cmlb.c revision 1cec2d8ca952b8eb7ebaf230afefc398aa138644
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* This module provides support for labeling operations for target
* drivers.
*/
#include <sys/scsi/scsi.h>
#include <sys/sunddi.h>
#include <sys/dklabel.h>
#include <sys/dkio.h>
#include <sys/vtoc.h>
#include <sys/dktp/fdisk.h>
#include <sys/vtrace.h>
#include <sys/efi_partition.h>
#include <sys/cmlb.h>
#include <sys/cmlb_impl.h>
/*
* Driver minor node structure and data table
*/
struct driver_minor_data {
char *name;
minor_t minor;
int type;
};
static struct driver_minor_data dk_minor_data[] = {
{"a", 0, S_IFBLK},
{"b", 1, S_IFBLK},
{"c", 2, S_IFBLK},
{"d", 3, S_IFBLK},
{"e", 4, S_IFBLK},
{"f", 5, S_IFBLK},
{"g", 6, S_IFBLK},
{"h", 7, S_IFBLK},
#if defined(_SUNOS_VTOC_16)
{"i", 8, S_IFBLK},
{"j", 9, S_IFBLK},
{"k", 10, S_IFBLK},
{"l", 11, S_IFBLK},
{"m", 12, S_IFBLK},
{"n", 13, S_IFBLK},
{"o", 14, S_IFBLK},
{"p", 15, S_IFBLK},
#endif /* defined(_SUNOS_VTOC_16) */
#if defined(_FIRMWARE_NEEDS_FDISK)
{"q", 16, S_IFBLK},
{"r", 17, S_IFBLK},
{"s", 18, S_IFBLK},
{"t", 19, S_IFBLK},
{"u", 20, S_IFBLK},
#endif /* defined(_FIRMWARE_NEEDS_FDISK) */
{"a,raw", 0, S_IFCHR},
{"b,raw", 1, S_IFCHR},
{"c,raw", 2, S_IFCHR},
{"d,raw", 3, S_IFCHR},
{"e,raw", 4, S_IFCHR},
{"f,raw", 5, S_IFCHR},
{"g,raw", 6, S_IFCHR},
{"h,raw", 7, S_IFCHR},
#if defined(_SUNOS_VTOC_16)
{"i,raw", 8, S_IFCHR},
{"j,raw", 9, S_IFCHR},
{"k,raw", 10, S_IFCHR},
{"l,raw", 11, S_IFCHR},
{"m,raw", 12, S_IFCHR},
{"n,raw", 13, S_IFCHR},
{"o,raw", 14, S_IFCHR},
{"p,raw", 15, S_IFCHR},
#endif /* defined(_SUNOS_VTOC_16) */
#if defined(_FIRMWARE_NEEDS_FDISK)
{"q,raw", 16, S_IFCHR},
{"r,raw", 17, S_IFCHR},
{"s,raw", 18, S_IFCHR},
{"t,raw", 19, S_IFCHR},
{"u,raw", 20, S_IFCHR},
#endif /* defined(_FIRMWARE_NEEDS_FDISK) */
{0}
};
static struct driver_minor_data dk_minor_data_efi[] = {
{"a", 0, S_IFBLK},
{"b", 1, S_IFBLK},
{"c", 2, S_IFBLK},
{"d", 3, S_IFBLK},
{"e", 4, S_IFBLK},
{"f", 5, S_IFBLK},
{"g", 6, S_IFBLK},
{"wd", 7, S_IFBLK},
#if defined(_FIRMWARE_NEEDS_FDISK)
{"q", 16, S_IFBLK},
{"r", 17, S_IFBLK},
{"s", 18, S_IFBLK},
{"t", 19, S_IFBLK},
{"u", 20, S_IFBLK},
#endif /* defined(_FIRMWARE_NEEDS_FDISK) */
{"a,raw", 0, S_IFCHR},
{"b,raw", 1, S_IFCHR},
{"c,raw", 2, S_IFCHR},
{"d,raw", 3, S_IFCHR},
{"e,raw", 4, S_IFCHR},
{"f,raw", 5, S_IFCHR},
{"g,raw", 6, S_IFCHR},
{"wd,raw", 7, S_IFCHR},
#if defined(_FIRMWARE_NEEDS_FDISK)
{"q,raw", 16, S_IFCHR},
{"r,raw", 17, S_IFCHR},
{"s,raw", 18, S_IFCHR},
{"t,raw", 19, S_IFCHR},
{"u,raw", 20, S_IFCHR},
#endif /* defined(_FIRMWARE_NEEDS_FDISK) */
{0}
};
extern struct mod_ops mod_miscops;
/*
* Global buffer and mutex for debug logging
*/
static char cmlb_log_buffer[1024];
static kmutex_t cmlb_log_mutex;
struct cmlb_lun *cmlb_debug_un = NULL;
uint_t cmlb_level_mask = 0x0;
int cmlb_rot_delay = 4; /* default rotational delay */
static struct modlmisc modlmisc = {
&mod_miscops, /* Type of module */
"Common Labeling module %I%"
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modlmisc, NULL
};
/* Local function prototypes */
static dev_t cmlb_make_device(struct cmlb_lun *un);
static int cmlb_validate_geometry(struct cmlb_lun *un, int forcerevalid);
static void cmlb_resync_geom_caches(struct cmlb_lun *un, diskaddr_t capacity);
static int cmlb_read_fdisk(struct cmlb_lun *un, diskaddr_t capacity);
static void cmlb_swap_efi_gpt(efi_gpt_t *e);
static void cmlb_swap_efi_gpe(int nparts, efi_gpe_t *p);
static int cmlb_validate_efi(efi_gpt_t *labp);
static int cmlb_use_efi(struct cmlb_lun *un, diskaddr_t capacity);
static void cmlb_build_default_label(struct cmlb_lun *un);
static int cmlb_uselabel(struct cmlb_lun *un, struct dk_label *l);
static void cmlb_build_user_vtoc(struct cmlb_lun *un, struct vtoc *user_vtoc);
static int cmlb_build_label_vtoc(struct cmlb_lun *un, struct vtoc *user_vtoc);
static int cmlb_write_label(struct cmlb_lun *un);
static int cmlb_set_vtoc(struct cmlb_lun *un, struct dk_label *dkl);
static void cmlb_clear_efi(struct cmlb_lun *un);
static void cmlb_clear_vtoc(struct cmlb_lun *un);
static void cmlb_setup_default_geometry(struct cmlb_lun *un);
static int cmlb_create_minor_nodes(struct cmlb_lun *un);
static int cmlb_check_update_blockcount(struct cmlb_lun *un);
#if defined(__i386) || defined(__amd64)
static int cmlb_update_fdisk_and_vtoc(struct cmlb_lun *un);
#endif
#if defined(_FIRMWARE_NEEDS_FDISK)
static int cmlb_has_max_chs_vals(struct ipart *fdp);
#endif
#if defined(_SUNOS_VTOC_16)
static void cmlb_convert_geometry(diskaddr_t capacity, struct dk_geom *un_g);
#endif
static int cmlb_dkio_get_geometry(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_set_geometry(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_get_partition(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_set_partition(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_get_efi(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_set_efi(struct cmlb_lun *un, dev_t dev, caddr_t arg,
int flag);
static int cmlb_dkio_get_vtoc(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_set_vtoc(struct cmlb_lun *un, dev_t dev, caddr_t arg,
int flag);
static int cmlb_dkio_get_mboot(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_set_mboot(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_partition(struct cmlb_lun *un, caddr_t arg, int flag);
#if defined(__i386) || defined(__amd64)
static int cmlb_dkio_get_virtgeom(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_get_phygeom(struct cmlb_lun *un, caddr_t arg, int flag);
static int cmlb_dkio_partinfo(struct cmlb_lun *un, dev_t dev, caddr_t arg,
int flag);
#endif
static void cmlb_dbg(uint_t comp, struct cmlb_lun *un, const char *fmt, ...);
static void cmlb_v_log(dev_info_t *dev, char *label, uint_t level,
const char *fmt, va_list ap);
static void cmlb_log(dev_info_t *dev, char *label, uint_t level,
const char *fmt, ...);
int
_init(void)
{
mutex_init(&cmlb_log_mutex, NULL, MUTEX_DRIVER, NULL);
return (mod_install(&modlinkage));
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_fini(void)
{
int err;
if ((err = mod_remove(&modlinkage)) != 0) {
return (err);
}
mutex_destroy(&cmlb_log_mutex);
return (err);
}
/*
* cmlb_dbg is used for debugging to log additional info
* Level of output is controlled via cmlb_level_mask setting.
*/
static void
cmlb_dbg(uint_t comp, struct cmlb_lun *un, const char *fmt, ...)
{
va_list ap;
dev_info_t *dev;
uint_t level_mask = 0;
ASSERT(un != NULL);
dev = CMLB_DEVINFO(un);
ASSERT(dev != NULL);
/*
* Filter messages based on the global component and level masks,
* also print if un matches the value of cmlb_debug_un, or if
* cmlb_debug_un is set to NULL.
*/
if (comp & CMLB_TRACE)
level_mask |= CMLB_LOGMASK_TRACE;
if (comp & CMLB_INFO)
level_mask |= CMLB_LOGMASK_INFO;
if (comp & CMLB_ERROR)
level_mask |= CMLB_LOGMASK_ERROR;
if ((cmlb_level_mask & level_mask) &&
((cmlb_debug_un == NULL) || (cmlb_debug_un == un))) {
va_start(ap, fmt);
cmlb_v_log(dev, CMLB_LABEL(un), CE_CONT, fmt, ap);
va_end(ap);
}
}
/*
* cmlb_log is basically a duplicate of scsi_log. It is redefined here
* so that this module does not depend on scsi module.
*/
static void
cmlb_log(dev_info_t *dev, char *label, uint_t level, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
cmlb_v_log(dev, label, level, fmt, ap);
va_end(ap);
}
static void
cmlb_v_log(dev_info_t *dev, char *label, uint_t level, const char *fmt,
va_list ap)
{
static char name[256];
int log_only = 0;
int boot_only = 0;
int console_only = 0;
mutex_enter(&cmlb_log_mutex);
if (dev) {
if (level == CE_PANIC || level == CE_WARN ||
level == CE_NOTE) {
(void) sprintf(name, "%s (%s%d):\n",
ddi_pathname(dev, cmlb_log_buffer),
label, ddi_get_instance(dev));
} else {
name[0] = '\0';
}
} else {
(void) sprintf(name, "%s:", label);
}
(void) vsprintf(cmlb_log_buffer, fmt, ap);
switch (cmlb_log_buffer[0]) {
case '!':
log_only = 1;
break;
case '?':
boot_only = 1;
break;
case '^':
console_only = 1;
break;
}
switch (level) {
case CE_NOTE:
level = CE_CONT;
/* FALLTHROUGH */
case CE_CONT:
case CE_WARN:
case CE_PANIC:
if (boot_only) {
cmn_err(level, "?%s\t%s", name, &cmlb_log_buffer[1]);
} else if (console_only) {
cmn_err(level, "^%s\t%s", name, &cmlb_log_buffer[1]);
} else if (log_only) {
cmn_err(level, "!%s\t%s", name, &cmlb_log_buffer[1]);
} else {
cmn_err(level, "%s\t%s", name, cmlb_log_buffer);
}
break;
case CE_IGNORE:
break;
default:
cmn_err(CE_CONT, "^DEBUG: %s\t%s", name, cmlb_log_buffer);
break;
}
mutex_exit(&cmlb_log_mutex);
}
/*
* cmlb_alloc_handle:
*
* Allocates a handle.
*
* Arguments:
* cmlbhandlep pointer to handle
*
* Notes:
* Allocates a handle and stores the allocated handle in the area
* pointed to by cmlbhandlep
*
* Context:
* Kernel thread only (can sleep).
*/
void
cmlb_alloc_handle(cmlb_handle_t *cmlbhandlep)
{
struct cmlb_lun *un;
un = kmem_zalloc(sizeof (struct cmlb_lun), KM_SLEEP);
ASSERT(cmlbhandlep != NULL);
un->un_state = CMLB_INITED;
un->un_def_labeltype = CMLB_LABEL_UNDEF;
mutex_init(CMLB_MUTEX(un), NULL, MUTEX_DRIVER, NULL);
*cmlbhandlep = (cmlb_handle_t)(un);
}
/*
* cmlb_free_handle
*
* Frees handle.
*
* Arguments:
* cmlbhandlep pointer to handle
*/
void
cmlb_free_handle(cmlb_handle_t *cmlbhandlep)
{
struct cmlb_lun *un;
un = (struct cmlb_lun *)*cmlbhandlep;
if (un != NULL) {
mutex_destroy(CMLB_MUTEX(un));
kmem_free(un, sizeof (struct cmlb_lun));
}
}
/*
* cmlb_attach:
*
* Attach handle to device, create minor nodes for device.
*
* Arguments:
* devi pointer to device's dev_info structure.
* tgopsp pointer to array of functions cmlb can use to callback
* to target driver.
*
* device_type Peripheral device type as defined in
* scsi/generic/inquiry.h
*
* is_removable whether or not device is removable.
* 0 non-removable, 1 removable.
*
* node_type minor node type (as used by ddi_create_minor_node)
*
* alter_behavior
* bit flags:
*
* CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT: create
* an alternate slice for the default label, if
* device type is DTYPE_DIRECT an architectures default
* label type is VTOC16.
* Otherwise alternate slice will no be created.
*
*
* CMLB_FAKE_GEOM_LABEL_IOCTLS_VTOC8: report a default
* geometry and label for DKIOCGGEOM and DKIOCGVTOC
* on architecture with VTOC8 label types.
*
*
* cmlbhandle cmlb handle associated with device
*
* Notes:
* Assumes a default label based on capacity for non-removable devices.
* If capacity > 1TB, EFI is assumed otherwise VTOC (default VTOC
* for the architecture).
*
* For removable devices, default label type is assumed to be VTOC
* type. Create minor nodes based on a default label type.
* Label on the media is not validated.
* minor number consists of:
* if _SUNOS_VTOC_8 is defined
* lowest 3 bits is taken as partition number
* the rest is instance number
* if _SUNOS_VTOC_16 is defined
* lowest 6 bits is taken as partition number
* the rest is instance number
*
*
* Return values:
* 0 Success
* ENXIO creating minor nodes failed.
*/
int
cmlb_attach(dev_info_t *devi, cmlb_tg_ops_t *tgopsp, int device_type,
int is_removable, char *node_type, int alter_behavior,
cmlb_handle_t cmlbhandle)
{
struct cmlb_lun *un = (struct cmlb_lun *)cmlbhandle;
diskaddr_t cap;
int status;
mutex_enter(CMLB_MUTEX(un));
CMLB_DEVINFO(un) = devi;
un->cmlb_tg_ops = tgopsp;
un->un_device_type = device_type;
un->un_is_removable = is_removable;
un->un_node_type = node_type;
un->un_sys_blocksize = DEV_BSIZE;
un->un_f_geometry_is_valid = FALSE;
un->un_def_labeltype = CMLB_LABEL_VTOC;
un->un_alter_behavior = alter_behavior;
if (is_removable != 0) {
mutex_exit(CMLB_MUTEX(un));
status = DK_TG_GETCAP(un, &cap);
mutex_enter(CMLB_MUTEX(un));
if (status == 0 && cap > DK_MAX_BLOCKS) {
/* set default EFI if > 1TB */
un->un_def_labeltype = CMLB_LABEL_EFI;
}
}
/* create minor nodes based on default label type */
un->un_last_labeltype = CMLB_LABEL_UNDEF;
un->un_cur_labeltype = CMLB_LABEL_UNDEF;
if (cmlb_create_minor_nodes(un) != 0) {
mutex_exit(CMLB_MUTEX(un));
return (ENXIO);
}
un->un_state = CMLB_ATTACHED;
mutex_exit(CMLB_MUTEX(un));
return (0);
}
/*
* cmlb_detach:
*
* Invalidate in-core labeling data and remove all minor nodes for
* the device associate with handle.
*
* Arguments:
* cmlbhandle cmlb handle associated with device.
*
*/
void
cmlb_detach(cmlb_handle_t cmlbhandle)
{
struct cmlb_lun *un = (struct cmlb_lun *)cmlbhandle;
mutex_enter(CMLB_MUTEX(un));
un->un_def_labeltype = CMLB_LABEL_UNDEF;
un->un_f_geometry_is_valid = FALSE;
ddi_remove_minor_node(CMLB_DEVINFO(un), NULL);
un->un_state = CMLB_INITED;
mutex_exit(CMLB_MUTEX(un));
}
/*
* cmlb_validate:
*
* Validates label.
*
* Arguments
* cmlbhandle cmlb handle associated with device.
*
* Notes:
* If new label type is different from the current, adjust minor nodes
* accordingly.
*
* Return values:
* 0 success
* Note: having fdisk but no solaris partition is assumed
* success.
*
* ENOMEM memory allocation failed
* EIO i/o errors during read or get capacity
* EACCESS reservation conflicts
* EINVAL label was corrupt, or no default label was assumed
* ENXIO invalid handle
*/
int
cmlb_validate(cmlb_handle_t cmlbhandle)
{
struct cmlb_lun *un = (struct cmlb_lun *)cmlbhandle;
int rval;
int ret = 0;
/*
* Temp work-around checking un for NULL since there is a bug
* in sd_detach calling this routine from taskq_dispatch
* inited function.
*/
if (un == NULL)
return (ENXIO);
ASSERT(un != NULL);
mutex_enter(CMLB_MUTEX(un));
if (un->un_state < CMLB_ATTACHED) {
mutex_exit(CMLB_MUTEX(un));
return (ENXIO);
}
rval = cmlb_validate_geometry((struct cmlb_lun *)cmlbhandle, 1);
if (rval == ENOTSUP) {
if (un->un_f_geometry_is_valid == TRUE) {
un->un_cur_labeltype = CMLB_LABEL_EFI;
ret = 0;
} else {
ret = EINVAL;
}
} else {
ret = rval;
if (ret == 0)
un->un_cur_labeltype = CMLB_LABEL_VTOC;
}
if (ret == 0)
(void) cmlb_create_minor_nodes(un);
mutex_exit(CMLB_MUTEX(un));
return (ret);
}
/*
* cmlb_invalidate:
* Invalidate in core label data
*
* Arguments:
* cmlbhandle cmlb handle associated with device.
*/
void
cmlb_invalidate(cmlb_handle_t cmlbhandle)
{
struct cmlb_lun *un = (struct cmlb_lun *)cmlbhandle;
if (un == NULL)
return;
mutex_enter(CMLB_MUTEX(un));
un->un_f_geometry_is_valid = FALSE;
mutex_exit(CMLB_MUTEX(un));
}
/*
* cmlb_close:
*
* Close the device, revert to a default label minor node for the device,
* if it is removable.
*
* Arguments:
* cmlbhandle cmlb handle associated with device.
*
* Return values:
* 0 Success
* ENXIO Re-creating minor node failed.
*/
int
cmlb_close(cmlb_handle_t cmlbhandle)
{
struct cmlb_lun *un = (struct cmlb_lun *)cmlbhandle;
mutex_enter(CMLB_MUTEX(un));
un->un_f_geometry_is_valid = FALSE;
/* revert to default minor node for this device */
if (ISREMOVABLE(un)) {
un->un_cur_labeltype = CMLB_LABEL_UNDEF;
(void) cmlb_create_minor_nodes(un);
}
mutex_exit(CMLB_MUTEX(un));
return (0);
}
/*
* cmlb_get_devid_block:
* get the block number where device id is stored.
*
* Arguments:
* cmlbhandle cmlb handle associated with device.
* devidblockp pointer to block number.
*
* Notes:
* It stores the block number of device id in the area pointed to
* by devidblockp.
* with the block number of device id.
*
* Return values:
* 0 success
* EINVAL device id does not apply to current label type.
*/
int
cmlb_get_devid_block(cmlb_handle_t cmlbhandle, diskaddr_t *devidblockp)
{
daddr_t spc, blk, head, cyl;
struct cmlb_lun *un = (struct cmlb_lun *)cmlbhandle;
mutex_enter(CMLB_MUTEX(un));
if (un->un_state < CMLB_ATTACHED) {
mutex_exit(CMLB_MUTEX(un));
return (EINVAL);
}
if (un->un_blockcount <= DK_MAX_BLOCKS) {
/* this geometry doesn't allow us to write a devid */
if (un->un_g.dkg_acyl < 2) {
mutex_exit(CMLB_MUTEX(un));
return (EINVAL);
}
/*
* Subtract 2 guarantees that the next to last cylinder
* is used
*/
cyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl - 2;
spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
head = un->un_g.dkg_nhead - 1;
blk = (cyl * (spc - un->un_g.dkg_apc)) +
(head * un->un_g.dkg_nsect) + 1;
} else {
mutex_exit(CMLB_MUTEX(un));
return (EINVAL);
}
*devidblockp = blk;
mutex_exit(CMLB_MUTEX(un));
return (0);
}
/*
* cmlb_partinfo:
* Get partition info for specified partition number.
*
* Arguments:
* cmlbhandle cmlb handle associated with device.
* part partition number
* nblocksp pointer to number of blocks
* startblockp pointer to starting block
* partnamep pointer to name of partition
* tagp pointer to tag info
*
*
* Notes:
* If in-core label is not valid, this functions tries to revalidate
* the label. If label is valid, it stores the total number of blocks
* in this partition in the area pointed to by nblocksp, starting
* block number in area pointed to by startblockp, pointer to partition
* name in area pointed to by partnamep, and tag value in area
* pointed by tagp.
* For EFI labels, tag value will be set to 0.
*
* For all nblocksp, startblockp and partnamep, tagp, a value of NULL
* indicates the corresponding info is not requested.
*
*
* Return values:
* 0 success
* EINVAL no valid label or requested partition number is invalid.
*
*/
int
cmlb_partinfo(cmlb_handle_t cmlbhandle, int part, diskaddr_t *nblocksp,
diskaddr_t *startblockp, char **partnamep, uint16_t *tagp)
{
struct cmlb_lun *un = (struct cmlb_lun *)cmlbhandle;
int rval;
ASSERT(un != NULL);
mutex_enter(CMLB_MUTEX(un));
if (un->un_state < CMLB_ATTACHED) {
mutex_exit(CMLB_MUTEX(un));
return (EINVAL);
}
if (part < 0 || part >= MAXPART) {
rval = EINVAL;
} else {
(void) cmlb_validate_geometry((struct cmlb_lun *)un, 0);
if ((un->un_f_geometry_is_valid == FALSE) ||
(part < NDKMAP && un->un_solaris_size == 0)) {
rval = EINVAL;
} else {
if (startblockp != NULL)
*startblockp = (diskaddr_t)un->un_offset[part];
if (nblocksp != NULL)
*nblocksp = (diskaddr_t)
un->un_map[part].dkl_nblk;
if (tagp != NULL)
if (un->un_cur_labeltype == CMLB_LABEL_EFI)
*tagp = V_UNASSIGNED;
else
*tagp = un->un_vtoc.v_part[part].p_tag;
rval = 0;
}
/* consistent with behavior of sd for getting minor name */
if (partnamep != NULL)
*partnamep = dk_minor_data[part].name;
}
mutex_exit(CMLB_MUTEX(un));
return (rval);
}
/* ARGSUSED */
int
cmlb_ioctl(cmlb_handle_t cmlbhandle, dev_t dev, int cmd, intptr_t arg,
int flag, cred_t *cred_p, int *rval_p)
{
int err;
struct cmlb_lun *un;
un = (struct cmlb_lun *)cmlbhandle;
ASSERT(un != NULL);
mutex_enter(CMLB_MUTEX(un));
if (un->un_state < CMLB_ATTACHED) {
mutex_exit(CMLB_MUTEX(un));
return (EIO);
}
if ((cmlb_check_update_blockcount(un) == 0) &&
(un->un_blockcount > DK_MAX_BLOCKS)) {
switch (cmd) {
case DKIOCGAPART:
case DKIOCGGEOM:
case DKIOCSGEOM:
case DKIOCGVTOC:
case DKIOCSVTOC:
case DKIOCSAPART:
case DKIOCG_PHYGEOM:
case DKIOCG_VIRTGEOM:
mutex_exit(CMLB_MUTEX(un));
return (ENOTSUP);
}
}
switch (cmd) {
case DKIOCSVTOC:
case DKIOCSETEFI:
case DKIOCSMBOOT:
break;
default:
(void) cmlb_validate_geometry(un, 0);
if ((un->un_f_geometry_is_valid == TRUE) &&
(un->un_solaris_size > 0)) {
/*
* the "geometry_is_valid" flag could be true if we
* have an fdisk table but no Solaris partition
*/
if (un->un_vtoc.v_sanity != VTOC_SANE) {
/* it is EFI, so return ENOTSUP for these */
switch (cmd) {
case DKIOCGAPART:
case DKIOCGGEOM:
case DKIOCGVTOC:
case DKIOCSVTOC:
case DKIOCSAPART:
mutex_exit(CMLB_MUTEX(un));
return (ENOTSUP);
}
}
}
}
mutex_exit(CMLB_MUTEX(un));
switch (cmd) {
case DKIOCGGEOM:
cmlb_dbg(CMLB_TRACE, un, "DKIOCGGEOM\n");
err = cmlb_dkio_get_geometry(un, (caddr_t)arg, flag);
break;
case DKIOCSGEOM:
cmlb_dbg(CMLB_TRACE, un, "DKIOCSGEOM\n");
err = cmlb_dkio_set_geometry(un, (caddr_t)arg, flag);
break;
case DKIOCGAPART:
cmlb_dbg(CMLB_TRACE, un, "DKIOCGAPART\n");
err = cmlb_dkio_get_partition(un, (caddr_t)arg, flag);
break;
case DKIOCSAPART:
cmlb_dbg(CMLB_TRACE, un, "DKIOCSAPART\n");
err = cmlb_dkio_set_partition(un, (caddr_t)arg, flag);
break;
case DKIOCGVTOC:
cmlb_dbg(CMLB_TRACE, un, "DKIOCGVTOC\n");
err = cmlb_dkio_get_vtoc(un, (caddr_t)arg, flag);
break;
case DKIOCGETEFI:
cmlb_dbg(CMLB_TRACE, un, "DKIOCGETEFI\n");
err = cmlb_dkio_get_efi(un, (caddr_t)arg, flag);
break;
case DKIOCPARTITION:
cmlb_dbg(CMLB_TRACE, un, "DKIOCPARTITION\n");
err = cmlb_dkio_partition(un, (caddr_t)arg, flag);
break;
case DKIOCSVTOC:
cmlb_dbg(CMLB_TRACE, un, "DKIOCSVTOC\n");
err = cmlb_dkio_set_vtoc(un, dev, (caddr_t)arg, flag);
break;
case DKIOCSETEFI:
cmlb_dbg(CMLB_TRACE, un, "DKIOCSETEFI\n");
err = cmlb_dkio_set_efi(un, dev, (caddr_t)arg, flag);
break;
case DKIOCGMBOOT:
cmlb_dbg(CMLB_TRACE, un, "DKIOCGMBOOT\n");
err = cmlb_dkio_get_mboot(un, (caddr_t)arg, flag);
break;
case DKIOCSMBOOT:
cmlb_dbg(CMLB_TRACE, un, "DKIOCSMBOOT\n");
err = cmlb_dkio_set_mboot(un, (caddr_t)arg, flag);
break;
case DKIOCG_PHYGEOM:
cmlb_dbg(CMLB_TRACE, un, "DKIOCG_PHYGEOM\n");
#if defined(__i386) || defined(__amd64)
err = cmlb_dkio_get_phygeom(un, (caddr_t)arg, flag);
#else
err = ENOTTY;
#endif
break;
case DKIOCG_VIRTGEOM:
cmlb_dbg(CMLB_TRACE, un, "DKIOCG_VIRTGEOM\n");
#if defined(__i386) || defined(__amd64)
err = cmlb_dkio_get_virtgeom(un, (caddr_t)arg, flag);
#else
err = ENOTTY;
#endif
break;
case DKIOCPARTINFO:
cmlb_dbg(CMLB_TRACE, un, "DKIOCPARTINFO");
#if defined(__i386) || defined(__amd64)
err = cmlb_dkio_partinfo(un, dev, (caddr_t)arg, flag);
#else
err = ENOTTY;
#endif
break;
default:
err = ENOTTY;
}
return (err);
}
dev_t
cmlb_make_device(struct cmlb_lun *un)
{
return (makedevice(ddi_name_to_major(ddi_get_name(CMLB_DEVINFO(un))),
ddi_get_instance(CMLB_DEVINFO(un)) << CMLBUNIT_SHIFT));
}
/*
* Function: cmlb_check_update_blockcount
*
* Description: If current capacity value is invalid, obtains the
* current capacity from target driver.
*
* Return Code: 0 success
* EIO failure
*/
static int
cmlb_check_update_blockcount(struct cmlb_lun *un)
{
int status;
diskaddr_t capacity;
ASSERT(mutex_owned(CMLB_MUTEX(un)));
if (un->un_f_geometry_is_valid == FALSE) {
mutex_exit(CMLB_MUTEX(un));
status = DK_TG_GETCAP(un, &capacity);
mutex_enter(CMLB_MUTEX(un));
if (status == 0 && capacity != 0) {
un->un_blockcount = capacity;
return (0);
} else
return (EIO);
} else
return (0);
}
/*
* Function: cmlb_create_minor_nodes
*
* Description: Create or adjust the minor device nodes for the instance.
* Minor nodes are created based on default label type,
* current label type and last label type we created
* minor nodes based on.
*
*
* Arguments: un - driver soft state (unit) structure
*
* Return Code: 0 success
* ENXIO failure.
*
* Context: Kernel thread context
*/
static int
cmlb_create_minor_nodes(struct cmlb_lun *un)
{
struct driver_minor_data *dmdp;
int instance;
char name[48];
cmlb_label_t newlabeltype;
ASSERT(un != NULL);
ASSERT(mutex_owned(CMLB_MUTEX(un)));
/* check the most common case */
if (un->un_cur_labeltype != CMLB_LABEL_UNDEF &&
un->un_last_labeltype == un->un_cur_labeltype) {
/* do nothing */
return (0);
}
if (un->un_def_labeltype == CMLB_LABEL_UNDEF) {
/* we should never get here */
return (ENXIO);
}
if (un->un_last_labeltype == CMLB_LABEL_UNDEF) {
/* first time during attach */
newlabeltype = un->un_def_labeltype;
instance = ddi_get_instance(CMLB_DEVINFO(un));
/* Create all the minor nodes for this target. */
dmdp = (newlabeltype == CMLB_LABEL_EFI) ? dk_minor_data_efi :
dk_minor_data;
while (dmdp->name != NULL) {
(void) sprintf(name, "%s", dmdp->name);
if (ddi_create_minor_node(CMLB_DEVINFO(un), name,
dmdp->type,
(instance << CMLBUNIT_SHIFT) | dmdp->minor,
un->un_node_type, NULL) == DDI_FAILURE) {
/*
* Clean up any nodes that may have been
* created, in case this fails in the middle
* of the loop.
*/
ddi_remove_minor_node(CMLB_DEVINFO(un), NULL);
return (ENXIO);
}
dmdp++;
}
un->un_last_labeltype = newlabeltype;
return (0);
}
/* Not first time */
if (un->un_cur_labeltype == CMLB_LABEL_UNDEF) {
if (un->un_last_labeltype != un->un_def_labeltype) {
/* close time, revert to default. */
newlabeltype = un->un_def_labeltype;
} else {
/*
* do nothing since the type for which we last created
* nodes matches the default
*/
return (0);
}
} else {
if (un->un_cur_labeltype != un->un_last_labeltype) {
/* We are not closing, use current label type */
newlabeltype = un->un_cur_labeltype;
} else {
/*
* do nothing since the type for which we last created
* nodes matches the current label type
*/
return (0);
}
}
instance = ddi_get_instance(CMLB_DEVINFO(un));
/*
* Currently we only fix up the s7 node when we are switching
* label types from or to EFI. This is consistent with
* current behavior of sd.
*/
if (newlabeltype == CMLB_LABEL_EFI &&
un->un_last_labeltype != CMLB_LABEL_EFI) {
/* from vtoc to EFI */
ddi_remove_minor_node(CMLB_DEVINFO(un), "h");
ddi_remove_minor_node(CMLB_DEVINFO(un), "h,raw");
(void) ddi_create_minor_node(CMLB_DEVINFO(un), "wd",
S_IFBLK, (instance << CMLBUNIT_SHIFT) | WD_NODE,
un->un_node_type, NULL);
(void) ddi_create_minor_node(CMLB_DEVINFO(un), "wd,raw",
S_IFCHR, (instance << CMLBUNIT_SHIFT) | WD_NODE,
un->un_node_type, NULL);
} else {
/* from efi to vtoc */
ddi_remove_minor_node(CMLB_DEVINFO(un), "wd");
ddi_remove_minor_node(CMLB_DEVINFO(un), "wd,raw");
(void) ddi_create_minor_node(CMLB_DEVINFO(un), "h",
S_IFBLK, (instance << CMLBUNIT_SHIFT) | WD_NODE,
un->un_node_type, NULL);
(void) ddi_create_minor_node(CMLB_DEVINFO(un), "h,raw",
S_IFCHR, (instance << CMLBUNIT_SHIFT) | WD_NODE,
un->un_node_type, NULL);
}
un->un_last_labeltype = newlabeltype;
return (0);
}
/*
* Function: cmlb_validate_geometry
*
* Description: Read the label from the disk (if present). Update the unit's
* geometry and vtoc information from the data in the label.
* Verify that the label is valid.
*
* Arguments: un - driver soft state (unit) structure
*
* Return Code: 0 - Successful completion
* EINVAL - Invalid value in un->un_tgt_blocksize or
* un->un_blockcount; or label on disk is corrupted
* or unreadable.
* EACCES - Reservation conflict at the device.
* ENOMEM - Resource allocation error
* ENOTSUP - geometry not applicable
*
* Context: Kernel thread only (can sleep).
*/
static int
cmlb_validate_geometry(struct cmlb_lun *un, int forcerevalid)
{
int label_error = 0;
diskaddr_t capacity;
int count;
ASSERT(mutex_owned(CMLB_MUTEX(un)));
if ((un->un_f_geometry_is_valid == TRUE) && (forcerevalid == 0)) {
if (un->un_cur_labeltype == CMLB_LABEL_EFI)
return (ENOTSUP);
return (0);
}
if (cmlb_check_update_blockcount(un) != 0)
return (EIO);
capacity = un->un_blockcount;
#if defined(_SUNOS_VTOC_16)
/*
* Set up the "whole disk" fdisk partition; this should always
* exist, regardless of whether the disk contains an fdisk table
* or vtoc.
*/
un->un_map[P0_RAW_DISK].dkl_cylno = 0;
/*
* note if capacity > uint32_max we should be using efi,
* and not use p0, so the truncation does not matter.
*/
un->un_map[P0_RAW_DISK].dkl_nblk = capacity;
#endif
/*
* Refresh the logical and physical geometry caches.
* (data from MODE SENSE format/rigid disk geometry pages,
* and scsi_ifgetcap("geometry").
*/
cmlb_resync_geom_caches(un, capacity);
label_error = cmlb_use_efi(un, capacity);
if (label_error == 0) {
/* found a valid EFI label */
cmlb_dbg(CMLB_TRACE, un,
"cmlb_validate_geometry: found EFI label\n");
/*
* solaris_size and geometry_is_valid are set in
* cmlb_use_efi
*/
return (ENOTSUP);
} else {
if ((label_error != ESRCH) && (label_error != EINVAL)) {
cmlb_dbg(CMLB_ERROR, un, "cmlb_use_efi failed %d\n",
label_error);
return (label_error);
}
}
/* NO EFI label found */
if (capacity > DK_MAX_BLOCKS) {
if (label_error == ESRCH) {
/*
* they've configured a LUN over 1TB, but used
* format.dat to restrict format's view of the
* capacity to be under 1TB
*/
/* i.e > 1Tb with a VTOC < 1TB */
cmlb_log(CMLB_DEVINFO(un), CMLB_LABEL(un), CE_WARN,
"is >1TB and has a VTOC label: use format(1M) to "
"either decrease the");
cmlb_log(CMLB_DEVINFO(un), CMLB_LABEL(un), CE_CONT,
"size to be < 1TB or relabel the disk with an EFI "
"label");
} else {
/* unlabeled disk over 1TB */
return (ENOTSUP);
}
}
label_error = 0;
/*
* at this point it is either labeled with a VTOC or it is
* under 1TB
*/
/*
* Only DIRECT ACCESS devices will have Sun labels.
* CD's supposedly have a Sun label, too
*/
if (un->un_device_type == DTYPE_DIRECT || ISREMOVABLE(un)) {
struct dk_label *dkl;
offset_t label_addr;
int rval;
size_t buffer_size;
/*
* Note: This will set up un->un_solaris_size and
* un->un_solaris_offset.
*/
rval = cmlb_read_fdisk(un, capacity);
if (rval != 0) {
ASSERT(mutex_owned(CMLB_MUTEX(un)));
return (rval);
}
if (un->un_solaris_size <= DK_LABEL_LOC) {
/*
* Found fdisk table but no Solaris partition entry,
* so don't call cmlb_uselabel() and don't create
* a default label.
*/
label_error = 0;
un->un_f_geometry_is_valid = TRUE;
goto no_solaris_partition;
}
label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
buffer_size = sizeof (struct dk_label);
cmlb_dbg(CMLB_TRACE, un, "cmlb_validate_geometry: "
"label_addr: 0x%x allocation size: 0x%x\n",
label_addr, buffer_size);
if ((dkl = kmem_zalloc(buffer_size, KM_NOSLEEP)) == NULL)
return (ENOMEM);
mutex_exit(CMLB_MUTEX(un));
rval = DK_TG_READ(un, dkl, label_addr, buffer_size);
mutex_enter(CMLB_MUTEX(un));
switch (rval) {
case 0:
/*
* cmlb_uselabel will establish that the geometry
* is valid.
*/
if (cmlb_uselabel(un,
(struct dk_label *)(uintptr_t)dkl) !=
CMLB_LABEL_IS_VALID) {
label_error = EINVAL;
} else
un->un_vtoc_label_is_from_media = 1;
break;
case EACCES:
label_error = EACCES;
break;
default:
label_error = EINVAL;
break;
}
kmem_free(dkl, buffer_size);
}
/*
* If a valid label was not found, AND if no reservation conflict
* was detected, then go ahead and create a default label (4069506).
*
* Note: currently, for VTOC_8 devices, the default label is created
* for removables only. For VTOC_16 devices, the default label will
* be created for both removables and non-removables alike.
* (see cmlb_build_default_label)
*/
#if defined(_SUNOS_VTOC_8)
if (ISREMOVABLE(un) && (label_error != EACCES)) {
#elif defined(_SUNOS_VTOC_16)
if (label_error != EACCES) {
#endif
if (un->un_f_geometry_is_valid == FALSE) {
cmlb_build_default_label(un);
}
label_error = 0;
}
no_solaris_partition:
#if defined(_SUNOS_VTOC_16)
/*
* If we have valid geometry, set up the remaining fdisk partitions.
* Note that dkl_cylno is not used for the fdisk map entries, so
* we set it to an entirely bogus value.
*/
for (count = 0; count < FD_NUMPART; count++) {
un->un_map[FDISK_P1 + count].dkl_cylno = -1;
un->un_map[FDISK_P1 + count].dkl_nblk =
un->un_fmap[count].fmap_nblk;
un->un_offset[FDISK_P1 + count] =
un->un_fmap[count].fmap_start;
}
#endif
for (count = 0; count < NDKMAP; count++) {
#if defined(_SUNOS_VTOC_8)
struct dk_map *lp = &un->un_map[count];
un->un_offset[count] =
un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
#elif defined(_SUNOS_VTOC_16)
struct dkl_partition *vp = &un->un_vtoc.v_part[count];
un->un_offset[count] = vp->p_start + un->un_solaris_offset;
#else
#error "No VTOC format defined."
#endif
}
return (label_error);
}
#if defined(_SUNOS_VTOC_16)
/*
* Macro: MAX_BLKS
*
* This macro is used for table entries where we need to have the largest
* possible sector value for that head & SPT (sectors per track)
* combination. Other entries for some smaller disk sizes are set by
* convention to match those used by X86 BIOS usage.
*/
#define MAX_BLKS(heads, spt) UINT16_MAX * heads * spt, heads, spt
/*
* Function: cmlb_convert_geometry
*
* Description: Convert physical geometry into a dk_geom structure. In
* other words, make sure we don't wrap 16-bit values.
* e.g. converting from geom_cache to dk_geom
*
* Context: Kernel thread only
*/
static void
cmlb_convert_geometry(diskaddr_t capacity, struct dk_geom *un_g)
{
int i;
static const struct chs_values {
uint_t max_cap; /* Max Capacity for this HS. */
uint_t nhead; /* Heads to use. */
uint_t nsect; /* SPT to use. */
} CHS_values[] = {
{0x00200000, 64, 32}, /* 1GB or smaller disk. */
{0x01000000, 128, 32}, /* 8GB or smaller disk. */
{MAX_BLKS(255, 63)}, /* 502.02GB or smaller disk. */
{MAX_BLKS(255, 126)}, /* .98TB or smaller disk. */
{DK_MAX_BLOCKS, 255, 189} /* Max size is just under 1TB */
};
/* Unlabeled SCSI floppy device */
if (capacity <= 0x1000) {
un_g->dkg_nhead = 2;
un_g->dkg_ncyl = 80;
un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
return;
}
/*
* For all devices we calculate cylinders using the
* heads and sectors we assign based on capacity of the
* device. The table is designed to be compatible with the
* way other operating systems lay out fdisk tables for X86
* and to insure that the cylinders never exceed 65535 to
* prevent problems with X86 ioctls that report geometry.
* We use SPT that are multiples of 63, since other OSes that
* are not limited to 16-bits for cylinders stop at 63 SPT
* we make do by using multiples of 63 SPT.
*
* Note than capacities greater than or equal to 1TB will simply
* get the largest geometry from the table. This should be okay
* since disks this large shouldn't be using CHS values anyway.
*/
for (i = 0; CHS_values[i].max_cap < capacity &&
CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
;
un_g->dkg_nhead = CHS_values[i].nhead;
un_g->dkg_nsect = CHS_values[i].nsect;
}
#endif
/*
* Function: cmlb_resync_geom_caches
*
* Description: (Re)initialize both geometry caches: the virtual geometry
* information is extracted from the HBA (the "geometry"
* capability), and the physical geometry cache data is
* generated by issuing MODE SENSE commands.
*
* Arguments: un - driver soft state (unit) structure
* capacity - disk capacity in #blocks
*
* Context: Kernel thread only (can sleep).
*/
static void
cmlb_resync_geom_caches(struct cmlb_lun *un, diskaddr_t capacity)
{
struct cmlb_geom pgeom;
struct cmlb_geom lgeom;
struct cmlb_geom *pgeomp = &pgeom;
unsigned short nhead;
unsigned short nsect;
int spc;
int ret;
ASSERT(un != NULL);
ASSERT(mutex_owned(CMLB_MUTEX(un)));
/*
* Ask the controller for its logical geometry.
* Note: if the HBA does not support scsi_ifgetcap("geometry"),
* then the lgeom cache will be invalid.
*/
mutex_exit(CMLB_MUTEX(un));
bzero(&lgeom, sizeof (struct cmlb_geom));
ret = DK_TG_GETVIRTGEOM(un, &lgeom);
mutex_enter(CMLB_MUTEX(un));
bcopy(&lgeom, &un->un_lgeom, sizeof (un->un_lgeom));
/*
* Initialize the pgeom cache from lgeom, so that if MODE SENSE
* doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
*/
if (ret != 0 || un->un_lgeom.g_nsect == 0 ||
un->un_lgeom.g_nhead == 0) {
/*
* Note: Perhaps this needs to be more adaptive? The rationale
* is that, if there's no HBA geometry from the HBA driver, any
* guess is good, since this is the physical geometry. If MODE
* SENSE fails this gives a max cylinder size for non-LBA access
*/
nhead = 255;
nsect = 63;
} else {
nhead = un->un_lgeom.g_nhead;
nsect = un->un_lgeom.g_nsect;
}
if (ISCD(un)) {
pgeomp->g_nhead = 1;
pgeomp->g_nsect = nsect * nhead;
} else {
pgeomp->g_nhead = nhead;
pgeomp->g_nsect = nsect;
}
spc = pgeomp->g_nhead * pgeomp->g_nsect;
pgeomp->g_capacity = capacity;
pgeomp->g_ncyl = pgeomp->g_capacity / spc;
pgeomp->g_acyl = 0;
/*
* Retrieve fresh geometry data from the hardware, stash it
* here temporarily before we rebuild the incore label.
*
* We want to use the MODE SENSE commands to derive the
* physical geometry of the device, but if either command
* fails, the logical geometry is used as the fallback for
* disk label geometry.
*/
mutex_exit(CMLB_MUTEX(un));
(void) DK_TG_GETPHYGEOM(un, pgeomp);
mutex_enter(CMLB_MUTEX(un));
/*
* Now update the real copy while holding the mutex. This
* way the global copy is never in an inconsistent state.
*/
bcopy(pgeomp, &un->un_pgeom, sizeof (un->un_pgeom));
cmlb_dbg(CMLB_INFO, un, "cmlb_resync_geom_caches: "
"(cached from lgeom)\n");
cmlb_dbg(CMLB_INFO, un,
" ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
cmlb_dbg(CMLB_INFO, un, " lbasize: %d; capacity: %ld; "
"intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
un->un_pgeom.g_rpm);
}
/*
* Function: cmlb_read_fdisk
*
* Description: utility routine to read the fdisk table.
*
* Arguments: un - driver soft state (unit) structure
*
* Return Code: 0 for success (includes not reading for no_fdisk_present case
* errnos from tg_rw if failed to read the first block.
*
* Context: Kernel thread only (can sleep).
*/
/* ARGSUSED */
static int
cmlb_read_fdisk(struct cmlb_lun *un, diskaddr_t capacity)
{
#if defined(_NO_FDISK_PRESENT)
un->un_solaris_offset = 0;
un->un_solaris_size = capacity;
bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
return (0);
#elif defined(_FIRMWARE_NEEDS_FDISK)
struct ipart *fdp;
struct mboot *mbp;
struct ipart fdisk[FD_NUMPART];
int i;
char sigbuf[2];
caddr_t bufp;
int uidx;
int rval;
int lba = 0;
uint_t solaris_offset; /* offset to solaris part. */
daddr_t solaris_size; /* size of solaris partition */
uint32_t blocksize;
ASSERT(un != NULL);
ASSERT(mutex_owned(CMLB_MUTEX(un)));
/*
* Start off assuming no fdisk table
*/
solaris_offset = 0;
solaris_size = capacity;
blocksize = 512;
bufp = kmem_zalloc(blocksize, KM_SLEEP);
mutex_exit(CMLB_MUTEX(un));
rval = DK_TG_READ(un, bufp, 0, blocksize);
mutex_enter(CMLB_MUTEX(un));
if (rval != 0) {
cmlb_dbg(CMLB_ERROR, un,
"cmlb_read_fdisk: fdisk read err\n");
kmem_free(bufp, blocksize);
return (rval);
}
mbp = (struct mboot *)bufp;
/*
* The fdisk table does not begin on a 4-byte boundary within the
* master boot record, so we copy it to an aligned structure to avoid
* alignment exceptions on some processors.
*/
bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
/*
* Check for lba support before verifying sig; sig might not be
* there, say on a blank disk, but the max_chs mark may still
* be present.
*
* Note: LBA support and BEFs are an x86-only concept but this
* code should work OK on SPARC as well.
*/
/*
* First, check for lba-access-ok on root node (or prom root node)
* if present there, don't need to search fdisk table.
*/
if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
"lba-access-ok", 0) != 0) {
/* All drives do LBA; don't search fdisk table */
lba = 1;
} else {
/* Okay, look for mark in fdisk table */
for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
/* accumulate "lba" value from all partitions */
lba = (lba || cmlb_has_max_chs_vals(fdp));
}
}
/*
* Next, look for 'no-bef-lba-access' prop on parent.
* Its presence means the realmode driver doesn't support
* LBA, so the target driver shouldn't advertise it as ok.
* This should be a temporary condition; one day all
* BEFs should support the LBA access functions.
*/
if ((lba != 0) && (ddi_getprop(DDI_DEV_T_ANY,
ddi_get_parent(CMLB_DEVINFO(un)), DDI_PROP_DONTPASS,
"no-bef-lba-access", 0) != 0)) {
/* BEF doesn't support LBA; don't advertise it as ok */
lba = 0;
}
if (lba != 0) {
dev_t dev = cmlb_make_device(un);
if (ddi_getprop(dev, CMLB_DEVINFO(un), DDI_PROP_DONTPASS,
"lba-access-ok", 0) == 0) {
/* not found; create it */
if (ddi_prop_create(dev, CMLB_DEVINFO(un), 0,
"lba-access-ok", (caddr_t)NULL, 0) !=
DDI_PROP_SUCCESS) {
cmlb_dbg(CMLB_ERROR, un,
"cmlb_read_fdisk: Can't create lba "
"property for instance %d\n",
ddi_get_instance(CMLB_DEVINFO(un)));
}
}
}
bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
/*
* Endian-independent signature check
*/
if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
(sigbuf[0] != (MBB_MAGIC & 0xFF))) {
cmlb_dbg(CMLB_ERROR, un,
"cmlb_read_fdisk: no fdisk\n");
bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
goto done;
}
#ifdef CMLBDEBUG
if (cmlb_level_mask & SD_LOGMASK_INFO) {
fdp = fdisk;
cmlb_dbg(CMLB_INFO, un, "cmlb_read_fdisk:\n");
cmlb_dbg(CMLB_INFO, un, " relsect "
"numsect sysid bootid\n");
for (i = 0; i < FD_NUMPART; i++, fdp++) {
cmlb_dbg(CMLB_INFO, un,
" %d: %8d %8d 0x%08x 0x%08x\n",
i, fdp->relsect, fdp->numsect,
fdp->systid, fdp->bootid);
}
}
#endif
/*
* Try to find the unix partition
*/
uidx = -1;
solaris_offset = 0;
solaris_size = 0;
for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
int relsect;
int numsect;
if (fdp->numsect == 0) {
un->un_fmap[i].fmap_start = 0;
un->un_fmap[i].fmap_nblk = 0;
continue;
}
/*
* Data in the fdisk table is little-endian.
*/
relsect = LE_32(fdp->relsect);
numsect = LE_32(fdp->numsect);
un->un_fmap[i].fmap_start = relsect;
un->un_fmap[i].fmap_nblk = numsect;
if (fdp->systid != SUNIXOS &&
fdp->systid != SUNIXOS2 &&
fdp->systid != EFI_PMBR) {
continue;
}
/*
* use the last active solaris partition id found
* (there should only be 1 active partition id)
*
* if there are no active solaris partition id
* then use the first inactive solaris partition id
*/
if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
uidx = i;
solaris_offset = relsect;
solaris_size = numsect;
}
}
cmlb_dbg(CMLB_INFO, un, "fdisk 0x%x 0x%lx",
un->un_solaris_offset, un->un_solaris_size);
done:
/*
* Clear the VTOC info, only if the Solaris partition entry
* has moved, changed size, been deleted, or if the size of
* the partition is too small to even fit the label sector.
*/
if ((un->un_solaris_offset != solaris_offset) ||
(un->un_solaris_size != solaris_size) ||
solaris_size <= DK_LABEL_LOC) {
cmlb_dbg(CMLB_INFO, un, "fdisk moved 0x%x 0x%lx",
solaris_offset, solaris_size);
bzero(&un->un_g, sizeof (struct dk_geom));
bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
un->un_f_geometry_is_valid = FALSE;
}
un->un_solaris_offset = solaris_offset;
un->un_solaris_size = solaris_size;
kmem_free(bufp, blocksize);
return (rval);
#else /* #elif defined(_FIRMWARE_NEEDS_FDISK) */
#error "fdisk table presence undetermined for this platform."
#endif /* #if defined(_NO_FDISK_PRESENT) */
}
static void
cmlb_swap_efi_gpt(efi_gpt_t *e)
{
_NOTE(ASSUMING_PROTECTED(*e))
e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
e->efi_gpt_NumberOfPartitionEntries =
LE_32(e->efi_gpt_NumberOfPartitionEntries);
e->efi_gpt_SizeOfPartitionEntry =
LE_32(e->efi_gpt_SizeOfPartitionEntry);
e->efi_gpt_PartitionEntryArrayCRC32 =
LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
}
static void
cmlb_swap_efi_gpe(int nparts, efi_gpe_t *p)
{
int i;
_NOTE(ASSUMING_PROTECTED(*p))
for (i = 0; i < nparts; i++) {
UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
p[i].efi_gpe_PartitionTypeGUID);
p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
/* PartitionAttrs */
}
}
static int
cmlb_validate_efi(efi_gpt_t *labp)
{
if (labp->efi_gpt_Signature != EFI_SIGNATURE)
return (EINVAL);
/* at least 96 bytes in this version of the spec. */
if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
labp->efi_gpt_HeaderSize)
return (EINVAL);
/* this should be 128 bytes */
if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
return (EINVAL);
return (0);
}
static int
cmlb_use_efi(struct cmlb_lun *un, diskaddr_t capacity)
{
int i;
int rval = 0;
efi_gpe_t *partitions;
uchar_t *buf;
uint_t lbasize; /* is really how much to read */
diskaddr_t cap;
uint_t nparts;
diskaddr_t gpe_lba;
int iofailed = 0;
ASSERT(mutex_owned(CMLB_MUTEX(un)));
lbasize = un->un_sys_blocksize;
buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
mutex_exit(CMLB_MUTEX(un));
rval = DK_TG_READ(un, buf, 0, lbasize);
if (rval) {
iofailed = 1;
goto done_err;
}
if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
/* not ours */
rval = ESRCH;
goto done_err;
}
rval = DK_TG_READ(un, buf, 1, lbasize);
if (rval) {
iofailed = 1;
goto done_err;
}
cmlb_swap_efi_gpt((efi_gpt_t *)buf);
if ((rval = cmlb_validate_efi((efi_gpt_t *)buf)) != 0) {
/*
* Couldn't read the primary, try the backup. Our
* capacity at this point could be based on CHS, so
* check what the device reports.
*/
rval = DK_TG_GETCAP(un, &cap);
if (rval) {
iofailed = 1;
goto done_err;
}
if ((rval = DK_TG_READ(un, buf, cap - 1, lbasize)) != 0) {
iofailed = 1;
goto done_err;
}
cmlb_swap_efi_gpt((efi_gpt_t *)buf);
if ((rval = cmlb_validate_efi((efi_gpt_t *)buf)) != 0)
goto done_err;
cmlb_log(CMLB_DEVINFO(un), CMLB_LABEL(un), CE_WARN,
"primary label corrupt; using backup\n");
}
nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
rval = DK_TG_READ(un, buf, gpe_lba, EFI_MIN_ARRAY_SIZE);
if (rval) {
iofailed = 1;
goto done_err;
}
partitions = (efi_gpe_t *)buf;
if (nparts > MAXPART) {
nparts = MAXPART;
}
cmlb_swap_efi_gpe(nparts, partitions);
mutex_enter(CMLB_MUTEX(un));
/* Fill in partition table. */
for (i = 0; i < nparts; i++) {
if (partitions->efi_gpe_StartingLBA != 0 ||
partitions->efi_gpe_EndingLBA != 0) {
un->un_map[i].dkl_cylno =
partitions->efi_gpe_StartingLBA;
un->un_map[i].dkl_nblk =
partitions->efi_gpe_EndingLBA -
partitions->efi_gpe_StartingLBA + 1;
un->un_offset[i] =
partitions->efi_gpe_StartingLBA;
}
if (i == WD_NODE) {
/*
* minor number 7 corresponds to the whole disk
*/
un->un_map[i].dkl_cylno = 0;
un->un_map[i].dkl_nblk = capacity;
un->un_offset[i] = 0;
}
partitions++;
}
un->un_solaris_offset = 0;
un->un_solaris_size = capacity;
un->un_f_geometry_is_valid = TRUE;
kmem_free(buf, EFI_MIN_ARRAY_SIZE);
return (0);
done_err:
kmem_free(buf, EFI_MIN_ARRAY_SIZE);
mutex_enter(CMLB_MUTEX(un));
/*
* if we didn't find something that could look like a VTOC
* and the disk is over 1TB, we know there isn't a valid label.
* Otherwise let cmlb_uselabel decide what to do. We only
* want to invalidate this if we're certain the label isn't
* valid because cmlb_prop_op will now fail, which in turn
* causes things like opens and stats on the partition to fail.
*/
if ((capacity > DK_MAX_BLOCKS) && (rval != ESRCH) && !iofailed) {
un->un_f_geometry_is_valid = FALSE;
}
return (rval);
}
/*
* Function: cmlb_uselabel
*
* Description: Validate the disk label and update the relevant data (geometry,
* partition, vtoc, and capacity data) in the cmlb_lun struct.
* Marks the geometry of the unit as being valid.
*
* Arguments: un: unit struct.
* dk_label: disk label
*
* Return Code: CMLB_LABEL_IS_VALID: Label read from disk is OK; geometry,
* partition, vtoc, and capacity data are good.
*
* CMLB_LABEL_IS_INVALID: Magic number or checksum error in the
* label; or computed capacity does not jibe with capacity
* reported from the READ CAPACITY command.
*
* Context: Kernel thread only (can sleep).
*/
static int
cmlb_uselabel(struct cmlb_lun *un, struct dk_label *labp)
{
short *sp;
short sum;
short count;
int label_error = CMLB_LABEL_IS_VALID;
int i;
diskaddr_t label_capacity;
int part_end;
diskaddr_t track_capacity;
#if defined(_SUNOS_VTOC_16)
struct dkl_partition *vpartp;
#endif
ASSERT(un != NULL);
ASSERT(mutex_owned(CMLB_MUTEX(un)));
/* Validate the magic number of the label. */
if (labp->dkl_magic != DKL_MAGIC) {
#if defined(__sparc)
if (!ISREMOVABLE(un)) {
cmlb_log(CMLB_DEVINFO(un), CMLB_LABEL(un), CE_WARN,
"Corrupt label; wrong magic number\n");
}
#endif
return (CMLB_LABEL_IS_INVALID);
}
/* Validate the checksum of the label. */
sp = (short *)labp;
sum = 0;
count = sizeof (struct dk_label) / sizeof (short);
while (count--) {
sum ^= *sp++;
}
if (sum != 0) {
#if defined(_SUNOS_VTOC_16)
if (!ISCD(un)) {
#elif defined(_SUNOS_VTOC_8)
if (!ISREMOVABLE(un)) {
#endif
cmlb_log(CMLB_DEVINFO(un), CMLB_LABEL(un), CE_WARN,
"Corrupt label - label checksum failed\n");
}
return (CMLB_LABEL_IS_INVALID);
}
/*
* Fill in geometry structure with data from label.
*/
bzero(&un->un_g, sizeof (struct dk_geom));
un->un_g.dkg_ncyl = labp->dkl_ncyl;
un->un_g.dkg_acyl = labp->dkl_acyl;
un->un_g.dkg_bcyl = 0;
un->un_g.dkg_nhead = labp->dkl_nhead;
un->un_g.dkg_nsect = labp->dkl_nsect;
un->un_g.dkg_intrlv = labp->dkl_intrlv;
#if defined(_SUNOS_VTOC_8)
un->un_g.dkg_gap1 = labp->dkl_gap1;
un->un_g.dkg_gap2 = labp->dkl_gap2;
un->un_g.dkg_bhead = labp->dkl_bhead;
#endif
#if defined(_SUNOS_VTOC_16)
un->un_dkg_skew = labp->dkl_skew;
#endif
#if defined(__i386) || defined(__amd64)
un->un_g.dkg_apc = labp->dkl_apc;
#endif
/*
* Currently we rely on the values in the label being accurate. If
* dkl_rpm or dkl_pcly are zero in the label, use a default value.
*
* Note: In the future a MODE SENSE may be used to retrieve this data,
* although this command is optional in SCSI-2.
*/
un->un_g.dkg_rpm = (labp->dkl_rpm != 0) ? labp->dkl_rpm : 3600;
un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
(un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
/*
* The Read and Write reinstruct values may not be valid
* for older disks.
*/
un->un_g.dkg_read_reinstruct = labp->dkl_read_reinstruct;
un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
/* Fill in partition table. */
#if defined(_SUNOS_VTOC_8)
for (i = 0; i < NDKMAP; i++) {
un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
un->un_map[i].dkl_nblk = labp->dkl_map[i].dkl_nblk;
}
#endif
#if defined(_SUNOS_VTOC_16)
vpartp = labp->dkl_vtoc.v_part;
track_capacity = labp->dkl_nhead * labp->dkl_nsect;
for (i = 0; i < NDKMAP; i++, vpartp++) {
un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
un->un_map[i].dkl_nblk = vpartp->p_size;
}
#endif
/* Fill in VTOC Structure. */
bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
#if defined(_SUNOS_VTOC_8)
/*
* The 8-slice vtoc does not include the ascii label; save it into
* the device's soft state structure here.
*/
bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
#endif
/* Mark the geometry as valid. */
un->un_f_geometry_is_valid = TRUE;
/* Now look for a valid capacity. */
track_capacity = (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
label_capacity = (un->un_g.dkg_ncyl * track_capacity);
if (un->un_g.dkg_acyl) {
#if defined(__i386) || defined(__amd64)
/* we may have > 1 alts cylinder */
label_capacity += (track_capacity * un->un_g.dkg_acyl);
#else
label_capacity += track_capacity;
#endif
}
/*
* if we got invalidated when mutex exit and entered again,
* if blockcount different than when we came in, need to
* retry from beginning of cmlb_validate_geometry.
* revisit this on next phase of utilizing this for
* sd.
*/
if (label_capacity <= un->un_blockcount) {
#if defined(_SUNOS_VTOC_8)
/*
* We can't let this happen on drives that are subdivided
* into logical disks (i.e., that have an fdisk table).
* The un_blockcount field should always hold the full media
* size in sectors, period. This code would overwrite
* un_blockcount with the size of the Solaris fdisk partition.
*/
cmlb_dbg(CMLB_ERROR, un,
"cmlb_uselabel: Label %d blocks; Drive %d blocks\n",
label_capacity, un->un_blockcount);
un->un_solaris_size = label_capacity;
#endif /* defined(_SUNOS_VTOC_8) */
goto done;
}
if (ISCD(un)) {
/* For CDROMs, we trust that the data in the label is OK. */
#if defined(_SUNOS_VTOC_8)
for (i = 0; i < NDKMAP; i++) {
part_end = labp->dkl_nhead * labp->dkl_nsect *
labp->dkl_map[i].dkl_cylno +
labp->dkl_map[i].dkl_nblk - 1;
if ((labp->dkl_map[i].dkl_nblk) &&
(part_end > un->un_blockcount)) {
un->un_f_geometry_is_valid = FALSE;
break;
}
}
#endif
#if defined(_SUNOS_VTOC_16)
vpartp = &(labp->dkl_vtoc.v_part[0]);
for (i = 0; i < NDKMAP; i++, vpartp++) {
part_end = vpartp->p_start + vpartp->p_size;
if ((vpartp->p_size > 0) &&
(part_end > un->un_blockcount)) {
un->un_f_geometry_is_valid = FALSE;
break;
}
}
#endif
} else {
/* label_capacity > un->un_blockcount */
cmlb_log(CMLB_DEVINFO(un), CMLB_LABEL(un), CE_WARN,
"Corrupt label - bad geometry\n");
cmlb_log(CMLB_DEVINFO(un), CMLB_LABEL(un), CE_CONT,
"Label says %llu blocks; Drive says %llu blocks\n",
label_capacity, un->un_blockcount);
un->un_f_geometry_is_valid = FALSE;
label_error = CMLB_LABEL_IS_INVALID;
}
done:
cmlb_dbg(CMLB_INFO, un, "cmlb_uselabel: (label geometry)\n");
cmlb_dbg(CMLB_INFO, un,
" ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
un->un_g.dkg_nhead, un->un_g.dkg_nsect);
cmlb_dbg(CMLB_INFO, un,
" label_capacity: %d; intrlv: %d; rpm: %d\n",
un->un_blockcount, un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
cmlb_dbg(CMLB_INFO, un, " wrt_reinstr: %d; rd_reinstr: %d\n",
un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
ASSERT(mutex_owned(CMLB_MUTEX(un)));
return (label_error);
}
/*
* Function: cmlb_build_default_label
*
* Description: Generate a default label for those devices that do not have
* one, e.g., new media, removable cartridges, etc..
*
* Context: Kernel thread only
*/
static void
cmlb_build_default_label(struct cmlb_lun *un)
{
#if defined(_SUNOS_VTOC_16)
uint_t phys_spc;
uint_t disksize;
struct dk_geom un_g;
#endif
ASSERT(un != NULL);
ASSERT(mutex_owned(CMLB_MUTEX(un)));
#if defined(_SUNOS_VTOC_8)
/*
* Note: This is a legacy check for non-removable devices on VTOC_8
* only. This may be a valid check for VTOC_16 as well.
*/
if (!ISREMOVABLE(un)) {
return;
}
#endif
bzero(&un->un_g, sizeof (struct dk_geom));
bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
#if defined(_SUNOS_VTOC_8)
/*
* It's a REMOVABLE media, therefore no label (on sparc, anyway).
* But it is still necessary to set up various geometry information,
* and we are doing this here.
*/
/*
* For the rpm, we use the minimum for the disk. For the head, cyl,
* and number of sector per track, if the capacity <= 1GB, head = 64,
* sect = 32. else head = 255, sect 63 Note: the capacity should be
* equal to C*H*S values. This will cause some truncation of size due
* to round off errors. For CD-ROMs, this truncation can have adverse
* side effects, so returning ncyl and nhead as 1. The nsect will
* overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
*/
un->un_solaris_size = un->un_blockcount;
if (ISCD(un)) {
tg_attribute_t tgattribute;
int is_writable;
/*
* Preserve the old behavior for non-writable
* medias. Since dkg_nsect is a ushort, it
* will lose bits as cdroms have more than
* 65536 sectors. So if we recalculate
* capacity, it will become much shorter.
* But the dkg_* information is not
* used for CDROMs so it is OK. But for
* Writable CDs we need this information
* to be valid (for newfs say). So we
* make nsect and nhead > 1 that way
* nsect can still stay within ushort limit
* without losing any bits.
*/
bzero(&tgattribute, sizeof (tg_attribute_t));
mutex_exit(CMLB_MUTEX(un));
is_writable = (DK_TG_GETATTRIBUTE(un, &tgattribute) == 0) ?
tgattribute.media_is_writable : 1;
mutex_enter(CMLB_MUTEX(un));
if (is_writable) {
un->un_g.dkg_nhead = 64;
un->un_g.dkg_nsect = 32;
un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
un->un_solaris_size = un->un_g.dkg_ncyl *
un->un_g.dkg_nhead * un->un_g.dkg_nsect;
} else {
un->un_g.dkg_ncyl = 1;
un->un_g.dkg_nhead = 1;
un->un_g.dkg_nsect = un->un_blockcount;
}
} else {
if (un->un_blockcount <= 0x1000) {
/* unlabeled SCSI floppy device */
un->un_g.dkg_nhead = 2;
un->un_g.dkg_ncyl = 80;
un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
} else if (un->un_blockcount <= 0x200000) {
un->un_g.dkg_nhead = 64;
un->un_g.dkg_nsect = 32;
un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
} else {
un->un_g.dkg_nhead = 255;
un->un_g.dkg_nsect = 63;
un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
}
un->un_solaris_size =
un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
}
un->un_g.dkg_acyl = 0;
un->un_g.dkg_bcyl = 0;
un->un_g.dkg_rpm = 200;
un->un_asciilabel[0] = '\0';
un->un_g.dkg_pcyl = un->un_g.dkg_ncyl;
un->un_map[0].dkl_cylno = 0;
un->un_map[0].dkl_nblk = un->un_solaris_size;
un->un_map[2].dkl_cylno = 0;
un->un_map[2].dkl_nblk = un->un_solaris_size;
#elif defined(_SUNOS_VTOC_16)
if (un->un_solaris_size == 0) {
/*
* Got fdisk table but no solaris entry therefore
* don't create a default label
*/
un->un_f_geometry_is_valid = TRUE;
return;
}
/*
* For CDs we continue to use the physical geometry to calculate
* number of cylinders. All other devices must convert the
* physical geometry (cmlb_geom) to values that will fit
* in a dk_geom structure.
*/
if (ISCD(un)) {
phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
} else {
/* Convert physical geometry to disk geometry */
bzero(&un_g, sizeof (struct dk_geom));
cmlb_convert_geometry(un->un_blockcount, &un_g);
bcopy(&un_g, &un->un_g, sizeof (un->un_g));
phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
}
un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
un->un_g.dkg_acyl = DK_ACYL;
un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
disksize = un->un_g.dkg_ncyl * phys_spc;
if (ISCD(un)) {
/*
* CD's don't use the "heads * sectors * cyls"-type of
* geometry, but instead use the entire capacity of the media.
*/
disksize = un->un_solaris_size;
un->un_g.dkg_nhead = 1;
un->un_g.dkg_nsect = 1;
un->un_g.dkg_rpm =
(un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
un->un_vtoc.v_part[0].p_start = 0;
un->un_vtoc.v_part[0].p_size = disksize;
un->un_vtoc.v_part[0].p_tag = V_BACKUP;
un->un_vtoc.v_part[0].p_flag = V_UNMNT;
un->un_map[0].dkl_cylno = 0;
un->un_map[0].dkl_nblk = disksize;
un->un_offset[0] = 0;
} else {
/*
* Hard disks and removable media cartridges
*/
un->un_g.dkg_rpm =
(un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
/* Add boot slice */
un->un_vtoc.v_part[8].p_start = 0;
un->un_vtoc.v_part[8].p_size = phys_spc;
un->un_vtoc.v_part[8].p_tag = V_BOOT;
un->un_vtoc.v_part[8].p_flag = V_UNMNT;
un->un_map[8].dkl_cylno = 0;
un->un_map[8].dkl_nblk = phys_spc;
un->un_offset[8] = 0;
if ((un->un_alter_behavior &
CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT) &&
un->un_device_type == DTYPE_DIRECT) {
un->un_vtoc.v_part[9].p_start = phys_spc;
un->un_vtoc.v_part[9].p_size = 2 * phys_spc;
un->un_vtoc.v_part[9].p_tag = V_ALTSCTR;
un->un_vtoc.v_part[9].p_flag = 0;
un->un_map[9].dkl_cylno = 1;
un->un_map[9].dkl_nblk = 2 * phys_spc;
un->un_offset[9] = phys_spc;
}
}
un->un_g.dkg_apc = 0;
un->un_vtoc.v_nparts = V_NUMPAR;
un->un_vtoc.v_version = V_VERSION;
/* Add backup slice */
un->un_vtoc.v_part[2].p_start = 0;
un->un_vtoc.v_part[2].p_size = disksize;
un->un_vtoc.v_part[2].p_tag = V_BACKUP;
un->un_vtoc.v_part[2].p_flag = V_UNMNT;
un->un_map[2].dkl_cylno = 0;
un->un_map[2].dkl_nblk = disksize;
un->un_offset[2] = 0;
(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
" hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
un->un_g.dkg_nhead, un->un_g.dkg_nsect);
#else
#error "No VTOC format defined."
#endif
un->un_g.dkg_read_reinstruct = 0;
un->un_g.dkg_write_reinstruct = 0;
un->un_g.dkg_intrlv = 1;
un->un_vtoc.v_sanity = VTOC_SANE;
un->un_f_geometry_is_valid = TRUE;
un->un_vtoc_label_is_from_media = 0;
cmlb_dbg(CMLB_INFO, un,
"cmlb_build_default_label: Default label created: "
"cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
un->un_g.dkg_nsect, un->un_blockcount);
}
#if defined(_FIRMWARE_NEEDS_FDISK)
/*
* Max CHS values, as they are encoded into bytes, for 1022/254/63
*/
#define LBA_MAX_SECT (63 | ((1022 & 0x300) >> 2))
#define LBA_MAX_CYL (1022 & 0xFF)
#define LBA_MAX_HEAD (254)
/*
* Function: cmlb_has_max_chs_vals
*
* Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
*
* Arguments: fdp - ptr to CHS info
*
* Return Code: True or false
*
* Context: Any.
*/
static int
cmlb_has_max_chs_vals(struct ipart *fdp)
{
return ((fdp->begcyl == LBA_MAX_CYL) &&
(fdp->beghead == LBA_MAX_HEAD) &&
(fdp->begsect == LBA_MAX_SECT) &&
(fdp->endcyl == LBA_MAX_CYL) &&
(fdp->endhead == LBA_MAX_HEAD) &&
(fdp->endsect == LBA_MAX_SECT));
}
#endif
/*
* Function: cmlb_dkio_get_geometry
*
* Description: This routine is the driver entry point for handling user
* requests to get the device geometry (DKIOCGGEOM).
*
* Arguments:
* arg - pointer to user provided dk_geom structure specifying
* the controller's notion of the current geometry.
* flag - this argument is a pass through to ddi_copyxxx()
* directly from the mode argument of ioctl().
*
* Return Code: 0
* EFAULT
* ENXIO
* EIO
*/
static int
cmlb_dkio_get_geometry(struct cmlb_lun *un, caddr_t arg, int flag)
{
struct dk_geom *tmp_geom = NULL;
int rval = 0;
/*
* cmlb_validate_geometry does not spin a disk up
* if it was spun down. We need to make sure it
* is ready.
*/
mutex_enter(CMLB_MUTEX(un));
rval = cmlb_validate_geometry(un, 1);
#if defined(_SUNOS_VTOC_8)
if (rval == EINVAL &&
un->un_alter_behavior & CMLB_FAKE_GEOM_LABEL_IOCTLS_VTOC8) {
/*
* This is to return a default label geometry even when we
* do not really assume a default label for the device.
* dad driver utilizes this.
*/
if (un->un_blockcount <= DK_MAX_BLOCKS) {
cmlb_setup_default_geometry(un);
rval = 0;
}
}
#endif
if (rval) {
mutex_exit(CMLB_MUTEX(un));
return (rval);
}
#if defined(__i386) || defined(__amd64)
if (un->un_solaris_size == 0) {
mutex_exit(CMLB_MUTEX(un));
return (EIO);
}
#endif
/*
* Make a local copy of the soft state geometry to avoid some potential
* race conditions associated with holding the mutex and updating the
* write_reinstruct value
*/
tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
if (tmp_geom->dkg_write_reinstruct == 0) {
tmp_geom->dkg_write_reinstruct =
(int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
cmlb_rot_delay) / (int)60000);
}
mutex_exit(CMLB_MUTEX(un));
rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
flag);
if (rval != 0) {
rval = EFAULT;
}
kmem_free(tmp_geom, sizeof (struct dk_geom));
return (rval);
}
/*
* Function: cmlb_dkio_set_geometry
*
* Description: This routine is the driver entry point for handling user
* requests to set the device geometry (DKIOCSGEOM). The actual
* device geometry is not updated, just the driver "notion" of it.
*
* Arguments:
* arg - pointer to user provided dk_geom structure used to set
* the controller's notion of the current geometry.
* flag - this argument is a pass through to ddi_copyxxx()
* directly from the mode argument of ioctl().
*
* Return Code: 0
* EFAULT
* ENXIO
* EIO
*/
static int
cmlb_dkio_set_geometry(struct cmlb_lun *un, caddr_t arg, int flag)
{
struct dk_geom *tmp_geom;
struct dk_map *lp;
int rval = 0;
int i;
#if defined(__i386) || defined(__amd64)
if (un->un_solaris_size == 0) {
return (EIO);
}
#endif
/*
* We need to copy the user specified geometry into local
* storage and then update the softstate. We don't want to hold
* the mutex and copyin directly from the user to the soft state
*/
tmp_geom = (struct dk_geom *)
kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
if (rval != 0) {
kmem_free(tmp_geom, sizeof (struct dk_geom));
return (EFAULT);
}
mutex_enter(CMLB_MUTEX(un));
bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
for (i = 0; i < NDKMAP; i++) {
lp = &un->un_map[i];
un->un_offset[i] =
un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
#if defined(__i386) || defined(__amd64)
un->un_offset[i] += un->un_solaris_offset;
#endif
}
un->un_f_geometry_is_valid = FALSE;
mutex_exit(CMLB_MUTEX(un));
kmem_free(tmp_geom, sizeof (struct dk_geom));
return (rval);
}
/*
* Function: cmlb_dkio_get_partition
*
* Description: This routine is the driver entry point for handling user
* requests to get the partition table (DKIOCGAPART).
*
* Arguments:
* arg - pointer to user provided dk_allmap structure specifying
* the controller's notion of the current partition table.
* flag - this argument is a pass through to ddi_copyxxx()
* directly from the mode argument of ioctl().
*
* Return Code: 0
* EFAULT
* ENXIO
* EIO
*/
static int
cmlb_dkio_get_partition(struct cmlb_lun *un, caddr_t arg, int flag)
{
int rval = 0;
int size;
/*
* Make sure the geometry is valid before getting the partition
* information.
*/
mutex_enter(CMLB_MUTEX(un));
if ((rval = cmlb_validate_geometry(un, 1)) != 0) {
mutex_exit(CMLB_MUTEX(un));
return (rval);
}
mutex_exit(CMLB_MUTEX(un));
#if defined(__i386) || defined(__amd64)
if (un->un_solaris_size == 0) {
return (EIO);
}
#endif
#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(flag & FMODELS)) {
case DDI_MODEL_ILP32: {
struct dk_map32 dk_map32[NDKMAP];
int i;
for (i = 0; i < NDKMAP; i++) {
dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
dk_map32[i].dkl_nblk = un->un_map[i].dkl_nblk;
}
size = NDKMAP * sizeof (struct dk_map32);
rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
if (rval != 0) {
rval = EFAULT;
}
break;
}
case DDI_MODEL_NONE:
size = NDKMAP * sizeof (struct dk_map);
rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
if (rval != 0) {
rval = EFAULT;
}
break;
}
#else /* ! _MULTI_DATAMODEL */
size = NDKMAP * sizeof (struct dk_map);
rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
if (rval != 0) {
rval = EFAULT;
}
#endif /* _MULTI_DATAMODEL */
return (rval);
}
/*
* Function: cmlb_dkio_set_partition
*
* Description: This routine is the driver entry point for handling user
* requests to set the partition table (DKIOCSAPART). The actual
* device partition is not updated.
*
* Arguments:
* arg - pointer to user provided dk_allmap structure used to set
* the controller's notion of the partition table.
* flag - this argument is a pass through to ddi_copyxxx()
* directly from the mode argument of ioctl().
*
* Return Code: 0
* EINVAL
* EFAULT
* ENXIO
* EIO
*/
static int
cmlb_dkio_set_partition(struct cmlb_lun *un, caddr_t arg, int flag)
{
struct dk_map dk_map[NDKMAP];
struct dk_map *lp;
int rval = 0;
int size;
int i;
#if defined(_SUNOS_VTOC_16)
struct dkl_partition *vp;
#endif
/*
* Set the map for all logical partitions. We lock
* the priority just to make sure an interrupt doesn't
* come in while the map is half updated.
*/
_NOTE(DATA_READABLE_WITHOUT_LOCK(cmlb_lun::un_solaris_size))
mutex_enter(CMLB_MUTEX(un));
if (un->un_blockcount > DK_MAX_BLOCKS) {
mutex_exit(CMLB_MUTEX(un));
return (ENOTSUP);
}
mutex_exit(CMLB_MUTEX(un));
if (un->un_solaris_size == 0) {
return (EIO);
}
#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(flag & FMODELS)) {
case DDI_MODEL_ILP32: {
struct dk_map32 dk_map32[NDKMAP];
size = NDKMAP * sizeof (struct dk_map32);
rval = ddi_copyin((void *)arg, dk_map32, size, flag);
if (rval != 0) {
return (EFAULT);
}
for (i = 0; i < NDKMAP; i++) {
dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
dk_map[i].dkl_nblk = dk_map32[i].dkl_nblk;
}
break;
}
case DDI_MODEL_NONE:
size = NDKMAP * sizeof (struct dk_map);
rval = ddi_copyin((void *)arg, dk_map, size, flag);
if (rval != 0) {
return (EFAULT);
}
break;
}
#else /* ! _MULTI_DATAMODEL */
size = NDKMAP * sizeof (struct dk_map);
rval = ddi_copyin((void *)arg, dk_map, size, flag);
if (rval != 0) {
return (EFAULT);
}
#endif /* _MULTI_DATAMODEL */
mutex_enter(CMLB_MUTEX(un));
/* Note: The size used in this bcopy is set based upon the data model */
bcopy(dk_map, un->un_map, size);
#if defined(_SUNOS_VTOC_16)
vp = (struct dkl_partition *)&(un->un_vtoc);
#endif /* defined(_SUNOS_VTOC_16) */
for (i = 0; i < NDKMAP; i++) {
lp = &un->un_map[i];
un->un_offset[i] =
un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
#if defined(_SUNOS_VTOC_16)
vp->p_start = un->un_offset[i];
vp->p_size = lp->dkl_nblk;
vp++;
#endif /* defined(_SUNOS_VTOC_16) */
#if defined(__i386) || defined(__amd64)
un->un_offset[i] += un->un_solaris_offset;
#endif
}
mutex_exit(CMLB_MUTEX(un));
return (rval);
}
/*
* Function: cmlb_dkio_get_vtoc
*
* Description: This routine is the driver entry point for handling user
* requests to get the current volume table of contents
* (DKIOCGVTOC).
*
* Arguments:
* arg - pointer to user provided vtoc structure specifying
* the current vtoc.
* flag - this argument is a pass through to ddi_copyxxx()
* directly from the mode argument of ioctl().
*
* Return Code: 0
* EFAULT
* ENXIO
* EIO
*/
static int
cmlb_dkio_get_vtoc(struct cmlb_lun *un, caddr_t arg, int flag)
{
#if defined(_SUNOS_VTOC_8)
struct vtoc user_vtoc;
#endif /* defined(_SUNOS_VTOC_8) */
int rval = 0;
mutex_enter(CMLB_MUTEX(un));
rval = cmlb_validate_geometry(un, 1);
#if defined(_SUNOS_VTOC_8)
if (rval == EINVAL &&
(un->un_alter_behavior & CMLB_FAKE_GEOM_LABEL_IOCTLS_VTOC8)) {
/*
* This is to return a default label even when we do not
* really assume a default label for the device.
* dad driver utilizes this.
*/
if (un->un_blockcount <= DK_MAX_BLOCKS) {
cmlb_setup_default_geometry(un);
rval = 0;
}
}
#endif
if (rval) {
mutex_exit(CMLB_MUTEX(un));
return (rval);
}
#if defined(_SUNOS_VTOC_8)
cmlb_build_user_vtoc(un, &user_vtoc);
mutex_exit(CMLB_MUTEX(un));
#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(flag & FMODELS)) {
case DDI_MODEL_ILP32: {
struct vtoc32 user_vtoc32;
vtoctovtoc32(user_vtoc, user_vtoc32);
if (ddi_copyout(&user_vtoc32, (void *)arg,
sizeof (struct vtoc32), flag)) {
return (EFAULT);
}
break;
}
case DDI_MODEL_NONE:
if (ddi_copyout(&user_vtoc, (void *)arg,
sizeof (struct vtoc), flag)) {
return (EFAULT);
}
break;
}
#else /* ! _MULTI_DATAMODEL */
if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
return (EFAULT);
}
#endif /* _MULTI_DATAMODEL */
#elif defined(_SUNOS_VTOC_16)
mutex_exit(CMLB_MUTEX(un));
#ifdef _MULTI_DATAMODEL
/*
* The un_vtoc structure is a "struct dk_vtoc" which is always
* 32-bit to maintain compatibility with existing on-disk
* structures. Thus, we need to convert the structure when copying
* it out to a datamodel-dependent "struct vtoc" in a 64-bit
* program. If the target is a 32-bit program, then no conversion
* is necessary.
*/
/* LINTED: logical expression always true: op "||" */
ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
switch (ddi_model_convert_from(flag & FMODELS)) {
case DDI_MODEL_ILP32:
if (ddi_copyout(&(un->un_vtoc), (void *)arg,
sizeof (un->un_vtoc), flag)) {
return (EFAULT);
}
break;
case DDI_MODEL_NONE: {
struct vtoc user_vtoc;
vtoc32tovtoc(un->un_vtoc, user_vtoc);
if (ddi_copyout(&user_vtoc, (void *)arg,
sizeof (struct vtoc), flag)) {
return (EFAULT);
}
break;
}
}
#else /* ! _MULTI_DATAMODEL */
if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
flag)) {
return (EFAULT);
}
#endif /* _MULTI_DATAMODEL */
#else
#error "No VTOC format defined."
#endif
return (rval);
}
static int
cmlb_dkio_get_efi(struct cmlb_lun *un, caddr_t arg, int flag)
{
dk_efi_t user_efi;
int rval = 0;
void *buffer;
if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
return (EFAULT);
user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
rval = DK_TG_READ(un, buffer, user_efi.dki_lba, user_efi.dki_length);
if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
user_efi.dki_length, flag) != 0)
rval = EFAULT;
kmem_free(buffer, user_efi.dki_length);
return (rval);
}
/*
* Function: cmlb_build_user_vtoc
*
* Description: This routine populates a pass by reference variable with the
* current volume table of contents.
*
* Arguments: un - driver soft state (unit) structure
* user_vtoc - pointer to vtoc structure to be populated
*/
static void
cmlb_build_user_vtoc(struct cmlb_lun *un, struct vtoc *user_vtoc)
{
struct dk_map2 *lpart;
struct dk_map *lmap;
struct partition *vpart;
int nblks;
int i;
ASSERT(mutex_owned(CMLB_MUTEX(un)));
/*
* Return vtoc structure fields in the provided VTOC area, addressed
* by *vtoc.
*/
bzero(user_vtoc, sizeof (struct vtoc));
user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
user_vtoc->v_sanity = VTOC_SANE;
user_vtoc->v_version = un->un_vtoc.v_version;
bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
user_vtoc->v_sectorsz = un->un_sys_blocksize;
user_vtoc->v_nparts = un->un_vtoc.v_nparts;
for (i = 0; i < 10; i++)
user_vtoc->v_reserved[i] = un->un_vtoc.v_reserved[i];
/*
* Convert partitioning information.
*
* Note the conversion from starting cylinder number
* to starting sector number.
*/
lmap = un->un_map;
lpart = (struct dk_map2 *)un->un_vtoc.v_part;
vpart = user_vtoc->v_part;
nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
for (i = 0; i < V_NUMPAR; i++) {
vpart->p_tag = lpart->p_tag;
vpart->p_flag = lpart->p_flag;
vpart->p_start = lmap->dkl_cylno * nblks;
vpart->p_size = lmap->dkl_nblk;
lmap++;
lpart++;
vpart++;
/* (4364927) */
user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
}
bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
}
static int
cmlb_dkio_partition(struct cmlb_lun *un, caddr_t arg, int flag)
{
struct partition64 p64;
int rval = 0;
uint_t nparts;
efi_gpe_t *partitions;
efi_gpt_t *buffer;
diskaddr_t gpe_lba;
if (ddi_copyin((const void *)arg, &p64,
sizeof (struct partition64), flag)) {
return (EFAULT);
}
buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
rval = DK_TG_READ(un, buffer, 1, DEV_BSIZE);
if (rval != 0)
goto done_error;
cmlb_swap_efi_gpt(buffer);
if ((rval = cmlb_validate_efi(buffer)) != 0)
goto done_error;
nparts = buffer->efi_gpt_NumberOfPartitionEntries;
gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
if (p64.p_partno > nparts) {
/* couldn't find it */
rval = ESRCH;
goto done_error;
}
/*
* if we're dealing with a partition that's out of the normal
* 16K block, adjust accordingly
*/
gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
rval = DK_TG_READ(un, buffer, gpe_lba, EFI_MIN_ARRAY_SIZE);
if (rval) {
goto done_error;
}
partitions = (efi_gpe_t *)buffer;
cmlb_swap_efi_gpe(nparts, partitions);
partitions += p64.p_partno;
bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
sizeof (struct uuid));
p64.p_start = partitions->efi_gpe_StartingLBA;
p64.p_size = partitions->efi_gpe_EndingLBA -
p64.p_start + 1;
if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
rval = EFAULT;
done_error:
kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
return (rval);
}
/*
* Function: cmlb_dkio_set_vtoc
*
* Description: This routine is the driver entry point for handling user
* requests to set the current volume table of contents
* (DKIOCSVTOC).
*
* Arguments: dev - the device number
* arg - pointer to user provided vtoc structure used to set the
* current vtoc.
* flag - this argument is a pass through to ddi_copyxxx()
* directly from the mode argument of ioctl().
*
* Return Code: 0
* EFAULT
* ENXIO
* EINVAL
* ENOTSUP
*/
static int
cmlb_dkio_set_vtoc(struct cmlb_lun *un, dev_t dev, caddr_t arg, int flag)
{
struct vtoc user_vtoc;
int rval = 0;
#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(flag & FMODELS)) {
case DDI_MODEL_ILP32: {
struct vtoc32 user_vtoc32;
if (ddi_copyin((const void *)arg, &user_vtoc32,
sizeof (struct vtoc32), flag)) {
return (EFAULT);
}
vtoc32tovtoc(user_vtoc32, user_vtoc);
break;
}
case DDI_MODEL_NONE:
if (ddi_copyin((const void *)arg, &user_vtoc,
sizeof (struct vtoc), flag)) {
return (EFAULT);
}
break;
}
#else /* ! _MULTI_DATAMODEL */
if (ddi_copyin((const void *)arg, &user_vtoc,
sizeof (struct vtoc), flag)) {
return (EFAULT);
}
#endif /* _MULTI_DATAMODEL */
mutex_enter(CMLB_MUTEX(un));
if (un->un_blockcount > DK_MAX_BLOCKS) {
mutex_exit(CMLB_MUTEX(un));
return (ENOTSUP);
}
if (un->un_g.dkg_ncyl == 0) {
mutex_exit(CMLB_MUTEX(un));
return (EINVAL);
}
mutex_exit(CMLB_MUTEX(un));
cmlb_clear_efi(un);
ddi_remove_minor_node(CMLB_DEVINFO(un), "wd");
ddi_remove_minor_node(CMLB_DEVINFO(un), "wd,raw");
(void) ddi_create_minor_node(CMLB_DEVINFO(un), "h",
S_IFBLK, (CMLBUNIT(dev) << CMLBUNIT_SHIFT) | WD_NODE,
un->un_node_type, NULL);
(void) ddi_create_minor_node(CMLB_DEVINFO(un), "h,raw",
S_IFCHR, (CMLBUNIT(dev) << CMLBUNIT_SHIFT) | WD_NODE,
un->un_node_type, NULL);
mutex_enter(CMLB_MUTEX(un));
if ((rval = cmlb_build_label_vtoc(un, &user_vtoc)) == 0) {
if ((rval = cmlb_write_label(un)) == 0) {
if (cmlb_validate_geometry(un, 1) != 0) {
cmlb_dbg(CMLB_ERROR, un,
"cmlb_dkio_set_vtoc: "
"Failed validate geometry\n");
}
}
}
mutex_exit(CMLB_MUTEX(un));
return (rval);
}
/*
* Function: cmlb_build_label_vtoc
*
* Description: This routine updates the driver soft state current volume table
* of contents based on a user specified vtoc.
*
* Arguments: un - driver soft state (unit) structure
* user_vtoc - pointer to vtoc structure specifying vtoc to be used
* to update the driver soft state.
*
* Return Code: 0
* EINVAL
*/
static int
cmlb_build_label_vtoc(struct cmlb_lun *un, struct vtoc *user_vtoc)
{
struct dk_map *lmap;
struct partition *vpart;
int nblks;
#if defined(_SUNOS_VTOC_8)
int ncyl;
struct dk_map2 *lpart;
#endif /* defined(_SUNOS_VTOC_8) */
int i;
ASSERT(mutex_owned(CMLB_MUTEX(un)));
/* Sanity-check the vtoc */
if (user_vtoc->v_sanity != VTOC_SANE ||
user_vtoc->v_sectorsz != un->un_sys_blocksize ||
user_vtoc->v_nparts != V_NUMPAR) {
cmlb_dbg(CMLB_INFO, un,
"cmlb_build_label_vtoc: vtoc not valid\n");
return (EINVAL);
}
nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
if (nblks == 0) {
cmlb_dbg(CMLB_INFO, un,
"cmlb_build_label_vtoc: geom nblks is 0\n");
return (EINVAL);
}
#if defined(_SUNOS_VTOC_8)
vpart = user_vtoc->v_part;
for (i = 0; i < V_NUMPAR; i++) {
if ((vpart->p_start % nblks) != 0) {
cmlb_dbg(CMLB_INFO, un,
"cmlb_build_label_vtoc: p_start not multiply of"
"nblks part %d p_start %d nblks %d\n", i,
vpart->p_start, nblks);
return (EINVAL);
}
ncyl = vpart->p_start / nblks;
ncyl += vpart->p_size / nblks;
if ((vpart->p_size % nblks) != 0) {
ncyl++;
}
if (ncyl > (int)un->un_g.dkg_ncyl) {
cmlb_dbg(CMLB_INFO, un,
"cmlb_build_label_vtoc: ncyl %d > dkg_ncyl %d"
"p_size %ld p_start %ld nblks %d part number %d"
"tag %d\n",
ncyl, un->un_g.dkg_ncyl, vpart->p_size,
vpart->p_start, nblks,
i, vpart->p_tag);
return (EINVAL);
}
vpart++;
}
#endif /* defined(_SUNOS_VTOC_8) */
/* Put appropriate vtoc structure fields into the disk label */
#if defined(_SUNOS_VTOC_16)
/*
* The vtoc is always a 32bit data structure to maintain the
* on-disk format. Convert "in place" instead of doing bcopy.
*/
vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
/*
* in the 16-slice vtoc, starting sectors are expressed in
* numbers *relative* to the start of the Solaris fdisk partition.
*/
lmap = un->un_map;
vpart = user_vtoc->v_part;
for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
lmap->dkl_cylno = vpart->p_start / nblks;
lmap->dkl_nblk = vpart->p_size;
}
#elif defined(_SUNOS_VTOC_8)
un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
un->un_vtoc.v_nparts = user_vtoc->v_nparts;
for (i = 0; i < 10; i++)
un->un_vtoc.v_reserved[i] = user_vtoc->v_reserved[i];
/*
* Note the conversion from starting sector number
* to starting cylinder number.
* Return error if division results in a remainder.
*/
lmap = un->un_map;
lpart = un->un_vtoc.v_part;
vpart = user_vtoc->v_part;
for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
lpart->p_tag = vpart->p_tag;
lpart->p_flag = vpart->p_flag;
lmap->dkl_cylno = vpart->p_start / nblks;
lmap->dkl_nblk = vpart->p_size;
lmap++;
lpart++;
vpart++;
/* (4387723) */
#ifdef _LP64
if (user_vtoc->timestamp[i] > TIME32_MAX) {
un->un_vtoc.v_timestamp[i] = TIME32_MAX;
} else {
un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
}
#else
un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
#endif
}
bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
#else
#error "No VTOC format defined."
#endif
return (0);
}
/*
* Function: cmlb_clear_efi
*
* Description: This routine clears all EFI labels.
*
* Arguments: un - driver soft state (unit) structure
*
* Return Code: void
*/
static void
cmlb_clear_efi(struct cmlb_lun *un)
{
efi_gpt_t *gpt;
diskaddr_t cap;
int rval;
ASSERT(!mutex_owned(CMLB_MUTEX(un)));
gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
if (DK_TG_READ(un, gpt, 1, DEV_BSIZE) != 0) {
goto done;
}
cmlb_swap_efi_gpt(gpt);
rval = cmlb_validate_efi(gpt);
if (rval == 0) {
/* clear primary */
bzero(gpt, sizeof (efi_gpt_t));
if (rval = DK_TG_WRITE(un, gpt, 1, EFI_LABEL_SIZE)) {
cmlb_dbg(CMLB_INFO, un,
"cmlb_clear_efi: clear primary label failed\n");
}
}
/* the backup */
rval = DK_TG_GETCAP(un, &cap);
if (rval) {
goto done;
}
if ((rval = DK_TG_READ(un, gpt, cap - 1, EFI_LABEL_SIZE)) != 0) {
goto done;
}
cmlb_swap_efi_gpt(gpt);
rval = cmlb_validate_efi(gpt);
if (rval == 0) {
/* clear backup */
cmlb_dbg(CMLB_TRACE, un,
"cmlb_clear_efi clear backup@%lu\n", cap - 1);
bzero(gpt, sizeof (efi_gpt_t));
if ((rval = DK_TG_WRITE(un, gpt, cap - 1, EFI_LABEL_SIZE))) {
cmlb_dbg(CMLB_INFO, un,
"cmlb_clear_efi: clear backup label failed\n");
}
}
done:
kmem_free(gpt, sizeof (efi_gpt_t));
}
/*
* Function: cmlb_set_vtoc
*
* Description: This routine writes data to the appropriate positions
*
* Arguments: un - driver soft state (unit) structure
* dkl - the data to be written
*
* Return: void
*/
static int
cmlb_set_vtoc(struct cmlb_lun *un, struct dk_label *dkl)
{
uint_t label_addr;
int sec;
int blk;
int head;
int cyl;
int rval;
#if defined(__i386) || defined(__amd64)
label_addr = un->un_solaris_offset + DK_LABEL_LOC;
#else
/* Write the primary label at block 0 of the solaris partition. */
label_addr = 0;
#endif
rval = DK_TG_WRITE(un, dkl, label_addr, un->un_sys_blocksize);
if (rval != 0) {
return (rval);
}
/*
* Calculate where the backup labels go. They are always on
* the last alternate cylinder, but some older drives put them
* on head 2 instead of the last head. They are always on the
* first 5 odd sectors of the appropriate track.
*
* We have no choice at this point, but to believe that the
* disk label is valid. Use the geometry of the disk
* as described in the label.
*/
cyl = dkl->dkl_ncyl + dkl->dkl_acyl - 1;
head = dkl->dkl_nhead - 1;
/*
* Write and verify the backup labels. Make sure we don't try to
* write past the last cylinder.
*/
for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
blk = (daddr_t)(
(cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
(head * dkl->dkl_nsect) + sec);
#if defined(__i386) || defined(__amd64)
blk += un->un_solaris_offset;
#endif
rval = DK_TG_WRITE(un, dkl, blk, un->un_sys_blocksize);
cmlb_dbg(CMLB_INFO, un,
"cmlb_set_vtoc: wrote backup label %d\n", blk);
if (rval != 0) {
goto exit;
}
}
exit:
return (rval);
}
/*
* Function: cmlb_clear_vtoc
*
* Description: This routine clears out the VTOC labels.
*
* Arguments: un - driver soft state (unit) structure
*
* Return: void
*/
static void
cmlb_clear_vtoc(struct cmlb_lun *un)
{
struct dk_label *dkl;
mutex_exit(CMLB_MUTEX(un));
dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
mutex_enter(CMLB_MUTEX(un));
/*
* cmlb_set_vtoc uses these fields in order to figure out
* where to overwrite the backup labels
*/
dkl->dkl_apc = un->un_g.dkg_apc;
dkl->dkl_ncyl = un->un_g.dkg_ncyl;
dkl->dkl_acyl = un->un_g.dkg_acyl;
dkl->dkl_nhead = un->un_g.dkg_nhead;
dkl->dkl_nsect = un->un_g.dkg_nsect;
mutex_exit(CMLB_MUTEX(un));
(void) cmlb_set_vtoc(un, dkl);
kmem_free(dkl, sizeof (struct dk_label));
mutex_enter(CMLB_MUTEX(un));
}
/*
* Function: cmlb_write_label
*
* Description: This routine will validate and write the driver soft state vtoc
* contents to the device.
*
* Arguments: un cmlb handle
*
* Return Code: the code returned by cmlb_send_scsi_cmd()
* 0
* EINVAL
* ENXIO
* ENOMEM
*/
static int
cmlb_write_label(struct cmlb_lun *un)
{
struct dk_label *dkl;
short sum;
short *sp;
int i;
int rval;
ASSERT(mutex_owned(CMLB_MUTEX(un)));
mutex_exit(CMLB_MUTEX(un));
dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
mutex_enter(CMLB_MUTEX(un));
bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
dkl->dkl_rpm = un->un_g.dkg_rpm;
dkl->dkl_pcyl = un->un_g.dkg_pcyl;
dkl->dkl_apc = un->un_g.dkg_apc;
dkl->dkl_intrlv = un->un_g.dkg_intrlv;
dkl->dkl_ncyl = un->un_g.dkg_ncyl;
dkl->dkl_acyl = un->un_g.dkg_acyl;
dkl->dkl_nhead = un->un_g.dkg_nhead;
dkl->dkl_nsect = un->un_g.dkg_nsect;
#if defined(_SUNOS_VTOC_8)
dkl->dkl_obs1 = un->un_g.dkg_obs1;
dkl->dkl_obs2 = un->un_g.dkg_obs2;
dkl->dkl_obs3 = un->un_g.dkg_obs3;
for (i = 0; i < NDKMAP; i++) {
dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
dkl->dkl_map[i].dkl_nblk = un->un_map[i].dkl_nblk;
}
bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
#elif defined(_SUNOS_VTOC_16)
dkl->dkl_skew = un->un_dkg_skew;
#else
#error "No VTOC format defined."
#endif
dkl->dkl_magic = DKL_MAGIC;
dkl->dkl_write_reinstruct = un->un_g.dkg_write_reinstruct;
dkl->dkl_read_reinstruct = un->un_g.dkg_read_reinstruct;
/* Construct checksum for the new disk label */
sum = 0;
sp = (short *)dkl;
i = sizeof (struct dk_label) / sizeof (short);
while (i--) {
sum ^= *sp++;
}
dkl->dkl_cksum = sum;
mutex_exit(CMLB_MUTEX(un));
rval = cmlb_set_vtoc(un, dkl);
exit:
kmem_free(dkl, sizeof (struct dk_label));
mutex_enter(CMLB_MUTEX(un));
return (rval);
}
static int
cmlb_dkio_set_efi(struct cmlb_lun *un, dev_t dev, caddr_t arg, int flag)
{
dk_efi_t user_efi;
int rval = 0;
void *buffer;
if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
return (EFAULT);
user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
rval = EFAULT;
} else {
/*
* let's clear the vtoc labels and clear the softstate
* vtoc.
*/
mutex_enter(CMLB_MUTEX(un));
if (un->un_vtoc.v_sanity == VTOC_SANE) {
cmlb_dbg(CMLB_TRACE, un,
"cmlb_dkio_set_efi: CLEAR VTOC\n");
if (un->un_vtoc_label_is_from_media)
cmlb_clear_vtoc(un);
bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
mutex_exit(CMLB_MUTEX(un));
ddi_remove_minor_node(CMLB_DEVINFO(un), "h");
ddi_remove_minor_node(CMLB_DEVINFO(un), "h,raw");
(void) ddi_create_minor_node(CMLB_DEVINFO(un), "wd",
S_IFBLK,
(CMLBUNIT(dev) << CMLBUNIT_SHIFT) | WD_NODE,
un->un_node_type, NULL);
(void) ddi_create_minor_node(CMLB_DEVINFO(un), "wd,raw",
S_IFCHR,
(CMLBUNIT(dev) << CMLBUNIT_SHIFT) | WD_NODE,
un->un_node_type, NULL);
} else
mutex_exit(CMLB_MUTEX(un));
rval = DK_TG_WRITE(un, buffer, user_efi.dki_lba,
user_efi.dki_length);
if (rval == 0) {
mutex_enter(CMLB_MUTEX(un));
un->un_f_geometry_is_valid = FALSE;
mutex_exit(CMLB_MUTEX(un));
}
}
kmem_free(buffer, user_efi.dki_length);
return (rval);
}
/*
* Function: cmlb_dkio_get_mboot
*
* Description: This routine is the driver entry point for handling user
* requests to get the current device mboot (DKIOCGMBOOT)
*
* Arguments:
* arg - pointer to user provided mboot structure specifying
* the current mboot.
* flag - this argument is a pass through to ddi_copyxxx()
* directly from the mode argument of ioctl().
*
* Return Code: 0
* EINVAL
* EFAULT
* ENXIO
*/
static int
cmlb_dkio_get_mboot(struct cmlb_lun *un, caddr_t arg, int flag)
{
struct mboot *mboot;
int rval;
size_t buffer_size;
#if defined(_SUNOS_VTOC_8)
if ((!ISREMOVABLE(un)) || (arg == NULL)) {
#elif defined(_SUNOS_VTOC_16)
if (arg == NULL) {
#endif
return (EINVAL);
}
/*
* Read the mboot block, located at absolute block 0 on the target.
*/
buffer_size = sizeof (struct mboot);
cmlb_dbg(CMLB_TRACE, un,
"cmlb_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
mboot = kmem_zalloc(buffer_size, KM_SLEEP);
if ((rval = DK_TG_READ(un, mboot, 0, buffer_size)) == 0) {
if (ddi_copyout(mboot, (void *)arg,
sizeof (struct mboot), flag) != 0) {
rval = EFAULT;
}
}
kmem_free(mboot, buffer_size);
return (rval);
}
/*
* Function: cmlb_dkio_set_mboot
*
* Description: This routine is the driver entry point for handling user
* requests to validate and set the device master boot
* (DKIOCSMBOOT).
*
* Arguments:
* arg - pointer to user provided mboot structure used to set the
* master boot.
* flag - this argument is a pass through to ddi_copyxxx()
* directly from the mode argument of ioctl().
*
* Return Code: 0
* EINVAL
* EFAULT
* ENXIO
*/
static int
cmlb_dkio_set_mboot(struct cmlb_lun *un, caddr_t arg, int flag)
{
struct mboot *mboot = NULL;
int rval;
ushort_t magic;
ASSERT(!mutex_owned(CMLB_MUTEX(un)));
#if defined(_SUNOS_VTOC_8)
if (!ISREMOVABLE(un)) {
return (EINVAL);
}
#endif
if (arg == NULL) {
return (EINVAL);
}
mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
if (ddi_copyin((const void *)arg, mboot,
sizeof (struct mboot), flag) != 0) {
kmem_free(mboot, (size_t)(sizeof (struct mboot)));
return (EFAULT);
}
/* Is this really a master boot record? */
magic = LE_16(mboot->signature);
if (magic != MBB_MAGIC) {
kmem_free(mboot, (size_t)(sizeof (struct mboot)));
return (EINVAL);
}
rval = DK_TG_WRITE(un, mboot, 0, un->un_sys_blocksize);
mutex_enter(CMLB_MUTEX(un));
#if defined(__i386) || defined(__amd64)
if (rval == 0) {
/*
* mboot has been written successfully.
* update the fdisk and vtoc tables in memory
*/
rval = cmlb_update_fdisk_and_vtoc(un);
if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
mutex_exit(CMLB_MUTEX(un));
kmem_free(mboot, (size_t)(sizeof (struct mboot)));
return (rval);
}
}
#else
if (rval == 0) {
/*
* mboot has been written successfully.
* set up the default geometry and VTOC
*/
if (un->un_blockcount <= DK_MAX_BLOCKS)
cmlb_setup_default_geometry(un);
}
#endif
mutex_exit(CMLB_MUTEX(un));
kmem_free(mboot, (size_t)(sizeof (struct mboot)));
return (rval);
}
/*
* Function: cmlb_setup_default_geometry
*
* Description: This local utility routine sets the default geometry as part of
* setting the device mboot.
*
* Arguments: un - driver soft state (unit) structure
*
* Note: This may be redundant with cmlb_build_default_label.
*/
static void
cmlb_setup_default_geometry(struct cmlb_lun *un)
{
struct cmlb_geom pgeom;
struct cmlb_geom *pgeomp = &pgeom;
int ret;
int geom_base_cap = 1;
ASSERT(mutex_owned(CMLB_MUTEX(un)));
/* zero out the soft state geometry and partition table. */
bzero(&un->un_g, sizeof (struct dk_geom));
bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
/*
* For the rpm, we use the minimum for the disk.
* For the head, cyl and number of sector per track,
* if the capacity <= 1GB, head = 64, sect = 32.
* else head = 255, sect 63
* Note: the capacity should be equal to C*H*S values.
* This will cause some truncation of size due to
* round off errors. For CD-ROMs, this truncation can
* have adverse side effects, so returning ncyl and
* nhead as 1. The nsect will overflow for most of
* CD-ROMs as nsect is of type ushort.
*/
if (un->un_alter_behavior & CMLB_FAKE_GEOM_LABEL_IOCTLS_VTOC8) {
/*
* newfs currently can not handle 255 ntracks for SPARC
* so get the geometry from target driver instead of coming up
* with one based on capacity.
*/
mutex_exit(CMLB_MUTEX(un));
ret = DK_TG_GETPHYGEOM(un, pgeomp);
mutex_enter(CMLB_MUTEX(un));
if (ret == 0) {
geom_base_cap = 0;
} else {
cmlb_dbg(CMLB_ERROR, un,
"cmlb_setup_default_geometry: "
"tg_getphygeom failed %d\n", ret);
/* do default setting, geometry based on capacity */
}
}
if (geom_base_cap) {
if (ISCD(un)) {
un->un_g.dkg_ncyl = 1;
un->un_g.dkg_nhead = 1;
un->un_g.dkg_nsect = un->un_blockcount;
} else if (un->un_blockcount <= 0x1000) {
/* Needed for unlabeled SCSI floppies. */
un->un_g.dkg_nhead = 2;
un->un_g.dkg_ncyl = 80;
un->un_g.dkg_pcyl = 80;
un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
} else if (un->un_blockcount <= 0x200000) {
un->un_g.dkg_nhead = 64;
un->un_g.dkg_nsect = 32;
un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
} else {
un->un_g.dkg_nhead = 255;
un->un_g.dkg_nsect = 63;
un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
}
un->un_g.dkg_acyl = 0;
un->un_g.dkg_bcyl = 0;
un->un_g.dkg_intrlv = 1;
un->un_g.dkg_rpm = 200;
if (un->un_g.dkg_pcyl == 0)
un->un_g.dkg_pcyl = un->un_g.dkg_ncyl +
un->un_g.dkg_acyl;
} else {
un->un_g.dkg_ncyl = (short)pgeomp->g_ncyl;
un->un_g.dkg_acyl = pgeomp->g_acyl;
un->un_g.dkg_nhead = pgeomp->g_nhead;
un->un_g.dkg_nsect = pgeomp->g_nsect;
un->un_g.dkg_intrlv = pgeomp->g_intrlv;
un->un_g.dkg_rpm = pgeomp->g_rpm;
un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
}
un->un_g.dkg_read_reinstruct = 0;
un->un_g.dkg_write_reinstruct = 0;
un->un_solaris_size = un->un_g.dkg_ncyl *
un->un_g.dkg_nhead * un->un_g.dkg_nsect;
un->un_map['a'-'a'].dkl_cylno = 0;
un->un_map['a'-'a'].dkl_nblk = un->un_solaris_size;
un->un_map['c'-'a'].dkl_cylno = 0;
un->un_map['c'-'a'].dkl_nblk = un->un_solaris_size;
un->un_vtoc.v_part[2].p_tag = V_BACKUP;
un->un_vtoc.v_part[2].p_flag = V_UNMNT;
un->un_vtoc.v_nparts = V_NUMPAR;
un->un_vtoc.v_version = V_VERSION;
(void) sprintf((char *)un->un_asciilabel, "DEFAULT cyl %d alt %d"
" hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
un->un_g.dkg_nhead, un->un_g.dkg_nsect);
un->un_f_geometry_is_valid = FALSE;
}
#if defined(__i386) || defined(__amd64)
/*
* Function: cmlb_update_fdisk_and_vtoc
*
* Description: This local utility routine updates the device fdisk and vtoc
* as part of setting the device mboot.
*
* Arguments: un - driver soft state (unit) structure
*
* Return Code: 0 for success or errno-type return code.
*
* Note:x86: This looks like a duplicate of cmlb_validate_geometry(), but
* these did exist separately in x86 sd.c.
*/
static int
cmlb_update_fdisk_and_vtoc(struct cmlb_lun *un)
{
int count;
int label_rc = 0;
int fdisk_rval;
diskaddr_t capacity;
ASSERT(mutex_owned(CMLB_MUTEX(un)));
if (cmlb_check_update_blockcount(un) != 0)
return (EINVAL);
#if defined(_SUNOS_VTOC_16)
/*
* Set up the "whole disk" fdisk partition; this should always
* exist, regardless of whether the disk contains an fdisk table
* or vtoc.
*/
un->un_map[P0_RAW_DISK].dkl_cylno = 0;
un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
#endif /* defined(_SUNOS_VTOC_16) */
/*
* copy the lbasize and capacity so that if they're
* reset while we're not holding the CMLB_MUTEX(un), we will
* continue to use valid values after the CMLB_MUTEX(un) is
* reacquired.
*/
capacity = un->un_blockcount;
/*
* refresh the logical and physical geometry caches.
* (data from mode sense format/rigid disk geometry pages,
* and scsi_ifgetcap("geometry").
*/
cmlb_resync_geom_caches(un, capacity);
/*
* Only DIRECT ACCESS devices will have Sun labels.
* CD's supposedly have a Sun label, too
*/
if (un->un_device_type == DTYPE_DIRECT || ISREMOVABLE(un)) {
fdisk_rval = cmlb_read_fdisk(un, capacity);
if (fdisk_rval != 0) {
ASSERT(mutex_owned(CMLB_MUTEX(un)));
return (fdisk_rval);
}
if (un->un_solaris_size <= DK_LABEL_LOC) {
/*
* Found fdisk table but no Solaris partition entry,
* so don't call cmlb_uselabel() and don't create
* a default label.
*/
label_rc = 0;
un->un_f_geometry_is_valid = TRUE;
goto no_solaris_partition;
}
} else if (capacity < 0) {
ASSERT(mutex_owned(CMLB_MUTEX(un)));
return (EINVAL);
}
/*
* For Removable media We reach here if we have found a
* SOLARIS PARTITION.
* If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
* PARTITION has changed from the previous one, hence we will setup a
* default VTOC in this case.
*/
if (un->un_f_geometry_is_valid == FALSE) {
/* if we get here it is writable */
/* we are called from SMBOOT, and after a write of fdisk */
cmlb_build_default_label(un);
label_rc = 0;
}
no_solaris_partition:
#if defined(_SUNOS_VTOC_16)
/*
* If we have valid geometry, set up the remaining fdisk partitions.
* Note that dkl_cylno is not used for the fdisk map entries, so
* we set it to an entirely bogus value.
*/
for (count = 0; count < FD_NUMPART; count++) {
un->un_map[FDISK_P1 + count].dkl_cylno = -1;
un->un_map[FDISK_P1 + count].dkl_nblk =
un->un_fmap[count].fmap_nblk;
un->un_offset[FDISK_P1 + count] =
un->un_fmap[count].fmap_start;
}
#endif
for (count = 0; count < NDKMAP; count++) {
#if defined(_SUNOS_VTOC_8)
struct dk_map *lp = &un->un_map[count];
un->un_offset[count] =
un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
#elif defined(_SUNOS_VTOC_16)
struct dkl_partition *vp = &un->un_vtoc.v_part[count];
un->un_offset[count] = vp->p_start + un->un_solaris_offset;
#else
#error "No VTOC format defined."
#endif
}
ASSERT(mutex_owned(CMLB_MUTEX(un)));
return (label_rc);
}
#endif
#if defined(__i386) || defined(__amd64)
static int
cmlb_dkio_get_virtgeom(struct cmlb_lun *un, caddr_t arg, int flag)
{
int err = 0;
/* Return the driver's notion of the media's logical geometry */
struct dk_geom disk_geom;
struct dk_geom *dkgp = &disk_geom;
mutex_enter(CMLB_MUTEX(un));
/*
* If there is no HBA geometry available, or
* if the HBA returned us something that doesn't
* really fit into an Int 13/function 8 geometry
* result, just fail the ioctl. See PSARC 1998/313.
*/
if (un->un_lgeom.g_nhead == 0 ||
un->un_lgeom.g_nsect == 0 ||
un->un_lgeom.g_ncyl > 1024) {
mutex_exit(CMLB_MUTEX(un));
err = EINVAL;
} else {
dkgp->dkg_ncyl = un->un_lgeom.g_ncyl;
dkgp->dkg_acyl = un->un_lgeom.g_acyl;
dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
dkgp->dkg_nhead = un->un_lgeom.g_nhead;
dkgp->dkg_nsect = un->un_lgeom.g_nsect;
if (ddi_copyout(dkgp, (void *)arg,
sizeof (struct dk_geom), flag)) {
mutex_exit(CMLB_MUTEX(un));
err = EFAULT;
} else {
mutex_exit(CMLB_MUTEX(un));
err = 0;
}
}
return (err);
}
#endif
#if defined(__i386) || defined(__amd64)
static int
cmlb_dkio_get_phygeom(struct cmlb_lun *un, caddr_t arg, int flag)
{
int err = 0;
/* Return the driver's notion of the media physical geometry */
struct dk_geom disk_geom;
struct dk_geom *dkgp = &disk_geom;
mutex_enter(CMLB_MUTEX(un));
if (un->un_g.dkg_nhead != 0 &&
un->un_g.dkg_nsect != 0) {
/*
* We succeeded in getting a geometry, but
* right now it is being reported as just the
* Solaris fdisk partition, just like for
* DKIOCGGEOM. We need to change that to be
* correct for the entire disk now.
*/
bcopy(&un->un_g, dkgp, sizeof (*dkgp));
dkgp->dkg_acyl = 0;
dkgp->dkg_ncyl = un->un_blockcount /
(dkgp->dkg_nhead * dkgp->dkg_nsect);
} else {
bzero(dkgp, sizeof (struct dk_geom));
/*
* This disk does not have a Solaris VTOC
* so we must present a physical geometry
* that will remain consistent regardless
* of how the disk is used. This will ensure
* that the geometry does not change regardless
* of the fdisk partition type (ie. EFI, FAT32,
* Solaris, etc).
*/
if (ISCD(un)) {
dkgp->dkg_nhead = un->un_pgeom.g_nhead;
dkgp->dkg_nsect = un->un_pgeom.g_nsect;
dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
dkgp->dkg_acyl = un->un_pgeom.g_acyl;
} else {
cmlb_convert_geometry(un->un_blockcount, dkgp);
dkgp->dkg_acyl = 0;
dkgp->dkg_ncyl = un->un_blockcount /
(dkgp->dkg_nhead * dkgp->dkg_nsect);
}
}
dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
if (ddi_copyout(dkgp, (void *)arg,
sizeof (struct dk_geom), flag)) {
mutex_exit(CMLB_MUTEX(un));
err = EFAULT;
} else {
mutex_exit(CMLB_MUTEX(un));
err = 0;
}
return (err);
}
#endif
#if defined(__i386) || defined(__amd64)
static int
cmlb_dkio_partinfo(struct cmlb_lun *un, dev_t dev, caddr_t arg, int flag)
{
int err = 0;
/*
* Return parameters describing the selected disk slice.
* Note: this ioctl is for the intel platform only
*/
int part;
part = CMLBPART(dev);
/* don't check un_solaris_size for pN */
if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
err = EIO;
} else {
struct part_info p;
p.p_start = (daddr_t)un->un_offset[part];
p.p_length = (int)un->un_map[part].dkl_nblk;
#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(flag & FMODELS)) {
case DDI_MODEL_ILP32:
{
struct part_info32 p32;
p32.p_start = (daddr32_t)p.p_start;
p32.p_length = p.p_length;
if (ddi_copyout(&p32, (void *)arg,
sizeof (p32), flag))
err = EFAULT;
break;
}
case DDI_MODEL_NONE:
{
if (ddi_copyout(&p, (void *)arg, sizeof (p),
flag))
err = EFAULT;
break;
}
}
#else /* ! _MULTI_DATAMODEL */
if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
err = EFAULT;
#endif /* _MULTI_DATAMODEL */
}
return (err);
}
#endif