ql_xioctl.c revision 4f8b8adc54496e548e2d73094de038a131d9cd45
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright 2009 QLogic Corporation */
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "Copyright 2009 QLogic Corporation; ql_xioctl.c"
/*
* ISP2xxx Solaris Fibre Channel Adapter (FCA) driver source file.
*
* ***********************************************************************
* * **
* * NOTICE **
* * COPYRIGHT (C) 1996-2009 QLOGIC CORPORATION **
* * ALL RIGHTS RESERVED **
* * **
* ***********************************************************************
*
*/
#include <ql_apps.h>
#include <ql_api.h>
#include <ql_debug.h>
#include <ql_init.h>
#include <ql_iocb.h>
#include <ql_ioctl.h>
#include <ql_mbx.h>
#include <ql_xioctl.h>
/*
* Local data
*/
/*
* Local prototypes
*/
static int ql_sdm_ioctl(ql_adapter_state_t *, int, void *, int);
static int ql_sdm_setup(ql_adapter_state_t *, EXT_IOCTL **, void *, int,
boolean_t (*)(EXT_IOCTL *));
static boolean_t ql_validate_signature(EXT_IOCTL *);
static int ql_sdm_return(ql_adapter_state_t *, EXT_IOCTL *, void *, int);
static void ql_query(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_qry_hba_node(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_qry_hba_port(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_qry_disc_port(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_qry_disc_tgt(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_qry_fw(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_qry_chip(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_qry_driver(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_fcct(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_aen_reg(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_aen_get(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_scsi_passthru(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_wwpn_to_scsiaddr(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_host_idx(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_host_drvname(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_read_nvram(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_write_nvram(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_read_flash(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_write_flash(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_write_vpd(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_read_vpd(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_diagnostic_loopback(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_send_els_rnid(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_set_host_data(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_host_data(ql_adapter_state_t *, EXT_IOCTL *, int);
static int ql_lun_count(ql_adapter_state_t *, ql_tgt_t *);
static int ql_report_lun(ql_adapter_state_t *, ql_tgt_t *);
static int ql_inq_scan(ql_adapter_state_t *, ql_tgt_t *, int);
static int ql_inq(ql_adapter_state_t *, ql_tgt_t *, int, ql_mbx_iocb_t *,
uint8_t);
static uint32_t ql_get_buffer_data(caddr_t, caddr_t, uint32_t, int);
static uint32_t ql_send_buffer_data(caddr_t, caddr_t, uint32_t, int);
static int ql_24xx_flash_desc(ql_adapter_state_t *);
static int ql_setup_flash(ql_adapter_state_t *);
static ql_tgt_t *ql_find_port(ql_adapter_state_t *, uint8_t *, uint16_t);
static int ql_flash_fcode_load(ql_adapter_state_t *, void *, uint32_t, int);
static int ql_flash_fcode_dump(ql_adapter_state_t *, void *, uint32_t,
uint32_t, int);
static int ql_program_flash_address(ql_adapter_state_t *, uint32_t,
uint8_t);
static void ql_set_rnid_parameters(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_rnid_parameters(ql_adapter_state_t *, EXT_IOCTL *, int);
static int ql_reset_statistics(ql_adapter_state_t *, EXT_IOCTL *);
static void ql_get_statistics(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_statistics_fc(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_statistics_fc4(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_set_led_state(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_led_state(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_drive_led(ql_adapter_state_t *, uint32_t);
static uint32_t ql_setup_led(ql_adapter_state_t *);
static uint32_t ql_wrapup_led(ql_adapter_state_t *);
static void ql_get_port_summary(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_target_id(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_sfp(ql_adapter_state_t *, EXT_IOCTL *, int);
static int ql_dump_sfp(ql_adapter_state_t *, void *, int);
static ql_fcache_t *ql_setup_fnode(ql_adapter_state_t *);
static void ql_get_fcache(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_fcache_ex(ql_adapter_state_t *, EXT_IOCTL *, int);
void ql_update_fcache(ql_adapter_state_t *, uint8_t *, uint32_t);
static int ql_check_pci(ql_adapter_state_t *, ql_fcache_t *, uint32_t *);
static void ql_flash_layout_table(ql_adapter_state_t *, uint32_t);
static void ql_flash_nvram_defaults(ql_adapter_state_t *);
static void ql_port_param(ql_adapter_state_t *, EXT_IOCTL *, int);
static int ql_check_pci(ql_adapter_state_t *, ql_fcache_t *, uint32_t *);
static void ql_get_pci_data(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_fwfcetrace(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_get_fwexttrace(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_menlo_reset(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_menlo_get_fw_version(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_menlo_update_fw(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_menlo_manage_info(ql_adapter_state_t *, EXT_IOCTL *, int);
static int ql_suspend_hba(ql_adapter_state_t *, uint32_t);
static void ql_restart_hba(ql_adapter_state_t *);
static void ql_get_vp_cnt_id(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_vp_ioctl(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_qry_vport(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_access_flash(ql_adapter_state_t *, EXT_IOCTL *, int);
static void ql_reset_cmd(ql_adapter_state_t *, EXT_IOCTL *);
static void ql_update_flash_caches(ql_adapter_state_t *);
static void ql_get_dcbx_parameters(ql_adapter_state_t *, EXT_IOCTL *, int);
/* ******************************************************************** */
/* External IOCTL support. */
/* ******************************************************************** */
/*
* ql_alloc_xioctl_resource
* Allocates resources needed by module code.
*
* Input:
* ha: adapter state pointer.
*
* Returns:
* SYS_ERRNO
*
* Context:
* Kernel context.
*/
int
ql_alloc_xioctl_resource(ql_adapter_state_t *ha)
{
ql_xioctl_t *xp;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (ha->xioctl != NULL) {
QL_PRINT_9(CE_CONT, "(%d): already allocated done\n",
ha->instance);
return (0);
}
xp = kmem_zalloc(sizeof (ql_xioctl_t), KM_SLEEP);
if (xp == NULL) {
EL(ha, "failed, kmem_zalloc\n");
return (ENOMEM);
}
ha->xioctl = xp;
/* Allocate AEN tracking buffer */
xp->aen_tracking_queue = kmem_zalloc(EXT_DEF_MAX_AEN_QUEUE *
sizeof (EXT_ASYNC_EVENT), KM_SLEEP);
if (xp->aen_tracking_queue == NULL) {
EL(ha, "failed, kmem_zalloc-2\n");
ql_free_xioctl_resource(ha);
return (ENOMEM);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (0);
}
/*
* ql_free_xioctl_resource
* Frees resources used by module code.
*
* Input:
* ha: adapter state pointer.
*
* Context:
* Kernel context.
*/
void
ql_free_xioctl_resource(ql_adapter_state_t *ha)
{
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (xp == NULL) {
QL_PRINT_9(CE_CONT, "(%d): already freed\n", ha->instance);
return;
}
if (xp->aen_tracking_queue != NULL) {
kmem_free(xp->aen_tracking_queue, EXT_DEF_MAX_AEN_QUEUE *
sizeof (EXT_ASYNC_EVENT));
xp->aen_tracking_queue = NULL;
}
kmem_free(xp, sizeof (ql_xioctl_t));
ha->xioctl = NULL;
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_xioctl
* External IOCTL processing.
*
* Input:
* ha: adapter state pointer.
* cmd: function to perform
* arg: data type varies with request
* mode: flags
* cred_p: credentials pointer
* rval_p: pointer to result value
*
* Returns:
* 0: success
* ENXIO: No such device or address
* ENOPROTOOPT: Protocol not available
*
* Context:
* Kernel context.
*/
/* ARGSUSED */
int
ql_xioctl(ql_adapter_state_t *ha, int cmd, intptr_t arg, int mode,
cred_t *cred_p, int *rval_p)
{
int rval;
QL_PRINT_9(CE_CONT, "(%d): started, cmd=%d\n", ha->instance, cmd);
if (ha->xioctl == NULL) {
QL_PRINT_9(CE_CONT, "(%d): no context\n", ha->instance);
return (ENXIO);
}
switch (cmd) {
case EXT_CC_QUERY:
case EXT_CC_SEND_FCCT_PASSTHRU:
case EXT_CC_REG_AEN:
case EXT_CC_GET_AEN:
case EXT_CC_SEND_SCSI_PASSTHRU:
case EXT_CC_WWPN_TO_SCSIADDR:
case EXT_CC_SEND_ELS_RNID:
case EXT_CC_SET_DATA:
case EXT_CC_GET_DATA:
case EXT_CC_HOST_IDX:
case EXT_CC_READ_NVRAM:
case EXT_CC_UPDATE_NVRAM:
case EXT_CC_READ_OPTION_ROM:
case EXT_CC_READ_OPTION_ROM_EX:
case EXT_CC_UPDATE_OPTION_ROM:
case EXT_CC_UPDATE_OPTION_ROM_EX:
case EXT_CC_GET_VPD:
case EXT_CC_SET_VPD:
case EXT_CC_LOOPBACK:
case EXT_CC_GET_FCACHE:
case EXT_CC_GET_FCACHE_EX:
case EXT_CC_HOST_DRVNAME:
case EXT_CC_GET_SFP_DATA:
case EXT_CC_PORT_PARAM:
case EXT_CC_GET_PCI_DATA:
case EXT_CC_GET_FWEXTTRACE:
case EXT_CC_GET_FWFCETRACE:
case EXT_CC_GET_VP_CNT_ID:
case EXT_CC_VPORT_CMD:
case EXT_CC_ACCESS_FLASH:
case EXT_CC_RESET_FW:
rval = ql_sdm_ioctl(ha, cmd, (void *)arg, mode);
break;
default:
/* function not supported. */
EL(ha, "function=%d not supported\n", cmd);
rval = ENOPROTOOPT;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (rval);
}
/*
* ql_sdm_ioctl
* Provides ioctl functions for SAN/Device Management functions
* AKA External Ioctl functions.
*
* Input:
* ha: adapter state pointer.
* ioctl_code: ioctl function to perform
* arg: Pointer to EXT_IOCTL cmd data in application land.
* mode: flags
*
* Returns:
* 0: success
* ENOMEM: Alloc of local EXT_IOCTL struct failed.
* EFAULT: Copyin of caller's EXT_IOCTL struct failed or
* copyout of EXT_IOCTL status info failed.
* EINVAL: Signature or version of caller's EXT_IOCTL invalid.
* EBUSY: Device busy
*
* Context:
* Kernel context.
*/
static int
ql_sdm_ioctl(ql_adapter_state_t *ha, int ioctl_code, void *arg, int mode)
{
EXT_IOCTL *cmd;
int rval;
ql_adapter_state_t *vha;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Copy argument structure (EXT_IOCTL) from application land. */
if ((rval = ql_sdm_setup(ha, &cmd, arg, mode,
ql_validate_signature)) != 0) {
/*
* a non-zero value at this time means a problem getting
* the requested information from application land, just
* return the error code and hope for the best.
*/
EL(ha, "failed, sdm_setup\n");
return (rval);
}
/*
* Map the physical ha ptr (which the ioctl is called with)
* to the virtual ha that the caller is addressing.
*/
if (ha->flags & VP_ENABLED) {
/*
* Special case: HbaSelect == 0 is physical ha
*/
if (cmd->HbaSelect != 0) {
vha = ha->vp_next;
while (vha != NULL) {
if (vha->vp_index == cmd->HbaSelect) {
ha = vha;
break;
}
vha = vha->vp_next;
}
/*
* If we can't find the specified vp index then
* we probably have an error (vp indexes shifting
* under our feet?).
*/
if (vha == NULL) {
EL(ha, "Invalid HbaSelect vp index: %xh\n",
cmd->HbaSelect);
cmd->Status = EXT_STATUS_INVALID_VPINDEX;
cmd->ResponseLen = 0;
return (EFAULT);
}
}
}
/*
* If driver is suspended, stalled, or powered down rtn BUSY
*/
if (ha->flags & ADAPTER_SUSPENDED ||
ha->task_daemon_flags & DRIVER_STALL ||
ha->power_level != PM_LEVEL_D0) {
EL(ha, " %s\n", ha->flags & ADAPTER_SUSPENDED ?
"driver suspended" :
(ha->task_daemon_flags & DRIVER_STALL ? "driver stalled" :
"FCA powered down"));
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
rval = EBUSY;
/* Return results to caller */
if ((ql_sdm_return(ha, cmd, arg, mode)) == -1) {
EL(ha, "failed, sdm_return\n");
rval = EFAULT;
}
return (rval);
}
switch (ioctl_code) {
case EXT_CC_QUERY_OS:
ql_query(ha, cmd, mode);
break;
case EXT_CC_SEND_FCCT_PASSTHRU_OS:
ql_fcct(ha, cmd, mode);
break;
case EXT_CC_REG_AEN_OS:
ql_aen_reg(ha, cmd, mode);
break;
case EXT_CC_GET_AEN_OS:
ql_aen_get(ha, cmd, mode);
break;
case EXT_CC_GET_DATA_OS:
ql_get_host_data(ha, cmd, mode);
break;
case EXT_CC_SET_DATA_OS:
ql_set_host_data(ha, cmd, mode);
break;
case EXT_CC_SEND_ELS_RNID_OS:
ql_send_els_rnid(ha, cmd, mode);
break;
case EXT_CC_SCSI_PASSTHRU_OS:
ql_scsi_passthru(ha, cmd, mode);
break;
case EXT_CC_WWPN_TO_SCSIADDR_OS:
ql_wwpn_to_scsiaddr(ha, cmd, mode);
break;
case EXT_CC_HOST_IDX_OS:
ql_host_idx(ha, cmd, mode);
break;
case EXT_CC_HOST_DRVNAME_OS:
ql_host_drvname(ha, cmd, mode);
break;
case EXT_CC_READ_NVRAM_OS:
ql_read_nvram(ha, cmd, mode);
break;
case EXT_CC_UPDATE_NVRAM_OS:
ql_write_nvram(ha, cmd, mode);
break;
case EXT_CC_READ_OPTION_ROM_OS:
case EXT_CC_READ_OPTION_ROM_EX_OS:
ql_read_flash(ha, cmd, mode);
break;
case EXT_CC_UPDATE_OPTION_ROM_OS:
case EXT_CC_UPDATE_OPTION_ROM_EX_OS:
ql_write_flash(ha, cmd, mode);
break;
case EXT_CC_LOOPBACK_OS:
ql_diagnostic_loopback(ha, cmd, mode);
break;
case EXT_CC_GET_VPD_OS:
ql_read_vpd(ha, cmd, mode);
break;
case EXT_CC_SET_VPD_OS:
ql_write_vpd(ha, cmd, mode);
break;
case EXT_CC_GET_FCACHE_OS:
ql_get_fcache(ha, cmd, mode);
break;
case EXT_CC_GET_FCACHE_EX_OS:
ql_get_fcache_ex(ha, cmd, mode);
break;
case EXT_CC_GET_SFP_DATA_OS:
ql_get_sfp(ha, cmd, mode);
break;
case EXT_CC_PORT_PARAM_OS:
ql_port_param(ha, cmd, mode);
break;
case EXT_CC_GET_PCI_DATA_OS:
ql_get_pci_data(ha, cmd, mode);
break;
case EXT_CC_GET_FWEXTTRACE_OS:
ql_get_fwexttrace(ha, cmd, mode);
break;
case EXT_CC_GET_FWFCETRACE_OS:
ql_get_fwfcetrace(ha, cmd, mode);
break;
case EXT_CC_MENLO_RESET:
ql_menlo_reset(ha, cmd, mode);
break;
case EXT_CC_MENLO_GET_FW_VERSION:
ql_menlo_get_fw_version(ha, cmd, mode);
break;
case EXT_CC_MENLO_UPDATE_FW:
ql_menlo_update_fw(ha, cmd, mode);
break;
case EXT_CC_MENLO_MANAGE_INFO:
ql_menlo_manage_info(ha, cmd, mode);
break;
case EXT_CC_GET_VP_CNT_ID_OS:
ql_get_vp_cnt_id(ha, cmd, mode);
break;
case EXT_CC_VPORT_CMD_OS:
ql_vp_ioctl(ha, cmd, mode);
break;
case EXT_CC_ACCESS_FLASH_OS:
ql_access_flash(ha, cmd, mode);
break;
case EXT_CC_RESET_FW_OS:
ql_reset_cmd(ha, cmd);
break;
default:
/* function not supported. */
EL(ha, "failed, function not supported=%d\n", ioctl_code);
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
break;
}
/* Return results to caller */
if (ql_sdm_return(ha, cmd, arg, mode) == -1) {
EL(ha, "failed, sdm_return\n");
return (EFAULT);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (0);
}
/*
* ql_sdm_setup
* Make a local copy of the EXT_IOCTL struct and validate it.
*
* Input:
* ha: adapter state pointer.
* cmd_struct: Pointer to location to store local adrs of EXT_IOCTL.
* arg: Address of application EXT_IOCTL cmd data
* mode: flags
* val_sig: Pointer to a function to validate the ioctl signature.
*
* Returns:
* 0: success
* EFAULT: Copy in error of application EXT_IOCTL struct.
* EINVAL: Invalid version, signature.
* ENOMEM: Local allocation of EXT_IOCTL failed.
*
* Context:
* Kernel context.
*/
static int
ql_sdm_setup(ql_adapter_state_t *ha, EXT_IOCTL **cmd_struct, void *arg,
int mode, boolean_t (*val_sig)(EXT_IOCTL *))
{
int rval;
EXT_IOCTL *cmd;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Allocate local memory for EXT_IOCTL. */
*cmd_struct = NULL;
cmd = (EXT_IOCTL *)kmem_zalloc(sizeof (EXT_IOCTL), KM_SLEEP);
if (cmd == NULL) {
EL(ha, "failed, kmem_zalloc\n");
return (ENOMEM);
}
/* Get argument structure. */
rval = ddi_copyin(arg, (void *)cmd, sizeof (EXT_IOCTL), mode);
if (rval != 0) {
EL(ha, "failed, ddi_copyin\n");
rval = EFAULT;
} else {
/*
* Check signature and the version.
* If either are not valid then neither is the
* structure so don't attempt to return any error status
* because we can't trust what caller's arg points to.
* Just return the errno.
*/
if (val_sig(cmd) == 0) {
EL(ha, "failed, signature\n");
rval = EINVAL;
} else if (cmd->Version > EXT_VERSION) {
EL(ha, "failed, version\n");
rval = EINVAL;
}
}
if (rval == 0) {
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
*cmd_struct = cmd;
cmd->Status = EXT_STATUS_OK;
cmd->DetailStatus = 0;
} else {
kmem_free((void *)cmd, sizeof (EXT_IOCTL));
}
return (rval);
}
/*
* ql_validate_signature
* Validate the signature string for an external ioctl call.
*
* Input:
* sg: Pointer to EXT_IOCTL signature to validate.
*
* Returns:
* B_TRUE: Signature is valid.
* B_FALSE: Signature is NOT valid.
*
* Context:
* Kernel context.
*/
static boolean_t
ql_validate_signature(EXT_IOCTL *cmd_struct)
{
/*
* Check signature.
*
* If signature is not valid then neither is the rest of
* the structure (e.g., can't trust it), so don't attempt
* to return any error status other than the errno.
*/
if (bcmp(&cmd_struct->Signature, "QLOGIC", 6) != 0) {
QL_PRINT_2(CE_CONT, "failed,\n");
return (B_FALSE);
}
return (B_TRUE);
}
/*
* ql_sdm_return
* Copies return data/status to application land for
* ioctl call using the SAN/Device Management EXT_IOCTL call interface.
*
* Input:
* ha: adapter state pointer.
* cmd: Pointer to kernel copy of requestor's EXT_IOCTL struct.
* ioctl_code: ioctl function to perform
* arg: EXT_IOCTL cmd data in application land.
* mode: flags
*
* Returns:
* 0: success
* EFAULT: Copy out error.
*
* Context:
* Kernel context.
*/
/* ARGSUSED */
static int
ql_sdm_return(ql_adapter_state_t *ha, EXT_IOCTL *cmd, void *arg, int mode)
{
int rval = 0;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
rval |= ddi_copyout((void *)&cmd->ResponseLen,
(void *)&(((EXT_IOCTL*)arg)->ResponseLen), sizeof (uint32_t),
mode);
rval |= ddi_copyout((void *)&cmd->Status,
(void *)&(((EXT_IOCTL*)arg)->Status),
sizeof (cmd->Status), mode);
rval |= ddi_copyout((void *)&cmd->DetailStatus,
(void *)&(((EXT_IOCTL*)arg)->DetailStatus),
sizeof (cmd->DetailStatus), mode);
kmem_free((void *)cmd, sizeof (EXT_IOCTL));
if (rval != 0) {
/* Some copyout operation failed */
EL(ha, "failed, ddi_copyout\n");
return (EFAULT);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (0);
}
/*
* ql_query
* Performs all EXT_CC_QUERY functions.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_query(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
QL_PRINT_9(CE_CONT, "(%d): started, cmd=%d\n", ha->instance,
cmd->SubCode);
/* case off on command subcode */
switch (cmd->SubCode) {
case EXT_SC_QUERY_HBA_NODE:
ql_qry_hba_node(ha, cmd, mode);
break;
case EXT_SC_QUERY_HBA_PORT:
ql_qry_hba_port(ha, cmd, mode);
break;
case EXT_SC_QUERY_DISC_PORT:
ql_qry_disc_port(ha, cmd, mode);
break;
case EXT_SC_QUERY_DISC_TGT:
ql_qry_disc_tgt(ha, cmd, mode);
break;
case EXT_SC_QUERY_DRIVER:
ql_qry_driver(ha, cmd, mode);
break;
case EXT_SC_QUERY_FW:
ql_qry_fw(ha, cmd, mode);
break;
case EXT_SC_QUERY_CHIP:
ql_qry_chip(ha, cmd, mode);
break;
case EXT_SC_QUERY_DISC_LUN:
default:
/* function not supported. */
cmd->Status = EXT_STATUS_UNSUPPORTED_SUBCODE;
EL(ha, "failed, Unsupported Subcode=%xh\n",
cmd->SubCode);
break;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_qry_hba_node
* Performs EXT_SC_QUERY_HBA_NODE subfunction.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_qry_hba_node(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_HBA_NODE tmp_node = {0};
uint_t len;
caddr_t bufp;
ql_mbx_data_t mr;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->ResponseLen < sizeof (EXT_HBA_NODE)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_HBA_NODE);
EL(ha, "failed, ResponseLen < EXT_HBA_NODE, "
"Len=%xh\n", cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
/* fill in the values */
bcopy(ha->loginparams.node_ww_name.raw_wwn, tmp_node.WWNN,
EXT_DEF_WWN_NAME_SIZE);
(void) sprintf((char *)(tmp_node.Manufacturer), "QLogic Corporation");
(void) sprintf((char *)(tmp_node.Model), "%x", ha->device_id);
bcopy(&tmp_node.WWNN[5], tmp_node.SerialNum, 3);
(void) sprintf((char *)(tmp_node.DriverVersion), QL_VERSION);
if (CFG_IST(ha, CFG_SBUS_CARD)) {
size_t verlen;
uint16_t w;
char *tmpptr;
verlen = strlen((char *)(tmp_node.DriverVersion));
if (verlen + 5 > EXT_DEF_MAX_STR_SIZE) {
EL(ha, "failed, No room for fpga version string\n");
} else {
w = (uint16_t)ddi_get16(ha->sbus_fpga_dev_handle,
(uint16_t *)
(ha->sbus_fpga_iobase + FPGA_REVISION));
tmpptr = (char *)&(tmp_node.DriverVersion[verlen+1]);
if (tmpptr == NULL) {
EL(ha, "Unable to insert fpga version str\n");
} else {
(void) sprintf(tmpptr, "%d.%d",
((w & 0xf0) >> 4), (w & 0x0f));
tmp_node.DriverAttr |= EXT_CC_HBA_NODE_SBUS;
}
}
}
(void) ql_get_fw_version(ha, &mr);
(void) sprintf((char *)(tmp_node.FWVersion), "%01d.%02d.%02d",
mr.mb[1], mr.mb[2], mr.mb[3]);
if ((CFG_IST(ha, CFG_CTRL_242581)) == 0) {
switch (mr.mb[6]) {
case FWATTRIB_EF:
(void) strcat((char *)(tmp_node.FWVersion), " EF");
break;
case FWATTRIB_TP:
(void) strcat((char *)(tmp_node.FWVersion), " TP");
break;
case FWATTRIB_IP:
(void) strcat((char *)(tmp_node.FWVersion), " IP");
break;
case FWATTRIB_IPX:
(void) strcat((char *)(tmp_node.FWVersion), " IPX");
break;
case FWATTRIB_FL:
(void) strcat((char *)(tmp_node.FWVersion), " FL");
break;
case FWATTRIB_FPX:
(void) strcat((char *)(tmp_node.FWVersion), " FLX");
break;
default:
break;
}
}
/* FCode version. */
/*LINTED [Solaris DDI_DEV_T_ANY Lint error]*/
if (ddi_getlongprop(DDI_DEV_T_ANY, ha->dip, PROP_LEN_AND_VAL_ALLOC |
DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, "version", (caddr_t)&bufp,
(int *)&len) == DDI_PROP_SUCCESS) {
if (len < EXT_DEF_MAX_STR_SIZE) {
bcopy(bufp, tmp_node.OptRomVersion, len);
} else {
bcopy(bufp, tmp_node.OptRomVersion,
EXT_DEF_MAX_STR_SIZE - 1);
tmp_node.OptRomVersion[EXT_DEF_MAX_STR_SIZE - 1] =
'\0';
}
kmem_free(bufp, len);
} else {
(void) sprintf((char *)tmp_node.OptRomVersion, "0");
}
tmp_node.PortCount = 1;
tmp_node.InterfaceType = EXT_DEF_FC_INTF_TYPE;
if (ddi_copyout((void *)&tmp_node,
(void *)(uintptr_t)(cmd->ResponseAdr),
sizeof (EXT_HBA_NODE), mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = sizeof (EXT_HBA_NODE);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_qry_hba_port
* Performs EXT_SC_QUERY_HBA_PORT subfunction.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_qry_hba_port(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
ql_link_t *link;
ql_tgt_t *tq;
ql_mbx_data_t mr;
EXT_HBA_PORT tmp_port = {0};
int rval;
uint16_t port_cnt, tgt_cnt, index;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->ResponseLen < sizeof (EXT_HBA_PORT)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_HBA_PORT);
EL(ha, "failed, ResponseLen < EXT_HBA_NODE, Len=%xh\n",
cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
/* fill in the values */
bcopy(ha->loginparams.nport_ww_name.raw_wwn, tmp_port.WWPN,
EXT_DEF_WWN_NAME_SIZE);
tmp_port.Id[0] = 0;
tmp_port.Id[1] = ha->d_id.b.domain;
tmp_port.Id[2] = ha->d_id.b.area;
tmp_port.Id[3] = ha->d_id.b.al_pa;
/* For now we are initiator only driver */
tmp_port.Type = EXT_DEF_INITIATOR_DEV;
if (ha->task_daemon_flags & LOOP_DOWN) {
tmp_port.State = EXT_DEF_HBA_LOOP_DOWN;
} else if (DRIVER_SUSPENDED(ha)) {
tmp_port.State = EXT_DEF_HBA_SUSPENDED;
} else {
tmp_port.State = EXT_DEF_HBA_OK;
}
if (ha->flags & POINT_TO_POINT) {
tmp_port.Mode = EXT_DEF_P2P_MODE;
} else {
tmp_port.Mode = EXT_DEF_LOOP_MODE;
}
/*
* fill in the portspeed values.
*
* default to not yet negotiated state
*/
tmp_port.PortSpeed = EXT_PORTSPEED_NOT_NEGOTIATED;
if (tmp_port.State == EXT_DEF_HBA_OK) {
if ((CFG_IST(ha, CFG_CTRL_2200)) == 0) {
mr.mb[1] = 0;
mr.mb[2] = 0;
rval = ql_data_rate(ha, &mr);
if (rval != QL_SUCCESS) {
EL(ha, "failed, data_rate=%xh\n", rval);
} else {
switch (mr.mb[1]) {
case IIDMA_RATE_1GB:
tmp_port.PortSpeed =
EXT_DEF_PORTSPEED_1GBIT;
break;
case IIDMA_RATE_2GB:
tmp_port.PortSpeed =
EXT_DEF_PORTSPEED_2GBIT;
break;
case IIDMA_RATE_4GB:
tmp_port.PortSpeed =
EXT_DEF_PORTSPEED_4GBIT;
break;
case IIDMA_RATE_8GB:
tmp_port.PortSpeed =
EXT_DEF_PORTSPEED_8GBIT;
break;
case IIDMA_RATE_10GB:
tmp_port.PortSpeed =
EXT_DEF_PORTSPEED_10GBIT;
break;
default:
tmp_port.PortSpeed =
EXT_DEF_PORTSPEED_UNKNOWN;
EL(ha, "failed, data rate=%xh\n",
mr.mb[1]);
break;
}
}
} else {
tmp_port.PortSpeed = EXT_DEF_PORTSPEED_1GBIT;
}
}
/* Report all supported port speeds */
if (CFG_IST(ha, CFG_CTRL_25XX)) {
tmp_port.PortSupportedSpeed = (EXT_DEF_PORTSPEED_8GBIT |
EXT_DEF_PORTSPEED_4GBIT | EXT_DEF_PORTSPEED_2GBIT |
EXT_DEF_PORTSPEED_1GBIT);
/*
* Correct supported speeds based on type of
* sfp that is present
*/
switch (ha->sfp_stat) {
case 1:
/* no sfp detected */
break;
case 2:
case 4:
/* 4GB sfp */
tmp_port.PortSupportedSpeed &=
~EXT_DEF_PORTSPEED_8GBIT;
break;
case 3:
case 5:
/* 8GB sfp */
tmp_port.PortSupportedSpeed &=
~EXT_DEF_PORTSPEED_1GBIT;
break;
default:
EL(ha, "sfp_stat: %xh\n", ha->sfp_stat);
break;
}
} else if (CFG_IST(ha, CFG_CTRL_81XX)) {
tmp_port.PortSupportedSpeed = EXT_DEF_PORTSPEED_10GBIT;
} else if (CFG_IST(ha, CFG_CTRL_2422)) {
tmp_port.PortSupportedSpeed = (EXT_DEF_PORTSPEED_4GBIT |
EXT_DEF_PORTSPEED_2GBIT | EXT_DEF_PORTSPEED_1GBIT);
} else if (CFG_IST(ha, CFG_CTRL_2300)) {
tmp_port.PortSupportedSpeed = (EXT_DEF_PORTSPEED_2GBIT |
EXT_DEF_PORTSPEED_1GBIT);
} else if (CFG_IST(ha, CFG_CTRL_6322)) {
tmp_port.PortSupportedSpeed = EXT_DEF_PORTSPEED_2GBIT;
} else if (CFG_IST(ha, CFG_CTRL_2200)) {
tmp_port.PortSupportedSpeed = EXT_DEF_PORTSPEED_1GBIT;
} else {
tmp_port.PortSupportedSpeed = EXT_DEF_PORTSPEED_UNKNOWN;
EL(ha, "unknown HBA type: %xh\n", ha->device_id);
}
tmp_port.LinkState2 = LSB(ha->sfp_stat);
port_cnt = 0;
tgt_cnt = 0;
for (index = 0; index < DEVICE_HEAD_LIST_SIZE; index++) {
for (link = ha->dev[index].first; link != NULL;
link = link->next) {
tq = link->base_address;
if (!VALID_TARGET_ID(ha, tq->loop_id)) {
continue;
}
port_cnt++;
if ((tq->flags & TQF_INITIATOR_DEVICE) == 0) {
tgt_cnt++;
}
}
}
tmp_port.DiscPortCount = port_cnt;
tmp_port.DiscTargetCount = tgt_cnt;
tmp_port.DiscPortNameType = EXT_DEF_USE_NODE_NAME;
rval = ddi_copyout((void *)&tmp_port,
(void *)(uintptr_t)(cmd->ResponseAdr),
sizeof (EXT_HBA_PORT), mode);
if (rval != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = sizeof (EXT_HBA_PORT);
QL_PRINT_9(CE_CONT, "(%d): done, ports=%d, targets=%d\n",
ha->instance, port_cnt, tgt_cnt);
}
}
/*
* ql_qry_disc_port
* Performs EXT_SC_QUERY_DISC_PORT subfunction.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* cmd->Instance = Port instance in fcport chain.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_qry_disc_port(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_DISC_PORT tmp_port = {0};
ql_link_t *link;
ql_tgt_t *tq;
uint16_t index;
uint16_t inst = 0;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->ResponseLen < sizeof (EXT_DISC_PORT)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_DISC_PORT);
EL(ha, "failed, ResponseLen < EXT_DISC_PORT, Len=%xh\n",
cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
for (link = NULL, index = 0;
index < DEVICE_HEAD_LIST_SIZE && link == NULL; index++) {
for (link = ha->dev[index].first; link != NULL;
link = link->next) {
tq = link->base_address;
if (!VALID_TARGET_ID(ha, tq->loop_id)) {
continue;
}
if (inst != cmd->Instance) {
inst++;
continue;
}
/* fill in the values */
bcopy(tq->node_name, tmp_port.WWNN,
EXT_DEF_WWN_NAME_SIZE);
bcopy(tq->port_name, tmp_port.WWPN,
EXT_DEF_WWN_NAME_SIZE);
break;
}
}
if (link == NULL) {
/* no matching device */
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
EL(ha, "failed, port not found port=%d\n", cmd->Instance);
cmd->ResponseLen = 0;
return;
}
tmp_port.Id[0] = 0;
tmp_port.Id[1] = tq->d_id.b.domain;
tmp_port.Id[2] = tq->d_id.b.area;
tmp_port.Id[3] = tq->d_id.b.al_pa;
tmp_port.Type = 0;
if (tq->flags & TQF_INITIATOR_DEVICE) {
tmp_port.Type = (uint16_t)(tmp_port.Type |
EXT_DEF_INITIATOR_DEV);
} else if ((tq->flags & TQF_TAPE_DEVICE) == 0) {
(void) ql_inq_scan(ha, tq, 1);
} else if (tq->flags & TQF_TAPE_DEVICE) {
tmp_port.Type = (uint16_t)(tmp_port.Type | EXT_DEF_TAPE_DEV);
}
if (tq->flags & TQF_FABRIC_DEVICE) {
tmp_port.Type = (uint16_t)(tmp_port.Type | EXT_DEF_FABRIC_DEV);
} else {
tmp_port.Type = (uint16_t)(tmp_port.Type | EXT_DEF_TARGET_DEV);
}
tmp_port.Status = 0;
tmp_port.Bus = 0; /* Hard-coded for Solaris */
bcopy(tq->port_name, &tmp_port.TargetId, 8);
if (ddi_copyout((void *)&tmp_port,
(void *)(uintptr_t)(cmd->ResponseAdr),
sizeof (EXT_DISC_PORT), mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = sizeof (EXT_DISC_PORT);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_qry_disc_tgt
* Performs EXT_SC_QUERY_DISC_TGT subfunction.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* cmd->Instance = Port instance in fcport chain.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_qry_disc_tgt(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_DISC_TARGET tmp_tgt = {0};
ql_link_t *link;
ql_tgt_t *tq;
uint16_t index;
uint16_t inst = 0;
QL_PRINT_9(CE_CONT, "(%d): started, target=%d\n", ha->instance,
cmd->Instance);
if (cmd->ResponseLen < sizeof (EXT_DISC_TARGET)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_DISC_TARGET);
EL(ha, "failed, ResponseLen < EXT_DISC_TARGET, Len=%xh\n",
cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
/* Scan port list for requested target and fill in the values */
for (link = NULL, index = 0;
index < DEVICE_HEAD_LIST_SIZE && link == NULL; index++) {
for (link = ha->dev[index].first; link != NULL;
link = link->next) {
tq = link->base_address;
if (!VALID_TARGET_ID(ha, tq->loop_id) ||
tq->flags & TQF_INITIATOR_DEVICE) {
continue;
}
if (inst != cmd->Instance) {
inst++;
continue;
}
/* fill in the values */
bcopy(tq->node_name, tmp_tgt.WWNN,
EXT_DEF_WWN_NAME_SIZE);
bcopy(tq->port_name, tmp_tgt.WWPN,
EXT_DEF_WWN_NAME_SIZE);
break;
}
}
if (link == NULL) {
/* no matching device */
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
cmd->DetailStatus = EXT_DSTATUS_TARGET;
EL(ha, "failed, not found target=%d\n", cmd->Instance);
cmd->ResponseLen = 0;
return;
}
tmp_tgt.Id[0] = 0;
tmp_tgt.Id[1] = tq->d_id.b.domain;
tmp_tgt.Id[2] = tq->d_id.b.area;
tmp_tgt.Id[3] = tq->d_id.b.al_pa;
tmp_tgt.LunCount = (uint16_t)ql_lun_count(ha, tq);
if ((tq->flags & TQF_TAPE_DEVICE) == 0) {
(void) ql_inq_scan(ha, tq, 1);
}
tmp_tgt.Type = 0;
if (tq->flags & TQF_TAPE_DEVICE) {
tmp_tgt.Type = (uint16_t)(tmp_tgt.Type | EXT_DEF_TAPE_DEV);
}
if (tq->flags & TQF_FABRIC_DEVICE) {
tmp_tgt.Type = (uint16_t)(tmp_tgt.Type | EXT_DEF_FABRIC_DEV);
} else {
tmp_tgt.Type = (uint16_t)(tmp_tgt.Type | EXT_DEF_TARGET_DEV);
}
tmp_tgt.Status = 0;
tmp_tgt.Bus = 0; /* Hard-coded for Solaris. */
bcopy(tq->port_name, &tmp_tgt.TargetId, 8);
if (ddi_copyout((void *)&tmp_tgt,
(void *)(uintptr_t)(cmd->ResponseAdr),
sizeof (EXT_DISC_TARGET), mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = sizeof (EXT_DISC_TARGET);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_qry_fw
* Performs EXT_SC_QUERY_FW subfunction.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_qry_fw(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
ql_mbx_data_t mr;
EXT_FW fw_info = {0};
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->ResponseLen < sizeof (EXT_FW)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_FW);
EL(ha, "failed, ResponseLen < EXT_FW, Len=%xh\n",
cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
(void) ql_get_fw_version(ha, &mr);
(void) sprintf((char *)(fw_info.Version), "%d.%d.%d", mr.mb[1],
mr.mb[2], mr.mb[2]);
fw_info.Attrib = mr.mb[6];
if (ddi_copyout((void *)&fw_info,
(void *)(uintptr_t)(cmd->ResponseAdr),
sizeof (EXT_FW), mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
return;
} else {
cmd->ResponseLen = sizeof (EXT_FW);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_qry_chip
* Performs EXT_SC_QUERY_CHIP subfunction.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_qry_chip(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_CHIP chip = {0};
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->ResponseLen < sizeof (EXT_CHIP)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_CHIP);
EL(ha, "failed, ResponseLen < EXT_CHIP, Len=%xh\n",
cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
chip.VendorId = ha->ven_id;
chip.DeviceId = ha->device_id;
chip.SubVendorId = ha->subven_id;
chip.SubSystemId = ha->subsys_id;
chip.IoAddr = ql_pci_config_get32(ha, PCI_CONF_BASE0);
chip.IoAddrLen = 0x100;
chip.MemAddr = ql_pci_config_get32(ha, PCI_CONF_BASE1);
chip.MemAddrLen = 0x100;
chip.ChipRevID = ha->rev_id;
if (ha->flags & FUNCTION_1) {
chip.FuncNo = 1;
}
if (ddi_copyout((void *)&chip,
(void *)(uintptr_t)(cmd->ResponseAdr),
sizeof (EXT_CHIP), mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = sizeof (EXT_CHIP);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_qry_driver
* Performs EXT_SC_QUERY_DRIVER subfunction.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_qry_driver(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_DRIVER qd = {0};
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->ResponseLen < sizeof (EXT_DRIVER)) {
cmd->Status = EXT_STATUS_DATA_OVERRUN;
cmd->DetailStatus = sizeof (EXT_DRIVER);
EL(ha, "failed, ResponseLen < EXT_DRIVER, Len=%xh\n",
cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
(void) strcpy((void *)&qd.Version[0], QL_VERSION);
qd.NumOfBus = 1; /* Fixed for Solaris */
qd.TargetsPerBus = (uint16_t)
(CFG_IST(ha, (CFG_CTRL_242581 | CFG_EXT_FW_INTERFACE)) ?
MAX_24_FIBRE_DEVICES : MAX_22_FIBRE_DEVICES);
qd.LunsPerTarget = 2030;
qd.MaxTransferLen = QL_DMA_MAX_XFER_SIZE;
qd.MaxDataSegments = QL_DMA_SG_LIST_LENGTH;
if (ddi_copyout((void *)&qd, (void *)(uintptr_t)cmd->ResponseAdr,
sizeof (EXT_DRIVER), mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = sizeof (EXT_DRIVER);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_fcct
* IOCTL management server FC-CT passthrough.
*
* Input:
* ha: adapter state pointer.
* cmd: User space CT arguments pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_fcct(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
ql_mbx_iocb_t *pkt;
ql_mbx_data_t mr;
dma_mem_t *dma_mem;
caddr_t pld;
uint32_t pkt_size, pld_byte_cnt, *long_ptr;
int rval;
ql_ct_iu_preamble_t *ct;
ql_xioctl_t *xp = ha->xioctl;
ql_tgt_t tq;
uint16_t comp_status, loop_id;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Get CT argument structure. */
if ((ha->topology & QL_SNS_CONNECTION) == 0) {
EL(ha, "failed, No switch\n");
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
cmd->ResponseLen = 0;
return;
}
if (DRIVER_SUSPENDED(ha)) {
EL(ha, "failed, LOOP_NOT_READY\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return;
}
/* Login management server device. */
if ((xp->flags & QL_MGMT_SERVER_LOGIN) == 0) {
tq.d_id.b.al_pa = 0xfa;
tq.d_id.b.area = 0xff;
tq.d_id.b.domain = 0xff;
tq.loop_id = (uint16_t)(CFG_IST(ha, CFG_CTRL_242581) ?
MANAGEMENT_SERVER_24XX_LOOP_ID :
MANAGEMENT_SERVER_LOOP_ID);
rval = ql_login_fport(ha, &tq, tq.loop_id, LFF_NO_PRLI, &mr);
if (rval != QL_SUCCESS) {
EL(ha, "failed, server login\n");
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
cmd->ResponseLen = 0;
return;
} else {
xp->flags |= QL_MGMT_SERVER_LOGIN;
}
}
QL_PRINT_9(CE_CONT, "(%d): cmd\n", ha->instance);
QL_DUMP_9(cmd, 8, sizeof (EXT_IOCTL));
/* Allocate a DMA Memory Descriptor */
dma_mem = (dma_mem_t *)kmem_zalloc(sizeof (dma_mem_t), KM_SLEEP);
if (dma_mem == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
/* Determine maximum buffer size. */
if (cmd->RequestLen < cmd->ResponseLen) {
pld_byte_cnt = cmd->ResponseLen;
} else {
pld_byte_cnt = cmd->RequestLen;
}
/* Allocate command block. */
pkt_size = (uint32_t)(sizeof (ql_mbx_iocb_t) + pld_byte_cnt);
pkt = kmem_zalloc(pkt_size, KM_SLEEP);
if (pkt == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
pld = (caddr_t)pkt + sizeof (ql_mbx_iocb_t);
/* Get command payload data. */
if (ql_get_buffer_data((caddr_t)(uintptr_t)cmd->RequestAdr, pld,
cmd->RequestLen, mode) != cmd->RequestLen) {
EL(ha, "failed, get_buffer_data\n");
kmem_free(pkt, pkt_size);
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
/* Get DMA memory for the IOCB */
if (ql_get_dma_mem(ha, dma_mem, pkt_size, LITTLE_ENDIAN_DMA,
QL_DMA_RING_ALIGN) != QL_SUCCESS) {
cmn_err(CE_WARN, "%s(%d): DMA memory "
"alloc failed", QL_NAME, ha->instance);
kmem_free(pkt, pkt_size);
kmem_free(dma_mem, sizeof (dma_mem_t));
cmd->Status = EXT_STATUS_MS_NO_RESPONSE;
cmd->ResponseLen = 0;
return;
}
/* Copy out going payload data to IOCB DMA buffer. */
ddi_rep_put8(dma_mem->acc_handle, (uint8_t *)pld,
(uint8_t *)dma_mem->bp, pld_byte_cnt, DDI_DEV_AUTOINCR);
/* Sync IOCB DMA buffer. */
(void) ddi_dma_sync(dma_mem->dma_handle, 0, pld_byte_cnt,
DDI_DMA_SYNC_FORDEV);
/*
* Setup IOCB
*/
ct = (ql_ct_iu_preamble_t *)pld;
if (CFG_IST(ha, CFG_CTRL_242581)) {
pkt->ms24.entry_type = CT_PASSTHRU_TYPE;
pkt->ms24.entry_count = 1;
/* Set loop ID */
pkt->ms24.n_port_hdl = (uint16_t)
(ct->gs_type == GS_TYPE_DIR_SERVER ?
LE_16(SNS_24XX_HDL) :
LE_16(MANAGEMENT_SERVER_24XX_LOOP_ID));
/* Set ISP command timeout. */
pkt->ms24.timeout = LE_16(120);
/* Set cmd/response data segment counts. */
pkt->ms24.cmd_dseg_count = LE_16(1);
pkt->ms24.resp_dseg_count = LE_16(1);
/* Load ct cmd byte count. */
pkt->ms24.cmd_byte_count = LE_32(cmd->RequestLen);
/* Load ct rsp byte count. */
pkt->ms24.resp_byte_count = LE_32(cmd->ResponseLen);
long_ptr = (uint32_t *)&pkt->ms24.dseg_0_address;
/* Load MS command entry data segments. */
*long_ptr++ = (uint32_t)
LE_32(LSD(dma_mem->cookie.dmac_laddress));
*long_ptr++ = (uint32_t)
LE_32(MSD(dma_mem->cookie.dmac_laddress));
*long_ptr++ = (uint32_t)(LE_32(cmd->RequestLen));
/* Load MS response entry data segments. */
*long_ptr++ = (uint32_t)
LE_32(LSD(dma_mem->cookie.dmac_laddress));
*long_ptr++ = (uint32_t)
LE_32(MSD(dma_mem->cookie.dmac_laddress));
*long_ptr = (uint32_t)LE_32(cmd->ResponseLen);
rval = ql_issue_mbx_iocb(ha, (caddr_t)pkt,
sizeof (ql_mbx_iocb_t));
comp_status = (uint16_t)LE_16(pkt->sts24.comp_status);
if (comp_status == CS_DATA_UNDERRUN) {
if ((BE_16(ct->max_residual_size)) == 0) {
comp_status = CS_COMPLETE;
}
}
if (rval != QL_SUCCESS || (pkt->sts24.entry_status & 0x3c) !=
0) {
EL(ha, "failed, I/O timeout or "
"es=%xh, ss_l=%xh, rval=%xh\n",
pkt->sts24.entry_status,
pkt->sts24.scsi_status_l, rval);
kmem_free(pkt, pkt_size);
ql_free_dma_resource(ha, dma_mem);
kmem_free(dma_mem, sizeof (dma_mem_t));
cmd->Status = EXT_STATUS_MS_NO_RESPONSE;
cmd->ResponseLen = 0;
return;
}
} else {
pkt->ms.entry_type = MS_TYPE;
pkt->ms.entry_count = 1;
/* Set loop ID */
loop_id = (uint16_t)(ct->gs_type == GS_TYPE_DIR_SERVER ?
SIMPLE_NAME_SERVER_LOOP_ID : MANAGEMENT_SERVER_LOOP_ID);
if (CFG_IST(ha, CFG_EXT_FW_INTERFACE)) {
pkt->ms.loop_id_l = LSB(loop_id);
pkt->ms.loop_id_h = MSB(loop_id);
} else {
pkt->ms.loop_id_h = LSB(loop_id);
}
/* Set ISP command timeout. */
pkt->ms.timeout = LE_16(120);
/* Set data segment counts. */
pkt->ms.cmd_dseg_count_l = 1;
pkt->ms.total_dseg_count = LE_16(2);
/* Response total byte count. */
pkt->ms.resp_byte_count = LE_32(cmd->ResponseLen);
pkt->ms.dseg_1_length = LE_32(cmd->ResponseLen);
/* Command total byte count. */
pkt->ms.cmd_byte_count = LE_32(cmd->RequestLen);
pkt->ms.dseg_0_length = LE_32(cmd->RequestLen);
/* Load command/response data segments. */
pkt->ms.dseg_0_address[0] = (uint32_t)
LE_32(LSD(dma_mem->cookie.dmac_laddress));
pkt->ms.dseg_0_address[1] = (uint32_t)
LE_32(MSD(dma_mem->cookie.dmac_laddress));
pkt->ms.dseg_1_address[0] = (uint32_t)
LE_32(LSD(dma_mem->cookie.dmac_laddress));
pkt->ms.dseg_1_address[1] = (uint32_t)
LE_32(MSD(dma_mem->cookie.dmac_laddress));
rval = ql_issue_mbx_iocb(ha, (caddr_t)pkt,
sizeof (ql_mbx_iocb_t));
comp_status = (uint16_t)LE_16(pkt->sts.comp_status);
if (comp_status == CS_DATA_UNDERRUN) {
if ((BE_16(ct->max_residual_size)) == 0) {
comp_status = CS_COMPLETE;
}
}
if (rval != QL_SUCCESS || (pkt->sts.entry_status & 0x7e) != 0) {
EL(ha, "failed, I/O timeout or "
"es=%xh, rval=%xh\n", pkt->sts.entry_status, rval);
kmem_free(pkt, pkt_size);
ql_free_dma_resource(ha, dma_mem);
kmem_free(dma_mem, sizeof (dma_mem_t));
cmd->Status = EXT_STATUS_MS_NO_RESPONSE;
cmd->ResponseLen = 0;
return;
}
}
/* Sync in coming DMA buffer. */
(void) ddi_dma_sync(dma_mem->dma_handle, 0,
pld_byte_cnt, DDI_DMA_SYNC_FORKERNEL);
/* Copy in coming DMA data. */
ddi_rep_get8(dma_mem->acc_handle, (uint8_t *)pld,
(uint8_t *)dma_mem->bp, pld_byte_cnt,
DDI_DEV_AUTOINCR);
/* Copy response payload from DMA buffer to application. */
if (cmd->ResponseLen != 0) {
QL_PRINT_9(CE_CONT, "(%d): ResponseLen=%d\n", ha->instance,
cmd->ResponseLen);
QL_DUMP_9(pld, 8, cmd->ResponseLen);
/* Send response payload. */
if (ql_send_buffer_data(pld,
(caddr_t)(uintptr_t)cmd->ResponseAdr,
cmd->ResponseLen, mode) != cmd->ResponseLen) {
EL(ha, "failed, send_buffer_data\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
}
}
kmem_free(pkt, pkt_size);
ql_free_dma_resource(ha, dma_mem);
kmem_free(dma_mem, sizeof (dma_mem_t));
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_aen_reg
* IOCTL management server Asynchronous Event Tracking Enable/Disable.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_aen_reg(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_REG_AEN reg_struct;
int rval = 0;
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
rval = ddi_copyin((void*)(uintptr_t)cmd->RequestAdr, &reg_struct,
cmd->RequestLen, mode);
if (rval == 0) {
if (reg_struct.Enable) {
xp->flags |= QL_AEN_TRACKING_ENABLE;
} else {
xp->flags &= ~QL_AEN_TRACKING_ENABLE;
/* Empty the queue. */
INTR_LOCK(ha);
xp->aen_q_head = 0;
xp->aen_q_tail = 0;
INTR_UNLOCK(ha);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
} else {
cmd->Status = EXT_STATUS_COPY_ERR;
EL(ha, "failed, ddi_copyin\n");
}
}
/*
* ql_aen_get
* IOCTL management server Asynchronous Event Record Transfer.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_aen_get(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint32_t out_size;
EXT_ASYNC_EVENT *tmp_q;
EXT_ASYNC_EVENT aen[EXT_DEF_MAX_AEN_QUEUE];
uint8_t i;
uint8_t queue_cnt;
uint8_t request_cnt;
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Compute the number of events that can be returned */
request_cnt = (uint8_t)(cmd->ResponseLen / sizeof (EXT_ASYNC_EVENT));
if (request_cnt < EXT_DEF_MAX_AEN_QUEUE) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = EXT_DEF_MAX_AEN_QUEUE;
EL(ha, "failed, request_cnt < EXT_DEF_MAX_AEN_QUEUE, "
"Len=%xh\n", request_cnt);
cmd->ResponseLen = 0;
return;
}
/* 1st: Make a local copy of the entire queue content. */
tmp_q = (EXT_ASYNC_EVENT *)xp->aen_tracking_queue;
queue_cnt = 0;
INTR_LOCK(ha);
i = xp->aen_q_head;
for (; queue_cnt < EXT_DEF_MAX_AEN_QUEUE; ) {
if (tmp_q[i].AsyncEventCode != 0) {
bcopy(&tmp_q[i], &aen[queue_cnt],
sizeof (EXT_ASYNC_EVENT));
queue_cnt++;
tmp_q[i].AsyncEventCode = 0; /* empty out the slot */
}
if (i == xp->aen_q_tail) {
/* done. */
break;
}
i++;
if (i == EXT_DEF_MAX_AEN_QUEUE) {
i = 0;
}
}
/* Empty the queue. */
xp->aen_q_head = 0;
xp->aen_q_tail = 0;
INTR_UNLOCK(ha);
/* 2nd: Now transfer the queue content to user buffer */
/* Copy the entire queue to user's buffer. */
out_size = (uint32_t)(queue_cnt * sizeof (EXT_ASYNC_EVENT));
if (queue_cnt == 0) {
cmd->ResponseLen = 0;
} else if (ddi_copyout((void *)&aen[0],
(void *)(uintptr_t)(cmd->ResponseAdr),
out_size, mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = out_size;
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_enqueue_aen
*
* Input:
* ha: adapter state pointer.
* event_code: async event code of the event to add to queue.
* payload: event payload for the queue.
* INTR_LOCK must be already obtained.
*
* Context:
* Interrupt or Kernel context, no mailbox commands allowed.
*/
void
ql_enqueue_aen(ql_adapter_state_t *ha, uint16_t event_code, void *payload)
{
uint8_t new_entry; /* index to current entry */
uint16_t *mbx;
EXT_ASYNC_EVENT *aen_queue;
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started, event_code=%d\n", ha->instance,
event_code);
if (xp == NULL) {
QL_PRINT_9(CE_CONT, "(%d): no context\n", ha->instance);
return;
}
aen_queue = (EXT_ASYNC_EVENT *)xp->aen_tracking_queue;
if (aen_queue[xp->aen_q_tail].AsyncEventCode != NULL) {
/* Need to change queue pointers to make room. */
/* Increment tail for adding new entry. */
xp->aen_q_tail++;
if (xp->aen_q_tail == EXT_DEF_MAX_AEN_QUEUE) {
xp->aen_q_tail = 0;
}
if (xp->aen_q_head == xp->aen_q_tail) {
/*
* We're overwriting the oldest entry, so need to
* update the head pointer.
*/
xp->aen_q_head++;
if (xp->aen_q_head == EXT_DEF_MAX_AEN_QUEUE) {
xp->aen_q_head = 0;
}
}
}
new_entry = xp->aen_q_tail;
aen_queue[new_entry].AsyncEventCode = event_code;
/* Update payload */
if (payload != NULL) {
switch (event_code) {
case MBA_LIP_OCCURRED:
case MBA_LOOP_UP:
case MBA_LOOP_DOWN:
case MBA_LIP_F8:
case MBA_LIP_RESET:
case MBA_PORT_UPDATE:
break;
case MBA_RSCN_UPDATE:
mbx = (uint16_t *)payload;
/* al_pa */
aen_queue[new_entry].Payload.RSCN.RSCNInfo[0] =
LSB(mbx[2]);
/* area */
aen_queue[new_entry].Payload.RSCN.RSCNInfo[1] =
MSB(mbx[2]);
/* domain */
aen_queue[new_entry].Payload.RSCN.RSCNInfo[2] =
LSB(mbx[1]);
/* save in big endian */
BIG_ENDIAN_24(&aen_queue[new_entry].
Payload.RSCN.RSCNInfo[0]);
aen_queue[new_entry].Payload.RSCN.AddrFormat =
MSB(mbx[1]);
break;
default:
/* Not supported */
EL(ha, "failed, event code not supported=%xh\n",
event_code);
aen_queue[new_entry].AsyncEventCode = 0;
break;
}
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_scsi_passthru
* IOCTL SCSI passthrough.
*
* Input:
* ha: adapter state pointer.
* cmd: User space SCSI command pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_scsi_passthru(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
ql_mbx_iocb_t *pkt;
ql_mbx_data_t mr;
dma_mem_t *dma_mem;
caddr_t pld;
uint32_t pkt_size, pld_size;
uint16_t qlnt, retries, cnt, cnt2;
uint8_t *name;
EXT_FC_SCSI_PASSTHRU *ufc_req;
EXT_SCSI_PASSTHRU *usp_req;
int rval;
union _passthru {
EXT_SCSI_PASSTHRU sp_cmd;
EXT_FC_SCSI_PASSTHRU fc_cmd;
} pt_req; /* Passthru request */
uint32_t status, sense_sz = 0;
ql_tgt_t *tq = NULL;
EXT_SCSI_PASSTHRU *sp_req = &pt_req.sp_cmd;
EXT_FC_SCSI_PASSTHRU *fc_req = &pt_req.fc_cmd;
/* SCSI request struct for SCSI passthrough IOs. */
struct {
uint16_t lun;
uint16_t sense_length; /* Sense buffer size */
size_t resid; /* Residual */
uint8_t *cdbp; /* Requestor's CDB */
uint8_t *u_sense; /* Requestor's sense buffer */
uint8_t cdb_len; /* Requestor's CDB length */
uint8_t direction;
} scsi_req;
struct {
uint8_t *rsp_info;
uint8_t *req_sense_data;
uint32_t residual_length;
uint32_t rsp_info_length;
uint32_t req_sense_length;
uint16_t comp_status;
uint8_t state_flags_l;
uint8_t state_flags_h;
uint8_t scsi_status_l;
uint8_t scsi_status_h;
} sts;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Verify Sub Code and set cnt to needed request size. */
if (cmd->SubCode == EXT_SC_SEND_SCSI_PASSTHRU) {
pld_size = sizeof (EXT_SCSI_PASSTHRU);
} else if (cmd->SubCode == EXT_SC_SEND_FC_SCSI_PASSTHRU) {
pld_size = sizeof (EXT_FC_SCSI_PASSTHRU);
} else {
EL(ha, "failed, invalid SubCode=%xh\n", cmd->SubCode);
cmd->Status = EXT_STATUS_UNSUPPORTED_SUBCODE;
cmd->ResponseLen = 0;
return;
}
dma_mem = (dma_mem_t *)kmem_zalloc(sizeof (dma_mem_t), KM_SLEEP);
if (dma_mem == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
/* Verify the size of and copy in the passthru request structure. */
if (cmd->RequestLen != pld_size) {
/* Return error */
EL(ha, "failed, RequestLen != cnt, is=%xh, expected=%xh\n",
cmd->RequestLen, pld_size);
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->DetailStatus = EXT_DSTATUS_REQUEST_LEN;
cmd->ResponseLen = 0;
return;
}
if (ddi_copyin((void *)(uintptr_t)cmd->RequestAdr, &pt_req,
pld_size, mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
/*
* Find fc_port from SCSI PASSTHRU structure fill in the scsi_req
* request data structure.
*/
if (cmd->SubCode == EXT_SC_SEND_SCSI_PASSTHRU) {
scsi_req.lun = sp_req->TargetAddr.Lun;
scsi_req.sense_length = sizeof (sp_req->SenseData);
scsi_req.cdbp = &sp_req->Cdb[0];
scsi_req.cdb_len = sp_req->CdbLength;
scsi_req.direction = sp_req->Direction;
usp_req = (EXT_SCSI_PASSTHRU *)(uintptr_t)cmd->RequestAdr;
scsi_req.u_sense = &usp_req->SenseData[0];
cmd->DetailStatus = EXT_DSTATUS_TARGET;
qlnt = QLNT_PORT;
name = (uint8_t *)&sp_req->TargetAddr.Target;
QL_PRINT_9(CE_CONT, "(%d): SubCode=%xh, Target=%lld\n",
ha->instance, cmd->SubCode, sp_req->TargetAddr.Target);
tq = ql_find_port(ha, name, qlnt);
} else {
/*
* Must be FC PASSTHRU, verified above.
*/
if (fc_req->FCScsiAddr.DestType == EXT_DEF_DESTTYPE_WWPN) {
qlnt = QLNT_PORT;
name = &fc_req->FCScsiAddr.DestAddr.WWPN[0];
QL_PRINT_9(CE_CONT, "(%d): SubCode=%xh, "
"wwpn=%02x%02x%02x%02x%02x%02x%02x%02x\n",
ha->instance, cmd->SubCode, name[0], name[1],
name[2], name[3], name[4], name[5], name[6],
name[7]);
tq = ql_find_port(ha, name, qlnt);
} else if (fc_req->FCScsiAddr.DestType ==
EXT_DEF_DESTTYPE_WWNN) {
qlnt = QLNT_NODE;
name = &fc_req->FCScsiAddr.DestAddr.WWNN[0];
QL_PRINT_9(CE_CONT, "(%d): SubCode=%xh, "
"wwnn=%02x%02x%02x%02x%02x%02x%02x%02x\n",
ha->instance, cmd->SubCode, name[0], name[1],
name[2], name[3], name[4], name[5], name[6],
name[7]);
tq = ql_find_port(ha, name, qlnt);
} else if (fc_req->FCScsiAddr.DestType ==
EXT_DEF_DESTTYPE_PORTID) {
qlnt = QLNT_PID;
name = &fc_req->FCScsiAddr.DestAddr.Id[0];
QL_PRINT_9(CE_CONT, "(%d): SubCode=%xh, PID="
"%02x%02x%02x\n", ha->instance, cmd->SubCode,
name[0], name[1], name[2]);
tq = ql_find_port(ha, name, qlnt);
} else {
EL(ha, "failed, SubCode=%xh invalid DestType=%xh\n",
cmd->SubCode, fc_req->FCScsiAddr.DestType);
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->ResponseLen = 0;
return;
}
scsi_req.lun = fc_req->FCScsiAddr.Lun;
scsi_req.sense_length = sizeof (fc_req->SenseData);
scsi_req.cdbp = &sp_req->Cdb[0];
scsi_req.cdb_len = sp_req->CdbLength;
ufc_req = (EXT_FC_SCSI_PASSTHRU *)(uintptr_t)cmd->RequestAdr;
scsi_req.u_sense = &ufc_req->SenseData[0];
scsi_req.direction = fc_req->Direction;
}
if (tq == NULL || !VALID_TARGET_ID(ha, tq->loop_id)) {
EL(ha, "failed, fc_port not found\n");
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
cmd->ResponseLen = 0;
return;
}
if (tq->flags & TQF_NEED_AUTHENTICATION) {
EL(ha, "target not available; loopid=%xh\n", tq->loop_id);
cmd->Status = EXT_STATUS_DEVICE_OFFLINE;
cmd->ResponseLen = 0;
return;
}
/* Allocate command block. */
if ((scsi_req.direction == EXT_DEF_SCSI_PASSTHRU_DATA_IN ||
scsi_req.direction == EXT_DEF_SCSI_PASSTHRU_DATA_OUT) &&
cmd->ResponseLen) {
pld_size = cmd->ResponseLen;
pkt_size = (uint32_t)(sizeof (ql_mbx_iocb_t) + pld_size);
pkt = kmem_zalloc(pkt_size, KM_SLEEP);
if (pkt == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
pld = (caddr_t)pkt + sizeof (ql_mbx_iocb_t);
/* Get DMA memory for the IOCB */
if (ql_get_dma_mem(ha, dma_mem, pld_size, LITTLE_ENDIAN_DMA,
QL_DMA_DATA_ALIGN) != QL_SUCCESS) {
cmn_err(CE_WARN, "%s(%d): request queue DMA memory "
"alloc failed", QL_NAME, ha->instance);
kmem_free(pkt, pkt_size);
cmd->Status = EXT_STATUS_MS_NO_RESPONSE;
cmd->ResponseLen = 0;
return;
}
if (scsi_req.direction == EXT_DEF_SCSI_PASSTHRU_DATA_IN) {
scsi_req.direction = (uint8_t)
(CFG_IST(ha, CFG_CTRL_242581) ?
CF_RD : CF_DATA_IN | CF_STAG);
} else {
scsi_req.direction = (uint8_t)
(CFG_IST(ha, CFG_CTRL_242581) ?
CF_WR : CF_DATA_OUT | CF_STAG);
cmd->ResponseLen = 0;
/* Get command payload. */
if (ql_get_buffer_data(
(caddr_t)(uintptr_t)cmd->ResponseAdr,
pld, pld_size, mode) != pld_size) {
EL(ha, "failed, get_buffer_data\n");
cmd->Status = EXT_STATUS_COPY_ERR;
kmem_free(pkt, pkt_size);
ql_free_dma_resource(ha, dma_mem);
kmem_free(dma_mem, sizeof (dma_mem_t));
return;
}
/* Copy out going data to DMA buffer. */
ddi_rep_put8(dma_mem->acc_handle, (uint8_t *)pld,
(uint8_t *)dma_mem->bp, pld_size,
DDI_DEV_AUTOINCR);
/* Sync DMA buffer. */
(void) ddi_dma_sync(dma_mem->dma_handle, 0,
dma_mem->size, DDI_DMA_SYNC_FORDEV);
}
} else {
scsi_req.direction = (uint8_t)
(CFG_IST(ha, CFG_CTRL_242581) ? 0 : CF_STAG);
cmd->ResponseLen = 0;
pkt_size = sizeof (ql_mbx_iocb_t);
pkt = kmem_zalloc(pkt_size, KM_SLEEP);
if (pkt == NULL) {
EL(ha, "failed, kmem_zalloc-2\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
return;
}
pld = NULL;
pld_size = 0;
}
/* retries = ha->port_down_retry_count; */
retries = 1;
cmd->Status = EXT_STATUS_OK;
cmd->DetailStatus = EXT_DSTATUS_NOADNL_INFO;
QL_PRINT_9(CE_CONT, "(%d): SCSI cdb\n", ha->instance);
QL_DUMP_9(scsi_req.cdbp, 8, scsi_req.cdb_len);
do {
if (DRIVER_SUSPENDED(ha)) {
sts.comp_status = CS_LOOP_DOWN_ABORT;
break;
}
if (CFG_IST(ha, CFG_CTRL_242581)) {
pkt->cmd24.entry_type = IOCB_CMD_TYPE_7;
pkt->cmd24.entry_count = 1;
/* Set LUN number */
pkt->cmd24.fcp_lun[2] = LSB(scsi_req.lun);
pkt->cmd24.fcp_lun[3] = MSB(scsi_req.lun);
/* Set N_port handle */
pkt->cmd24.n_port_hdl = (uint16_t)LE_16(tq->loop_id);
/* Set VP Index */
pkt->cmd24.vp_index = ha->vp_index;
/* Set target ID */
pkt->cmd24.target_id[0] = tq->d_id.b.al_pa;
pkt->cmd24.target_id[1] = tq->d_id.b.area;
pkt->cmd24.target_id[2] = tq->d_id.b.domain;
/* Set ISP command timeout. */
pkt->cmd24.timeout = (uint16_t)LE_16(15);
/* Load SCSI CDB */
ddi_rep_put8(ha->hba_buf.acc_handle, scsi_req.cdbp,
pkt->cmd24.scsi_cdb, scsi_req.cdb_len,
DDI_DEV_AUTOINCR);
for (cnt = 0; cnt < MAX_CMDSZ;
cnt = (uint16_t)(cnt + 4)) {
ql_chg_endian((uint8_t *)&pkt->cmd24.scsi_cdb
+ cnt, 4);
}
/* Set tag queue control flags */
pkt->cmd24.task = TA_STAG;
if (pld_size) {
/* Set transfer direction. */
pkt->cmd24.control_flags = scsi_req.direction;
/* Set data segment count. */
pkt->cmd24.dseg_count = LE_16(1);
/* Load total byte count. */
pkt->cmd24.total_byte_count = LE_32(pld_size);
/* Load data descriptor. */
pkt->cmd24.dseg_0_address[0] = (uint32_t)
LE_32(LSD(dma_mem->cookie.dmac_laddress));
pkt->cmd24.dseg_0_address[1] = (uint32_t)
LE_32(MSD(dma_mem->cookie.dmac_laddress));
pkt->cmd24.dseg_0_length = LE_32(pld_size);
}
} else if (CFG_IST(ha, CFG_ENABLE_64BIT_ADDRESSING)) {
pkt->cmd3.entry_type = IOCB_CMD_TYPE_3;
pkt->cmd3.entry_count = 1;
if (CFG_IST(ha, CFG_EXT_FW_INTERFACE)) {
pkt->cmd3.target_l = LSB(tq->loop_id);
pkt->cmd3.target_h = MSB(tq->loop_id);
} else {
pkt->cmd3.target_h = LSB(tq->loop_id);
}
pkt->cmd3.lun_l = LSB(scsi_req.lun);
pkt->cmd3.lun_h = MSB(scsi_req.lun);
pkt->cmd3.control_flags_l = scsi_req.direction;
pkt->cmd3.timeout = LE_16(15);
for (cnt = 0; cnt < scsi_req.cdb_len; cnt++) {
pkt->cmd3.scsi_cdb[cnt] = scsi_req.cdbp[cnt];
}
if (pld_size) {
pkt->cmd3.dseg_count = LE_16(1);
pkt->cmd3.byte_count = LE_32(pld_size);
pkt->cmd3.dseg_0_address[0] = (uint32_t)
LE_32(LSD(dma_mem->cookie.dmac_laddress));
pkt->cmd3.dseg_0_address[1] = (uint32_t)
LE_32(MSD(dma_mem->cookie.dmac_laddress));
pkt->cmd3.dseg_0_length = LE_32(pld_size);
}
} else {
pkt->cmd.entry_type = IOCB_CMD_TYPE_2;
pkt->cmd.entry_count = 1;
if (CFG_IST(ha, CFG_EXT_FW_INTERFACE)) {
pkt->cmd.target_l = LSB(tq->loop_id);
pkt->cmd.target_h = MSB(tq->loop_id);
} else {
pkt->cmd.target_h = LSB(tq->loop_id);
}
pkt->cmd.lun_l = LSB(scsi_req.lun);
pkt->cmd.lun_h = MSB(scsi_req.lun);
pkt->cmd.control_flags_l = scsi_req.direction;
pkt->cmd.timeout = LE_16(15);
for (cnt = 0; cnt < scsi_req.cdb_len; cnt++) {
pkt->cmd.scsi_cdb[cnt] = scsi_req.cdbp[cnt];
}
if (pld_size) {
pkt->cmd.dseg_count = LE_16(1);
pkt->cmd.byte_count = LE_32(pld_size);
pkt->cmd.dseg_0_address = (uint32_t)
LE_32(LSD(dma_mem->cookie.dmac_laddress));
pkt->cmd.dseg_0_length = LE_32(pld_size);
}
}
/* Go issue command and wait for completion. */
QL_PRINT_9(CE_CONT, "(%d): request pkt\n", ha->instance);
QL_DUMP_9(pkt, 8, pkt_size);
status = ql_issue_mbx_iocb(ha, (caddr_t)pkt, pkt_size);
if (pld_size) {
/* Sync in coming DMA buffer. */
(void) ddi_dma_sync(dma_mem->dma_handle, 0,
dma_mem->size, DDI_DMA_SYNC_FORKERNEL);
/* Copy in coming DMA data. */
ddi_rep_get8(dma_mem->acc_handle, (uint8_t *)pld,
(uint8_t *)dma_mem->bp, pld_size,
DDI_DEV_AUTOINCR);
}
if (CFG_IST(ha, CFG_CTRL_242581)) {
pkt->sts24.entry_status = (uint8_t)
(pkt->sts24.entry_status & 0x3c);
} else {
pkt->sts.entry_status = (uint8_t)
(pkt->sts.entry_status & 0x7e);
}
if (status == QL_SUCCESS && pkt->sts.entry_status != 0) {
EL(ha, "failed, entry_status=%xh, d_id=%xh\n",
pkt->sts.entry_status, tq->d_id.b24);
status = QL_FUNCTION_PARAMETER_ERROR;
}
sts.comp_status = (uint16_t)(CFG_IST(ha, CFG_CTRL_242581) ?
LE_16(pkt->sts24.comp_status) :
LE_16(pkt->sts.comp_status));
/*
* We have verified about all the request that can be so far.
* Now we need to start verification of our ability to
* actually issue the CDB.
*/
if (DRIVER_SUSPENDED(ha)) {
sts.comp_status = CS_LOOP_DOWN_ABORT;
break;
} else if (status == QL_SUCCESS &&
(sts.comp_status == CS_PORT_LOGGED_OUT ||
sts.comp_status == CS_PORT_UNAVAILABLE)) {
EL(ha, "login retry d_id=%xh\n", tq->d_id.b24);
if (tq->flags & TQF_FABRIC_DEVICE) {
rval = ql_login_fport(ha, tq, tq->loop_id,
LFF_NO_PLOGI, &mr);
if (rval != QL_SUCCESS) {
EL(ha, "failed, login_fport=%xh, "
"d_id=%xh\n", rval, tq->d_id.b24);
}
} else {
rval = ql_login_lport(ha, tq, tq->loop_id,
LLF_NONE);
if (rval != QL_SUCCESS) {
EL(ha, "failed, login_lport=%xh, "
"d_id=%xh\n", rval, tq->d_id.b24);
}
}
} else {
break;
}
bzero((caddr_t)pkt, sizeof (ql_mbx_iocb_t));
} while (retries--);
if (sts.comp_status == CS_LOOP_DOWN_ABORT) {
/* Cannot issue command now, maybe later */
EL(ha, "failed, suspended\n");
kmem_free(pkt, pkt_size);
ql_free_dma_resource(ha, dma_mem);
kmem_free(dma_mem, sizeof (dma_mem_t));
cmd->Status = EXT_STATUS_SUSPENDED;
cmd->ResponseLen = 0;
return;
}
if (status != QL_SUCCESS) {
/* Command error */
EL(ha, "failed, I/O\n");
kmem_free(pkt, pkt_size);
ql_free_dma_resource(ha, dma_mem);
kmem_free(dma_mem, sizeof (dma_mem_t));
cmd->Status = EXT_STATUS_ERR;
cmd->DetailStatus = status;
cmd->ResponseLen = 0;
return;
}
/* Setup status. */
if (CFG_IST(ha, CFG_CTRL_242581)) {
sts.scsi_status_l = pkt->sts24.scsi_status_l;
sts.scsi_status_h = pkt->sts24.scsi_status_h;
/* Setup residuals. */
sts.residual_length = LE_32(pkt->sts24.residual_length);
/* Setup state flags. */
sts.state_flags_l = pkt->sts24.state_flags_l;
sts.state_flags_h = pkt->sts24.state_flags_h;
if (pld_size && sts.comp_status != CS_DATA_UNDERRUN) {
sts.state_flags_h = (uint8_t)(sts.state_flags_h |
SF_GOT_BUS | SF_GOT_TARGET | SF_SENT_CMD |
SF_XFERRED_DATA | SF_GOT_STATUS);
} else {
sts.state_flags_h = (uint8_t)(sts.state_flags_h |
SF_GOT_BUS | SF_GOT_TARGET | SF_SENT_CMD |
SF_GOT_STATUS);
}
if (scsi_req.direction & CF_WR) {
sts.state_flags_l = (uint8_t)(sts.state_flags_l |
SF_DATA_OUT);
} else if (scsi_req.direction & CF_RD) {
sts.state_flags_l = (uint8_t)(sts.state_flags_l |
SF_DATA_IN);
}
sts.state_flags_l = (uint8_t)(sts.state_flags_l | SF_SIMPLE_Q);
/* Setup FCP response info. */
sts.rsp_info_length = sts.scsi_status_h & FCP_RSP_LEN_VALID ?
LE_32(pkt->sts24.fcp_rsp_data_length) : 0;
sts.rsp_info = &pkt->sts24.rsp_sense_data[0];
for (cnt = 0; cnt < sts.rsp_info_length;
cnt = (uint16_t)(cnt + 4)) {
ql_chg_endian(sts.rsp_info + cnt, 4);
}
/* Setup sense data. */
if (sts.scsi_status_h & FCP_SNS_LEN_VALID) {
sts.req_sense_length =
LE_32(pkt->sts24.fcp_sense_length);
sts.state_flags_h = (uint8_t)(sts.state_flags_h |
SF_ARQ_DONE);
} else {
sts.req_sense_length = 0;
}
sts.req_sense_data =
&pkt->sts24.rsp_sense_data[sts.rsp_info_length];
cnt2 = (uint16_t)(((uintptr_t)pkt + sizeof (sts_24xx_entry_t)) -
(uintptr_t)sts.req_sense_data);
for (cnt = 0; cnt < cnt2; cnt = (uint16_t)(cnt + 4)) {
ql_chg_endian(sts.req_sense_data + cnt, 4);
}
} else {
sts.scsi_status_l = pkt->sts.scsi_status_l;
sts.scsi_status_h = pkt->sts.scsi_status_h;
/* Setup residuals. */
sts.residual_length = LE_32(pkt->sts.residual_length);
/* Setup state flags. */
sts.state_flags_l = pkt->sts.state_flags_l;
sts.state_flags_h = pkt->sts.state_flags_h;
/* Setup FCP response info. */
sts.rsp_info_length = sts.scsi_status_h & FCP_RSP_LEN_VALID ?
LE_16(pkt->sts.rsp_info_length) : 0;
sts.rsp_info = &pkt->sts.rsp_info[0];
/* Setup sense data. */
sts.req_sense_length = sts.scsi_status_h & FCP_SNS_LEN_VALID ?
LE_16(pkt->sts.req_sense_length) : 0;
sts.req_sense_data = &pkt->sts.req_sense_data[0];
}
QL_PRINT_9(CE_CONT, "(%d): response pkt\n", ha->instance);
QL_DUMP_9(&pkt->sts, 8, sizeof (sts_entry_t));
switch (sts.comp_status) {
case CS_INCOMPLETE:
case CS_ABORTED:
case CS_DEVICE_UNAVAILABLE:
case CS_PORT_UNAVAILABLE:
case CS_PORT_LOGGED_OUT:
case CS_PORT_CONFIG_CHG:
case CS_PORT_BUSY:
case CS_LOOP_DOWN_ABORT:
cmd->Status = EXT_STATUS_BUSY;
break;
case CS_RESET:
case CS_QUEUE_FULL:
cmd->Status = EXT_STATUS_ERR;
break;
case CS_TIMEOUT:
cmd->Status = EXT_STATUS_ERR;
break;
case CS_DATA_OVERRUN:
cmd->Status = EXT_STATUS_DATA_OVERRUN;
break;
case CS_DATA_UNDERRUN:
cmd->Status = EXT_STATUS_DATA_UNDERRUN;
break;
}
/*
* If non data transfer commands fix tranfer counts.
*/
if (scsi_req.cdbp[0] == SCMD_TEST_UNIT_READY ||
scsi_req.cdbp[0] == SCMD_REZERO_UNIT ||
scsi_req.cdbp[0] == SCMD_SEEK ||
scsi_req.cdbp[0] == SCMD_SEEK_G1 ||
scsi_req.cdbp[0] == SCMD_RESERVE ||
scsi_req.cdbp[0] == SCMD_RELEASE ||
scsi_req.cdbp[0] == SCMD_START_STOP ||
scsi_req.cdbp[0] == SCMD_DOORLOCK ||
scsi_req.cdbp[0] == SCMD_VERIFY ||
scsi_req.cdbp[0] == SCMD_WRITE_FILE_MARK ||
scsi_req.cdbp[0] == SCMD_VERIFY_G0 ||
scsi_req.cdbp[0] == SCMD_SPACE ||
scsi_req.cdbp[0] == SCMD_ERASE ||
(scsi_req.cdbp[0] == SCMD_FORMAT &&
(scsi_req.cdbp[1] & FPB_DATA) == 0)) {
/*
* Non data transfer command, clear sts_entry residual
* length.
*/
sts.residual_length = 0;
cmd->ResponseLen = 0;
if (sts.comp_status == CS_DATA_UNDERRUN) {
sts.comp_status = CS_COMPLETE;
cmd->Status = EXT_STATUS_OK;
}
} else {
cmd->ResponseLen = pld_size;
}
/* Correct ISP completion status */
if (sts.comp_status == CS_COMPLETE && sts.scsi_status_l == 0 &&
(sts.scsi_status_h & FCP_RSP_MASK) == 0) {
QL_PRINT_9(CE_CONT, "(%d): Correct completion\n",
ha->instance);
scsi_req.resid = 0;
} else if (sts.comp_status == CS_DATA_UNDERRUN) {
QL_PRINT_9(CE_CONT, "(%d): Correct UNDERRUN\n",
ha->instance);
scsi_req.resid = sts.residual_length;
if (sts.scsi_status_h & FCP_RESID_UNDER) {
cmd->Status = (uint32_t)EXT_STATUS_OK;
cmd->ResponseLen = (uint32_t)
(pld_size - scsi_req.resid);
} else {
EL(ha, "failed, Transfer ERROR\n");
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
}
} else {
QL_PRINT_9(CE_CONT, "(%d): error d_id=%xh, comp_status=%xh, "
"scsi_status_h=%xh, scsi_status_l=%xh\n", ha->instance,
tq->d_id.b24, sts.comp_status, sts.scsi_status_h,
sts.scsi_status_l);
scsi_req.resid = pld_size;
/*
* Handle residual count on SCSI check
* condition.
*
* - If Residual Under / Over is set, use the
* Residual Transfer Length field in IOCB.
* - If Residual Under / Over is not set, and
* Transferred Data bit is set in State Flags
* field of IOCB, report residual value of 0
* (you may want to do this for tape
* Write-type commands only). This takes care
* of logical end of tape problem and does
* not break Unit Attention.
* - If Residual Under / Over is not set, and
* Transferred Data bit is not set in State
* Flags, report residual value equal to
* original data transfer length.
*/
if (sts.scsi_status_l & STATUS_CHECK) {
cmd->Status = EXT_STATUS_SCSI_STATUS;
cmd->DetailStatus = sts.scsi_status_l;
if (sts.scsi_status_h &
(FCP_RESID_OVER | FCP_RESID_UNDER)) {
scsi_req.resid = sts.residual_length;
} else if (sts.state_flags_h &
STATE_XFERRED_DATA) {
scsi_req.resid = 0;
}
}
}
if (sts.scsi_status_l & STATUS_CHECK &&
sts.scsi_status_h & FCP_SNS_LEN_VALID &&
sts.req_sense_length) {
/*
* Check condition with vaild sense data flag set and sense
* length != 0
*/
if (sts.req_sense_length > scsi_req.sense_length) {
sense_sz = scsi_req.sense_length;
} else {
sense_sz = sts.req_sense_length;
}
EL(ha, "failed, Check Condition Status, d_id=%xh\n",
tq->d_id.b24);
QL_DUMP_2(sts.req_sense_data, 8, sts.req_sense_length);
if (ddi_copyout(sts.req_sense_data, scsi_req.u_sense,
(size_t)sense_sz, mode) != 0) {
EL(ha, "failed, request sense ddi_copyout\n");
}
cmd->Status = EXT_STATUS_SCSI_STATUS;
cmd->DetailStatus = sts.scsi_status_l;
}
/* Copy response payload from DMA buffer to application. */
if (scsi_req.direction & (CF_RD | CF_DATA_IN) &&
cmd->ResponseLen != 0) {
QL_PRINT_9(CE_CONT, "(%d): Data Return resid=%lu, "
"byte_count=%u, ResponseLen=%xh\n", ha->instance,
scsi_req.resid, pld_size, cmd->ResponseLen);
QL_DUMP_9(pld, 8, cmd->ResponseLen);
/* Send response payload. */
if (ql_send_buffer_data(pld,
(caddr_t)(uintptr_t)cmd->ResponseAdr,
cmd->ResponseLen, mode) != cmd->ResponseLen) {
EL(ha, "failed, send_buffer_data\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
}
}
if (cmd->Status != EXT_STATUS_OK) {
EL(ha, "failed, cmd->Status=%xh, comp_status=%xh, "
"d_id=%xh\n", cmd->Status, sts.comp_status, tq->d_id.b24);
} else {
/*EMPTY*/
QL_PRINT_9(CE_CONT, "(%d): done, ResponseLen=%d\n",
ha->instance, cmd->ResponseLen);
}
kmem_free(pkt, pkt_size);
ql_free_dma_resource(ha, dma_mem);
kmem_free(dma_mem, sizeof (dma_mem_t));
}
/*
* ql_wwpn_to_scsiaddr
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Context:
* Kernel context.
*/
static void
ql_wwpn_to_scsiaddr(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
int status;
uint8_t wwpn[EXT_DEF_WWN_NAME_SIZE];
EXT_SCSI_ADDR *tmp_addr;
ql_tgt_t *tq;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->RequestLen != EXT_DEF_WWN_NAME_SIZE) {
/* Return error */
EL(ha, "incorrect RequestLen\n");
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->DetailStatus = EXT_DSTATUS_REQUEST_LEN;
return;
}
status = ddi_copyin((void*)(uintptr_t)cmd->RequestAdr, wwpn,
cmd->RequestLen, mode);
if (status != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
EL(ha, "failed, ddi_copyin\n");
return;
}
tq = ql_find_port(ha, wwpn, QLNT_PORT);
if (tq == NULL || tq->flags & TQF_INITIATOR_DEVICE) {
/* no matching device */
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
EL(ha, "failed, device not found\n");
return;
}
/* Copy out the IDs found. For now we can only return target ID. */
tmp_addr = (EXT_SCSI_ADDR *)(uintptr_t)cmd->ResponseAdr;
status = ddi_copyout((void *)wwpn, (void *)&tmp_addr->Target, 8, mode);
if (status != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->Status = EXT_STATUS_OK;
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_host_idx
* Gets host order index.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_host_idx(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint16_t idx;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->ResponseLen < sizeof (uint16_t)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (uint16_t);
EL(ha, "failed, ResponseLen < Len=%xh\n", cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
idx = (uint16_t)ha->instance;
if (ddi_copyout((void *)&idx, (void *)(uintptr_t)(cmd->ResponseAdr),
sizeof (uint16_t), mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = sizeof (uint16_t);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_host_drvname
* Gets host driver name
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_host_drvname(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
char drvname[] = QL_NAME;
uint32_t qlnamelen;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
qlnamelen = (uint32_t)(strlen(QL_NAME)+1);
if (cmd->ResponseLen < qlnamelen) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = qlnamelen;
EL(ha, "failed, ResponseLen: %xh, needed: %xh\n",
cmd->ResponseLen, qlnamelen);
cmd->ResponseLen = 0;
return;
}
if (ddi_copyout((void *)&drvname,
(void *)(uintptr_t)(cmd->ResponseAdr),
qlnamelen, mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = qlnamelen-1;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_read_nvram
* Get NVRAM contents.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_read_nvram(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint32_t nv_size;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
nv_size = (uint32_t)(CFG_IST(ha, CFG_CTRL_242581) ?
sizeof (nvram_24xx_t) : sizeof (nvram_t));
if (cmd->ResponseLen < nv_size) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = nv_size;
EL(ha, "failed, ResponseLen != NVRAM, Len=%xh\n",
cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
/* Get NVRAM data. */
if (ql_nv_util_dump(ha, (void *)(uintptr_t)(cmd->ResponseAdr),
mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, copy error\n");
} else {
cmd->ResponseLen = nv_size;
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_write_nvram
* Loads NVRAM contents.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_write_nvram(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint32_t nv_size;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
nv_size = (uint32_t)(CFG_IST(ha, CFG_CTRL_242581) ?
sizeof (nvram_24xx_t) : sizeof (nvram_t));
if (cmd->RequestLen < nv_size) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (nvram_t);
EL(ha, "failed, RequestLen != NVRAM, Len=%xh\n",
cmd->RequestLen);
return;
}
/* Load NVRAM data. */
if (ql_nv_util_load(ha, (void *)(uintptr_t)(cmd->RequestAdr),
mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
EL(ha, "failed, copy error\n");
} else {
/*EMPTY*/
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_write_vpd
* Loads VPD contents.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_write_vpd(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
int32_t rval = 0;
if ((CFG_IST(ha, CFG_CTRL_242581)) == 0) {
cmd->Status = EXT_STATUS_INVALID_REQUEST;
EL(ha, "failed, invalid request for HBA\n");
return;
}
if (cmd->RequestLen < QL_24XX_VPD_SIZE) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = QL_24XX_VPD_SIZE;
EL(ha, "failed, RequestLen != VPD len, len passed=%xh\n",
cmd->RequestLen);
return;
}
/* Load VPD data. */
if ((rval = ql_vpd_load(ha, (void *)(uintptr_t)(cmd->RequestAdr),
mode)) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->DetailStatus = rval;
EL(ha, "failed, errno=%x\n", rval);
} else {
/*EMPTY*/
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_read_vpd
* Dumps VPD contents.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_read_vpd(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if ((CFG_IST(ha, CFG_CTRL_242581)) == 0) {
cmd->Status = EXT_STATUS_INVALID_REQUEST;
EL(ha, "failed, invalid request for HBA\n");
return;
}
if (cmd->ResponseLen < QL_24XX_VPD_SIZE) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = QL_24XX_VPD_SIZE;
EL(ha, "failed, ResponseLen < VPD len, len passed=%xh\n",
cmd->ResponseLen);
return;
}
/* Dump VPD data. */
if ((ql_vpd_dump(ha, (void *)(uintptr_t)(cmd->ResponseAdr),
mode)) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
EL(ha, "failed,\n");
} else {
/*EMPTY*/
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_get_fcache
* Dumps flash cache contents.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_fcache(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint32_t bsize, boff, types, cpsize, hsize;
ql_fcache_t *fptr;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
CACHE_LOCK(ha);
if (ha->fcache == NULL) {
CACHE_UNLOCK(ha);
cmd->Status = EXT_STATUS_ERR;
EL(ha, "failed, adapter fcache not setup\n");
return;
}
if ((CFG_IST(ha, CFG_CTRL_242581)) == 0) {
bsize = 100;
} else {
bsize = 400;
}
if (cmd->ResponseLen < bsize) {
CACHE_UNLOCK(ha);
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = bsize;
EL(ha, "failed, ResponseLen < %d, len passed=%xh\n",
bsize, cmd->ResponseLen);
return;
}
boff = 0;
bsize = 0;
fptr = ha->fcache;
/*
* For backwards compatibility, get one of each image type
*/
types = (FTYPE_BIOS | FTYPE_FCODE | FTYPE_EFI);
while ((fptr != NULL) && (fptr->buf != NULL) && (types != 0)) {
/* Get the next image */
if ((fptr = ql_get_fbuf(ha->fcache, types)) != NULL) {
cpsize = (fptr->buflen < 100 ? fptr->buflen : 100);
if (ddi_copyout(fptr->buf,
(void *)(uintptr_t)(cmd->ResponseAdr + boff),
cpsize, mode) != 0) {
CACHE_UNLOCK(ha);
EL(ha, "ddicopy failed, done\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->DetailStatus = 0;
return;
}
boff += 100;
bsize += cpsize;
types &= ~(fptr->type);
}
}
/*
* Get the firmware image -- it needs to be last in the
* buffer at offset 300 for backwards compatibility. Also for
* backwards compatibility, the pci header is stripped off.
*/
if ((fptr = ql_get_fbuf(ha->fcache, FTYPE_FW)) != NULL) {
hsize = sizeof (pci_header_t) + sizeof (pci_data_t);
if (hsize > fptr->buflen) {
CACHE_UNLOCK(ha);
EL(ha, "header size (%xh) exceeds buflen (%xh)\n",
hsize, fptr->buflen);
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->DetailStatus = 0;
return;
}
cpsize = ((fptr->buflen - hsize) < 100 ?
fptr->buflen - hsize : 100);
if (ddi_copyout(fptr->buf+hsize,
(void *)(uintptr_t)(cmd->ResponseAdr + 300),
cpsize, mode) != 0) {
CACHE_UNLOCK(ha);
EL(ha, "fw ddicopy failed, done\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->DetailStatus = 0;
return;
}
bsize += 100;
}
CACHE_UNLOCK(ha);
cmd->Status = EXT_STATUS_OK;
cmd->DetailStatus = bsize;
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_fcache_ex
* Dumps flash cache contents.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_fcache_ex(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint32_t bsize = 0;
uint32_t boff = 0;
ql_fcache_t *fptr;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
CACHE_LOCK(ha);
if (ha->fcache == NULL) {
CACHE_UNLOCK(ha);
cmd->Status = EXT_STATUS_ERR;
EL(ha, "failed, adapter fcache not setup\n");
return;
}
/* Make sure user passed enough buffer space */
for (fptr = ha->fcache; fptr != NULL; fptr = fptr->next) {
bsize += FBUFSIZE;
}
if (cmd->ResponseLen < bsize) {
CACHE_UNLOCK(ha);
if (cmd->ResponseLen != 0) {
EL(ha, "failed, ResponseLen < %d, len passed=%xh\n",
bsize, cmd->ResponseLen);
}
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = bsize;
return;
}
boff = 0;
fptr = ha->fcache;
while ((fptr != NULL) && (fptr->buf != NULL)) {
/* Get the next image */
if (ddi_copyout(fptr->buf,
(void *)(uintptr_t)(cmd->ResponseAdr + boff),
(fptr->buflen < FBUFSIZE ? fptr->buflen : FBUFSIZE),
mode) != 0) {
CACHE_UNLOCK(ha);
EL(ha, "failed, ddicopy at %xh, done\n", boff);
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->DetailStatus = 0;
return;
}
boff += FBUFSIZE;
fptr = fptr->next;
}
CACHE_UNLOCK(ha);
cmd->Status = EXT_STATUS_OK;
cmd->DetailStatus = bsize;
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_read_flash
* Get flash contents.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_read_flash(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (ql_stall_driver(ha, 0) != QL_SUCCESS) {
EL(ha, "ql_stall_driver failed\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->DetailStatus = xp->fdesc.flash_size;
cmd->ResponseLen = 0;
return;
}
if (ql_setup_fcache(ha) != QL_SUCCESS) {
cmd->Status = EXT_STATUS_ERR;
cmd->DetailStatus = xp->fdesc.flash_size;
EL(ha, "failed, ResponseLen=%xh, flash size=%xh\n",
cmd->ResponseLen, xp->fdesc.flash_size);
cmd->ResponseLen = 0;
} else {
/* adjust read size to flash size */
if (cmd->ResponseLen > xp->fdesc.flash_size) {
EL(ha, "adjusting req=%xh, max=%xh\n",
cmd->ResponseLen, xp->fdesc.flash_size);
cmd->ResponseLen = xp->fdesc.flash_size;
}
/* Get flash data. */
if (ql_flash_fcode_dump(ha,
(void *)(uintptr_t)(cmd->ResponseAdr),
(size_t)(cmd->ResponseLen), 0, mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed,\n");
}
}
/* Resume I/O */
if (CFG_IST(ha, CFG_CTRL_242581)) {
ql_restart_driver(ha);
} else {
EL(ha, "isp_abort_needed for restart\n");
ql_awaken_task_daemon(ha, NULL, ISP_ABORT_NEEDED,
DRIVER_STALL);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_write_flash
* Loads flash contents.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_write_flash(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (ql_stall_driver(ha, 0) != QL_SUCCESS) {
EL(ha, "ql_stall_driver failed\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->DetailStatus = xp->fdesc.flash_size;
cmd->ResponseLen = 0;
return;
}
if (ql_setup_fcache(ha) != QL_SUCCESS) {
cmd->Status = EXT_STATUS_ERR;
cmd->DetailStatus = xp->fdesc.flash_size;
EL(ha, "failed, RequestLen=%xh, size=%xh\n",
cmd->RequestLen, xp->fdesc.flash_size);
cmd->ResponseLen = 0;
} else {
/* Load flash data. */
if (cmd->RequestLen > xp->fdesc.flash_size) {
cmd->Status = EXT_STATUS_ERR;
cmd->DetailStatus = xp->fdesc.flash_size;
EL(ha, "failed, RequestLen=%xh, flash size=%xh\n",
cmd->RequestLen, xp->fdesc.flash_size);
} else if (ql_flash_fcode_load(ha,
(void *)(uintptr_t)(cmd->RequestAdr),
(size_t)(cmd->RequestLen), mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
EL(ha, "failed,\n");
}
}
/* Resume I/O */
if (CFG_IST(ha, CFG_CTRL_242581)) {
ql_restart_driver(ha);
} else {
EL(ha, "isp_abort_needed for restart\n");
ql_awaken_task_daemon(ha, NULL, ISP_ABORT_NEEDED,
DRIVER_STALL);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_diagnostic_loopback
* Performs EXT_CC_LOOPBACK Command
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_diagnostic_loopback(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_LOOPBACK_REQ plbreq;
EXT_LOOPBACK_RSP plbrsp;
ql_mbx_data_t mr;
uint32_t rval;
caddr_t bp;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Get loop back request. */
if (ddi_copyin((void *)(uintptr_t)cmd->RequestAdr,
(void *)&plbreq, sizeof (EXT_LOOPBACK_REQ), mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
/* Check transfer length fits in buffer. */
if (plbreq.BufferLength < plbreq.TransferCount &&
plbreq.TransferCount < MAILBOX_BUFFER_SIZE) {
EL(ha, "failed, BufferLength=%d, xfercnt=%d, "
"mailbox_buffer_size=%d\n", plbreq.BufferLength,
plbreq.TransferCount, MAILBOX_BUFFER_SIZE);
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->ResponseLen = 0;
return;
}
/* Allocate command memory. */
bp = kmem_zalloc(plbreq.TransferCount, KM_SLEEP);
if (bp == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
/* Get loopback data. */
if (ql_get_buffer_data((caddr_t)(uintptr_t)plbreq.BufferAddress,
bp, plbreq.TransferCount, mode) != plbreq.TransferCount) {
EL(ha, "failed, ddi_copyin-2\n");
kmem_free(bp, plbreq.TransferCount);
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
if (DRIVER_SUSPENDED(ha) || ql_stall_driver(ha, 0) != QL_SUCCESS) {
EL(ha, "failed, LOOP_NOT_READY\n");
kmem_free(bp, plbreq.TransferCount);
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return;
}
/* Shutdown IP. */
if (ha->flags & IP_INITIALIZED) {
(void) ql_shutdown_ip(ha);
}
/* determine topology so we can send the loopback or the echo */
/* Echo is supported on 2300's only and above */
if ((ha->topology & QL_F_PORT) && ha->device_id >= 0x2300) {
QL_PRINT_9(CE_CONT, "(%d): F_PORT topology -- using echo\n",
ha->instance);
plbrsp.CommandSent = INT_DEF_LB_ECHO_CMD;
rval = ql_diag_echo(ha, 0, bp, plbreq.TransferCount, 0, &mr);
} else {
plbrsp.CommandSent = INT_DEF_LB_LOOPBACK_CMD;
rval = ql_diag_loopback(ha, 0, bp, plbreq.TransferCount,
plbreq.Options, plbreq.IterationCount, &mr);
}
ql_restart_driver(ha);
/* Restart IP if it was shutdown. */
if (ha->flags & IP_ENABLED && !(ha->flags & IP_INITIALIZED)) {
(void) ql_initialize_ip(ha);
ql_isp_rcvbuf(ha);
}
if (rval != QL_SUCCESS) {
EL(ha, "failed, diagnostic_loopback_mbx=%xh\n", rval);
kmem_free(bp, plbreq.TransferCount);
cmd->Status = EXT_STATUS_MAILBOX;
cmd->DetailStatus = rval;
cmd->ResponseLen = 0;
return;
}
/* Return loopback data. */
if (ql_send_buffer_data(bp, (caddr_t)(uintptr_t)plbreq.BufferAddress,
plbreq.TransferCount, mode) != plbreq.TransferCount) {
EL(ha, "failed, ddi_copyout\n");
kmem_free(bp, plbreq.TransferCount);
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
kmem_free(bp, plbreq.TransferCount);
/* Return loopback results. */
plbrsp.BufferAddress = plbreq.BufferAddress;
plbrsp.BufferLength = plbreq.TransferCount;
plbrsp.CompletionStatus = mr.mb[0];
if (plbrsp.CommandSent == INT_DEF_LB_ECHO_CMD) {
plbrsp.CrcErrorCount = 0;
plbrsp.DisparityErrorCount = 0;
plbrsp.FrameLengthErrorCount = 0;
plbrsp.IterationCountLastError = 0;
} else {
plbrsp.CrcErrorCount = mr.mb[1];
plbrsp.DisparityErrorCount = mr.mb[2];
plbrsp.FrameLengthErrorCount = mr.mb[3];
plbrsp.IterationCountLastError = (mr.mb[19] >> 16) | mr.mb[18];
}
rval = ddi_copyout((void *)&plbrsp,
(void *)(uintptr_t)cmd->ResponseAdr,
sizeof (EXT_LOOPBACK_RSP), mode);
if (rval != 0) {
EL(ha, "failed, ddi_copyout-2\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
cmd->ResponseLen = sizeof (EXT_LOOPBACK_RSP);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_send_els_rnid
* IOCTL for extended link service RNID command.
*
* Input:
* ha: adapter state pointer.
* cmd: User space CT arguments pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_send_els_rnid(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_RNID_REQ tmp_rnid;
port_id_t tmp_fcid;
caddr_t tmp_buf, bptr;
uint32_t copy_len;
ql_tgt_t *tq;
EXT_RNID_DATA rnid_data;
uint32_t loop_ready_wait = 10 * 60 * 10;
int rval = 0;
uint32_t local_hba = 0;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (DRIVER_SUSPENDED(ha)) {
EL(ha, "failed, LOOP_NOT_READY\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return;
}
if (cmd->RequestLen != sizeof (EXT_RNID_REQ)) {
/* parameter error */
EL(ha, "failed, RequestLen < EXT_RNID_REQ, Len=%xh\n",
cmd->RequestLen);
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->DetailStatus = EXT_DSTATUS_REQUEST_LEN;
cmd->ResponseLen = 0;
return;
}
if (ddi_copyin((void*)(uintptr_t)cmd->RequestAdr,
&tmp_rnid, cmd->RequestLen, mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
/* Find loop ID of the device */
if (tmp_rnid.Addr.Type == EXT_DEF_TYPE_WWNN) {
bptr = CFG_IST(ha, CFG_CTRL_242581) ?
(caddr_t)&ha->init_ctrl_blk.cb24.node_name :
(caddr_t)&ha->init_ctrl_blk.cb.node_name;
if (bcmp((void *)bptr, (void *)tmp_rnid.Addr.FcAddr.WWNN,
EXT_DEF_WWN_NAME_SIZE) == 0) {
local_hba = 1;
} else {
tq = ql_find_port(ha,
(uint8_t *)tmp_rnid.Addr.FcAddr.WWNN, QLNT_NODE);
}
} else if (tmp_rnid.Addr.Type == EXT_DEF_TYPE_WWPN) {
bptr = CFG_IST(ha, CFG_CTRL_242581) ?
(caddr_t)&ha->init_ctrl_blk.cb24.port_name :
(caddr_t)&ha->init_ctrl_blk.cb.port_name;
if (bcmp((void *)bptr, (void *)tmp_rnid.Addr.FcAddr.WWPN,
EXT_DEF_WWN_NAME_SIZE) == 0) {
local_hba = 1;
} else {
tq = ql_find_port(ha,
(uint8_t *)tmp_rnid.Addr.FcAddr.WWPN, QLNT_PORT);
}
} else if (tmp_rnid.Addr.Type == EXT_DEF_TYPE_PORTID) {
/*
* Copy caller's d_id to tmp space.
*/
bcopy(&tmp_rnid.Addr.FcAddr.Id[1], tmp_fcid.r.d_id,
EXT_DEF_PORTID_SIZE_ACTUAL);
BIG_ENDIAN_24(&tmp_fcid.r.d_id[0]);
if (bcmp((void *)&ha->d_id, (void *)tmp_fcid.r.d_id,
EXT_DEF_PORTID_SIZE_ACTUAL) == 0) {
local_hba = 1;
} else {
tq = ql_find_port(ha, (uint8_t *)tmp_fcid.r.d_id,
QLNT_PID);
}
}
/* Allocate memory for command. */
tmp_buf = kmem_zalloc(SEND_RNID_RSP_SIZE, KM_SLEEP);
if (tmp_buf == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
if (local_hba) {
rval = ql_get_rnid_params(ha, SEND_RNID_RSP_SIZE, tmp_buf);
if (rval != QL_SUCCESS) {
EL(ha, "failed, get_rnid_params_mbx=%xh\n", rval);
kmem_free(tmp_buf, SEND_RNID_RSP_SIZE);
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
return;
}
/* Save gotten RNID data. */
bcopy(tmp_buf, &rnid_data, sizeof (EXT_RNID_DATA));
/* Now build the Send RNID response */
tmp_buf[0] = (char)(EXT_DEF_RNID_DFORMAT_TOPO_DISC);
tmp_buf[1] = (2 * EXT_DEF_WWN_NAME_SIZE);
tmp_buf[2] = 0;
tmp_buf[3] = sizeof (EXT_RNID_DATA);
if (CFG_IST(ha, CFG_CTRL_242581)) {
bcopy(ha->init_ctrl_blk.cb24.port_name, &tmp_buf[4],
EXT_DEF_WWN_NAME_SIZE);
bcopy(ha->init_ctrl_blk.cb24.node_name,
&tmp_buf[4 + EXT_DEF_WWN_NAME_SIZE],
EXT_DEF_WWN_NAME_SIZE);
} else {
bcopy(ha->init_ctrl_blk.cb.port_name, &tmp_buf[4],
EXT_DEF_WWN_NAME_SIZE);
bcopy(ha->init_ctrl_blk.cb.node_name,
&tmp_buf[4 + EXT_DEF_WWN_NAME_SIZE],
EXT_DEF_WWN_NAME_SIZE);
}
bcopy((uint8_t *)&rnid_data,
&tmp_buf[4 + 2 * EXT_DEF_WWN_NAME_SIZE],
sizeof (EXT_RNID_DATA));
} else {
if (tq == NULL) {
/* no matching device */
EL(ha, "failed, device not found\n");
kmem_free(tmp_buf, SEND_RNID_RSP_SIZE);
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
cmd->DetailStatus = EXT_DSTATUS_TARGET;
cmd->ResponseLen = 0;
return;
}
/* Send command */
rval = ql_send_rnid_els(ha, tq->loop_id,
(uint8_t)tmp_rnid.DataFormat, SEND_RNID_RSP_SIZE, tmp_buf);
if (rval != QL_SUCCESS) {
EL(ha, "failed, send_rnid_mbx=%xh, id=%xh\n",
rval, tq->loop_id);
while (LOOP_NOT_READY(ha)) {
ql_delay(ha, 100000);
if (loop_ready_wait-- == 0) {
EL(ha, "failed, loop not ready\n");
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
}
}
rval = ql_send_rnid_els(ha, tq->loop_id,
(uint8_t)tmp_rnid.DataFormat, SEND_RNID_RSP_SIZE,
tmp_buf);
if (rval != QL_SUCCESS) {
/* error */
EL(ha, "failed, send_rnid_mbx=%xh, id=%xh\n",
rval, tq->loop_id);
kmem_free(tmp_buf, SEND_RNID_RSP_SIZE);
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
return;
}
}
}
/* Copy the response */
copy_len = (cmd->ResponseLen > SEND_RNID_RSP_SIZE) ?
SEND_RNID_RSP_SIZE : cmd->ResponseLen;
if (ql_send_buffer_data(tmp_buf, (caddr_t)(uintptr_t)cmd->ResponseAdr,
copy_len, mode) != copy_len) {
cmd->Status = EXT_STATUS_COPY_ERR;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = copy_len;
if (copy_len < SEND_RNID_RSP_SIZE) {
cmd->Status = EXT_STATUS_DATA_OVERRUN;
EL(ha, "failed, EXT_STATUS_DATA_OVERRUN\n");
} else if (cmd->ResponseLen > SEND_RNID_RSP_SIZE) {
cmd->Status = EXT_STATUS_DATA_UNDERRUN;
EL(ha, "failed, EXT_STATUS_DATA_UNDERRUN\n");
} else {
cmd->Status = EXT_STATUS_OK;
QL_PRINT_9(CE_CONT, "(%d): done\n",
ha->instance);
}
}
kmem_free(tmp_buf, SEND_RNID_RSP_SIZE);
}
/*
* ql_set_host_data
* Process IOCTL subcommand to set host/adapter related data.
*
* Input:
* ha: adapter state pointer.
* cmd: User space CT arguments pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_set_host_data(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
QL_PRINT_9(CE_CONT, "(%d): started, SubCode=%d\n", ha->instance,
cmd->SubCode);
/*
* case off on command subcode
*/
switch (cmd->SubCode) {
case EXT_SC_SET_RNID:
ql_set_rnid_parameters(ha, cmd, mode);
break;
case EXT_SC_RST_STATISTICS:
(void) ql_reset_statistics(ha, cmd);
break;
case EXT_SC_SET_BEACON_STATE:
ql_set_led_state(ha, cmd, mode);
break;
case EXT_SC_SET_PARMS:
case EXT_SC_SET_BUS_MODE:
case EXT_SC_SET_DR_DUMP_BUF:
case EXT_SC_SET_RISC_CODE:
case EXT_SC_SET_FLASH_RAM:
case EXT_SC_SET_LUN_BITMASK:
case EXT_SC_SET_RETRY_CNT:
case EXT_SC_SET_RTIN:
case EXT_SC_SET_FC_LUN_BITMASK:
case EXT_SC_ADD_TARGET_DEVICE:
case EXT_SC_SWAP_TARGET_DEVICE:
case EXT_SC_SET_SEL_TIMEOUT:
default:
/* function not supported. */
EL(ha, "failed, function not supported=%d\n", cmd->SubCode);
cmd->Status = EXT_STATUS_UNSUPPORTED_SUBCODE;
break;
}
if (cmd->Status != EXT_STATUS_OK) {
EL(ha, "failed, Status=%d\n", cmd->Status);
} else {
/*EMPTY*/
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_get_host_data
* Performs EXT_CC_GET_DATA subcommands.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_host_data(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
int out_size = 0;
QL_PRINT_9(CE_CONT, "(%d): started, SubCode=%d\n", ha->instance,
cmd->SubCode);
/* case off on command subcode */
switch (cmd->SubCode) {
case EXT_SC_GET_STATISTICS:
out_size = sizeof (EXT_HBA_PORT_STAT);
break;
case EXT_SC_GET_FC_STATISTICS:
out_size = sizeof (EXT_HBA_PORT_STAT);
break;
case EXT_SC_GET_PORT_SUMMARY:
out_size = sizeof (EXT_DEVICEDATA);
break;
case EXT_SC_GET_RNID:
out_size = sizeof (EXT_RNID_DATA);
break;
case EXT_SC_GET_TARGET_ID:
out_size = sizeof (EXT_DEST_ADDR);
break;
case EXT_SC_GET_BEACON_STATE:
out_size = sizeof (EXT_BEACON_CONTROL);
break;
case EXT_SC_GET_FC4_STATISTICS:
out_size = sizeof (EXT_HBA_FC4STATISTICS);
break;
case EXT_SC_GET_DCBX_PARAM:
out_size = EXT_DEF_DCBX_PARAM_BUF_SIZE;
break;
case EXT_SC_GET_SCSI_ADDR:
case EXT_SC_GET_ERR_DETECTIONS:
case EXT_SC_GET_BUS_MODE:
case EXT_SC_GET_DR_DUMP_BUF:
case EXT_SC_GET_RISC_CODE:
case EXT_SC_GET_FLASH_RAM:
case EXT_SC_GET_LINK_STATUS:
case EXT_SC_GET_LOOP_ID:
case EXT_SC_GET_LUN_BITMASK:
case EXT_SC_GET_PORT_DATABASE:
case EXT_SC_GET_PORT_DATABASE_MEM:
case EXT_SC_GET_POSITION_MAP:
case EXT_SC_GET_RETRY_CNT:
case EXT_SC_GET_RTIN:
case EXT_SC_GET_FC_LUN_BITMASK:
case EXT_SC_GET_SEL_TIMEOUT:
default:
/* function not supported. */
EL(ha, "failed, function not supported=%d\n", cmd->SubCode);
cmd->Status = EXT_STATUS_UNSUPPORTED_SUBCODE;
cmd->ResponseLen = 0;
return;
}
if (cmd->ResponseLen < out_size) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = out_size;
EL(ha, "failed, ResponseLen=%xh, size=%xh\n",
cmd->ResponseLen, out_size);
cmd->ResponseLen = 0;
return;
}
switch (cmd->SubCode) {
case EXT_SC_GET_RNID:
ql_get_rnid_parameters(ha, cmd, mode);
break;
case EXT_SC_GET_STATISTICS:
ql_get_statistics(ha, cmd, mode);
break;
case EXT_SC_GET_FC_STATISTICS:
ql_get_statistics_fc(ha, cmd, mode);
break;
case EXT_SC_GET_FC4_STATISTICS:
ql_get_statistics_fc4(ha, cmd, mode);
break;
case EXT_SC_GET_PORT_SUMMARY:
ql_get_port_summary(ha, cmd, mode);
break;
case EXT_SC_GET_TARGET_ID:
ql_get_target_id(ha, cmd, mode);
break;
case EXT_SC_GET_BEACON_STATE:
ql_get_led_state(ha, cmd, mode);
break;
case EXT_SC_GET_DCBX_PARAM:
ql_get_dcbx_parameters(ha, cmd, mode);
break;
}
if (cmd->Status != EXT_STATUS_OK) {
EL(ha, "failed, Status=%d\n", cmd->Status);
} else {
/*EMPTY*/
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/* ******************************************************************** */
/* Helper Functions */
/* ******************************************************************** */
/*
* ql_lun_count
* Get numbers of LUNS on target.
*
* Input:
* ha: adapter state pointer.
* q: device queue pointer.
*
* Returns:
* Number of LUNs.
*
* Context:
* Kernel context.
*/
static int
ql_lun_count(ql_adapter_state_t *ha, ql_tgt_t *tq)
{
int cnt;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Bypass LUNs that failed. */
cnt = ql_report_lun(ha, tq);
if (cnt == 0) {
cnt = ql_inq_scan(ha, tq, ha->maximum_luns_per_target);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (cnt);
}
/*
* ql_report_lun
* Get numbers of LUNS using report LUN command.
*
* Input:
* ha: adapter state pointer.
* q: target queue pointer.
*
* Returns:
* Number of LUNs.
*
* Context:
* Kernel context.
*/
static int
ql_report_lun(ql_adapter_state_t *ha, ql_tgt_t *tq)
{
int rval;
uint8_t retries;
ql_mbx_iocb_t *pkt;
ql_rpt_lun_lst_t *rpt;
dma_mem_t dma_mem;
uint32_t pkt_size, cnt;
uint16_t comp_status;
uint8_t scsi_status_h, scsi_status_l, *reqs;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (DRIVER_SUSPENDED(ha)) {
EL(ha, "failed, LOOP_NOT_READY\n");
return (0);
}
pkt_size = sizeof (ql_mbx_iocb_t) + sizeof (ql_rpt_lun_lst_t);
pkt = kmem_zalloc(pkt_size, KM_SLEEP);
if (pkt == NULL) {
EL(ha, "failed, kmem_zalloc\n");
return (0);
}
rpt = (ql_rpt_lun_lst_t *)((caddr_t)pkt + sizeof (ql_mbx_iocb_t));
/* Get DMA memory for the IOCB */
if (ql_get_dma_mem(ha, &dma_mem, sizeof (ql_rpt_lun_lst_t),
LITTLE_ENDIAN_DMA, QL_DMA_RING_ALIGN) != QL_SUCCESS) {
cmn_err(CE_WARN, "%s(%d): DMA memory "
"alloc failed", QL_NAME, ha->instance);
kmem_free(pkt, pkt_size);
return (0);
}
for (retries = 0; retries < 4; retries++) {
if (CFG_IST(ha, CFG_CTRL_242581)) {
pkt->cmd24.entry_type = IOCB_CMD_TYPE_7;
pkt->cmd24.entry_count = 1;
/* Set N_port handle */
pkt->cmd24.n_port_hdl = (uint16_t)LE_16(tq->loop_id);
/* Set target ID */
pkt->cmd24.target_id[0] = tq->d_id.b.al_pa;
pkt->cmd24.target_id[1] = tq->d_id.b.area;
pkt->cmd24.target_id[2] = tq->d_id.b.domain;
/* Set ISP command timeout. */
pkt->cmd24.timeout = LE_16(15);
/* Load SCSI CDB */
pkt->cmd24.scsi_cdb[0] = SCMD_REPORT_LUNS;
pkt->cmd24.scsi_cdb[6] =
MSB(MSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd24.scsi_cdb[7] =
LSB(MSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd24.scsi_cdb[8] =
MSB(LSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd24.scsi_cdb[9] =
LSB(LSW(sizeof (ql_rpt_lun_lst_t)));
for (cnt = 0; cnt < MAX_CMDSZ; cnt += 4) {
ql_chg_endian((uint8_t *)&pkt->cmd24.scsi_cdb
+ cnt, 4);
}
/* Set tag queue control flags */
pkt->cmd24.task = TA_STAG;
/* Set transfer direction. */
pkt->cmd24.control_flags = CF_RD;
/* Set data segment count. */
pkt->cmd24.dseg_count = LE_16(1);
/* Load total byte count. */
/* Load data descriptor. */
pkt->cmd24.dseg_0_address[0] = (uint32_t)
LE_32(LSD(dma_mem.cookie.dmac_laddress));
pkt->cmd24.dseg_0_address[1] = (uint32_t)
LE_32(MSD(dma_mem.cookie.dmac_laddress));
pkt->cmd24.total_byte_count =
LE_32(sizeof (ql_rpt_lun_lst_t));
pkt->cmd24.dseg_0_length =
LE_32(sizeof (ql_rpt_lun_lst_t));
} else if (CFG_IST(ha, CFG_ENABLE_64BIT_ADDRESSING)) {
pkt->cmd3.entry_type = IOCB_CMD_TYPE_3;
pkt->cmd3.entry_count = 1;
if (CFG_IST(ha, CFG_EXT_FW_INTERFACE)) {
pkt->cmd3.target_l = LSB(tq->loop_id);
pkt->cmd3.target_h = MSB(tq->loop_id);
} else {
pkt->cmd3.target_h = LSB(tq->loop_id);
}
pkt->cmd3.control_flags_l = CF_DATA_IN | CF_STAG;
pkt->cmd3.timeout = LE_16(15);
pkt->cmd3.dseg_count = LE_16(1);
pkt->cmd3.scsi_cdb[0] = SCMD_REPORT_LUNS;
pkt->cmd3.scsi_cdb[6] =
MSB(MSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd3.scsi_cdb[7] =
LSB(MSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd3.scsi_cdb[8] =
MSB(LSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd3.scsi_cdb[9] =
LSB(LSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd3.byte_count =
LE_32(sizeof (ql_rpt_lun_lst_t));
pkt->cmd3.dseg_0_address[0] = (uint32_t)
LE_32(LSD(dma_mem.cookie.dmac_laddress));
pkt->cmd3.dseg_0_address[1] = (uint32_t)
LE_32(MSD(dma_mem.cookie.dmac_laddress));
pkt->cmd3.dseg_0_length =
LE_32(sizeof (ql_rpt_lun_lst_t));
} else {
pkt->cmd.entry_type = IOCB_CMD_TYPE_2;
pkt->cmd.entry_count = 1;
if (CFG_IST(ha, CFG_EXT_FW_INTERFACE)) {
pkt->cmd.target_l = LSB(tq->loop_id);
pkt->cmd.target_h = MSB(tq->loop_id);
} else {
pkt->cmd.target_h = LSB(tq->loop_id);
}
pkt->cmd.control_flags_l = CF_DATA_IN | CF_STAG;
pkt->cmd.timeout = LE_16(15);
pkt->cmd.dseg_count = LE_16(1);
pkt->cmd.scsi_cdb[0] = SCMD_REPORT_LUNS;
pkt->cmd.scsi_cdb[6] =
MSB(MSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd.scsi_cdb[7] =
LSB(MSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd.scsi_cdb[8] =
MSB(LSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd.scsi_cdb[9] =
LSB(LSW(sizeof (ql_rpt_lun_lst_t)));
pkt->cmd.byte_count =
LE_32(sizeof (ql_rpt_lun_lst_t));
pkt->cmd.dseg_0_address = (uint32_t)
LE_32(LSD(dma_mem.cookie.dmac_laddress));
pkt->cmd.dseg_0_length =
LE_32(sizeof (ql_rpt_lun_lst_t));
}
rval = ql_issue_mbx_iocb(ha, (caddr_t)pkt,
sizeof (ql_mbx_iocb_t));
/* Sync in coming DMA buffer. */
(void) ddi_dma_sync(dma_mem.dma_handle, 0, dma_mem.size,
DDI_DMA_SYNC_FORKERNEL);
/* Copy in coming DMA data. */
ddi_rep_get8(dma_mem.acc_handle, (uint8_t *)rpt,
(uint8_t *)dma_mem.bp, dma_mem.size, DDI_DEV_AUTOINCR);
if (CFG_IST(ha, CFG_CTRL_242581)) {
pkt->sts24.entry_status = (uint8_t)
(pkt->sts24.entry_status & 0x3c);
comp_status = (uint16_t)LE_16(pkt->sts24.comp_status);
scsi_status_h = pkt->sts24.scsi_status_h;
scsi_status_l = pkt->sts24.scsi_status_l;
cnt = scsi_status_h & FCP_RSP_LEN_VALID ?
LE_32(pkt->sts24.fcp_rsp_data_length) : 0;
reqs = &pkt->sts24.rsp_sense_data[cnt];
} else {
pkt->sts.entry_status = (uint8_t)
(pkt->sts.entry_status & 0x7e);
comp_status = (uint16_t)LE_16(pkt->sts.comp_status);
scsi_status_h = pkt->sts.scsi_status_h;
scsi_status_l = pkt->sts.scsi_status_l;
reqs = &pkt->sts.req_sense_data[0];
}
if (rval == QL_SUCCESS && pkt->sts.entry_status != 0) {
EL(ha, "failed, entry_status=%xh, d_id=%xh\n",
pkt->sts.entry_status, tq->d_id.b24);
rval = QL_FUNCTION_PARAMETER_ERROR;
}
if (rval != QL_SUCCESS || comp_status != CS_COMPLETE ||
scsi_status_l & STATUS_CHECK) {
/* Device underrun, treat as OK. */
if (rval == QL_SUCCESS &&
comp_status == CS_DATA_UNDERRUN &&
scsi_status_h & FCP_RESID_UNDER) {
break;
}
EL(ha, "failed, issue_iocb=%xh, d_id=%xh, cs=%xh, "
"ss_h=%xh, ss_l=%xh\n", rval, tq->d_id.b24,
comp_status, scsi_status_h, scsi_status_l);
if (rval == QL_SUCCESS) {
if ((comp_status == CS_TIMEOUT) ||
(comp_status == CS_PORT_UNAVAILABLE) ||
(comp_status == CS_PORT_LOGGED_OUT)) {
rval = QL_FUNCTION_TIMEOUT;
break;
}
rval = QL_FUNCTION_FAILED;
} else if (rval == QL_ABORTED) {
break;
}
if (scsi_status_l & STATUS_CHECK) {
EL(ha, "STATUS_CHECK Sense Data\n%2xh%3xh"
"%3xh%3xh%3xh%3xh%3xh%3xh%3xh%3xh%3xh"
"%3xh%3xh%3xh%3xh%3xh%3xh%3xh\n", reqs[0],
reqs[1], reqs[2], reqs[3], reqs[4],
reqs[5], reqs[6], reqs[7], reqs[8],
reqs[9], reqs[10], reqs[11], reqs[12],
reqs[13], reqs[14], reqs[15], reqs[16],
reqs[17]);
}
} else {
break;
}
bzero((caddr_t)pkt, pkt_size);
}
if (rval != QL_SUCCESS) {
EL(ha, "failed=%xh\n", rval);
rval = 0;
} else {
QL_PRINT_9(CE_CONT, "(%d): LUN list\n", ha->instance);
QL_DUMP_9(rpt, 8, rpt->hdr.len + 8);
rval = (int)(BE_32(rpt->hdr.len) / 8);
}
kmem_free(pkt, pkt_size);
ql_free_dma_resource(ha, &dma_mem);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (rval);
}
/*
* ql_inq_scan
* Get numbers of LUNS using inquiry command.
*
* Input:
* ha: adapter state pointer.
* tq: target queue pointer.
* count: scan for the number of existing LUNs.
*
* Returns:
* Number of LUNs.
*
* Context:
* Kernel context.
*/
static int
ql_inq_scan(ql_adapter_state_t *ha, ql_tgt_t *tq, int count)
{
int lun, cnt, rval;
ql_mbx_iocb_t *pkt;
uint8_t *inq;
uint32_t pkt_size;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
pkt_size = sizeof (ql_mbx_iocb_t) + INQ_DATA_SIZE;
pkt = kmem_zalloc(pkt_size, KM_SLEEP);
if (pkt == NULL) {
EL(ha, "failed, kmem_zalloc\n");
return (0);
}
inq = (uint8_t *)((caddr_t)pkt + sizeof (ql_mbx_iocb_t));
cnt = 0;
for (lun = 0; lun < MAX_LUNS; lun++) {
if (DRIVER_SUSPENDED(ha)) {
rval = QL_LOOP_DOWN;
cnt = 0;
break;
}
rval = ql_inq(ha, tq, lun, pkt, INQ_DATA_SIZE);
if (rval == QL_SUCCESS) {
switch (*inq) {
case DTYPE_DIRECT:
case DTYPE_PROCESSOR: /* Appliance. */
case DTYPE_WORM:
case DTYPE_RODIRECT:
case DTYPE_SCANNER:
case DTYPE_OPTICAL:
case DTYPE_CHANGER:
case DTYPE_ESI:
cnt++;
break;
case DTYPE_SEQUENTIAL:
cnt++;
tq->flags |= TQF_TAPE_DEVICE;
break;
default:
QL_PRINT_9(CE_CONT, "(%d): failed, "
"unsupported device id=%xh, lun=%d, "
"type=%xh\n", ha->instance, tq->loop_id,
lun, *inq);
break;
}
if (*inq == DTYPE_ESI || cnt >= count) {
break;
}
} else if (rval == QL_ABORTED || rval == QL_FUNCTION_TIMEOUT) {
cnt = 0;
break;
}
}
kmem_free(pkt, pkt_size);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (cnt);
}
/*
* ql_inq
* Issue inquiry command.
*
* Input:
* ha: adapter state pointer.
* tq: target queue pointer.
* lun: LUN number.
* pkt: command and buffer pointer.
* inq_len: amount of inquiry data.
*
* Returns:
* ql local function return status code.
*
* Context:
* Kernel context.
*/
static int
ql_inq(ql_adapter_state_t *ha, ql_tgt_t *tq, int lun, ql_mbx_iocb_t *pkt,
uint8_t inq_len)
{
dma_mem_t dma_mem;
int rval, retries;
uint32_t pkt_size, cnt;
uint16_t comp_status;
uint8_t scsi_status_h, scsi_status_l, *reqs;
caddr_t inq_data;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (DRIVER_SUSPENDED(ha)) {
EL(ha, "failed, loop down\n");
return (QL_FUNCTION_TIMEOUT);
}
pkt_size = (uint32_t)(sizeof (ql_mbx_iocb_t) + inq_len);
bzero((caddr_t)pkt, pkt_size);
inq_data = (caddr_t)pkt + sizeof (ql_mbx_iocb_t);
/* Get DMA memory for the IOCB */
if (ql_get_dma_mem(ha, &dma_mem, inq_len,
LITTLE_ENDIAN_DMA, QL_DMA_RING_ALIGN) != QL_SUCCESS) {
cmn_err(CE_WARN, "%s(%d): DMA memory "
"alloc failed", QL_NAME, ha->instance);
return (0);
}
for (retries = 0; retries < 4; retries++) {
if (CFG_IST(ha, CFG_CTRL_242581)) {
pkt->cmd24.entry_type = IOCB_CMD_TYPE_7;
pkt->cmd24.entry_count = 1;
/* Set LUN number */
pkt->cmd24.fcp_lun[2] = LSB(lun);
pkt->cmd24.fcp_lun[3] = MSB(lun);
/* Set N_port handle */
pkt->cmd24.n_port_hdl = (uint16_t)LE_16(tq->loop_id);
/* Set target ID */
pkt->cmd24.target_id[0] = tq->d_id.b.al_pa;
pkt->cmd24.target_id[1] = tq->d_id.b.area;
pkt->cmd24.target_id[2] = tq->d_id.b.domain;
/* Set ISP command timeout. */
pkt->cmd24.timeout = LE_16(15);
/* Load SCSI CDB */
pkt->cmd24.scsi_cdb[0] = SCMD_INQUIRY;
pkt->cmd24.scsi_cdb[4] = inq_len;
for (cnt = 0; cnt < MAX_CMDSZ; cnt += 4) {
ql_chg_endian((uint8_t *)&pkt->cmd24.scsi_cdb
+ cnt, 4);
}
/* Set tag queue control flags */
pkt->cmd24.task = TA_STAG;
/* Set transfer direction. */
pkt->cmd24.control_flags = CF_RD;
/* Set data segment count. */
pkt->cmd24.dseg_count = LE_16(1);
/* Load total byte count. */
pkt->cmd24.total_byte_count = LE_32(inq_len);
/* Load data descriptor. */
pkt->cmd24.dseg_0_address[0] = (uint32_t)
LE_32(LSD(dma_mem.cookie.dmac_laddress));
pkt->cmd24.dseg_0_address[1] = (uint32_t)
LE_32(MSD(dma_mem.cookie.dmac_laddress));
pkt->cmd24.dseg_0_length = LE_32(inq_len);
} else if (CFG_IST(ha, CFG_ENABLE_64BIT_ADDRESSING)) {
pkt->cmd3.entry_type = IOCB_CMD_TYPE_3;
cnt = CMD_TYPE_3_DATA_SEGMENTS;
pkt->cmd3.entry_count = 1;
if (CFG_IST(ha, CFG_EXT_FW_INTERFACE)) {
pkt->cmd3.target_l = LSB(tq->loop_id);
pkt->cmd3.target_h = MSB(tq->loop_id);
} else {
pkt->cmd3.target_h = LSB(tq->loop_id);
}
pkt->cmd3.lun_l = LSB(lun);
pkt->cmd3.lun_h = MSB(lun);
pkt->cmd3.control_flags_l = CF_DATA_IN | CF_STAG;
pkt->cmd3.timeout = LE_16(15);
pkt->cmd3.scsi_cdb[0] = SCMD_INQUIRY;
pkt->cmd3.scsi_cdb[4] = inq_len;
pkt->cmd3.dseg_count = LE_16(1);
pkt->cmd3.byte_count = LE_32(inq_len);
pkt->cmd3.dseg_0_address[0] = (uint32_t)
LE_32(LSD(dma_mem.cookie.dmac_laddress));
pkt->cmd3.dseg_0_address[1] = (uint32_t)
LE_32(MSD(dma_mem.cookie.dmac_laddress));
pkt->cmd3.dseg_0_length = LE_32(inq_len);
} else {
pkt->cmd.entry_type = IOCB_CMD_TYPE_2;
cnt = CMD_TYPE_2_DATA_SEGMENTS;
pkt->cmd.entry_count = 1;
if (CFG_IST(ha, CFG_EXT_FW_INTERFACE)) {
pkt->cmd.target_l = LSB(tq->loop_id);
pkt->cmd.target_h = MSB(tq->loop_id);
} else {
pkt->cmd.target_h = LSB(tq->loop_id);
}
pkt->cmd.lun_l = LSB(lun);
pkt->cmd.lun_h = MSB(lun);
pkt->cmd.control_flags_l = CF_DATA_IN | CF_STAG;
pkt->cmd.timeout = LE_16(15);
pkt->cmd.scsi_cdb[0] = SCMD_INQUIRY;
pkt->cmd.scsi_cdb[4] = inq_len;
pkt->cmd.dseg_count = LE_16(1);
pkt->cmd.byte_count = LE_32(inq_len);
pkt->cmd.dseg_0_address = (uint32_t)
LE_32(LSD(dma_mem.cookie.dmac_laddress));
pkt->cmd.dseg_0_length = LE_32(inq_len);
}
/* rval = ql_issue_mbx_iocb(ha, (caddr_t)pkt, pkt_size); */
rval = ql_issue_mbx_iocb(ha, (caddr_t)pkt,
sizeof (ql_mbx_iocb_t));
/* Sync in coming IOCB DMA buffer. */
(void) ddi_dma_sync(dma_mem.dma_handle, 0, dma_mem.size,
DDI_DMA_SYNC_FORKERNEL);
/* Copy in coming DMA data. */
ddi_rep_get8(dma_mem.acc_handle, (uint8_t *)inq_data,
(uint8_t *)dma_mem.bp, dma_mem.size, DDI_DEV_AUTOINCR);
if (CFG_IST(ha, CFG_CTRL_242581)) {
pkt->sts24.entry_status = (uint8_t)
(pkt->sts24.entry_status & 0x3c);
comp_status = (uint16_t)LE_16(pkt->sts24.comp_status);
scsi_status_h = pkt->sts24.scsi_status_h;
scsi_status_l = pkt->sts24.scsi_status_l;
cnt = scsi_status_h & FCP_RSP_LEN_VALID ?
LE_32(pkt->sts24.fcp_rsp_data_length) : 0;
reqs = &pkt->sts24.rsp_sense_data[cnt];
} else {
pkt->sts.entry_status = (uint8_t)
(pkt->sts.entry_status & 0x7e);
comp_status = (uint16_t)LE_16(pkt->sts.comp_status);
scsi_status_h = pkt->sts.scsi_status_h;
scsi_status_l = pkt->sts.scsi_status_l;
reqs = &pkt->sts.req_sense_data[0];
}
if (rval == QL_SUCCESS && pkt->sts.entry_status != 0) {
EL(ha, "failed, entry_status=%xh, d_id=%xh\n",
pkt->sts.entry_status, tq->d_id.b24);
rval = QL_FUNCTION_PARAMETER_ERROR;
}
if (rval != QL_SUCCESS || comp_status != CS_COMPLETE ||
scsi_status_l & STATUS_CHECK) {
EL(ha, "failed, issue_iocb=%xh, d_id=%xh, cs=%xh, "
"ss_h=%xh, ss_l=%xh\n", rval, tq->d_id.b24,
comp_status, scsi_status_h, scsi_status_l);
if (rval == QL_SUCCESS) {
if ((comp_status == CS_TIMEOUT) ||
(comp_status == CS_PORT_UNAVAILABLE) ||
(comp_status == CS_PORT_LOGGED_OUT)) {
rval = QL_FUNCTION_TIMEOUT;
break;
}
rval = QL_FUNCTION_FAILED;
}
if (scsi_status_l & STATUS_CHECK) {
EL(ha, "STATUS_CHECK Sense Data\n%2xh%3xh"
"%3xh%3xh%3xh%3xh%3xh%3xh%3xh%3xh%3xh"
"%3xh%3xh%3xh%3xh%3xh%3xh%3xh\n", reqs[0],
reqs[1], reqs[2], reqs[3], reqs[4],
reqs[5], reqs[6], reqs[7], reqs[8],
reqs[9], reqs[10], reqs[11], reqs[12],
reqs[13], reqs[14], reqs[15], reqs[16],
reqs[17]);
}
} else {
break;
}
}
ql_free_dma_resource(ha, &dma_mem);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (rval);
}
/*
* ql_get_buffer_data
* Copies data from user space to kernal buffer.
*
* Input:
* src: User source buffer address.
* dst: Kernal destination buffer address.
* size: Amount of data.
* mode: flags.
*
* Returns:
* Returns number of bytes transferred.
*
* Context:
* Kernel context.
*/
static uint32_t
ql_get_buffer_data(caddr_t src, caddr_t dst, uint32_t size, int mode)
{
uint32_t cnt;
for (cnt = 0; cnt < size; cnt++) {
if (ddi_copyin(src++, dst++, 1, mode) != 0) {
QL_PRINT_2(CE_CONT, "failed, ddi_copyin\n");
break;
}
}
return (cnt);
}
/*
* ql_send_buffer_data
* Copies data from kernal buffer to user space.
*
* Input:
* src: Kernal source buffer address.
* dst: User destination buffer address.
* size: Amount of data.
* mode: flags.
*
* Returns:
* Returns number of bytes transferred.
*
* Context:
* Kernel context.
*/
static uint32_t
ql_send_buffer_data(caddr_t src, caddr_t dst, uint32_t size, int mode)
{
uint32_t cnt;
for (cnt = 0; cnt < size; cnt++) {
if (ddi_copyout(src++, dst++, 1, mode) != 0) {
QL_PRINT_2(CE_CONT, "failed, ddi_copyin\n");
break;
}
}
return (cnt);
}
/*
* ql_find_port
* Locates device queue.
*
* Input:
* ha: adapter state pointer.
* name: device port name.
*
* Returns:
* Returns target queue pointer.
*
* Context:
* Kernel context.
*/
static ql_tgt_t *
ql_find_port(ql_adapter_state_t *ha, uint8_t *name, uint16_t type)
{
ql_link_t *link;
ql_tgt_t *tq;
uint16_t index;
/* Scan port list for requested target */
for (index = 0; index < DEVICE_HEAD_LIST_SIZE; index++) {
for (link = ha->dev[index].first; link != NULL;
link = link->next) {
tq = link->base_address;
switch (type) {
case QLNT_LOOP_ID:
if (bcmp(name, &tq->loop_id,
sizeof (uint16_t)) == 0) {
return (tq);
}
break;
case QLNT_PORT:
if (bcmp(name, tq->port_name, 8) == 0) {
return (tq);
}
break;
case QLNT_NODE:
if (bcmp(name, tq->node_name, 8) == 0) {
return (tq);
}
break;
case QLNT_PID:
if (bcmp(name, tq->d_id.r.d_id,
sizeof (tq->d_id.r.d_id)) == 0) {
return (tq);
}
break;
default:
EL(ha, "failed, invalid type=%d\n", type);
return (NULL);
}
}
}
return (NULL);
}
/*
* ql_24xx_flash_desc
* Get flash descriptor table.
*
* Input:
* ha: adapter state pointer.
*
* Returns:
* ql local function return status code.
*
* Context:
* Kernel context.
*/
static int
ql_24xx_flash_desc(ql_adapter_state_t *ha)
{
uint32_t cnt;
uint16_t chksum, *bp, data;
int rval;
flash_desc_t *fdesc;
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (ha->flash_desc_addr == 0) {
EL(ha, "desc ptr=0\n");
return (QL_FUNCTION_FAILED);
}
if ((fdesc = kmem_zalloc(sizeof (flash_desc_t), KM_SLEEP)) == NULL) {
EL(ha, "kmem_zalloc=null\n");
return (QL_MEMORY_ALLOC_FAILED);
}
rval = ql_dump_fcode(ha, (uint8_t *)fdesc, sizeof (flash_desc_t),
ha->flash_desc_addr << 2);
if (rval != QL_SUCCESS) {
EL(ha, "read status=%xh\n", rval);
kmem_free(fdesc, sizeof (flash_desc_t));
return (rval);
}
chksum = 0;
bp = (uint16_t *)fdesc;
for (cnt = 0; cnt < (sizeof (flash_desc_t)) / 2; cnt++) {
data = *bp++;
LITTLE_ENDIAN_16(&data);
chksum += data;
}
LITTLE_ENDIAN_32(&fdesc->flash_valid);
LITTLE_ENDIAN_16(&fdesc->flash_version);
LITTLE_ENDIAN_16(&fdesc->flash_len);
LITTLE_ENDIAN_16(&fdesc->flash_checksum);
LITTLE_ENDIAN_16(&fdesc->flash_manuf);
LITTLE_ENDIAN_16(&fdesc->flash_id);
LITTLE_ENDIAN_32(&fdesc->block_size);
LITTLE_ENDIAN_32(&fdesc->alt_block_size);
LITTLE_ENDIAN_32(&fdesc->flash_size);
LITTLE_ENDIAN_32(&fdesc->write_enable_data);
LITTLE_ENDIAN_32(&fdesc->read_timeout);
/* flash size in desc table is in 1024 bytes */
fdesc->flash_size = fdesc->flash_size * 0x400;
if (chksum != 0 || fdesc->flash_valid != FLASH_DESC_VAILD ||
fdesc->flash_version != FLASH_DESC_VERSION) {
EL(ha, "invalid descriptor table\n");
kmem_free(fdesc, sizeof (flash_desc_t));
return (QL_FUNCTION_FAILED);
}
bcopy(fdesc, &xp->fdesc, sizeof (flash_desc_t));
kmem_free(fdesc, sizeof (flash_desc_t));
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (QL_SUCCESS);
}
/*
* ql_setup_flash
* Gets the manufacturer and id number of the flash chip, and
* sets up the size parameter.
*
* Input:
* ha: adapter state pointer.
*
* Returns:
* int: ql local function return status code.
*
* Context:
* Kernel context.
*/
static int
ql_setup_flash(ql_adapter_state_t *ha)
{
ql_xioctl_t *xp = ha->xioctl;
int rval = QL_SUCCESS;
if (xp->fdesc.flash_size != 0) {
return (rval);
}
if (CFG_IST(ha, CFG_CTRL_2200) && !ha->subven_id) {
return (QL_FUNCTION_FAILED);
}
if (CFG_IST(ha, CFG_CTRL_2581)) {
/*
* Temporarily set the ha->xioctl->fdesc.flash_size to
* 25xx flash size to avoid failing of ql_dump_focde.
*/
ha->xioctl->fdesc.flash_size = CFG_IST(ha, CFG_CTRL_25XX) ?
0x200000 : 0x400000;
if (ql_24xx_flash_desc(ha) == QL_SUCCESS) {
EL(ha, "flash desc table ok, exit\n");
return (rval);
}
(void) ql_24xx_flash_id(ha);
} else if (CFG_IST(ha, CFG_CTRL_242581)) {
(void) ql_24xx_flash_id(ha);
} else {
ql_flash_enable(ha);
ql_write_flash_byte(ha, 0x5555, 0xaa);
ql_write_flash_byte(ha, 0x2aaa, 0x55);
ql_write_flash_byte(ha, 0x5555, 0x90);
xp->fdesc.flash_manuf = (uint8_t)ql_read_flash_byte(ha, 0x0000);
if (CFG_IST(ha, CFG_SBUS_CARD)) {
ql_write_flash_byte(ha, 0xaaaa, 0xaa);
ql_write_flash_byte(ha, 0x5555, 0x55);
ql_write_flash_byte(ha, 0xaaaa, 0x90);
xp->fdesc.flash_id = (uint16_t)
ql_read_flash_byte(ha, 0x0002);
} else {
ql_write_flash_byte(ha, 0x5555, 0xaa);
ql_write_flash_byte(ha, 0x2aaa, 0x55);
ql_write_flash_byte(ha, 0x5555, 0x90);
xp->fdesc.flash_id = (uint16_t)
ql_read_flash_byte(ha, 0x0001);
}
ql_write_flash_byte(ha, 0x5555, 0xaa);
ql_write_flash_byte(ha, 0x2aaa, 0x55);
ql_write_flash_byte(ha, 0x5555, 0xf0);
ql_flash_disable(ha);
}
/* Default flash descriptor table. */
xp->fdesc.write_statusreg_cmd = 1;
xp->fdesc.write_enable_bits = 0;
xp->fdesc.unprotect_sector_cmd = 0;
xp->fdesc.protect_sector_cmd = 0;
xp->fdesc.write_disable_bits = 0x9c;
xp->fdesc.block_size = 0x10000;
xp->fdesc.erase_cmd = 0xd8;
switch (xp->fdesc.flash_manuf) {
case AMD_FLASH:
switch (xp->fdesc.flash_id) {
case SPAN_FLASHID_2048K:
xp->fdesc.flash_size = 0x200000;
break;
case AMD_FLASHID_1024K:
xp->fdesc.flash_size = 0x100000;
break;
case AMD_FLASHID_512K:
case AMD_FLASHID_512Kt:
case AMD_FLASHID_512Kb:
if (CFG_IST(ha, CFG_SBUS_CARD)) {
xp->fdesc.flash_size = QL_SBUS_FCODE_SIZE;
} else {
xp->fdesc.flash_size = 0x80000;
}
break;
case AMD_FLASHID_128K:
xp->fdesc.flash_size = 0x20000;
break;
default:
rval = QL_FUNCTION_FAILED;
break;
}
break;
case ST_FLASH:
switch (xp->fdesc.flash_id) {
case ST_FLASHID_128K:
xp->fdesc.flash_size = 0x20000;
break;
case ST_FLASHID_512K:
xp->fdesc.flash_size = 0x80000;
break;
case ST_FLASHID_M25PXX:
if (xp->fdesc.flash_len == 0x14) {
xp->fdesc.flash_size = 0x100000;
} else if (xp->fdesc.flash_len == 0x15) {
xp->fdesc.flash_size = 0x200000;
} else {
rval = QL_FUNCTION_FAILED;
}
break;
default:
rval = QL_FUNCTION_FAILED;
break;
}
break;
case SST_FLASH:
switch (xp->fdesc.flash_id) {
case SST_FLASHID_128K:
xp->fdesc.flash_size = 0x20000;
break;
case SST_FLASHID_1024K_A:
xp->fdesc.flash_size = 0x100000;
xp->fdesc.block_size = 0x8000;
xp->fdesc.erase_cmd = 0x52;
break;
case SST_FLASHID_1024K:
case SST_FLASHID_1024K_B:
xp->fdesc.flash_size = 0x100000;
break;
case SST_FLASHID_2048K:
xp->fdesc.flash_size = 0x200000;
break;
default:
rval = QL_FUNCTION_FAILED;
break;
}
break;
case MXIC_FLASH:
switch (xp->fdesc.flash_id) {
case MXIC_FLASHID_512K:
xp->fdesc.flash_size = 0x80000;
break;
case MXIC_FLASHID_1024K:
xp->fdesc.flash_size = 0x100000;
break;
case MXIC_FLASHID_25LXX:
if (xp->fdesc.flash_len == 0x14) {
xp->fdesc.flash_size = 0x100000;
} else if (xp->fdesc.flash_len == 0x15) {
xp->fdesc.flash_size = 0x200000;
} else {
rval = QL_FUNCTION_FAILED;
}
break;
default:
rval = QL_FUNCTION_FAILED;
break;
}
break;
case ATMEL_FLASH:
switch (xp->fdesc.flash_id) {
case ATMEL_FLASHID_1024K:
xp->fdesc.flash_size = 0x100000;
xp->fdesc.write_disable_bits = 0xbc;
xp->fdesc.unprotect_sector_cmd = 0x39;
xp->fdesc.protect_sector_cmd = 0x36;
break;
default:
rval = QL_FUNCTION_FAILED;
break;
}
break;
case WINBOND_FLASH:
switch (xp->fdesc.flash_id) {
case WINBOND_FLASHID:
if (xp->fdesc.flash_len == 0x15) {
xp->fdesc.flash_size = 0x200000;
} else if (xp->fdesc.flash_len == 0x16) {
xp->fdesc.flash_size = 0x400000;
} else if (xp->fdesc.flash_len == 0x17) {
xp->fdesc.flash_size = 0x800000;
} else {
rval = QL_FUNCTION_FAILED;
}
break;
default:
rval = QL_FUNCTION_FAILED;
break;
}
break;
case INTEL_FLASH:
switch (xp->fdesc.flash_id) {
case INTEL_FLASHID:
if (xp->fdesc.flash_len == 0x11) {
xp->fdesc.flash_size = 0x200000;
} else if (xp->fdesc.flash_len == 0x12) {
xp->fdesc.flash_size = 0x400000;
} else if (xp->fdesc.flash_len == 0x13) {
xp->fdesc.flash_size = 0x800000;
} else {
rval = QL_FUNCTION_FAILED;
}
break;
default:
rval = QL_FUNCTION_FAILED;
break;
}
break;
default:
rval = QL_FUNCTION_FAILED;
break;
}
/* Try flash table later. */
if (rval != QL_SUCCESS && CFG_IST(ha, CFG_CTRL_242581)) {
EL(ha, "no default id\n");
return (QL_SUCCESS);
}
/*
* hack for non std 2312 and 6312 boards. hardware people need to
* use either the 128k flash chip (original), or something larger.
* For driver purposes, we'll treat it as a 128k flash chip.
*/
if ((ha->device_id == 0x2312 || ha->device_id == 0x6312 ||
ha->device_id == 0x6322) && (xp->fdesc.flash_size > 0x20000) &&
(CFG_IST(ha, CFG_SBUS_CARD) == 0)) {
EL(ha, "chip exceeds max size: %xh, using 128k\n",
xp->fdesc.flash_size);
xp->fdesc.flash_size = 0x20000;
}
if (rval == QL_SUCCESS) {
EL(ha, "man_id=%xh, flash_id=%xh, size=%xh\n",
xp->fdesc.flash_manuf, xp->fdesc.flash_id,
xp->fdesc.flash_size);
} else {
EL(ha, "unsupported mfr / type: man_id=%xh, flash_id=%xh\n",
xp->fdesc.flash_manuf, xp->fdesc.flash_id);
}
return (rval);
}
/*
* ql_flash_fcode_load
* Loads fcode data into flash from application.
*
* Input:
* ha: adapter state pointer.
* bp: user buffer address.
* size: user buffer size.
* mode: flags
*
* Returns:
*
* Context:
* Kernel context.
*/
static int
ql_flash_fcode_load(ql_adapter_state_t *ha, void *bp, uint32_t bsize,
int mode)
{
uint8_t *bfp;
ql_xioctl_t *xp = ha->xioctl;
int rval = 0;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (bsize > xp->fdesc.flash_size) {
EL(ha, "failed, bufsize: %xh, flash size: %xh\n", bsize,
xp->fdesc.flash_size);
return (ENOMEM);
}
if ((bfp = (uint8_t *)kmem_zalloc(bsize, KM_SLEEP)) == NULL) {
EL(ha, "failed, kmem_zalloc\n");
rval = ENOMEM;
} else {
if (ddi_copyin(bp, bfp, bsize, mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
rval = EFAULT;
} else if (ql_load_fcode(ha, bfp, bsize, 0) != QL_SUCCESS) {
EL(ha, "failed, load_fcode\n");
rval = EFAULT;
} else {
/* Reset caches on all adapter instances. */
ql_update_flash_caches(ha);
rval = 0;
}
kmem_free(bfp, bsize);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (rval);
}
/*
* ql_load_fcode
* Loads fcode in to flash.
*
* Input:
* ha: adapter state pointer.
* dp: data pointer.
* size: data length.
* addr: flash byte address.
*
* Returns:
* ql local function return status code.
*
* Context:
* Kernel context.
*/
int
ql_load_fcode(ql_adapter_state_t *ha, uint8_t *dp, uint32_t size, uint32_t addr)
{
uint32_t cnt;
int rval;
if (CFG_IST(ha, CFG_CTRL_242581)) {
return (ql_24xx_load_flash(ha, dp, size, addr));
}
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (CFG_IST(ha, CFG_SBUS_CARD)) {
/*
* sbus has an additional check to make
* sure they don't brick the HBA.
*/
if (dp[0] != 0xf1) {
EL(ha, "failed, incorrect fcode for sbus\n");
return (QL_FUNCTION_PARAMETER_ERROR);
}
}
GLOBAL_HW_LOCK();
/* Enable Flash Read/Write. */
ql_flash_enable(ha);
/* Erase flash prior to write. */
rval = ql_erase_flash(ha, 0);
if (rval == QL_SUCCESS) {
/* Write fcode data to flash. */
for (cnt = 0; cnt < (uint32_t)size; cnt++) {
/* Allow other system activity. */
if (cnt % 0x1000 == 0) {
drv_usecwait(1);
}
rval = ql_program_flash_address(ha, addr++, *dp++);
if (rval != QL_SUCCESS)
break;
}
}
ql_flash_disable(ha);
GLOBAL_HW_UNLOCK();
if (rval != QL_SUCCESS) {
EL(ha, "failed, rval=%xh\n", rval);
} else {
/*EMPTY*/
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
return (rval);
}
/*
* ql_flash_fcode_dump
* Dumps FLASH to application.
*
* Input:
* ha: adapter state pointer.
* bp: user buffer address.
* bsize: user buffer size
* faddr: flash byte address
* mode: flags
*
* Returns:
*
* Context:
* Kernel context.
*/
static int
ql_flash_fcode_dump(ql_adapter_state_t *ha, void *bp, uint32_t bsize,
uint32_t faddr, int mode)
{
uint8_t *bfp;
int rval;
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* adjust max read size to flash size */
if (bsize > xp->fdesc.flash_size) {
EL(ha, "adjusting req=%xh, max=%xh\n", bsize,
xp->fdesc.flash_size);
bsize = xp->fdesc.flash_size;
}
if ((bfp = (uint8_t *)kmem_zalloc(bsize, KM_SLEEP)) == NULL) {
EL(ha, "failed, kmem_zalloc\n");
rval = ENOMEM;
} else {
/* Dump Flash fcode. */
rval = ql_dump_fcode(ha, bfp, bsize, faddr);
if (rval != QL_SUCCESS) {
EL(ha, "failed, dump_fcode = %x\n", rval);
rval = EFAULT;
} else if (ddi_copyout(bfp, bp, bsize, mode) != 0) {
EL(ha, "failed, ddi_copyout\n");
rval = EFAULT;
} else {
rval = 0;
}
kmem_free(bfp, bsize);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (rval);
}
/*
* ql_dump_fcode
* Dumps fcode from flash.
*
* Input:
* ha: adapter state pointer.
* dp: data pointer.
* size: data length in bytes.
* startpos: starting position in flash (byte address).
*
* Returns:
* ql local function return status code.
*
* Context:
* Kernel context.
*
*/
int
ql_dump_fcode(ql_adapter_state_t *ha, uint8_t *dp, uint32_t size,
uint32_t startpos)
{
uint32_t cnt, data, addr;
uint8_t bp[4];
int rval = QL_SUCCESS;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* make sure startpos+size doesn't exceed flash */
if (size + startpos > ha->xioctl->fdesc.flash_size) {
EL(ha, "exceeded flash range, sz=%xh, stp=%xh, flsz=%xh\n",
size, startpos, ha->xioctl->fdesc.flash_size);
return (QL_FUNCTION_PARAMETER_ERROR);
}
if (CFG_IST(ha, CFG_CTRL_242581)) {
/* check start addr is 32 bit aligned for 24xx */
if ((startpos & 0x3) != 0) {
rval = ql_24xx_read_flash(ha,
ha->flash_data_addr | startpos >> 2, &data);
if (rval != QL_SUCCESS) {
EL(ha, "failed2, rval = %xh\n", rval);
return (rval);
}
bp[0] = LSB(LSW(data));
bp[1] = MSB(LSW(data));
bp[2] = LSB(MSW(data));
bp[3] = MSB(MSW(data));
while (size && startpos & 0x3) {
*dp++ = bp[startpos & 0x3];
startpos++;
size--;
}
if (size == 0) {
QL_PRINT_9(CE_CONT, "(%d): done2\n",
ha->instance);
return (rval);
}
}
/* adjust 24xx start addr for 32 bit words */
addr = startpos / 4 | ha->flash_data_addr;
}
GLOBAL_HW_LOCK();
/* Enable Flash Read/Write. */
if (CFG_IST(ha, CFG_CTRL_242581) == 0) {
ql_flash_enable(ha);
}
/* Read fcode data from flash. */
while (size) {
/* Allow other system activity. */
if (size % 0x1000 == 0) {
ql_delay(ha, 100000);
}
if (CFG_IST(ha, CFG_CTRL_242581)) {
rval = ql_24xx_read_flash(ha, addr++, &data);
if (rval != QL_SUCCESS) {
break;
}
bp[0] = LSB(LSW(data));
bp[1] = MSB(LSW(data));
bp[2] = LSB(MSW(data));
bp[3] = MSB(MSW(data));
for (cnt = 0; size && cnt < 4; size--) {
*dp++ = bp[cnt++];
}
} else {
*dp++ = (uint8_t)ql_read_flash_byte(ha, startpos++);
size--;
}
}
if (CFG_IST(ha, CFG_CTRL_242581) == 0) {
ql_flash_disable(ha);
}
GLOBAL_HW_UNLOCK();
if (rval != QL_SUCCESS) {
EL(ha, "failed, rval = %xh\n", rval);
} else {
/*EMPTY*/
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
return (rval);
}
/*
* ql_program_flash_address
* Program flash address.
*
* Input:
* ha: adapter state pointer.
* addr: flash byte address.
* data: data to be written to flash.
*
* Returns:
* ql local function return status code.
*
* Context:
* Kernel context.
*/
static int
ql_program_flash_address(ql_adapter_state_t *ha, uint32_t addr,
uint8_t data)
{
int rval;
/* Write Program Command Sequence */
if (CFG_IST(ha, CFG_SBUS_CARD)) {
ql_write_flash_byte(ha, 0x5555, 0xa0);
ql_write_flash_byte(ha, addr, data);
} else {
ql_write_flash_byte(ha, 0x5555, 0xaa);
ql_write_flash_byte(ha, 0x2aaa, 0x55);
ql_write_flash_byte(ha, 0x5555, 0xa0);
ql_write_flash_byte(ha, addr, data);
}
/* Wait for write to complete. */
rval = ql_poll_flash(ha, addr, data);
if (rval != QL_SUCCESS) {
EL(ha, "failed, rval=%xh\n", rval);
}
return (rval);
}
/*
* ql_set_rnid_parameters
* Set RNID parameters.
*
* Input:
* ha: adapter state pointer.
* cmd: User space CT arguments pointer.
* mode: flags.
*/
static void
ql_set_rnid_parameters(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_SET_RNID_REQ tmp_set;
EXT_RNID_DATA *tmp_buf;
int rval = 0;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (DRIVER_SUSPENDED(ha)) {
EL(ha, "failed, LOOP_NOT_READY\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return;
}
cmd->ResponseLen = 0; /* NO response to caller. */
if (cmd->RequestLen != sizeof (EXT_SET_RNID_REQ)) {
/* parameter error */
EL(ha, "failed, RequestLen < EXT_SET_RNID_REQ, Len=%xh\n",
cmd->RequestLen);
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->DetailStatus = EXT_DSTATUS_REQUEST_LEN;
cmd->ResponseLen = 0;
return;
}
rval = ddi_copyin((void*)(uintptr_t)cmd->RequestAdr, &tmp_set,
cmd->RequestLen, mode);
if (rval != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
/* Allocate memory for command. */
tmp_buf = kmem_zalloc(sizeof (EXT_RNID_DATA), KM_SLEEP);
if (tmp_buf == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
rval = ql_get_rnid_params(ha, sizeof (EXT_RNID_DATA),
(caddr_t)tmp_buf);
if (rval != QL_SUCCESS) {
/* error */
EL(ha, "failed, get_rnid_params_mbx=%xh\n", rval);
kmem_free(tmp_buf, sizeof (EXT_RNID_DATA));
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
return;
}
/* Now set the requested params. */
bcopy(tmp_set.IPVersion, tmp_buf->IPVersion, 2);
bcopy(tmp_set.UDPPortNumber, tmp_buf->UDPPortNumber, 2);
bcopy(tmp_set.IPAddress, tmp_buf->IPAddress, 16);
rval = ql_set_rnid_params(ha, sizeof (EXT_RNID_DATA),
(caddr_t)tmp_buf);
if (rval != QL_SUCCESS) {
/* error */
EL(ha, "failed, set_rnid_params_mbx=%xh\n", rval);
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
}
kmem_free(tmp_buf, sizeof (EXT_RNID_DATA));
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_rnid_parameters
* Get RNID parameters.
*
* Input:
* ha: adapter state pointer.
* cmd: User space CT arguments pointer.
* mode: flags.
*/
static void
ql_get_rnid_parameters(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_RNID_DATA *tmp_buf;
uint32_t rval;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (DRIVER_SUSPENDED(ha)) {
EL(ha, "failed, LOOP_NOT_READY\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return;
}
/* Allocate memory for command. */
tmp_buf = kmem_zalloc(sizeof (EXT_RNID_DATA), KM_SLEEP);
if (tmp_buf == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
/* Send command */
rval = ql_get_rnid_params(ha, sizeof (EXT_RNID_DATA),
(caddr_t)tmp_buf);
if (rval != QL_SUCCESS) {
/* error */
EL(ha, "failed, get_rnid_params_mbx=%xh\n", rval);
kmem_free(tmp_buf, sizeof (EXT_RNID_DATA));
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
return;
}
/* Copy the response */
if (ql_send_buffer_data((caddr_t)tmp_buf,
(caddr_t)(uintptr_t)cmd->ResponseAdr,
sizeof (EXT_RNID_DATA), mode) != sizeof (EXT_RNID_DATA)) {
EL(ha, "failed, ddi_copyout\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
} else {
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
cmd->ResponseLen = sizeof (EXT_RNID_DATA);
}
kmem_free(tmp_buf, sizeof (EXT_RNID_DATA));
}
/*
* ql_reset_statistics
* Performs EXT_SC_RST_STATISTICS subcommand. of EXT_CC_SET_DATA.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static int
ql_reset_statistics(ql_adapter_state_t *ha, EXT_IOCTL *cmd)
{
ql_xioctl_t *xp = ha->xioctl;
int rval = 0;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (DRIVER_SUSPENDED(ha)) {
EL(ha, "failed, LOOP_NOT_READY\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return (QL_FUNCTION_SUSPENDED);
}
rval = ql_reset_link_status(ha);
if (rval != QL_SUCCESS) {
EL(ha, "failed, reset_link_status_mbx=%xh\n", rval);
cmd->Status = EXT_STATUS_MAILBOX;
cmd->DetailStatus = rval;
cmd->ResponseLen = 0;
}
TASK_DAEMON_LOCK(ha);
xp->IosRequested = 0;
xp->BytesRequested = 0;
xp->IOInputRequests = 0;
xp->IOOutputRequests = 0;
xp->IOControlRequests = 0;
xp->IOInputMByteCnt = 0;
xp->IOOutputMByteCnt = 0;
xp->IOOutputByteCnt = 0;
xp->IOInputByteCnt = 0;
TASK_DAEMON_UNLOCK(ha);
INTR_LOCK(ha);
xp->ControllerErrorCount = 0;
xp->DeviceErrorCount = 0;
xp->TotalLipResets = 0;
xp->TotalInterrupts = 0;
INTR_UNLOCK(ha);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (rval);
}
/*
* ql_get_statistics
* Performs EXT_SC_GET_STATISTICS subcommand. of EXT_CC_GET_DATA.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_statistics(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_HBA_PORT_STAT ps = {0};
ql_link_stats_t *ls;
int rval;
ql_xioctl_t *xp = ha->xioctl;
int retry = 10;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
while (ha->task_daemon_flags &
(ABORT_ISP_ACTIVE | LOOP_RESYNC_ACTIVE | DRIVER_STALL)) {
ql_delay(ha, 10000000); /* 10 second delay */
retry--;
if (retry == 0) { /* effectively 100 seconds */
EL(ha, "failed, LOOP_NOT_READY\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return;
}
}
/* Allocate memory for command. */
ls = kmem_zalloc(sizeof (ql_link_stats_t), KM_SLEEP);
if (ls == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
/*
* I think these are supposed to be port statistics
* the loop ID or port ID should be in cmd->Instance.
*/
rval = ql_get_status_counts(ha, (uint16_t)
(ha->task_daemon_flags & LOOP_DOWN ? 0xFF : ha->loop_id),
sizeof (ql_link_stats_t), (caddr_t)ls, 0);
if (rval != QL_SUCCESS) {
EL(ha, "failed, get_link_status=%xh, id=%xh\n", rval,
ha->loop_id);
cmd->Status = EXT_STATUS_MAILBOX;
cmd->DetailStatus = rval;
cmd->ResponseLen = 0;
} else {
ps.ControllerErrorCount = xp->ControllerErrorCount;
ps.DeviceErrorCount = xp->DeviceErrorCount;
ps.IoCount = (uint32_t)(xp->IOInputRequests +
xp->IOOutputRequests + xp->IOControlRequests);
ps.MBytesCount = (uint32_t)(xp->IOInputMByteCnt +
xp->IOOutputMByteCnt);
ps.LipResetCount = xp->TotalLipResets;
ps.InterruptCount = xp->TotalInterrupts;
ps.LinkFailureCount = LE_32(ls->link_fail_cnt);
ps.LossOfSyncCount = LE_32(ls->sync_loss_cnt);
ps.LossOfSignalsCount = LE_32(ls->signal_loss_cnt);
ps.PrimitiveSeqProtocolErrorCount = LE_32(ls->prot_err_cnt);
ps.InvalidTransmissionWordCount = LE_32(ls->inv_xmit_cnt);
ps.InvalidCRCCount = LE_32(ls->inv_crc_cnt);
rval = ddi_copyout((void *)&ps,
(void *)(uintptr_t)cmd->ResponseAdr,
sizeof (EXT_HBA_PORT_STAT), mode);
if (rval != 0) {
EL(ha, "failed, ddi_copyout\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
} else {
cmd->ResponseLen = sizeof (EXT_HBA_PORT_STAT);
}
}
kmem_free(ls, sizeof (ql_link_stats_t));
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_statistics_fc
* Performs EXT_SC_GET_FC_STATISTICS subcommand. of EXT_CC_GET_DATA.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_statistics_fc(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_HBA_PORT_STAT ps = {0};
ql_link_stats_t *ls;
int rval;
uint16_t qlnt;
EXT_DEST_ADDR pextdestaddr;
uint8_t *name;
ql_tgt_t *tq = NULL;
int retry = 10;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (ddi_copyin((void *)(uintptr_t)cmd->RequestAdr,
(void *)&pextdestaddr, sizeof (EXT_DEST_ADDR), mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
qlnt = QLNT_PORT;
name = pextdestaddr.DestAddr.WWPN;
QL_PRINT_9(CE_CONT, "(%d): wwpn=%02x%02x%02x%02x%02x%02x%02x%02x\n",
ha->instance, name[0], name[1], name[2], name[3], name[4],
name[5], name[6], name[7]);
tq = ql_find_port(ha, name, qlnt);
if (tq == NULL || !VALID_TARGET_ID(ha, tq->loop_id)) {
EL(ha, "failed, fc_port not found\n");
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
cmd->ResponseLen = 0;
return;
}
while (ha->task_daemon_flags &
(ABORT_ISP_ACTIVE | LOOP_RESYNC_ACTIVE | DRIVER_STALL)) {
ql_delay(ha, 10000000); /* 10 second delay */
retry--;
if (retry == 0) { /* effectively 100 seconds */
EL(ha, "failed, LOOP_NOT_READY\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return;
}
}
/* Allocate memory for command. */
ls = kmem_zalloc(sizeof (ql_link_stats_t), KM_SLEEP);
if (ls == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
rval = ql_get_link_status(ha, tq->loop_id, sizeof (ql_link_stats_t),
(caddr_t)ls, 0);
if (rval != QL_SUCCESS) {
EL(ha, "failed, get_link_status=%xh, d_id=%xh\n", rval,
tq->d_id.b24);
cmd->Status = EXT_STATUS_MAILBOX;
cmd->DetailStatus = rval;
cmd->ResponseLen = 0;
} else {
ps.LinkFailureCount = LE_32(ls->link_fail_cnt);
ps.LossOfSyncCount = LE_32(ls->sync_loss_cnt);
ps.LossOfSignalsCount = LE_32(ls->signal_loss_cnt);
ps.PrimitiveSeqProtocolErrorCount = LE_32(ls->prot_err_cnt);
ps.InvalidTransmissionWordCount = LE_32(ls->inv_xmit_cnt);
ps.InvalidCRCCount = LE_32(ls->inv_crc_cnt);
rval = ddi_copyout((void *)&ps,
(void *)(uintptr_t)cmd->ResponseAdr,
sizeof (EXT_HBA_PORT_STAT), mode);
if (rval != 0) {
EL(ha, "failed, ddi_copyout\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
} else {
cmd->ResponseLen = sizeof (EXT_HBA_PORT_STAT);
}
}
kmem_free(ls, sizeof (ql_link_stats_t));
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_statistics_fc4
* Performs EXT_SC_GET_FC_STATISTICS subcommand. of EXT_CC_GET_DATA.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_statistics_fc4(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint32_t rval;
EXT_HBA_FC4STATISTICS fc4stats = {0};
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
fc4stats.InputRequests = xp->IOInputRequests;
fc4stats.OutputRequests = xp->IOOutputRequests;
fc4stats.ControlRequests = xp->IOControlRequests;
fc4stats.InputMegabytes = xp->IOInputMByteCnt;
fc4stats.OutputMegabytes = xp->IOOutputMByteCnt;
rval = ddi_copyout((void *)&fc4stats,
(void *)(uintptr_t)cmd->ResponseAdr,
sizeof (EXT_HBA_FC4STATISTICS), mode);
if (rval != 0) {
EL(ha, "failed, ddi_copyout\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
} else {
cmd->ResponseLen = sizeof (EXT_HBA_FC4STATISTICS);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_set_led_state
* Performs EXT_SET_BEACON_STATE subcommand of EXT_CC_SET_DATA.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_set_led_state(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_BEACON_CONTROL bstate;
uint32_t rval;
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->RequestLen < sizeof (EXT_BEACON_CONTROL)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_BEACON_CONTROL);
EL(ha, "done - failed, RequestLen < EXT_BEACON_CONTROL,"
" Len=%xh\n", cmd->RequestLen);
cmd->ResponseLen = 0;
return;
}
if (ha->device_id < 0x2300) {
cmd->Status = EXT_STATUS_UNSUPPORTED_SUBCODE;
cmd->DetailStatus = 0;
EL(ha, "done - failed, Invalid function for HBA model\n");
cmd->ResponseLen = 0;
return;
}
rval = ddi_copyin((void*)(uintptr_t)cmd->RequestAdr, &bstate,
cmd->RequestLen, mode);
if (rval != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
EL(ha, "done - failed, ddi_copyin\n");
return;
}
switch (bstate.State) {
case EXT_DEF_GRN_BLINK_OFF: /* turn beacon off */
if (xp->ledstate.BeaconState == BEACON_OFF) {
/* not quite an error -- LED state is already off */
cmd->Status = EXT_STATUS_OK;
EL(ha, "LED off request -- LED is already off\n");
break;
}
xp->ledstate.BeaconState = BEACON_OFF;
xp->ledstate.LEDflags = LED_ALL_OFF;
if ((rval = ql_wrapup_led(ha)) != QL_SUCCESS) {
cmd->Status = EXT_STATUS_MAILBOX;
} else {
cmd->Status = EXT_STATUS_OK;
}
break;
case EXT_DEF_GRN_BLINK_ON: /* turn beacon on */
if (xp->ledstate.BeaconState == BEACON_ON) {
/* not quite an error -- LED state is already on */
cmd->Status = EXT_STATUS_OK;
EL(ha, "LED on request - LED is already on\n");
break;
}
if ((rval = ql_setup_led(ha)) != QL_SUCCESS) {
cmd->Status = EXT_STATUS_MAILBOX;
break;
}
if (CFG_IST(ha, CFG_CTRL_242581)) {
xp->ledstate.LEDflags = LED_YELLOW_24 | LED_AMBER_24;
} else {
xp->ledstate.LEDflags = LED_GREEN;
}
xp->ledstate.BeaconState = BEACON_ON;
cmd->Status = EXT_STATUS_OK;
break;
default:
cmd->Status = EXT_STATUS_ERR;
EL(ha, "failed, unknown state request %xh\n", bstate.State);
break;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_led_state
* Performs EXT_GET_BEACON_STATE subcommand of EXT_CC_GET_DATA.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_led_state(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_BEACON_CONTROL bstate = {0};
uint32_t rval;
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (cmd->ResponseLen < sizeof (EXT_BEACON_CONTROL)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_BEACON_CONTROL);
EL(ha, "done - failed, ResponseLen < EXT_BEACON_CONTROL,"
"Len=%xh\n", cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
if (ha->device_id < 0x2300) {
cmd->Status = EXT_STATUS_UNSUPPORTED_SUBCODE;
cmd->DetailStatus = 0;
EL(ha, "done - failed, Invalid function for HBA model\n");
cmd->ResponseLen = 0;
return;
}
if (ha->task_daemon_flags & ABORT_ISP_ACTIVE) {
cmd->Status = EXT_STATUS_BUSY;
EL(ha, "done - failed, isp abort active\n");
cmd->ResponseLen = 0;
return;
}
/* inform the user of the current beacon state (off or on) */
bstate.State = xp->ledstate.BeaconState;
rval = ddi_copyout((void *)&bstate,
(void *)(uintptr_t)cmd->ResponseAdr,
sizeof (EXT_BEACON_CONTROL), mode);
if (rval != 0) {
EL(ha, "failed, ddi_copyout\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
} else {
cmd->Status = EXT_STATUS_OK;
cmd->ResponseLen = sizeof (EXT_BEACON_CONTROL);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_blink_led
* Determine the next state of the LED and drive it
*
* Input:
* ha: adapter state pointer.
*
* Context:
* Interrupt context.
*/
void
ql_blink_led(ql_adapter_state_t *ha)
{
uint32_t nextstate;
ql_xioctl_t *xp = ha->xioctl;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (xp->ledstate.BeaconState == BEACON_ON) {
/* determine the next led state */
if (CFG_IST(ha, CFG_CTRL_242581)) {
nextstate = (xp->ledstate.LEDflags) &
(~(RD32_IO_REG(ha, gpiod)));
} else {
nextstate = (xp->ledstate.LEDflags) &
(~(RD16_IO_REG(ha, gpiod)));
}
/* turn the led on or off */
ql_drive_led(ha, nextstate);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_drive_led
* drive the led's as determined by LEDflags
*
* Input:
* ha: adapter state pointer.
* LEDflags: LED flags
*
* Context:
* Kernel/Interrupt context.
*/
static void
ql_drive_led(ql_adapter_state_t *ha, uint32_t LEDflags)
{
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (CFG_IST(ha, (CFG_CTRL_2300 | CFG_CTRL_6322))) {
uint16_t gpio_enable, gpio_data;
/* setup to send new data */
gpio_enable = (uint16_t)RD16_IO_REG(ha, gpioe);
gpio_enable = (uint16_t)(gpio_enable | LED_MASK);
WRT16_IO_REG(ha, gpioe, gpio_enable);
/* read current data and clear out old led data */
gpio_data = (uint16_t)RD16_IO_REG(ha, gpiod);
gpio_data = (uint16_t)(gpio_data & ~LED_MASK);
/* set in the new led data. */
gpio_data = (uint16_t)(gpio_data | LEDflags);
/* write out the new led data */
WRT16_IO_REG(ha, gpiod, gpio_data);
} else if (CFG_IST(ha, CFG_CTRL_242581)) {
uint32_t gpio_data;
/* setup to send new data */
gpio_data = RD32_IO_REG(ha, gpiod);
gpio_data |= LED_MASK_UPDATE_24;
WRT32_IO_REG(ha, gpiod, gpio_data);
/* read current data and clear out old led data */
gpio_data = RD32_IO_REG(ha, gpiod);
gpio_data &= ~LED_MASK_COLORS_24;
/* set in the new led data */
gpio_data |= LEDflags;
/* write out the new led data */
WRT32_IO_REG(ha, gpiod, gpio_data);
} else {
EL(ha, "unsupported HBA: %xh", ha->device_id);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_setup_led
* Setup LED for driver control
*
* Input:
* ha: adapter state pointer.
*
* Context:
* Kernel/Interrupt context.
*/
static uint32_t
ql_setup_led(ql_adapter_state_t *ha)
{
uint32_t rval;
ql_mbx_data_t mr;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* decouple the LED control from the fw */
rval = ql_get_firmware_option(ha, &mr);
if (rval != QL_SUCCESS) {
EL(ha, "failed, get_firmware_option=%xh\n", rval);
return (rval);
}
/* set the appropriate options */
mr.mb[1] = (uint16_t)(mr.mb[1] | FO1_DISABLE_GPIO);
/* send it back to the firmware */
rval = ql_set_firmware_option(ha, &mr);
if (rval != QL_SUCCESS) {
EL(ha, "failed, set_firmware_option=%xh\n", rval);
return (rval);
}
/* initally, turn the LED's off */
ql_drive_led(ha, LED_ALL_OFF);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (rval);
}
/*
* ql_wrapup_led
* Return LED control to the firmware
*
* Input:
* ha: adapter state pointer.
*
* Context:
* Kernel/Interrupt context.
*/
static uint32_t
ql_wrapup_led(ql_adapter_state_t *ha)
{
uint32_t rval;
ql_mbx_data_t mr;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Turn all LED's off */
ql_drive_led(ha, LED_ALL_OFF);
if (CFG_IST(ha, CFG_CTRL_242581)) {
uint32_t gpio_data;
/* disable the LED update mask */
gpio_data = RD32_IO_REG(ha, gpiod);
gpio_data &= ~LED_MASK_UPDATE_24;
/* write out the data */
WRT32_IO_REG(ha, gpiod, gpio_data);
}
/* give LED control back to the f/w */
rval = ql_get_firmware_option(ha, &mr);
if (rval != QL_SUCCESS) {
EL(ha, "failed, get_firmware_option=%xh\n", rval);
return (rval);
}
mr.mb[1] = (uint16_t)(mr.mb[1] & ~FO1_DISABLE_GPIO);
rval = ql_set_firmware_option(ha, &mr);
if (rval != QL_SUCCESS) {
EL(ha, "failed, set_firmware_option=%xh\n", rval);
return (rval);
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (rval);
}
/*
* ql_get_port_summary
* Performs EXT_SC_GET_PORT_SUMMARY subcommand. of EXT_CC_GET_DATA.
*
* The EXT_IOCTL->RequestAdr points to a single
* UINT32 which identifies the device type.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_port_summary(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_DEVICEDATA dd = {0};
EXT_DEVICEDATA *uddp;
ql_link_t *link;
ql_tgt_t *tq;
uint32_t rlen, dev_type, index;
int rval = 0;
EXT_DEVICEDATAENTRY *uddep, *ddep;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
ddep = &dd.EntryList[0];
/*
* Get the type of device the requestor is looking for.
*
* We ignore this for now.
*/
rval = ddi_copyin((void *)(uintptr_t)cmd->RequestAdr,
(void *)&dev_type, sizeof (dev_type), mode);
if (rval != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyin\n");
return;
}
/*
* Count the number of entries to be returned. Count devices
* that are offlline, but have been persistently bound.
*/
for (index = 0; index < DEVICE_HEAD_LIST_SIZE; index++) {
for (link = ha->dev[index].first; link != NULL;
link = link->next) {
tq = link->base_address;
if (tq->flags & TQF_INITIATOR_DEVICE ||
!VALID_TARGET_ID(ha, tq->loop_id)) {
continue; /* Skip this one */
}
dd.TotalDevices++;
}
}
/*
* Compute the number of entries that can be returned
* based upon the size of caller's response buffer.
*/
dd.ReturnListEntryCount = 0;
if (dd.TotalDevices == 0) {
rlen = sizeof (EXT_DEVICEDATA) - sizeof (EXT_DEVICEDATAENTRY);
} else {
rlen = (uint32_t)(sizeof (EXT_DEVICEDATA) +
(sizeof (EXT_DEVICEDATAENTRY) * (dd.TotalDevices - 1)));
}
if (rlen > cmd->ResponseLen) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = rlen;
EL(ha, "failed, rlen > ResponseLen, rlen=%d, Len=%d\n",
rlen, cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
cmd->ResponseLen = 0;
uddp = (EXT_DEVICEDATA *)(uintptr_t)cmd->ResponseAdr;
uddep = &uddp->EntryList[0];
for (index = 0; index < DEVICE_HEAD_LIST_SIZE; index++) {
for (link = ha->dev[index].first; link != NULL;
link = link->next) {
tq = link->base_address;
if (tq->flags & TQF_INITIATOR_DEVICE ||
!VALID_TARGET_ID(ha, tq->loop_id)) {
continue; /* Skip this one */
}
bzero((void *)ddep, sizeof (EXT_DEVICEDATAENTRY));
bcopy(tq->node_name, ddep->NodeWWN, 8);
bcopy(tq->port_name, ddep->PortWWN, 8);
ddep->PortID[0] = tq->d_id.b.domain;
ddep->PortID[1] = tq->d_id.b.area;
ddep->PortID[2] = tq->d_id.b.al_pa;
bcopy(tq->port_name,
(caddr_t)&ddep->TargetAddress.Target, 8);
ddep->DeviceFlags = tq->flags;
ddep->LoopID = tq->loop_id;
QL_PRINT_9(CE_CONT, "(%d): Tgt=%lld, loop=%xh, "
"wwnn=%02x%02x%02x%02x%02x%02x%02x%02x, "
"wwpn=%02x%02x%02x%02x%02x%02x%02x%02x\n",
ha->instance, ddep->TargetAddress.Target,
ddep->LoopID, ddep->NodeWWN[0], ddep->NodeWWN[1],
ddep->NodeWWN[2], ddep->NodeWWN[3],
ddep->NodeWWN[4], ddep->NodeWWN[5],
ddep->NodeWWN[6], ddep->NodeWWN[7],
ddep->PortWWN[0], ddep->PortWWN[1],
ddep->PortWWN[2], ddep->PortWWN[3],
ddep->PortWWN[4], ddep->PortWWN[5],
ddep->PortWWN[6], ddep->PortWWN[7]);
rval = ddi_copyout((void *)ddep, (void *)uddep,
sizeof (EXT_DEVICEDATAENTRY), mode);
if (rval != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
break;
}
dd.ReturnListEntryCount++;
uddep++;
cmd->ResponseLen += (uint32_t)
sizeof (EXT_DEVICEDATAENTRY);
}
}
rval = ddi_copyout((void *)&dd, (void *)uddp,
sizeof (EXT_DEVICEDATA) - sizeof (EXT_DEVICEDATAENTRY), mode);
if (rval != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout-2\n");
} else {
cmd->ResponseLen += (uint32_t)sizeof (EXT_DEVICEDATAENTRY);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_get_target_id
* Performs EXT_SC_GET_TARGET_ID subcommand. of EXT_CC_GET_DATA.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_target_id(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint32_t rval;
uint16_t qlnt;
EXT_DEST_ADDR extdestaddr = {0};
uint8_t *name;
uint8_t wwpn[EXT_DEF_WWN_NAME_SIZE];
ql_tgt_t *tq;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (ddi_copyin((void *)(uintptr_t)cmd->RequestAdr,
(void*)wwpn, sizeof (EXT_DEST_ADDR), mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
qlnt = QLNT_PORT;
name = wwpn;
QL_PRINT_9(CE_CONT, "(%d): wwpn=%02x%02x%02x%02x%02x%02x%02x%02x\n",
ha->instance, name[0], name[1], name[2], name[3], name[4],
name[5], name[6], name[7]);
tq = ql_find_port(ha, name, qlnt);
if (tq == NULL || !VALID_TARGET_ID(ha, tq->loop_id)) {
EL(ha, "failed, fc_port not found\n");
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
cmd->ResponseLen = 0;
return;
}
bcopy(tq->port_name, (caddr_t)&extdestaddr.DestAddr.ScsiAddr.Target, 8);
rval = ddi_copyout((void *)&extdestaddr,
(void *)(uintptr_t)cmd->ResponseAdr, sizeof (EXT_DEST_ADDR), mode);
if (rval != 0) {
EL(ha, "failed, ddi_copyout\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_setup_fcache
* Populates selected flash sections into the cache
*
* Input:
* ha = adapter state pointer.
*
* Returns:
* ql local function return status code.
*
* Context:
* Kernel context.
*
* Note:
* Driver must be in stalled state prior to entering or
* add code to this function prior to calling ql_setup_flash()
*/
int
ql_setup_fcache(ql_adapter_state_t *ha)
{
int rval;
uint32_t freadpos = 0;
uint32_t fw_done = 0;
ql_fcache_t *head = NULL;
ql_fcache_t *tail = NULL;
ql_fcache_t *ftmp;
QL_PRINT_3(CE_CONT, "(%d): started\n", ha->instance);
CACHE_LOCK(ha);
/* If we already have populated it, rtn */
if (ha->fcache != NULL) {
CACHE_UNLOCK(ha);
EL(ha, "buffer already populated\n");
return (QL_SUCCESS);
}
ql_flash_nvram_defaults(ha);
if ((rval = ql_setup_flash(ha)) != QL_SUCCESS) {
CACHE_UNLOCK(ha);
EL(ha, "unable to setup flash; rval=%xh\n", rval);
return (rval);
}
while (freadpos != 0xffffffff) {
/* Allocate & populate this node */
if ((ftmp = ql_setup_fnode(ha)) == NULL) {
EL(ha, "node alloc failed\n");
rval = QL_FUNCTION_FAILED;
break;
}
/* link in the new node */
if (head == NULL) {
head = tail = ftmp;
} else {
tail->next = ftmp;
tail = ftmp;
}
/* Do the firmware node first for 24xx/25xx's */
if (fw_done == 0) {
if (CFG_IST(ha, CFG_CTRL_242581)) {
freadpos = ha->flash_fw_addr << 2;
}
fw_done = 1;
}
if ((rval = ql_dump_fcode(ha, ftmp->buf, FBUFSIZE,
freadpos)) != QL_SUCCESS) {
EL(ha, "failed, 24xx dump_fcode"
" pos=%xh rval=%xh\n", freadpos, rval);
rval = QL_FUNCTION_FAILED;
break;
}
/* checkout the pci data / format */
if (ql_check_pci(ha, ftmp, &freadpos)) {
EL(ha, "flash header incorrect\n");
rval = QL_FUNCTION_FAILED;
break;
}
}
if (rval != QL_SUCCESS) {
/* release all resources we have */
ftmp = head;
while (ftmp != NULL) {
tail = ftmp->next;
kmem_free(ftmp->buf, FBUFSIZE);
kmem_free(ftmp, sizeof (ql_fcache_t));
ftmp = tail;
}
EL(ha, "failed, done\n");
} else {
ha->fcache = head;
QL_PRINT_3(CE_CONT, "(%d): done\n", ha->instance);
}
CACHE_UNLOCK(ha);
return (rval);
}
/*
* ql_update_fcache
* re-populates updated flash into the fcache. If
* fcache does not exist (e.g., flash was empty/invalid on
* boot), this routine will create and the populate it.
*
* Input:
* ha = adapter state pointer.
* *bpf = Pointer to flash buffer.
* bsize = Size of flash buffer.
*
* Returns:
*
* Context:
* Kernel context.
*/
void
ql_update_fcache(ql_adapter_state_t *ha, uint8_t *bfp, uint32_t bsize)
{
int rval = QL_SUCCESS;
uint32_t freadpos = 0;
uint32_t fw_done = 0;
ql_fcache_t *head = NULL;
ql_fcache_t *tail = NULL;
ql_fcache_t *ftmp;
QL_PRINT_3(CE_CONT, "(%d): started\n", ha->instance);
while (freadpos != 0xffffffff) {
/* Allocate & populate this node */
if ((ftmp = ql_setup_fnode(ha)) == NULL) {
EL(ha, "node alloc failed\n");
rval = QL_FUNCTION_FAILED;
break;
}
/* link in the new node */
if (head == NULL) {
head = tail = ftmp;
} else {
tail->next = ftmp;
tail = ftmp;
}
/* Do the firmware node first for 24xx's */
if (fw_done == 0) {
if (CFG_IST(ha, CFG_CTRL_242581)) {
freadpos = ha->flash_fw_addr << 2;
}
fw_done = 1;
}
/* read in first FBUFSIZE bytes of this flash section */
if (freadpos+FBUFSIZE > bsize) {
EL(ha, "passed buffer too small; fr=%xh, bsize=%xh\n",
freadpos, bsize);
rval = QL_FUNCTION_FAILED;
break;
}
bcopy(bfp+freadpos, ftmp->buf, FBUFSIZE);
/* checkout the pci data / format */
if (ql_check_pci(ha, ftmp, &freadpos)) {
EL(ha, "flash header incorrect\n");
rval = QL_FUNCTION_FAILED;
break;
}
}
if (rval != QL_SUCCESS) {
/*
* release all resources we have
*/
ql_fcache_rel(head);
EL(ha, "failed, done\n");
} else {
/*
* Release previous fcache resources and update with new
*/
CACHE_LOCK(ha);
ql_fcache_rel(ha->fcache);
ha->fcache = head;
CACHE_UNLOCK(ha);
QL_PRINT_3(CE_CONT, "(%d): done\n", ha->instance);
}
}
/*
* ql_setup_fnode
* Allocates fcache node
*
* Input:
* ha = adapter state pointer.
* node = point to allocated fcache node (NULL = failed)
*
* Returns:
*
* Context:
* Kernel context.
*
* Note:
* Driver must be in stalled state prior to entering or
* add code to this function prior to calling ql_setup_flash()
*/
static ql_fcache_t *
ql_setup_fnode(ql_adapter_state_t *ha)
{
ql_fcache_t *fnode = NULL;
if ((fnode = (ql_fcache_t *)(kmem_zalloc(sizeof (ql_fcache_t),
KM_SLEEP))) == NULL) {
EL(ha, "fnode alloc failed\n");
fnode = NULL;
} else if ((fnode->buf = (uint8_t *)(kmem_zalloc(FBUFSIZE,
KM_SLEEP))) == NULL) {
EL(ha, "buf alloc failed\n");
kmem_free(fnode, sizeof (ql_fcache_t));
fnode = NULL;
} else {
fnode->buflen = FBUFSIZE;
}
return (fnode);
}
/*
* ql_fcache_rel
* Releases the fcache resources
*
* Input:
* ha = adapter state pointer.
* head = Pointer to fcache linked list
*
* Returns:
*
* Context:
* Kernel context.
*
*/
void
ql_fcache_rel(ql_fcache_t *head)
{
ql_fcache_t *ftmp = head;
ql_fcache_t *tail;
/* release all resources we have */
while (ftmp != NULL) {
tail = ftmp->next;
kmem_free(ftmp->buf, FBUFSIZE);
kmem_free(ftmp, sizeof (ql_fcache_t));
ftmp = tail;
}
}
/*
* ql_update_flash_caches
* Updates driver flash caches
*
* Input:
* ha: adapter state pointer.
*
* Context:
* Kernel context.
*/
static void
ql_update_flash_caches(ql_adapter_state_t *ha)
{
uint32_t len;
ql_link_t *link;
ql_adapter_state_t *ha2;
QL_PRINT_3(CE_CONT, "(%d): started\n", ha->instance);
/* Get base path length. */
for (len = (uint32_t)strlen(ha->devpath); len; len--) {
if (ha->devpath[len] == ',' ||
ha->devpath[len] == '@') {
break;
}
}
/* Reset fcache on all adapter instances. */
for (link = ql_hba.first; link != NULL; link = link->next) {
ha2 = link->base_address;
if (strncmp(ha->devpath, ha2->devpath, len) != 0) {
continue;
}
CACHE_LOCK(ha2);
ql_fcache_rel(ha2->fcache);
ha2->fcache = NULL;
if (CFG_IST(ha, CFG_CTRL_242581)) {
if (ha2->vcache != NULL) {
kmem_free(ha2->vcache, QL_24XX_VPD_SIZE);
ha2->vcache = NULL;
}
}
CACHE_UNLOCK(ha2);
(void) ql_setup_fcache(ha2);
}
QL_PRINT_3(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_fbuf
* Search the fcache list for the type specified
*
* Input:
* fptr = Pointer to fcache linked list
* ftype = Type of image to be returned.
*
* Returns:
* Pointer to ql_fcache_t.
* NULL means not found.
*
* Context:
* Kernel context.
*
*
*/
ql_fcache_t *
ql_get_fbuf(ql_fcache_t *fptr, uint32_t ftype)
{
while (fptr != NULL) {
/* does this image meet criteria? */
if (ftype & fptr->type) {
break;
}
fptr = fptr->next;
}
return (fptr);
}
/*
* ql_check_pci
*
* checks the passed buffer for a valid pci signature and
* expected (and in range) pci length values.
*
* For firmware type, a pci header is added since the image in
* the flash does not have one (!!!).
*
* On successful pci check, nextpos adjusted to next pci header.
*
* Returns:
* -1 --> last pci image
* 0 --> pci header valid
* 1 --> pci header invalid.
*
* Context:
* Kernel context.
*/
static int
ql_check_pci(ql_adapter_state_t *ha, ql_fcache_t *fcache, uint32_t *nextpos)
{
pci_header_t *pcih;
pci_data_t *pcid;
uint32_t doff;
uint8_t *pciinfo;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (fcache != NULL) {
pciinfo = fcache->buf;
} else {
EL(ha, "failed, null fcache ptr passed\n");
return (1);
}
if (pciinfo == NULL) {
EL(ha, "failed, null pciinfo ptr passed\n");
return (1);
}
if (CFG_IST(ha, CFG_SBUS_CARD)) {
caddr_t bufp;
uint_t len;
if (pciinfo[0] != SBUS_CODE_FCODE) {
EL(ha, "failed, unable to detect sbus fcode\n");
return (1);
}
fcache->type = FTYPE_FCODE;
/*LINTED [Solaris DDI_DEV_T_ANY Lint error]*/
if (ddi_getlongprop(DDI_DEV_T_ANY, ha->dip,
PROP_LEN_AND_VAL_ALLOC | DDI_PROP_DONTPASS |
DDI_PROP_CANSLEEP, "version", (caddr_t)&bufp,
(int *)&len) == DDI_PROP_SUCCESS) {
(void) snprintf(fcache->verstr,
FCHBA_OPTION_ROM_VERSION_LEN, "%s", bufp);
kmem_free(bufp, len);
}
*nextpos = 0xffffffff;
QL_PRINT_9(CE_CONT, "(%d): CFG_SBUS_CARD, done\n",
ha->instance);
return (0);
}
if (*nextpos == ha->flash_fw_addr << 2) {
pci_header_t fwh = {0};
pci_data_t fwd = {0};
uint8_t *buf, *bufp;
/*
* Build a pci header for the firmware module
*/
if ((buf = (uint8_t *)(kmem_zalloc(FBUFSIZE, KM_SLEEP))) ==
NULL) {
EL(ha, "failed, unable to allocate buffer\n");
return (1);
}
fwh.signature[0] = PCI_HEADER0;
fwh.signature[1] = PCI_HEADER1;
fwh.dataoffset[0] = LSB(sizeof (pci_header_t));
fwh.dataoffset[1] = MSB(sizeof (pci_header_t));
fwd.signature[0] = 'P';
fwd.signature[1] = 'C';
fwd.signature[2] = 'I';
fwd.signature[3] = 'R';
fwd.codetype = PCI_CODE_FW;
fwd.pcidatalen[0] = LSB(sizeof (pci_data_t));
fwd.pcidatalen[1] = MSB(sizeof (pci_data_t));
bufp = buf;
bcopy(&fwh, bufp, sizeof (pci_header_t));
bufp += sizeof (pci_header_t);
bcopy(&fwd, bufp, sizeof (pci_data_t));
bufp += sizeof (pci_data_t);
bcopy(fcache->buf, bufp, (FBUFSIZE - sizeof (pci_header_t) -
sizeof (pci_data_t)));
bcopy(buf, fcache->buf, FBUFSIZE);
fcache->type = FTYPE_FW;
(void) snprintf(fcache->verstr, FCHBA_OPTION_ROM_VERSION_LEN,
"%d.%02d.%02d", fcache->buf[19], fcache->buf[23],
fcache->buf[27]);
*nextpos = CFG_IST(ha, CFG_CTRL_81XX) ? 0x200000 : 0;
kmem_free(buf, FBUFSIZE);
QL_PRINT_9(CE_CONT, "(%d): FTYPE_FW, done\n", ha->instance);
return (0);
}
/* get to the pci header image length */
pcih = (pci_header_t *)pciinfo;
doff = pcih->dataoffset[0] | (pcih->dataoffset[1] << 8);
/* some header section sanity check */
if (pcih->signature[0] != PCI_HEADER0 ||
pcih->signature[1] != PCI_HEADER1 || doff > 50) {
EL(ha, "buffer format error: s0=%xh, s1=%xh, off=%xh\n",
pcih->signature[0], pcih->signature[1], doff);
return (1);
}
pcid = (pci_data_t *)(pciinfo + doff);
/* a slight sanity data section check */
if (pcid->signature[0] != 'P' || pcid->signature[1] != 'C' ||
pcid->signature[2] != 'I' || pcid->signature[3] != 'R') {
EL(ha, "failed, data sig mismatch!\n");
return (1);
}
if (pcid->indicator == PCI_IND_LAST_IMAGE) {
EL(ha, "last image\n");
if (CFG_IST(ha, CFG_CTRL_242581)) {
ql_flash_layout_table(ha, *nextpos +
(pcid->imagelength[0] | (pcid->imagelength[1] <<
8)) * PCI_SECTOR_SIZE);
ql_24xx_flash_desc(ha);
}
*nextpos = 0xffffffff;
} else {
/* adjust the next flash read start position */
*nextpos += (pcid->imagelength[0] |
(pcid->imagelength[1] << 8)) * PCI_SECTOR_SIZE;
}
switch (pcid->codetype) {
case PCI_CODE_X86PC:
fcache->type = FTYPE_BIOS;
break;
case PCI_CODE_FCODE:
fcache->type = FTYPE_FCODE;
break;
case PCI_CODE_EFI:
fcache->type = FTYPE_EFI;
break;
case PCI_CODE_HPPA:
fcache->type = FTYPE_HPPA;
break;
default:
fcache->type = FTYPE_UNKNOWN;
break;
}
(void) snprintf(fcache->verstr, FCHBA_OPTION_ROM_VERSION_LEN,
"%d.%d", pcid->revisionlevel[1], pcid->revisionlevel[0]);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (0);
}
/*
* ql_flash_layout_table
* Obtains flash addresses from table
*
* Input:
* ha: adapter state pointer.
* flt_paddr: flash layout pointer address.
*
* Context:
* Kernel context.
*/
static void
ql_flash_layout_table(ql_adapter_state_t *ha, uint32_t flt_paddr)
{
ql_flt_ptr_t *fptr;
ql_flt_hdr_t *fhdr;
ql_flt_region_t *frgn;
uint8_t *bp;
int rval;
uint32_t len, faddr, cnt;
uint16_t chksum, w16;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Process flash layout table header */
if ((bp = kmem_zalloc(FLASH_LAYOUT_TABLE_SIZE, KM_SLEEP)) == NULL) {
EL(ha, "kmem_zalloc=null\n");
return;
}
/* Process pointer to flash layout table */
if ((rval = ql_dump_fcode(ha, bp, sizeof (ql_flt_ptr_t), flt_paddr)) !=
QL_SUCCESS) {
EL(ha, "fptr dump_flash pos=%xh, status=%xh\n", flt_paddr,
rval);
kmem_free(bp, FLASH_LAYOUT_TABLE_SIZE);
return;
}
fptr = (ql_flt_ptr_t *)bp;
/* Verify pointer to flash layout table. */
for (chksum = 0, cnt = 0; cnt < sizeof (ql_flt_ptr_t); cnt += 2) {
w16 = (uint16_t)CHAR_TO_SHORT(bp[cnt], bp[cnt + 1]);
chksum += w16;
}
if (chksum != 0 || fptr->sig[0] != 'Q' || fptr->sig[1] != 'F' ||
fptr->sig[2] != 'L' || fptr->sig[3] != 'T') {
EL(ha, "ptr chksum=%xh, sig=%c%c%c%c\n", chksum, fptr->sig[0],
fptr->sig[1], fptr->sig[2], fptr->sig[3]);
kmem_free(bp, FLASH_LAYOUT_TABLE_SIZE);
return;
}
faddr = CHAR_TO_LONG(fptr->addr[0], fptr->addr[1], fptr->addr[2],
fptr->addr[3]);
/* Process flash layout table. */
if ((rval = ql_dump_fcode(ha, bp, FLASH_LAYOUT_TABLE_SIZE, faddr)) !=
QL_SUCCESS) {
EL(ha, "fhdr dump_flash pos=%xh, status=%xh\n", faddr, rval);
kmem_free(bp, FLASH_LAYOUT_TABLE_SIZE);
return;
}
fhdr = (ql_flt_hdr_t *)bp;
/* Verify flash layout table. */
len = (uint16_t)(CHAR_TO_SHORT(fhdr->len[0], fhdr->len[1]) +
sizeof (ql_flt_hdr_t));
if (len > FLASH_LAYOUT_TABLE_SIZE) {
chksum = 0xffff;
} else {
for (chksum = 0, cnt = 0; cnt < len; cnt += 2) {
w16 = (uint16_t)CHAR_TO_SHORT(bp[cnt], bp[cnt + 1]);
chksum += w16;
}
}
w16 = CHAR_TO_SHORT(fhdr->version[0], fhdr->version[1]);
if (chksum != 0 || w16 != 1) {
EL(ha, "table chksum=%xh, version=%d\n", chksum, w16);
kmem_free(bp, FLASH_LAYOUT_TABLE_SIZE);
return;
}
/* Process flash layout table regions */
for (frgn = (ql_flt_region_t *)(bp + sizeof (ql_flt_hdr_t));
(caddr_t)frgn < (caddr_t)(bp + FLASH_LAYOUT_TABLE_SIZE); frgn++) {
faddr = CHAR_TO_LONG(frgn->beg_addr[0], frgn->beg_addr[1],
frgn->beg_addr[2], frgn->beg_addr[3]);
faddr >>= 2;
switch (frgn->region) {
case FLASH_FW_REGION:
ha->flash_fw_addr = faddr;
QL_PRINT_9(CE_CONT, "(%d): flash_fw_addr=%xh\n",
ha->instance, faddr);
break;
case FLASH_GOLDEN_FW_REGION:
ha->flash_golden_fw_addr = faddr;
QL_PRINT_9(CE_CONT, "(%d): flash_golden_fw_addr=%xh\n",
ha->instance, faddr);
break;
case FLASH_VPD_0_REGION:
if (!(ha->flags & FUNCTION_1)) {
ha->flash_vpd_addr = faddr;
QL_PRINT_9(CE_CONT, "(%d): flash_vpd_addr=%xh"
"\n", ha->instance, faddr);
}
break;
case FLASH_NVRAM_0_REGION:
if (!(ha->flags & FUNCTION_1)) {
ha->flash_nvram_addr = faddr;
QL_PRINT_9(CE_CONT, "(%d): flash_nvram_addr="
"%xh\n", ha->instance, faddr);
}
break;
case FLASH_VPD_1_REGION:
if (ha->flags & FUNCTION_1) {
ha->flash_vpd_addr = faddr;
QL_PRINT_9(CE_CONT, "(%d): flash_vpd_addr=%xh"
"\n", ha->instance, faddr);
}
break;
case FLASH_NVRAM_1_REGION:
if (ha->flags & FUNCTION_1) {
ha->flash_nvram_addr = faddr;
QL_PRINT_9(CE_CONT, "(%d): flash_nvram_addr="
"%xh\n", ha->instance, faddr);
}
break;
case FLASH_DESC_TABLE_REGION:
ha->flash_desc_addr = faddr;
QL_PRINT_9(CE_CONT, "(%d): flash_desc_addr=%xh\n",
ha->instance, faddr);
break;
case FLASH_ERROR_LOG_0_REGION:
if (!(ha->flags & FUNCTION_1)) {
ha->flash_errlog_start = faddr;
QL_PRINT_9(CE_CONT, "(%d): flash_errlog_addr="
"%xh\n", ha->instance, faddr);
}
break;
case FLASH_ERROR_LOG_1_REGION:
if (ha->flags & FUNCTION_1) {
ha->flash_errlog_start = faddr;
QL_PRINT_9(CE_CONT, "(%d): flash_errlog_addr="
"%xh\n", ha->instance, faddr);
}
break;
default:
break;
}
}
kmem_free(bp, FLASH_LAYOUT_TABLE_SIZE);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_flash_nvram_defaults
* Flash default addresses.
*
* Input:
* ha: adapter state pointer.
*
* Returns:
* ql local function return status code.
*
* Context:
* Kernel context.
*/
static void
ql_flash_nvram_defaults(ql_adapter_state_t *ha)
{
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (ha->flags & FUNCTION_1) {
if (CFG_IST(ha, CFG_CTRL_2300)) {
ha->flash_nvram_addr = NVRAM_2300_FUNC1_ADDR;
ha->flash_fw_addr = FLASH_2300_FIRMWARE_ADDR;
} else if (CFG_IST(ha, CFG_CTRL_2422)) {
ha->flash_data_addr = FLASH_24_25_DATA_ADDR;
ha->flash_nvram_addr = NVRAM_2400_FUNC1_ADDR;
ha->flash_vpd_addr = VPD_2400_FUNC1_ADDR;
ha->flash_errlog_start = FLASH_2400_ERRLOG_START_ADDR_1;
ha->flash_desc_addr = FLASH_2400_DESCRIPTOR_TABLE;
ha->flash_fw_addr = FLASH_2400_FIRMWARE_ADDR;
} else if (CFG_IST(ha, CFG_CTRL_25XX)) {
ha->flash_data_addr = FLASH_24_25_DATA_ADDR;
ha->flash_nvram_addr = NVRAM_2500_FUNC1_ADDR;
ha->flash_vpd_addr = VPD_2500_FUNC1_ADDR;
ha->flash_errlog_start = FLASH_2500_ERRLOG_START_ADDR_1;
ha->flash_desc_addr = FLASH_2500_DESCRIPTOR_TABLE;
ha->flash_fw_addr = FLASH_2500_FIRMWARE_ADDR;
} else if (CFG_IST(ha, CFG_CTRL_81XX)) {
ha->flash_data_addr = FLASH_8100_DATA_ADDR;
ha->flash_nvram_addr = NVRAM_8100_FUNC1_ADDR;
ha->flash_vpd_addr = VPD_8100_FUNC1_ADDR;
ha->flash_errlog_start = FLASH_8100_ERRLOG_START_ADDR_1;
ha->flash_desc_addr = FLASH_8100_DESCRIPTOR_TABLE;
ha->flash_fw_addr = FLASH_8100_FIRMWARE_ADDR;
}
} else {
if (CFG_IST(ha, CFG_CTRL_2200)) {
ha->flash_nvram_addr = NVRAM_2200_FUNC0_ADDR;
ha->flash_fw_addr = FLASH_2200_FIRMWARE_ADDR;
} else if (CFG_IST(ha, CFG_CTRL_2300)) {
ha->flash_nvram_addr = NVRAM_2300_FUNC0_ADDR;
ha->flash_fw_addr = FLASH_2300_FIRMWARE_ADDR;
} else if (CFG_IST(ha, CFG_CTRL_2422)) {
ha->flash_data_addr = FLASH_24_25_DATA_ADDR;
ha->flash_nvram_addr = NVRAM_2400_FUNC0_ADDR;
ha->flash_vpd_addr = VPD_2400_FUNC0_ADDR;
ha->flash_errlog_start = FLASH_2400_ERRLOG_START_ADDR_0;
ha->flash_desc_addr = FLASH_2400_DESCRIPTOR_TABLE;
ha->flash_fw_addr = FLASH_2400_FIRMWARE_ADDR;
} else if (CFG_IST(ha, CFG_CTRL_25XX)) {
ha->flash_data_addr = FLASH_24_25_DATA_ADDR;
ha->flash_nvram_addr = NVRAM_2500_FUNC0_ADDR;
ha->flash_vpd_addr = VPD_2500_FUNC0_ADDR;
ha->flash_errlog_start = FLASH_2500_ERRLOG_START_ADDR_0;
ha->flash_desc_addr = FLASH_2500_DESCRIPTOR_TABLE;
ha->flash_fw_addr = FLASH_2500_FIRMWARE_ADDR;
} else if (CFG_IST(ha, CFG_CTRL_81XX)) {
ha->flash_data_addr = FLASH_8100_DATA_ADDR;
ha->flash_nvram_addr = NVRAM_8100_FUNC0_ADDR;
ha->flash_vpd_addr = VPD_8100_FUNC0_ADDR;
ha->flash_errlog_start = FLASH_8100_ERRLOG_START_ADDR_0;
ha->flash_desc_addr = FLASH_8100_DESCRIPTOR_TABLE;
ha->flash_fw_addr = FLASH_8100_FIRMWARE_ADDR;
}
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_sfp
* Returns sfp data to sdmapi caller
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_get_sfp(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if ((CFG_IST(ha, CFG_CTRL_242581)) == 0) {
cmd->Status = EXT_STATUS_INVALID_REQUEST;
EL(ha, "failed, invalid request for HBA\n");
return;
}
if (cmd->ResponseLen < QL_24XX_SFP_SIZE) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = QL_24XX_SFP_SIZE;
EL(ha, "failed, ResponseLen < SFP len, len passed=%xh\n",
cmd->ResponseLen);
return;
}
/* Dump SFP data in user buffer */
if ((ql_dump_sfp(ha, (void *)(uintptr_t)(cmd->ResponseAdr),
mode)) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
EL(ha, "failed, copy error\n");
} else {
cmd->Status = EXT_STATUS_OK;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_dump_sfp
* Dumps SFP.
*
* Input:
* ha: adapter state pointer.
* bp: buffer address.
* mode: flags
*
* Returns:
*
* Context:
* Kernel context.
*/
static int
ql_dump_sfp(ql_adapter_state_t *ha, void *bp, int mode)
{
dma_mem_t mem;
uint32_t cnt;
int rval2, rval = 0;
uint32_t dxfer;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/* Get memory for SFP. */
if ((rval2 = ql_get_dma_mem(ha, &mem, 64, LITTLE_ENDIAN_DMA,
QL_DMA_DATA_ALIGN)) != QL_SUCCESS) {
EL(ha, "failed, ql_get_dma_mem=%xh\n", rval2);
return (ENOMEM);
}
for (cnt = 0; cnt < QL_24XX_SFP_SIZE; cnt += mem.size) {
rval2 = ql_read_sfp(ha, &mem,
(uint16_t)(cnt < 256 ? 0xA0 : 0xA2),
(uint16_t)(cnt & 0xff));
if (rval2 != QL_SUCCESS) {
EL(ha, "failed, read_sfp=%xh\n", rval2);
rval = EFAULT;
break;
}
/* copy the data back */
if ((dxfer = ql_send_buffer_data(mem.bp, bp, mem.size,
mode)) != mem.size) {
/* ddi copy error */
EL(ha, "failed, ddi copy; byte cnt = %xh", dxfer);
rval = EFAULT;
break;
}
/* adjust the buffer pointer */
bp = (caddr_t)bp + mem.size;
}
ql_free_phys(ha, &mem);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (rval);
}
/*
* ql_port_param
* Retrieves or sets the firmware port speed settings
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*
*/
static void
ql_port_param(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint8_t *name;
ql_tgt_t *tq;
EXT_PORT_PARAM port_param = {0};
uint32_t rval = QL_SUCCESS;
uint32_t idma_rate;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (CFG_IST(ha, CFG_CTRL_242581) == 0) {
EL(ha, "invalid request for this HBA\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
return;
}
if (LOOP_NOT_READY(ha)) {
EL(ha, "failed, loop not ready\n");
cmd->Status = EXT_STATUS_DEVICE_OFFLINE;
cmd->ResponseLen = 0;
return;
}
if (ddi_copyin((void *)(uintptr_t)cmd->RequestAdr,
(void*)&port_param, sizeof (EXT_PORT_PARAM), mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
if (port_param.FCScsiAddr.DestType != EXT_DEF_DESTTYPE_WWPN) {
EL(ha, "Unsupported dest lookup type: %xh\n",
port_param.FCScsiAddr.DestType);
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
cmd->ResponseLen = 0;
return;
}
name = port_param.FCScsiAddr.DestAddr.WWPN;
QL_PRINT_9(CE_CONT, "(%d): wwpn=%02x%02x%02x%02x%02x%02x%02x%02x\n",
ha->instance, name[0], name[1], name[2], name[3], name[4],
name[5], name[6], name[7]);
tq = ql_find_port(ha, name, (uint16_t)QLNT_PORT);
if (tq == NULL || !VALID_TARGET_ID(ha, tq->loop_id)) {
EL(ha, "failed, fc_port not found\n");
cmd->Status = EXT_STATUS_DEV_NOT_FOUND;
cmd->ResponseLen = 0;
return;
}
cmd->Status = EXT_STATUS_OK;
cmd->DetailStatus = EXT_STATUS_OK;
switch (port_param.Mode) {
case EXT_IIDMA_MODE_GET:
/*
* Report the firmware's port rate for the wwpn
*/
rval = ql_iidma_rate(ha, tq->loop_id, &idma_rate,
port_param.Mode);
if (rval != QL_SUCCESS) {
EL(ha, "iidma get failed: %xh\n", rval);
cmd->Status = EXT_STATUS_MAILBOX;
cmd->DetailStatus = rval;
cmd->ResponseLen = 0;
} else {
switch (idma_rate) {
case IIDMA_RATE_1GB:
port_param.Speed =
EXT_DEF_PORTSPEED_1GBIT;
break;
case IIDMA_RATE_2GB:
port_param.Speed =
EXT_DEF_PORTSPEED_2GBIT;
break;
case IIDMA_RATE_4GB:
port_param.Speed =
EXT_DEF_PORTSPEED_4GBIT;
break;
case IIDMA_RATE_8GB:
port_param.Speed =
EXT_DEF_PORTSPEED_8GBIT;
break;
case IIDMA_RATE_10GB:
port_param.Speed =
EXT_DEF_PORTSPEED_10GBIT;
break;
default:
port_param.Speed =
EXT_DEF_PORTSPEED_UNKNOWN;
EL(ha, "failed, Port speed rate=%xh\n",
idma_rate);
break;
}
/* Copy back the data */
rval = ddi_copyout((void *)&port_param,
(void *)(uintptr_t)cmd->ResponseAdr,
sizeof (EXT_PORT_PARAM), mode);
if (rval != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = (uint32_t)
sizeof (EXT_PORT_PARAM);
}
}
break;
case EXT_IIDMA_MODE_SET:
/*
* Set the firmware's port rate for the wwpn
*/
switch (port_param.Speed) {
case EXT_DEF_PORTSPEED_1GBIT:
idma_rate = IIDMA_RATE_1GB;
break;
case EXT_DEF_PORTSPEED_2GBIT:
idma_rate = IIDMA_RATE_2GB;
break;
case EXT_DEF_PORTSPEED_4GBIT:
idma_rate = IIDMA_RATE_4GB;
break;
case EXT_DEF_PORTSPEED_8GBIT:
idma_rate = IIDMA_RATE_8GB;
break;
case EXT_DEF_PORTSPEED_10GBIT:
port_param.Speed = IIDMA_RATE_10GB;
break;
default:
EL(ha, "invalid set iidma rate: %x\n",
port_param.Speed);
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->ResponseLen = 0;
rval = QL_PARAMETER_ERROR;
break;
}
if (rval == QL_SUCCESS) {
rval = ql_iidma_rate(ha, tq->loop_id, &idma_rate,
port_param.Mode);
if (rval != QL_SUCCESS) {
EL(ha, "iidma set failed: %xh\n", rval);
cmd->Status = EXT_STATUS_MAILBOX;
cmd->DetailStatus = rval;
cmd->ResponseLen = 0;
}
}
break;
default:
EL(ha, "invalid mode specified: %x\n", port_param.Mode);
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->ResponseLen = 0;
cmd->DetailStatus = 0;
break;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_fwexttrace
* Dumps f/w extended trace buffer
*
* Input:
* ha: adapter state pointer.
* bp: buffer address.
* mode: flags
*
* Returns:
*
* Context:
* Kernel context.
*/
/* ARGSUSED */
static void
ql_get_fwexttrace(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
int rval;
caddr_t payload;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (CFG_IST(ha, CFG_CTRL_242581) == 0) {
EL(ha, "invalid request for this HBA\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
return;
}
if ((CFG_IST(ha, CFG_ENABLE_FWEXTTRACE) == 0) ||
(ha->fwexttracebuf.bp == NULL)) {
EL(ha, "f/w extended trace is not enabled\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
return;
}
if (cmd->ResponseLen < FWEXTSIZE) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = FWEXTSIZE;
EL(ha, "failed, ResponseLen (%xh) < %xh (FWEXTSIZE)\n",
cmd->ResponseLen, FWEXTSIZE);
cmd->ResponseLen = 0;
return;
}
/* Time Stamp */
rval = ql_fw_etrace(ha, &ha->fwexttracebuf, FTO_INSERT_TIME_STAMP);
if (rval != QL_SUCCESS) {
EL(ha, "f/w extended trace insert"
"time stamp failed: %xh\n", rval);
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
return;
}
/* Disable Tracing */
rval = ql_fw_etrace(ha, &ha->fwexttracebuf, FTO_EXT_TRACE_DISABLE);
if (rval != QL_SUCCESS) {
EL(ha, "f/w extended trace disable failed: %xh\n", rval);
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
return;
}
/* Allocate payload buffer */
payload = kmem_zalloc(FWEXTSIZE, KM_SLEEP);
if (payload == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
/* Sync DMA buffer. */
(void) ddi_dma_sync(ha->fwexttracebuf.dma_handle, 0,
FWEXTSIZE, DDI_DMA_SYNC_FORKERNEL);
/* Copy trace buffer data. */
ddi_rep_get8(ha->fwexttracebuf.acc_handle, (uint8_t *)payload,
(uint8_t *)ha->fwexttracebuf.bp, FWEXTSIZE,
DDI_DEV_AUTOINCR);
/* Send payload to application. */
if (ql_send_buffer_data(payload, (caddr_t)(uintptr_t)cmd->ResponseAdr,
cmd->ResponseLen, mode) != cmd->ResponseLen) {
EL(ha, "failed, send_buffer_data\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
} else {
cmd->Status = EXT_STATUS_OK;
}
kmem_free(payload, FWEXTSIZE);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_fwfcetrace
* Dumps f/w fibre channel event trace buffer
*
* Input:
* ha: adapter state pointer.
* bp: buffer address.
* mode: flags
*
* Returns:
*
* Context:
* Kernel context.
*/
/* ARGSUSED */
static void
ql_get_fwfcetrace(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
int rval;
caddr_t payload;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (CFG_IST(ha, CFG_CTRL_242581) == 0) {
EL(ha, "invalid request for this HBA\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
return;
}
if ((CFG_IST(ha, CFG_ENABLE_FWFCETRACE) == 0) ||
(ha->fwfcetracebuf.bp == NULL)) {
EL(ha, "f/w FCE trace is not enabled\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
return;
}
if (cmd->ResponseLen < FWFCESIZE) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = FWFCESIZE;
EL(ha, "failed, ResponseLen (%xh) < %xh (FWFCESIZE)\n",
cmd->ResponseLen, FWFCESIZE);
cmd->ResponseLen = 0;
return;
}
/* Disable Tracing */
rval = ql_fw_etrace(ha, &ha->fwfcetracebuf, FTO_FCE_TRACE_DISABLE);
if (rval != QL_SUCCESS) {
EL(ha, "f/w FCE trace disable failed: %xh\n", rval);
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
return;
}
/* Allocate payload buffer */
payload = kmem_zalloc(FWEXTSIZE, KM_SLEEP);
if (payload == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
/* Sync DMA buffer. */
(void) ddi_dma_sync(ha->fwfcetracebuf.dma_handle, 0,
FWFCESIZE, DDI_DMA_SYNC_FORKERNEL);
/* Copy trace buffer data. */
ddi_rep_get8(ha->fwfcetracebuf.acc_handle, (uint8_t *)payload,
(uint8_t *)ha->fwfcetracebuf.bp, FWFCESIZE,
DDI_DEV_AUTOINCR);
/* Send payload to application. */
if (ql_send_buffer_data(payload, (caddr_t)(uintptr_t)cmd->ResponseAdr,
cmd->ResponseLen, mode) != cmd->ResponseLen) {
EL(ha, "failed, send_buffer_data\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
} else {
cmd->Status = EXT_STATUS_OK;
}
kmem_free(payload, FWFCESIZE);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_pci_data
* Retrieves pci config space data
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*
*/
static void
ql_get_pci_data(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint8_t cap_ptr;
uint8_t cap_id;
uint32_t buf_size = 256;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/*
* First check the "Capabilities List" bit of the status register.
*/
if (ql_pci_config_get16(ha, PCI_CONF_STAT) & PCI_STAT_CAP) {
/*
* Now get the capability pointer
*/
cap_ptr = (uint8_t)ql_pci_config_get8(ha, PCI_CONF_CAP_PTR);
while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) {
/*
* Check for the pcie capability.
*/
cap_id = (uint8_t)ql_pci_config_get8(ha, cap_ptr);
if (cap_id == PCI_CAP_ID_PCI_E) {
buf_size = 4096;
break;
}
cap_ptr = (uint8_t)ql_pci_config_get8(ha,
(cap_ptr + PCI_CAP_NEXT_PTR));
}
}
if (cmd->ResponseLen < buf_size) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = buf_size;
EL(ha, "failed ResponseLen < buf_size, len passed=%xh\n",
cmd->ResponseLen);
return;
}
/* Dump PCI config data. */
if ((ql_pci_dump(ha, (void *)(uintptr_t)(cmd->ResponseAdr),
buf_size, mode)) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->DetailStatus = 0;
EL(ha, "failed, copy err pci_dump\n");
} else {
cmd->Status = EXT_STATUS_OK;
cmd->DetailStatus = buf_size;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_pci_dump
* Dumps PCI config data to application buffer.
*
* Input:
* ha = adapter state pointer.
* bp = user buffer address.
*
* Returns:
*
* Context:
* Kernel context.
*/
int
ql_pci_dump(ql_adapter_state_t *ha, uint32_t *bp, uint32_t pci_size, int mode)
{
uint32_t pci_os;
uint32_t *ptr32, *org_ptr32;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
ptr32 = kmem_zalloc(pci_size, KM_SLEEP);
if (ptr32 == NULL) {
EL(ha, "failed kmem_zalloc\n");
return (ENOMEM);
}
/* store the initial value of ptr32 */
org_ptr32 = ptr32;
for (pci_os = 0; pci_os < pci_size; pci_os += 4) {
*ptr32 = (uint32_t)ql_pci_config_get32(ha, pci_os);
LITTLE_ENDIAN_32(ptr32);
ptr32++;
}
if (ddi_copyout((void *)org_ptr32, (void *)bp, pci_size, mode) !=
0) {
EL(ha, "failed ddi_copyout\n");
kmem_free(org_ptr32, pci_size);
return (EFAULT);
}
QL_DUMP_9(org_ptr32, 8, pci_size);
kmem_free(org_ptr32, pci_size);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
return (0);
}
/*
* ql_menlo_reset
* Reset Menlo
*
* Input:
* ha: adapter state pointer.
* bp: buffer address.
* mode: flags
*
* Returns:
*
* Context:
* Kernel context.
*/
static void
ql_menlo_reset(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
EXT_MENLO_RESET rst;
ql_mbx_data_t mr;
int rval;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if ((CFG_IST(ha, CFG_CTRL_MENLO)) == 0) {
EL(ha, "failed, invalid request for HBA\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
return;
}
/*
* TODO: only vp_index 0 can do this (?)
*/
/* Verify the size of request structure. */
if (cmd->RequestLen < sizeof (EXT_MENLO_RESET)) {
/* Return error */
EL(ha, "RequestLen=%d < %d\n", cmd->RequestLen,
sizeof (EXT_MENLO_RESET));
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->DetailStatus = EXT_DSTATUS_REQUEST_LEN;
cmd->ResponseLen = 0;
return;
}
/* Get reset request. */
if (ddi_copyin((void *)(uintptr_t)cmd->RequestAdr,
(void *)&rst, sizeof (EXT_MENLO_RESET), mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
/* Wait for I/O to stop and daemon to stall. */
if (ql_suspend_hba(ha, 0) != QL_SUCCESS) {
EL(ha, "ql_stall_driver failed\n");
ql_restart_hba(ha);
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return;
}
rval = ql_reset_menlo(ha, &mr, rst.Flags);
if (rval != QL_SUCCESS) {
EL(ha, "failed, status=%xh\n", rval);
cmd->Status = EXT_STATUS_MAILBOX;
cmd->DetailStatus = rval;
cmd->ResponseLen = 0;
} else if (mr.mb[1] != 0) {
EL(ha, "failed, substatus=%d\n", mr.mb[1]);
cmd->Status = EXT_STATUS_ERR;
cmd->DetailStatus = mr.mb[1];
cmd->ResponseLen = 0;
}
ql_restart_hba(ha);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_menlo_get_fw_version
* Get Menlo firmware version.
*
* Input:
* ha: adapter state pointer.
* bp: buffer address.
* mode: flags
*
* Returns:
*
* Context:
* Kernel context.
*/
static void
ql_menlo_get_fw_version(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
int rval;
ql_mbx_iocb_t *pkt;
EXT_MENLO_GET_FW_VERSION ver = {0};
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if ((CFG_IST(ha, CFG_CTRL_MENLO)) == 0) {
EL(ha, "failed, invalid request for HBA\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
return;
}
if (cmd->ResponseLen < sizeof (EXT_MENLO_GET_FW_VERSION)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_MENLO_GET_FW_VERSION);
EL(ha, "ResponseLen=%d < %d\n", cmd->ResponseLen,
sizeof (EXT_MENLO_GET_FW_VERSION));
cmd->ResponseLen = 0;
return;
}
/* Allocate packet. */
pkt = kmem_zalloc(sizeof (ql_mbx_iocb_t), KM_SLEEP);
if (pkt == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
pkt->mvfy.entry_type = VERIFY_MENLO_TYPE;
pkt->mvfy.entry_count = 1;
pkt->mvfy.options_status = LE_16(VMF_DO_NOT_UPDATE_FW);
rval = ql_issue_mbx_iocb(ha, (caddr_t)pkt, sizeof (ql_mbx_iocb_t));
LITTLE_ENDIAN_16(&pkt->mvfy.options_status);
LITTLE_ENDIAN_16(&pkt->mvfy.failure_code);
ver.FwVersion = LE_32(pkt->mvfy.fw_version);
if (rval != QL_SUCCESS || (pkt->mvfy.entry_status & 0x3c) != 0 ||
pkt->mvfy.options_status != CS_COMPLETE) {
/* Command error */
EL(ha, "failed, status=%xh, es=%xh, cs=%xh, fc=%xh\n", rval,
pkt->mvfy.entry_status & 0x3c, pkt->mvfy.options_status,
pkt->mvfy.failure_code);
cmd->Status = EXT_STATUS_ERR;
cmd->DetailStatus = rval != QL_SUCCESS ? rval :
QL_FUNCTION_FAILED;
cmd->ResponseLen = 0;
} else if (ddi_copyout((void *)&ver,
(void *)(uintptr_t)cmd->ResponseAdr,
sizeof (EXT_MENLO_GET_FW_VERSION), mode) != 0) {
EL(ha, "failed, ddi_copyout\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
} else {
cmd->ResponseLen = sizeof (EXT_MENLO_GET_FW_VERSION);
}
kmem_free(pkt, sizeof (ql_mbx_iocb_t));
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_menlo_update_fw
* Get Menlo update firmware.
*
* Input:
* ha: adapter state pointer.
* bp: buffer address.
* mode: flags
*
* Returns:
*
* Context:
* Kernel context.
*/
static void
ql_menlo_update_fw(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
ql_mbx_iocb_t *pkt;
dma_mem_t *dma_mem;
EXT_MENLO_UPDATE_FW fw;
uint32_t *ptr32;
int rval;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if ((CFG_IST(ha, CFG_CTRL_MENLO)) == 0) {
EL(ha, "failed, invalid request for HBA\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
return;
}
/*
* TODO: only vp_index 0 can do this (?)
*/
/* Verify the size of request structure. */
if (cmd->RequestLen < sizeof (EXT_MENLO_UPDATE_FW)) {
/* Return error */
EL(ha, "RequestLen=%d < %d\n", cmd->RequestLen,
sizeof (EXT_MENLO_UPDATE_FW));
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->DetailStatus = EXT_DSTATUS_REQUEST_LEN;
cmd->ResponseLen = 0;
return;
}
/* Get update fw request. */
if (ddi_copyin((caddr_t)(uintptr_t)cmd->RequestAdr, (caddr_t)&fw,
sizeof (EXT_MENLO_UPDATE_FW), mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
/* Wait for I/O to stop and daemon to stall. */
if (ql_suspend_hba(ha, 0) != QL_SUCCESS) {
EL(ha, "ql_stall_driver failed\n");
ql_restart_hba(ha);
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
return;
}
/* Allocate packet. */
dma_mem = (dma_mem_t *)kmem_zalloc(sizeof (dma_mem_t), KM_SLEEP);
if (dma_mem == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
pkt = kmem_zalloc(sizeof (ql_mbx_iocb_t), KM_SLEEP);
if (pkt == NULL) {
EL(ha, "failed, kmem_zalloc\n");
kmem_free(dma_mem, sizeof (dma_mem_t));
ql_restart_hba(ha);
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
/* Get DMA memory for the IOCB */
if (ql_get_dma_mem(ha, dma_mem, fw.TotalByteCount, LITTLE_ENDIAN_DMA,
QL_DMA_DATA_ALIGN) != QL_SUCCESS) {
cmn_err(CE_WARN, "%s(%d): request queue DMA memory "
"alloc failed", QL_NAME, ha->instance);
kmem_free(pkt, sizeof (ql_mbx_iocb_t));
kmem_free(dma_mem, sizeof (dma_mem_t));
ql_restart_hba(ha);
cmd->Status = EXT_STATUS_MS_NO_RESPONSE;
cmd->ResponseLen = 0;
return;
}
/* Get firmware data. */
if (ql_get_buffer_data((caddr_t)(uintptr_t)fw.pFwDataBytes, dma_mem->bp,
fw.TotalByteCount, mode) != fw.TotalByteCount) {
EL(ha, "failed, get_buffer_data\n");
ql_free_dma_resource(ha, dma_mem);
kmem_free(pkt, sizeof (ql_mbx_iocb_t));
kmem_free(dma_mem, sizeof (dma_mem_t));
ql_restart_hba(ha);
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
/* Sync DMA buffer. */
(void) ddi_dma_sync(dma_mem->dma_handle, 0, dma_mem->size,
DDI_DMA_SYNC_FORDEV);
pkt->mvfy.entry_type = VERIFY_MENLO_TYPE;
pkt->mvfy.entry_count = 1;
pkt->mvfy.options_status = (uint16_t)LE_16(fw.Flags);
ptr32 = dma_mem->bp;
pkt->mvfy.fw_version = LE_32(ptr32[2]);
pkt->mvfy.fw_size = LE_32(fw.TotalByteCount);
pkt->mvfy.fw_sequence_size = LE_32(fw.TotalByteCount);
pkt->mvfy.dseg_count = LE_16(1);
pkt->mvfy.dseg_0_address[0] = (uint32_t)
LE_32(LSD(dma_mem->cookie.dmac_laddress));
pkt->mvfy.dseg_0_address[1] = (uint32_t)
LE_32(MSD(dma_mem->cookie.dmac_laddress));
pkt->mvfy.dseg_0_length = LE_32(fw.TotalByteCount);
rval = ql_issue_mbx_iocb(ha, (caddr_t)pkt, sizeof (ql_mbx_iocb_t));
LITTLE_ENDIAN_16(&pkt->mvfy.options_status);
LITTLE_ENDIAN_16(&pkt->mvfy.failure_code);
if (rval != QL_SUCCESS || (pkt->mvfy.entry_status & 0x3c) != 0 ||
pkt->mvfy.options_status != CS_COMPLETE) {
/* Command error */
EL(ha, "failed, status=%xh, es=%xh, cs=%xh, fc=%xh\n", rval,
pkt->mvfy.entry_status & 0x3c, pkt->mvfy.options_status,
pkt->mvfy.failure_code);
cmd->Status = EXT_STATUS_ERR;
cmd->DetailStatus = rval != QL_SUCCESS ? rval :
QL_FUNCTION_FAILED;
cmd->ResponseLen = 0;
}
ql_free_dma_resource(ha, dma_mem);
kmem_free(pkt, sizeof (ql_mbx_iocb_t));
kmem_free(dma_mem, sizeof (dma_mem_t));
ql_restart_hba(ha);
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_menlo_manage_info
* Get Menlo manage info.
*
* Input:
* ha: adapter state pointer.
* bp: buffer address.
* mode: flags
*
* Returns:
*
* Context:
* Kernel context.
*/
static void
ql_menlo_manage_info(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
ql_mbx_iocb_t *pkt;
dma_mem_t *dma_mem = NULL;
EXT_MENLO_MANAGE_INFO info;
int rval;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if ((CFG_IST(ha, CFG_CTRL_MENLO)) == 0) {
EL(ha, "failed, invalid request for HBA\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
return;
}
/* Verify the size of request structure. */
if (cmd->RequestLen < sizeof (EXT_MENLO_MANAGE_INFO)) {
/* Return error */
EL(ha, "RequestLen=%d < %d\n", cmd->RequestLen,
sizeof (EXT_MENLO_MANAGE_INFO));
cmd->Status = EXT_STATUS_INVALID_PARAM;
cmd->DetailStatus = EXT_DSTATUS_REQUEST_LEN;
cmd->ResponseLen = 0;
return;
}
/* Get manage info request. */
if (ddi_copyin((caddr_t)(uintptr_t)cmd->RequestAdr,
(caddr_t)&info, sizeof (EXT_MENLO_MANAGE_INFO), mode) != 0) {
EL(ha, "failed, ddi_copyin\n");
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
/* Allocate packet. */
pkt = kmem_zalloc(sizeof (ql_mbx_iocb_t), KM_SLEEP);
if (pkt == NULL) {
EL(ha, "failed, kmem_zalloc\n");
ql_restart_driver(ha);
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
pkt->mdata.entry_type = MENLO_DATA_TYPE;
pkt->mdata.entry_count = 1;
pkt->mdata.options_status = (uint16_t)LE_16(info.Operation);
/* Get DMA memory for the IOCB */
if (info.Operation == MENLO_OP_READ_MEM ||
info.Operation == MENLO_OP_WRITE_MEM) {
pkt->mdata.total_byte_count = LE_32(info.TotalByteCount);
pkt->mdata.parameter_1 =
LE_32(info.Parameters.ap.MenloMemory.StartingAddr);
dma_mem = (dma_mem_t *)kmem_zalloc(sizeof (dma_mem_t),
KM_SLEEP);
if (dma_mem == NULL) {
EL(ha, "failed, kmem_zalloc\n");
kmem_free(pkt, sizeof (ql_mbx_iocb_t));
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
if (ql_get_dma_mem(ha, dma_mem, info.TotalByteCount,
LITTLE_ENDIAN_DMA, QL_DMA_DATA_ALIGN) != QL_SUCCESS) {
cmn_err(CE_WARN, "%s(%d): request queue DMA memory "
"alloc failed", QL_NAME, ha->instance);
kmem_free(dma_mem, sizeof (dma_mem_t));
kmem_free(pkt, sizeof (ql_mbx_iocb_t));
cmd->Status = EXT_STATUS_MS_NO_RESPONSE;
cmd->ResponseLen = 0;
return;
}
if (info.Operation == MENLO_OP_WRITE_MEM) {
/* Get data. */
if (ql_get_buffer_data(
(caddr_t)(uintptr_t)info.pDataBytes,
dma_mem->bp, info.TotalByteCount, mode) !=
info.TotalByteCount) {
EL(ha, "failed, get_buffer_data\n");
ql_free_dma_resource(ha, dma_mem);
kmem_free(dma_mem, sizeof (dma_mem_t));
kmem_free(pkt, sizeof (ql_mbx_iocb_t));
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
return;
}
(void) ddi_dma_sync(dma_mem->dma_handle, 0,
dma_mem->size, DDI_DMA_SYNC_FORDEV);
}
pkt->mdata.dseg_count = LE_16(1);
pkt->mdata.dseg_0_address[0] = (uint32_t)
LE_32(LSD(dma_mem->cookie.dmac_laddress));
pkt->mdata.dseg_0_address[1] = (uint32_t)
LE_32(MSD(dma_mem->cookie.dmac_laddress));
pkt->mdata.dseg_0_length = LE_32(info.TotalByteCount);
} else if (info.Operation & MENLO_OP_CHANGE_CONFIG) {
pkt->mdata.parameter_1 =
LE_32(info.Parameters.ap.MenloConfig.ConfigParamID);
pkt->mdata.parameter_2 =
LE_32(info.Parameters.ap.MenloConfig.ConfigParamData0);
pkt->mdata.parameter_3 =
LE_32(info.Parameters.ap.MenloConfig.ConfigParamData1);
} else if (info.Operation & MENLO_OP_GET_INFO) {
pkt->mdata.parameter_1 =
LE_32(info.Parameters.ap.MenloInfo.InfoDataType);
pkt->mdata.parameter_2 =
LE_32(info.Parameters.ap.MenloInfo.InfoContext);
}
rval = ql_issue_mbx_iocb(ha, (caddr_t)pkt, sizeof (ql_mbx_iocb_t));
LITTLE_ENDIAN_16(&pkt->mdata.options_status);
LITTLE_ENDIAN_16(&pkt->mdata.failure_code);
if (rval != QL_SUCCESS || (pkt->mdata.entry_status & 0x3c) != 0 ||
pkt->mdata.options_status != CS_COMPLETE) {
/* Command error */
EL(ha, "failed, status=%xh, es=%xh, cs=%xh, fc=%xh\n", rval,
pkt->mdata.entry_status & 0x3c, pkt->mdata.options_status,
pkt->mdata.failure_code);
cmd->Status = EXT_STATUS_ERR;
cmd->DetailStatus = rval != QL_SUCCESS ? rval :
QL_FUNCTION_FAILED;
cmd->ResponseLen = 0;
} else if (info.Operation == MENLO_OP_READ_MEM) {
(void) ddi_dma_sync(dma_mem->dma_handle, 0, dma_mem->size,
DDI_DMA_SYNC_FORKERNEL);
if (ql_send_buffer_data((caddr_t)(uintptr_t)info.pDataBytes,
dma_mem->bp, info.TotalByteCount, mode) !=
info.TotalByteCount) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
}
}
ql_free_dma_resource(ha, dma_mem);
kmem_free(dma_mem, sizeof (dma_mem_t));
kmem_free(pkt, sizeof (ql_mbx_iocb_t));
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_suspend_hba
* Suspends all adapter ports.
*
* Input:
* ha: adapter state pointer.
* options: BIT_0 --> leave driver stalled on exit if
* failed.
*
* Returns:
* ql local function return status code.
*
* Context:
* Kernel context.
*/
static int
ql_suspend_hba(ql_adapter_state_t *ha, uint32_t opt)
{
ql_adapter_state_t *ha2;
ql_link_t *link;
int rval = QL_SUCCESS;
/* Quiesce I/O on all adapter ports */
for (link = ql_hba.first; link != NULL; link = link->next) {
ha2 = link->base_address;
if (ha2->fru_hba_index != ha->fru_hba_index) {
continue;
}
if ((rval = ql_stall_driver(ha2, opt)) != QL_SUCCESS) {
EL(ha, "ql_stall_driver status=%xh\n", rval);
break;
}
}
return (rval);
}
/*
* ql_restart_hba
* Restarts adapter.
*
* Input:
* ha: adapter state pointer.
*
* Context:
* Kernel context.
*/
static void
ql_restart_hba(ql_adapter_state_t *ha)
{
ql_adapter_state_t *ha2;
ql_link_t *link;
/* Resume I/O on all adapter ports */
for (link = ql_hba.first; link != NULL; link = link->next) {
ha2 = link->base_address;
if (ha2->fru_hba_index != ha->fru_hba_index) {
continue;
}
ql_restart_driver(ha2);
}
}
/*
* ql_get_vp_cnt_id
* Retrieves pci config space data
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*
*/
static void
ql_get_vp_cnt_id(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
ql_adapter_state_t *vha;
PEXT_VPORT_ID_CNT ptmp_vp;
int id = 0;
int rval;
char name[MAXPATHLEN];
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
/*
* To be backward compatible with older API
* check for the size of old EXT_VPORT_ID_CNT
*/
if (cmd->ResponseLen < sizeof (EXT_VPORT_ID_CNT) &&
(cmd->ResponseLen != EXT_OLD_VPORT_ID_CNT_SIZE)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_VPORT_ID_CNT);
EL(ha, "failed, ResponseLen < EXT_VPORT_ID_CNT, Len=%xh\n",
cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
ptmp_vp = (EXT_VPORT_ID_CNT *)
kmem_zalloc(sizeof (EXT_VPORT_ID_CNT), KM_SLEEP);
if (ptmp_vp == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->ResponseLen = 0;
return;
}
vha = ha->vp_next;
while (vha != NULL) {
ptmp_vp->VpCnt++;
ptmp_vp->VpId[id] = vha->vp_index;
(void) ddi_pathname(vha->dip, name);
(void) strcpy((char *)ptmp_vp->vp_path[id], name);
ptmp_vp->VpDrvInst[id] = (int32_t)vha->instance;
id++;
vha = vha->vp_next;
}
rval = ddi_copyout((void *)ptmp_vp,
(void *)(uintptr_t)(cmd->ResponseAdr),
cmd->ResponseLen, mode);
if (rval != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = sizeof (EXT_VPORT_ID_CNT);
QL_PRINT_9(CE_CONT, "(%d): done, vport_cnt=%d\n",
ha->instance, ptmp_vp->VpCnt);
}
}
/*
* ql_vp_ioctl
* Performs all EXT_CC_VPORT_CMD functions.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_vp_ioctl(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
QL_PRINT_9(CE_CONT, "(%d): started, cmd=%d\n", ha->instance,
cmd->SubCode);
/* case off on command subcode */
switch (cmd->SubCode) {
case EXT_VF_SC_VPORT_GETINFO:
ql_qry_vport(ha, cmd, mode);
break;
default:
/* function not supported. */
cmd->Status = EXT_STATUS_UNSUPPORTED_SUBCODE;
EL(ha, "failed, Unsupported Subcode=%xh\n",
cmd->SubCode);
break;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_qry_vport
* Performs EXT_VF_SC_VPORT_GETINFO subfunction.
*
* Input:
* ha: adapter state pointer.
* cmd: EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_qry_vport(ql_adapter_state_t *vha, EXT_IOCTL *cmd, int mode)
{
ql_adapter_state_t *tmp_vha;
EXT_VPORT_INFO tmp_vport = {0};
int max_vport;
QL_PRINT_9(CE_CONT, "(%d): started\n", vha->instance);
if (cmd->ResponseLen < sizeof (EXT_VPORT_INFO)) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = sizeof (EXT_VPORT_INFO);
EL(vha, "failed, ResponseLen < EXT_VPORT_INFO, Len=%xh\n",
cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
/* Fill in the vport information. */
bcopy(vha->loginparams.node_ww_name.raw_wwn, tmp_vport.wwnn,
EXT_DEF_WWN_NAME_SIZE);
bcopy(vha->loginparams.nport_ww_name.raw_wwn, tmp_vport.wwpn,
EXT_DEF_WWN_NAME_SIZE);
tmp_vport.state = vha->state;
tmp_vha = vha->pha->vp_next;
while (tmp_vha != NULL) {
tmp_vport.used++;
tmp_vha = tmp_vha->vp_next;
}
max_vport = (CFG_IST(vha, CFG_CTRL_2422) ? MAX_24_VIRTUAL_PORTS :
MAX_25_VIRTUAL_PORTS);
if (max_vport > tmp_vport.used) {
tmp_vport.free = max_vport - tmp_vport.used;
}
if (ddi_copyout((void *)&tmp_vport,
(void *)(uintptr_t)(cmd->ResponseAdr),
sizeof (EXT_VPORT_INFO), mode) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(vha, "failed, ddi_copyout\n");
} else {
cmd->ResponseLen = sizeof (EXT_VPORT_INFO);
QL_PRINT_9(CE_CONT, "(%d): done\n", vha->instance);
}
}
/*
* ql_access_flash
* Performs all EXT_CC_ACCESS_FLASH_OS functions.
*
* Input:
* pi: port info pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
* mode: flags.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_access_flash(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
int rval;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
switch (cmd->SubCode) {
case EXT_SC_FLASH_READ:
if ((rval = ql_flash_fcode_dump(ha,
(void *)(uintptr_t)(cmd->ResponseAdr),
(size_t)(cmd->ResponseLen), cmd->Reserved1, mode)) != 0) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "flash_fcode_dump status=%xh\n", rval);
}
break;
case EXT_SC_FLASH_WRITE:
if ((rval = ql_r_m_w_flash(ha,
(void *)(uintptr_t)(cmd->RequestAdr),
(size_t)(cmd->RequestLen), cmd->Reserved1, mode)) !=
QL_SUCCESS) {
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
EL(ha, "r_m_w_flash status=%xh\n", rval);
} else {
/* Reset caches on all adapter instances. */
ql_update_flash_caches(ha);
}
break;
default:
EL(ha, "unknown subcode=%xh\n", cmd->SubCode);
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
break;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_reset_cmd
* Performs all EXT_CC_RESET_FW_OS functions.
*
* Input:
* ha: adapter state pointer.
* cmd: Local EXT_IOCTL cmd struct pointer.
*
* Returns:
* None, request status indicated in cmd->Status.
*
* Context:
* Kernel context.
*/
static void
ql_reset_cmd(ql_adapter_state_t *ha, EXT_IOCTL *cmd)
{
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
switch (cmd->SubCode) {
case EXT_SC_RESET_FC_FW:
EL(ha, "isp_abort_needed\n");
ql_awaken_task_daemon(ha, NULL, ISP_ABORT_NEEDED, 0);
break;
case EXT_SC_RESET_MPI_FW:
if (!(CFG_IST(ha, CFG_CTRL_81XX))) {
EL(ha, "invalid request for HBA\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
} else {
/* Wait for I/O to stop and daemon to stall. */
if (ql_suspend_hba(ha, 0) != QL_SUCCESS) {
EL(ha, "ql_suspend_hba failed\n");
cmd->Status = EXT_STATUS_BUSY;
cmd->ResponseLen = 0;
} else if (ql_restart_mpi(ha) != QL_SUCCESS) {
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
}
ql_restart_hba(ha);
}
break;
default:
EL(ha, "unknown subcode=%xh\n", cmd->SubCode);
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
break;
}
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
}
/*
* ql_get_dcbx_parameters
* Get DCBX parameters.
*
* Input:
* ha: adapter state pointer.
* cmd: User space CT arguments pointer.
* mode: flags.
*/
static void
ql_get_dcbx_parameters(ql_adapter_state_t *ha, EXT_IOCTL *cmd, int mode)
{
uint8_t *tmp_buf;
int rval;
QL_PRINT_9(CE_CONT, "(%d): started\n", ha->instance);
if (!(CFG_IST(ha, CFG_CTRL_81XX))) {
EL(ha, "invalid request for HBA\n");
cmd->Status = EXT_STATUS_INVALID_REQUEST;
cmd->ResponseLen = 0;
}
if (cmd->ResponseLen < EXT_DEF_DCBX_PARAM_BUF_SIZE) {
cmd->Status = EXT_STATUS_BUFFER_TOO_SMALL;
cmd->DetailStatus = EXT_DEF_DCBX_PARAM_BUF_SIZE;
EL(ha, "failed, ResponseLen != %xh, Len=%xh\n",
EXT_DEF_DCBX_PARAM_BUF_SIZE, cmd->ResponseLen);
cmd->ResponseLen = 0;
return;
}
/* Allocate memory for command. */
tmp_buf = kmem_zalloc(cmd->ResponseLen, KM_SLEEP);
if (tmp_buf == NULL) {
EL(ha, "failed, kmem_zalloc\n");
cmd->Status = EXT_STATUS_NO_MEMORY;
cmd->ResponseLen = 0;
return;
}
/* Send command */
rval = ql_get_dcbx_params(ha, cmd->ResponseLen, (caddr_t)tmp_buf);
if (rval != QL_SUCCESS) {
/* error */
EL(ha, "failed, get_rnid_params_mbx=%xh\n", rval);
kmem_free(tmp_buf, cmd->ResponseLen);
cmd->Status = EXT_STATUS_ERR;
cmd->ResponseLen = 0;
return;
}
/* Copy the response */
if (ql_send_buffer_data((caddr_t)tmp_buf,
(caddr_t)(uintptr_t)cmd->ResponseAdr,
cmd->ResponseLen, mode) != cmd->ResponseLen) {
EL(ha, "failed, ddi_copyout\n");
kmem_free(tmp_buf, cmd->ResponseLen);
cmd->Status = EXT_STATUS_COPY_ERR;
cmd->ResponseLen = 0;
} else {
QL_PRINT_9(CE_CONT, "(%d): done\n", ha->instance);
kmem_free(tmp_buf, cmd->ResponseLen);
}
}