision */
FC_TYPE_IS8802_SNAP, /* type 5 for SNAP encapsulated datagrams */
FCIP_NAME, /* module name as in the modldrv struct */
0x0, /* get all statec callbacks for now */
fcip_port_attach, /* port attach callback */
fcip_port_detach, /* port detach callback */
fcip_port_ioctl, /* port ioctl callback */
fcip_els_cb, /* els callback */
fcip_data_cb, /* data callback */
fcip_statec_cb /* state change callback */
};
/*
* Solaris 9 and up, the /kernel/drv/fp.conf file will have the following entry
*
* ddi-forceattach=1;
*
* This will ensure that fp is loaded at bootup. No additional checks are needed
*/
int
_init(void)
{
int rval;
FCIP_TNF_LOAD();
/*
* Initialize the mutexs used by port attach and other callbacks.
* The transport can call back into our port_attach_callback
* routine even before _init() completes and bad things can happen.
*/
mutex_init(&fcip_global_mutex, NULL, MUTEX_DRIVER, NULL);
cv_init(&fcip_global_cv, NULL, CV_DRIVER, NULL);
rw_init(&fcipstruplock, NULL, RW_DRIVER, NULL);
mutex_enter(&fcip_global_mutex);
fcip_port_attach_pending = 1;
mutex_exit(&fcip_global_mutex);
/*
* Now attempt to register fcip with the transport.
* If fc_ulp_add fails, fcip module will not be loaded.
*/
rval = fc_ulp_add(&fcip_modinfo);
if (rval != FC_SUCCESS) {
mutex_destroy(&fcip_global_mutex);
cv_destroy(&fcip_global_cv);
rw_destroy(&fcipstruplock);
switch (rval) {
case FC_ULP_SAMEMODULE:
FCIP_DEBUG(FCIP_DEBUG_DEFAULT, (CE_WARN,
"!fcip: module is already registered with"
" transport"));
rval = EEXIST;
break;
case FC_ULP_SAMETYPE:
FCIP_DEBUG(FCIP_DEBUG_DEFAULT, (CE_WARN,
"!fcip: Another module of the same ULP type 0x%x"
" is already registered with the transport",
fcip_modinfo.ulp_type));
rval = EEXIST;
break;
case FC_BADULP:
FCIP_DEBUG(FCIP_DEBUG_DEFAULT, (CE_WARN,
"!fcip: Current fcip version 0x%x does not match"
" fctl version",
fcip_modinfo.ulp_rev));
rval = ENODEV;
break;
default:
FCIP_DEBUG(FCIP_DEBUG_DEFAULT, (CE_WARN,
"!fcip: fc_ulp_add failed with status 0x%x", rval));
rval = ENODEV;
break;
}
FCIP_TNF_UNLOAD(&modlinkage);
return (rval);
}
if ((rval = ddi_soft_state_init(&fcip_softp, sizeof (struct fcip),
FCIP_NUM_INSTANCES)) != 0) {
mutex_destroy(&fcip_global_mutex);
cv_destroy(&fcip_global_cv);
rw_destroy(&fcipstruplock);
(void) fc_ulp_remove(&fcip_modinfo);
FCIP_TNF_UNLOAD(&modlinkage);
return (rval);
}
if ((rval = mod_install(&modlinkage)) != 0) {
FCIP_TNF_UNLOAD(&modlinkage);
(void) fc_ulp_remove(&fcip_modinfo);
mutex_destroy(&fcip_global_mutex);
cv_destroy(&fcip_global_cv);
rw_destroy(&fcipstruplock);
ddi_soft_state_fini(&fcip_softp);
}
return (rval);
}
/*
* Unload the port driver if this was the only ULP loaded and then
* deregister with the transport.
*/
int
_fini(void)
{
int rval;
int rval1;
/*
* Do not permit the module to be unloaded before a port
* attach callback has happened.
*/
mutex_enter(&fcip_global_mutex);
if (fcip_num_attaching || fcip_port_attach_pending) {
mutex_exit(&fcip_global_mutex);
return (EBUSY);
}
mutex_exit(&fcip_global_mutex);
if ((rval = mod_remove(&modlinkage)) != 0) {
return (rval);
}
/*
* unregister with the transport layer
*/
rval1 = fc_ulp_remove(&fcip_modinfo);
/*
* If the ULP was not registered with the transport, init should
* have failed. If transport has no knowledge of our existence
* we should simply bail out and succeed
*/
#ifdef DEBUG
if (rval1 == FC_BADULP) {
FCIP_DEBUG(FCIP_DEBUG_DEFAULT, (CE_WARN,
"fcip: ULP was never registered with the transport"));
rval = ENODEV;
} else if (rval1 == FC_BADTYPE) {
FCIP_DEBUG(FCIP_DEBUG_DEFAULT, (CE_WARN,
"fcip: No ULP of this type 0x%x was registered with "
"transport", fcip_modinfo.ulp_type));
rval = ENODEV;
}
#endif /* DEBUG */
mutex_destroy(&fcip_global_mutex);
rw_destroy(&fcipstruplock);
cv_destroy(&fcip_global_cv);
ddi_soft_state_fini(&fcip_softp);
FCIP_TNF_UNLOAD(&modlinkage);
return (rval);
}
/*
* Info about this loadable module
*/
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* The port attach callback is invoked by the port driver when a FCA
* port comes online and binds with the transport layer. The transport
* then callsback into all ULP modules registered with it. The Port attach
* call back will also provide the ULP module with the Port's WWN and S_ID
*/
/* ARGSUSED */
static int
fcip_port_attach(opaque_t ulp_handle, fc_ulp_port_info_t *port_info,
fc_attach_cmd_t cmd, uint32_t sid)
{
int rval = FC_FAILURE;
int instance;
struct fcip *fptr;
fcip_port_info_t *fport = NULL;
fcip_port_info_t *cur_fport;
fc_portid_t src_id;
switch (cmd) {
case FC_CMD_ATTACH: {
la_wwn_t *ww_pn = NULL;
/*
* It was determined that, as per spec, the lower 48 bits of
* the port-WWN will always be unique. This will make the MAC
* address (i.e the lower 48 bits of the WWN), that IP/ARP
* depend on, unique too. Hence we should be able to remove the
* restriction of attaching to only one of the ports of
* multi port FCAs.
*
* Earlier, fcip used to attach only to qlc module and fail
* silently for attach failures resulting from unknown FCAs or
* unsupported FCA ports. Now, we'll do no such checks.
*/
ww_pn = &port_info->port_pwwn;
FCIP_TNF_PROBE_2((fcip_port_attach, "fcip io", /* CSTYLED */,
tnf_string, msg, "port id bits",
tnf_opaque, nport_id, ww_pn->w.nport_id));
FCIP_DEBUG(FCIP_DEBUG_ATTACH, (CE_NOTE,
"port id bits: 0x%x", ww_pn->w.nport_id));
/*
* A port has come online
*/
mutex_enter(&fcip_global_mutex);
fcip_num_instances++;
fcip_num_attaching++;
if (fcip_port_head == NULL) {
/* OK to sleep here ? */
fport = kmem_zalloc(sizeof (fcip_port_info_t),
KM_NOSLEEP);
if (fport == NULL) {
fcip_num_instances--;
fcip_num_attaching--;
ASSERT(fcip_num_attaching >= 0);
mutex_exit(&fcip_global_mutex);
rval = FC_FAILURE;
cmn_err(CE_WARN, "!fcip(%d): port attach "
"failed: alloc failed",
ddi_get_instance(port_info->port_dip));
goto done;
}
fcip_port_head = fport;
} else {
/*
* traverse the port list and also check for
* duplicate port attaches - Nothing wrong in being
* paranoid Heh Heh.
*/
cur_fport = fcip_port_head;
while (cur_fport != NULL) {
if (cur_fport->fcipp_handle ==
port_info->port_handle) {
fcip_num_instances--;
fcip_num_attaching--;
ASSERT(fcip_num_attaching >= 0);
mutex_exit(&fcip_global_mutex);
FCIP_DEBUG(FCIP_DEBUG_ATTACH, (CE_WARN,
"!fcip(%d): port already "
"attached!!", ddi_get_instance(
port_info->port_dip)));
rval = FC_FAILURE;
goto done;
}
cur_fport = cur_fport->fcipp_next;
}
fport = kmem_zalloc(sizeof (fcip_port_info_t),
KM_NOSLEEP);
if (fport == NULL) {
rval = FC_FAILURE;
fcip_num_instances--;
fcip_num_attaching--;
ASSERT(fcip_num_attaching >= 0);
mutex_exit(&fcip_global_mutex);
cmn_err(CE_WARN, "!fcip(%d): port attach "
"failed: alloc failed",
ddi_get_instance(port_info->port_dip));
goto done;
}
fport->fcipp_next = fcip_port_head;
fcip_port_head = fport;
}
mutex_exit(&fcip_global_mutex);
/*
* now fill in the details about the port itself
*/
fport->fcipp_linkage = *port_info->port_linkage;
fport->fcipp_handle = port_info->port_handle;
fport->fcipp_dip = port_info->port_dip;
fport->fcipp_topology = port_info->port_flags;
fport->fcipp_pstate = port_info->port_state;
fport->fcipp_naa = port_info->port_pwwn.w.naa_id;
bcopy(&port_info->port_pwwn, &fport->fcipp_pwwn,
sizeof (la_wwn_t));
bcopy(&port_info->port_nwwn, &fport->fcipp_nwwn,
sizeof (la_wwn_t));
fport->fcipp_fca_pkt_size = port_info->port_fca_pkt_size;
fport->fcipp_cmd_dma_attr = *port_info->port_cmd_dma_attr;
fport->fcipp_resp_dma_attr = *port_info->port_resp_dma_attr;
fport->fcipp_fca_acc_attr = *port_info->port_acc_attr;
src_id.port_id = sid;
src_id.priv_lilp_posit = 0;
fport->fcipp_sid = src_id;
/*
* allocate soft state for this instance
*/
instance = ddi_get_instance(fport->fcipp_dip);
if (ddi_soft_state_zalloc(fcip_softp,
instance) != DDI_SUCCESS) {
rval = FC_FAILURE;
cmn_err(CE_WARN, "!fcip(%d): port attach failed: "
"soft state alloc failed", instance);
goto failure;
}
fptr = ddi_get_soft_state(fcip_softp, instance);
if (fptr == NULL) {
rval = FC_FAILURE;
cmn_err(CE_WARN, "!fcip(%d): port attach failed: "
"failure to get soft state", instance);
goto failure;
}
/*
* initialize all mutexes and locks required for this module
*/
mutex_init(&fptr->fcip_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&fptr->fcip_ub_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&fptr->fcip_rt_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&fptr->fcip_dest_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&fptr->fcip_sendup_mutex, NULL, MUTEX_DRIVER, NULL);
cv_init(&fptr->fcip_farp_cv, NULL, CV_DRIVER, NULL);
cv_init(&fptr->fcip_sendup_cv, NULL, CV_DRIVER, NULL);
cv_init(&fptr->fcip_ub_cv, NULL, CV_DRIVER, NULL);
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_dip = fport->fcipp_dip; /* parent's dip */
fptr->fcip_instance = instance;
fptr->fcip_ub_upstream = 0;
if (FC_PORT_STATE_MASK(port_info->port_state) ==
FC_STATE_ONLINE) {
fptr->fcip_port_state = FCIP_PORT_ONLINE;
if (fptr->fcip_flags & FCIP_LINK_DOWN) {
fptr->fcip_flags &= ~FCIP_LINK_DOWN;
}
} else {
fptr->fcip_port_state = FCIP_PORT_OFFLINE;
}
fptr->fcip_flags |= FCIP_ATTACHING;
fptr->fcip_port_info = fport;
/*
* Extract our MAC addr from our port's WWN. The lower 48
* bits will be our MAC address
*/
wwn_to_ether(&fport->fcipp_nwwn, &fptr->fcip_macaddr);
fport->fcipp_fcip = fptr;
FCIP_DEBUG(FCIP_DEBUG_ATTACH,
(CE_NOTE, "fcipdest : 0x%lx, rtable : 0x%lx",
(long)(sizeof (fptr->fcip_dest)),
(long)(sizeof (fptr->fcip_rtable))));
bzero(fptr->fcip_dest, sizeof (fptr->fcip_dest));
bzero(fptr->fcip_rtable, sizeof (fptr->fcip_rtable));
/*
* create a taskq to handle sundry jobs for the driver
* This way we can have jobs run in parallel
*/
fptr->fcip_tq = taskq_create("fcip_tasks",
FCIP_NUM_THREADS, MINCLSYSPRI, FCIP_MIN_TASKS,
FCIP_MAX_TASKS, TASKQ_PREPOPULATE);
mutex_exit(&fptr->fcip_mutex);
/*
* create a separate thread to handle all unsolicited
* callback handling. This is because unsolicited_callback
* can happen from an interrupt context and the upstream
* modules can put new messages right back in the same
* thread context. This usually works fine, but sometimes
* we may have to block to obtain the dest struct entries
* for some remote ports.
*/
mutex_enter(&fptr->fcip_sendup_mutex);
if (thread_create(NULL, DEFAULTSTKSZ,
(void (*)())fcip_sendup_thr, (caddr_t)fptr, 0, &p0,
TS_RUN, minclsyspri) == NULL) {
mutex_exit(&fptr->fcip_sendup_mutex);
cmn_err(CE_WARN,
"!unable to create fcip sendup thread for "
" instance: 0x%x", instance);
rval = FC_FAILURE;
goto done;
}
fptr->fcip_sendup_thr_initted = 1;
fptr->fcip_sendup_head = fptr->fcip_sendup_tail = NULL;
mutex_exit(&fptr->fcip_sendup_mutex);
/* Let the attach handler do the rest */
if (fcip_port_attach_handler(fptr) != FC_SUCCESS) {
/*
* We have already cleaned up so return
*/
rval = FC_FAILURE;
cmn_err(CE_WARN, "!fcip(%d): port attach failed",
instance);
goto done;
}
FCIP_DEBUG(FCIP_DEBUG_ATTACH, (CE_CONT,
"!fcip attach for port instance (0x%x) successful",
instance));
rval = FC_SUCCESS;
goto done;
}
case FC_CMD_POWER_UP:
/* FALLTHROUGH */
case FC_CMD_RESUME:
mutex_enter(&fcip_global_mutex);
fport = fcip_port_head;
while (fport != NULL) {
if (fport->fcipp_handle == port_info->port_handle) {
break;
}
fport = fport->fcipp_next;
}
if (fport == NULL) {
rval = FC_SUCCESS;
mutex_exit(&fcip_global_mutex);
goto done;
}
rval = fcip_handle_resume(fport, port_info, cmd);
mutex_exit(&fcip_global_mutex);
goto done;
default:
FCIP_TNF_PROBE_2((fcip_port_attach, "fcip io", /* CSTYLED */,
tnf_string, msg, "unknown command type",
tnf_uint, cmd, cmd));
FCIP_DEBUG(FCIP_DEBUG_ATTACH, (CE_WARN,
"unknown cmd type 0x%x in port_attach", cmd));
rval = FC_FAILURE;
goto done;
}
failure:
if (fport) {
mutex_enter(&fcip_global_mutex);
fcip_num_attaching--;
ASSERT(fcip_num_attaching >= 0);
(void) fcip_softstate_free(fport);
fcip_port_attach_pending = 0;
mutex_exit(&fcip_global_mutex);
}
return (rval);
done:
mutex_enter(&fcip_global_mutex);
fcip_port_attach_pending = 0;
mutex_exit(&fcip_global_mutex);
return (rval);
}
/*
* fcip_port_attach_handler : Completes the port attach operation after
* the ulp_port_attach routine has completed its ground work. The job
* of this function among other things is to obtain and handle topology
* specifics, initialize a port, setup broadcast address entries in
* the fcip tables etc. This routine cleans up behind itself on failures.
* Returns FC_SUCCESS or FC_FAILURE.
*/
static int
fcip_port_attach_handler(struct fcip *fptr)
{
fcip_port_info_t *fport = fptr->fcip_port_info;
int rval = FC_FAILURE;
ASSERT(fport != NULL);
mutex_enter(&fcip_global_mutex);
FCIP_DEBUG(FCIP_DEBUG_ATTACH, (CE_NOTE,
"fcip module dip: %p instance: %d",
(void *)fcip_module_dip, ddi_get_instance(fptr->fcip_dip)));
if (fcip_module_dip == NULL) {
clock_t fcip_lbolt;
fcip_lbolt = ddi_get_lbolt();
/*
* we need to use the fcip devinfo for creating
* the clone device node, but the fcip attach
* (from its conf file entry claiming to be a
* child of pseudo) may not have happened yet.
* wait here for 10 seconds and fail port attach
* if the fcip devinfo is not attached yet
*/
fcip_lbolt += drv_usectohz(FCIP_INIT_DELAY);
FCIP_DEBUG(FCIP_DEBUG_ATTACH,
(CE_WARN, "cv_timedwait lbolt %lx", fcip_lbolt));
(void) cv_timedwait(&fcip_global_cv, &fcip_global_mutex,
fcip_lbolt);
if (fcip_module_dip == NULL) {
mutex_exit(&fcip_global_mutex);
FCIP_DEBUG(FCIP_DEBUG_ATTACH, (CE_WARN,
"fcip attach did not happen"));
goto port_attach_cleanup;
}
}
if ((!fcip_minor_node_created) &&
fcip_is_supported_fc_topology(fport->fcipp_topology)) {
/*
* Checking for same topologies which are considered valid
* by fcip_handle_topology(). Dont create a minor node if
* nothing is hanging off the FC port.
*/
if (ddi_create_minor_node(fcip_module_dip, "fcip", S_IFCHR,
ddi_get_instance(fptr->fcip_dip), DDI_PSEUDO,
CLONE_DEV) == DDI_FAILURE) {
mutex_exit(&fcip_global_mutex);
FCIP_DEBUG(FCIP_DEBUG_ATTACH, (CE_WARN,
"failed to create minor node for fcip(%d)",
ddi_get_instance(fptr->fcip_dip)));
goto port_attach_cleanup;
}
fcip_minor_node_created++;
}
mutex_exit(&fcip_global_mutex);
/*
* initialize port for traffic
*/
if (fcip_init_port(fptr) != FC_SUCCESS) {
/* fcip_init_port has already cleaned up its stuff */
mutex_enter(&fcip_global_mutex);
if ((fcip_num_instances == 1) &&
(fcip_minor_node_created == 1)) {
/* Remove minor node iff this is the last instance */
ddi_remove_minor_node(fcip_module_dip, NULL);
}
mutex_exit(&fcip_global_mutex);
goto port_attach_cleanup;
}
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags &= ~FCIP_ATTACHING;
fptr->fcip_flags |= FCIP_INITED;
fptr->fcip_timeout_ticks = 0;
/*
* start the timeout threads
*/
fptr->fcip_timeout_id = timeout(fcip_timeout, fptr,
drv_usectohz(1000000));
mutex_exit(&fptr->fcip_mutex);
mutex_enter(&fcip_global_mutex);
fcip_num_attaching--;
ASSERT(fcip_num_attaching >= 0);
mutex_exit(&fcip_global_mutex);
rval = FC_SUCCESS;
return (rval);
port_attach_cleanup:
mutex_enter(&fcip_global_mutex);
(void) fcip_softstate_free(fport);
fcip_num_attaching--;
ASSERT(fcip_num_attaching >= 0);
mutex_exit(&fcip_global_mutex);
rval = FC_FAILURE;
return (rval);
}
/*
* Handler for DDI_RESUME operations. Port must be ready to restart IP
* traffic on resume
*/
static int
fcip_handle_resume(fcip_port_info_t *fport, fc_ulp_port_info_t *port_info,
fc_attach_cmd_t cmd)
{
int rval = FC_SUCCESS;
struct fcip *fptr = fport->fcipp_fcip;
struct fcipstr *tslp;
int index;
ASSERT(fptr != NULL);
mutex_enter(&fptr->fcip_mutex);
if (cmd == FC_CMD_POWER_UP) {
fptr->fcip_flags &= ~(FCIP_POWER_DOWN);
if (fptr->fcip_flags & FCIP_SUSPENDED) {
mutex_exit(&fptr->fcip_mutex);
return (FC_SUCCESS);
}
} else if (cmd == FC_CMD_RESUME) {
fptr->fcip_flags &= ~(FCIP_SUSPENDED);
} else {
mutex_exit(&fptr->fcip_mutex);
return (FC_FAILURE);
}
/*
* set the current port state and topology
*/
fport->fcipp_topology = port_info->port_flags;
fport->fcipp_pstate = port_info->port_state;
rw_enter(&fcipstruplock, RW_READER);
for (tslp = fcipstrup; tslp; tslp = tslp->sl_nextp) {
if (tslp->sl_fcip == fptr) {
break;
}
}
rw_exit(&fcipstruplock);
/*
* No active streams on this port
*/
if (tslp == NULL) {
rval = FC_SUCCESS;
goto done;
}
mutex_enter(&fptr->fcip_rt_mutex);
for (index = 0; index < FCIP_RT_HASH_ELEMS; index++) {
struct fcip_routing_table *frp;
frp = fptr->fcip_rtable[index];
while (frp) {
uint32_t did;
/*
* Mark the broadcast RTE available again. It
* was marked SUSPENDED during SUSPEND.
*/
did = fcip_get_broadcast_did(fptr);
if (frp->fcipr_d_id.port_id == did) {
frp->fcipr_state = 0;
index = FCIP_RT_HASH_ELEMS;
break;
}
frp = frp->fcipr_next;
}
}
mutex_exit(&fptr->fcip_rt_mutex);
/*
* fcip_handle_topology will update the port entries in the
* routing table.
* fcip_handle_topology also takes care of resetting the
* fcipr_state field in the routing table structure. The entries
* were set to RT_INVALID during suspend.
*/
fcip_handle_topology(fptr);
done:
/*
* Restart the timeout thread
*/
fptr->fcip_timeout_id = timeout(fcip_timeout, fptr,
drv_usectohz(1000000));
mutex_exit(&fptr->fcip_mutex);
return (rval);
}
/*
* Insert a destination port entry into the routing table for
* this port
*/
static void
fcip_rt_update(struct fcip *fptr, fc_portmap_t *devlist, uint32_t listlen)
{
struct fcip_routing_table *frp;
fcip_port_info_t *fport = fptr->fcip_port_info;
int hash_bucket, i;
fc_portmap_t *pmap;
char wwn_buf[20];
FCIP_TNF_PROBE_2((fcip_rt_update, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter",
tnf_int, listlen, listlen));
ASSERT(!mutex_owned(&fptr->fcip_mutex));
mutex_enter(&fptr->fcip_rt_mutex);
for (i = 0; i < listlen; i++) {
pmap = &(devlist[i]);
frp = fcip_lookup_rtable(fptr, &(pmap->map_pwwn),
FCIP_COMPARE_PWWN);
/*
* If an entry for a port in the devlist exists in the
* in the per port routing table, make sure the data
* is current. We need to do this irrespective of the
* underlying port topology.
*/
switch (pmap->map_type) {
/* FALLTHROUGH */
case PORT_DEVICE_NOCHANGE:
/* FALLTHROUGH */
case PORT_DEVICE_USER_LOGIN:
/* FALLTHROUGH */
case PORT_DEVICE_CHANGED:
/* FALLTHROUGH */
case PORT_DEVICE_NEW:
if (frp == NULL) {
goto add_new_entry;
} else if (frp) {
goto update_entry;
} else {
continue;
}
case PORT_DEVICE_OLD:
/* FALLTHROUGH */
case PORT_DEVICE_USER_LOGOUT:
/*
* Mark entry for removal from Routing Table if
* one exists. Let the timeout thread actually
* remove the entry after we've given up hopes
* of the port ever showing up.
*/
if (frp) {
uint32_t did;
/*
* Mark the routing table as invalid to bail
* the packets early that are in transit
*/
did = fptr->fcip_broadcast_did;
if (frp->fcipr_d_id.port_id != did) {
frp->fcipr_pd = NULL;
frp->fcipr_state = FCIP_RT_INVALID;
frp->fcipr_invalid_timeout =
fptr->fcip_timeout_ticks +
FCIP_RTE_TIMEOUT;
}
}
continue;
default:
FCIP_DEBUG(FCIP_DEBUG_INIT, (CE_WARN,
"unknown map flags in rt_update"));
continue;
}
add_new_entry:
ASSERT(frp == NULL);
hash_bucket = FCIP_RT_HASH(pmap->map_pwwn.raw_wwn);
ASSERT(hash_bucket < FCIP_RT_HASH_ELEMS);
FCIP_TNF_PROBE_2((fcip_rt_update, "cfip io", /* CSTYLED */,
tnf_string, msg,
"add new entry",
tnf_int, hashbucket, hash_bucket));
frp = (struct fcip_routing_table *)
kmem_zalloc(sizeof (struct fcip_routing_table), KM_SLEEP);
/* insert at beginning of hash bucket */
frp->fcipr_next = fptr->fcip_rtable[hash_bucket];
fptr->fcip_rtable[hash_bucket] = frp;
fc_wwn_to_str(&pmap->map_pwwn, wwn_buf);
FCIP_DEBUG(FCIP_DEBUG_ATTACH, (CE_NOTE,
"added entry for pwwn %s and d_id 0x%x",
wwn_buf, pmap->map_did.port_id));
update_entry:
bcopy((void *)&pmap->map_pwwn,
(void *)&frp->fcipr_pwwn, sizeof (la_wwn_t));
bcopy((void *)&pmap->map_nwwn, (void *)&frp->fcipr_nwwn,
sizeof (la_wwn_t));
frp->fcipr_d_id = pmap->map_did;
frp->fcipr_state = pmap->map_state;
frp->fcipr_pd = pmap->map_pd;
/*
* If there is no pd for a destination port that is not
* a broadcast entry, the port is pretty much unusable - so
* mark the port for removal so we can try adding back the
* entry again.
*/
if ((frp->fcipr_pd == NULL) &&
(frp->fcipr_d_id.port_id != fptr->fcip_broadcast_did)) {
frp->fcipr_state = PORT_DEVICE_INVALID;
frp->fcipr_invalid_timeout = fptr->fcip_timeout_ticks +
(FCIP_RTE_TIMEOUT / 2);
}
frp->fcipr_fca_dev =
fc_ulp_get_fca_device(fport->fcipp_handle, pmap->map_did);
/*
* login to the remote port. Don't worry about
* plogi failures for now
*/
if (pmap->map_pd != NULL) {
(void) fcip_do_plogi(fptr, frp);
} else if (FC_TOP_EXTERNAL(fport->fcipp_topology)) {
fc_wwn_to_str(&frp->fcipr_pwwn, wwn_buf);
FCIP_DEBUG(FCIP_DEBUG_MISC, (CE_NOTE,
"logging into pwwn %s, d_id 0x%x",
wwn_buf, frp->fcipr_d_id.port_id));
(void) fcip_do_plogi(fptr, frp);
}
FCIP_TNF_BYTE_ARRAY(fcip_rt_update, "fcip io", "detail",
"new wwn in rt", pwwn,
&frp->fcipr_pwwn, sizeof (la_wwn_t));
}
mutex_exit(&fptr->fcip_rt_mutex);
}
/*
* return a matching routing table entry for a given fcip instance
*/
struct fcip_routing_table *
fcip_lookup_rtable(struct fcip *fptr, la_wwn_t *wwn, int matchflag)
{
struct fcip_routing_table *frp = NULL;
int hash_bucket;
FCIP_TNF_PROBE_1((fcip_lookup_rtable, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter"));
FCIP_TNF_BYTE_ARRAY(fcip_lookup_rtable, "fcip io", "detail",
"rtable lookup for", wwn,
&wwn->raw_wwn, sizeof (la_wwn_t));
FCIP_TNF_PROBE_2((fcip_lookup_rtable, "fcip io", /* CSTYLED */,
tnf_string, msg, "match by",
tnf_int, matchflag, matchflag));
ASSERT(mutex_owned(&fptr->fcip_rt_mutex));
hash_bucket = FCIP_RT_HASH(wwn->raw_wwn);
frp = fptr->fcip_rtable[hash_bucket];
while (frp != NULL) {
FCIP_TNF_BYTE_ARRAY(fcip_lookup_rtable, "fcip io", "detail",
"rtable entry", nwwn,
&(frp->fcipr_nwwn.raw_wwn), sizeof (la_wwn_t));
if (fcip_wwn_compare(&frp->fcipr_pwwn, wwn, matchflag) == 0) {
break;
}
frp = frp->fcipr_next;
}
FCIP_TNF_PROBE_2((fcip_lookup_rtable, "fcip io", /* CSTYLED */,
tnf_string, msg, "lookup result",
tnf_opaque, frp, frp));
return (frp);
}
/*
* Attach of fcip under pseudo. The actual setup of the interface
* actually happens in fcip_port_attach on a callback from the
* transport. The port_attach callback however can proceed only
* after the devinfo for fcip has been created under pseudo
*/
static int
fcip_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
switch ((int)cmd) {
case DDI_ATTACH: {
ASSERT(fcip_module_dip == NULL);
fcip_module_dip = dip;
/*
* this call originates as a result of fcip's conf
* file entry and will result in a fcip instance being
* a child of pseudo. We should ensure here that the port
* driver (fp) has been loaded and initted since we would
* never get a port attach callback without fp being loaded.
* If we are unable to succesfully load and initalize fp -
* just fail this attach.
*/
mutex_enter(&fcip_global_mutex);
FCIP_DEBUG(FCIP_DEBUG_ATTACH,
(CE_WARN, "global cv - signaling"));
cv_signal(&fcip_global_cv);
FCIP_DEBUG(FCIP_DEBUG_ATTACH,
(CE_WARN, "global cv - signaled"));
mutex_exit(&fcip_global_mutex);
return (DDI_SUCCESS);
}
case DDI_RESUME:
/*
* Resume appears trickier
*/
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*
* The detach entry point to permit unloading fcip. We make sure
* there are no active streams before we proceed with the detach
*/
/* ARGSUSED */
static int
fcip_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
struct fcip *fptr;
fcip_port_info_t *fport;
int detached;
switch (cmd) {
case DDI_DETACH: {
/*
* If we got here, any active streams should have been
* unplumbed but check anyway
*/
mutex_enter(&fcip_global_mutex);
if (fcipstrup != NULL) {
mutex_exit(&fcip_global_mutex);
return (DDI_FAILURE);
}
if (fcip_port_head != NULL) {
/*
* Check to see if we have unattached/unbound
* ports. If all the ports are unattached/unbound go
* ahead and unregister with the transport
*/
fport = fcip_port_head;
while (fport != NULL) {
fptr = fport->fcipp_fcip;
if (fptr == NULL) {
continue;
}
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags |= FCIP_DETACHING;
if (fptr->fcip_ipq ||
fptr->fcip_flags & (FCIP_IN_TIMEOUT |
FCIP_IN_CALLBACK | FCIP_ATTACHING |
FCIP_SUSPENDED | FCIP_POWER_DOWN |
FCIP_REG_INPROGRESS)) {
FCIP_TNF_PROBE_1((fcip_detach,
"fcip io", /* CSTYLED */,
tnf_string, msg,
"fcip instance busy"));
mutex_exit(&fptr->fcip_mutex);
FCIP_DEBUG(FCIP_DEBUG_DETACH, (CE_WARN,
"fcip instance busy"));
break;
}
/*
* Check for any outstanding pkts. If yes
* fail the detach
*/
mutex_enter(&fptr->fcip_dest_mutex);
if (fcip_port_get_num_pkts(fptr) > 0) {
mutex_exit(&fptr->fcip_dest_mutex);
mutex_exit(&fptr->fcip_mutex);
FCIP_DEBUG(FCIP_DEBUG_DETACH, (CE_WARN,
"fcip instance busy - pkts "
"pending"));
break;
}
mutex_exit(&fptr->fcip_dest_mutex);
mutex_enter(&fptr->fcip_rt_mutex);
if (fcip_plogi_in_progress(fptr)) {
mutex_exit(&fptr->fcip_rt_mutex);
mutex_exit(&fptr->fcip_mutex);
FCIP_DEBUG(FCIP_DEBUG_DETACH, (CE_WARN,
"fcip instance busy - plogi in "
"progress"));
break;
}
mutex_exit(&fptr->fcip_rt_mutex);
mutex_exit(&fptr->fcip_mutex);
fport = fport->fcipp_next;
}
/*
* if fport is non NULL - we have active ports
*/
if (fport != NULL) {
/*
* Remove the DETACHING flags on the ports
*/
fport = fcip_port_head;
while (fport != NULL) {
fptr = fport->fcipp_fcip;
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags &= ~(FCIP_DETACHING);
mutex_exit(&fptr->fcip_mutex);
fport = fport->fcipp_next;
}
mutex_exit(&fcip_global_mutex);
return (DDI_FAILURE);
}
}
/*
* free up all softstate structures
*/
fport = fcip_port_head;
while (fport != NULL) {
detached = 1;
fptr = fport->fcipp_fcip;
if (fptr) {
mutex_enter(&fptr->fcip_mutex);
/*
* Check to see if somebody beat us to the
* punch
*/
detached = fptr->fcip_flags & FCIP_DETACHED;
fptr->fcip_flags &= ~(FCIP_DETACHING);
fptr->fcip_flags |= FCIP_DETACHED;
mutex_exit(&fptr->fcip_mutex);
}
if (!detached) {
fport = fcip_softstate_free(fport);
} else {
/*
* If the port was marked as detached
* but it was still in the list, that
* means another thread has marked it
* but we got in while it released the
* fcip_global_mutex in softstate_free.
* Given that, we're still safe to use
* fport->fcipp_next to find out what
* the next port on the list is.
*/
fport = fport->fcipp_next;
}
FCIP_DEBUG(FCIP_DEBUG_DETACH,
(CE_NOTE, "detaching port"));
FCIP_TNF_PROBE_1((fcip_detach,
"fcip io", /* CSTYLED */, tnf_string,
msg, "detaching port"));
}
/*
* If we haven't removed all the port structures, we
* aren't yet ready to be detached.
*/
if (fcip_port_head != NULL) {
mutex_exit(&fcip_global_mutex);
return (DDI_FAILURE);
}
fcip_num_instances = 0;
mutex_exit(&fcip_global_mutex);
fcip_module_dip = NULL;
return (DDI_SUCCESS);
}
case DDI_SUSPEND:
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*
* The port_detach callback is called from the transport when a
* FC port is being removed from the transport's control. This routine
* provides fcip with an opportunity to cleanup all activities and
* structures on the port marked for removal.
*/
/* ARGSUSED */
static int
fcip_port_detach(opaque_t ulp_handle, fc_ulp_port_info_t *port_info,
fc_detach_cmd_t cmd)
{
int rval = FC_FAILURE;
fcip_port_info_t *fport;
struct fcip *fptr;
struct fcipstr *strp;
switch (cmd) {
case FC_CMD_DETACH: {
mutex_enter(&fcip_global_mutex);
if (fcip_port_head == NULL) {
/*
* we are all done but our fini has not been
* called yet!! Let's hope we have no active
* fcip instances here. - strange secnario but
* no harm in having this return a success.
*/
fcip_check_remove_minor_node();
mutex_exit(&fcip_global_mutex);
return (FC_SUCCESS);
} else {
/*
* traverse the port list
*/
fport = fcip_port_head;
while (fport != NULL) {
if (fport->fcipp_handle ==
port_info->port_handle) {
fptr = fport->fcipp_fcip;
/*
* Fail the port detach if there is
* still an attached, bound stream on
* this interface.
*/
rw_enter(&fcipstruplock, RW_READER);
for (strp = fcipstrup; strp != NULL;
strp = strp->sl_nextp) {
if (strp->sl_fcip == fptr) {
rw_exit(&fcipstruplock);
mutex_exit(
&fcip_global_mutex);
return (FC_FAILURE);
}
}
rw_exit(&fcipstruplock);
/*
* fail port detach if we are in
* the middle of a deferred port attach
* or if the port has outstanding pkts
*/
if (fptr != NULL) {
mutex_enter(&fptr->fcip_mutex);
if (fcip_check_port_busy
(fptr) ||
(fptr->fcip_flags &
FCIP_DETACHED)) {
mutex_exit(
&fptr->fcip_mutex);
mutex_exit(
&fcip_global_mutex);
return (FC_FAILURE);
}
fptr->fcip_flags |=
FCIP_DETACHED;
mutex_exit(&fptr->fcip_mutex);
}
(void) fcip_softstate_free(fport);
fcip_check_remove_minor_node();
mutex_exit(&fcip_global_mutex);
return (FC_SUCCESS);
}
fport = fport->fcipp_next;
}
ASSERT(fport == NULL);
}
mutex_exit(&fcip_global_mutex);
break;
}
case FC_CMD_POWER_DOWN:
/* FALLTHROUGH */
case FC_CMD_SUSPEND:
mutex_enter(&fcip_global_mutex);
fport = fcip_port_head;
while (fport != NULL) {
if (fport->fcipp_handle == port_info->port_handle) {
break;
}
fport = fport->fcipp_next;
}
if (fport == NULL) {
mutex_exit(&fcip_global_mutex);
break;
}
rval = fcip_handle_suspend(fport, cmd);
mutex_exit(&fcip_global_mutex);
break;
default:
FCIP_DEBUG(FCIP_DEBUG_DETACH,
(CE_WARN, "unknown port detach command!!"));
break;
}
return (rval);
}
/*
* Returns 0 if the port is not busy, else returns non zero.
*/
static int
fcip_check_port_busy(struct fcip *fptr)
{
int rval = 0, num_pkts = 0;
ASSERT(fptr != NULL);
ASSERT(MUTEX_HELD(&fptr->fcip_mutex));
mutex_enter(&fptr->fcip_dest_mutex);
if (fptr->fcip_flags & FCIP_PORT_BUSY ||
((num_pkts = fcip_port_get_num_pkts(fptr)) > 0) ||
fptr->fcip_num_ipkts_pending) {
rval = 1;
FCIP_DEBUG(FCIP_DEBUG_DETACH,
(CE_NOTE, "!fcip_check_port_busy: port is busy "
"fcip_flags: 0x%x, num_pkts: 0x%x, ipkts_pending: 0x%lx!",
fptr->fcip_flags, num_pkts, fptr->fcip_num_ipkts_pending));
}
mutex_exit(&fptr->fcip_dest_mutex);
return (rval);
}
/*
* Helper routine to remove fcip's minor node
* There is one minor node per system and it should be removed if there are no
* other fcip instances (which has a 1:1 mapping for fp instances) present
*/
static void
fcip_check_remove_minor_node(void)
{
ASSERT(MUTEX_HELD(&fcip_global_mutex));
/*
* If there are no more fcip (fp) instances, remove the
* minor node for fcip.
* Reset fcip_minor_node_created to invalidate it.
*/
if (fcip_num_instances == 0 && (fcip_module_dip != NULL)) {
ddi_remove_minor_node(fcip_module_dip, NULL);
fcip_minor_node_created = 0;
}
}
/*
* This routine permits the suspend operation during a CPR/System
* power management operation. The routine basically quiesces I/Os
* on all active interfaces
*/
static int
fcip_handle_suspend(fcip_port_info_t *fport, fc_detach_cmd_t cmd)
{
struct fcip *fptr = fport->fcipp_fcip;
timeout_id_t tid;
int index;
int tryagain = 0;
int count;
struct fcipstr *tslp;
ASSERT(fptr != NULL);
mutex_enter(&fptr->fcip_mutex);
/*
* Fail if we are in the middle of a callback. Don't use delay during
* suspend since clock intrs are not available so busy wait
*/
count = 0;
while (count++ < 15 &&
((fptr->fcip_flags & FCIP_IN_CALLBACK) ||
(fptr->fcip_flags & FCIP_IN_TIMEOUT))) {
mutex_exit(&fptr->fcip_mutex);
drv_usecwait(1000000);
mutex_enter(&fptr->fcip_mutex);
}
if (fptr->fcip_flags & FCIP_IN_CALLBACK ||
fptr->fcip_flags & FCIP_IN_TIMEOUT) {
mutex_exit(&fptr->fcip_mutex);
return (FC_FAILURE);
}
if (cmd == FC_CMD_POWER_DOWN) {
if (fptr->fcip_flags & FCIP_SUSPENDED) {
fptr->fcip_flags |= FCIP_POWER_DOWN;
mutex_exit(&fptr->fcip_mutex);
goto success;
} else {
fptr->fcip_flags |= FCIP_POWER_DOWN;
}
} else if (cmd == FC_CMD_SUSPEND) {
fptr->fcip_flags |= FCIP_SUSPENDED;
} else {
mutex_exit(&fptr->fcip_mutex);
return (FC_FAILURE);
}
mutex_exit(&fptr->fcip_mutex);
/*
* If no streams are plumbed - its the easiest case - Just
* bail out without having to do much
*/
rw_enter(&fcipstruplock, RW_READER);
for (tslp = fcipstrup; tslp; tslp = tslp->sl_nextp) {
if (tslp->sl_fcip == fptr) {
break;
}
}
rw_exit(&fcipstruplock);
/*
* No active streams on this port
*/
if (tslp == NULL) {
goto success;
}
/*
* Walk through each Routing table structure and check if
* the destination table has any outstanding commands. If yes
* wait for the commands to drain. Since we go through each
* routing table entry in succession, it may be wise to wait
* only a few seconds for each entry.
*/
mutex_enter(&fptr->fcip_rt_mutex);
while (!tryagain) {
tryagain = 0;
for (index = 0; index < FCIP_RT_HASH_ELEMS; index++) {
struct fcip_routing_table *frp;
struct fcip_dest *fdestp;
la_wwn_t *pwwn;
int hash_bucket;
frp = fptr->fcip_rtable[index];
while (frp) {
/*
* Mark the routing table as SUSPENDED. Even
* mark the broadcast entry SUSPENDED to
* prevent any ARP or other broadcasts. We
* can reset the state of the broadcast
* RTE when we resume.
*/
frp->fcipr_state = FCIP_RT_SUSPENDED;
pwwn = &frp->fcipr_pwwn;
/*
* Get hold of destination pointer
*/
mutex_enter(&fptr->fcip_dest_mutex);
hash_bucket = FCIP_DEST_HASH(pwwn->raw_wwn);
ASSERT(hash_bucket < FCIP_DEST_HASH_ELEMS);
fdestp = fptr->fcip_dest[hash_bucket];
while (fdestp != NULL) {
mutex_enter(&fdestp->fcipd_mutex);
if (fdestp->fcipd_rtable) {
if (fcip_wwn_compare(pwwn,
&fdestp->fcipd_pwwn,
FCIP_COMPARE_PWWN) == 0) {
mutex_exit(
&fdestp->fcipd_mutex);
break;
}
}
mutex_exit(&fdestp->fcipd_mutex);
fdestp = fdestp->fcipd_next;
}
mutex_exit(&fptr->fcip_dest_mutex);
if (fdestp == NULL) {
frp = frp->fcipr_next;
continue;
}
/*
* Wait for fcip_wait_cmds seconds for
* the commands to drain.
*/
count = 0;
mutex_enter(&fdestp->fcipd_mutex);
while (fdestp->fcipd_ncmds &&
count < fcip_wait_cmds) {
mutex_exit(&fdestp->fcipd_mutex);
mutex_exit(&fptr->fcip_rt_mutex);
drv_usecwait(1000000);
mutex_enter(&fptr->fcip_rt_mutex);
mutex_enter(&fdestp->fcipd_mutex);
count++;
}
/*
* Check if we were able to drain all cmds
* successfully. Else continue with other
* ports and try during the second pass
*/
if (fdestp->fcipd_ncmds) {
tryagain++;
}
mutex_exit(&fdestp->fcipd_mutex);
frp = frp->fcipr_next;
}
}
if (tryagain == 0) {
break;
}
}
mutex_exit(&fptr->fcip_rt_mutex);
if (tryagain) {
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags &= ~(FCIP_SUSPENDED | FCIP_POWER_DOWN);
mutex_exit(&fptr->fcip_mutex);
return (FC_FAILURE);
}
success:
mutex_enter(&fptr->fcip_mutex);
tid = fptr->fcip_timeout_id;
fptr->fcip_timeout_id = NULL;
mutex_exit(&fptr->fcip_mutex);
(void) untimeout(tid);
return (FC_SUCCESS);
}
/*
* the getinfo(9E) entry point
*/
/* ARGSUSED */
static int
fcip_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
{
int rval = DDI_FAILURE;
switch (cmd) {
case DDI_INFO_DEVT2DEVINFO:
*result = fcip_module_dip;
if (*result)
rval = DDI_SUCCESS;
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)0;
rval = DDI_SUCCESS;
break;
default:
break;
}
return (rval);
}
/*
* called from fcip_attach to initialize kstats for the link
*/
/* ARGSUSED */
static void
fcip_kstat_init(struct fcip *fptr)
{
int instance;
char buf[16];
struct fcipstat *fcipstatp;
ASSERT(mutex_owned(&fptr->fcip_mutex));
instance = ddi_get_instance(fptr->fcip_dip);
(void) sprintf(buf, "fcip%d", instance);
#ifdef kstat
fptr->fcip_kstatp = kstat_create("fcip", instance, buf, "net",
KSTAT_TYPE_NAMED,
(sizeof (struct fcipstat)/ sizeof (kstat_named_t)),
KSTAT_FLAG_PERSISTENT);
#else
fptr->fcip_kstatp = kstat_create("fcip", instance, buf, "net",
KSTAT_TYPE_NAMED,
(sizeof (struct fcipstat)/ sizeof (kstat_named_t)), 0);
#endif
if (fptr->fcip_kstatp == NULL) {
FCIP_DEBUG(FCIP_DEBUG_INIT, (CE_WARN, "kstat created failed"));
return;
}
fcipstatp = (struct fcipstat *)fptr->fcip_kstatp->ks_data;
kstat_named_init(&fcipstatp->fcips_ipackets, "ipackets",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_ierrors, "ierrors",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_opackets, "opackets",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_oerrors, "oerrors",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_collisions, "collisions",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_nocanput, "nocanput",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_allocbfail, "allocbfail",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_defer, "defer",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_fram, "fram",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_crc, "crc",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_oflo, "oflo",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_uflo, "uflo",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_missed, "missed",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_tlcol, "tlcol",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_trtry, "trtry",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_tnocar, "tnocar",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_inits, "inits",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_notbufs, "notbufs",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_norbufs, "norbufs",
KSTAT_DATA_ULONG);
kstat_named_init(&fcipstatp->fcips_allocbfail, "allocbfail",
KSTAT_DATA_ULONG);
/*
* required by kstat for MIB II objects(RFC 1213)
*/
kstat_named_init(&fcipstatp->fcips_rcvbytes, "fcips_rcvbytes",
KSTAT_DATA_ULONG); /* # octets received */
/* MIB - ifInOctets */
kstat_named_init(&fcipstatp->fcips_xmtbytes, "fcips_xmtbytes",
KSTAT_DATA_ULONG); /* # octets xmitted */
/* MIB - ifOutOctets */
kstat_named_init(&fcipstatp->fcips_multircv, "fcips_multircv",
KSTAT_DATA_ULONG); /* # multicast packets */
/* delivered to upper layer */
/* MIB - ifInNUcastPkts */
kstat_named_init(&fcipstatp->fcips_multixmt, "fcips_multixmt",
KSTAT_DATA_ULONG); /* # multicast packets */
/* requested to be sent */
/* MIB - ifOutNUcastPkts */
kstat_named_init(&fcipstatp->fcips_brdcstrcv, "fcips_brdcstrcv",
KSTAT_DATA_ULONG); /* # broadcast packets */
/* delivered to upper layer */
/* MIB - ifInNUcastPkts */
kstat_named_init(&fcipstatp->fcips_brdcstxmt, "fcips_brdcstxmt",
KSTAT_DATA_ULONG); /* # broadcast packets */
/* requested to be sent */
/* MIB - ifOutNUcastPkts */
kstat_named_init(&fcipstatp->fcips_norcvbuf, "fcips_norcvbuf",
KSTAT_DATA_ULONG); /* # rcv packets discarded */
/* MIB - ifInDiscards */
kstat_named_init(&fcipstatp->fcips_noxmtbuf, "fcips_noxmtbuf",
KSTAT_DATA_ULONG); /* # xmt packets discarded */
fptr->fcip_kstatp->ks_update = fcip_stat_update;
fptr->fcip_kstatp->ks_private = (void *) fptr;
kstat_install(fptr->fcip_kstatp);
}
/*
* Update the defined kstats for netstat et al to use
*/
/* ARGSUSED */
static int
fcip_stat_update(kstat_t *fcip_statp, int val)
{
struct fcipstat *fcipstatp;
struct fcip *fptr;
fptr = (struct fcip *)fcip_statp->ks_private;
fcipstatp = (struct fcipstat *)fcip_statp->ks_data;
if (val == KSTAT_WRITE) {
fptr->fcip_ipackets = fcipstatp->fcips_ipackets.value.ul;
fptr->fcip_ierrors = fcipstatp->fcips_ierrors.value.ul;
fptr->fcip_opackets = fcipstatp->fcips_opackets.value.ul;
fptr->fcip_oerrors = fcipstatp->fcips_oerrors.value.ul;
fptr->fcip_collisions = fcipstatp->fcips_collisions.value.ul;
fptr->fcip_defer = fcipstatp->fcips_defer.value.ul;
fptr->fcip_fram = fcipstatp->fcips_fram.value.ul;
fptr->fcip_crc = fcipstatp->fcips_crc.value.ul;
fptr->fcip_oflo = fcipstatp->fcips_oflo.value.ul;
fptr->fcip_uflo = fcipstatp->fcips_uflo.value.ul;
fptr->fcip_missed = fcipstatp->fcips_missed.value.ul;
fptr->fcip_tlcol = fcipstatp->fcips_tlcol.value.ul;
fptr->fcip_trtry = fcipstatp->fcips_trtry.value.ul;
fptr->fcip_tnocar = fcipstatp->fcips_tnocar.value.ul;
fptr->fcip_inits = fcipstatp->fcips_inits.value.ul;
fptr->fcip_notbufs = fcipstatp->fcips_notbufs.value.ul;
fptr->fcip_norbufs = fcipstatp->fcips_norbufs.value.ul;
fptr->fcip_nocanput = fcipstatp->fcips_nocanput.value.ul;
fptr->fcip_allocbfail = fcipstatp->fcips_allocbfail.value.ul;
fptr->fcip_rcvbytes = fcipstatp->fcips_rcvbytes.value.ul;
fptr->fcip_xmtbytes = fcipstatp->fcips_xmtbytes.value.ul;
fptr->fcip_multircv = fcipstatp->fcips_multircv.value.ul;
fptr->fcip_multixmt = fcipstatp->fcips_multixmt.value.ul;
fptr->fcip_brdcstrcv = fcipstatp->fcips_brdcstrcv.value.ul;
fptr->fcip_norcvbuf = fcipstatp->fcips_norcvbuf.value.ul;
fptr->fcip_noxmtbuf = fcipstatp->fcips_noxmtbuf.value.ul;
fptr->fcip_allocbfail = fcipstatp->fcips_allocbfail.value.ul;
fptr->fcip_allocbfail = fcipstatp->fcips_allocbfail.value.ul;
fptr->fcip_allocbfail = fcipstatp->fcips_allocbfail.value.ul;
fptr->fcip_allocbfail = fcipstatp->fcips_allocbfail.value.ul;
fptr->fcip_allocbfail = fcipstatp->fcips_allocbfail.value.ul;
fptr->fcip_allocbfail = fcipstatp->fcips_allocbfail.value.ul;
fptr->fcip_allocbfail = fcipstatp->fcips_allocbfail.value.ul;
fptr->fcip_allocbfail = fcipstatp->fcips_allocbfail.value.ul;
} else {
fcipstatp->fcips_ipackets.value.ul = fptr->fcip_ipackets;
fcipstatp->fcips_ierrors.value.ul = fptr->fcip_ierrors;
fcipstatp->fcips_opackets.value.ul = fptr->fcip_opackets;
fcipstatp->fcips_oerrors.value.ul = fptr->fcip_oerrors;
fcipstatp->fcips_collisions.value.ul = fptr->fcip_collisions;
fcipstatp->fcips_nocanput.value.ul = fptr->fcip_nocanput;
fcipstatp->fcips_allocbfail.value.ul = fptr->fcip_allocbfail;
fcipstatp->fcips_defer.value.ul = fptr->fcip_defer;
fcipstatp->fcips_fram.value.ul = fptr->fcip_fram;
fcipstatp->fcips_crc.value.ul = fptr->fcip_crc;
fcipstatp->fcips_oflo.value.ul = fptr->fcip_oflo;
fcipstatp->fcips_uflo.value.ul = fptr->fcip_uflo;
fcipstatp->fcips_missed.value.ul = fptr->fcip_missed;
fcipstatp->fcips_tlcol.value.ul = fptr->fcip_tlcol;
fcipstatp->fcips_trtry.value.ul = fptr->fcip_trtry;
fcipstatp->fcips_tnocar.value.ul = fptr->fcip_tnocar;
fcipstatp->fcips_inits.value.ul = fptr->fcip_inits;
fcipstatp->fcips_norbufs.value.ul = fptr->fcip_norbufs;
fcipstatp->fcips_notbufs.value.ul = fptr->fcip_notbufs;
fcipstatp->fcips_rcvbytes.value.ul = fptr->fcip_rcvbytes;
fcipstatp->fcips_xmtbytes.value.ul = fptr->fcip_xmtbytes;
fcipstatp->fcips_multircv.value.ul = fptr->fcip_multircv;
fcipstatp->fcips_multixmt.value.ul = fptr->fcip_multixmt;
fcipstatp->fcips_brdcstrcv.value.ul = fptr->fcip_brdcstrcv;
fcipstatp->fcips_brdcstxmt.value.ul = fptr->fcip_brdcstxmt;
fcipstatp->fcips_norcvbuf.value.ul = fptr->fcip_norcvbuf;
fcipstatp->fcips_noxmtbuf.value.ul = fptr->fcip_noxmtbuf;
}
return (0);
}
/*
* fcip_statec_cb: handles all required state change callback notifications
* it receives from the transport
*/
/* ARGSUSED */
static void
fcip_statec_cb(opaque_t ulp_handle, opaque_t phandle,
uint32_t port_state, uint32_t port_top, fc_portmap_t changelist[],
uint32_t listlen, uint32_t sid)
{
fcip_port_info_t *fport;
struct fcip *fptr;
struct fcipstr *slp;
queue_t *wrq;
int instance;
int index;
struct fcip_routing_table *frtp;
fport = fcip_get_port(phandle);
if (fport == NULL) {
return;
}
fptr = fport->fcipp_fcip;
ASSERT(fptr != NULL);
if (fptr == NULL) {
return;
}
instance = ddi_get_instance(fport->fcipp_dip);
FCIP_TNF_PROBE_4((fcip_statec_cb, "fcip io", /* CSTYLED */,
tnf_string, msg, "state change callback",
tnf_uint, instance, instance,
tnf_uint, S_ID, sid,
tnf_int, count, listlen));
FCIP_DEBUG(FCIP_DEBUG_ELS,
(CE_NOTE, "fcip%d, state change callback: state:0x%x, "
"S_ID:0x%x, count:0x%x", instance, port_state, sid, listlen));
mutex_enter(&fptr->fcip_mutex);
if ((fptr->fcip_flags & (FCIP_DETACHING | FCIP_DETACHED)) ||
(fptr->fcip_flags & (FCIP_SUSPENDED | FCIP_POWER_DOWN))) {
mutex_exit(&fptr->fcip_mutex);
return;
}
/*
* set fcip flags to indicate we are in the middle of a
* state change callback so we can wait till the statechange
* is handled before succeeding/failing the SUSPEND/POWER DOWN.
*/
fptr->fcip_flags |= FCIP_IN_SC_CB;
fport->fcipp_pstate = port_state;
/*
* Check if topology changed. If Yes - Modify the broadcast
* RTE entries to understand the new broadcast D_IDs
*/
if (fport->fcipp_topology != port_top &&
(port_top != FC_TOP_UNKNOWN)) {
/* REMOVE later */
FCIP_DEBUG(FCIP_DEBUG_ELS, (CE_NOTE,
"topology changed: Old topology: 0x%x New topology 0x%x",
fport->fcipp_topology, port_top));
/*
* If topology changed - attempt a rediscovery of
* devices. Helps specially in Fabric/Public loops
* and if on_demand_node_creation is disabled
*/
fport->fcipp_topology = port_top;
fcip_handle_topology(fptr);
}
mutex_exit(&fptr->fcip_mutex);
switch (FC_PORT_STATE_MASK(port_state)) {
case FC_STATE_ONLINE:
/* FALLTHROUGH */
case FC_STATE_LIP:
/* FALLTHROUGH */
case FC_STATE_LIP_LBIT_SET:
/*
* nothing to do here actually other than if we
* were actually logged onto a port in the devlist
* (which indicates active communication between
* the host port and the port in the changelist).
* If however we are in a private loop or point to
* point mode, we need to check for any IP capable
* ports and update our routing table.
*/
switch (port_top) {
case FC_TOP_FABRIC:
/*
* This indicates a fabric port with a NameServer.
* Check the devlist to see if we are in active
* communication with a port on the devlist.
*/
FCIP_DEBUG(FCIP_DEBUG_ELS, (CE_NOTE,
"Statec_cb: fabric topology"));
fcip_rt_update(fptr, changelist, listlen);
break;
case FC_TOP_NO_NS:
/*
* No nameserver - so treat it like a Private loop
* or point to point topology and get a map of
* devices on the link and get IP capable ports to
* to update the routing table.
*/
FCIP_DEBUG(FCIP_DEBUG_ELS,
(CE_NOTE, "Statec_cb: NO_NS topology"));
/* FALLTHROUGH */
case FC_TOP_PRIVATE_LOOP:
FCIP_DEBUG(FCIP_DEBUG_ELS, (CE_NOTE,
"Statec_cb: Pvt_Loop topology"));
/* FALLTHROUGH */
case FC_TOP_PT_PT:
/*
* call get_port_map() and update routing table
*/
fcip_rt_update(fptr, changelist, listlen);
break;
default:
FCIP_DEBUG(FCIP_DEBUG_ELS,
(CE_NOTE, "Statec_cb: Unknown topology"));
}
/*
* We should now enable the Queues and permit I/Os
* to flow through downstream. The update of routing
* table should have flushed out any port entries that
* don't exist or are not available after the state change
*/
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_port_state = FCIP_PORT_ONLINE;
if (fptr->fcip_flags & FCIP_LINK_DOWN) {
fptr->fcip_flags &= ~FCIP_LINK_DOWN;
}
mutex_exit(&fptr->fcip_mutex);
/*
* Enable write queues
*/
rw_enter(&fcipstruplock, RW_READER);
for (slp = fcipstrup; slp != NULL; slp = slp->sl_nextp) {
if (slp && slp->sl_fcip == fptr) {
wrq = WR(slp->sl_rq);
if (wrq->q_flag & QFULL) {
qenable(wrq);
}
}
}
rw_exit(&fcipstruplock);
break;
case FC_STATE_OFFLINE:
/*
* mark the port_state OFFLINE and wait for it to
* become online. Any new messages in this state will
* simply be queued back up. If the port does not
* come online in a short while, we can begin failing
* messages and flush the routing table
*/
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_mark_offline = fptr->fcip_timeout_ticks +
FCIP_OFFLINE_TIMEOUT;
fptr->fcip_port_state = FCIP_PORT_OFFLINE;
mutex_exit(&fptr->fcip_mutex);
/*
* Mark all Routing table entries as invalid to prevent
* any commands from trickling through to ports that
* have disappeared from under us
*/
mutex_enter(&fptr->fcip_rt_mutex);
for (index = 0; index < FCIP_RT_HASH_ELEMS; index++) {
frtp = fptr->fcip_rtable[index];
while (frtp) {
frtp->fcipr_state = PORT_DEVICE_INVALID;
frtp = frtp->fcipr_next;
}
}
mutex_exit(&fptr->fcip_rt_mutex);
break;
case FC_STATE_RESET_REQUESTED:
/*
* Release all Unsolicited buffers back to transport/FCA.
* This also means the port state is marked offline - so
* we may have to do what OFFLINE state requires us to do.
* Care must be taken to wait for any active unsolicited
* buffer with the other Streams modules - so wait for
* a freeb if the unsolicited buffer is passed back all
* the way upstream.
*/
mutex_enter(&fptr->fcip_mutex);
#ifdef FCIP_ESBALLOC
while (fptr->fcip_ub_upstream) {
cv_wait(&fptr->fcip_ub_cv, &fptr->fcip_mutex);
}
#endif /* FCIP_ESBALLOC */
fptr->fcip_mark_offline = fptr->fcip_timeout_ticks +
FCIP_OFFLINE_TIMEOUT;
fptr->fcip_port_state = FCIP_PORT_OFFLINE;
mutex_exit(&fptr->fcip_mutex);
break;
case FC_STATE_DEVICE_CHANGE:
if (listlen) {
fcip_rt_update(fptr, changelist, listlen);
}
break;
case FC_STATE_RESET:
/*
* Not much to do I guess - wait for port to become
* ONLINE. If the port doesn't become online in a short
* while, the upper layers abort any request themselves.
* We can just putback the messages in the streams queues
* if the link is offline
*/
break;
}
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags &= ~(FCIP_IN_SC_CB);
mutex_exit(&fptr->fcip_mutex);
}
/*
* Given a port handle, return the fcip_port_info structure corresponding
* to that port handle. The transport allocates and communicates with
* ULPs using port handles
*/
static fcip_port_info_t *
fcip_get_port(opaque_t phandle)
{
fcip_port_info_t *fport;
ASSERT(phandle != NULL);
mutex_enter(&fcip_global_mutex);
fport = fcip_port_head;
while (fport != NULL) {
if (fport->fcipp_handle == phandle) {
/* found */
break;
}
fport = fport->fcipp_next;
}
mutex_exit(&fcip_global_mutex);
return (fport);
}
/*
* Handle inbound ELS requests received by the transport. We are only
* intereseted in FARP/InARP mostly.
*/
/* ARGSUSED */
static int
fcip_els_cb(opaque_t ulp_handle, opaque_t phandle,
fc_unsol_buf_t *buf, uint32_t claimed)
{
fcip_port_info_t *fport;
struct fcip *fptr;
int instance;
uchar_t r_ctl;
uchar_t ls_code;
la_els_farp_t farp_cmd;
la_els_farp_t *fcmd;
int rval = FC_UNCLAIMED;
fport = fcip_get_port(phandle);
if (fport == NULL) {
return (FC_UNCLAIMED);
}
fptr = fport->fcipp_fcip;
ASSERT(fptr != NULL);
if (fptr == NULL) {
return (FC_UNCLAIMED);
}
instance = ddi_get_instance(fport->fcipp_dip);
mutex_enter(&fptr->fcip_mutex);
if ((fptr->fcip_flags & (FCIP_DETACHING | FCIP_DETACHED)) ||
(fptr->fcip_flags & (FCIP_SUSPENDED | FCIP_POWER_DOWN))) {
mutex_exit(&fptr->fcip_mutex);
return (FC_UNCLAIMED);
}
/*
* set fcip flags to indicate we are in the middle of a
* ELS callback so we can wait till the statechange
* is handled before succeeding/failing the SUSPEND/POWER DOWN.
*/
fptr->fcip_flags |= FCIP_IN_ELS_CB;
mutex_exit(&fptr->fcip_mutex);
FCIP_TNF_PROBE_2((fcip_els_cb, "fcip io", /* CSTYLED */,
tnf_string, msg, "ELS callback",
tnf_uint, instance, instance));
FCIP_DEBUG(FCIP_DEBUG_ELS,
(CE_NOTE, "fcip%d, ELS callback , ", instance));
r_ctl = buf->ub_frame.r_ctl;
switch (r_ctl & R_CTL_ROUTING) {
case R_CTL_EXTENDED_SVC:
if (r_ctl == R_CTL_ELS_REQ) {
ls_code = buf->ub_buffer[0];
if (ls_code == LA_ELS_FARP_REQ) {
/*
* Inbound FARP broadcast request
*/
if (buf->ub_bufsize != sizeof (la_els_farp_t)) {
FCIP_DEBUG(FCIP_DEBUG_ELS, (CE_WARN,
"Invalid FARP req buffer size "
"expected 0x%lx, got 0x%x",
(long)(sizeof (la_els_farp_t)),
buf->ub_bufsize));
rval = FC_UNCLAIMED;
goto els_cb_done;
}
fcmd = (la_els_farp_t *)buf;
if (fcip_wwn_compare(&fcmd->resp_nwwn,
&fport->fcipp_nwwn,
FCIP_COMPARE_NWWN) != 0) {
rval = FC_UNCLAIMED;
goto els_cb_done;
}
/*
* copy the FARP request and release the
* unsolicited buffer
*/
fcmd = &farp_cmd;
bcopy((void *)buf, (void *)fcmd,
sizeof (la_els_farp_t));
(void) fc_ulp_ubrelease(fport->fcipp_handle, 1,
&buf->ub_token);
if (fcip_farp_supported &&
fcip_handle_farp_request(fptr, fcmd) ==
FC_SUCCESS) {
/*
* We successfully sent out a FARP
* reply to the requesting port
*/
rval = FC_SUCCESS;
goto els_cb_done;
} else {
rval = FC_UNCLAIMED;
goto els_cb_done;
}
}
} else if (r_ctl == R_CTL_ELS_RSP) {
ls_code = buf->ub_buffer[0];
if (ls_code == LA_ELS_FARP_REPLY) {
/*
* We received a REPLY to our FARP request
*/
if (buf->ub_bufsize != sizeof (la_els_farp_t)) {
FCIP_DEBUG(FCIP_DEBUG_ELS, (CE_WARN,
"Invalid FARP req buffer size "
"expected 0x%lx, got 0x%x",
(long)(sizeof (la_els_farp_t)),
buf->ub_bufsize));
rval = FC_UNCLAIMED;
goto els_cb_done;
}
fcmd = &farp_cmd;
bcopy((void *)buf, (void *)fcmd,
sizeof (la_els_farp_t));
(void) fc_ulp_ubrelease(fport->fcipp_handle, 1,
&buf->ub_token);
if (fcip_farp_supported &&
fcip_handle_farp_response(fptr, fcmd) ==
FC_SUCCESS) {
FCIP_DEBUG(FCIP_DEBUG_ELS, (CE_NOTE,
"Successfully recevied a FARP "
"response"));
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_farp_rsp_flag = 1;
cv_signal(&fptr->fcip_farp_cv);
mutex_exit(&fptr->fcip_mutex);
rval = FC_SUCCESS;
goto els_cb_done;
} else {
FCIP_DEBUG(FCIP_DEBUG_ELS, (CE_WARN,
"Unable to handle a FARP response "
"receive"));
rval = FC_UNCLAIMED;
goto els_cb_done;
}
}
}
break;
default:
break;
}
els_cb_done:
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags &= ~(FCIP_IN_ELS_CB);
mutex_exit(&fptr->fcip_mutex);
return (rval);
}
/*
* Handle inbound FARP requests
*/
static int
fcip_handle_farp_request(struct fcip *fptr, la_els_farp_t *fcmd)
{
fcip_pkt_t *fcip_pkt;
fc_packet_t *fc_pkt;
fcip_port_info_t *fport = fptr->fcip_port_info;
int rval = FC_FAILURE;
opaque_t fca_dev;
fc_portmap_t map;
struct fcip_routing_table *frp;
struct fcip_dest *fdestp;
/*
* Add an entry for the remote port into our routing and destination
* tables.
*/
map.map_did = fcmd->req_id;
map.map_hard_addr.hard_addr = fcmd->req_id.port_id;
map.map_state = PORT_DEVICE_VALID;
map.map_type = PORT_DEVICE_NEW;
map.map_flags = 0;
map.map_pd = NULL;
bcopy((void *)&fcmd->req_pwwn, (void *)&map.map_pwwn,
sizeof (la_wwn_t));
bcopy((void *)&fcmd->req_nwwn, (void *)&map.map_nwwn,
sizeof (la_wwn_t));
fcip_rt_update(fptr, &map, 1);
mutex_enter(&fptr->fcip_rt_mutex);
frp = fcip_lookup_rtable(fptr, &fcmd->req_pwwn, FCIP_COMPARE_NWWN);
mutex_exit(&fptr->fcip_rt_mutex);
fdestp = fcip_add_dest(fptr, frp);
fcip_pkt = fcip_ipkt_alloc(fptr, sizeof (la_els_farp_t),
sizeof (la_els_farp_t), NULL, KM_SLEEP);
if (fcip_pkt == NULL) {
rval = FC_FAILURE;
goto farp_done;
}
/*
* Fill in our port's PWWN and NWWN
*/
fcmd->resp_pwwn = fport->fcipp_pwwn;
fcmd->resp_nwwn = fport->fcipp_nwwn;
fcip_init_unicast_pkt(fcip_pkt, fport->fcipp_sid,
fcmd->req_id, NULL);
fca_dev =
fc_ulp_get_fca_device(fport->fcipp_handle, fcmd->req_id);
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
fc_pkt->pkt_cmd_fhdr.r_ctl = R_CTL_ELS_RSP;
fc_pkt->pkt_fca_device = fca_dev;
fcip_pkt->fcip_pkt_dest = fdestp;
/*
* Attempt a PLOGI again
*/
if (fcmd->resp_flags & FARP_INIT_P_LOGI) {
if (fcip_do_plogi(fptr, frp) != FC_SUCCESS) {
/*
* Login to the remote port failed. There is no
* point continuing with the FARP request further
* so bail out here.
*/
frp->fcipr_state = PORT_DEVICE_INVALID;
rval = FC_FAILURE;
goto farp_done;
}
}
FCIP_CP_OUT(fcmd, fc_pkt->pkt_cmd, fc_pkt->pkt_cmd_acc,
sizeof (la_els_farp_t));
rval = fc_ulp_issue_els(fport->fcipp_handle, fc_pkt);
if (rval != FC_SUCCESS) {
FCIP_TNF_PROBE_2((fcip_handle_farp_request, "fcip io",
/* CSTYLED */, tnf_string, msg,
"fcip_transport of farp reply failed",
tnf_uint, rval, rval));
FCIP_DEBUG(FCIP_DEBUG_ELS, (CE_WARN,
"fcip_transport of farp reply failed 0x%x", rval));
}
farp_done:
return (rval);
}
/*
* Handle FARP responses to our FARP requests. When we receive a FARP
* reply, we need to add the entry for the Port that replied into our
* routing and destination hash tables. It is possible that the remote
* port did not login into us (FARP responses can be received without
* a PLOGI)
*/
static int
fcip_handle_farp_response(struct fcip *fptr, la_els_farp_t *fcmd)
{
int rval = FC_FAILURE;
fc_portmap_t map;
struct fcip_routing_table *frp;
struct fcip_dest *fdestp;
/*
* Add an entry for the remote port into our routing and destination
* tables.
*/
map.map_did = fcmd->dest_id;
map.map_hard_addr.hard_addr = fcmd->dest_id.port_id;
map.map_state = PORT_DEVICE_VALID;
map.map_type = PORT_DEVICE_NEW;
map.map_flags = 0;
map.map_pd = NULL;
bcopy((void *)&fcmd->resp_pwwn, (void *)&map.map_pwwn,
sizeof (la_wwn_t));
bcopy((void *)&fcmd->resp_nwwn, (void *)&map.map_nwwn,
sizeof (la_wwn_t));
fcip_rt_update(fptr, &map, 1);
mutex_enter(&fptr->fcip_rt_mutex);
frp = fcip_lookup_rtable(fptr, &fcmd->resp_pwwn, FCIP_COMPARE_NWWN);
mutex_exit(&fptr->fcip_rt_mutex);
fdestp = fcip_add_dest(fptr, frp);
if (fdestp != NULL) {
rval = FC_SUCCESS;
}
return (rval);
}
#define FCIP_HDRS_LENGTH \
sizeof (fcph_network_hdr_t)+sizeof (llc_snap_hdr_t)+sizeof (ipha_t)
/*
* fcip_data_cb is the heart of most IP operations. This routine is called
* by the transport when any unsolicited IP data arrives at a port (which
* is almost all IP data). This routine then strips off the Network header
* from the payload (after authenticating the received payload ofcourse),
* creates a message blk and sends the data upstream. You will see ugly
* #defines because of problems with using esballoc() as opposed to
* allocb to prevent an extra copy of data. We should probably move to
* esballoc entirely when the MTU eventually will be larger than 1500 bytes
* since copies will get more expensive then. At 1500 byte MTUs, there is
* no noticable difference between using allocb and esballoc. The other
* caveat is that the qlc firmware still cannot tell us accurately the
* no. of valid bytes in the unsol buffer it DMA'ed so we have to resort
* to looking into the IP header and hoping that the no. of bytes speficified
* in the header was actually received.
*/
/* ARGSUSED */
static int
fcip_data_cb(opaque_t ulp_handle, opaque_t phandle,
fc_unsol_buf_t *buf, uint32_t claimed)
{
fcip_port_info_t *fport;
struct fcip *fptr;
fcph_network_hdr_t *nhdr;
llc_snap_hdr_t *snaphdr;
mblk_t *bp;
uint32_t len;
uint32_t hdrlen;
ushort_t type;
ipha_t *iphdr;
int rval;
#ifdef FCIP_ESBALLOC
frtn_t *free_ubuf;
struct fcip_esballoc_arg *fesb_argp;
#endif /* FCIP_ESBALLOC */
fport = fcip_get_port(phandle);
if (fport == NULL) {
return (FC_UNCLAIMED);
}
fptr = fport->fcipp_fcip;
ASSERT(fptr != NULL);
if (fptr == NULL) {
return (FC_UNCLAIMED);
}
mutex_enter(&fptr->fcip_mutex);
if ((fptr->fcip_flags & (FCIP_DETACHING | FCIP_DETACHED)) ||
(fptr->fcip_flags & (FCIP_SUSPENDED | FCIP_POWER_DOWN))) {
mutex_exit(&fptr->fcip_mutex);
rval = FC_UNCLAIMED;
goto data_cb_done;
}
/*
* set fcip flags to indicate we are in the middle of a
* data callback so we can wait till the statechange
* is handled before succeeding/failing the SUSPEND/POWER DOWN.
*/
fptr->fcip_flags |= FCIP_IN_DATA_CB;
mutex_exit(&fptr->fcip_mutex);
FCIP_TNF_PROBE_2((fcip_data_cb, "fcip io", /* CSTYLED */,
tnf_string, msg, "data callback",
tnf_int, instance, ddi_get_instance(fport->fcipp_dip)));
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_NOTE, "fcip%d, data callback",
ddi_get_instance(fport->fcipp_dip)));
/*
* get to the network and snap headers in the payload
*/
nhdr = (fcph_network_hdr_t *)buf->ub_buffer;
snaphdr = (llc_snap_hdr_t *)(buf->ub_buffer +
sizeof (fcph_network_hdr_t));
hdrlen = sizeof (fcph_network_hdr_t) + sizeof (llc_snap_hdr_t);
/*
* get the IP header to obtain the no. of bytes we need to read
* off from the unsol buffer. This obviously is because not all
* data fills up the unsol buffer completely and the firmware
* doesn't tell us how many valid bytes are in there as well
*/
iphdr = (ipha_t *)(buf->ub_buffer + hdrlen);
snaphdr->pid = BE_16(snaphdr->pid);
type = snaphdr->pid;
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_CONT, "SNAPHDR: dsap %x, ssap %x, ctrl %x\n",
snaphdr->dsap, snaphdr->ssap, snaphdr->ctrl));
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_CONT, "oui[0] 0x%x oui[1] 0x%x oui[2] 0x%x pid 0x%x\n",
snaphdr->oui[0], snaphdr->oui[1], snaphdr->oui[2], snaphdr->pid));
/* Authneticate, Authenticate */
if (type == ETHERTYPE_IP) {
len = hdrlen + BE_16(iphdr->ipha_length);
} else if (type == ETHERTYPE_ARP) {
len = hdrlen + 28;
} else {
len = buf->ub_bufsize;
}
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_CONT, "effective packet length is %d bytes.\n", len));
if (len < hdrlen || len > FCIP_UB_SIZE) {
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_NOTE, "Incorrect buffer size %d bytes", len));
rval = FC_UNCLAIMED;
goto data_cb_done;
}
if (buf->ub_frame.type != FC_TYPE_IS8802_SNAP) {
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM, (CE_NOTE, "Not IP/ARP data"));
rval = FC_UNCLAIMED;
goto data_cb_done;
}
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM, (CE_NOTE, "checking wwn"));
if ((fcip_wwn_compare(&nhdr->net_dest_addr, &fport->fcipp_pwwn,
FCIP_COMPARE_NWWN) != 0) &&
(!IS_BROADCAST_ADDR(&nhdr->net_dest_addr))) {
rval = FC_UNCLAIMED;
goto data_cb_done;
} else if (fcip_cache_on_arp_broadcast &&
IS_BROADCAST_ADDR(&nhdr->net_dest_addr)) {
fcip_cache_arp_broadcast(fptr, buf);
}
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM, (CE_NOTE, "Allocate streams block"));
/*
* Using esballoc instead of allocb should be faster, atleast at
* larger MTUs than 1500 bytes. Someday we'll get there :)
*/
#if defined(FCIP_ESBALLOC)
/*
* allocate memory for the frtn function arg. The Function
* (fcip_ubfree) arg is a struct fcip_esballoc_arg type
* which contains pointers to the unsol buffer and the
* opaque port handle for releasing the unsol buffer back to
* the FCA for reuse
*/
fesb_argp = (struct fcip_esballoc_arg *)
kmem_zalloc(sizeof (struct fcip_esballoc_arg), KM_NOSLEEP);
if (fesb_argp == NULL) {
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_WARN, "esballoc of mblk failed in data_cb"));
rval = FC_UNCLAIMED;
goto data_cb_done;
}
/*
* Check with KM_NOSLEEP
*/
free_ubuf = (frtn_t *)kmem_zalloc(sizeof (frtn_t), KM_NOSLEEP);
if (free_ubuf == NULL) {
kmem_free(fesb_argp, sizeof (struct fcip_esballoc_arg));
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_WARN, "esballoc of mblk failed in data_cb"));
rval = FC_UNCLAIMED;
goto data_cb_done;
}
fesb_argp->frtnp = free_ubuf;
fesb_argp->buf = buf;
fesb_argp->phandle = phandle;
free_ubuf->free_func = fcip_ubfree;
free_ubuf->free_arg = (char *)fesb_argp;
if ((bp = (mblk_t *)esballoc((unsigned char *)buf->ub_buffer,
len, BPRI_MED, free_ubuf)) == NULL) {
kmem_free(fesb_argp, sizeof (struct fcip_esballoc_arg));
kmem_free(free_ubuf, sizeof (frtn_t));
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_WARN, "esballoc of mblk failed in data_cb"));
rval = FC_UNCLAIMED;
goto data_cb_done;
}
#elif !defined(FCIP_ESBALLOC)
/*
* allocate streams mblk and copy the contents of the
* unsolicited buffer into this newly alloc'ed mblk
*/
if ((bp = (mblk_t *)fcip_allocb((size_t)len, BPRI_LO)) == NULL) {
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_WARN, "alloc of mblk failed in data_cb"));
rval = FC_UNCLAIMED;
goto data_cb_done;
}
/*
* Unsolicited buffers handed up to us from the FCA must be
* endian clean so just bcopy the data into our mblk. Else
* we may have to either copy the data byte by byte or
* use the ddi_rep_get* routines to do the copy for us.
*/
bcopy(buf->ub_buffer, bp->b_rptr, len);
/*
* for esballoc'ed mblks - free the UB in the frtn function
* along with the memory allocated for the function arg.
* for allocb'ed mblk - release the unsolicited buffer here
*/
(void) fc_ulp_ubrelease(phandle, 1, &buf->ub_token);
#endif /* FCIP_ESBALLOC */
bp->b_wptr = bp->b_rptr + len;
fptr->fcip_ipackets++;
if (type == ETHERTYPE_IP) {
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_ub_upstream++;
mutex_exit(&fptr->fcip_mutex);
bp->b_rptr += hdrlen;
/*
* Check if ipq is valid in the sendup thread
*/
if (fcip_sendup_alloc_enque(fptr, bp, NULL) != FC_SUCCESS) {
freemsg(bp);
}
} else {
/*
* We won't get ethernet 802.3 packets in FCIP but we may get
* types other than ETHERTYPE_IP, such as ETHERTYPE_ARP. Let
* fcip_sendup() do the matching.
*/
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_ub_upstream++;
mutex_exit(&fptr->fcip_mutex);
if (fcip_sendup_alloc_enque(fptr, bp,
fcip_accept) != FC_SUCCESS) {
freemsg(bp);
}
}
rval = FC_SUCCESS;
/*
* Unset fcip_flags to indicate we are out of callback and return
*/
data_cb_done:
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags &= ~(FCIP_IN_DATA_CB);
mutex_exit(&fptr->fcip_mutex);
return (rval);
}
#if !defined(FCIP_ESBALLOC)
/*
* Allocate a message block for the inbound data to be sent upstream.
*/
static void *
fcip_allocb(size_t size, uint_t pri)
{
mblk_t *mp;
if ((mp = allocb(size, pri)) == NULL) {
return (NULL);
}
return (mp);
}
#endif
/*
* This helper routine kmem cache alloc's a sendup element for enquing
* into the sendup list for callbacks upstream from the dedicated sendup
* thread. We enque the msg buf into the sendup list and cv_signal the
* sendup thread to finish the callback for us.
*/
static int
fcip_sendup_alloc_enque(struct fcip *fptr, mblk_t *mp, struct fcipstr *(*f)())
{
struct fcip_sendup_elem *msg_elem;
int rval = FC_FAILURE;
FCIP_TNF_PROBE_1((fcip_sendup_alloc_enque, "fcip io", /* CSTYLED */,
tnf_string, msg, "sendup msg enque"));
msg_elem = kmem_cache_alloc(fptr->fcip_sendup_cache, KM_NOSLEEP);
if (msg_elem == NULL) {
/* drop pkt to floor - update stats */
rval = FC_FAILURE;
goto sendup_alloc_done;
}
msg_elem->fcipsu_mp = mp;
msg_elem->fcipsu_func = f;
mutex_enter(&fptr->fcip_sendup_mutex);
if (fptr->fcip_sendup_head == NULL) {
fptr->fcip_sendup_head = fptr->fcip_sendup_tail = msg_elem;
} else {
fptr->fcip_sendup_tail->fcipsu_next = msg_elem;
fptr->fcip_sendup_tail = msg_elem;
}
fptr->fcip_sendup_cnt++;
cv_signal(&fptr->fcip_sendup_cv);
mutex_exit(&fptr->fcip_sendup_mutex);
rval = FC_SUCCESS;
sendup_alloc_done:
return (rval);
}
/*
* One of the ways of performing the WWN to D_ID mapping required for
* IPFC data is to cache the unsolicited ARP broadcast messages received
* and update the routing table to add entry for the destination port
* if we are the intended recipient of the ARP broadcast message. This is
* one of the methods recommended in the rfc to obtain the WWN to D_ID mapping
* but is not typically used unless enabled. The driver prefers to use the
* nameserver/lilp map to obtain this mapping.
*/
static void
fcip_cache_arp_broadcast(struct fcip *fptr, fc_unsol_buf_t *buf)
{
fcip_port_info_t *fport;
fcph_network_hdr_t *nhdr;
struct fcip_routing_table *frp;
fc_portmap_t map;
fport = fptr->fcip_port_info;
if (fport == NULL) {
return;
}
ASSERT(fport != NULL);
nhdr = (fcph_network_hdr_t *)buf->ub_buffer;
mutex_enter(&fptr->fcip_rt_mutex);
frp = fcip_lookup_rtable(fptr, &nhdr->net_src_addr, FCIP_COMPARE_NWWN);
mutex_exit(&fptr->fcip_rt_mutex);
if (frp == NULL) {
map.map_did.port_id = buf->ub_frame.s_id;
map.map_hard_addr.hard_addr = buf->ub_frame.s_id;
map.map_state = PORT_DEVICE_VALID;
map.map_type = PORT_DEVICE_NEW;
map.map_flags = 0;
map.map_pd = NULL;
bcopy((void *)&nhdr->net_src_addr, (void *)&map.map_pwwn,
sizeof (la_wwn_t));
bcopy((void *)&nhdr->net_src_addr, (void *)&map.map_nwwn,
sizeof (la_wwn_t));
fcip_rt_update(fptr, &map, 1);
mutex_enter(&fptr->fcip_rt_mutex);
frp = fcip_lookup_rtable(fptr, &nhdr->net_src_addr,
FCIP_COMPARE_NWWN);
mutex_exit(&fptr->fcip_rt_mutex);
(void) fcip_add_dest(fptr, frp);
}
}
/*
* This is a dedicated thread to do callbacks from fcip's data callback
* routines into the modules upstream. The reason for this thread is
* the data callback function can be called from an interrupt context and
* the upstream modules *can* make calls downstream in the same thread
* context. If the call is to a fabric port which is not yet in our
* routing tables, we may have to query the nameserver/fabric for the
* MAC addr to Port_ID mapping which may be blocking calls.
*/
static void
fcip_sendup_thr(void *arg)
{
struct fcip *fptr = (struct fcip *)arg;
struct fcip_sendup_elem *msg_elem;
queue_t *ip4q = NULL;
CALLB_CPR_INIT(&fptr->fcip_cpr_info, &fptr->fcip_sendup_mutex,
callb_generic_cpr, "fcip_sendup_thr");
mutex_enter(&fptr->fcip_sendup_mutex);
for (;;) {
while (fptr->fcip_sendup_thr_initted &&
fptr->fcip_sendup_head == NULL) {
CALLB_CPR_SAFE_BEGIN(&fptr->fcip_cpr_info);
cv_wait(&fptr->fcip_sendup_cv,
&fptr->fcip_sendup_mutex);
CALLB_CPR_SAFE_END(&fptr->fcip_cpr_info,
&fptr->fcip_sendup_mutex);
}
if (fptr->fcip_sendup_thr_initted == 0) {
break;
}
FCIP_TNF_PROBE_1((fcip_sendup_thr, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip sendup thr - new msg"));
msg_elem = fptr->fcip_sendup_head;
fptr->fcip_sendup_head = msg_elem->fcipsu_next;
msg_elem->fcipsu_next = NULL;
mutex_exit(&fptr->fcip_sendup_mutex);
if (msg_elem->fcipsu_func == NULL) {
/*
* Message for ipq. Check to see if the ipq is
* is still valid. Since the thread is asynchronous,
* there could have been a close on the stream
*/
mutex_enter(&fptr->fcip_mutex);
if (fptr->fcip_ipq && canputnext(fptr->fcip_ipq)) {
ip4q = fptr->fcip_ipq;
mutex_exit(&fptr->fcip_mutex);
putnext(ip4q, msg_elem->fcipsu_mp);
} else {
mutex_exit(&fptr->fcip_mutex);
freemsg(msg_elem->fcipsu_mp);
}
} else {
fcip_sendup(fptr, msg_elem->fcipsu_mp,
msg_elem->fcipsu_func);
}
#if !defined(FCIP_ESBALLOC)
/*
* for allocb'ed mblk - decrement upstream count here
*/
mutex_enter(&fptr->fcip_mutex);
ASSERT(fptr->fcip_ub_upstream > 0);
fptr->fcip_ub_upstream--;
mutex_exit(&fptr->fcip_mutex);
#endif /* FCIP_ESBALLOC */
kmem_cache_free(fptr->fcip_sendup_cache, (void *)msg_elem);
mutex_enter(&fptr->fcip_sendup_mutex);
fptr->fcip_sendup_cnt--;
}
#ifndef __lock_lint
CALLB_CPR_EXIT(&fptr->fcip_cpr_info);
#else
mutex_exit(&fptr->fcip_sendup_mutex);
#endif /* __lock_lint */
/* Wake up fcip detach thread by the end */
cv_signal(&fptr->fcip_sendup_cv);
thread_exit();
}
#ifdef FCIP_ESBALLOC
/*
* called from the stream head when it is done using an unsolicited buffer.
* We release this buffer then to the FCA for reuse.
*/
static void
fcip_ubfree(char *arg)
{
struct fcip_esballoc_arg *fesb_argp = (struct fcip_esballoc_arg *)arg;
fc_unsol_buf_t *ubuf;
frtn_t *frtnp;
fcip_port_info_t *fport;
struct fcip *fptr;
fport = fcip_get_port(fesb_argp->phandle);
fptr = fport->fcipp_fcip;
ASSERT(fesb_argp != NULL);
ubuf = fesb_argp->buf;
frtnp = fesb_argp->frtnp;
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM,
(CE_WARN, "freeing ubuf after esballoc in fcip_ubfree"));
(void) fc_ulp_ubrelease(fesb_argp->phandle, 1, &ubuf->ub_token);
mutex_enter(&fptr->fcip_mutex);
ASSERT(fptr->fcip_ub_upstream > 0);
fptr->fcip_ub_upstream--;
cv_signal(&fptr->fcip_ub_cv);
mutex_exit(&fptr->fcip_mutex);
kmem_free(frtnp, sizeof (frtn_t));
kmem_free(fesb_argp, sizeof (struct fcip_esballoc_arg));
}
#endif /* FCIP_ESBALLOC */
/*
* handle data other than that of type ETHERTYPE_IP and send it on its
* way upstream to the right streams module to handle
*/
static void
fcip_sendup(struct fcip *fptr, mblk_t *mp, struct fcipstr *(*acceptfunc)())
{
struct fcipstr *slp, *nslp;
la_wwn_t *dhostp;
mblk_t *nmp;
uint32_t isgroupaddr;
int type;
uint32_t hdrlen;
fcph_network_hdr_t *nhdr;
llc_snap_hdr_t *snaphdr;
FCIP_TNF_PROBE_1((fcip_sendup, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip sendup"));
nhdr = (fcph_network_hdr_t *)mp->b_rptr;
snaphdr =
(llc_snap_hdr_t *)(mp->b_rptr + sizeof (fcph_network_hdr_t));
dhostp = &nhdr->net_dest_addr;
type = snaphdr->pid;
hdrlen = sizeof (fcph_network_hdr_t) + sizeof (llc_snap_hdr_t);
/* No group address with fibre channel */
isgroupaddr = 0;
/*
* While holding a reader lock on the linked list of streams structures,
* attempt to match the address criteria for each stream
* and pass up the raw M_DATA ("fastpath") or a DL_UNITDATA_IND.
*/
rw_enter(&fcipstruplock, RW_READER);
if ((slp = (*acceptfunc)(fcipstrup, fptr, type, dhostp)) == NULL) {
rw_exit(&fcipstruplock);
FCIP_TNF_PROBE_1((fcip_sendup, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip sendup - no slp"));
freemsg(mp);
return;
}
/*
* Loop on matching open streams until (*acceptfunc)() returns NULL.
*/
for (; nslp = (*acceptfunc)(slp->sl_nextp, fptr, type, dhostp);
slp = nslp) {
if (canputnext(slp->sl_rq)) {
if (nmp = dupmsg(mp)) {
if ((slp->sl_flags & FCIP_SLFAST) &&
!isgroupaddr) {
nmp->b_rptr += hdrlen;
putnext(slp->sl_rq, nmp);
} else if (slp->sl_flags & FCIP_SLRAW) {
/* No headers when FCIP_SLRAW is set */
putnext(slp->sl_rq, nmp);
} else if ((nmp = fcip_addudind(fptr, nmp,
nhdr, type))) {
putnext(slp->sl_rq, nmp);
}
}
}
}
/*
* Do the last one.
*/
if (canputnext(slp->sl_rq)) {
if (slp->sl_flags & FCIP_SLFAST) {
mp->b_rptr += hdrlen;
putnext(slp->sl_rq, mp);
} else if (slp->sl_flags & FCIP_SLRAW) {
putnext(slp->sl_rq, mp);
} else if ((mp = fcip_addudind(fptr, mp, nhdr, type))) {
putnext(slp->sl_rq, mp);
}
} else {
freemsg(mp);
}
FCIP_TNF_PROBE_1((fcip_sendup, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip sendup done"));
rw_exit(&fcipstruplock);
}
/*
* Match the stream based on type and wwn if necessary.
* Destination wwn dhostp is passed to this routine is reserved
* for future usage. We don't need to use it right now since port
* to fcip instance mapping is unique and wwn is already validated when
* packet comes to fcip.
*/
/* ARGSUSED */
static struct fcipstr *
fcip_accept(struct fcipstr *slp, struct fcip *fptr, int type, la_wwn_t *dhostp)
{
t_uscalar_t sap;
FCIP_TNF_PROBE_1((fcip_accept, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip accept"));
for (; slp; slp = slp->sl_nextp) {
sap = slp->sl_sap;
FCIP_DEBUG(FCIP_DEBUG_UPSTREAM, (CE_CONT,
"fcip_accept: checking next sap = %x, type = %x",
sap, type));
if ((slp->sl_fcip == fptr) && (type == sap)) {
return (slp);
}
}
return (NULL);
}
/*
* Handle DL_UNITDATA_IND messages
*/
static mblk_t *
fcip_addudind(struct fcip *fptr, mblk_t *mp, fcph_network_hdr_t *nhdr,
int type)
{
dl_unitdata_ind_t *dludindp;
struct fcipdladdr *dlap;
mblk_t *nmp;
int size;
uint32_t hdrlen;
struct ether_addr src_addr;
struct ether_addr dest_addr;
hdrlen = (sizeof (llc_snap_hdr_t) + sizeof (fcph_network_hdr_t));
mp->b_rptr += hdrlen;
FCIP_TNF_PROBE_1((fcip_addudind, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip addudind"));
/*
* Allocate an M_PROTO mblk for the DL_UNITDATA_IND.
*/
size = sizeof (dl_unitdata_ind_t) + FCIPADDRL + FCIPADDRL;
if ((nmp = allocb(size, BPRI_LO)) == NULL) {
fptr->fcip_allocbfail++;
freemsg(mp);
return (NULL);
}
DB_TYPE(nmp) = M_PROTO;
nmp->b_wptr = nmp->b_datap->db_lim;
nmp->b_rptr = nmp->b_wptr - size;
/*
* Construct a DL_UNITDATA_IND primitive.
*/
dludindp = (dl_unitdata_ind_t *)nmp->b_rptr;
dludindp->dl_primitive = DL_UNITDATA_IND;
dludindp->dl_dest_addr_length = FCIPADDRL;
dludindp->dl_dest_addr_offset = sizeof (dl_unitdata_ind_t);
dludindp->dl_src_addr_length = FCIPADDRL;
dludindp->dl_src_addr_offset = sizeof (dl_unitdata_ind_t) + FCIPADDRL;
dludindp->dl_group_address = 0; /* not DL_MULTI */
dlap = (struct fcipdladdr *)(nmp->b_rptr + sizeof (dl_unitdata_ind_t));
wwn_to_ether(&nhdr->net_dest_addr, &dest_addr);
ether_bcopy(&dest_addr, &dlap->dl_phys);
dlap->dl_sap = (uint16_t)type;
dlap = (struct fcipdladdr *)(nmp->b_rptr + sizeof (dl_unitdata_ind_t)
+ FCIPADDRL);
wwn_to_ether(&nhdr->net_src_addr, &src_addr);
ether_bcopy(&src_addr, &dlap->dl_phys);
dlap->dl_sap = (uint16_t)type;
/*
* Link the M_PROTO and M_DATA together.
*/
nmp->b_cont = mp;
return (nmp);
}
/*
* The open routine. For clone opens, we return the next available minor
* no. for the stream to use
*/
/* ARGSUSED */
static int
fcip_open(queue_t *rq, dev_t *devp, int flag, int sflag, cred_t *credp)
{
struct fcipstr *slp;
struct fcipstr **prevslp;
minor_t minor;
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE, "in fcip_open"));
FCIP_TNF_PROBE_1((fcip_open, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter"));
/*
* We need to ensure that the port driver is loaded before
* we proceed
*/
if (ddi_hold_installed_driver(ddi_name_to_major(PORT_DRIVER)) == NULL) {
/* no port driver instances found */
FCIP_DEBUG(FCIP_DEBUG_STARTUP, (CE_WARN,
"!ddi_hold_installed_driver of fp failed\n"));
return (ENXIO);
}
/* serialize opens */
rw_enter(&fcipstruplock, RW_WRITER);
prevslp = &fcipstrup;
if (sflag == CLONEOPEN) {
minor = 0;
for (; (slp = *prevslp) != NULL; prevslp = &slp->sl_nextp) {
if (minor < slp->sl_minor) {
break;
}
minor ++;
}
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE,
"getmajor returns 0x%x", getmajor(*devp)));
*devp = makedevice(getmajor(*devp), minor);
} else {
minor = getminor(*devp);
}
/*
* check if our qp's private area is already initialized. If yes
* the stream is already open - just return
*/
if (rq->q_ptr) {
goto done;
}
slp = GETSTRUCT(struct fcipstr, 1);
slp->sl_minor = minor;
slp->sl_rq = rq;
slp->sl_sap = 0;
slp->sl_flags = 0;
slp->sl_state = DL_UNATTACHED;
slp->sl_fcip = NULL;
mutex_init(&slp->sl_lock, NULL, MUTEX_DRIVER, NULL);
/*
* link this new stream entry into list of active streams
*/
slp->sl_nextp = *prevslp;
*prevslp = slp;
rq->q_ptr = WR(rq)->q_ptr = (char *)slp;
/*
* Disable automatic enabling of our write service procedures
* we need to control this explicitly. This will prevent
* anyone scheduling of our write service procedures.
*/
noenable(WR(rq));
done:
rw_exit(&fcipstruplock);
/*
* enable our put and service routines on the read side
*/
qprocson(rq);
/*
* There is only one instance of fcip (instance = 0)
* for multiple instances of hardware
*/
(void) qassociate(rq, 0); /* don't allow drcompat to be pushed */
return (0);
}
/*
* close an opened stream. The minor no. will then be available for
* future opens.
*/
/* ARGSUSED */
static int
fcip_close(queue_t *rq, int flag, int otyp, cred_t *credp)
{
struct fcipstr *slp;
struct fcipstr **prevslp;
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE, "in fcip_close"));
FCIP_TNF_PROBE_1((fcip_close, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter"));
ASSERT(rq);
/* we should also have the active stream pointer in q_ptr */
ASSERT(rq->q_ptr);
ddi_rele_driver(ddi_name_to_major(PORT_DRIVER));
/*
* disable our put and service procedures. We had enabled them
* on open
*/
qprocsoff(rq);
slp = (struct fcipstr *)rq->q_ptr;
/*
* Implicitly detach stream a stream from an interface.
*/
if (slp->sl_fcip) {
fcip_dodetach(slp);
}
(void) qassociate(rq, -1); /* undo association in open */
rw_enter(&fcipstruplock, RW_WRITER);
/*
* unlink this stream from the active stream list and free it
*/
for (prevslp = &fcipstrup; (slp = *prevslp) != NULL;
prevslp = &slp->sl_nextp) {
if (slp == (struct fcipstr *)rq->q_ptr) {
break;
}
}
/* we should have found slp */
ASSERT(slp);
*prevslp = slp->sl_nextp;
mutex_destroy(&slp->sl_lock);
kmem_free(slp, sizeof (struct fcipstr));
rq->q_ptr = WR(rq)->q_ptr = NULL;
rw_exit(&fcipstruplock);
return (0);
}
/*
* This is not an extension of the DDI_DETACH request. This routine
* only detaches a stream from an interface
*/
static void
fcip_dodetach(struct fcipstr *slp)
{
struct fcipstr *tslp;
struct fcip *fptr;
FCIP_DEBUG(FCIP_DEBUG_DETACH, (CE_NOTE, "in fcip_dodetach"));
FCIP_TNF_PROBE_1((fcip_dodetach, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter"));
ASSERT(slp->sl_fcip != NULL);
fptr = slp->sl_fcip;
slp->sl_fcip = NULL;
/*
* we don't support promiscuous mode currently but check
* for and disable any promiscuous mode operation
*/
if (slp->sl_flags & SLALLPHYS) {
slp->sl_flags &= ~SLALLPHYS;
}
/*
* disable ALLMULTI mode if all mulitcast addr are ON
*/
if (slp->sl_flags & SLALLMULTI) {
slp->sl_flags &= ~SLALLMULTI;
}
/*
* we are most likely going to perform multicast by
* broadcasting to the well known addr (D_ID) 0xFFFFFF or
* ALPA 0x00 in case of public loops
*/
/*
* detach unit from device structure.
*/
for (tslp = fcipstrup; tslp != NULL; tslp = tslp->sl_nextp) {
if (tslp->sl_fcip == fptr) {
break;
}
}
if (tslp == NULL) {
FCIP_DEBUG(FCIP_DEBUG_DETACH, (CE_WARN,
"fcip_dodeatch - active stream struct not found"));
/* unregister with Fabric nameserver?? */
}
slp->sl_state = DL_UNATTACHED;
fcip_setipq(fptr);
}
/*
* Set or clear device ipq pointer.
* Walk thru all the streams on this device, if a ETHERTYPE_IP
* stream is found, assign device ipq to its sl_rq.
*/
static void
fcip_setipq(struct fcip *fptr)
{
struct fcipstr *slp;
int ok = 1;
queue_t *ipq = NULL;
FCIP_DEBUG(FCIP_DEBUG_INIT, (CE_NOTE, "entered fcip_setipq"));
rw_enter(&fcipstruplock, RW_READER);
for (slp = fcipstrup; slp != NULL; slp = slp->sl_nextp) {
if (slp->sl_fcip == fptr) {
if (slp->sl_flags & (SLALLPHYS|SLALLSAP)) {
ok = 0;
}
if (slp->sl_sap == ETHERTYPE_IP) {
if (ipq == NULL) {
ipq = slp->sl_rq;
} else {
ok = 0;
}
}
}
}
rw_exit(&fcipstruplock);
if (fcip_check_port_exists(fptr)) {
/* fptr passed to us is stale */
return;
}
mutex_enter(&fptr->fcip_mutex);
if (ok) {
fptr->fcip_ipq = ipq;
} else {
fptr->fcip_ipq = NULL;
}
mutex_exit(&fptr->fcip_mutex);
}
/* ARGSUSED */
static void
fcip_ioctl(queue_t *wq, mblk_t *mp)
{
struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
struct fcipstr *slp = (struct fcipstr *)wq->q_ptr;
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "in fcip ioctl : %d", iocp->ioc_cmd));
FCIP_TNF_PROBE_1((fcip_ioctl, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter"));
switch (iocp->ioc_cmd) {
case DLIOCRAW:
slp->sl_flags |= FCIP_SLRAW;
miocack(wq, mp, 0, 0);
break;
case DL_IOC_HDR_INFO:
fcip_dl_ioc_hdr_info(wq, mp);
break;
default:
miocnak(wq, mp, 0, EINVAL);
break;
}
}
/*
* The streams 'Put' routine.
*/
/* ARGSUSED */
static int
fcip_wput(queue_t *wq, mblk_t *mp)
{
struct fcipstr *slp = (struct fcipstr *)wq->q_ptr;
struct fcip *fptr;
struct fcip_dest *fdestp;
fcph_network_hdr_t *headerp;
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "in fcip_wput :: type:%x", DB_TYPE(mp)));
switch (DB_TYPE(mp)) {
case M_DATA: {
fptr = slp->sl_fcip;
if (((slp->sl_flags & (FCIP_SLFAST|FCIP_SLRAW)) == 0) ||
(slp->sl_state != DL_IDLE) ||
(fptr == NULL)) {
/*
* set error in the message block and send a reply
* back upstream. Sun's merror routine does this
* for us more cleanly.
*/
merror(wq, mp, EPROTO);
break;
}
/*
* if any messages are already enqueued or if the interface
* is in promiscuous mode, causing the packets to loop back
* up, then enqueue the message. Otherwise just transmit
* the message. putq() puts the message on fcip's
* write queue and qenable() puts the queue (wq) on
* the list of queues to be called by the streams scheduler.
*/
if (wq->q_first) {
(void) putq(wq, mp);
fptr->fcip_wantw = 1;
qenable(wq);
} else if (fptr->fcip_flags & FCIP_PROMISC) {
/*
* Promiscous mode not supported but add this code in
* case it will be supported in future.
*/
(void) putq(wq, mp);
qenable(wq);
} else {
headerp = (fcph_network_hdr_t *)mp->b_rptr;
fdestp = fcip_get_dest(fptr, &headerp->net_dest_addr);
if (fdestp == NULL) {
merror(wq, mp, EPROTO);
break;
}
ASSERT(fdestp != NULL);
(void) fcip_start(wq, mp, fptr, fdestp, KM_SLEEP);
}
break;
}
case M_PROTO:
case M_PCPROTO:
/*
* to prevent recursive calls into fcip_proto
* (PROTO and PCPROTO messages are handled by fcip_proto)
* let the service procedure handle these messages by
* calling putq here.
*/
(void) putq(wq, mp);
qenable(wq);
break;
case M_IOCTL:
fcip_ioctl(wq, mp);
break;
case M_FLUSH:
if (*mp->b_rptr & FLUSHW) {
flushq(wq, FLUSHALL);
*mp->b_rptr &= ~FLUSHW;
}
/*
* we have both FLUSHW and FLUSHR set with FLUSHRW
*/
if (*mp->b_rptr & FLUSHR) {
/*
* send msg back upstream. qreply() takes care
* of using the RD(wq) queue on its reply
*/
qreply(wq, mp);
} else {
freemsg(mp);
}
break;
default:
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "default msg type: %x", DB_TYPE(mp)));
freemsg(mp);
break;
}
return (0);
}
/*
* Handle M_PROTO and M_PCPROTO messages
*/
/* ARGSUSED */
static void
fcip_proto(queue_t *wq, mblk_t *mp)
{
union DL_primitives *dlp;
struct fcipstr *slp;
t_uscalar_t prim;
slp = (struct fcipstr *)wq->q_ptr;
dlp = (union DL_primitives *)mp->b_rptr;
prim = dlp->dl_primitive; /* the DLPI command */
FCIP_TNF_PROBE_5((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter",
tnf_opaque, wq, wq,
tnf_opaque, mp, mp,
tnf_opaque, MP_DB_TYPE, DB_TYPE(mp),
tnf_opaque, dl_primitive, dlp->dl_primitive));
FCIP_DEBUG(FCIP_DEBUG_INIT, (CE_NOTE, "dl_primitve : %x", prim));
mutex_enter(&slp->sl_lock);
switch (prim) {
case DL_UNITDATA_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "unit data request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "unit data request"));
fcip_udreq(wq, mp);
break;
case DL_ATTACH_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "Attach request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "Attach request"));
fcip_areq(wq, mp);
break;
case DL_DETACH_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "Detach request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "Detach request"));
fcip_dreq(wq, mp);
break;
case DL_BIND_REQ:
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "Bind request"));
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "Bind request"));
fcip_breq(wq, mp);
break;
case DL_UNBIND_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "unbind request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "unbind request"));
fcip_ubreq(wq, mp);
break;
case DL_INFO_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "Info request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "Info request"));
fcip_ireq(wq, mp);
break;
case DL_SET_PHYS_ADDR_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "set phy addr request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "set phy addr request"));
fcip_spareq(wq, mp);
break;
case DL_PHYS_ADDR_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "phy addr request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "phy addr request"));
fcip_pareq(wq, mp);
break;
case DL_ENABMULTI_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "Enable Multicast request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "Enable Multicast request"));
dlerrorack(wq, mp, prim, DL_UNSUPPORTED, 0);
break;
case DL_DISABMULTI_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "Disable Multicast request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "Disable Multicast request"));
dlerrorack(wq, mp, prim, DL_UNSUPPORTED, 0);
break;
case DL_PROMISCON_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "Promiscuous mode ON request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "Promiscuous mode ON request"));
dlerrorack(wq, mp, prim, DL_UNSUPPORTED, 0);
break;
case DL_PROMISCOFF_REQ:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "Promiscuous mode OFF request"));
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "Promiscuous mode OFF request"));
dlerrorack(wq, mp, prim, DL_UNSUPPORTED, 0);
break;
default:
FCIP_TNF_PROBE_1((fcip_proto, "fcip io", /* CSTYLED */,
tnf_string, msg, "Unsupported request"));
dlerrorack(wq, mp, prim, DL_UNSUPPORTED, 0);
break;
}
mutex_exit(&slp->sl_lock);
}
/*
* Always enqueue M_PROTO and M_PCPROTO messages pn the wq and M_DATA
* messages sometimes. Processing of M_PROTO and M_PCPROTO messages
* require us to hold fcip's internal locks across (upstream) putnext
* calls. Specifically fcip_intr could hold fcip_intrlock and fcipstruplock
* when it calls putnext(). That thread could loop back around to call
* fcip_wput and eventually fcip_init() to cause a recursive mutex panic
*
* M_DATA messages are enqueued only if we are out of xmit resources. Once
* the transmit resources are available the service procedure is enabled
* and an attempt is made to xmit all messages on the wq.
*/
/* ARGSUSED */
static int
fcip_wsrv(queue_t *wq)
{
mblk_t *mp;
struct fcipstr *slp;
struct fcip *fptr;
struct fcip_dest *fdestp;
fcph_network_hdr_t *headerp;
slp = (struct fcipstr *)wq->q_ptr;
fptr = slp->sl_fcip;
FCIP_TNF_PROBE_2((fcip_wsrv, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter",
tnf_opaque, wq, wq));
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE, "fcip wsrv"));
while (mp = getq(wq)) {
switch (DB_TYPE(mp)) {
case M_DATA:
if (fptr && mp) {
headerp = (fcph_network_hdr_t *)mp->b_rptr;
fdestp = fcip_get_dest(fptr,
&headerp->net_dest_addr);
if (fdestp == NULL) {
freemsg(mp);
goto done;
}
if (fcip_start(wq, mp, fptr, fdestp,
KM_SLEEP)) {
goto done;
}
} else {
freemsg(mp);
}
break;
case M_PROTO:
case M_PCPROTO:
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "PROT msg in wsrv"));
fcip_proto(wq, mp);
break;
default:
break;
}
}
done:
return (0);
}
/*
* This routine is called from fcip_wsrv to send a message downstream
* on the fibre towards its destination. This routine performs the
* actual WWN to D_ID mapping by looking up the routing and destination
* tables.
*/
/* ARGSUSED */
static int
fcip_start(queue_t *wq, mblk_t *mp, struct fcip *fptr,
struct fcip_dest *fdestp, int flags)
{
int rval;
int free;
fcip_pkt_t *fcip_pkt;
fc_packet_t *fc_pkt;
fcip_port_info_t *fport = fptr->fcip_port_info;
size_t datalen;
FCIP_TNF_PROBE_4((fcip_start, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter", tnf_opaque, wq, wq,
tnf_opaque, mp, mp,
tnf_opaque, MP_DB_TYPE, DB_TYPE(mp)));
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE, "in fcipstart"));
ASSERT(fdestp != NULL);
/*
* Only return if port has gone offline and not come back online
* in a while
*/
if (fptr->fcip_flags & FCIP_LINK_DOWN) {
freemsg(mp);
return (0);
}
/*
* The message block coming in here already has the network and
* llc_snap hdr stuffed in
*/
/*
* Traditionally ethernet drivers at sun handle 3 cases here -
* 1. messages with one mblk
* 2. messages with 2 mblks
* 3. messages with >2 mblks
* For now lets handle all the 3 cases in a single case where we
* put them together in one mblk that has all the data
*/
if (mp->b_cont != NULL) {
if (!pullupmsg(mp, -1)) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_WARN, "failed to concat message"));
freemsg(mp);
return (1);
}
}
datalen = msgsize(mp);
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE,
"msgsize with nhdr & llcsnap hdr in fcip_pkt_alloc 0x%lx",
datalen));
/*
* We cannot have requests larger than FCIPMTU+Headers
*/
if (datalen > (FCIPMTU + sizeof (llc_snap_hdr_t) +
sizeof (fcph_network_hdr_t))) {
freemsg(mp);
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE,
"fcip_pkt_alloc: datalen is larger than "
"max possible size."));
return (1);
}
fcip_pkt = fcip_pkt_alloc(fptr, mp, flags, datalen);
if (fcip_pkt == NULL) {
(void) putbq(wq, mp);
return (1);
}
fcip_pkt->fcip_pkt_mp = mp;
fcip_pkt->fcip_pkt_wq = wq;
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
mutex_enter(&fdestp->fcipd_mutex);
/*
* If the device dynamically disappeared, just fail the request.
*/
if (fdestp->fcipd_rtable == NULL) {
mutex_exit(&fdestp->fcipd_mutex);
fcip_pkt_free(fcip_pkt, 1);
return (1);
}
/*
* Now that we've assigned pkt_pd, we can call fc_ulp_init_packet
*/
fc_pkt->pkt_pd = fdestp->fcipd_pd;
if (fc_ulp_init_packet((opaque_t)fport->fcipp_handle,
fc_pkt, flags) != FC_SUCCESS) {
mutex_exit(&fdestp->fcipd_mutex);
fcip_pkt_free(fcip_pkt, 1);
return (1);
}
fcip_fdestp_enqueue_pkt(fdestp, fcip_pkt);
fcip_pkt->fcip_pkt_dest = fdestp;
fc_pkt->pkt_fca_device = fdestp->fcipd_fca_dev;
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE,
"setting cmdlen to 0x%x: rsp 0x%x : data 0x%x",
fc_pkt->pkt_cmdlen, fc_pkt->pkt_rsplen, fc_pkt->pkt_datalen));
fcip_init_unicast_pkt(fcip_pkt, fport->fcipp_sid,
fdestp->fcipd_did, fcip_pkt_callback);
fdestp->fcipd_ncmds++;
mutex_exit(&fdestp->fcipd_mutex);
if ((rval = fcip_transport(fcip_pkt)) == FC_SUCCESS) {
fptr->fcip_opackets++;
return (0);
}
free = (rval == FC_STATEC_BUSY || rval == FC_OFFLINE ||
rval == FC_TRAN_BUSY) ? 0 : 1;
mutex_enter(&fdestp->fcipd_mutex);
rval = fcip_fdestp_dequeue_pkt(fdestp, fcip_pkt);
if (!rval) {
fcip_pkt = NULL;
} else {
fdestp->fcipd_ncmds--;
}
mutex_exit(&fdestp->fcipd_mutex);
if (fcip_pkt != NULL) {
fcip_pkt_free(fcip_pkt, free);
}
if (!free) {
(void) putbq(wq, mp);
}
return (1);
}
/*
* This routine enqueus a packet marked to be issued to the
* transport in the dest structure. This enables us to timeout any
* request stuck with the FCA/transport for long periods of time
* without a response. fcip_pkt_timeout will attempt to clean up
* any packets hung in this state of limbo.
*/
static void
fcip_fdestp_enqueue_pkt(struct fcip_dest *fdestp, fcip_pkt_t *fcip_pkt)
{
ASSERT(mutex_owned(&fdestp->fcipd_mutex));
FCIP_TNF_PROBE_1((fcip_fdestp_enqueue_pkt, "fcip io", /* CSTYLED */,
tnf_string, msg, "destp enq pkt"));
/*
* Just hang it off the head of packet list
*/
fcip_pkt->fcip_pkt_next = fdestp->fcipd_head;
fcip_pkt->fcip_pkt_prev = NULL;
fcip_pkt->fcip_pkt_flags |= FCIP_PKT_IN_LIST;
if (fdestp->fcipd_head != NULL) {
ASSERT(fdestp->fcipd_head->fcip_pkt_prev == NULL);
fdestp->fcipd_head->fcip_pkt_prev = fcip_pkt;
}
fdestp->fcipd_head = fcip_pkt;
}
/*
* dequeues any packets after the transport/FCA tells us it has
* been successfully sent on its way. Ofcourse it doesn't mean that
* the packet will actually reach its destination but its atleast
* a step closer in that direction
*/
static int
fcip_fdestp_dequeue_pkt(struct fcip_dest *fdestp, fcip_pkt_t *fcip_pkt)
{
fcip_pkt_t *fcipd_pkt;
ASSERT(mutex_owned(&fdestp->fcipd_mutex));
if (fcip_pkt->fcip_pkt_flags & FCIP_PKT_IN_TIMEOUT) {
fcipd_pkt = fdestp->fcipd_head;
while (fcipd_pkt) {
if (fcipd_pkt == fcip_pkt) {
fcip_pkt_t *pptr = NULL;
if (fcipd_pkt == fdestp->fcipd_head) {
ASSERT(fcipd_pkt->fcip_pkt_prev ==
NULL);
fdestp->fcipd_head =
fcipd_pkt->fcip_pkt_next;
} else {
pptr = fcipd_pkt->fcip_pkt_prev;
ASSERT(pptr != NULL);
pptr->fcip_pkt_next =
fcipd_pkt->fcip_pkt_next;
}
if (fcipd_pkt->fcip_pkt_next) {
pptr = fcipd_pkt->fcip_pkt_next;
pptr->fcip_pkt_prev =
fcipd_pkt->fcip_pkt_prev;
}
fcip_pkt->fcip_pkt_flags &= ~FCIP_PKT_IN_LIST;
break;
}
fcipd_pkt = fcipd_pkt->fcip_pkt_next;
}
} else {
if (fcip_pkt->fcip_pkt_prev == NULL) {
ASSERT(fdestp->fcipd_head == fcip_pkt);
fdestp->fcipd_head = fcip_pkt->fcip_pkt_next;
} else {
fcip_pkt->fcip_pkt_prev->fcip_pkt_next =
fcip_pkt->fcip_pkt_next;
}
if (fcip_pkt->fcip_pkt_next) {
fcip_pkt->fcip_pkt_next->fcip_pkt_prev =
fcip_pkt->fcip_pkt_prev;
}
fcipd_pkt = fcip_pkt;
fcip_pkt->fcip_pkt_flags &= ~FCIP_PKT_IN_LIST;
}
return (fcipd_pkt == fcip_pkt);
}
/*
* The transport routine - this is the routine that actually calls
* into the FCA driver (through the transport ofcourse) to transmit a
* datagram on the fibre. The dest struct assoicated with the port to
* which the data is intended is already bound to the packet, this routine
* only takes care of marking the packet a broadcast packet if it is
* intended to be a broadcast request. This permits the transport to send
* the packet down on the wire even if it doesn't have an entry for the
* D_ID in its d_id hash tables.
*/
static int
fcip_transport(fcip_pkt_t *fcip_pkt)
{
struct fcip *fptr;
fc_packet_t *fc_pkt;
fcip_port_info_t *fport;
struct fcip_dest *fdestp;
uint32_t did;
int rval = FC_FAILURE;
struct fcip_routing_table *frp = NULL;
FCIP_TNF_PROBE_1((fcip_transport, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter"));
fptr = fcip_pkt->fcip_pkt_fptr;
fport = fptr->fcip_port_info;
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
fdestp = fcip_pkt->fcip_pkt_dest;
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_WARN, "fcip_transport called"));
did = fptr->fcip_broadcast_did;
if (fc_pkt->pkt_cmd_fhdr.d_id == did &&
fc_pkt->pkt_tran_type != FC_PKT_BROADCAST) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "trantype set to BROADCAST"));
fc_pkt->pkt_tran_type = FC_PKT_BROADCAST;
}
mutex_enter(&fptr->fcip_mutex);
if ((fc_pkt->pkt_tran_type != FC_PKT_BROADCAST) &&
(fc_pkt->pkt_pd == NULL)) {
mutex_exit(&fptr->fcip_mutex);
FCIP_TNF_PROBE_1((fcip_transport, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip transport no pd"));
return (rval);
} else if (fptr->fcip_port_state == FCIP_PORT_OFFLINE) {
mutex_exit(&fptr->fcip_mutex);
FCIP_TNF_PROBE_1((fcip_transport, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip transport port offline"));
return (FC_TRAN_BUSY);
}
mutex_exit(&fptr->fcip_mutex);
if (fdestp) {
struct fcip_routing_table *frp;
frp = fdestp->fcipd_rtable;
mutex_enter(&fptr->fcip_rt_mutex);
mutex_enter(&fdestp->fcipd_mutex);
if (fc_pkt->pkt_pd != NULL) {
if ((frp == NULL) ||
(frp && FCIP_RTE_UNAVAIL(frp->fcipr_state))) {
mutex_exit(&fdestp->fcipd_mutex);
mutex_exit(&fptr->fcip_rt_mutex);
if (frp &&
(frp->fcipr_state == FCIP_RT_INVALID)) {
FCIP_TNF_PROBE_1((fcip_transport,
"fcip io", /* CSTYLED */,
tnf_string, msg,
"fcip transport - TRANBUSY"));
return (FC_TRAN_BUSY);
} else {
FCIP_TNF_PROBE_1((fcip_transport,
"fcip io", /* CSTYLED */,
tnf_string, msg,
"fcip transport: frp unavailable"));
return (rval);
}
}
}
mutex_exit(&fdestp->fcipd_mutex);
mutex_exit(&fptr->fcip_rt_mutex);
ASSERT(fcip_pkt->fcip_pkt_flags & FCIP_PKT_IN_LIST);
}
/* Explicitly invalidate this field till fcip decides to use it */
fc_pkt->pkt_ulp_rscn_infop = NULL;
rval = fc_ulp_transport(fport->fcipp_handle, fc_pkt);
if (rval == FC_STATEC_BUSY || rval == FC_OFFLINE) {
/*
* Need to queue up the command for retry
*/
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_WARN, "ulp_transport failed: 0x%x", rval));
} else if (rval == FC_LOGINREQ && (frp != NULL)) {
(void) fcip_do_plogi(fptr, frp);
} else if (rval == FC_BADPACKET && (frp != NULL)) {
/*
* There is a distinct possiblity in our scheme of things
* that we have a routing table entry with a NULL pd struct.
* Mark the routing table entry for removal if it is not a
* broadcast entry
*/
if ((frp->fcipr_d_id.port_id != 0x0) &&
(frp->fcipr_d_id.port_id != 0xffffff)) {
mutex_enter(&fptr->fcip_rt_mutex);
frp->fcipr_pd = NULL;
frp->fcipr_state = PORT_DEVICE_INVALID;
mutex_exit(&fptr->fcip_rt_mutex);
}
}
FCIP_TNF_PROBE_1((fcip_transport, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip transport done"));
return (rval);
}
/*
* Call back routine. Called by the FCA/transport when the messages
* has been put onto the wire towards its intended destination. We can
* now free the fc_packet associated with the message
*/
static void
fcip_pkt_callback(fc_packet_t *fc_pkt)
{
int rval;
fcip_pkt_t *fcip_pkt;
struct fcip_dest *fdestp;
fcip_pkt = (fcip_pkt_t *)fc_pkt->pkt_ulp_private;
fdestp = fcip_pkt->fcip_pkt_dest;
/*
* take the lock early so that we don't have a race condition
* with fcip_timeout
*
* fdestp->fcipd_mutex isn't really intended to lock per
* packet struct - see bug 5105592 for permanent solution
*/
mutex_enter(&fdestp->fcipd_mutex);
fcip_pkt->fcip_pkt_flags |= FCIP_PKT_RETURNED;
fcip_pkt->fcip_pkt_flags &= ~FCIP_PKT_IN_ABORT;
if (fcip_pkt->fcip_pkt_flags & FCIP_PKT_IN_TIMEOUT) {
mutex_exit(&fdestp->fcipd_mutex);
return;
}
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE, "pkt callback"));
ASSERT(fdestp->fcipd_rtable != NULL);
ASSERT(fcip_pkt->fcip_pkt_flags & FCIP_PKT_IN_LIST);
rval = fcip_fdestp_dequeue_pkt(fdestp, fcip_pkt);
fdestp->fcipd_ncmds--;
mutex_exit(&fdestp->fcipd_mutex);
if (rval) {
fcip_pkt_free(fcip_pkt, 1);
}
FCIP_TNF_PROBE_1((fcip_pkt_callback, "fcip io", /* CSTYLED */,
tnf_string, msg, "pkt callback done"));
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_NOTE, "pkt callback done"));
}
/*
* Return 1 if the topology is supported, else return 0.
* Topology support is consistent with what the whole
* stack supports together.
*/
static int
fcip_is_supported_fc_topology(int fc_topology)
{
switch (fc_topology) {
case FC_TOP_PRIVATE_LOOP :
case FC_TOP_PUBLIC_LOOP :
case FC_TOP_FABRIC :
case FC_TOP_NO_NS :
return (1);
default :
return (0);
}
}
/*
* handle any topology specific initializations here
* this routine must be called while holding fcip_mutex
*/
/* ARGSUSED */
static void
fcip_handle_topology(struct fcip *fptr)
{
fcip_port_info_t *fport = fptr->fcip_port_info;
ASSERT(mutex_owned(&fptr->fcip_mutex));
/*
* Since we know the port's topology - handle topology
* specific details here. In Point to Point and Private Loop
* topologies - we would probably not have a name server
*/
FCIP_TNF_PROBE_3((fcip_handle_topology, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter",
tnf_uint, port_state, fport->fcipp_pstate,
tnf_uint, topology, fport->fcipp_topology));
FCIP_DEBUG(FCIP_DEBUG_INIT, (CE_NOTE, "port state: %x, topology %x",
fport->fcipp_pstate, fport->fcipp_topology));
fptr->fcip_broadcast_did = fcip_get_broadcast_did(fptr);
mutex_exit(&fptr->fcip_mutex);
(void) fcip_dest_add_broadcast_entry(fptr, 0);
mutex_enter(&fptr->fcip_mutex);
if (!fcip_is_supported_fc_topology(fport->fcipp_topology)) {
FCIP_DEBUG(FCIP_DEBUG_INIT,
(CE_WARN, "fcip(0x%x): Unsupported port topology (0x%x)",
fptr->fcip_instance, fport->fcipp_topology));
return;
}
switch (fport->fcipp_topology) {
case FC_TOP_PRIVATE_LOOP: {
fc_portmap_t *port_map;
uint32_t listlen, alloclen;
/*
* we may have to maintain routing. Get a list of
* all devices on this port that the transport layer is
* aware of. Check if any of them is a IS8802 type port,
* if yes get its WWN and DID mapping and cache it in
* the purport routing table. Since there is no
* State Change notification for private loop/point_point
* topologies - this table may not be accurate. The static
* routing table is updated on a state change callback.
*/
FCIP_DEBUG(FCIP_DEBUG_INIT, (CE_WARN, "port state valid!!"));
fptr->fcip_port_state = FCIP_PORT_ONLINE;
listlen = alloclen = FCIP_MAX_PORTS;
port_map = (fc_portmap_t *)
kmem_zalloc((FCIP_MAX_PORTS * sizeof (fc_portmap_t)),
KM_SLEEP);
if (fc_ulp_getportmap(fport->fcipp_handle, &port_map,
&listlen, FC_ULP_PLOGI_PRESERVE) == FC_SUCCESS) {
mutex_exit(&fptr->fcip_mutex);
fcip_rt_update(fptr, port_map, listlen);
mutex_enter(&fptr->fcip_mutex);
}
if (listlen > alloclen) {
alloclen = listlen;
}
kmem_free(port_map, (alloclen * sizeof (fc_portmap_t)));
/*
* Now fall through and register with the transport
* that this port is IP capable
*/
}
/* FALLTHROUGH */
case FC_TOP_NO_NS:
/*
* If we don't have a nameserver, lets wait until we
* have to send out a packet to a remote port and then
* try and discover the port using ARP/FARP.
*/
/* FALLTHROUGH */
case FC_TOP_PUBLIC_LOOP:
case FC_TOP_FABRIC: {
fc_portmap_t *port_map;
uint32_t listlen, alloclen;
/* FC_TYPE of 0x05 goes to word 0, LSB */
fptr->fcip_port_state = FCIP_PORT_ONLINE;
if (!(fptr->fcip_flags & FCIP_REG_INPROGRESS)) {
fptr->fcip_flags |= FCIP_REG_INPROGRESS;
if (taskq_dispatch(fptr->fcip_tq, fcip_port_ns,
fptr, KM_NOSLEEP) == 0) {
fptr->fcip_flags &= ~FCIP_REG_INPROGRESS;
}
}
/*
* If fcip_create_nodes_on_demand is overridden to force
* discovery of all nodes in Fabric/Public loop topologies
* we need to query for and obtain all nodes and log into
* them as with private loop devices
*/
if (!fcip_create_nodes_on_demand) {
fptr->fcip_port_state = FCIP_PORT_ONLINE;
listlen = alloclen = FCIP_MAX_PORTS;
port_map = (fc_portmap_t *)
kmem_zalloc((FCIP_MAX_PORTS *
sizeof (fc_portmap_t)), KM_SLEEP);
if (fc_ulp_getportmap(fport->fcipp_handle, &port_map,
&listlen, FC_ULP_PLOGI_PRESERVE) == FC_SUCCESS) {
mutex_exit(&fptr->fcip_mutex);
fcip_rt_update(fptr, port_map, listlen);
mutex_enter(&fptr->fcip_mutex);
}
if (listlen > alloclen) {
alloclen = listlen;
}
kmem_free(port_map,
(alloclen * sizeof (fc_portmap_t)));
}
break;
}
default:
break;
}
}
static void
fcip_port_ns(void *arg)
{
struct fcip *fptr = (struct fcip *)arg;
fcip_port_info_t *fport = fptr->fcip_port_info;
fc_ns_cmd_t ns_cmd;
uint32_t types[8];
ns_rfc_type_t rfc;
mutex_enter(&fptr->fcip_mutex);
if ((fptr->fcip_flags & (FCIP_DETACHING | FCIP_DETACHED)) ||
(fptr->fcip_flags & (FCIP_SUSPENDED | FCIP_POWER_DOWN))) {
fptr->fcip_flags &= ~FCIP_REG_INPROGRESS;
mutex_exit(&fptr->fcip_mutex);
return;
}
mutex_exit(&fptr->fcip_mutex);
/*
* Prepare the Name server structure to
* register with the transport in case of
* Fabric configuration.
*/
bzero(&rfc, sizeof (rfc));
bzero(types, sizeof (types));
types[FC4_TYPE_WORD_POS(FC_TYPE_IS8802_SNAP)] = (1 <<
FC4_TYPE_BIT_POS(FC_TYPE_IS8802_SNAP));
rfc.rfc_port_id.port_id = fport->fcipp_sid.port_id;
bcopy(types, rfc.rfc_types, sizeof (types));
ns_cmd.ns_flags = 0;
ns_cmd.ns_cmd = NS_RFT_ID;
ns_cmd.ns_req_len = sizeof (rfc);
ns_cmd.ns_req_payload = (caddr_t)&rfc;
ns_cmd.ns_resp_len = 0;
ns_cmd.ns_resp_payload = NULL;
/*
* Perform the Name Server Registration for FC IS8802_SNAP Type.
* We don't expect a reply for registering port type
*/
(void) fc_ulp_port_ns(fptr->fcip_port_info->fcipp_handle,
(opaque_t)0, &ns_cmd);
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags &= ~FCIP_REG_INPROGRESS;
mutex_exit(&fptr->fcip_mutex);
}
/*
* setup this instance of fcip. This routine inits kstats, allocates
* unsolicited buffers, determines' this port's siblings and handles
* topology specific details which includes registering with the name
* server and also setting up the routing table for this port for
* private loops and point to point topologies
*/
static int
fcip_init_port(struct fcip *fptr)
{
int rval = FC_SUCCESS;
fcip_port_info_t *fport = fptr->fcip_port_info;
static char buf[64];
size_t tok_buf_size;
ASSERT(fport != NULL);
FCIP_TNF_PROBE_1((fcip_init_port, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter"));
mutex_enter(&fptr->fcip_mutex);
/*
* setup mac address for this port. Don't be too worried if
* the WWN is zero, there is probably nothing attached to
* to the port. There is no point allocating unsolicited buffers
* for an unused port so return success if we don't have a MAC
* address. Do the port init on a state change notification.
*/
if (fcip_setup_mac_addr(fptr) == FCIP_INVALID_WWN) {
fptr->fcip_port_state = FCIP_PORT_OFFLINE;
rval = FC_SUCCESS;
goto done;
}
/*
* clear routing table hash list for this port
*/
fcip_rt_flush(fptr);
/*
* init kstats for this instance
*/
fcip_kstat_init(fptr);
/*
* Allocate unsolicited buffers
*/
fptr->fcip_ub_nbufs = fcip_ub_nbufs;
tok_buf_size = sizeof (*fptr->fcip_ub_tokens) * fcip_ub_nbufs;
FCIP_TNF_PROBE_2((fcip_init_port, "fcip io", /* CSTYLED */,
tnf_string, msg, "debug",
tnf_int, tokBufsize, tok_buf_size));
FCIP_DEBUG(FCIP_DEBUG_INIT,
(CE_WARN, "tokBufsize: 0x%lx", tok_buf_size));
fptr->fcip_ub_tokens = kmem_zalloc(tok_buf_size, KM_SLEEP);
if (fptr->fcip_ub_tokens == NULL) {
rval = FC_FAILURE;
FCIP_DEBUG(FCIP_DEBUG_INIT,
(CE_WARN, "fcip(%d): failed to allocate unsol buf",
fptr->fcip_instance));
goto done;
}
rval = fc_ulp_uballoc(fport->fcipp_handle, &fptr->fcip_ub_nbufs,
fcip_ub_size, FC_TYPE_IS8802_SNAP, fptr->fcip_ub_tokens);
if (rval != FC_SUCCESS) {
FCIP_DEBUG(FCIP_DEBUG_INIT,
(CE_WARN, "fcip(%d): fc_ulp_uballoc failed with 0x%x!!",
fptr->fcip_instance, rval));
}
switch (rval) {
case FC_SUCCESS:
break;
case FC_OFFLINE:
fptr->fcip_port_state = FCIP_PORT_OFFLINE;
rval = FC_FAILURE;
goto done;
case FC_UB_ERROR:
FCIP_TNF_PROBE_1((fcip_init_port, "fcip io", /* CSTYLED */,
tnf_string, msg, "invalid ub alloc request"));
FCIP_DEBUG(FCIP_DEBUG_INIT,
(CE_WARN, "invalid ub alloc request !!"));
rval = FC_FAILURE;
goto done;
case FC_FAILURE:
/*
* requested bytes could not be alloced
*/
if (fptr->fcip_ub_nbufs != fcip_ub_nbufs) {
cmn_err(CE_WARN,
"!fcip(0x%x): Failed to alloc unsolicited bufs",
ddi_get_instance(fport->fcipp_dip));
rval = FC_FAILURE;
goto done;
}
break;
default:
rval = FC_FAILURE;
break;
}
/*
* Preallocate a Cache of fcip packets for transmit and receive
* We don't want to be holding on to unsolicited buffers while
* we transmit the message upstream
*/
FCIP_DEBUG(FCIP_DEBUG_INIT, (CE_NOTE, "allocating fcip_pkt cache"));
(void) sprintf(buf, "fcip%d_cache", fptr->fcip_instance);
fptr->fcip_xmit_cache = kmem_cache_create(buf,
(fport->fcipp_fca_pkt_size + sizeof (fcip_pkt_t)),
8, fcip_cache_constructor, fcip_cache_destructor,
NULL, (void *)fport, NULL, 0);
(void) sprintf(buf, "fcip%d_sendup_cache", fptr->fcip_instance);
fptr->fcip_sendup_cache = kmem_cache_create(buf,
sizeof (struct fcip_sendup_elem),
8, fcip_sendup_constructor, NULL, NULL, (void *)fport, NULL, 0);
if (fptr->fcip_xmit_cache == NULL) {
FCIP_TNF_PROBE_2((fcip_init_port, "fcip io", /* CSTYLED */,
tnf_string, msg, "unable to allocate xmit cache",
tnf_int, instance, fptr->fcip_instance));
FCIP_DEBUG(FCIP_DEBUG_INIT,
(CE_WARN, "fcip%d unable to allocate xmit cache",
fptr->fcip_instance));
rval = FC_FAILURE;
goto done;
}
/*
* We may need to handle routing tables for point to point and
* fcal topologies and register with NameServer for Fabric
* topologies.
*/
fcip_handle_topology(fptr);
mutex_exit(&fptr->fcip_mutex);
if (fcip_dest_add_broadcast_entry(fptr, 1) != FC_SUCCESS) {
FCIP_DEBUG(FCIP_DEBUG_INIT,
(CE_WARN, "fcip(0x%x):add broadcast entry failed!!",
fptr->fcip_instance));
mutex_enter(&fptr->fcip_mutex);
rval = FC_FAILURE;
goto done;
}
rval = FC_SUCCESS;
return (rval);
done:
/*
* we don't always come here from port_attach - so cleanup
* anything done in the init_port routine
*/
if (fptr->fcip_kstatp) {
kstat_delete(fptr->fcip_kstatp);
fptr->fcip_kstatp = NULL;
}
if (fptr->fcip_xmit_cache) {
kmem_cache_destroy(fptr->fcip_xmit_cache);
fptr->fcip_xmit_cache = NULL;
}
if (fptr->fcip_sendup_cache) {
kmem_cache_destroy(fptr->fcip_sendup_cache);
fptr->fcip_sendup_cache = NULL;
}
/* release unsolicited buffers */
if (fptr->fcip_ub_tokens) {
uint64_t *tokens = fptr->fcip_ub_tokens;
fptr->fcip_ub_tokens = NULL;
mutex_exit(&fptr->fcip_mutex);
(void) fc_ulp_ubfree(fport->fcipp_handle, fptr->fcip_ub_nbufs,
tokens);
kmem_free(tokens, tok_buf_size);
} else {
mutex_exit(&fptr->fcip_mutex);
}
return (rval);
}
/*
* Sets up a port's MAC address from its WWN
*/
static int
fcip_setup_mac_addr(struct fcip *fptr)
{
fcip_port_info_t *fport = fptr->fcip_port_info;
ASSERT(mutex_owned(&fptr->fcip_mutex));
fptr->fcip_addrflags = 0;
/*
* we cannot choose a MAC address for our interface - we have
* to live with whatever node WWN we get (minus the top two
* MSbytes for the MAC address) from the transport layer. We will
* treat the WWN as our factory MAC address.
*/
if ((fport->fcipp_nwwn.w.wwn_hi != 0) ||
(fport->fcipp_nwwn.w.wwn_lo != 0)) {
char etherstr[ETHERSTRL];
wwn_to_ether(&fport->fcipp_nwwn, &fptr->fcip_macaddr);
fcip_ether_to_str(&fptr->fcip_macaddr, etherstr);
FCIP_DEBUG(FCIP_DEBUG_INIT,
(CE_NOTE, "setupmacaddr ouraddr %s", etherstr));
fptr->fcip_addrflags = (FCIP_FACTADDR_PRESENT |
FCIP_FACTADDR_USE);
} else {
/*
* No WWN - just return failure - there's not much
* we can do since we cannot set the WWN.
*/
FCIP_DEBUG(FCIP_DEBUG_INIT,
(CE_WARN, "Port does not have a valid WWN"));
return (FCIP_INVALID_WWN);
}
return (FC_SUCCESS);
}
/*
* flush routing table entries
*/
static void
fcip_rt_flush(struct fcip *fptr)
{
int index;
mutex_enter(&fptr->fcip_rt_mutex);
for (index = 0; index < FCIP_RT_HASH_ELEMS; index++) {
struct fcip_routing_table *frtp, *frtp_next;
frtp = fptr->fcip_rtable[index];
while (frtp) {
frtp_next = frtp->fcipr_next;
kmem_free(frtp, sizeof (struct fcip_routing_table));
frtp = frtp_next;
}
fptr->fcip_rtable[index] = NULL;
}
mutex_exit(&fptr->fcip_rt_mutex);
}
/*
* Free up the fcip softstate and all allocated resources for the
* fcip instance assoicated with a given port driver instance
*
* Given that the list of structures pointed to by fcip_port_head,
* this function is called from multiple sources, and the
* fcip_global_mutex that protects fcip_port_head must be dropped,
* our best solution is to return a value that indicates the next
* port in the list. This way the caller doesn't need to worry
* about the race condition where he saves off a pointer to the
* next structure in the list and by the time this routine returns,
* that next structure has already been freed.
*/
static fcip_port_info_t *
fcip_softstate_free(fcip_port_info_t *fport)
{
struct fcip *fptr = NULL;
int instance;
timeout_id_t tid;
opaque_t phandle = NULL;
fcip_port_info_t *prev_fport, *cur_fport, *next_fport = NULL;
ASSERT(MUTEX_HELD(&fcip_global_mutex));
if (fport) {
phandle = fport->fcipp_handle;
fptr = fport->fcipp_fcip;
} else {
return (next_fport);
}
if (fptr) {
mutex_enter(&fptr->fcip_mutex);
instance = ddi_get_instance(fptr->fcip_dip);
/*
* dismantle timeout thread for this instance of fcip
*/
tid = fptr->fcip_timeout_id;
fptr->fcip_timeout_id = NULL;
mutex_exit(&fptr->fcip_mutex);
(void) untimeout(tid);
mutex_enter(&fptr->fcip_mutex);
ASSERT(fcip_num_instances >= 0);
fcip_num_instances--;
/*
* stop sendup thread
*/
mutex_enter(&fptr->fcip_sendup_mutex);
if (fptr->fcip_sendup_thr_initted) {
fptr->fcip_sendup_thr_initted = 0;
cv_signal(&fptr->fcip_sendup_cv);
cv_wait(&fptr->fcip_sendup_cv,
&fptr->fcip_sendup_mutex);
}
ASSERT(fptr->fcip_sendup_head == NULL);
fptr->fcip_sendup_head = fptr->fcip_sendup_tail = NULL;
mutex_exit(&fptr->fcip_sendup_mutex);
/*
* dismantle taskq
*/
if (fptr->fcip_tq) {
taskq_t *tq = fptr->fcip_tq;
fptr->fcip_tq = NULL;
mutex_exit(&fptr->fcip_mutex);
taskq_destroy(tq);
mutex_enter(&fptr->fcip_mutex);
}
if (fptr->fcip_kstatp) {
kstat_delete(fptr->fcip_kstatp);
fptr->fcip_kstatp = NULL;
}
/* flush the routing table entries */
fcip_rt_flush(fptr);
if (fptr->fcip_xmit_cache) {
kmem_cache_destroy(fptr->fcip_xmit_cache);
fptr->fcip_xmit_cache = NULL;
}
if (fptr->fcip_sendup_cache) {
kmem_cache_destroy(fptr->fcip_sendup_cache);
fptr->fcip_sendup_cache = NULL;
}
fcip_cleanup_dest(fptr);
/* release unsolicited buffers */
if (fptr->fcip_ub_tokens) {
uint64_t *tokens = fptr->fcip_ub_tokens;
fptr->fcip_ub_tokens = NULL;
mutex_exit(&fptr->fcip_mutex);
if (phandle) {
/*
* release the global mutex here to
* permit any data pending callbacks to
* complete. Else we will deadlock in the
* FCA waiting for all unsol buffers to be
* returned.
*/
mutex_exit(&fcip_global_mutex);
(void) fc_ulp_ubfree(phandle,
fptr->fcip_ub_nbufs, tokens);
mutex_enter(&fcip_global_mutex);
}
kmem_free(tokens, (sizeof (*tokens) * fcip_ub_nbufs));
} else {
mutex_exit(&fptr->fcip_mutex);
}
mutex_destroy(&fptr->fcip_mutex);
mutex_destroy(&fptr->fcip_ub_mutex);
mutex_destroy(&fptr->fcip_rt_mutex);
mutex_destroy(&fptr->fcip_dest_mutex);
mutex_destroy(&fptr->fcip_sendup_mutex);
cv_destroy(&fptr->fcip_farp_cv);
cv_destroy(&fptr->fcip_sendup_cv);
cv_destroy(&fptr->fcip_ub_cv);
ddi_soft_state_free(fcip_softp, instance);
}
/*
* Now dequeue the fcip_port_info from the port list
*/
cur_fport = fcip_port_head;
prev_fport = NULL;
while (cur_fport != NULL) {
if (cur_fport == fport) {
break;
}
prev_fport = cur_fport;
cur_fport = cur_fport->fcipp_next;
}
/*
* Assert that we found a port in our port list
*/
ASSERT(cur_fport == fport);
if (prev_fport) {
/*
* Not the first port in the port list
*/
prev_fport->fcipp_next = fport->fcipp_next;
} else {
/*
* first port
*/
fcip_port_head = fport->fcipp_next;
}
next_fport = fport->fcipp_next;
kmem_free(fport, sizeof (fcip_port_info_t));
return (next_fport);
}
/*
* This is called by transport for any ioctl operations performed
* on the devctl or other transport minor nodes. It is currently
* unused for fcip
*/
/* ARGSUSED */
static int
fcip_port_ioctl(opaque_t ulp_handle, opaque_t port_handle, dev_t dev,
int cmd, intptr_t data, int mode, cred_t *credp, int *rval,
uint32_t claimed)
{
return (FC_UNCLAIMED);
}
/*
* DL_INFO_REQ - returns information about the DLPI stream to the DLS user
* requesting information about this interface
*/
static void
fcip_ireq(queue_t *wq, mblk_t *mp)
{
struct fcipstr *slp;
struct fcip *fptr;
dl_info_ack_t *dlip;
struct fcipdladdr *dlap;
la_wwn_t *ep;
int size;
char etherstr[ETHERSTRL];
slp = (struct fcipstr *)wq->q_ptr;
fptr = slp->sl_fcip;
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "fcip_ireq: info request req rcvd"));
FCIP_TNF_PROBE_1((fcip_ireq, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip ireq entered"));
if (MBLKL(mp) < DL_INFO_REQ_SIZE) {
dlerrorack(wq, mp, DL_INFO_REQ, DL_BADPRIM, 0);
return;
}
/*
* Exchange current message for a DL_INFO_ACK
*/
size = sizeof (dl_info_ack_t) + FCIPADDRL + ETHERADDRL;
if ((mp = mexchange(wq, mp, size, M_PCPROTO, DL_INFO_ACK)) == NULL) {
return;
}
/*
* FILL in the DL_INFO_ACK fields and reply
*/
dlip = (dl_info_ack_t *)mp->b_rptr;
*dlip = fcip_infoack;
dlip->dl_current_state = slp->sl_state;
dlap = (struct fcipdladdr *)(mp->b_rptr + dlip->dl_addr_offset);
dlap->dl_sap = slp->sl_sap;
if (fptr) {
fcip_ether_to_str(&fptr->fcip_macaddr, etherstr);
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "ireq - our mac: %s", etherstr));
ether_bcopy(&fptr->fcip_macaddr, &dlap->dl_phys);
} else {
bzero((caddr_t)&dlap->dl_phys, ETHERADDRL);
}
ep = (la_wwn_t *)(mp->b_rptr + dlip->dl_brdcst_addr_offset);
ether_bcopy(&fcip_arpbroadcast_addr, ep);
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "sending back info req.."));
qreply(wq, mp);
}
/*
* To handle DL_UNITDATA_REQ requests.
*/
static void
fcip_udreq(queue_t *wq, mblk_t *mp)
{
struct fcipstr *slp;
struct fcip *fptr;
fcip_port_info_t *fport;
dl_unitdata_req_t *dludp;
mblk_t *nmp;
struct fcipdladdr *dlap;
fcph_network_hdr_t *headerp;
llc_snap_hdr_t *lsnap;
t_uscalar_t off, len;
struct fcip_dest *fdestp;
la_wwn_t wwn;
int hdr_size;
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "inside fcip_udreq"));
FCIP_TNF_PROBE_1((fcip_udreq, "fcip io", /* CSTYLED */,
tnf_string, msg, "fcip udreq entered"));
slp = (struct fcipstr *)wq->q_ptr;
if (slp->sl_state != DL_IDLE) {
dlerrorack(wq, mp, DL_UNITDATA_REQ, DL_OUTSTATE, 0);
return;
}
fptr = slp->sl_fcip;
if (fptr == NULL) {
dlerrorack(wq, mp, DL_UNITDATA_REQ, DL_OUTSTATE, 0);
return;
}
fport = fptr->fcip_port_info;
dludp = (dl_unitdata_req_t *)mp->b_rptr;
off = dludp->dl_dest_addr_offset;
len = dludp->dl_dest_addr_length;
/*
* Validate destination address format
*/
if (!MBLKIN(mp, off, len) || (len != FCIPADDRL)) {
dluderrorind(wq, mp, (mp->b_rptr + off), len, DL_BADADDR, 0);
return;
}
/*
* Error if no M_DATA follows
*/
nmp = mp->b_cont;
if (nmp == NULL) {
dluderrorind(wq, mp, (mp->b_rptr + off), len, DL_BADDATA, 0);
return;
}
dlap = (struct fcipdladdr *)(mp->b_rptr + off);
/*
* Now get the destination structure for the remote NPORT
*/
ether_to_wwn(&dlap->dl_phys, &wwn);
fdestp = fcip_get_dest(fptr, &wwn);
if (fdestp == NULL) {
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE,
"udreq - couldn't find dest struct for remote port");
dluderrorind(wq, mp, (mp->b_rptr + off), len, DL_BADDATA, 0));
return;
}
/*
* Network header + SAP
*/
hdr_size = sizeof (fcph_network_hdr_t) + sizeof (llc_snap_hdr_t);
/* DB_REF gives the no. of msgs pointing to this block */
if ((DB_REF(nmp) == 1) &&
(MBLKHEAD(nmp) >= hdr_size) &&
(((uintptr_t)mp->b_rptr & 0x1) == 0)) {
la_wwn_t wwn;
nmp->b_rptr -= hdr_size;
/* first put the network header */
headerp = (fcph_network_hdr_t *)nmp->b_rptr;
if (ether_cmp(&dlap->dl_phys, &fcip_arpbroadcast_addr) == 0) {
ether_to_wwn(&fcipnhbroadcastaddr, &wwn);
} else {
ether_to_wwn(&dlap->dl_phys, &wwn);
}
bcopy(&wwn, &headerp->net_dest_addr, sizeof (la_wwn_t));
ether_to_wwn(&fptr->fcip_macaddr, &wwn);
bcopy(&wwn, &headerp->net_src_addr, sizeof (la_wwn_t));
/* Now the snap header */
lsnap = (llc_snap_hdr_t *)(nmp->b_rptr +
sizeof (fcph_network_hdr_t));
lsnap->dsap = 0xAA;
lsnap->ssap = 0xAA;
lsnap->ctrl = 0x03;
lsnap->oui[0] = 0x00;
lsnap->oui[1] = 0x00; /* 80 */
lsnap->oui[2] = 0x00; /* C2 */
lsnap->pid = BE_16((dlap->dl_sap));
freeb(mp);
mp = nmp;
} else {
la_wwn_t wwn;
DB_TYPE(mp) = M_DATA;
headerp = (fcph_network_hdr_t *)mp->b_rptr;
/*
* Only fill in the low 48bits of WWN for now - we can
* fill in the NAA_ID after we find the port in the
* routing tables
*/
if (ether_cmp(&dlap->dl_phys, &fcip_arpbroadcast_addr) == 0) {
ether_to_wwn(&fcipnhbroadcastaddr, &wwn);
} else {
ether_to_wwn(&dlap->dl_phys, &wwn);
}
bcopy(&wwn, &headerp->net_dest_addr, sizeof (la_wwn_t));
/* need to send our PWWN */
bcopy(&fport->fcipp_pwwn, &headerp->net_src_addr,
sizeof (la_wwn_t));
lsnap = (llc_snap_hdr_t *)(nmp->b_rptr +
sizeof (fcph_network_hdr_t));
lsnap->dsap = 0xAA;
lsnap->ssap = 0xAA;
lsnap->ctrl = 0x03;
lsnap->oui[0] = 0x00;
lsnap->oui[1] = 0x00;
lsnap->oui[2] = 0x00;
lsnap->pid = BE_16(dlap->dl_sap);
mp->b_wptr = mp->b_rptr + hdr_size;
}
/*
* Ethernet drivers have a lot of gunk here to put the Type
* information (for Ethernet encapsulation (RFC 894) or the
* Length (for 802.2/802.3) - I guess we'll just ignore that
* here.
*/
/*
* Start the I/O on this port. If fcip_start failed for some reason
* we call putbq in fcip_start so we don't need to check the
* return value from fcip_start
*/
(void) fcip_start(wq, mp, fptr, fdestp, KM_SLEEP);
}
/*
* DL_ATTACH_REQ: attaches a PPA with a stream. ATTACH requets are needed
* for style 2 DLS providers to identify the physical medium through which
* the streams communication will happen
*/
static void
fcip_areq(queue_t *wq, mblk_t *mp)
{
struct fcipstr *slp;
union DL_primitives *dlp;
fcip_port_info_t *fport;
struct fcip *fptr;
int ppa;
slp = (struct fcipstr *)wq->q_ptr;
dlp = (union DL_primitives *)mp->b_rptr;
if (MBLKL(mp) < DL_ATTACH_REQ_SIZE) {
dlerrorack(wq, mp, DL_ATTACH_REQ, DL_BADPRIM, 0);
return;
}
if (slp->sl_state != DL_UNATTACHED) {
dlerrorack(wq, mp, DL_ATTACH_REQ, DL_OUTSTATE, 0);
return;
}
ppa = dlp->attach_req.dl_ppa;
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "attach req: ppa %x", ppa));
/*
* check if the PPA is valid
*/
mutex_enter(&fcip_global_mutex);
for (fport = fcip_port_head; fport; fport = fport->fcipp_next) {
if ((fptr = fport->fcipp_fcip) == NULL) {
continue;
}
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "ppa %x, inst %x", ppa,
ddi_get_instance(fptr->fcip_dip)));
if (ppa == ddi_get_instance(fptr->fcip_dip)) {
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "ppa found %x", ppa));
break;
}
}
if (fport == NULL) {
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "dlerrorack coz fport==NULL"));
mutex_exit(&fcip_global_mutex);
if (fc_ulp_get_port_handle(ppa) == NULL) {
dlerrorack(wq, mp, DL_ATTACH_REQ, DL_BADPPA, 0);
return;
}
/*
* Wait for Port attach callback to trigger. If port_detach
* got in while we were waiting, then ddi_get_soft_state
* will return NULL, and we'll return error.
*/
delay(drv_usectohz(FCIP_INIT_DELAY));
mutex_enter(&fcip_global_mutex);
fptr = ddi_get_soft_state(fcip_softp, ppa);
if (fptr == NULL) {
mutex_exit(&fcip_global_mutex);
dlerrorack(wq, mp, DL_ATTACH_REQ, DL_BADPPA, 0);
return;
}
}
/*
* set link to device and update our state
*/
slp->sl_fcip = fptr;
slp->sl_state = DL_UNBOUND;
mutex_exit(&fcip_global_mutex);
#ifdef DEBUG
mutex_enter(&fptr->fcip_mutex);
if (fptr->fcip_flags & FCIP_LINK_DOWN) {
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_WARN, "port not online yet"));
}
mutex_exit(&fptr->fcip_mutex);
#endif
dlokack(wq, mp, DL_ATTACH_REQ);
}
/*
* DL_DETACH request - detaches a PPA from a stream
*/
static void
fcip_dreq(queue_t *wq, mblk_t *mp)
{
struct fcipstr *slp;
slp = (struct fcipstr *)wq->q_ptr;
if (MBLKL(mp) < DL_DETACH_REQ_SIZE) {
dlerrorack(wq, mp, DL_DETACH_REQ, DL_BADPRIM, 0);
return;
}
if (slp->sl_state != DL_UNBOUND) {
dlerrorack(wq, mp, DL_DETACH_REQ, DL_OUTSTATE, 0);
return;
}
fcip_dodetach(slp);
dlokack(wq, mp, DL_DETACH_REQ);
}
/*
* DL_BIND request: requests a DLS provider to bind a DLSAP to the stream.
* DLS users communicate with a physical interface through DLSAPs. Multiple
* DLSAPs can be bound to the same stream (PPA)
*/
static void
fcip_breq(queue_t *wq, mblk_t *mp)
{
struct fcipstr *slp;
union DL_primitives *dlp;
struct fcip *fptr;
struct fcipdladdr fcipaddr;
t_uscalar_t sap;
int xidtest;
slp = (struct fcipstr *)wq->q_ptr;
if (MBLKL(mp) < DL_BIND_REQ_SIZE) {
dlerrorack(wq, mp, DL_BIND_REQ, DL_BADPRIM, 0);
return;
}
if (slp->sl_state != DL_UNBOUND) {
dlerrorack(wq, mp, DL_BIND_REQ, DL_OUTSTATE, 0);
return;
}
dlp = (union DL_primitives *)mp->b_rptr;
fptr = slp->sl_fcip;
if (fptr == NULL) {
dlerrorack(wq, mp, DL_BIND_REQ, DL_OUTSTATE, 0);
return;
}
sap = dlp->bind_req.dl_sap;
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "fcip_breq - sap: %x", sap));
xidtest = dlp->bind_req.dl_xidtest_flg;
if (xidtest) {
dlerrorack(wq, mp, DL_BIND_REQ, DL_NOAUTO, 0);
return;
}
FCIP_DEBUG(FCIP_DEBUG_DLPI, (CE_NOTE, "DLBIND: sap : %x", sap));
if (sap > ETHERTYPE_MAX) {
dlerrorack(wq, mp, dlp->dl_primitive, DL_BADSAP, 0);
return;
}
/*
* save SAP for this stream and change the link state
*/
slp->sl_sap = sap;
slp->sl_state = DL_IDLE;
fcipaddr.dl_sap = sap;
ether_bcopy(&fptr->fcip_macaddr, &fcipaddr.dl_phys);
dlbindack(wq, mp, sap, &fcipaddr, FCIPADDRL, 0, 0);
fcip_setipq(fptr);
}
/*
* DL_UNBIND request to unbind a previously bound DLSAP, from this stream
*/
static void
fcip_ubreq(queue_t *wq, mblk_t *mp)
{
struct fcipstr *slp;
slp = (struct fcipstr *)wq->q_ptr;
if (MBLKL(mp) < DL_UNBIND_REQ_SIZE) {
dlerrorack(wq, mp, DL_UNBIND_REQ, DL_BADPRIM, 0);
return;
}
if (slp->sl_state != DL_IDLE) {
dlerrorack(wq, mp, DL_UNBIND_REQ, DL_OUTSTATE, 0);
return;
}
slp->sl_state = DL_UNBOUND;
slp->sl_sap = 0;
(void) putnextctl1(RD(wq), M_FLUSH, FLUSHRW);
dlokack(wq, mp, DL_UNBIND_REQ);
fcip_setipq(slp->sl_fcip);
}
/*
* Return our physical address
*/
static void
fcip_pareq(queue_t *wq, mblk_t *mp)
{
struct fcipstr *slp;
union DL_primitives *dlp;
int type;
struct fcip *fptr;
fcip_port_info_t *fport;
struct ether_addr addr;
slp = (struct fcipstr *)wq->q_ptr;
if (MBLKL(mp) < DL_PHYS_ADDR_REQ_SIZE) {
dlerrorack(wq, mp, DL_PHYS_ADDR_REQ, DL_BADPRIM, 0);
return;
}
dlp = (union DL_primitives *)mp->b_rptr;
type = dlp->physaddr_req.dl_addr_type;
fptr = slp->sl_fcip;
if (fptr == NULL) {
dlerrorack(wq, mp, DL_PHYS_ADDR_REQ, DL_OUTSTATE, 0);
return;
}
fport = fptr->fcip_port_info;
switch (type) {
case DL_FACT_PHYS_ADDR:
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "returning factory phys addr"));
wwn_to_ether(&fport->fcipp_pwwn, &addr);
break;
case DL_CURR_PHYS_ADDR:
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "returning current phys addr"));
ether_bcopy(&fptr->fcip_macaddr, &addr);
break;
default:
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_NOTE, "Not known cmd type in phys addr"));
dlerrorack(wq, mp, DL_PHYS_ADDR_REQ, DL_NOTSUPPORTED, 0);
return;
}
dlphysaddrack(wq, mp, &addr, ETHERADDRL);
}
/*
* Set physical address DLPI request
*/
static void
fcip_spareq(queue_t *wq, mblk_t *mp)
{
struct fcipstr *slp;
union DL_primitives *dlp;
t_uscalar_t off, len;
struct ether_addr *addrp;
la_wwn_t wwn;
struct fcip *fptr;
fc_ns_cmd_t fcip_ns_cmd;
slp = (struct fcipstr *)wq->q_ptr;
if (MBLKL(mp) < DL_SET_PHYS_ADDR_REQ_SIZE) {
dlerrorack(wq, mp, DL_SET_PHYS_ADDR_REQ, DL_BADPRIM, 0);
return;
}
dlp = (union DL_primitives *)mp->b_rptr;
len = dlp->set_physaddr_req.dl_addr_length;
off = dlp->set_physaddr_req.dl_addr_offset;
if (!MBLKIN(mp, off, len)) {
dlerrorack(wq, mp, DL_SET_PHYS_ADDR_REQ, DL_BADPRIM, 0);
return;
}
addrp = (struct ether_addr *)(mp->b_rptr + off);
/*
* If the length of physical address is not correct or address
* specified is a broadcast address or multicast addr -
* return an error.
*/
if ((len != ETHERADDRL) ||
((addrp->ether_addr_octet[0] & 01) == 1) ||
(ether_cmp(addrp, &fcip_arpbroadcast_addr) == 0)) {
dlerrorack(wq, mp, DL_SET_PHYS_ADDR_REQ, DL_BADADDR, 0);
return;
}
/*
* check if a stream is attached to this device. Else return an error
*/
if ((fptr = slp->sl_fcip) == NULL) {
dlerrorack(wq, mp, DL_SET_PHYS_ADDR_REQ, DL_OUTSTATE, 0);
return;
}
/*
* set the new interface local address. We request the transport
* layer to change the Port WWN for this device - return an error
* if we don't succeed.
*/
ether_to_wwn(addrp, &wwn);
if (fcip_set_wwn(&wwn) == FC_SUCCESS) {
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_WARN, "WWN changed in spareq"));
} else {
dlerrorack(wq, mp, DL_SET_PHYS_ADDR_REQ, DL_BADADDR, 0);
}
/*
* register The new Port WWN and Node WWN with the transport
* and Nameserver. Hope the transport ensures all current I/O
* has stopped before actually attempting to register a new
* port and Node WWN else we are hosed. Maybe a Link reset
* will get everyone's attention.
*/
fcip_ns_cmd.ns_flags = 0;
fcip_ns_cmd.ns_cmd = NS_RPN_ID;
fcip_ns_cmd.ns_req_len = sizeof (la_wwn_t);
fcip_ns_cmd.ns_req_payload = (caddr_t)&wwn.raw_wwn[0];
fcip_ns_cmd.ns_resp_len = 0;
fcip_ns_cmd.ns_resp_payload = (caddr_t)0;
if (fc_ulp_port_ns(fptr->fcip_port_info->fcipp_handle,
(opaque_t)0, &fcip_ns_cmd) != FC_SUCCESS) {
FCIP_DEBUG(FCIP_DEBUG_DLPI,
(CE_WARN, "setting Port WWN failed"));
dlerrorack(wq, mp, DL_SET_PHYS_ADDR_REQ, DL_BADPRIM, 0);
return;
}
dlokack(wq, mp, DL_SET_PHYS_ADDR_REQ);
}
/*
* change our port's WWN if permitted by hardware
*/
/* ARGSUSED */
static int
fcip_set_wwn(la_wwn_t *pwwn)
{
/*
* We're usually not allowed to change the WWN of adapters
* but some adapters do permit us to change the WWN - don't
* permit setting of WWNs (yet?) - This behavior could be
* modified if needed
*/
return (FC_FAILURE);
}
/*
* This routine fills in the header for fastpath data requests. What this
* does in simple terms is, instead of sending all data through the Unitdata
* request dlpi code paths (which will then append the protocol specific
* header - network and snap headers in our case), the upper layers issue
* a M_IOCTL with a DL_IOC_HDR_INFO request and ask the streams endpoint
* driver to give the header it needs appended and the upper layer
* allocates and fills in the header and calls our put routine
*/
static void
fcip_dl_ioc_hdr_info(queue_t *wq, mblk_t *mp)
{
mblk_t *nmp;
struct fcipstr *slp;
struct fcipdladdr *dlap;
dl_unitdata_req_t *dlup;
fcph_network_hdr_t *headerp;
la_wwn_t wwn;
llc_snap_hdr_t *lsnap;
struct fcip *fptr;
fcip_port_info_t *fport;
t_uscalar_t off, len;
size_t hdrlen;
int error;
slp = (struct fcipstr *)wq->q_ptr;
fptr = slp->sl_fcip;
if (fptr == NULL) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "dliochdr : returns EINVAL1"));
miocnak(wq, mp, 0, EINVAL);
return;
}
error = miocpullup(mp, sizeof (dl_unitdata_req_t) + FCIPADDRL);
if (error != 0) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "dliochdr : returns %d", error));
miocnak(wq, mp, 0, error);
return;
}
fport = fptr->fcip_port_info;
/*
* check if the DL_UNITDATA_REQ destination addr has valid offset
* and length values
*/
dlup = (dl_unitdata_req_t *)mp->b_cont->b_rptr;
off = dlup->dl_dest_addr_offset;
len = dlup->dl_dest_addr_length;
if (dlup->dl_primitive != DL_UNITDATA_REQ ||
!MBLKIN(mp->b_cont, off, len) || (len != FCIPADDRL)) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "dliochdr : returns EINVAL2"));
miocnak(wq, mp, 0, EINVAL);
return;
}
dlap = (struct fcipdladdr *)(mp->b_cont->b_rptr + off);
/*
* Allocate a new mblk to hold the ether header
*/
/*
* setup space for network header
*/
hdrlen = (sizeof (llc_snap_hdr_t) + sizeof (fcph_network_hdr_t));
if ((nmp = allocb(hdrlen, BPRI_MED)) == NULL) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "dliochdr : returns ENOMEM"));
miocnak(wq, mp, 0, ENOMEM);
return;
}
nmp->b_wptr += hdrlen;
/*
* Fill in the Network Hdr and LLC SNAP header;
*/
headerp = (fcph_network_hdr_t *)nmp->b_rptr;
/*
* just fill in the Node WWN here - we can fill in the NAA_ID when
* we search the routing table
*/
if (ether_cmp(&dlap->dl_phys, &fcip_arpbroadcast_addr) == 0) {
ether_to_wwn(&fcipnhbroadcastaddr, &wwn);
} else {
ether_to_wwn(&dlap->dl_phys, &wwn);
}
bcopy(&wwn, &headerp->net_dest_addr, sizeof (la_wwn_t));
bcopy(&fport->fcipp_pwwn, &headerp->net_src_addr, sizeof (la_wwn_t));
lsnap = (llc_snap_hdr_t *)(nmp->b_rptr + sizeof (fcph_network_hdr_t));
lsnap->dsap = 0xAA;
lsnap->ssap = 0xAA;
lsnap->ctrl = 0x03;
lsnap->oui[0] = 0x00;
lsnap->oui[1] = 0x00;
lsnap->oui[2] = 0x00;
lsnap->pid = BE_16(dlap->dl_sap);
/*
* Link new mblk in after the "request" mblks.
*/
linkb(mp, nmp);
slp->sl_flags |= FCIP_SLFAST;
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "dliochdr : returns success "));
miocack(wq, mp, msgsize(mp->b_cont), 0);
}
/*
* Establish a kmem cache for fcip packets
*/
static int
fcip_cache_constructor(void *buf, void *arg, int flags)
{
fcip_pkt_t *fcip_pkt = buf;
fc_packet_t *fc_pkt;
fcip_port_info_t *fport = (fcip_port_info_t *)arg;
int (*cb) (caddr_t);
struct fcip *fptr;
cb = (flags == KM_SLEEP) ? DDI_DMA_SLEEP : DDI_DMA_DONTWAIT;
ASSERT(fport != NULL);
fptr = fport->fcipp_fcip;
/*
* we allocated space for our private area at the end of the
* fc packet. Make sure we point to it correctly. Ideally we
* should just push fc_packet_private to the beginning or end
* of the fc_packet structure
*/
fcip_pkt->fcip_pkt_next = NULL;
fcip_pkt->fcip_pkt_prev = NULL;
fcip_pkt->fcip_pkt_dest = NULL;
fcip_pkt->fcip_pkt_state = 0;
fcip_pkt->fcip_pkt_reason = 0;
fcip_pkt->fcip_pkt_flags = 0;
fcip_pkt->fcip_pkt_fptr = fptr;
fcip_pkt->fcip_pkt_dma_flags = 0;
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
fc_pkt->pkt_ulp_rscn_infop = NULL;
/*
* We use pkt_cmd_dma for OUTBOUND requests. We don't expect
* any responses for outbound IP data so no need to setup
* response or data dma handles.
*/
if (ddi_dma_alloc_handle(fport->fcipp_dip,
&fport->fcipp_cmd_dma_attr, cb, NULL,
&fc_pkt->pkt_cmd_dma) != DDI_SUCCESS) {
return (FCIP_FAILURE);
}
fc_pkt->pkt_cmd_acc = fc_pkt->pkt_resp_acc = NULL;
fc_pkt->pkt_fca_private = (opaque_t)((caddr_t)buf +
sizeof (fcip_pkt_t));
fc_pkt->pkt_ulp_private = (opaque_t)fcip_pkt;
fc_pkt->pkt_cmd_cookie_cnt = fc_pkt->pkt_resp_cookie_cnt =
fc_pkt->pkt_data_cookie_cnt = 0;
fc_pkt->pkt_cmd_cookie = fc_pkt->pkt_resp_cookie =
fc_pkt->pkt_data_cookie = NULL;
return (FCIP_SUCCESS);
}
/*
* destroy the fcip kmem cache
*/
static void
fcip_cache_destructor(void *buf, void *arg)
{
fcip_pkt_t *fcip_pkt = (fcip_pkt_t *)buf;
fc_packet_t *fc_pkt;
fcip_port_info_t *fport = (fcip_port_info_t *)arg;
struct fcip *fptr;
ASSERT(fport != NULL);
fptr = fport->fcipp_fcip;
ASSERT(fptr == fcip_pkt->fcip_pkt_fptr);
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
if (fc_pkt->pkt_cmd_dma) {
ddi_dma_free_handle(&fc_pkt->pkt_cmd_dma);
}
}
/*
* the fcip destination structure is hashed on Node WWN assuming
* a NAA_ID of 0x1 (IEEE)
*/
static struct fcip_dest *
fcip_get_dest(struct fcip *fptr, la_wwn_t *pwwn)
{
struct fcip_dest *fdestp = NULL;
fcip_port_info_t *fport;
int hash_bucket;
opaque_t pd;
int rval;
struct fcip_routing_table *frp;
la_wwn_t twwn;
uint32_t *twwnp = (uint32_t *)&twwn;
hash_bucket = FCIP_DEST_HASH(pwwn->raw_wwn);
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "get dest hashbucket : 0x%x", hash_bucket));
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "0x%x 0x%x 0x%x 0x%x 0x%x 0x%x",
pwwn->raw_wwn[2], pwwn->raw_wwn[3], pwwn->raw_wwn[4],
pwwn->raw_wwn[5], pwwn->raw_wwn[6], pwwn->raw_wwn[7]));
ASSERT(hash_bucket < FCIP_DEST_HASH_ELEMS);
if (fcip_check_port_exists(fptr)) {
/* fptr is stale, return fdestp */
return (fdestp);
}
fport = fptr->fcip_port_info;
/*
* First check if we have active I/Os going on with the
* destination port (an entry would exist in fcip_dest hash table)
*/
mutex_enter(&fptr->fcip_dest_mutex);
fdestp = fptr->fcip_dest[hash_bucket];
while (fdestp != NULL) {
mutex_enter(&fdestp->fcipd_mutex);
if (fdestp->fcipd_rtable) {
if (fcip_wwn_compare(pwwn, &fdestp->fcipd_pwwn,
FCIP_COMPARE_NWWN) == 0) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "found fdestp"));
mutex_exit(&fdestp->fcipd_mutex);
mutex_exit(&fptr->fcip_dest_mutex);
return (fdestp);
}
}
mutex_exit(&fdestp->fcipd_mutex);
fdestp = fdestp->fcipd_next;
}
mutex_exit(&fptr->fcip_dest_mutex);
/*
* We did not find the destination port information in our
* active port list so search for an entry in our routing
* table.
*/
mutex_enter(&fptr->fcip_rt_mutex);
frp = fcip_lookup_rtable(fptr, pwwn, FCIP_COMPARE_NWWN);
mutex_exit(&fptr->fcip_rt_mutex);
if (frp == NULL || (frp && (!FCIP_RTE_UNAVAIL(frp->fcipr_state)) &&
frp->fcipr_state != PORT_DEVICE_LOGGED_IN) ||
(frp && frp->fcipr_pd == NULL)) {
/*
* No entry for the destination port in our routing
* table too. First query the transport to see if it
* already has structures for the destination port in
* its hash tables. This must be done for all topologies
* since we could have retired entries in the hash tables
* which may have to be re-added without a statechange
* callback happening. Its better to try and get an entry
* for the destination port rather than simply failing a
* request though it may be an overkill in private loop
* topologies.
* If a entry for the remote port exists in the transport's
* hash tables, we are fine and can add the entry to our
* routing and dest hash lists, Else for fabric configs we
* query the nameserver if one exists or issue FARP ELS.
*/
/*
* We need to do a PortName based Nameserver
* query operation. So get the right PortWWN
* for the adapter.
*/
bcopy(pwwn, &twwn, sizeof (la_wwn_t));
/*
* Try IEEE Name (Format 1) first, this is the default and
* Emulex uses this format.
*/
pd = fc_ulp_get_remote_port(fport->fcipp_handle,
&twwn, &rval, 1);
if (rval != FC_SUCCESS) {
/*
* If IEEE Name (Format 1) query failed, try IEEE
* Extended Name (Format 2) which Qlogic uses.
* And try port 1 on Qlogic FC-HBA first.
* Note: On x86, we need to byte swap the 32-bit
* word first, after the modification, swap it back.
*/
*twwnp = BE_32(*twwnp);
twwn.w.nport_id = QLC_PORT_1_ID_BITS;
twwn.w.naa_id = QLC_PORT_NAA;
*twwnp = BE_32(*twwnp);
pd = fc_ulp_get_remote_port(fport->fcipp_handle,
&twwn, &rval, 1);
}
if (rval != FC_SUCCESS) {
/* If still failed, try port 2 on Qlogic FC-HBA. */
*twwnp = BE_32(*twwnp);
twwn.w.nport_id = QLC_PORT_2_ID_BITS;
*twwnp = BE_32(*twwnp);
pd = fc_ulp_get_remote_port(fport->fcipp_handle,
&twwn, &rval, 1);
}
if (rval == FC_SUCCESS) {
fc_portmap_t map;
/*
* Add the newly found destination structure
* to our routing table. Create a map with
* the device we found. We could ask the
* transport to give us the list of all
* devices connected to our port but we
* probably don't need to know all the devices
* so let us just constuct a list with only
* one device instead.
*/
fc_ulp_copy_portmap(&map, pd);
fcip_rt_update(fptr, &map, 1);
mutex_enter(&fptr->fcip_rt_mutex);
frp = fcip_lookup_rtable(fptr, pwwn,
FCIP_COMPARE_NWWN);
mutex_exit(&fptr->fcip_rt_mutex);
fdestp = fcip_add_dest(fptr, frp);
} else if (fcip_farp_supported &&
(FC_TOP_EXTERNAL(fport->fcipp_topology) ||
(fport->fcipp_topology == FC_TOP_PT_PT))) {
/*
* The Name server request failed so
* issue an FARP
*/
fdestp = fcip_do_farp(fptr, pwwn, NULL,
0, 0);
} else {
fdestp = NULL;
}
} else if (frp && frp->fcipr_state == PORT_DEVICE_LOGGED_IN) {
/*
* Prepare a dest structure to return to caller
*/
fdestp = fcip_add_dest(fptr, frp);
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "in fcip get dest non fabric"));
}
return (fdestp);
}
/*
* Endian clean WWN compare.
* Returns 0 if they compare OK, else return non zero value.
* flag can be bitwise OR of FCIP_COMPARE_NWWN, FCIP_COMPARE_PWWN,
* FCIP_COMPARE_BROADCAST.
*/
static int
fcip_wwn_compare(la_wwn_t *wwn1, la_wwn_t *wwn2, int flag)
{
int rval = 0;
if ((wwn1->raw_wwn[2] != wwn2->raw_wwn[2]) ||
(wwn1->raw_wwn[3] != wwn2->raw_wwn[3]) ||
(wwn1->raw_wwn[4] != wwn2->raw_wwn[4]) ||
(wwn1->raw_wwn[5] != wwn2->raw_wwn[5]) ||
(wwn1->raw_wwn[6] != wwn2->raw_wwn[6]) ||
(wwn1->raw_wwn[7] != wwn2->raw_wwn[7])) {
rval = 1;
} else if ((flag == FCIP_COMPARE_PWWN) &&
(((wwn1->raw_wwn[0] & 0xf0) != (wwn2->raw_wwn[0] & 0xf0)) ||
(wwn1->raw_wwn[1] != wwn2->raw_wwn[1]))) {
rval = 1;
}
return (rval);
}
/*
* Add an entry for a remote port in the dest hash table. Dest hash table
* has entries for ports in the routing hash table with which we decide
* to establish IP communication with. The no. of entries in the dest hash
* table must always be less than or equal to the entries in the routing
* hash table. Every entry in the dest hash table ofcourse must have a
* corresponding entry in the routing hash table
*/
static struct fcip_dest *
fcip_add_dest(struct fcip *fptr, struct fcip_routing_table *frp)
{
struct fcip_dest *fdestp = NULL;
la_wwn_t *pwwn;
int hash_bucket;
struct fcip_dest *fdest_new;
if (frp == NULL) {
return (fdestp);
}
pwwn = &frp->fcipr_pwwn;
mutex_enter(&fptr->fcip_dest_mutex);
hash_bucket = FCIP_DEST_HASH(pwwn->raw_wwn);
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "add dest hash_bucket: 0x%x", hash_bucket));
ASSERT(hash_bucket < FCIP_DEST_HASH_ELEMS);
fdestp = fptr->fcip_dest[hash_bucket];
while (fdestp != NULL) {
mutex_enter(&fdestp->fcipd_mutex);
if (fdestp->fcipd_rtable) {
if (fcip_wwn_compare(pwwn, &fdestp->fcipd_pwwn,
FCIP_COMPARE_PWWN) == 0) {
mutex_exit(&fdestp->fcipd_mutex);
mutex_exit(&fptr->fcip_dest_mutex);
return (fdestp);
}
}
mutex_exit(&fdestp->fcipd_mutex);
fdestp = fdestp->fcipd_next;
}
ASSERT(fdestp == NULL);
fdest_new = (struct fcip_dest *)
kmem_zalloc(sizeof (struct fcip_dest), KM_SLEEP);
mutex_init(&fdest_new->fcipd_mutex, NULL, MUTEX_DRIVER, NULL);
fdest_new->fcipd_next = fptr->fcip_dest[hash_bucket];
fdest_new->fcipd_refcnt = 0;
fdest_new->fcipd_rtable = frp;
fdest_new->fcipd_ncmds = 0;
fptr->fcip_dest[hash_bucket] = fdest_new;
fdest_new->fcipd_flags = FCIP_PORT_NOTLOGGED;
mutex_exit(&fptr->fcip_dest_mutex);
return (fdest_new);
}
/*
* Cleanup the dest hash table and remove all entries
*/
static void
fcip_cleanup_dest(struct fcip *fptr)
{
struct fcip_dest *fdestp = NULL;
struct fcip_dest *fdest_delp = NULL;
int i;
mutex_enter(&fptr->fcip_dest_mutex);
for (i = 0; i < FCIP_DEST_HASH_ELEMS; i++) {
fdestp = fptr->fcip_dest[i];
while (fdestp != NULL) {
mutex_destroy(&fdestp->fcipd_mutex);
fdest_delp = fdestp;
fdestp = fdestp->fcipd_next;
kmem_free(fdest_delp, sizeof (struct fcip_dest));
fptr->fcip_dest[i] = NULL;
}
}
mutex_exit(&fptr->fcip_dest_mutex);
}
/*
* Send FARP requests for Fabric ports when we don't have the port
* we wish to talk to in our routing hash table. FARP is specially required
* to talk to FC switches for inband switch management. Most FC switches
* today have a switch FC IP address for IP over FC inband switch management
* but the WWN and Port_ID for this traffic is not available through the
* Nameservers since the switch themeselves are transparent.
*/
/* ARGSUSED */
static struct fcip_dest *
fcip_do_farp(struct fcip *fptr, la_wwn_t *pwwn, char *ip_addr,
size_t ip_addr_len, int flags)
{
fcip_pkt_t *fcip_pkt;
fc_packet_t *fc_pkt;
fcip_port_info_t *fport = fptr->fcip_port_info;
la_els_farp_t farp_cmd;
la_els_farp_t *fcmd;
struct fcip_dest *fdestp = NULL;
int rval;
clock_t farp_lbolt;
la_wwn_t broadcast_wwn;
struct fcip_dest *bdestp;
struct fcip_routing_table *frp;
bdestp = fcip_get_dest(fptr, &broadcast_wwn);
if (bdestp == NULL) {
return (fdestp);
}
fcip_pkt = fcip_ipkt_alloc(fptr, sizeof (la_els_farp_t),
sizeof (la_els_farp_t), bdestp->fcipd_pd, KM_SLEEP);
if (fcip_pkt == NULL) {
return (fdestp);
}
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
ether_to_wwn(&fcip_arpbroadcast_addr, &broadcast_wwn);
mutex_enter(&bdestp->fcipd_mutex);
if (bdestp->fcipd_rtable == NULL) {
mutex_exit(&bdestp->fcipd_mutex);
fcip_ipkt_free(fcip_pkt);
return (fdestp);
}
fcip_pkt->fcip_pkt_dest = bdestp;
fc_pkt->pkt_fca_device = bdestp->fcipd_fca_dev;
bdestp->fcipd_ncmds++;
mutex_exit(&bdestp->fcipd_mutex);
fcip_init_broadcast_pkt(fcip_pkt, NULL, 1);
fcip_pkt->fcip_pkt_flags |= FCIP_PKT_IN_LIST;
/*
* Now initialize the FARP payload itself
*/
fcmd = &farp_cmd;
fcmd->ls_code.ls_code = LA_ELS_FARP_REQ;
fcmd->ls_code.mbz = 0;
/*
* for now just match the Port WWN since the other match addr
* code points are optional. We can explore matching the IP address
* if needed
*/
if (ip_addr) {
fcmd->match_addr = FARP_MATCH_WW_PN_IPv4;
} else {
fcmd->match_addr = FARP_MATCH_WW_PN;
}
/*
* Request the responder port to log into us - that way
* the Transport is aware of the remote port when we create
* an entry for it in our tables
*/
fcmd->resp_flags = FARP_INIT_REPLY | FARP_INIT_P_LOGI;
fcmd->req_id = fport->fcipp_sid;
fcmd->dest_id.port_id = fc_pkt->pkt_cmd_fhdr.d_id;
bcopy(&fport->fcipp_pwwn, &fcmd->req_pwwn, sizeof (la_wwn_t));
bcopy(&fport->fcipp_nwwn, &fcmd->req_nwwn, sizeof (la_wwn_t));
bcopy(pwwn, &fcmd->resp_pwwn, sizeof (la_wwn_t));
/*
* copy in source IP address if we get to know it
*/
if (ip_addr) {
bcopy(ip_addr, fcmd->resp_ip, ip_addr_len);
}
fc_pkt->pkt_cmdlen = sizeof (la_els_farp_t);
fc_pkt->pkt_rsplen = sizeof (la_els_farp_t);
fc_pkt->pkt_tran_type = FC_PKT_EXCHANGE;
fc_pkt->pkt_ulp_private = (opaque_t)fcip_pkt;
/*
* Endian safe copy
*/
FCIP_CP_OUT(fcmd, fc_pkt->pkt_cmd, fc_pkt->pkt_cmd_acc,
sizeof (la_els_farp_t));
/*
* send the packet in polled mode.
*/
rval = fc_ulp_issue_els(fport->fcipp_handle, fc_pkt);
if (rval != FC_SUCCESS) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_WARN,
"fcip_transport of farp pkt failed 0x%x", rval));
fcip_pkt->fcip_pkt_flags &= ~FCIP_PKT_IN_LIST;
fcip_ipkt_free(fcip_pkt);
mutex_enter(&bdestp->fcipd_mutex);
bdestp->fcipd_ncmds--;
mutex_exit(&bdestp->fcipd_mutex);
return (fdestp);
}
farp_lbolt = ddi_get_lbolt();
farp_lbolt += drv_usectohz(FCIP_FARP_TIMEOUT);
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_farp_rsp_flag = 0;
while (!fptr->fcip_farp_rsp_flag) {
if (cv_timedwait(&fptr->fcip_farp_cv, &fptr->fcip_mutex,
farp_lbolt) == -1) {
/*
* No FARP response from any destination port
* so bail out.
*/
fptr->fcip_farp_rsp_flag = 1;
} else {
/*
* We received a FARP response - check to see if the
* response was in reply to our FARP request.
*/
mutex_enter(&fptr->fcip_rt_mutex);
frp = fcip_lookup_rtable(fptr, pwwn, FCIP_COMPARE_NWWN);
mutex_exit(&fptr->fcip_rt_mutex);
if ((frp != NULL) &&
!FCIP_RTE_UNAVAIL(frp->fcipr_state)) {
fdestp = fcip_get_dest(fptr, pwwn);
} else {
/*
* Not our FARP response so go back and wait
* again till FARP_TIMEOUT expires
*/
fptr->fcip_farp_rsp_flag = 0;
}
}
}
mutex_exit(&fptr->fcip_mutex);
fcip_pkt->fcip_pkt_flags |= FCIP_PKT_IN_LIST;
fcip_ipkt_free(fcip_pkt);
mutex_enter(&bdestp->fcipd_mutex);
bdestp->fcipd_ncmds--;
mutex_exit(&bdestp->fcipd_mutex);
return (fdestp);
}
/*
* Helper routine to PLOGI to a remote port we wish to talk to.
* This may not be required since the port driver does logins anyway,
* but this can be required in fabric cases since FARP requests/responses
* don't require you to be logged in?
*/
/* ARGSUSED */
static int
fcip_do_plogi(struct fcip *fptr, struct fcip_routing_table *frp)
{
fcip_pkt_t *fcip_pkt;
fc_packet_t *fc_pkt;
fcip_port_info_t *fport = fptr->fcip_port_info;
la_els_logi_t logi;
int rval;
fc_frame_hdr_t *fr_hdr;
/*
* Don't bother to login for broadcast RTE entries
*/
if ((frp->fcipr_d_id.port_id == 0x0) ||
(frp->fcipr_d_id.port_id == 0xffffff)) {
return (FC_FAILURE);
}
/*
* We shouldn't pound in too many logins here
*
*/
if (frp->fcipr_state == FCIP_RT_LOGIN_PROGRESS ||
frp->fcipr_state == PORT_DEVICE_LOGGED_IN) {
return (FC_SUCCESS);
}
fcip_pkt = fcip_ipkt_alloc(fptr, sizeof (la_els_logi_t),
sizeof (la_els_logi_t), frp->fcipr_pd, KM_SLEEP);
if (fcip_pkt == NULL) {
return (FC_FAILURE);
}
/*
* Update back pointer for login state update
*/
fcip_pkt->fcip_pkt_frp = frp;
frp->fcipr_state = FCIP_RT_LOGIN_PROGRESS;
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
/*
* Initialize frame header for ELS
*/
fr_hdr = &fc_pkt->pkt_cmd_fhdr;
fr_hdr->r_ctl = R_CTL_ELS_REQ;
fr_hdr->type = FC_TYPE_EXTENDED_LS;
fr_hdr->f_ctl = F_CTL_SEQ_INITIATIVE | F_CTL_FIRST_SEQ;
fr_hdr->df_ctl = 0;
fr_hdr->s_id = fport->fcipp_sid.port_id;
fr_hdr->d_id = frp->fcipr_d_id.port_id;
fr_hdr->seq_cnt = 0;
fr_hdr->ox_id = 0xffff;
fr_hdr->rx_id = 0xffff;
fr_hdr->ro = 0;
fc_pkt->pkt_rsplen = sizeof (la_els_logi_t);
fc_pkt->pkt_comp = fcip_ipkt_callback;
fc_pkt->pkt_tran_type = FC_PKT_EXCHANGE;
fc_pkt->pkt_timeout = 10; /* 10 seconds */
fcip_pkt->fcip_pkt_ttl = fptr->fcip_timeout_ticks + fc_pkt->pkt_timeout;
fc_pkt->pkt_ulp_private = (opaque_t)fcip_pkt;
/*
* Everybody does class 3, so let's just set it. If the transport
* knows better, it will deal with the class appropriately.
*/
fc_pkt->pkt_tran_flags = FC_TRAN_INTR | FC_TRAN_CLASS3;
/*
* we need only fill in the ls_code and the cmd frame header
*/
bzero((void *)&logi, sizeof (la_els_logi_t));
logi.ls_code.ls_code = LA_ELS_PLOGI;
logi.ls_code.mbz = 0;
FCIP_CP_OUT((uint8_t *)&logi, fc_pkt->pkt_cmd, fc_pkt->pkt_cmd_acc,
sizeof (la_els_logi_t));
rval = fc_ulp_login(fport->fcipp_handle, &fc_pkt, 1);
if (rval != FC_SUCCESS) {
cmn_err(CE_WARN,
"!fc_ulp_login failed for d_id: 0x%x, rval: 0x%x",
frp->fcipr_d_id.port_id, rval);
fcip_ipkt_free(fcip_pkt);
}
return (rval);
}
/*
* The packet callback routine - called from the transport/FCA after
* it is done DMA'ing/sending out the packet contents on the wire so
* that the alloc'ed packet can be freed
*/
static void
fcip_ipkt_callback(fc_packet_t *fc_pkt)
{
ls_code_t logi_req;
ls_code_t logi_resp;
fcip_pkt_t *fcip_pkt;
fc_frame_hdr_t *fr_hdr;
struct fcip *fptr;
fcip_port_info_t *fport;
struct fcip_routing_table *frp;
fr_hdr = &fc_pkt->pkt_cmd_fhdr;
FCIP_CP_IN(fc_pkt->pkt_resp, (uint8_t *)&logi_resp,
fc_pkt->pkt_resp_acc, sizeof (logi_resp));
FCIP_CP_IN(fc_pkt->pkt_cmd, (uint8_t *)&logi_req, fc_pkt->pkt_cmd_acc,
sizeof (logi_req));
fcip_pkt = (fcip_pkt_t *)fc_pkt->pkt_ulp_private;
frp = fcip_pkt->fcip_pkt_frp;
fptr = fcip_pkt->fcip_pkt_fptr;
fport = fptr->fcip_port_info;
ASSERT(logi_req.ls_code == LA_ELS_PLOGI);
if (fc_pkt->pkt_state != FC_PKT_SUCCESS ||
logi_resp.ls_code != LA_ELS_ACC) {
/* EMPTY */
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_WARN,
"opcode : 0x%x to d_id: 0x%x failed",
logi_req.ls_code, fr_hdr->d_id));
mutex_enter(&fptr->fcip_rt_mutex);
frp->fcipr_state = PORT_DEVICE_INVALID;
frp->fcipr_invalid_timeout = fptr->fcip_timeout_ticks +
(FCIP_RTE_TIMEOUT / 2);
mutex_exit(&fptr->fcip_rt_mutex);
} else {
fc_portid_t d_id;
d_id.port_id = fr_hdr->d_id;
d_id.priv_lilp_posit = 0;
/*
* Update PLOGI results; FCA Handle, and Port device handles
*/
mutex_enter(&fptr->fcip_rt_mutex);
frp->fcipr_pd = fc_pkt->pkt_pd;
frp->fcipr_fca_dev =
fc_ulp_get_fca_device(fport->fcipp_handle, d_id);
frp->fcipr_state = PORT_DEVICE_LOGGED_IN;
mutex_exit(&fptr->fcip_rt_mutex);
}
fcip_ipkt_free(fcip_pkt);
}
/*
* pkt_alloc routine for outbound IP datagrams. The cache constructor
* Only initializes the pkt_cmd_dma (which is where the outbound datagram
* is stuffed) since we don't expect response
*/
static fcip_pkt_t *
fcip_pkt_alloc(struct fcip *fptr, mblk_t *bp, int flags, int datalen)
{
fcip_pkt_t *fcip_pkt;
fc_packet_t *fc_pkt;
ddi_dma_cookie_t pkt_cookie;
ddi_dma_cookie_t *cp;
uint32_t cnt;
fcip_port_info_t *fport = fptr->fcip_port_info;
fcip_pkt = kmem_cache_alloc(fptr->fcip_xmit_cache, flags);
if (fcip_pkt == NULL) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM, (CE_WARN,
"fcip_pkt_alloc: kmem_cache_alloc failed"));
return (NULL);
}
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
fcip_pkt->fcip_pkt_fcpktp = fc_pkt;
fc_pkt->pkt_tran_flags = 0;
fcip_pkt->fcip_pkt_dma_flags = 0;
/*
* the cache constructor has allocated the dma handle
*/
fc_pkt->pkt_cmd = (caddr_t)bp->b_rptr;
if (ddi_dma_addr_bind_handle(fc_pkt->pkt_cmd_dma, NULL,
(caddr_t)bp->b_rptr, datalen, DDI_DMA_WRITE | DDI_DMA_CONSISTENT,
DDI_DMA_DONTWAIT, NULL, &pkt_cookie,
&fc_pkt->pkt_cmd_cookie_cnt) != DDI_DMA_MAPPED) {
goto fail;
}
fcip_pkt->fcip_pkt_dma_flags |= FCIP_CMD_DMA_BOUND;
if (fc_pkt->pkt_cmd_cookie_cnt >
fport->fcipp_cmd_dma_attr.dma_attr_sgllen) {
goto fail;
}
ASSERT(fc_pkt->pkt_cmd_cookie_cnt != 0);
cp = fc_pkt->pkt_cmd_cookie = (ddi_dma_cookie_t *)kmem_alloc(
fc_pkt->pkt_cmd_cookie_cnt * sizeof (pkt_cookie),
KM_NOSLEEP);
if (cp == NULL) {
goto fail;
}
*cp = pkt_cookie;
cp++;
for (cnt = 1; cnt < fc_pkt->pkt_cmd_cookie_cnt; cnt++, cp++) {
ddi_dma_nextcookie(fc_pkt->pkt_cmd_dma, &pkt_cookie);
*cp = pkt_cookie;
}
fc_pkt->pkt_cmdlen = datalen;
fcip_pkt->fcip_pkt_mp = NULL;
fcip_pkt->fcip_pkt_wq = NULL;
fcip_pkt->fcip_pkt_dest = NULL;
fcip_pkt->fcip_pkt_next = NULL;
fcip_pkt->fcip_pkt_prev = NULL;
fcip_pkt->fcip_pkt_state = 0;
fcip_pkt->fcip_pkt_reason = 0;
fcip_pkt->fcip_pkt_flags = 0;
fcip_pkt->fcip_pkt_frp = NULL;
return (fcip_pkt);
fail:
if (fcip_pkt) {
fcip_pkt_free(fcip_pkt, 0);
}
return ((fcip_pkt_t *)0);
}
/*
* Free a packet and all its associated resources
*/
static void
fcip_pkt_free(struct fcip_pkt *fcip_pkt, int free_mblk)
{
fc_packet_t *fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
struct fcip *fptr = fcip_pkt->fcip_pkt_fptr;
if (fc_pkt->pkt_cmd_cookie != NULL) {
kmem_free(fc_pkt->pkt_cmd_cookie, fc_pkt->pkt_cmd_cookie_cnt *
sizeof (ddi_dma_cookie_t));
fc_pkt->pkt_cmd_cookie = NULL;
}
fcip_free_pkt_dma(fcip_pkt);
if (free_mblk && fcip_pkt->fcip_pkt_mp) {
freemsg(fcip_pkt->fcip_pkt_mp);
fcip_pkt->fcip_pkt_mp = NULL;
}
(void) fc_ulp_uninit_packet(fptr->fcip_port_info->fcipp_handle, fc_pkt);
kmem_cache_free(fptr->fcip_xmit_cache, (void *)fcip_pkt);
}
/*
* Allocate a Packet for internal driver use. This is for requests
* that originate from within the driver
*/
static fcip_pkt_t *
fcip_ipkt_alloc(struct fcip *fptr, int cmdlen, int resplen,
opaque_t pd, int flags)
{
fcip_pkt_t *fcip_pkt;
fc_packet_t *fc_pkt;
int (*cb)(caddr_t);
fcip_port_info_t *fport = fptr->fcip_port_info;
size_t real_len;
uint_t held_here = 0;
ddi_dma_cookie_t pkt_cookie;
ddi_dma_cookie_t *cp;
uint32_t cnt;
cb = (flags == KM_SLEEP) ? DDI_DMA_SLEEP : DDI_DMA_DONTWAIT;
fcip_pkt = kmem_zalloc((sizeof (fcip_pkt_t) +
fport->fcipp_fca_pkt_size), flags);
if (fcip_pkt == NULL) {
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_WARN, "pkt alloc of ineternal pkt failed"));
goto fail;
}
fcip_pkt->fcip_pkt_flags = FCIP_PKT_INTERNAL;
fcip_pkt->fcip_pkt_fptr = fptr;
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
fcip_pkt->fcip_pkt_fcpktp = fc_pkt;
fc_pkt->pkt_tran_flags = 0;
fc_pkt->pkt_cmdlen = 0;
fc_pkt->pkt_rsplen = 0;
fc_pkt->pkt_datalen = 0;
fc_pkt->pkt_fca_private = (opaque_t)((caddr_t)fcip_pkt +
sizeof (fcip_pkt_t));
fc_pkt->pkt_ulp_private = (opaque_t)fcip_pkt;
if (cmdlen) {
if (ddi_dma_alloc_handle(fptr->fcip_dip,
&fport->fcipp_cmd_dma_attr, cb, NULL,
&fc_pkt->pkt_cmd_dma) != DDI_SUCCESS) {
goto fail;
}
if (ddi_dma_mem_alloc(fc_pkt->pkt_cmd_dma, cmdlen,
&fport->fcipp_fca_acc_attr, DDI_DMA_CONSISTENT,
cb, NULL, (caddr_t *)&fc_pkt->pkt_cmd,
&real_len, &fc_pkt->pkt_cmd_acc) != DDI_SUCCESS) {
goto fail;
}
fcip_pkt->fcip_pkt_dma_flags |= FCIP_CMD_DMA_MEM;
fc_pkt->pkt_cmdlen = cmdlen;
if (real_len < cmdlen) {
goto fail;
}
if (ddi_dma_addr_bind_handle(fc_pkt->pkt_cmd_dma, NULL,
(caddr_t)fc_pkt->pkt_cmd, real_len,
DDI_DMA_WRITE | DDI_DMA_CONSISTENT, cb, NULL,
&pkt_cookie, &fc_pkt->pkt_cmd_cookie_cnt) !=
DDI_DMA_MAPPED) {
goto fail;
}
fcip_pkt->fcip_pkt_dma_flags |= FCIP_CMD_DMA_BOUND;
if (fc_pkt->pkt_cmd_cookie_cnt >
fport->fcipp_cmd_dma_attr.dma_attr_sgllen) {
goto fail;
}
ASSERT(fc_pkt->pkt_cmd_cookie_cnt != 0);
cp = fc_pkt->pkt_cmd_cookie = (ddi_dma_cookie_t *)kmem_alloc(
fc_pkt->pkt_cmd_cookie_cnt * sizeof (pkt_cookie),
KM_NOSLEEP);
if (cp == NULL) {
goto fail;
}
*cp = pkt_cookie;
cp++;
for (cnt = 1; cnt < fc_pkt->pkt_cmd_cookie_cnt; cnt++, cp++) {
ddi_dma_nextcookie(fc_pkt->pkt_cmd_dma, &pkt_cookie);
*cp = pkt_cookie;
}
}
if (resplen) {
if (ddi_dma_alloc_handle(fptr->fcip_dip,
&fport->fcipp_resp_dma_attr, cb, NULL,
&fc_pkt->pkt_resp_dma) != DDI_SUCCESS) {
goto fail;
}
if (ddi_dma_mem_alloc(fc_pkt->pkt_resp_dma, resplen,
&fport->fcipp_fca_acc_attr, DDI_DMA_CONSISTENT,
cb, NULL, (caddr_t *)&fc_pkt->pkt_resp,
&real_len, &fc_pkt->pkt_resp_acc) != DDI_SUCCESS) {
goto fail;
}
fcip_pkt->fcip_pkt_dma_flags |= FCIP_RESP_DMA_MEM;
if (real_len < resplen) {
goto fail;
}
if (ddi_dma_addr_bind_handle(fc_pkt->pkt_resp_dma, NULL,
(caddr_t)fc_pkt->pkt_resp, real_len,
DDI_DMA_WRITE | DDI_DMA_CONSISTENT, cb, NULL,
&pkt_cookie, &fc_pkt->pkt_resp_cookie_cnt) !=
DDI_DMA_MAPPED) {
goto fail;
}
fcip_pkt->fcip_pkt_dma_flags |= FCIP_RESP_DMA_BOUND;
fc_pkt->pkt_rsplen = resplen;
if (fc_pkt->pkt_resp_cookie_cnt >
fport->fcipp_resp_dma_attr.dma_attr_sgllen) {
goto fail;
}
ASSERT(fc_pkt->pkt_resp_cookie_cnt != 0);
cp = fc_pkt->pkt_resp_cookie = (ddi_dma_cookie_t *)kmem_alloc(
fc_pkt->pkt_resp_cookie_cnt * sizeof (pkt_cookie),
KM_NOSLEEP);
if (cp == NULL) {
goto fail;
}
*cp = pkt_cookie;
cp++;
for (cnt = 1; cnt < fc_pkt->pkt_resp_cookie_cnt; cnt++, cp++) {
ddi_dma_nextcookie(fc_pkt->pkt_resp_dma, &pkt_cookie);
*cp = pkt_cookie;
}
}
/*
* Initialize pkt_pd prior to calling fc_ulp_init_packet
*/
fc_pkt->pkt_pd = pd;
/*
* Ask the FCA to bless the internal packet
*/
if (fc_ulp_init_packet((opaque_t)fport->fcipp_handle,
fc_pkt, flags) != FC_SUCCESS) {
goto fail;
}
/*
* Keep track of # of ipkts alloc-ed
* This function can get called with mutex either held or not. So, we'll
* grab mutex if it is not already held by this thread.
* This has to be cleaned up someday.
*/
if (!MUTEX_HELD(&fptr->fcip_mutex)) {
held_here = 1;
mutex_enter(&fptr->fcip_mutex);
}
fptr->fcip_num_ipkts_pending++;
if (held_here)
mutex_exit(&fptr->fcip_mutex);
return (fcip_pkt);
fail:
if (fcip_pkt) {
fcip_ipkt_free(fcip_pkt);
}
return (NULL);
}
/*
* free up an internal IP packet (like a FARP pkt etc)
*/
static void
fcip_ipkt_free(fcip_pkt_t *fcip_pkt)
{
fc_packet_t *fc_pkt;
struct fcip *fptr = fcip_pkt->fcip_pkt_fptr;
fcip_port_info_t *fport = fptr->fcip_port_info;
ASSERT(fptr != NULL);
ASSERT(!mutex_owned(&fptr->fcip_mutex));
/* One less ipkt to wait for */
mutex_enter(&fptr->fcip_mutex);
if (fptr->fcip_num_ipkts_pending) /* Safety check */
fptr->fcip_num_ipkts_pending--;
mutex_exit(&fptr->fcip_mutex);
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
if (fc_pkt->pkt_cmd_cookie != NULL) {
kmem_free(fc_pkt->pkt_cmd_cookie, fc_pkt->pkt_cmd_cookie_cnt *
sizeof (ddi_dma_cookie_t));
fc_pkt->pkt_cmd_cookie = NULL;
}
if (fc_pkt->pkt_resp_cookie != NULL) {
kmem_free(fc_pkt->pkt_resp_cookie, fc_pkt->pkt_resp_cookie_cnt *
sizeof (ddi_dma_cookie_t));
fc_pkt->pkt_resp_cookie = NULL;
}
if (fc_ulp_uninit_packet(fport->fcipp_handle, fc_pkt) != FC_SUCCESS) {
FCIP_DEBUG(FCIP_DEBUG_ELS, (CE_WARN,
"fc_ulp_uninit_pkt failed for internal fc pkt 0x%p",
(void *)fc_pkt));
}
fcip_free_pkt_dma(fcip_pkt);
kmem_free(fcip_pkt, (sizeof (fcip_pkt_t) + fport->fcipp_fca_pkt_size));
}
/*
* initialize a unicast request. This is a misnomer because even the
* broadcast requests are initialized with this routine
*/
static void
fcip_init_unicast_pkt(fcip_pkt_t *fcip_pkt, fc_portid_t sid, fc_portid_t did,
void (*comp) ())
{
fc_packet_t *fc_pkt;
fc_frame_hdr_t *fr_hdr;
struct fcip *fptr = fcip_pkt->fcip_pkt_fptr;
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
fr_hdr = &fc_pkt->pkt_cmd_fhdr;
fr_hdr->r_ctl = R_CTL_DEVICE_DATA | R_CTL_UNSOL_DATA;
fr_hdr->s_id = sid.port_id;
fr_hdr->d_id = did.port_id;
fr_hdr->type = FC_TYPE_IS8802_SNAP;
fr_hdr->f_ctl = F_CTL_FIRST_SEQ | F_CTL_LAST_SEQ;
fr_hdr->df_ctl = DF_CTL_NET_HDR;
fr_hdr->seq_cnt = 0;
fr_hdr->ox_id = 0xffff;
fr_hdr->rx_id = 0xffff;
fr_hdr->ro = 0;
/*
* reset all the length fields
*/
fc_pkt->pkt_rsplen = 0;
fc_pkt->pkt_datalen = 0;
fc_pkt->pkt_comp = comp;
if (comp) {
fc_pkt->pkt_tran_flags |= FC_TRAN_INTR;
} else {
fc_pkt->pkt_tran_flags |= FC_TRAN_NO_INTR;
}
fc_pkt->pkt_tran_type = FC_PKT_OUTBOUND | FC_PKT_IP_WRITE;
fc_pkt->pkt_timeout = fcip_pkt_ttl_ticks;
fcip_pkt->fcip_pkt_ttl = fptr->fcip_timeout_ticks + fc_pkt->pkt_timeout;
}
/*
* Initialize a fcip_packet for broadcast data transfers
*/
static void
fcip_init_broadcast_pkt(fcip_pkt_t *fcip_pkt, void (*comp) (), int is_els)
{
fc_packet_t *fc_pkt;
fc_frame_hdr_t *fr_hdr;
struct fcip *fptr = fcip_pkt->fcip_pkt_fptr;
fcip_port_info_t *fport = fptr->fcip_port_info;
uint32_t sid;
uint32_t did;
FCIP_TNF_PROBE_1((fcip_init_broadcast_pkt, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter"));
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
fr_hdr = &fc_pkt->pkt_cmd_fhdr;
sid = fport->fcipp_sid.port_id;
if (is_els) {
fr_hdr->r_ctl = R_CTL_ELS_REQ;
} else {
fr_hdr->r_ctl = R_CTL_DEVICE_DATA | R_CTL_UNSOL_DATA;
}
fr_hdr->s_id = sid;
/*
* The destination broadcast address depends on the topology
* of the underlying port
*/
did = fptr->fcip_broadcast_did;
/*
* mark pkt a broadcast pkt
*/
fc_pkt->pkt_tran_type = FC_PKT_BROADCAST;
fr_hdr->d_id = did;
fr_hdr->type = FC_TYPE_IS8802_SNAP;
fr_hdr->f_ctl = F_CTL_FIRST_SEQ | F_CTL_LAST_SEQ | F_CTL_END_SEQ;
fr_hdr->f_ctl &= ~(F_CTL_SEQ_INITIATIVE);
fr_hdr->df_ctl = DF_CTL_NET_HDR;
fr_hdr->seq_cnt = 0;
fr_hdr->ox_id = 0xffff;
fr_hdr->rx_id = 0xffff;
fr_hdr->ro = 0;
fc_pkt->pkt_comp = comp;
if (comp) {
fc_pkt->pkt_tran_flags |= FC_TRAN_INTR;
} else {
fc_pkt->pkt_tran_flags |= FC_TRAN_NO_INTR;
}
fc_pkt->pkt_tran_type = FC_PKT_BROADCAST;
fc_pkt->pkt_timeout = fcip_pkt_ttl_ticks;
fcip_pkt->fcip_pkt_ttl = fptr->fcip_timeout_ticks + fc_pkt->pkt_timeout;
}
/*
* Free up all DMA resources associated with an allocated packet
*/
static void
fcip_free_pkt_dma(fcip_pkt_t *fcip_pkt)
{
fc_packet_t *fc_pkt;
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "in freepktdma : flags 0x%x",
fcip_pkt->fcip_pkt_dma_flags));
if (fcip_pkt->fcip_pkt_dma_flags & FCIP_CMD_DMA_BOUND) {
(void) ddi_dma_unbind_handle(fc_pkt->pkt_cmd_dma);
}
if (fcip_pkt->fcip_pkt_dma_flags & FCIP_CMD_DMA_MEM) {
ddi_dma_mem_free(&fc_pkt->pkt_cmd_acc);
}
if (fcip_pkt->fcip_pkt_dma_flags & FCIP_RESP_DMA_BOUND) {
(void) ddi_dma_unbind_handle(fc_pkt->pkt_resp_dma);
}
if (fcip_pkt->fcip_pkt_dma_flags & FCIP_RESP_DMA_MEM) {
ddi_dma_mem_free(&fc_pkt->pkt_resp_acc);
}
/*
* for internal commands, we need to free up the dma handles too.
* This is done in the cache destructor for non internal cmds
*/
if (fcip_pkt->fcip_pkt_flags & FCIP_PKT_INTERNAL) {
if (fc_pkt->pkt_cmd_dma) {
ddi_dma_free_handle(&fc_pkt->pkt_cmd_dma);
}
if (fc_pkt->pkt_resp_dma) {
ddi_dma_free_handle(&fc_pkt->pkt_resp_dma);
}
}
}
/*
* helper routine to generate a string, given an ether addr
*/
static void
fcip_ether_to_str(struct ether_addr *e, caddr_t s)
{
int i;
for (i = 0; i < sizeof (struct ether_addr); i++, s += 2) {
FCIP_DEBUG(FCIP_DEBUG_MISC,
(CE_CONT, "0x%02X:", e->ether_addr_octet[i]));
(void) sprintf(s, "%02X", e->ether_addr_octet[i]);
}
*s = '\0';
}
/*
* When a broadcast request comes from the upper streams modules, it
* is ugly to look into every datagram to figure out if it is a broadcast
* datagram or a unicast packet. Instead just add the broadcast entries
* into our routing and dest tables and the standard hash table look ups
* will find the entries. It is a lot cleaner this way. Also Solaris ifconfig
* seems to be very ethernet specific and it requires broadcasts to the
* ether broadcast addr of 0xffffffffff to succeed even though we specified
* in the dl_info request that our broadcast MAC addr is 0x0000000000
* (can't figure out why RFC2625 did this though). So add broadcast entries
* for both MAC address
*/
static int
fcip_dest_add_broadcast_entry(struct fcip *fptr, int new_flag)
{
fc_portmap_t map;
struct fcip_routing_table *frp;
uint32_t did;
la_wwn_t broadcast_wwn;
/*
* get port_id of destination for broadcast - this is topology
* dependent
*/
did = fptr->fcip_broadcast_did;
ether_to_wwn(&fcip_arpbroadcast_addr, &broadcast_wwn);
bcopy((void *)&broadcast_wwn, (void *)&map.map_pwwn, sizeof (la_wwn_t));
bcopy((void *)&broadcast_wwn, (void *)&map.map_nwwn, sizeof (la_wwn_t));
map.map_did.port_id = did;
map.map_hard_addr.hard_addr = did;
map.map_state = PORT_DEVICE_VALID;
if (new_flag) {
map.map_type = PORT_DEVICE_NEW;
} else {
map.map_type = PORT_DEVICE_CHANGED;
}
map.map_flags = 0;
map.map_pd = NULL;
bzero(&map.map_fc4_types, sizeof (map.map_fc4_types));
fcip_rt_update(fptr, &map, 1);
mutex_enter(&fptr->fcip_rt_mutex);
frp = fcip_lookup_rtable(fptr, &broadcast_wwn, FCIP_COMPARE_NWWN);
mutex_exit(&fptr->fcip_rt_mutex);
if (frp == NULL) {
return (FC_FAILURE);
}
(void) fcip_add_dest(fptr, frp);
/*
* The Upper IP layers expect the traditional broadcast MAC addr
* of 0xff ff ff ff ff ff to work too if we want to plumb the fcip
* stream through the /etc/hostname.fcipXX file. Instead of checking
* each phys addr for a match with fcip's ARP header broadcast
* addr (0x00 00 00 00 00 00), its simply easier to add another
* broadcast entry for 0xff ff ff ff ff ff.
*/
ether_to_wwn(&fcipnhbroadcastaddr, &broadcast_wwn);
bcopy((void *)&broadcast_wwn, (void *)&map.map_pwwn, sizeof (la_wwn_t));
bcopy((void *)&broadcast_wwn, (void *)&map.map_nwwn, sizeof (la_wwn_t));
fcip_rt_update(fptr, &map, 1);
mutex_enter(&fptr->fcip_rt_mutex);
frp = fcip_lookup_rtable(fptr, &broadcast_wwn, FCIP_COMPARE_NWWN);
mutex_exit(&fptr->fcip_rt_mutex);
if (frp == NULL) {
return (FC_FAILURE);
}
(void) fcip_add_dest(fptr, frp);
return (FC_SUCCESS);
}
/*
* We need to obtain the D_ID of the broadcast port for transmitting all
* our broadcast (and multicast) requests. The broadcast D_ID as we know
* is dependent on the link topology
*/
static uint32_t
fcip_get_broadcast_did(struct fcip *fptr)
{
fcip_port_info_t *fport = fptr->fcip_port_info;
uint32_t did = 0;
uint32_t sid;
FCIP_TNF_PROBE_2((fcip_get_broadcast_did, "fcip io", /* CSTYLED */,
tnf_string, msg, "enter",
tnf_opaque, fptr, fptr));
sid = fport->fcipp_sid.port_id;
switch (fport->fcipp_topology) {
case FC_TOP_PT_PT: {
fc_portmap_t *port_map = NULL;
uint32_t listlen = 0;
if (fc_ulp_getportmap(fport->fcipp_handle, &port_map,
&listlen, FC_ULP_PLOGI_DONTCARE) == FC_SUCCESS) {
FCIP_DEBUG(FCIP_DEBUG_INIT, (CE_NOTE,
"fcip_gpmap: listlen : 0x%x", listlen));
if (listlen == 1) {
did = port_map->map_did.port_id;
}
}
if (port_map) {
kmem_free(port_map, listlen * sizeof (fc_portmap_t));
}
if (listlen != 1) {
/* Dummy return value */
return (0x00FFFFFF);
}
break;
}
case FC_TOP_NO_NS:
/* FALLTHROUGH */
case FC_TOP_FABRIC:
/*
* The broadcast address is the same whether or not
* the switch/fabric contains a Name service.
*/
did = 0x00FFFFFF;
break;
case FC_TOP_PUBLIC_LOOP:
/*
* The open replicate primitive must not be used. The
* broadcast sequence is simply sent to ALPA 0x00. The
* fabric controller then propagates the broadcast to all
* other ports. The fabric propagates the broadcast by
* using the OPNfr primitive.
*/
did = 0x00;
break;
case FC_TOP_PRIVATE_LOOP:
/*
* The source port for broadcast in private loop mode
* must send an OPN(fr) signal forcing all ports in the
* loop to replicate the frames that they receive.
*/
did = 0x00FFFFFF;
break;
case FC_TOP_UNKNOWN:
/* FALLTHROUGH */
default:
did = sid;
FCIP_DEBUG(FCIP_DEBUG_INIT, (CE_WARN,
"fcip(0x%x):unknown topology in init_broadcast_pkt",
fptr->fcip_instance));
break;
}
FCIP_TNF_PROBE_2((fcip_get_broadcast_did, "fcip io", /* CSTYLED */,
tnf_string, msg, "return",
tnf_opaque, did, did));
return (did);
}
/*
* fcip timeout performs 2 operations:
* 1. timeout any packets sent to the FCA for which a callback hasn't
* happened. If you are wondering why we need a callback since all
* traffic in FCIP is unidirectional, hence all exchanges are unidirectional
* but wait, we can only free up the resources after we know the FCA has
* DMA'ed out the data. pretty obvious eh :)
*
* 2. Retire and routing table entries we marked up for retiring. This is
* to give the link a chance to recover instead of marking a port down
* when we have lost all communication with it after a link transition
*/
static void
fcip_timeout(void *arg)
{
struct fcip *fptr = (struct fcip *)arg;
int i;
fcip_pkt_t *fcip_pkt;
struct fcip_dest *fdestp;
int index;
struct fcip_routing_table *frtp;
int dispatch_rte_removal = 0;
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags |= FCIP_IN_TIMEOUT;
fptr->fcip_timeout_ticks += fcip_tick_incr;
if (fptr->fcip_flags & (FCIP_DETACHED | FCIP_DETACHING | \
FCIP_SUSPENDED | FCIP_POWER_DOWN)) {
fptr->fcip_flags &= ~(FCIP_IN_TIMEOUT);
mutex_exit(&fptr->fcip_mutex);
return;
}
if (fptr->fcip_port_state == FCIP_PORT_OFFLINE) {
if (fptr->fcip_timeout_ticks > fptr->fcip_mark_offline) {
fptr->fcip_flags |= FCIP_LINK_DOWN;
}
}
if (!fptr->fcip_flags & FCIP_RTE_REMOVING) {
dispatch_rte_removal = 1;
}
mutex_exit(&fptr->fcip_mutex);
/*
* Check if we have any Invalid routing table entries in our
* hashtable we have marked off for deferred removal. If any,
* we can spawn a taskq thread to do the cleanup for us. We
* need to avoid cleanup in the timeout thread since we may
* have to wait for outstanding commands to complete before
* we retire a routing table entry. Also dispatch the taskq
* thread only if we are already do not have a taskq thread
* dispatched.
*/
if (dispatch_rte_removal) {
mutex_enter(&fptr->fcip_rt_mutex);
for (index = 0; index < FCIP_RT_HASH_ELEMS; index++) {
frtp = fptr->fcip_rtable[index];
while (frtp) {
if ((frtp->fcipr_state == FCIP_RT_INVALID) &&
(fptr->fcip_timeout_ticks >
frtp->fcipr_invalid_timeout)) {
/*
* If we cannot schedule a task thread
* let us attempt again on the next
* tick rather than call
* fcip_rte_remove_deferred() from here
* directly since the routine can sleep.
*/
frtp->fcipr_state = FCIP_RT_RETIRED;
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags |= FCIP_RTE_REMOVING;
mutex_exit(&fptr->fcip_mutex);
if (taskq_dispatch(fptr->fcip_tq,
fcip_rte_remove_deferred, fptr,
KM_NOSLEEP) == 0) {
/*
* failed - so mark the entry
* as invalid again.
*/
frtp->fcipr_state =
FCIP_RT_INVALID;
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags &=
~FCIP_RTE_REMOVING;
mutex_exit(&fptr->fcip_mutex);
}
}
frtp = frtp->fcipr_next;
}
}
mutex_exit(&fptr->fcip_rt_mutex);
}
mutex_enter(&fptr->fcip_dest_mutex);
/*
* Now timeout any packets stuck with the transport/FCA for too long
*/
for (i = 0; i < FCIP_DEST_HASH_ELEMS; i++) {
fdestp = fptr->fcip_dest[i];
while (fdestp != NULL) {
mutex_enter(&fdestp->fcipd_mutex);
for (fcip_pkt = fdestp->fcipd_head; fcip_pkt != NULL;
fcip_pkt = fcip_pkt->fcip_pkt_next) {
if (fcip_pkt->fcip_pkt_flags &
(FCIP_PKT_RETURNED | FCIP_PKT_IN_TIMEOUT |
FCIP_PKT_IN_ABORT)) {
continue;
}
if (fptr->fcip_timeout_ticks >
fcip_pkt->fcip_pkt_ttl) {
fcip_pkt->fcip_pkt_flags |=
FCIP_PKT_IN_TIMEOUT;
mutex_exit(&fdestp->fcipd_mutex);
if (taskq_dispatch(fptr->fcip_tq,
fcip_pkt_timeout, fcip_pkt,
KM_NOSLEEP) == 0) {
/*
* timeout immediately
*/
fcip_pkt_timeout(fcip_pkt);
}
mutex_enter(&fdestp->fcipd_mutex);
/*
* The linked list is altered because
* of one of the following reasons:
* a. Timeout code dequeued a pkt
* b. Pkt completion happened
*
* So restart the spin starting at
* the head again; This is a bit
* excessive, but okay since
* fcip_timeout_ticks isn't incremented
* for this spin, we will skip the
* not-to-be-timedout packets quickly
*/
fcip_pkt = fdestp->fcipd_head;
if (fcip_pkt == NULL) {
break;
}
}
}
mutex_exit(&fdestp->fcipd_mutex);
fdestp = fdestp->fcipd_next;
}
}
mutex_exit(&fptr->fcip_dest_mutex);
/*
* reschedule the timeout thread
*/
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_timeout_id = timeout(fcip_timeout, fptr,
drv_usectohz(1000000));
fptr->fcip_flags &= ~(FCIP_IN_TIMEOUT);
mutex_exit(&fptr->fcip_mutex);
}
/*
* This routine is either called from taskq or directly from fcip_timeout
* does the actual job of aborting the packet
*/
static void
fcip_pkt_timeout(void *arg)
{
fcip_pkt_t *fcip_pkt = (fcip_pkt_t *)arg;
struct fcip_dest *fdestp;
struct fcip *fptr;
fc_packet_t *fc_pkt;
fcip_port_info_t *fport;
int rval;
fdestp = fcip_pkt->fcip_pkt_dest;
fptr = fcip_pkt->fcip_pkt_fptr;
fport = fptr->fcip_port_info;
fc_pkt = FCIP_PKT_TO_FC_PKT(fcip_pkt);
/*
* try to abort the pkt
*/
fcip_pkt->fcip_pkt_flags |= FCIP_PKT_IN_ABORT;
rval = fc_ulp_abort(fport->fcipp_handle, fc_pkt, KM_NOSLEEP);
FCIP_DEBUG(FCIP_DEBUG_DOWNSTREAM,
(CE_NOTE, "fc_ulp_abort returns: 0x%x", rval));
if (rval == FC_SUCCESS) {
ASSERT(fdestp != NULL);
/*
* dequeue the pkt from the dest structure pkt list
*/
fcip_pkt->fcip_pkt_flags &= ~FCIP_PKT_IN_ABORT;
mutex_enter(&fdestp->fcipd_mutex);
rval = fcip_fdestp_dequeue_pkt(fdestp, fcip_pkt);
ASSERT(rval == 1);
mutex_exit(&fdestp->fcipd_mutex);
/*
* Now cleanup the pkt and free the mblk
*/
fcip_pkt_free(fcip_pkt, 1);
} else {
/*
* abort failed - just mark the pkt as done and
* wait for it to complete in fcip_pkt_callback since
* the pkt has already been xmitted by the FCA
*/
fcip_pkt->fcip_pkt_flags &= ~FCIP_PKT_IN_TIMEOUT;
if (fcip_pkt->fcip_pkt_flags & FCIP_PKT_RETURNED) {
fcip_pkt->fcip_pkt_flags &= ~FCIP_PKT_IN_ABORT;
mutex_enter(&fdestp->fcipd_mutex);
rval = fcip_fdestp_dequeue_pkt(fdestp, fcip_pkt);
ASSERT(rval == 1);
mutex_exit(&fdestp->fcipd_mutex);
fcip_pkt_free(fcip_pkt, 1);
}
return;
}
}
/*
* Remove a routing table entry marked for deferred removal. This routine
* unlike fcip_pkt_timeout, is always called from a taskq context
*/
static void
fcip_rte_remove_deferred(void *arg)
{
struct fcip *fptr = (struct fcip *)arg;
int hash_bucket;
struct fcip_dest *fdestp;
la_wwn_t *pwwn;
int index;
struct fcip_routing_table *frtp, *frtp_next, *frtp_prev;
mutex_enter(&fptr->fcip_rt_mutex);
for (index = 0; index < FCIP_RT_HASH_ELEMS; index++) {
frtp = fptr->fcip_rtable[index];
frtp_prev = NULL;
while (frtp) {
frtp_next = frtp->fcipr_next;
if (frtp->fcipr_state == FCIP_RT_RETIRED) {
pwwn = &frtp->fcipr_pwwn;
/*
* Get hold of destination pointer
*/
mutex_enter(&fptr->fcip_dest_mutex);
hash_bucket = FCIP_DEST_HASH(pwwn->raw_wwn);
ASSERT(hash_bucket < FCIP_DEST_HASH_ELEMS);
fdestp = fptr->fcip_dest[hash_bucket];
while (fdestp != NULL) {
mutex_enter(&fdestp->fcipd_mutex);
if (fdestp->fcipd_rtable) {
if (fcip_wwn_compare(pwwn,
&fdestp->fcipd_pwwn,
FCIP_COMPARE_PWWN) == 0) {
mutex_exit(
&fdestp->fcipd_mutex);
break;
}
}
mutex_exit(&fdestp->fcipd_mutex);
fdestp = fdestp->fcipd_next;
}
mutex_exit(&fptr->fcip_dest_mutex);
if (fdestp == NULL) {
frtp_prev = frtp;
frtp = frtp_next;
continue;
}
mutex_enter(&fdestp->fcipd_mutex);
if (fdestp->fcipd_ncmds) {
/*
* Instead of waiting to drain commands
* let us revisit this RT entry in
* the next pass.
*/
mutex_exit(&fdestp->fcipd_mutex);
frtp_prev = frtp;
frtp = frtp_next;
continue;
}
/*
* We are clean, so remove the RTE
*/
fdestp->fcipd_rtable = NULL;
mutex_exit(&fdestp->fcipd_mutex);
FCIP_TNF_PROBE_2((fcip_rte_remove_deferred,
"fcip io", /* CSTYLED */,
tnf_string, msg,
"remove retired routing entry",
tnf_int, index, index));
if (frtp_prev == NULL) {
/* first element */
fptr->fcip_rtable[index] =
frtp->fcipr_next;
} else {
frtp_prev->fcipr_next =
frtp->fcipr_next;
}
kmem_free(frtp,
sizeof (struct fcip_routing_table));
frtp = frtp_next;
} else {
frtp_prev = frtp;
frtp = frtp_next;
}
}
}
mutex_exit(&fptr->fcip_rt_mutex);
/*
* Clear the RTE_REMOVING flag
*/
mutex_enter(&fptr->fcip_mutex);
fptr->fcip_flags &= ~FCIP_RTE_REMOVING;
mutex_exit(&fptr->fcip_mutex);
}
/*
* Walk through all the dest hash table entries and count up the total
* no. of packets outstanding against a given port
*/
static int
fcip_port_get_num_pkts(struct fcip *fptr)
{
int num_cmds = 0;
int i;
struct fcip_dest *fdestp;
ASSERT(mutex_owned(&fptr->fcip_dest_mutex));
for (i = 0; i < FCIP_DEST_HASH_ELEMS; i++) {
fdestp = fptr->fcip_dest[i];
while (fdestp != NULL) {
mutex_enter(&fdestp->fcipd_mutex);
ASSERT(fdestp->fcipd_ncmds >= 0);
if (fdestp->fcipd_ncmds > 0) {
num_cmds += fdestp->fcipd_ncmds;
}
mutex_exit(&fdestp->fcipd_mutex);
fdestp = fdestp->fcipd_next;
}
}
return (num_cmds);
}
/*
* Walk through the routing table for this state instance and see if there is a
* PLOGI in progress for any of the entries. Return success even if we find one.
*/
static int
fcip_plogi_in_progress(struct fcip *fptr)
{
int i;
struct fcip_routing_table *frp;
ASSERT(mutex_owned(&fptr->fcip_rt_mutex));
for (i = 0; i < FCIP_RT_HASH_ELEMS; i++) {
frp = fptr->fcip_rtable[i];
while (frp) {
if (frp->fcipr_state == FCIP_RT_LOGIN_PROGRESS) {
/* Found an entry where PLOGI is in progress */
return (1);
}
frp = frp->fcipr_next;
}
}
return (0);
}
/*
* Walk through the fcip port global list and check if the given port exists in
* the list. Returns "0" if port exists and "1" if otherwise.
*/
static int
fcip_check_port_exists(struct fcip *fptr)
{
fcip_port_info_t *cur_fport;
fcip_port_info_t *fport;
mutex_enter(&fcip_global_mutex);
fport = fptr->fcip_port_info;
cur_fport = fcip_port_head;
while (cur_fport != NULL) {
if (cur_fport == fport) {
/* Found */
mutex_exit(&fcip_global_mutex);
return (0);
} else {
cur_fport = cur_fport->fcipp_next;
}
}
mutex_exit(&fcip_global_mutex);
return (1);
}
/*
* Constructor to initialize the sendup elements for callback into
* modules upstream
*/
/* ARGSUSED */
static int
fcip_sendup_constructor(void *buf, void *arg, int flags)
{
struct fcip_sendup_elem *msg_elem = (struct fcip_sendup_elem *)buf;
fcip_port_info_t *fport = (fcip_port_info_t *)arg;
ASSERT(fport != NULL);
msg_elem->fcipsu_mp = NULL;
msg_elem->fcipsu_func = NULL;
msg_elem->fcipsu_next = NULL;
return (FCIP_SUCCESS);
}