sge.c revision d39a76e7b087a3d0927cbe6898dc0a6770fa6c68
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* This file is part of the Chelsio T1 Ethernet driver.
*
* Copyright (C) 2003-2005 Chelsio Communications. All rights reserved.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/cmn_err.h>
#include <sys/sunddi.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/byteorder.h>
#include <sys/atomic.h>
#include <sys/stropts.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/dlpi.h>
#include <sys/kstat.h>
#include <sys/ethernet.h>
#include <netinet/in.h>
#include <netinet/udp.h>
#include <inet/common.h>
#include <inet/nd.h>
#include <inet/ip.h>
#include <inet/tcp.h>
#include <netinet/udp.h>
#include <sys/gld.h>
#include "ostypes.h"
#include "common.h"
#ifdef CONFIG_CHELSIO_T1_1G
#include "fpga_defs.h"
#endif
#include "regs.h"
#include "suni1x10gexp_regs.h"
#include "sge.h"
#include "espi.h"
#include "ch.h"
extern uint32_t buffers_in_use[];
uint32_t sge_cmdq0_cnt = SGE_CMDQ0_E_N;
uint32_t sge_cmdq1_cnt = SGE_CMDQ1_E_N;
uint32_t sge_flq0_cnt = SGE_FREELQ0_E_N;
uint32_t sge_flq1_cnt = SGE_FREELQ1_E_N;
uint32_t sge_respq_cnt = SGE_RESPQ_E_N;
uint32_t sge_cmdq0_cnt_orig = SGE_CMDQ0_E_N;
uint32_t sge_cmdq1_cnt_orig = SGE_CMDQ1_E_N;
uint32_t sge_flq0_cnt_orig = SGE_FREELQ0_E_N;
uint32_t sge_flq1_cnt_orig = SGE_FREELQ1_E_N;
uint32_t sge_respq_cnt_orig = SGE_RESPQ_E_N;
#ifdef HOST_PAUSE
uint32_t do_host_pause = 1;
uint32_t flq_pause_window = 64;
#endif
static uint64_t os_freelist_buffer_alloc(ch_t *sa, int sz, mblk_t **mb,
ulong_t *dh);
void pe_os_free_contig(ch_t *, size_t, void *, uint64_t, ulong_t, ulong_t);
static inline uint32_t t1_sge_rx(pesge *sge, freelQ_t *Q,
unsigned int len, unsigned int offload);
#ifdef HOST_PAUSE
static void t1_sge_check_pause(pesge *sge, struct freelQ *Q);
#endif
static void alloc_freelQ_buffers(pesge *sge, struct freelQ *Q);
static void freelQs_empty(pesge *sge);
static void free_cmdQ_buffers(pesge *sge, cmdQ_t *Q, uint32_t credits_pend);
static int alloc_rx_resources(pesge *sge, struct sge_params *p);
static int alloc_tx_resources(pesge *sge, struct sge_params *p);
static inline void setup_ring_params(ch_t *adapter, u64 addr, u32 size,
int base_reg_lo, int base_reg_hi, int size_reg);
static void configure_sge(pesge *sge, struct sge_params *p);
static void free_freelQ_buffers(pesge *sge, struct freelQ *Q);
static void free_rx_resources(pesge *sge);
static void free_tx_resources(pesge *sge);
static inline unsigned int jumbo_payload_capacity(pesge *sge);
#ifdef SUN_KSTATS
static int sge_kstat_setup(pesge *);
static void sge_kstat_remove(pesge *);
static int sge_kstat_update(p_kstat_t, int);
#endif
static uint16_t calc_ocsum(mblk_t *, int);
/*
* Local routines.
*/
static inline void sge_ring_doorbell(pesge *sge, u32 control_reg);
static inline void
sge_ring_doorbell(pesge *sge, u32 control_reg)
{
membar_producer();
t1_write_reg_4(sge->obj, A_SG_DOORBELL, control_reg);
}
/*
* DESC:
*
* NOTES: Must have at least 1 command queue and 1 freelist queue.
*
*/
pesge *
t1_sge_create(ch_t *sa, struct sge_params *p)
{
pesge *sge;
sge = t1_os_malloc_wait_zero(sizeof (pesge));
if (sge == NULL)
goto error_no_mem;
memset(sge, 0, sizeof (*sge));
/*
* PR2928 & PR3309
* set default timeout value - 20 msec
* we set the initial value to 2 which gurantees at least one tick.
*/
if (is_T2(sa))
sge->ptimeout = 1;
sge->obj = sa;
#ifdef SUN_KSTATS
if (sge_kstat_setup(sge) != 0)
goto t1_sge_create_fail1;
#endif
p->cmdQ_size[0] = sge_cmdq0_cnt;
p->cmdQ_size[1] = sge_cmdq1_cnt;
/* note that jumbo frame index is inverted for T2 */
if (is_T2(sa)) {
p->freelQ_size[1] = sge_flq0_cnt;
p->freelQ_size[0] = sge_flq1_cnt;
} else {
p->freelQ_size[0] = sge_flq0_cnt;
p->freelQ_size[1] = sge_flq1_cnt;
}
#if CH_DEBUG
/* DEBUG only */
cmn_err(CE_NOTE, "sge: %p\n", sge);
cmn_err(CE_NOTE, "&sge->cmdQ[0]: %p\n", &sge->cmdQ[0]);
cmn_err(CE_NOTE, "&sge->freelQ[0]: %p\n", &sge->freelQ[0]);
cmn_err(CE_NOTE, "&sge->freelQ[1]: %p\n", &sge->freelQ[1]);
cmn_err(CE_NOTE, "&sge->respQ: %p\n", &sge->respQ);
cmn_err(CE_NOTE, "&sge->intr_cnt: %p\n", &sge->intr_cnt);
#endif
#ifdef SUN_KSTATS
goto error_no_mem;
t1_sge_create_fail1:
t1_os_free(sge, sizeof (pesge));
sge = NULL;
#endif
error_no_mem:
return (sge);
}
int
t1_sge_destroy(pesge* sge)
{
if (sge != NULL) {
free_tx_resources(sge);
free_rx_resources(sge);
/* PR2928 & PR3309 */
if ((is_T2(sge->obj)) && (sge->pskb))
pe_free_fake_arp(sge->pskb);
#ifdef SUN_KSTATS
sge_kstat_remove(sge);
#endif
t1_os_free(sge, sizeof (pesge));
}
return (0);
}
/*
* PR2928 & PR3309
* call out event from timeout
*
* there is a potential race between the timeout and the close.
* unless we protect the timeout, the close could occur at the
* same time. Then if the timeout service routine was slow or
* interrupted, the sge_stop() could complete with a timeoutID
* that has expired, thus letting another timeout occur. If the
* service routine was delayed still further, a detach could occur.
* the second time could then end up accessing memory that has been
* released back to the system. Bad things could then occur. We
* set a flag in sge_stop() to tell the service routine not to
* issue further timeouts. sge_stop() will block until a timeout
* has occured. If the command Q is full then we shouldn't put out
* an arp.
*/
void
t1_espi_workaround(ch_t *adapter)
{
pesge *sge = adapter->sge;
ch_t *chp = (ch_t *)sge->obj;
int rv = 1;
if ((chp->ch_state == PERUNNING) &&
atomic_read(&sge->cmdQ[0].cq_asleep)) {
u32 seop;
seop = t1_espi_get_mon(adapter, 0x930, 0);
if ((seop & 0xfff0fff) == 0xfff) {
/* after first arp */
if (sge->pskb)
rv = pe_start(adapter, (mblk_t *)sge->pskb,
CH_ARP);
if (!rv)
sge->intr_cnt.arp_sent++;
}
}
#ifdef HOST_PAUSE
/*
* If we are already in sge_data_in, then we can skip calling
* t1_sge_check_pause() this clock cycle. lockstat showed that
* we were blocking on the mutex ~ 2% of the time.
*/
if (mutex_tryenter(&adapter->ch_intr)) {
t1_sge_check_pause(sge, &sge->freelQ[0]);
t1_sge_check_pause(sge, &sge->freelQ[1]);
mutex_exit(&adapter->ch_intr);
}
#endif
}
int
sge_start(pesge *sge)
{
t1_write_reg_4(sge->obj, A_SG_CONTROL, sge->sge_control);
/* PR2928 & PR3309, also need to avoid Pause deadlock */
ch_init_cyclic(sge->obj, &sge->espi_wa_cyclic,
(void (*)(void *))t1_espi_workaround, sge->obj);
ch_start_cyclic(&sge->espi_wa_cyclic, sge->ptimeout);
return (0);
}
/*
* Disables SGE queues.
*/
int
sge_stop(pesge *sge)
{
uint32_t status;
int loops;
DBGASSERT(sge);
/* PR2928 & PR3309, also need to avoid Pause deadlock */
t1_write_reg_4(sge->obj, A_SG_CONTROL, 0x0);
/* wait until there's no more outstanding interrupts pending */
loops = 0;
do {
status = t1_read_reg_4(sge->obj, A_SG_INT_CAUSE);
t1_write_reg_4(sge->obj, A_SG_INT_CAUSE, status);
drv_usecwait(125);
loops++;
} while (status && (loops < 1000));
ch_stop_cyclic(&sge->espi_wa_cyclic);
return (0);
}
uint32_t sge_cmdq_send_fail;
int
sge_data_out(pesge* sge, int qid, mblk_t *m0,
cmdQ_ce_t *cmp, int count, uint32_t flg)
{
struct cmdQ *Q = &sge->cmdQ[qid];
ddi_dma_handle_t dh = (ddi_dma_handle_t)sge->cmdQ[qid].cq_dh;
spinlock_t *qlock = &Q->cq_qlock;
cmdQ_e *e;
cmdQ_e *q = Q->cq_entries;
uint32_t credits;
uint32_t pidx;
uint32_t genbit;
uint32_t entries_n = Q->cq_entries_n;
cmdQ_ce_t *ce;
cmdQ_ce_t *cq = Q->cq_centries;
dma_addr_t mapping;
uint32_t j = 0;
uint32_t offset;
#if defined(TX_CKSUM_FIX)
uint16_t csum;
uint16_t *csum_loc;
#endif
#ifdef TX_THREAD_RECLAIM
uint32_t reclaim_cnt;
#endif
/*
* We must exit if we don't have enough free command queue entries
* available.
*/
spin_lock(qlock);
#if defined(TX_CKSUM_FIX)
/*
* This checksum fix will address a fragmented datagram
* checksum error. Which will lead to the next packet after
* the last packet with the More fragment bit set having its
* checksum corrupted. When the packet reaches this point
* the 'flg' variable indicates whether a checksum is needed
* or not. The algorithm is as follows, if the current packet
* is a More fragment set the count of packets to be checksummed
* after it to 3. If it't not and the count of is more than 0
* then calculate the checksum in software, if a hardware checksum
* was requested. Then decrment the count. Same algorithm applies
* to TCP.
*/
if (flg & CH_UDP_MF) {
sge->do_udp_csum = 3;
} else if ((flg & CH_UDP) && (sge->do_udp_csum != 0)) {
if ((flg & CH_NO_HWCKSUM) == 0) {
/*
* Calc Checksum here.
*/
csum = calc_ocsum(m0,
sizeof (struct ether_header) + CPL_FORMAT_0_SIZE);
csum_loc = (uint16_t *)(m0->b_rptr +
sizeof (struct ether_header) + CPL_FORMAT_0_SIZE);
csum_loc += (((*(char *)csum_loc) & 0x0f) << 1);
sge->intr_cnt.tx_soft_cksums++;
((struct udphdr *)(csum_loc))->uh_sum = csum;
((struct cpl_tx_pkt *)m0->b_rptr)->l4_csum_dis = 1;
}
sge->do_udp_csum--;
} else if (flg & CH_TCP_MF) {
sge->do_tcp_csum = 3;
} else if (sge->do_tcp_csum != 0) {
if ((flg & CH_NO_HWCKSUM) == 0) {
sge->intr_cnt.tx_soft_cksums++;
/*
* Calc Checksum here.
*/
}
sge->do_tcp_csum--;
}
#endif /* TX_CKSUM_FIX */
#ifdef TX_THREAD_RECLAIM
reclaim_cnt = Q->cq_complete;
if (reclaim_cnt > SGE_BATCH_THRESH) {
sge->intr_cnt.tx_reclaims[qid]++;
free_cmdQ_buffers(sge, Q, reclaim_cnt);
Q->cq_complete = 0;
}
#endif
genbit = Q->cq_genbit;
pidx = Q->cq_pidx;
credits = Q->cq_credits;
if ((credits - 1) < count) {
spin_unlock(qlock);
sge->intr_cnt.cmdQ_full[qid]++;
return (1);
}
atomic_sub(count, &Q->cq_credits);
Q->cq_pidx += count;
if (Q->cq_pidx >= entries_n) {
Q->cq_pidx -= entries_n;
Q->cq_genbit ^= 1;
}
spin_unlock(qlock);
#ifdef SUN_KSTATS
if (count > MBLK_MAX)
sge->intr_cnt.tx_descs[MBLK_MAX - 1]++;
else
sge->intr_cnt.tx_descs[count]++;
#endif
ce = &cq[pidx];
*ce = *cmp;
mapping = cmp->ce_pa;
j++;
e = &q[pidx];
offset = (caddr_t)e - (caddr_t)q;
e->Sop = 1;
e->DataValid = 1;
e->BufferLength = cmp->ce_len;
e->AddrHigh = ((u64)mapping >> 32);
e->AddrLow = ((u64)mapping & 0xffffffff);
--count;
if (count > 0) {
unsigned int i;
e->Eop = 0;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
for (i = 0; i < count; i++) {
ce++;
e++;
cmp++;
if (++pidx == entries_n) {
pidx = 0;
genbit ^= 1;
/* sync from offset to end of cmdQ */
(void) ddi_dma_sync(dh, (off_t)(offset),
j*sizeof (*e), DDI_DMA_SYNC_FORDEV);
offset = j = 0;
ce = cq;
e = q;
}
*ce = *cmp;
mapping = cmp->ce_pa;
j++;
e->Sop = 0;
e->DataValid = 1;
e->BufferLength = cmp->ce_len;
e->AddrHigh = ((u64)mapping >> 32);
e->AddrLow = ((u64)mapping & 0xffffffff);
if (i < (count - 1)) {
e->Eop = 0;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
}
}
}
ce->ce_mp = m0;
e->Eop = 1;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
(void) ddi_dma_sync(dh, (off_t)(offset), j*sizeof (*e),
DDI_DMA_SYNC_FORDEV);
/*
* We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
* the doorbell if the Q is asleep. There is a natural race, where
* the hardware is going to sleep just after we checked, however,
* then the interrupt handler will detect the outstanding TX packet
* and ring the doorbell for us.
*/
if (qid) {
doorbell_pio(sge, F_CMDQ1_ENABLE);
} else {
if (atomic_read(Q->cq_asleep)) {
atomic_set(&Q->cq_asleep, 0);
/* NOT YET doorbell_pio(sge, F_CMDQ0_ENABLE); */
atomic_set(&Q->cq_pio_pidx, Q->cq_pidx);
}
}
doorbell_pio(sge, F_CMDQ0_ENABLE);
return (0);
}
#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
/*
* Disable SGE error interrupts.
*/
int
t1_sge_intr_disable(pesge* sge)
{
u32 val = t1_read_reg_4(sge->obj, A_PL_ENABLE);
t1_write_reg_4(sge->obj, A_PL_ENABLE, val & ~SGE_PL_INTR_MASK);
t1_write_reg_4(sge->obj, A_SG_INT_ENABLE, 0);
return (0);
}
#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
/*
* Enable SGE error interrupts.
*/
int
t1_sge_intr_enable(pesge* sge)
{
u32 en = SGE_INT_ENABLE;
u32 val = t1_read_reg_4(sge->obj, A_PL_ENABLE);
t1_write_reg_4(sge->obj, A_PL_ENABLE, val | SGE_PL_INTR_MASK);
if (sge->obj->ch_flags & TSO_CAPABLE)
en &= ~F_PACKET_TOO_BIG;
t1_write_reg_4(sge->obj, A_SG_INT_ENABLE, en);
return (0);
}
/*
* Clear SGE error interrupts.
*/
int
t1_sge_intr_clear(pesge* sge)
{
t1_write_reg_4(sge->obj, A_PL_CAUSE, SGE_PL_INTR_MASK);
t1_write_reg_4(sge->obj, A_SG_INT_CAUSE, 0xffffffff);
return (0);
}
#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
int
t1_sge_intr_error_handler(pesge *sge)
{
peobj *obj = sge->obj;
u32 cause = t1_read_reg_4(obj, A_SG_INT_CAUSE);
if (cause & F_RESPQ_EXHAUSTED)
sge->intr_cnt.respQ_empty++;
if (cause & F_RESPQ_OVERFLOW) {
sge->intr_cnt.respQ_overflow++;
cmn_err(CE_WARN, "%s: SGE response queue overflow\n",
obj->ch_name);
}
if (cause & F_FL_EXHAUSTED) {
sge->intr_cnt.freelistQ_empty++;
freelQs_empty(sge);
}
if (cause & F_PACKET_TOO_BIG) {
sge->intr_cnt.pkt_too_big++;
cmn_err(CE_WARN, "%s: SGE max packet size exceeded\n",
obj->ch_name);
}
if (cause & F_PACKET_MISMATCH) {
sge->intr_cnt.pkt_mismatch++;
cmn_err(CE_WARN, "%s: SGE packet mismatch\n",
obj->ch_name);
}
if (cause & SGE_INT_FATAL)
t1_fatal_err(obj);
t1_write_reg_4(obj, A_SG_INT_CAUSE, cause);
return (0);
}
/*
*
* PARAM: sge - SGE instance pointer.
*/
int
sge_data_in(pesge *sge)
{
peobj *adapter = sge->obj;
struct respQ *Q = &sge->respQ;
respQ_e *e; /* response queue entry */
respQ_e *q = Q->rq_entries; /* base response queue */
uint32_t cidx = Q->rq_cidx;
uint32_t genbit = Q->rq_genbit;
uint32_t entries_n = Q->rq_entries_n;
uint32_t credits = Q->rq_credits;
uint32_t credits_thresh = Q->rq_credits_thresh;
uint32_t ret = 0;
#ifndef TX_THREAD_RECLAIM
uint32_t credits_pend[2] = {0, 0};
#endif
uint32_t flags = 0;
uint32_t flagt;
ddi_dma_handle_t dh = (ddi_dma_handle_t)Q->rq_dh;
t1_write_reg_4(adapter, A_PL_CAUSE, F_PL_INTR_SGE_DATA);
/*
* Catch the case where an interrupt arrives
* early.
*/
if ((q == NULL) || (dh == NULL)) {
goto check_slow_ints;
}
/* initial response queue entry */
e = &q[cidx];
/* pull physical memory of response queue entry into cache */
(void) ddi_dma_sync(dh, (off_t)((caddr_t)e - (caddr_t)q),
sizeof (*e), DDI_DMA_SYNC_FORKERNEL);
while (e->GenerationBit == genbit) {
if (--credits < credits_thresh) {
uint32_t n = entries_n - credits - 1;
t1_write_reg_4(adapter, A_SG_RSPQUEUECREDIT, n);
credits += n;
}
if (likely(e->DataValid)) {
(void) t1_sge_rx(sge, &sge->freelQ[e->FreelistQid],
e->BufferLength, e->Offload);
if ((e->Sop != 1) || (e->Eop != 1)) {
sge->intr_cnt.rx_badEopSop++;
cmn_err(CE_WARN, "bad Sop %d or Eop %d: %d",
e->Sop, e->Eop, e->BufferLength);
}
}
flagt = e->Qsleeping;
flags |= flagt;
if (flagt & F_CMDQ0_ENABLE)
sge->intr_cnt.rx_cmdq0++;
if (flagt & F_CMDQ1_ENABLE)
sge->intr_cnt.rx_cmdq1++;
if (flagt & F_FL0_ENABLE)
sge->intr_cnt.rx_flq0++;
if (flagt & F_FL1_ENABLE)
sge->intr_cnt.rx_flq1++;
#ifdef TX_THREAD_RECLAIM
spin_lock(&sge->cmdQ[0].cq_qlock);
sge->cmdQ[0].cq_complete += e->Cmdq0CreditReturn;
spin_unlock(&sge->cmdQ[0].cq_qlock);
spin_lock(&sge->cmdQ[1].cq_qlock);
sge->cmdQ[1].cq_complete += e->Cmdq1CreditReturn;
if ((adapter->ch_blked) &&
(sge->cmdQ[0].cq_complete +
sge->cmdQ[1].cq_complete) > 16) {
adapter->ch_blked = 0;
ch_gld_ok(adapter);
}
spin_unlock(&sge->cmdQ[1].cq_qlock);
#else
credits_pend[0] += e->Cmdq0CreditReturn;
credits_pend[1] += e->Cmdq1CreditReturn;
#ifdef CONFIG_SMP
if (unlikely(credits_pend[0] > SGE_BATCH_THRESH)) {
free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0]);
credits_pend[0] = 0;
}
if (unlikely(credits_pend[1] > SGE_BATCH_THRESH)) {
free_cmdQ_buffers(sge, &sge->cmdQ[1], credits_pend[1]);
credits_pend[1] = 0;
}
#endif
#endif
#ifdef HOST_PAUSE
t1_sge_check_pause(sge, &sge->freelQ[e->FreelistQid]);
#endif
e++;
if (unlikely(++cidx == entries_n)) {
cidx = 0;
genbit ^= 1;
e = q;
}
/* pull physical memory of response queue entry into cache */
(void) ddi_dma_sync(dh, (off_t)((caddr_t)e - (caddr_t)q),
sizeof (*e), DDI_DMA_SYNC_FORKERNEL);
ret = 1;
}
#ifndef TX_THREAD_RECLAIM
if (credits_pend[0])
free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0]);
if (credits_pend[1])
free_cmdQ_buffers(sge, &sge->cmdQ[1], credits_pend[1]);
#endif
if (flags & F_CMDQ0_ENABLE) {
struct cmdQ *cmdQ = &sge->cmdQ[0];
atomic_set(&cmdQ->cq_asleep, 1);
if (atomic_read(cmdQ->cq_pio_pidx) != cmdQ->cq_pidx) {
doorbell_pio(sge, F_CMDQ0_ENABLE);
atomic_set(&cmdQ->cq_pio_pidx, cmdQ->cq_pidx);
}
}
/* the SGE told us one of the free lists is empty */
if (unlikely(flags & (F_FL0_ENABLE | F_FL1_ENABLE)))
freelQs_empty(sge);
#ifdef CONFIG_CHELSIO_T1_OFFLOAD
if (adapter->ch_tx_overflow_mutex)
mutex_enter(adapter->ch_tx_overflow_mutex);
if (adapter->ch_blked &&
(sge->cmdQ[0].cq_credits > (sge->cmdQ[0].cq_entries_n>>2)) &&
(sge->cmdQ[1].cq_credits > (sge->cmdQ[1].cq_entries_n>>2))) {
adapter->ch_blked = 0;
if (adapter->ch_tx_overflow_cv)
cv_broadcast(adapter->ch_tx_overflow_cv);
ch_gld_ok(adapter);
}
if (adapter->ch_tx_overflow_mutex)
mutex_exit(adapter->ch_tx_overflow_mutex);
#else
#ifndef TX_THREAD_RECLAIM
if (adapter->ch_blked &&
(sge->cmdQ[0].cq_credits > (sge->cmdQ[0].cq_entries_n>>1)) &&
(sge->cmdQ[1].cq_credits > (sge->cmdQ[1].cq_entries_n>>1))) {
adapter->ch_blked = 0;
ch_gld_ok(adapter);
}
#endif
#endif /* CONFIG_CHELSIO_T1_OFFLOAD */
Q->rq_genbit = genbit;
Q->rq_cidx = cidx;
Q->rq_credits = credits;
t1_write_reg_4(adapter, A_SG_SLEEPING, cidx);
check_slow_ints:
/* handle non-data interrupts */
if (unlikely(!ret))
ret = t1_slow_intr_handler(adapter);
return (ret);
}
/*
* allocate a mblk with DMA mapped mblk.
* When checksum offload is enabled, we start the DMA at a 2 byte offset so
* the IP header will be aligned. We do this for sparc only.
*/
static uint64_t
os_freelist_buffer_alloc(ch_t *sa, int sz, mblk_t **mb, ulong_t *dh)
{
ch_esb_t *ch_get_small_rbuf(ch_t *sa);
ch_esb_t *ch_get_big_rbuf(ch_t *sa);
ch_esb_t *rbp;
uint32_t rxoff = sa->sge->rx_offset;
if (sz == SGE_SM_BUF_SZ(sa)) {
/* get pre-mapped buffer */
if ((rbp = ch_get_small_rbuf(sa)) == NULL) {
sa->norcvbuf++;
return ((uint64_t)0);
}
*mb = desballoc((unsigned char *)rbp->cs_buf + rxoff,
SGE_SM_BUF_SZ(sa)-rxoff, BPRI_MED, &rbp->cs_frtn);
if (*mb == NULL) {
mutex_enter(&sa->ch_small_esbl);
rbp->cs_next = sa->ch_small_esb_free;
sa->ch_small_esb_free = rbp;
mutex_exit(&sa->ch_small_esbl);
return ((uint64_t)0);
}
*dh = rbp->cs_dh;
return (rbp->cs_pa + rxoff);
} else {
/* get pre-mapped buffer */
if ((rbp = ch_get_big_rbuf(sa)) == NULL) {
sa->norcvbuf++;
return ((uint64_t)0);
}
*mb = desballoc((unsigned char *)rbp->cs_buf + rxoff,
SGE_BG_BUF_SZ(sa)-rxoff, BPRI_MED, &rbp->cs_frtn);
if (*mb == NULL) {
mutex_enter(&sa->ch_big_esbl);
rbp->cs_next = sa->ch_big_esb_free;
sa->ch_big_esb_free = rbp;
mutex_exit(&sa->ch_big_esbl);
return ((uint64_t)0);
}
*dh = rbp->cs_dh;
return (rbp->cs_pa + rxoff);
}
}
static inline unsigned int
t1_sge_rx(pesge *sge, struct freelQ *Q, unsigned int len, unsigned int offload)
{
mblk_t *skb;
peobj *adapter = sge->obj;
struct freelQ_ce *cq = Q->fq_centries;
struct freelQ_ce *ce = &cq[Q->fq_cidx];
ddi_dma_handle_t dh = (ddi_dma_handle_t)ce->fe_dh;
uint32_t cidx = Q->fq_cidx;
uint32_t entries_n = Q->fq_entries_n;
uint32_t sz = Q->fq_rx_buffer_size;
uint32_t useit = 1;
uint32_t rxoff = sge->rx_offset;
#ifdef CONFIG_CHELSIO_T1_OFFLOAD
uint32_t rv;
#endif
if (Q->fq_id)
sge->intr_cnt.rx_flq1_cnt++;
else
sge->intr_cnt.rx_flq0_cnt++;
/*
* If pkt size falls below threshold, then we'll copy data to
* an blk and reuse mblk.
*
* NOTE that rxoff is 2 for T1 adapters. We align the the start
* of the DMA buffer begin at rxoff offset for T1 cards instead of
* at the beginning of the buffer, thus the length of the received
* data does not include this offset. We therefore always add
* SGE_RX_OFFSET to the allocb size so we have space to provide the
* offset for the copied data.
*/
#ifdef HOST_PAUSE
/*
* If we have Host pause compiled in, then we look at the
* free list, if the pause is on and we're not in offload
* mode then we drop packets, this is designed to avoid
* overwhelming the machine. If the machine is powerfull enough
* this will not happen. The 'rx_pkt_drops' will show when
* packets are being dropped and how much.
*/
if ((offload == 0) && adapter->pause_on) {
freelQ_e *e;
/* Ditch the packet and reuse original buffer */
e = &Q->fq_entries[cidx];
e->GenerationBit ^= 1;
e->GenerationBit2 ^= 1;
sge->intr_cnt.rx_pkt_drops++;
goto rx_entry_consumed;
} else if (((adapter->pause_on ||
(len <= SGE_RX_COPY_THRESHOLD)) &&
(skb = allocb(len + SGE_RX_OFFSET, BPRI_HI))))
#else
if ((len <= SGE_RX_COPY_THRESHOLD) &&
(skb = allocb(len + SGE_RX_OFFSET, BPRI_HI)))
#endif
{
freelQ_e *e;
char *src = (char *)((mblk_t *)ce->fe_mp)->b_rptr;
/*
* pull physical memory of pkt data into cache
* Note that len does not include offset for T1.
*/
(void) ddi_dma_sync(dh, (off_t)(rxoff), len,
DDI_DMA_SYNC_FORKERNEL);
if (offload == 0) {
/*
* create 2 byte offset so IP header aligned on
* 4 byte boundry
*/
skb_reserve(skb, SGE_RX_OFFSET);
/*
* if hardware inserted 2 byte offset then need to
* start copying with extra offset
*/
src += sge->rx_pkt_pad;
}
memcpy(skb->b_rptr, src, len);
useit = 0; /* mblk copy, don't inc esballoc in use cnt */
/* so we can reuse original buffer */
e = &Q->fq_entries[cidx];
e->GenerationBit ^= 1;
e->GenerationBit2 ^= 1;
sge->intr_cnt.rx_pkt_copied++;
} else {
/* consume buffer off the ring */
skb = ce->fe_mp;
ce->fe_mp = NULL;
/*
* if not offload (tunneled pkt), & hardward padded, then
* adjust start of pkt to point to start of data i.e.
* skip pad (2 bytes).
*/
if (!offload && sge->rx_pkt_pad)
__skb_pull(skb, SGE_RX_OFFSET);
/*
* pull physical memory of pkt data into cache
* Note that len does not include offset for T1.
*/
(void) ddi_dma_sync(dh, (off_t)(rxoff), len,
DDI_DMA_SYNC_FORKERNEL);
}
/* set length of data in skb */
skb_put(skb, len);
#ifdef CONFIG_CHELSIO_T1_OFFLOAD
if (likely(offload)) {
if (likely(toe_running(adapter))) {
/* sends pkt upstream to toe layer */
if (useit) {
if (sz == SGE_SM_BUF_SZ(adapter)) {
atomic_add(1,
&buffers_in_use[adapter->ch_sm_index]);
} else {
atomic_add(1,
&buffers_in_use[adapter->ch_big_index]);
}
}
if (adapter->toe_rcv)
adapter->toe_rcv(adapter->ch_toeinst, skb);
else
freemsg(skb);
} else {
cmn_err(CE_WARN,
"%s: unexpected offloaded packet, cmd %u\n",
adapter->ch_name, *skb->b_rptr);
/* discard packet */
freemsg(skb);
}
}
#else
if (unlikely(offload)) {
cmn_err(CE_WARN,
"%s: unexpected offloaded packet, cmd %u\n",
adapter->ch_name, *skb->b_rptr);
/* discard paket */
freemsg(skb);
}
#endif
else {
struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)skb->b_rptr;
int flg = 0;
uint32_t cksum;
/* adjust beginning of data to skip CPL header */
skb_pull(skb, SZ_CPL_RX_PKT);
/* extract checksum from CPL header here */
/*
* bump count of mlbks in used by protocol stack(s)
*/
if (useit) {
if (sz == SGE_SM_BUF_SZ(adapter)) {
atomic_add(1,
&buffers_in_use[adapter->ch_sm_index]);
} else {
atomic_add(1,
&buffers_in_use[adapter->ch_big_index]);
}
}
#ifdef CONFIG_CHELSIO_T1_OFFLOAD
/*
* let the TOE layer have a crack at the packet first.
*/
if (adapter->toe_tunnel) {
rv = adapter->toe_tunnel(adapter->ch_toeinst, skb);
/*
* The TOE may have consumed the packet.
*/
if (rv)
goto rx_entry_consumed;
}
#endif /* CONFIG_CHELSIO_T1_OFFLOAD */
cksum = p->csum;
/*
* NOTE: 14+9 = size of MAC + offset to IP protocol field
*/
if (adapter->ch_config.cksum_enabled &&
(ntohs(((struct ether_header *)skb->b_rptr)->ether_type) ==
ETHERTYPE_IP) &&
((skb->b_rptr[14+9] == IPPROTO_TCP) ||
(skb->b_rptr[14+9] == IPPROTO_UDP))) {
flg = 1;
}
ch_send_up(adapter, skb, cksum, flg);
}
rx_entry_consumed:
if (++cidx == entries_n)
cidx = 0;
Q->fq_cidx = cidx;
if (unlikely(--Q->fq_credits < (entries_n>>2)))
/* allocate new buffers on the free list */
alloc_freelQ_buffers(sge, Q);
return (1);
}
#ifdef HOST_PAUSE
static void
t1_sge_check_pause(pesge *sge, struct freelQ *Q)
{
peobj *adapter = sge->obj;
/*
* If the number of available credits shrinks below
* the Pause on threshold then enable the pause and
* try and allocate more buffers.
* On the next pass, if there's more credits returned
* then check that you've went above the pause
* threshold and then disable the pause.
*/
if (Q->fq_credits < Q->fq_pause_on_thresh) {
if (do_host_pause) {
sge->intr_cnt.rx_pause_on++;
adapter->txxg_cfg1 |=
SUNI1x10GEXP_BITMSK_TXXG_HOSTPAUSE;
(void) t1_tpi_write(adapter,
SUNI1x10GEXP_REG_TXXG_CONFIG_1 << 2,
adapter->txxg_cfg1);
adapter->pause_on = 1;
adapter->pause_time = gethrtime();
}
alloc_freelQ_buffers(sge, Q);
} else if ((adapter->pause_on) &&
(Q->fq_credits > Q->fq_pause_off_thresh)) {
hrtime_t time;
sge->intr_cnt.rx_pause_off++;
adapter->txxg_cfg1 &= ~SUNI1x10GEXP_BITMSK_TXXG_HOSTPAUSE;
(void) t1_tpi_write(adapter,
SUNI1x10GEXP_REG_TXXG_CONFIG_1 << 2,
adapter->txxg_cfg1);
adapter->pause_on = 0;
time = (gethrtime() - adapter->pause_time)/1000;
sge->intr_cnt.rx_pause_ms += time;
if (time > sge->intr_cnt.rx_pause_spike)
sge->intr_cnt.rx_pause_spike = (uint32_t)time;
}
sge->intr_cnt.rx_fl_credits = Q->fq_credits;
}
#endif /* HOST_PAUSE */
static void
alloc_freelQ_buffers(pesge *sge, struct freelQ *Q)
{
uint32_t pidx = Q->fq_pidx;
struct freelQ_ce *ce = &Q->fq_centries[pidx];
freelQ_e *fq = Q->fq_entries; /* base of freelist Q */
freelQ_e *e = &Q->fq_entries[pidx];
uint32_t sz = Q->fq_rx_buffer_size;
uint32_t rxoff = sge->rx_offset;
uint32_t credits = Q->fq_credits;
uint32_t entries_n = Q->fq_entries_n;
uint32_t genbit = Q->fq_genbit;
ddi_dma_handle_t th = (ddi_dma_handle_t)Q->fq_dh;
ulong_t dh;
uint64_t mapping;
off_t offset = (off_t)((caddr_t)e - (caddr_t)fq);
size_t len = 0;
while (credits < entries_n) {
if (e->GenerationBit != genbit) {
mblk_t *skb;
mapping = os_freelist_buffer_alloc(sge->obj, sz,
&skb, &dh);
if (mapping == 0) {
sge->intr_cnt.rx_flbuf_fails++;
break;
}
sge->intr_cnt.rx_flbuf_allocs++;
ce->fe_mp = skb;
ce->fe_dh = dh;
/*
* Note that for T1, we've started the beginning of
* of the buffer by an offset of 2 bytes. We thus
* decrement the length to account for this.
*/
e->AddrLow = (u32)mapping;
e->AddrHigh = (u64)mapping >> 32;
e->BufferLength = sz - rxoff;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
}
len += sizeof (*e);
ce++;
e++;
credits++;
if (++pidx == entries_n) {
/*
* sync freelist entries to physical memory up to
* end of the table.
*/
(void) ddi_dma_sync(th, offset, len,
DDI_DMA_SYNC_FORDEV);
offset = 0;
len = 0;
pidx = 0;
genbit ^= 1;
ce = Q->fq_centries;
e = Q->fq_entries;
}
}
/* sync freelist entries that have been modified. */
if (len)
(void) ddi_dma_sync(th, offset, len, DDI_DMA_SYNC_FORDEV);
Q->fq_genbit = genbit;
Q->fq_pidx = pidx;
Q->fq_credits = credits;
}
static void
freelQs_empty(pesge *sge)
{
u32 irq_reg = t1_read_reg_4(sge->obj, A_SG_INT_ENABLE);
u32 irqholdoff_reg;
alloc_freelQ_buffers(sge, &sge->freelQ[0]);
alloc_freelQ_buffers(sge, &sge->freelQ[1]);
if ((sge->freelQ[0].fq_credits > sge->freelQ[0].fq_entries_n >> 2) &&
(sge->freelQ[1].fq_credits > sge->freelQ[1].fq_entries_n >> 2)) {
irq_reg |= F_FL_EXHAUSTED;
irqholdoff_reg = sge->intrtimer[sge->currIndex];
} else {
/* Clear the F_FL_EXHAUSTED interrupts for now */
irq_reg &= ~F_FL_EXHAUSTED;
irqholdoff_reg = sge->intrtimer_nres;
}
t1_write_reg_4(sge->obj, A_SG_INTRTIMER, irqholdoff_reg);
t1_write_reg_4(sge->obj, A_SG_INT_ENABLE, irq_reg);
/* We reenable the Qs to force an Freelist GTS interrupt later */
doorbell_pio(sge, F_FL0_ENABLE | F_FL1_ENABLE);
}
/*
* Frees 'credits_pend' TX buffers and returns the credits to Q->credits.
* Free xmit buffers
*/
static void
free_cmdQ_buffers(pesge *sge, struct cmdQ *Q, unsigned int credits_pend)
{
mblk_t *skb;
struct cmdQ_ce *ce;
struct cmdQ_ce *cq = Q->cq_centries;
uint32_t entries_n = Q->cq_entries_n;
uint32_t cidx = Q->cq_cidx;
uint32_t i = credits_pend;
#ifdef CONFIG_CHELSIO_T1_OFFLOAD
ch_t *chp = sge->obj;
#endif
ce = &cq[cidx];
while (i--) {
#ifdef CONFIG_CHELSIO_T1_OFFLOAD
/* if flag set, then toe buffer */
switch (ce->ce_flg & 0x7) {
case DH_DMA:
if (ce->ce_dh) {
ch_unbind_dma_handle(sge->obj, ce->ce_dh);
ce->ce_dh = NULL; /* may not be needed */
}
skb = ce->ce_mp;
if (skb && ((ce->ce_flg & CH_ARP) == NULL)) {
freemsg(skb);
}
ce->ce_mp = NULL;
break;
#if defined(__sparc)
case DH_DVMA:
if (ce->ce_dh) {
ch_unbind_dvma_handle(sge->obj, ce->ce_dh);
ce->ce_dh = NULL; /* may not be needed */
}
skb = ce->ce_mp;
if (skb && ((ce->ce_flg & CH_ARP) == NULL)) {
freemsg(skb);
}
ce->ce_mp = NULL;
break;
#endif /* __sparc */
case DH_TOE:
chp->toe_free(chp->ch_toeinst, (tbuf_t *)(ce->ce_mp));
ce->ce_mp = NULL;
break;
}
#else /* CONFIG_CHELSIO_T1_OFFLOAD */
if (ce->ce_dh) {
if ((ce->ce_flg & 7) == DH_DMA) {
ch_unbind_dma_handle(sge->obj, ce->ce_dh);
}
#if defined(__sparc)
else {
ch_unbind_dvma_handle(sge->obj, ce->ce_dh);
}
#endif /* __sparc */
ce->ce_dh = NULL; /* may not be needed */
}
skb = ce->ce_mp;
if (skb && ((ce->ce_flg & CH_ARP) == NULL)) {
freemsg(skb);
}
ce->ce_mp = NULL;
#endif /* !CONFIG_CHELSIO_T1_OFFLOAD */
ce++;
if (++cidx == entries_n) {
cidx = 0;
ce = cq;
}
}
Q->cq_cidx = cidx;
atomic_add(credits_pend, &Q->cq_credits);
}
struct sge_intr_counts *
sge_get_stat(pesge *sge)
{
return (&sge->intr_cnt);
}
/*
* Allocates both RX and TX resources and configures the SGE. However,
* the hardware is not enabled yet.
*
* rx_pkt_pad is set, if the hardware supports aligning non-offload traffic.
* jumbo_fl is set to the index of the freelist containing the jumbo buffers.
*/
int
t1_sge_configure(pesge *sge, struct sge_params *p)
{
sge->rx_pkt_pad = t1_is_T1B(sge->obj) ? 0 : SGE_RX_OFFSET;
sge->jumbo_fl = t1_is_T1B(sge->obj) ? 1 : 0;
/* if we're a T2 card, then we have hardware offset support */
sge->rx_offset = t1_is_T1B(sge->obj) ? SGE_RX_OFFSET: 0;
if (alloc_rx_resources(sge, p))
return (-ENOMEM);
if (alloc_tx_resources(sge, p)) {
free_rx_resources(sge);
return (-ENOMEM);
}
configure_sge(sge, p);
/*
* Now that we have sized the free lists calculate the payload
* capacity of the large buffers. Other parts of the driver use
* this to set the max offload coalescing size so that RX packets
* do not overflow our large buffers.
*/
p->large_buf_capacity = jumbo_payload_capacity(sge);
return (0);
}
/*
* Allocates basic RX resources, consisting of memory mapped freelist Qs and a
* response Q.
*/
static int
alloc_rx_resources(pesge *sge, struct sge_params *p)
{
unsigned int size, i;
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *Q = &sge->freelQ[i];
Q->fq_id = i;
Q->fq_genbit = 1;
Q->fq_entries_n = p->freelQ_size[i];
#ifdef HOST_PAUSE
Q->fq_pause_on_thresh = flq_pause_window;
Q->fq_pause_off_thresh = Q->fq_entries_n >> 1;
#endif
size = sizeof (freelQ_e) * Q->fq_entries_n;
Q->fq_entries = pe_os_malloc_contig_wait_zero(sge->obj,
size, &Q->fq_pa, &Q->fq_dh, &Q->fq_ah, DMA_OUT);
if (!Q->fq_entries)
goto err_no_mem;
memset(Q->fq_entries, 0, size);
size = sizeof (struct freelQ_ce) * Q->fq_entries_n;
Q->fq_centries = t1_os_malloc_wait_zero(size);
if (!Q->fq_centries)
goto err_no_mem;
memset(Q->fq_centries, 0, size);
}
/*
* Calculate the buffer sizes for the two free lists. FL0 accommodates
* regular sized Ethernet frames, FL1 is sized not to exceed 16K,
* including all the sk_buff overhead.
* For T1C FL0 and FL1 are reversed.
*/
#ifdef NOTYET
sge->freelQ[1 ^ sge->jumbo_fl].fq_rx_buffer_size = SGE_RX_SM_BUF_SIZE +
sizeof (struct cpl_rx_data) +
SGE_RX_OFFSET - sge->rx_pkt_pad;
#else
sge->freelQ[1 ^ sge->jumbo_fl].fq_rx_buffer_size =
sge->obj->ch_sm_buf_sz;
if (is_T2(sge->obj))
sge->intr_cnt.rx_flq1_sz = sge->obj->ch_sm_buf_sz;
else
sge->intr_cnt.rx_flq0_sz = sge->obj->ch_sm_buf_sz;
#endif
#ifdef NOTYET
sge->freelQ[sge->jumbo_fl].fq_rx_buffer_size = (16 * 1024) -
SKB_DATA_ALIGN(sizeof (struct skb_shared_info));
#else
sge->freelQ[sge->jumbo_fl].fq_rx_buffer_size = sge->obj->ch_bg_buf_sz;
if (is_T2(sge->obj))
sge->intr_cnt.rx_flq0_sz = sge->obj->ch_bg_buf_sz;
else
sge->intr_cnt.rx_flq1_sz = sge->obj->ch_bg_buf_sz;
#endif
sge->respQ.rq_genbit = 1;
sge->respQ.rq_entries_n = sge_respq_cnt;
sge->respQ.rq_credits = sge_respq_cnt;
sge->respQ.rq_credits_thresh = sge_respq_cnt - (sge_respq_cnt >> 2);
size = sizeof (respQ_e) * sge->respQ.rq_entries_n;
sge->respQ.rq_entries = pe_os_malloc_contig_wait_zero(sge->obj,
size, &(sge->respQ.rq_pa), &(sge->respQ.rq_dh),
&(sge->respQ.rq_ah), 0);
if (!sge->respQ.rq_entries)
goto err_no_mem;
memset(sge->respQ.rq_entries, 0, size);
return (0);
err_no_mem:
free_rx_resources(sge);
return (1);
}
/*
* Allocates basic TX resources, consisting of memory mapped command Qs.
*/
static int
alloc_tx_resources(pesge *sge, struct sge_params *p)
{
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *Q = &sge->cmdQ[i];
Q->cq_genbit = 1;
Q->cq_entries_n = p->cmdQ_size[i];
atomic_set(&Q->cq_credits, Q->cq_entries_n);
atomic_set(&Q->cq_asleep, 1);
mutex_init(&Q->cq_qlock, NULL, MUTEX_DRIVER,
sge->obj->ch_icookp);
size = sizeof (cmdQ_e) * Q->cq_entries_n;
Q->cq_entries = pe_os_malloc_contig_wait_zero(sge->obj,
size, &Q->cq_pa, &Q->cq_dh, &Q->cq_ah, DMA_OUT);
if (!Q->cq_entries)
goto err_no_mem;
memset(Q->cq_entries, 0, size);
size = sizeof (struct cmdQ_ce) * Q->cq_entries_n;
Q->cq_centries = t1_os_malloc_wait_zero(size);
if (!Q->cq_centries)
goto err_no_mem;
memset(Q->cq_centries, 0, size);
/* allocate pre-mapped dma headers */
pe_dma_handle_init(sge->obj, Q->cq_entries_n);
}
return (0);
err_no_mem:
free_tx_resources(sge);
return (1);
}
/*
* Sets the interrupt latency timer when the adaptive Rx coalescing
* is turned off. Do nothing when it is turned on again.
*
* This routine relies on the fact that the caller has already set
* the adaptive policy in adapter->sge_params before calling it.
*/
int
t1_sge_set_coalesce_params(pesge *sge, struct sge_params *p)
{
if (!p->coalesce_enable) {
u32 newTimer = p->rx_coalesce_usecs *
(board_info(sge->obj)->clock_core / 1000000);
t1_write_reg_4(sge->obj, A_SG_INTRTIMER, newTimer);
}
return (0);
}
/*
* Programs the various SGE registers. However, the engine is not yet enabled,
* but sge->sge_control is setup and ready to go.
*/
static void
configure_sge(pesge *sge, struct sge_params *p)
{
ch_t *ap = sge->obj;
int i;
t1_write_reg_4(ap, A_SG_CONTROL, 0);
setup_ring_params(ap, sge->cmdQ[0].cq_pa, sge->cmdQ[0].cq_entries_n,
A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
setup_ring_params(ap, sge->cmdQ[1].cq_pa, sge->cmdQ[1].cq_entries_n,
A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
setup_ring_params(ap, sge->freelQ[0].fq_pa,
sge->freelQ[0].fq_entries_n, A_SG_FL0BASELWR,
A_SG_FL0BASEUPR, A_SG_FL0SIZE);
setup_ring_params(ap, sge->freelQ[1].fq_pa,
sge->freelQ[1].fq_entries_n, A_SG_FL1BASELWR,
A_SG_FL1BASEUPR, A_SG_FL1SIZE);
/* The threshold comparison uses <. */
t1_write_reg_4(ap, A_SG_FLTHRESHOLD, SGE_RX_SM_BUF_SIZE(ap) -
SZ_CPL_RX_PKT - sge->rx_pkt_pad - sge->rx_offset + 1);
setup_ring_params(ap, sge->respQ.rq_pa, sge->respQ.rq_entries_n,
A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
t1_write_reg_4(ap, A_SG_RSPQUEUECREDIT, (u32)sge->respQ.rq_entries_n);
sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
#if 1
/*
* if the the following bit is not set, then we'll get an
* interrupt everytime command Q 0 goes empty. Since we're
* always ringing the doorbell, we can turn it on.
*/
F_DISABLE_CMDQ0_GTS |
#endif
V_RX_PKT_OFFSET(sge->rx_pkt_pad);
#if BYTE_ORDER == BIG_ENDIAN
sge->sge_control |= F_ENABLE_BIG_ENDIAN;
#endif
/*
* Initialize the SGE Interrupt Timer arrray:
* intrtimer[0] = (SGE_INTRTIMER0) usec
* intrtimer[0<i<10] = (SGE_INTRTIMER0 + 2*i) usec
* intrtimer[10] = (SGE_INTRTIMER1) usec
*
*/
sge->intrtimer[0] = board_info(sge->obj)->clock_core / 1000000;
for (i = 1; i < SGE_INTR_MAXBUCKETS - 1; ++i) {
sge->intrtimer[i] = SGE_INTRTIMER0 + (2 * i);
sge->intrtimer[i] *= sge->intrtimer[0];
}
sge->intrtimer[SGE_INTR_MAXBUCKETS - 1] =
sge->intrtimer[0] * SGE_INTRTIMER1;
/* Initialize resource timer */
sge->intrtimer_nres = (uint32_t)(sge->intrtimer[0] *
SGE_INTRTIMER_NRES);
/* Finally finish initialization of intrtimer[0] */
sge->intrtimer[0] = (uint32_t)(sge->intrtimer[0] * SGE_INTRTIMER0);
/* Initialize for a throughput oriented workload */
sge->currIndex = SGE_INTR_MAXBUCKETS - 1;
if (p->coalesce_enable)
t1_write_reg_4(ap, A_SG_INTRTIMER,
sge->intrtimer[sge->currIndex]);
else
(void) t1_sge_set_coalesce_params(sge, p);
}
static inline void
setup_ring_params(ch_t *adapter, u64 addr, u32 size, int base_reg_lo,
int base_reg_hi, int size_reg)
{
t1_write_reg_4(adapter, base_reg_lo, (u32)addr);
t1_write_reg_4(adapter, base_reg_hi, addr >> 32);
t1_write_reg_4(adapter, size_reg, size);
}
/*
* Frees RX resources.
*/
static void
free_rx_resources(pesge *sge)
{
unsigned int size, i;
if (sge->respQ.rq_entries) {
size = sizeof (respQ_e) * sge->respQ.rq_entries_n;
pe_os_free_contig(sge->obj, size, sge->respQ.rq_entries,
sge->respQ.rq_pa, sge->respQ.rq_dh, sge->respQ.rq_ah);
}
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *Q = &sge->freelQ[i];
if (Q->fq_centries) {
free_freelQ_buffers(sge, Q);
t1_os_free(Q->fq_centries,
Q->fq_entries_n * sizeof (freelQ_ce_t));
}
if (Q->fq_entries) {
size = sizeof (freelQ_e) * Q->fq_entries_n;
/* free the freelist queue */
pe_os_free_contig(sge->obj, size, Q->fq_entries,
Q->fq_pa, Q->fq_dh, Q->fq_ah);
}
}
}
/*
* Frees all RX buffers on the freelist Q. The caller must make sure that
* the SGE is turned off before calling this function.
*/
static void
free_freelQ_buffers(pesge *sge, struct freelQ *Q)
{
struct freelQ_ce *ce;
struct freelQ_ce *cq = Q->fq_centries;
uint32_t credits = Q->fq_credits;
uint32_t entries_n = Q->fq_entries_n;
uint32_t cidx = Q->fq_cidx;
uint32_t i = Q->fq_id;
ce = &cq[cidx];
credits = entries_n;
while (credits--) {
mblk_t *mp;
if ((mp = ce->fe_mp) != NULL) {
/* bump in-use count of receive buffers */
if (i != sge->jumbo_fl) {
atomic_add(1,
&buffers_in_use[sge->obj->ch_sm_index]);
} else {
atomic_add(1,
&buffers_in_use[sge->obj->ch_big_index]);
}
/*
* note. freeb() callback of esb-alloced mblk will
* cause receive buffer to be put back on sa free list.
*/
freeb(mp);
ce->fe_mp = NULL;
}
ce++;
if (++cidx == entries_n) {
cidx = 0;
ce = cq;
}
}
Q->fq_cidx = cidx;
Q->fq_credits = credits;
}
/*
* Free TX resources.
*
* Assumes that SGE is stopped and all interrupts are disabled.
*/
static void
free_tx_resources(pesge *sge)
{
unsigned int size;
uint32_t i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *Q = &sge->cmdQ[i];
if (Q->cq_centries) {
unsigned int pending = Q->cq_entries_n -
atomic_read(Q->cq_credits);
mutex_destroy(&Q->cq_qlock);
if (pending)
free_cmdQ_buffers(sge, Q, pending);
size = sizeof (struct cmdQ_ce) * Q->cq_entries_n;
t1_os_free(Q->cq_centries, size);
}
if (Q->cq_entries) {
size = sizeof (cmdQ_e) * Q->cq_entries_n;
pe_os_free_contig(sge->obj, size, Q->cq_entries,
Q->cq_pa, Q->cq_dh, Q->cq_ah);
}
}
}
/*
* Return the payload capacity of the jumbo free-list buffers.
*/
static inline unsigned int jumbo_payload_capacity(pesge *sge)
{
return (sge->freelQ[sge->jumbo_fl].fq_rx_buffer_size -
sizeof (struct cpl_rx_data) - sge->rx_pkt_pad - sge->rx_offset);
}
/* PR2928 & PR3309 */
void
t1_sge_set_ptimeout(adapter_t *adapter, u32 val)
{
pesge *sge = adapter->sge;
if (is_T2(adapter))
sge->ptimeout = max(val, 1);
}
/* PR2928 & PR3309 */
u32
t1_sge_get_ptimeout(adapter_t *adapter)
{
pesge *sge = adapter->sge;
return (is_T2(adapter) ? sge->ptimeout : 0);
}
void
sge_add_fake_arp(pesge *sge, void *bp)
{
sge->pskb = bp;
}
#ifdef SUN_KSTATS
static int
sge_kstat_setup(pesge *sge)
{
int status;
p_kstat_t ksp;
size_t ch_kstat_sz;
p_ch_kstat_t chkp;
char kstat_name[32];
int instance;
int i;
status = -1;
ch_kstat_sz = sizeof (ch_kstat_t);
instance = ddi_get_instance(sge->obj->ch_dip);
if ((ksp = kstat_create(CHNAME "_debug", instance,
NULL, "net_debug", KSTAT_TYPE_NAMED,
ch_kstat_sz / sizeof (kstat_named_t), 0)) == NULL)
goto sge_kstat_setup_exit;
chkp = (p_ch_kstat_t)ksp->ks_data;
kstat_named_init(&chkp->respQ_empty, "respQ_empty",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->respQ_overflow, "respQ_overflow",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->freelistQ_empty, "freelistQ_empty",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->pkt_too_big, "pkt_too_big",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->pkt_mismatch, "pkt_mismatch",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->cmdQ_full[0], "cmdQ_full[0]",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->cmdQ_full[1], "cmdQ_full[1]",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_reclaims[0], "tx_reclaims[0]",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_reclaims[1], "tx_reclaims[1]",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_msg_pullups, "tx_msg_pullups",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_hdr_pullups, "tx_hdr_pullups",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_tcp_ip_frag, "tx_tcp_ip_frag",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_udp_ip_frag, "tx_udp_ip_frag",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_soft_cksums, "tx_soft_cksums",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_need_cpl_space, "tx_need_cpl_space",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_multi_mblks, "tx_multi_mblks",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_no_dvma1, "tx_num_multi_dvma_fails",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_no_dvma2, "tx_num_single_dvma_fails",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_no_dma1, "tx_num_multi_dma_fails",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_no_dma2, "tx_num_single_dma_fails",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_cmdq0, "rx_cmdq0",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_cmdq1, "rx_cmdq1",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_flq0, "rx_flq0",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_flq1, "rx_flq1",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_flq0_sz, "rx_flq0_buffer_sz",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_flq1_sz, "rx_flq1_buffer_sz",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_pkt_drops, "rx_pkt_drops",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_pkt_copied, "rx_pkt_copied",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_pause_on, "rx_pause_on",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_pause_off, "rx_pause_off",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_pause_ms, "rx_pause_ms",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_pause_spike, "rx_pause_spike",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_fl_credits, "rx_fl_credits",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_flbuf_fails, "rx_flbuf_fails",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_flbuf_allocs, "rx_flbuf_allocs",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_badEopSop, "rx_badEopSop",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_flq0_cnt, "rx_flq0_cnt",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->rx_flq1_cnt, "rx_flq1_cnt",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->arp_sent, "arp_sent",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->tx_doorbells, "tx_doorbells",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->intr_doorbells, "intr_doorbells",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->intr1_doorbells, "intr1_doorbells",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->sleep_cnt, "sleep_cnt",
KSTAT_DATA_UINT32);
kstat_named_init(&chkp->pe_allocb_cnt, "pe_allocb_cnt",
KSTAT_DATA_UINT32);
for (i = 0; i < MBLK_MAX; i++) {
(void) sprintf(kstat_name, "tx_descs[%02d]", i);
kstat_named_init(&chkp->tx_descs[i],
kstat_name, KSTAT_DATA_UINT32);
}
ksp->ks_update = sge_kstat_update;
ksp->ks_private = (void *)sge;
sge->ksp = ksp;
kstat_install(ksp);
status = 0;
sge_kstat_setup_exit:
return (status);
}
static void
sge_kstat_remove(pesge *sge)
{
if (sge->ksp)
kstat_delete(sge->ksp);
}
static int
sge_kstat_update(p_kstat_t ksp, int rw)
{
pesge *sge;
p_ch_stats_t statsp;
p_ch_kstat_t chkp;
int i;
sge = (pesge *)ksp->ks_private;
statsp = (p_ch_stats_t)&sge->intr_cnt;
chkp = (p_ch_kstat_t)ksp->ks_data;
if (rw == KSTAT_WRITE) {
statsp->respQ_empty = chkp->respQ_empty.value.ui32;
statsp->respQ_overflow = chkp->respQ_overflow.value.ui32;
statsp->freelistQ_empty = chkp->freelistQ_empty.value.ui32;
statsp->pkt_too_big = chkp->pkt_too_big.value.ui32;
statsp->pkt_mismatch = chkp->pkt_mismatch.value.ui32;
statsp->cmdQ_full[0] = chkp->cmdQ_full[0].value.ui32;
statsp->cmdQ_full[1] = chkp->cmdQ_full[1].value.ui32;
statsp->tx_reclaims[0] = chkp->tx_reclaims[0].value.ui32;
statsp->tx_reclaims[1] = chkp->tx_reclaims[1].value.ui32;
statsp->tx_msg_pullups = chkp->tx_msg_pullups.value.ui32;
statsp->tx_hdr_pullups = chkp->tx_hdr_pullups.value.ui32;
statsp->tx_tcp_ip_frag = chkp->tx_tcp_ip_frag.value.ui32;
statsp->tx_udp_ip_frag = chkp->tx_udp_ip_frag.value.ui32;
statsp->tx_soft_cksums = chkp->tx_soft_cksums.value.ui32;
statsp->tx_need_cpl_space
= chkp->tx_need_cpl_space.value.ui32;
statsp->tx_multi_mblks = chkp->tx_multi_mblks.value.ui32;
statsp->tx_no_dvma1 = chkp->tx_no_dvma1.value.ui32;
statsp->tx_no_dvma2 = chkp->tx_no_dvma2.value.ui32;
statsp->tx_no_dma1 = chkp->tx_no_dma1.value.ui32;
statsp->tx_no_dma2 = chkp->tx_no_dma2.value.ui32;
statsp->rx_cmdq0 = chkp->rx_cmdq0.value.ui32;
statsp->rx_cmdq1 = chkp->rx_cmdq1.value.ui32;
statsp->rx_flq0 = chkp->rx_flq0.value.ui32;
statsp->rx_flq1 = chkp->rx_flq1.value.ui32;
statsp->rx_flq0_sz = chkp->rx_flq0_sz.value.ui32;
statsp->rx_flq1_sz = chkp->rx_flq1_sz.value.ui32;
statsp->rx_pkt_drops = chkp->rx_pkt_drops.value.ui32;
statsp->rx_pkt_copied = chkp->rx_pkt_copied.value.ui32;
statsp->rx_pause_on = chkp->rx_pause_on.value.ui32;
statsp->rx_pause_off = chkp->rx_pause_off.value.ui32;
statsp->rx_pause_ms = chkp->rx_pause_ms.value.ui32;
statsp->rx_pause_spike = chkp->rx_pause_spike.value.ui32;
statsp->rx_fl_credits = chkp->rx_fl_credits.value.ui32;
statsp->rx_flbuf_fails = chkp->rx_flbuf_fails.value.ui32;
statsp->rx_flbuf_allocs = chkp->rx_flbuf_allocs.value.ui32;
statsp->rx_badEopSop = chkp->rx_badEopSop.value.ui32;
statsp->rx_flq0_cnt = chkp->rx_flq0_cnt.value.ui32;
statsp->rx_flq1_cnt = chkp->rx_flq1_cnt.value.ui32;
statsp->arp_sent = chkp->arp_sent.value.ui32;
statsp->tx_doorbells = chkp->tx_doorbells.value.ui32;
statsp->intr_doorbells = chkp->intr_doorbells.value.ui32;
statsp->intr1_doorbells = chkp->intr1_doorbells.value.ui32;
statsp->sleep_cnt = chkp->sleep_cnt.value.ui32;
statsp->pe_allocb_cnt = chkp->pe_allocb_cnt.value.ui32;
for (i = 0; i < MBLK_MAX; i++) {
statsp->tx_descs[i] = chkp->tx_descs[i].value.ui32;
}
} else {
chkp->respQ_empty.value.ui32 = statsp->respQ_empty;
chkp->respQ_overflow.value.ui32 = statsp->respQ_overflow;
chkp->freelistQ_empty.value.ui32
= statsp->freelistQ_empty;
chkp->pkt_too_big.value.ui32 = statsp->pkt_too_big;
chkp->pkt_mismatch.value.ui32 = statsp->pkt_mismatch;
chkp->cmdQ_full[0].value.ui32 = statsp->cmdQ_full[0];
chkp->cmdQ_full[1].value.ui32 = statsp->cmdQ_full[1];
chkp->tx_reclaims[0].value.ui32 = statsp->tx_reclaims[0];
chkp->tx_reclaims[1].value.ui32 = statsp->tx_reclaims[1];
chkp->tx_msg_pullups.value.ui32 = statsp->tx_msg_pullups;
chkp->tx_hdr_pullups.value.ui32 = statsp->tx_hdr_pullups;
chkp->tx_tcp_ip_frag.value.ui32 = statsp->tx_tcp_ip_frag;
chkp->tx_udp_ip_frag.value.ui32 = statsp->tx_udp_ip_frag;
chkp->tx_soft_cksums.value.ui32 = statsp->tx_soft_cksums;
chkp->tx_need_cpl_space.value.ui32
= statsp->tx_need_cpl_space;
chkp->tx_multi_mblks.value.ui32 = statsp->tx_multi_mblks;
chkp->tx_no_dvma1.value.ui32 = statsp->tx_no_dvma1;
chkp->tx_no_dvma2.value.ui32 = statsp->tx_no_dvma2;
chkp->tx_no_dma1.value.ui32 = statsp->tx_no_dma1;
chkp->tx_no_dma2.value.ui32 = statsp->tx_no_dma2;
chkp->rx_cmdq0.value.ui32 = statsp->rx_cmdq0;
chkp->rx_cmdq1.value.ui32 = statsp->rx_cmdq1;
chkp->rx_flq0.value.ui32 = statsp->rx_flq0;
chkp->rx_flq1.value.ui32 = statsp->rx_flq1;
chkp->rx_flq0_sz.value.ui32 = statsp->rx_flq0_sz;
chkp->rx_flq1_sz.value.ui32 = statsp->rx_flq1_sz;
chkp->rx_pkt_drops.value.ui32 = statsp->rx_pkt_drops;
chkp->rx_pkt_copied.value.ui32 = statsp->rx_pkt_copied;
chkp->rx_pause_on.value.ui32 = statsp->rx_pause_on;
chkp->rx_pause_off.value.ui32 = statsp->rx_pause_off;
chkp->rx_pause_ms.value.ui32 = statsp->rx_pause_ms;
chkp->rx_pause_spike.value.ui32 = statsp->rx_pause_spike;
chkp->rx_fl_credits.value.ui32 = statsp->rx_fl_credits;
chkp->rx_flbuf_fails.value.ui32
= statsp->rx_flbuf_fails;
chkp->rx_flbuf_allocs.value.ui32
= statsp->rx_flbuf_allocs;
chkp->rx_badEopSop.value.ui32 = statsp->rx_badEopSop;
chkp->rx_flq0_cnt.value.ui32 = statsp->rx_flq0_cnt;
chkp->rx_flq1_cnt.value.ui32 = statsp->rx_flq1_cnt;
chkp->arp_sent.value.ui32 = statsp->arp_sent;
chkp->tx_doorbells.value.ui32 = statsp->tx_doorbells;
chkp->intr_doorbells.value.ui32 = statsp->intr_doorbells;
chkp->intr1_doorbells.value.ui32
= statsp->intr1_doorbells;
chkp->sleep_cnt.value.ui32 = statsp->sleep_cnt;
chkp->pe_allocb_cnt.value.ui32 = statsp->pe_allocb_cnt;
for (i = 0; i < MBLK_MAX; i++) {
chkp->tx_descs[i].value.ui32 = statsp->tx_descs[i];
}
}
return (0);
}
#endif
static uint16_t
calc_ocsum(mblk_t *mp, int offset)
{
uint8_t *addrp;
uint32_t src;
uint32_t dst;
ipha_t *ihdr = (ipha_t *)(mp->b_rptr + offset);
uint32_t sum;
int iplen = IPH_HDR_LENGTH(ihdr);
struct udphdr *udpp = (struct udphdr *)(mp->b_rptr + offset + iplen);
uchar_t *byte;
int len;
addrp = (uint8_t *)&ihdr->ipha_src;
src = ((uint32_t)(addrp[0]) << 24) | ((uint32_t)(addrp[1]) << 16) |
((uint32_t)(addrp[2]) << 8) | (uint32_t)(addrp[3]);
addrp = (uint8_t *)&ihdr->ipha_dst;
dst = ((uint32_t)(addrp[0]) << 24) | ((uint32_t)(addrp[1]) << 16) |
((uint32_t)(addrp[2]) << 8) | (uint32_t)(addrp[3]);
sum = (uint16_t)(src >> 16) +
(uint16_t)(src) +
(uint16_t)(dst >> 16) +
(uint16_t)(dst) + (udpp->uh_ulen + htons(IPPROTO_UDP));
sum = (uint16_t)(sum >> 16) + (uint16_t)(sum);
if (sum > 0xffff)
sum -= 0xffff;
udpp->uh_sum = 0;
byte = mp->b_rptr + offset + iplen;
do {
len = (mp->b_wptr - byte);
sum = bcksum(byte, len, sum);
if (sum > 0xffff)
sum -= 0xffff;
mp = mp->b_cont;
if (mp)
byte = mp->b_rptr;
} while (mp);
sum = ~sum & 0xffff;
return (sum);
}