glue.c revision d39a76e7b087a3d0927cbe6898dc0a6770fa6c68
2N/A/*
2N/A * CDDL HEADER START
2N/A *
2N/A * The contents of this file are subject to the terms of the
2N/A * Common Development and Distribution License (the "License").
2N/A * You may not use this file except in compliance with the License.
2N/A *
2N/A * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
2N/A * or http://www.opensolaris.org/os/licensing.
2N/A * See the License for the specific language governing permissions
2N/A * and limitations under the License.
2N/A *
2N/A * When distributing Covered Code, include this CDDL HEADER in each
2N/A * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
2N/A * If applicable, add the following below this CDDL HEADER, with the
2N/A * fields enclosed by brackets "[]" replaced with your own identifying
2N/A * information: Portions Copyright [yyyy] [name of copyright owner]
2N/A *
2N/A * CDDL HEADER END
2N/A */
2N/A
2N/A/*
2N/A * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
2N/A * Use is subject to license terms.
2N/A */
2N/A
2N/A/*
2N/A * This file is part of the Chelsio T1 Ethernet driver.
2N/A *
2N/A * Copyright (C) 2003-2005 Chelsio Communications. All rights reserved.
2N/A */
2N/A
2N/A/*
2N/A * Solaris support routines for common code part of
2N/A * Chelsio PCI Ethernet Driver.
2N/A */
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/stropts.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/kmem.h>
#include <sys/stat.h>
#include <sys/kstat.h>
#include <sys/modctl.h>
#include <sys/errno.h>
#include <sys/varargs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/dlpi.h>
#include <sys/ethernet.h>
#include <sys/strsun.h>
#include "ostypes.h"
#undef OFFSET
#include "common.h"
#include <sys/gld.h>
#include "oschtoe.h"
#include "ch.h" /* Chelsio Driver specific parameters */
#include "sge.h"
#include "regs.h"
/*
* Device specific.
*/
struct pe_reg {
uint32_t cmd;
uint32_t addr;
union {
uint32_t v32;
uint64_t v64;
}vv;
union {
uint32_t m32;
uint64_t m64;
}mm;
};
#define pe_reg_val vv.v32
#define pe_opt_val vv.v64
#define pe_mask32 mm.m32
#define pe_mask64 mm.m64
struct toetool_reg {
uint32_t cmd;
uint32_t addr;
uint32_t val;
};
uint32_t
t1_read_reg_4(ch_t *obj, uint32_t reg_val)
{
return (ddi_get32(obj->ch_hbar0, (uint32_t *)(obj->ch_bar0 + reg_val)));
}
void
t1_write_reg_4(ch_t *obj, uint32_t reg_val, uint32_t write_val)
{
ddi_put32(obj->ch_hbar0, (uint32_t *)(obj->ch_bar0+reg_val), write_val);
}
uint32_t
t1_os_pci_read_config_2(ch_t *obj, uint32_t reg, uint16_t *val)
{
*val = pci_config_get16(obj->ch_hpci, reg);
return (0);
}
int
t1_os_pci_write_config_2(ch_t *obj, uint32_t reg, uint16_t val)
{
pci_config_put16(obj->ch_hpci, reg, val);
return (0);
}
uint32_t
t1_os_pci_read_config_4(ch_t *obj, uint32_t reg, uint32_t *val)
{
*val = pci_config_get32(obj->ch_hpci, reg);
return (0);
}
int
t1_os_pci_write_config_4(ch_t *obj, uint32_t reg, uint32_t val)
{
pci_config_put32(obj->ch_hpci, reg, val);
return (0);
}
void *
t1_os_malloc_wait_zero(size_t len)
{
return (kmem_zalloc(len, KM_SLEEP));
}
void
t1_os_free(void *adr, size_t len)
{
kmem_free(adr, len);
}
int
t1_num_of_ports(ch_t *obj)
{
return (obj->config_data.num_of_ports);
}
/* ARGSUSED */
int
pe_os_mem_copy(ch_t *obj, void *dst, void *src, size_t len)
{
bcopy(src, dst, len);
return (0);
}
int
pe_is_ring_buffer_enabled(ch_t *obj)
{
return (obj->config & CFGMD_RINGB);
}
#define PE_READ_REG _IOR('i', 0xAB, 0x18)
#define PE_WRITE_REG _IOW('i', 0xAB, 0x18)
#define PE_READ_PCI _IOR('i', 0xAC, 0x18)
#define PE_WRITE_PCI _IOW('i', 0xAC, 0x18)
#define PE_READ_INTR _IOR('i', 0xAD, 0x20)
#define TOETOOL_GETTPI _IOR('i', 0xAE, 0xc)
#define TOETOOL_SETTPI _IOW('i', 0xAE, 0xc)
void
pe_ioctl(ch_t *chp, queue_t *q, mblk_t *mp)
{
struct iocblk *iocp;
mblk_t *dmp;
struct pe_reg *pe;
struct toetool_reg *te;
uint32_t reg;
struct sge_intr_counts *se, *sep;
iocp = (struct iocblk *)mp->b_rptr;
/* don't support TRASPARENT ioctls */
if (iocp->ioc_count == TRANSPARENT) {
iocp->ioc_error = ENOTTY;
goto bad;
}
/*
* sanity checks. There should be a M_DATA mblk following
* the initial M_IOCTL mblk
*/
if ((dmp = mp->b_cont) == NULL) {
iocp->ioc_error = ENOTTY;
goto bad;
}
if (dmp->b_datap->db_type != M_DATA) {
iocp->ioc_error = ENOTTY;
goto bad;
}
pe = (struct pe_reg *)dmp->b_rptr;
se = (struct sge_intr_counts *)dmp->b_rptr;
te = (struct toetool_reg *)dmp->b_rptr;
/* now process the ioctl */
switch (iocp->ioc_cmd) {
case PE_READ_REG:
if ((dmp->b_wptr - dmp->b_rptr) != sizeof (*pe)) {
iocp->ioc_error = ENOTTY;
goto bad;
}
/* protect against bad addr values */
pe->addr &= (uint32_t)~3;
pe->pe_mask32 = 0xFFFFFFFF;
if (pe->addr == 0x950)
pe->pe_reg_val = reg = t1_sge_get_ptimeout(chp);
else
pe->pe_reg_val = reg = t1_read_reg_4(chp, pe->addr);
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = sizeof (*pe);
break;
case PE_WRITE_REG:
if ((dmp->b_wptr - dmp->b_rptr) != sizeof (*pe)) {
iocp->ioc_error = ENOTTY;
goto bad;
}
if (pe->addr == 0x950)
t1_sge_set_ptimeout(chp, pe->pe_reg_val);
else {
if (pe->pe_mask32 != 0xffffffff) {
reg = t1_read_reg_4(chp, pe->addr);
pe->pe_reg_val |= (reg & ~pe->pe_mask32);
}
t1_write_reg_4(chp, pe->addr, pe->pe_reg_val);
}
if (mp->b_cont)
freemsg(mp->b_cont);
mp->b_cont = NULL;
mp->b_datap->db_type = M_IOCACK;
break;
case PE_READ_PCI:
if ((dmp->b_wptr - dmp->b_rptr) != sizeof (*pe)) {
iocp->ioc_error = ENOTTY;
goto bad;
}
/* protect against bad addr values */
pe->addr &= (uint32_t)~3;
pe->pe_mask32 = 0xFFFFFFFF;
pe->pe_reg_val = reg = pci_config_get32(chp->ch_hpci, pe->addr);
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = sizeof (*pe);
break;
case PE_WRITE_PCI:
if ((dmp->b_wptr - dmp->b_rptr) != sizeof (*pe)) {
iocp->ioc_error = ENOTTY;
goto bad;
}
if (pe->pe_mask32 != 0xffffffff) {
reg = pci_config_get32(chp->ch_hpci, pe->addr);
pe->pe_reg_val |= (reg & ~pe->pe_mask32);
}
pci_config_put32(chp->ch_hpci, pe->addr, pe->pe_reg_val);
if (mp->b_cont)
freemsg(mp->b_cont);
mp->b_cont = NULL;
mp->b_datap->db_type = M_IOCACK;
break;
case PE_READ_INTR:
if ((dmp->b_wptr - dmp->b_rptr) != sizeof (*se)) {
iocp->ioc_error = ENOTTY;
goto bad;
}
sep = sge_get_stat(chp->sge);
bcopy(sep, se, sizeof (*se));
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = sizeof (*se);
break;
case TOETOOL_GETTPI:
if ((dmp->b_wptr - dmp->b_rptr) != sizeof (*te)) {
iocp->ioc_error = ENOTTY;
goto bad;
}
/* protect against bad addr values */
if ((te->addr & 3) != 0) {
iocp->ioc_error = ENOTTY;
goto bad;
}
(void) t1_tpi_read(chp, te->addr, &te->val);
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = sizeof (*te);
break;
case TOETOOL_SETTPI:
if ((dmp->b_wptr - dmp->b_rptr) != sizeof (*te)) {
iocp->ioc_error = ENOTTY;
goto bad;
}
/* protect against bad addr values */
if ((te->addr & 3) != 0) {
iocp->ioc_error = ENOTTY;
goto bad;
}
(void) t1_tpi_write(chp, te->addr, te->val);
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = sizeof (*te);
break;
default:
iocp->ioc_error = ENOTTY;
goto bad;
}
qreply(q, mp);
return;
bad:
if (mp->b_cont)
freemsg(mp->b_cont);
mp->b_cont = NULL;
mp->b_datap->db_type = M_IOCNAK;
qreply(q, mp);
}
/*
* Can't wait for memory here, since we have to use the Solaris dma
* mechanisms to determine the physical address.
* flg is either 0 (read) or DMA_OUT (write).
*/
void *
pe_os_malloc_contig_wait_zero(ch_t *chp, size_t len, uint64_t *dma_addr,
ulong_t *dh, ulong_t *ah, uint32_t flg)
{
void *mem = NULL;
uint64_t pa;
/*
* byte swap, consistant mapping & 4k aligned
*/
mem = ch_alloc_dma_mem(chp, 1, DMA_4KALN|flg, len, &pa, dh, ah);
if (mem == NULL) {
return (0);
}
if (dma_addr)
*dma_addr = pa;
bzero(mem, len);
return ((void *)mem);
}
/* ARGSUSED */
void
pe_os_free_contig(ch_t *obj, size_t len, void *addr, uint64_t dma_addr,
ulong_t dh, ulong_t ah)
{
ch_free_dma_mem(dh, ah);
}
void
t1_fatal_err(ch_t *adapter)
{
if (adapter->ch_flags & PEINITDONE) {
(void) sge_stop(adapter->sge);
t1_interrupts_disable(adapter);
}
CH_ALERT("%s: encountered fatal error, operation suspended\n",
adapter_name(adapter));
}
void
CH_ALERT(const char *fmt, ...)
{
va_list ap;
char buf[128];
/* format buf using fmt and arguments contained in ap */
va_start(ap, fmt);
(void) vsprintf(buf, fmt, ap);
va_end(ap);
/* pass formatted string to cmn_err(9F) */
cmn_err(CE_WARN, "%s", buf);
}
void
CH_WARN(const char *fmt, ...)
{
va_list ap;
char buf[128];
/* format buf using fmt and arguments contained in ap */
va_start(ap, fmt);
(void) vsprintf(buf, fmt, ap);
va_end(ap);
/* pass formatted string to cmn_err(9F) */
cmn_err(CE_WARN, "%s", buf);
}
void
CH_ERR(const char *fmt, ...)
{
va_list ap;
char buf[128];
/* format buf using fmt and arguments contained in ap */
va_start(ap, fmt);
(void) vsprintf(buf, fmt, ap);
va_end(ap);
/* pass formatted string to cmn_err(9F) */
cmn_err(CE_WARN, "%s", buf);
}
u32
le32_to_cpu(u32 data)
{
#if BYTE_ORDER == BIG_ENDIAN
uint8_t *in, t;
in = (uint8_t *)&data;
t = in[0];
in[0] = in[3];
in[3] = t;
t = in[1];
in[1] = in[2];
in[2] = t;
#endif
return (data);
}
/*
* This function initializes a polling routine, Poll_func
* which will be polled ever N Microsecond, where N is
* provided in the cyclic start routine.
*/
/* ARGSUSED */
void
ch_init_cyclic(void *adapter, p_ch_cyclic_t cyclic,
void (*poll_func)(void *), void *arg)
{
cyclic->func = poll_func;
cyclic->arg = arg;
cyclic->timer = 0;
}
/*
* Cyclic function which provides a periodic polling
* capability to Solaris. The poll function provided by
* the 'ch_init_cyclic' function is called from this
* here, and this routine launches a new one-shot
* timer to bring it back in some period later.
*/
void
ch_cyclic(p_ch_cyclic_t cyclic)
{
if (cyclic->timer != 0) {
cyclic->func(cyclic->arg);
cyclic->timer = timeout((void(*)(void *))ch_cyclic,
(void *)cyclic, cyclic->period);
}
}
/*
* The 'ch_start_cyclic' starts the polling.
*/
void
ch_start_cyclic(p_ch_cyclic_t cyclic, unsigned long period)
{
cyclic->period = drv_usectohz(period * 1000);
if (cyclic->timer == 0) {
cyclic->timer = timeout((void(*)(void *))ch_cyclic,
(void *)cyclic, cyclic->period);
}
}
/*
* The 'ch_stop_cyclic' stops the polling.
*/
void
ch_stop_cyclic(p_ch_cyclic_t cyclic)
{
timeout_id_t timer;
clock_t value;
do {
timer = cyclic->timer;
cyclic->timer = 0;
value = untimeout(timer);
if (value == 0)
delay(2 * cyclic->period);
} while ((timer != 0) && (value == 0));
}