bscv.c revision 193974072f41a843678abf5f61979c748687e66b
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* bscv.c - multi-threaded lom driver for the Stiletto platform.
*/
/*
* Included files.
*/
#include <sys/note.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/uio.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/stream.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/reboot.h>
#include <sys/modctl.h>
#include <sys/mkdev.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include <sys/kmem.h>
#include <sys/consdev.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/disp.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/log.h>
#include <sys/utsname.h>
#include <sys/callb.h>
#include <sys/sysevent.h>
#include <sys/nvpair.h>
#include <sys/sysevent/eventdefs.h>
#include <sys/sysevent/domain.h>
#include <sys/sysevent/env.h>
#include <sys/sysevent/dr.h>
#include <sys/lom_io.h>
#include <sys/bscbus.h>
#include <sys/bscv_impl.h>
/*
* Variables defined here and visible internally only
*/
static void *bscv_statep = NULL;
/*
* Forward declarations
*/
static int bscv_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int bscv_attach(dev_info_t *, ddi_attach_cmd_t);
static int bscv_detach(dev_info_t *, ddi_detach_cmd_t);
static int bscv_reset(dev_info_t *, ddi_reset_cmd_t);
static int bscv_quiesce(dev_info_t *);
static int bscv_map_regs(bscv_soft_state_t *);
static void bscv_unmap_regs(bscv_soft_state_t *);
static void bscv_map_chan_logical_physical(bscv_soft_state_t *);
static int bscv_open(dev_t *, int, int, cred_t *);
static int bscv_close(dev_t, int, int, cred_t *);
static void bscv_full_stop(bscv_soft_state_t *);
static void bscv_enter(bscv_soft_state_t *);
static void bscv_exit(bscv_soft_state_t *);
#ifdef DEBUG
static int bscv_held(bscv_soft_state_t *);
#endif /* DEBUG */
static void bscv_put8(bscv_soft_state_t *, int, bscv_addr_t, uint8_t);
static void bscv_put16(bscv_soft_state_t *, int, bscv_addr_t, uint16_t);
static void bscv_put32(bscv_soft_state_t *, int, bscv_addr_t, uint32_t);
static uint8_t bscv_get8(bscv_soft_state_t *, int, bscv_addr_t);
static uint16_t bscv_get16(bscv_soft_state_t *, int, bscv_addr_t);
static uint32_t bscv_get32(bscv_soft_state_t *, int, bscv_addr_t);
static void bscv_setclear8(bscv_soft_state_t *, int,
bscv_addr_t, uint8_t, uint8_t);
static void bscv_setclear8_volatile(bscv_soft_state_t *, int,
bscv_addr_t, uint8_t, uint8_t);
static void bscv_rep_rw8(bscv_soft_state_t *, int,
uint8_t *, bscv_addr_t, size_t, uint_t, boolean_t);
static uint8_t bscv_get8_cached(bscv_soft_state_t *, bscv_addr_t);
static uint8_t bscv_get8_locked(bscv_soft_state_t *, int, bscv_addr_t, int *);
static void bscv_rep_get8_locked(bscv_soft_state_t *, int,
uint8_t *, bscv_addr_t, size_t, uint_t, int *);
static boolean_t bscv_faulty(bscv_soft_state_t *);
static void bscv_clear_fault(bscv_soft_state_t *);
static void bscv_set_fault(bscv_soft_state_t *);
static boolean_t bscv_session_error(bscv_soft_state_t *);
static int bscv_retcode(bscv_soft_state_t *);
static int bscv_should_retry(bscv_soft_state_t *);
static void bscv_locked_result(bscv_soft_state_t *, int *);
static void bscv_put8_once(bscv_soft_state_t *, int, bscv_addr_t, uint8_t);
static uint8_t bscv_get8_once(bscv_soft_state_t *, int, bscv_addr_t);
static uint32_t bscv_probe(bscv_soft_state_t *, int, uint32_t *);
static void bscv_resync_comms(bscv_soft_state_t *, int);
static boolean_t bscv_window_setup(bscv_soft_state_t *);
static int bscv_eerw(bscv_soft_state_t *, uint32_t, uint8_t *,
unsigned, boolean_t);
static int bscv_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
static int bscv_ioc_dogstate(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_psustate(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_fanstate(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_fledstate(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_ledstate(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_info(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_mread(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_volts(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_stats(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_temp(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_cons(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_eventlog2(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_info2(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_test(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_mprog2(bscv_soft_state_t *, intptr_t, int);
static int bscv_ioc_mread2(bscv_soft_state_t *, intptr_t, int);
static void bscv_event_daemon(void *);
static void bscv_start_event_daemon(bscv_soft_state_t *);
static int bscv_stop_event_daemon(bscv_soft_state_t *);
static int bscv_pause_event_daemon(bscv_soft_state_t *);
static void bscv_resume_event_daemon(bscv_soft_state_t *);
static void bscv_event_process(bscv_soft_state_t *ssp, boolean_t);
static int bscv_event_validate(bscv_soft_state_t *, uint32_t, uint8_t);
static void bscv_event_process_one(bscv_soft_state_t *, lom_event_t *);
static void bscv_build_eventstring(bscv_soft_state_t *,
lom_event_t *, char *, char *);
static int bscv_level_of_event(lom_event_t *);
static void bscv_status(bscv_soft_state_t *, uint8_t, uint8_t);
char *bscv_get_label(char [][MAX_LOM2_NAME_STR], int, int);
static void bscv_generic_sysevent(bscv_soft_state_t *, char *, char *, char *,
char *, int32_t, char *);
static void bscv_sysevent(bscv_soft_state_t *, lom_event_t *);
static int bscv_prog(bscv_soft_state_t *, intptr_t, int);
static int bscv_prog_image(bscv_soft_state_t *, boolean_t,
uint8_t *, int, uint32_t);
static int bscv_prog_receive_image(bscv_soft_state_t *, lom_prog_t *,
uint8_t *, int);
static void bscv_leave_programming_mode(bscv_soft_state_t *, boolean_t);
static int bscv_prog_stop_lom(bscv_soft_state_t *);
static int bscv_prog_start_lom(bscv_soft_state_t *);
static int bscv_attach_common(bscv_soft_state_t *);
static int bscv_cleanup(bscv_soft_state_t *);
static void bscv_setup_capability(bscv_soft_state_t *);
static int bscv_probe_check(bscv_soft_state_t *);
static void bscv_setup_hostname(bscv_soft_state_t *);
static void bscv_read_hostname(bscv_soft_state_t *, char *);
static void bscv_write_hostname(bscv_soft_state_t *, char *, uint8_t);
static void bscv_setup_static_info(bscv_soft_state_t *);
static uint8_t bscv_read_env_name(bscv_soft_state_t *, uint8_t,
uint8_t, uint8_t, char [][MAX_LOM2_NAME_STR], int);
static void bscv_setup_events(bscv_soft_state_t *);
static void bscv_trace(bscv_soft_state_t *, char, const char *,
const char *, ...);
#ifdef __sparc
static void bscv_idi_init();
static void bscv_idi_fini();
static void bscv_idi_new_instance(dev_info_t *dip);
static void bscv_idi_clear_err();
void bscv_idi_set(struct bscv_idi_info info);
static boolean_t bscv_idi_err();
static boolean_t bscv_nodename_set(struct bscv_idi_info info);
static boolean_t bscv_sig_set(struct bscv_idi_info info);
static boolean_t bscv_wdog_pat(struct bscv_idi_info info);
static boolean_t bscv_wdog_cfg(struct bscv_idi_info info);
static void bscv_write_sig(bscv_soft_state_t *ssp, bscv_sig_t s);
#endif /* __sparc */
static void bscv_setup_watchdog(bscv_soft_state_t *ssp);
static void bscv_write_wdog_cfg(bscv_soft_state_t *,
uint_t, boolean_t, uint8_t);
#if defined(__i386) || defined(__amd64)
static void bscv_inform_bsc(bscv_soft_state_t *, uint32_t);
static void bscv_watchdog_pat_request(void *);
static void bscv_watchdog_cfg_request(bscv_soft_state_t *, uint8_t);
static uint_t bscv_set_watchdog_timer(bscv_soft_state_t *, uint_t);
static void bscv_clear_watchdog_timer(bscv_soft_state_t *);
static boolean_t bscv_panic_callback(void *, int);
static void bscv_watchdog_cyclic_add(bscv_soft_state_t *);
static void bscv_watchdog_cyclic_remove(bscv_soft_state_t *);
static uint8_t wdog_reset_on_timeout = 1;
#define WDOG_ON 1
#define WDOG_OFF 0
#define CLK_WATCHDOG_DEFAULT 10 /* 10 seconds */
#define WATCHDOG_PAT_INTERVAL 1000000000 /* 1 second */
static int bscv_watchdog_enable;
static int bscv_watchdog_available;
static int watchdog_activated;
static uint_t bscv_watchdog_timeout_seconds;
#endif /* __i386 || __amd64 */
#ifdef __sparc
struct bscv_idi_callout bscv_idi_callout_table[] = {
{BSCV_IDI_NODENAME, &bscv_nodename_set },
{BSCV_IDI_SIG, &bscv_sig_set },
{BSCV_IDI_WDOG_PAT, &bscv_wdog_pat },
{BSCV_IDI_WDOG_CFG, &bscv_wdog_cfg },
{BSCV_IDI_NULL, NULL }
};
static struct bscv_idi_callout_mgr bscv_idi_mgr;
#endif /* __sparc */
/*
* Local Definitions
*/
#define STATUS_READ_LIMIT 8 /* Read up to 8 status changes at a time */
#define MYNAME "bscv"
#define BSCV_INST_TO_MINOR(i) (i)
#define BSCV_MINOR_TO_INST(m) (m)
#define ddi_driver_major(dip) ddi_name_to_major(ddi_binding_name(dip))
/*
* Strings for daemon event reporting
*/
static char *eventSubsysStrings[] =
{ "", /* 00 */
"Alarm ", /* 01 */
"temperature sensor ", /* 02 */
"overheat sensor ", /* 03 */
"Fan ", /* 04 */
"supply rail ", /* 05 */
"circuit breaker ", /* 06 */
"PSU ", /* 07 */
"user ", /* 08 */
"phonehome ", /* 09; unutilized */
"LOM ", /* 0a */
"host ", /* 0b */
"event log ", /* 0c */
"", /* 0d; EVENT_SUBSYS_EXTRA unutilized */
"LED ", /* 0e */
};
static char *eventTypeStrings[] =
{
"[null event]", /* 00 */
"ON", /* 01 */
"OFF", /* 02 */
"state change", /* 03 */
"power on", /* 04 */
"power off", /* 05 */
"powered off unexpectedly", /* 06 */
"reset unexpectedly", /* 07 */
"booted", /* 08 */
"watchdog enabled", /* 09 */
"watchdog disabled", /* 0a */
"watchdog triggered", /* 0b */
"failed", /* 0c */
"recovered", /* 0d */
"reset", /* 0e */
"XIR reset", /* 0f */
"console selected", /* 10 */
"time reference", /* 11 */
"script failure", /* 12 */
"modem access failure", /* 13 */
"modem dialing failure", /* 14 */
"bad checksum", /* 15 */
"added", /* 16 */
"removed", /* 17 */
"changed", /* 18 */
"login", /* 19 */
"password changed", /* 1a */
"login failed", /* 1b */
"logout", /* 1c */
"flash download", /* 1d */
"data lost", /* 1e */
"device busy", /* 1f */
"fault led state", /* 20 */
"overheat", /* 21 */
"severe overheat", /* 22 */
"no overheat", /* 23 */
"SCC", /* 24 */
"device inaccessible", /* 25 */
"Hostname change", /* 26 */
"CPU signature timeout", /* 27 */
"Bootmode change", /* 28 */
"Watchdog change policy", /* 29 */
"Watchdog change timeout", /* 2a */
};
/*
* These store to mapping between the logical service, e.g. chan_prog for
* programming, and the actual Xbus channel which carries that traffic.
* Any services can be shared on the same channel apart from chan_wdogpat.
*/
static int chan_general; /* General Traffic */
static int chan_wdogpat; /* Watchdog Patting */
static int chan_cpusig; /* CPU signatures */
static int chan_eeprom; /* EEPROM I/O */
static int chan_prog; /* Programming */
/*
* cb_ops structure defining the driver entry points
*/
static struct cb_ops bscv_cb_ops = {
bscv_open, /* open */
bscv_close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
bscv_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* prop op */
NULL, /* ! STREAMS */
D_NEW | D_MP /* MT/MP Safe */
};
/*
* dev_ops structure defining autoconfiguration driver autoconfiguration
* routines
*/
static struct dev_ops bscv_dev_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
bscv_getinfo, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo_probe */
bscv_attach, /* devo_attach */
bscv_detach, /* devo_detach */
bscv_reset, /* devo_reset */
&bscv_cb_ops, /* devo_cb_ops */
(struct bus_ops *)0, /* devo_bus_ops */
NULL, /* devo_power */
bscv_quiesce, /* devo_quiesce */
};
/*
* module configuration section
*/
#ifdef DEBUG
#define BSCV_VERSION_STRING "bscv driver - Debug"
#else /* DEBUG */
#define BSCV_VERSION_STRING "bscv driver"
#endif /* DEBUG */
static struct modldrv modldrv = {
&mod_driverops,
BSCV_VERSION_STRING,
&bscv_dev_ops,
};
static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL
};
/*
* kernel accessible routines. These routines are necessarily global so the
* driver can be loaded, and unloaded successfully
*/
/*
* function - _init
* description - initializes the driver state structure and installs the
* driver module into the kernel
* inputs - none
* outputs - success or failure of module installation
*/
int
_init(void)
{
register int e;
if ((e = ddi_soft_state_init(&bscv_statep,
sizeof (bscv_soft_state_t), 1)) != 0) {
return (e);
}
if ((e = mod_install(&modlinkage)) != 0) {
ddi_soft_state_fini(&bscv_statep);
}
#ifdef __sparc
if (e == 0) bscv_idi_init();
#endif /* __sparc */
return (e);
}
/*
* function - _info
* description - provide information about a kernel loaded module
* inputs - module infomation
* outputs - success or failure of information request
*/
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* function - _fini
* description - removes a module from the kernel and frees the driver soft
* state memory
* inputs - none
* outputs - success or failure of module removal
*/
int
_fini(void)
{
register int e;
if ((e = mod_remove(&modlinkage)) != 0) {
return (e);
}
#ifdef __sparc
bscv_idi_fini();
#endif /* __sparc */
ddi_soft_state_fini(&bscv_statep);
return (e);
}
/*
* function - bscv_getinfo
* description - routine used to provide information on the driver
* inputs - device information structure, command, command arg, storage
* area for the result
* outputs - DDI_SUCCESS or DDI_FAILURE
*/
/*ARGSUSED*/
static int
bscv_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
{
bscv_soft_state_t *ssp;
dev_t dev = (dev_t)arg;
int instance;
int error;
instance = DEVICETOINSTANCE(dev);
switch (cmd) {
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)(uintptr_t)instance;
error = DDI_SUCCESS;
break;
case DDI_INFO_DEVT2DEVINFO:
ssp = ddi_get_soft_state(bscv_statep, instance);
if (ssp == NULL)
return (DDI_FAILURE);
*result = (void *) ssp->dip;
error = DDI_SUCCESS;
break;
default:
error = DDI_FAILURE;
break;
}
return (error);
}
#ifdef __sparc
void
bscv_idi_init()
{
bscv_idi_mgr.valid_inst = (uint32_t)~0; /* No valid instances */
bscv_idi_mgr.tbl = bscv_idi_callout_table;
bscv_idi_mgr.errs = 0;
/*
* Now that all fields are initialized, set the magic flag. This is
* a kind of integrity check for the data structure.
*/
bscv_idi_mgr.magic = BSCV_IDI_CALLOUT_MAGIC;
}
static void
bscv_idi_clear_err()
{
ASSERT(bscv_idi_mgr.magic == BSCV_IDI_CALLOUT_MAGIC);
bscv_idi_mgr.errs = 0;
}
/*
* function - bscv_idi_err
* description - error messaging service which throttles the number of error
* messages to avoid overflowing storage
* inputs - none
* returns - boolean to indicate whether a message should be reported
* side-effects - updates the error number counter
*/
static boolean_t
bscv_idi_err()
{
ASSERT(bscv_idi_mgr.magic == BSCV_IDI_CALLOUT_MAGIC);
bscv_idi_mgr.errs++;
if (bscv_idi_mgr.errs++ < BSCV_IDI_ERR_MSG_THRESHOLD)
return (B_TRUE);
return (B_FALSE);
}
void
bscv_idi_new_instance(dev_info_t *dip)
{
ASSERT(bscv_idi_mgr.magic == BSCV_IDI_CALLOUT_MAGIC);
/*
* We don't care how many instances we have, or their value, so long
* as we have at least one valid value. This is so service routines
* can get any required locks via a soft state pointer.
*/
if (bscv_idi_mgr.valid_inst == (uint32_t)~0) {
bscv_idi_mgr.valid_inst = ddi_get_instance(dip);
}
}
void
bscv_idi_fini()
{
bscv_idi_mgr.valid_inst = (uint32_t)~0; /* No valid instances */
bscv_idi_mgr.tbl = NULL;
}
#endif /* __sparc */
/*
* function - bscv_attach
* description - this routine is responsible for setting aside memory for the
* driver data structures, initialising the mutexes and creating
* the device minor nodes. Additionally, this routine calls the
* the callback routine.
* inputs - device information structure, DDI_ATTACH command
* outputs - DDI_SUCCESS or DDI_FAILURE
*/
int
bscv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
bscv_soft_state_t *ssp;
int instance;
switch (cmd) {
case DDI_ATTACH:
instance = ddi_get_instance(dip);
if (ddi_soft_state_zalloc(bscv_statep, instance) !=
DDI_SUCCESS) {
return (DDI_FAILURE);
}
ssp = ddi_get_soft_state(bscv_statep, instance);
ssp->progress = 0;
ssp->dip = dip;
ssp->instance = instance;
ssp->event_waiting = B_FALSE;
ssp->status_change = B_FALSE;
ssp->nodename_change = B_FALSE;
ssp->cap0 = 0;
ssp->cap1 = 0;
ssp->cap2 = 0;
ssp->prog_mode_only = B_FALSE;
ssp->programming = B_FALSE;
ssp->cssp_prog = B_FALSE;
ssp->task_flags = 0;
ssp->debug = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "debug", 0);
ssp->majornum = ddi_driver_major(dip);
ssp->minornum = BSCV_INST_TO_MINOR(instance);
#if defined(__i386) || defined(__amd64)
ssp->last_nodename[0] = '\0';
#endif /* __i386 || __amd64 */
/*
* initialise the mutexes
*/
mutex_init(&ssp->cmd_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&ssp->task_mu, NULL, MUTEX_DRIVER, NULL);
cv_init(&ssp->task_cv, NULL, CV_DRIVER, NULL);
cv_init(&ssp->task_evnt_cv, NULL, CV_DRIVER, NULL);
mutex_init(&ssp->prog_mu, NULL, MUTEX_DRIVER, NULL);
ssp->progress |= BSCV_LOCKS;
bscv_trace(ssp, 'A', "bscv_attach",
"bscv_attach: mutexes and condition vars initialised");
/* Map in physical communication channels */
if (bscv_map_regs(ssp) != DDI_SUCCESS) {
(void) bscv_cleanup(ssp);
return (DDI_FAILURE);
}
ssp->progress |= BSCV_MAPPED_REGS;
/* Associate logical channels to physical channels */
bscv_map_chan_logical_physical(ssp);
bscv_enter(ssp);
bscv_leave_programming_mode(ssp, B_FALSE);
if (bscv_attach_common(ssp) == DDI_FAILURE) {
bscv_exit(ssp);
(void) bscv_cleanup(ssp);
return (DDI_FAILURE);
}
#ifdef __sparc
/*
* At this point the inter-driver-interface is made available.
* The IDI uses the event thread service which
* bscv_attach_common() sets up.
*/
bscv_idi_new_instance(dip);
#endif /* __sparc */
bscv_exit(ssp);
/*
* now create the minor nodes
*/
if (ddi_create_minor_node(ssp->dip, "lom", S_IFCHR,
BSCV_INST_TO_MINOR(instance),
DDI_PSEUDO, 0) != DDI_SUCCESS) {
(void) bscv_cleanup(ssp);
return (DDI_FAILURE);
}
bscv_trace(ssp, 'A', "bscv_attach",
"bscv_attach: device minor nodes created");
ssp->progress |= BSCV_NODES;
if (!ssp->prog_mode_only)
bscv_start_event_daemon(ssp);
#if defined(__i386) || defined(__amd64)
bscv_watchdog_enable = 1;
bscv_watchdog_available = 1;
watchdog_activated = 0;
bscv_watchdog_timeout_seconds = CLK_WATCHDOG_DEFAULT;
if (bscv_watchdog_enable && (boothowto & RB_DEBUG)) {
bscv_watchdog_available = 0;
cmn_err(CE_WARN, "bscv: kernel debugger "
"detected: hardware watchdog disabled");
}
/*
* Before we enable the watchdog - register the panic
* callback so that we get called to stop the watchdog
* in the case of a panic.
*/
ssp->callb_id = callb_add(bscv_panic_callback,
(void *)ssp, CB_CL_PANIC, "");
if (bscv_watchdog_available) {
(void) bscv_set_watchdog_timer(ssp,
CLK_WATCHDOG_DEFAULT);
bscv_enter(ssp);
bscv_setup_watchdog(ssp); /* starts cyclic callback */
bscv_exit(ssp);
}
#endif /* __i386 || __amd64 */
ddi_report_dev(dip);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*
* function - bscv_detach
* description - routine that prepares a module to be unloaded. It undoes all
* the work done by the bscv_attach)() routine. This is
* facilitated by the use of the progress indicator
* inputs - device information structure, DDI_DETACH command
* outputs - DDI_SUCCESS or DDI_FAILURE
*/
/*ARGSUSED*/
static int
bscv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
return (DDI_FAILURE);
}
/*
* function - bscv_reset
* description - routine called when system is being stopped - used to disable
* the watchdog.
* inputs - device information structure, DDI_RESET command
* outputs - DDI_SUCCESS or DDI_FAILURE
*/
static int
bscv_reset(dev_info_t *dip, ddi_reset_cmd_t cmd)
{
bscv_soft_state_t *ssp;
int instance;
switch (cmd) {
case DDI_RESET_FORCE:
instance = ddi_get_instance(dip);
ssp = ddi_get_soft_state(bscv_statep, instance);
if (ssp == NULL) {
return (DDI_FAILURE);
}
bscv_full_stop(ssp);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*
* quiesce(9E) entry point.
*
* This function is called when the system is single-threaded at high
* PIL with preemption disabled. Therefore, this function must not be
* blocked.
*
* This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
* DDI_FAILURE indicates an error condition and should almost never happen.
*/
static int
bscv_quiesce(dev_info_t *dip)
{
bscv_soft_state_t *ssp;
int instance;
instance = ddi_get_instance(dip);
ssp = ddi_get_soft_state(bscv_statep, instance);
if (ssp == NULL) {
return (DDI_FAILURE);
}
bscv_full_stop(ssp);
return (DDI_SUCCESS);
}
/*
* cb_ops routines
*/
/*
* function - bscv_open
* description - routine to provide association between user fd and device
* minor number. This routine is necessarily simple since a
* read/write interface is not provided. Additionally, the
* driver does not enforce exclusive access (FEXCL) or
* non-blocking during an open (FNDELAY). Deferred attach is
* supported.
* inputs - device number, flag specifying open type, device type,
* permissions
* outputs - success or failure of operation
*/
/*ARGSUSED*/
static int
bscv_open(dev_t *devp, int flag, int otype, cred_t *cred)
{
bscv_soft_state_t *ssp;
int instance;
instance = DEVICETOINSTANCE(*devp);
ssp = ddi_get_soft_state(bscv_statep, instance);
if (ssp == NULL) {
return (ENXIO); /* not attached yet */
}
bscv_trace(ssp, 'O', "bscv_open", "instance 0x%x", instance);
if (otype != OTYP_CHR) {
return (EINVAL);
}
return (0);
}
/*
* function - bscv_close
* description - routine to perform the final close on the device. As per the
* open routine, neither FEXCL or FNDELAY accesses are enforced
* by the driver.
* inputs - device number,flag specifying open type, device type,
* permissions
* outputs - success or failure of operation
*/
/*ARGSUSED1*/
static int
bscv_close(dev_t dev, int flag, int otype, cred_t *cred)
{
bscv_soft_state_t *ssp;
int instance;
instance = DEVICETOINSTANCE(dev);
ssp = ddi_get_soft_state(bscv_statep, instance);
if (ssp == NULL) {
return (ENXIO);
}
bscv_trace(ssp, 'O', "bscv_close", "instance 0x%x", instance);
return (0);
}
static int
bscv_map_regs(bscv_soft_state_t *ssp)
{
int i;
int retval;
int *props;
unsigned int nelements;
ASSERT(ssp);
ssp->nchannels = 0;
/*
* Work out how many channels are available by looking at the number
* of elements of the regs property array.
*/
retval = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, ssp->dip,
DDI_PROP_DONTPASS, "reg", &props, &nelements);
/* We don't need props anymore. Free memory if it was allocated */
if (retval == DDI_PROP_SUCCESS)
ddi_prop_free(props);
/* Check for sanity of nelements */
if (retval != DDI_PROP_SUCCESS) {
bscv_trace(ssp, 'A', "bscv_map_regs", "lookup reg returned"
" 0x%x", retval);
goto cleanup_exit;
} else if (nelements % LOMBUS_REGSPEC_SIZE != 0) {
bscv_trace(ssp, 'A', "bscv_map_regs", "nelements %d not"
" a multiple of %d", nelements, LOMBUS_REGSPEC_SIZE);
goto cleanup_exit;
} else if (nelements > BSCV_MAXCHANNELS * LOMBUS_REGSPEC_SIZE) {
bscv_trace(ssp, 'A', "bscv_map_regs", "nelements %d too large"
", probably a misconfiguration", nelements);
goto cleanup_exit;
} else if (nelements < BSCV_MINCHANNELS * LOMBUS_REGSPEC_SIZE) {
bscv_trace(ssp, 'A', "bscv_map_regs", "nelements %d too small"
", need to have at least a general and a wdog channel",
nelements);
goto cleanup_exit;
}
ssp->nchannels = nelements / LOMBUS_REGSPEC_SIZE;
ssp->attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
ssp->attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
ssp->attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
for (i = 0; i < ssp->nchannels; i++) {
retval = ddi_regs_map_setup(ssp->dip, i,
(caddr_t *)&ssp->channel[i].regs,
0, 0, &ssp->attr, &ssp->channel[i].handle);
if (retval != DDI_SUCCESS) {
bscv_trace(ssp, 'A', "bscv_map_regs", "map failure"
" 0x%x on space %d", retval, i);
/* Rewind all current mappings - avoiding failed one */
i--;
for (; i >= 0; i--) {
ddi_regs_map_free(&ssp->channel[i].handle);
}
goto cleanup_exit;
}
}
return (DDI_SUCCESS);
cleanup_exit:
/*
* It is important to set nchannels to 0 even if, say, only one of
* the two required handles was mapped. If we cannot achieve our
* minimum config its not safe to do any IO; this keeps our failure
* mode handling simpler.
*/
ssp->nchannels = 0;
return (DDI_FAILURE);
}
static void
bscv_unmap_regs(bscv_soft_state_t *ssp)
{
int i;
ASSERT(ssp);
for (i = 0; i < ssp->nchannels; i++) {
ddi_regs_map_free(&ssp->channel[i].handle);
}
}
/*
* Map logical services onto physical XBus channels.
*/
static void
bscv_map_chan_logical_physical(bscv_soft_state_t *ssp)
{
ASSERT(ssp);
/*
* We can assert that there will always be at least two channels,
* to allow watchdog pats to be segregated from all other traffic.
*/
chan_general = 0;
chan_wdogpat = 1;
/*
* By default move all other services onto the generic channel unless
* the hardware supports additional channels.
*/
chan_cpusig = chan_eeprom = chan_prog = chan_general;
if (ssp->nchannels > 2)
chan_cpusig = 2;
if (ssp->nchannels > 3)
chan_eeprom = 3;
if (ssp->nchannels > 4)
chan_prog = 4;
}
/*
* function - bscv_full_stop
* description - gracefully shut the lom down during panic or reboot.
* Disables the watchdog, setup up serial event reporting
* and stops the event daemon running.
* inputs - soft state pointer
* outputs - none
*/
void
bscv_full_stop(bscv_soft_state_t *ssp)
{
uint8_t bits2set = 0;
uint8_t bits2clear = 0;
bscv_trace(ssp, 'W', "bscv_full_stop",
"turning off watchdog");
if (!ddi_in_panic()) {
/* Stop the event daemon if we are not panicking. */
(void) bscv_pause_event_daemon(ssp);
}
bscv_enter(ssp);
#if defined(__i386) || defined(__amd64)
if (ddi_in_panic()) {
bscv_inform_bsc(ssp, BSC_INFORM_PANIC);
} else {
bscv_inform_bsc(ssp, BSC_INFORM_OFFLINE);
}
#endif /* __i386 || __amd64 */
/* set serial event reporting */
switch (ssp->serial_reporting) {
case LOM_SER_EVENTS_ON:
case LOM_SER_EVENTS_DEF:
/* Make sure serial event reporting is on */
bits2clear = EBUS_ALARM_NOEVENTS;
break;
case LOM_SER_EVENTS_OFF:
/* Make sure serial event reporting is on */
bits2set = EBUS_ALARM_NOEVENTS;
break;
default:
break;
}
bscv_setclear8_volatile(ssp, chan_general,
EBUS_IDX_ALARM, bits2set, bits2clear);
bscv_exit(ssp);
}
/*
* LOM I/O routines.
*
* locking
*
* Two sets of routines are provided:
* normal - must be called after acquiring an appropriate lock.
* locked - perform all the locking required and return any error
* code in the supplied 'res' argument. If there is no
* error 'res' is not changed.
* The locked routines are designed for use in ioctl commands where
* only a single operation needs to be performed and the overhead of
* locking and result checking adds significantly to code complexity.
*
* locking primitives
*
* bscv_enter() - acquires an I/O lock for the calling thread.
* bscv_exit() - releases an I/O lock acquired by bscv_enter().
* bscv_held() - used to assert ownership of an I/O lock.
*
* normal I/O routines
*
* Note bscv_{put|get}{16|32} routines are big-endian. This assumes that
* the firmware works that way too.
*
* bscv_put8(), bscv_put16, bscv_put32 - write values to the LOM
* and handle any retries if necessary.
* 16 and 32 bit values are big-endian.
* bscv_get8(), bscv_get16, bscv_get32 - read values from the LOM
* and handle any retries if necessary.
* 16 and 32 bit values are big-endian.
* bscv_setclear8() - set or clear the specified bits in the register
* at the supplied address.
* bscv_setclear8_volatile() - set or clear the specified bits in the
* register at the supplied address. If the lom reports
* that the registers has changed since the last read
* re-read and apply the set or clear to the new bits.
* bscv_get8_cached() - Return a cached register value (addr < 0x80).
* Does not access the hardware. A read of the hardware
* automatically updates this cache.
*
* locked I/O routines
*
* bscv_get8_locked(), bscv_rep_get8_locked().
*
* Call the indicated function from above, but wrapping it with
* bscv_enter()/bscv_exit().
*
*
* Fault management
*
* LOM communications fault are grouped into three categories:
* 1) Faulty - the LOM is not responding and no attempt to communicate
* with it should be made.
* 2) Transient fault - something which might recover after a retry
* but which doesn't affect our ability to perform other
* commands.
* 3) Command error - an inappropriate command was executed. A retry
* will not fix it but the command failed.
*
* The current implementation of the bscv driver is not very good at
* noticing command errors due to the structure of the original code
* that it is based on. It is possible to extend the driver to do this
* and would probably involve having a concept of a "session error"
* which is less severe than a fault but means that a sequence of
* commands had some fault which cannot be recovered.
*
*
* faults
*
* bscv_faulty() - returns B_TRUE if the LOM (communications) have been
* declared faulty.
* bscv_clear_fault() - marks the LOM as not faulty.
* bscv_set_fault() - marks the LOM as being faulty.
*
* bscv_clear_fault and bscv_set_fault should generally not be called
* directly.
*
* command errors/transient faults
*
* bscv_retcode() - returns the actual error code of the last operation.
* bscv_should_retry() - determines if last operation may suceed if
* retried.
* bscv_locked_result() - Set the result of a locked register access.
*
* low level I/O primitives
*
* These are generally not called directly. These perform a single
* access to the LOM device. They do not handle retries.
*
* bscv_put8_once()
* bscv_get8_once()
* bscv_probe() - perform a probe (NOP) operation to check out lom comms.
* bscv_resync_comms() - resynchronise communications after a transient fault.
*/
static void
bscv_enter(bscv_soft_state_t *ssp)
{
bscv_trace(ssp, '@', "bscv_enter", "");
mutex_enter(&ssp->cmd_mutex);
ssp->had_session_error = B_FALSE;
}
static void
bscv_exit(bscv_soft_state_t *ssp)
{
mutex_exit(&ssp->cmd_mutex);
bscv_trace(ssp, '@', "bscv_exit", "");
}
#ifdef DEBUG
static int
bscv_held(bscv_soft_state_t *ssp)
{
return (mutex_owned(&ssp->cmd_mutex));
}
#endif /* DEBUG */
static void
bscv_put8(bscv_soft_state_t *ssp, int chan, bscv_addr_t addr, uint8_t val)
{
boolean_t needretry;
int num_failures;
ASSERT(bscv_held(ssp));
if (bscv_faulty(ssp)) {
return;
}
bscv_trace(ssp, '@', "bscv_put8",
"addr 0x%x.%02x <= 0x%02x", addr >> 8, addr & 0xff, val);
for (num_failures = 0;
num_failures < BSC_FAILURE_RETRY_LIMIT;
num_failures++) {
bscv_put8_once(ssp, chan, addr, val);
needretry = bscv_should_retry(ssp);
if (!needretry) {
break;
}
}
if (ssp->command_error != 0) {
ssp->had_session_error = B_TRUE;
}
if (needretry) {
/* Failure - we ran out of retries */
cmn_err(CE_WARN, "bscv_put8: addr 0x%x.%02x retried "
"write %d times, giving up",
addr >> 8, addr & 0xff, num_failures);
bscv_set_fault(ssp);
} else if (num_failures > 0) {
bscv_trace(ssp, 'R', "bscv_put8",
"addr 0x%x.%02x retried write %d times, succeeded",
addr >> 8, addr & 0xff, num_failures);
}
}
static void
bscv_put16(bscv_soft_state_t *ssp, int chan, bscv_addr_t addr, uint16_t val)
{
ASSERT(bscv_held(ssp));
bscv_trace(ssp, '@', "bscv_put16",
"addr 0x%x.%02x <= %04x", addr >> 8, addr & 0xff, val);
bscv_put8(ssp, chan, addr, val >> 8);
bscv_put8(ssp, chan, addr + 1, val & 0xff);
}
static void
bscv_put32(bscv_soft_state_t *ssp, int chan, bscv_addr_t addr, uint32_t val)
{
ASSERT(bscv_held(ssp));
bscv_trace(ssp, '@', "bscv_put32",
"addr 0x%x.%02x <= %08x", addr >> 8, addr & 0xff, val);
bscv_put8(ssp, chan, addr, (val >> 24) & 0xff);
bscv_put8(ssp, chan, addr + 1, (val >> 16) & 0xff);
bscv_put8(ssp, chan, addr + 2, (val >> 8) & 0xff);
bscv_put8(ssp, chan, addr + 3, val & 0xff);
}
static uint8_t
bscv_get8(bscv_soft_state_t *ssp, int chan, bscv_addr_t addr)
{
uint8_t retval;
boolean_t needretry;
int num_failures;
ASSERT(bscv_held(ssp));
if (bscv_faulty(ssp)) {
return (0);
}
for (num_failures = 0;
num_failures < BSC_FAILURE_RETRY_LIMIT;
num_failures++) {
retval = bscv_get8_once(ssp, chan, addr);
needretry = bscv_should_retry(ssp);
if (!needretry) {
break;
}
}
if (ssp->command_error != 0) {
ssp->had_session_error = B_TRUE;
}
if (needretry) {
/* Failure */
cmn_err(CE_WARN, "bscv_get8: addr 0x%x.%02x retried "
"read %d times, giving up",
addr >> 8, addr & 0xff, num_failures);
bscv_set_fault(ssp);
} else if (num_failures > 0) {
bscv_trace(ssp, 'R', "bscv_get8",
"addr 0x%x.%02x retried read %d times, succeeded",
addr >> 8, addr & 0xff, num_failures);
}
bscv_trace(ssp, '@', "bscv_get8",
"addr 0x%x.%02x => %02x", addr >> 8, addr & 0xff, retval);
return (retval);
}
static uint16_t
bscv_get16(bscv_soft_state_t *ssp, int chan, bscv_addr_t addr)
{
uint16_t retval;
ASSERT(bscv_held(ssp));
retval = bscv_get8(ssp, chan, addr) << 8;
retval |= bscv_get8(ssp, chan, addr + 1);
bscv_trace(ssp, '@', "bscv_get16",
"addr 0x%x.%02x => %04x", addr >> 8, addr & 0xff, retval);
return (retval);
}
static uint32_t
bscv_get32(bscv_soft_state_t *ssp, int chan, bscv_addr_t addr)
{
uint32_t retval;
ASSERT(bscv_held(ssp));
retval = bscv_get8(ssp, chan, addr) << 24;
retval |= bscv_get8(ssp, chan, addr + 1) << 16;
retval |= bscv_get8(ssp, chan, addr + 2) << 8;
retval |= bscv_get8(ssp, chan, addr + 3);
bscv_trace(ssp, '@', "bscv_get32",
"addr 0x%x.%02x => %08x", addr >> 8, addr & 0xff, retval);
return (retval);
}
static void
bscv_setclear8(bscv_soft_state_t *ssp, int chan,
bscv_addr_t addr, uint8_t set, uint8_t clear)
{
uint8_t val;
ASSERT(bscv_held(ssp));
ASSERT(addr < BSC_ADDR_CACHE_LIMIT);
val = ssp->lom_regs[addr] | set;
val &= ~clear;
bscv_trace(ssp, '@', "bscv_setclear8",
"addr 0x%x.%02x, set %02x, clear %02x => %02x",
addr >> 8, addr & 0xff,
set, clear, val);
bscv_put8(ssp, chan, addr, val);
}
static void
bscv_setclear8_volatile(bscv_soft_state_t *ssp, int chan,
bscv_addr_t addr, uint8_t set, uint8_t clear)
{
uint8_t val;
boolean_t needretry;
int num_failures;
ASSERT(bscv_held(ssp));
ASSERT(addr < BSC_ADDR_CACHE_LIMIT);
if (bscv_faulty(ssp)) {
return;
}
bscv_trace(ssp, '@', "bscv_setclear8_volatile",
"addr 0x%x.%02x => set %02x clear %02x",
addr >> 8, addr & 0xff, set, clear);
val = bscv_get8_cached(ssp, addr);
for (num_failures = 0;
num_failures < BSC_FAILURE_RETRY_LIMIT;
num_failures++) {
val |= set;
val &= ~clear;
bscv_put8_once(ssp, chan, addr, val);
if (ssp->command_error == EBUS_ERROR_STALEDATA) {
/* Re-read the stale register from the lom */
val = bscv_get8_once(ssp, chan, addr);
needretry = 1;
} else {
needretry = bscv_should_retry(ssp);
if (!needretry) {
break;
}
}
}
if (ssp->command_error != 0) {
ssp->had_session_error = B_TRUE;
}
if (needretry) {
/* Failure */
cmn_err(CE_WARN, "bscv_setclear8_volatile: addr 0x%x.%02x "
"retried write %d times, giving up",
addr >> 8, addr & 0xff, num_failures);
if (ssp->command_error != EBUS_ERROR_STALEDATA) {
bscv_set_fault(ssp);
}
} else if (num_failures > 0) {
bscv_trace(ssp, 'R', "bscv_setclear8_volatile",
"addr 0x%x.%02x retried write %d times, succeeded",
addr >> 8, addr & 0xff, num_failures);
}
}
static void
bscv_rep_rw8(bscv_soft_state_t *ssp, int chan, uint8_t *host_addr,
bscv_addr_t dev_addr, size_t repcount, uint_t flags,
boolean_t is_write)
{
size_t inc;
ASSERT(bscv_held(ssp));
inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0;
for (; repcount--; dev_addr += inc) {
if (flags & DDI_DEV_AUTOINCR) {
if (is_write) {
bscv_put8(ssp, chan, dev_addr, *host_addr++);
} else {
*host_addr++ = bscv_get8(ssp, chan, dev_addr);
}
} else {
if (is_write) {
bscv_put8_once(ssp, chan,
dev_addr, *host_addr++);
} else {
*host_addr++ = bscv_get8_once(ssp, chan,
dev_addr);
}
/* We need this because _once routines don't do it */
if (ssp->command_error != 0) {
ssp->had_session_error = B_TRUE;
}
}
if (bscv_faulty(ssp) || bscv_session_error(ssp)) {
/*
* No retry here. If we were AUTOINCR then get/put
* will have retried. For NO_AUTOINCR we cannot retry
* because the data would be corrupted.
*/
break;
}
}
}
static uint8_t
bscv_get8_cached(bscv_soft_state_t *ssp, bscv_addr_t addr)
{
ASSERT(addr < BSC_ADDR_CACHE_LIMIT);
/* Can be called with or without the lock held */
return (ssp->lom_regs[addr]);
}
static uint8_t
bscv_get8_locked(bscv_soft_state_t *ssp, int chan, bscv_addr_t addr, int *res)
{
uint8_t retval;
ASSERT(addr < BSC_ADDR_CACHE_LIMIT);
bscv_enter(ssp);
retval = bscv_get8(ssp, chan, addr);
bscv_locked_result(ssp, res);
bscv_exit(ssp);
bscv_trace(ssp, '@', "bscv_get8_locked",
"addr 0x%x.%02x => %02x", addr >> 8, addr & 0xff, retval);
return (retval);
}
static void
bscv_rep_get8_locked(bscv_soft_state_t *ssp, int chan, uint8_t *host_addr,
bscv_addr_t dev_addr, size_t repcount, uint_t flags, int *res)
{
bscv_enter(ssp);
bscv_rep_rw8(ssp, chan, host_addr, dev_addr, repcount,
flags, B_FALSE /* read */);
bscv_locked_result(ssp, res);
bscv_exit(ssp);
}
static boolean_t
bscv_faulty(bscv_soft_state_t *ssp)
{
ASSERT(bscv_held(ssp));
return (ssp->had_fault);
}
static void
bscv_clear_fault(bscv_soft_state_t *ssp)
{
ASSERT(bscv_held(ssp));
bscv_trace(ssp, 'J', "bscv_clear_fault", "clearing fault flag");
ssp->had_fault = B_FALSE;
ssp->had_session_error = B_FALSE;
}
static void
bscv_set_fault(bscv_soft_state_t *ssp)
{
ASSERT(bscv_held(ssp));
bscv_trace(ssp, 'J', "bscv_set_fault", "setting fault flag");
ssp->had_fault = B_TRUE;
}
static boolean_t
bscv_session_error(bscv_soft_state_t *ssp)
{
ASSERT(bscv_held(ssp));
return (ssp->had_session_error);
}
static int
bscv_retcode(bscv_soft_state_t *ssp)
{
bscv_trace(ssp, '@', "bscv_retcode",
"code 0x%x", ssp->command_error);
return (ssp->command_error);
}
static int
bscv_should_retry(bscv_soft_state_t *ssp)
{
if ((ssp->command_error == EBUS_ERROR_DEVICEFAIL) ||
(ssp->command_error >= LOMBUS_ERR_BASE)) {
/* This command is due to an I/O fault - retry might fix */
return (1);
} else {
/*
* The command itself was bad - there is no point in fixing
* Note. Whatever happens we should know that if we were
* doing EBUS_IDX_SELFTEST0..EBUS_IDX_SELFTEST7 and we
* had 0x80 set then this is a test error not a retry
* error.
*/
return (0);
}
}
static void
bscv_locked_result(bscv_soft_state_t *ssp, int *res)
{
if (bscv_faulty(ssp) || (bscv_retcode(ssp) != 0)) {
*res = EIO;
}
}
static void
bscv_put8_once(bscv_soft_state_t *ssp, int chan, bscv_addr_t addr, uint8_t val)
{
uint32_t fault;
ASSERT(bscv_held(ssp));
ssp->command_error = 0;
if (bscv_faulty(ssp)) {
/* Bail out things are not working */
return;
} else if (ssp->nchannels == 0) {
/* Didn't manage to map handles so ddi_{get,put}* broken */
bscv_trace(ssp, '@', "bscv_put8_once",
"nchannels is 0x0 so cannot do IO");
return;
}
/* Clear any pending fault */
ddi_put32(ssp->channel[chan].handle,
(uint32_t *)BSC_NEXUS_ADDR(ssp, chan, 0, LOMBUS_FAULT_REG), 0);
/* Do the access and get fault code - may take a long time */
ddi_put8(ssp->channel[chan].handle,
&ssp->channel[chan].regs[addr], val);
fault = ddi_get32(ssp->channel[chan].handle,
(uint32_t *)BSC_NEXUS_ADDR(ssp, chan, 0, LOMBUS_FAULT_REG));
ssp->command_error = fault;
if (fault == 0) {
/* Things were ok - update cache entry */
if (addr < BSC_ADDR_CACHE_LIMIT) {
/* Store cacheable entries */
ssp->lom_regs[addr] = val;
}
} else if (fault >= LOMBUS_ERR_BASE) {
/* lombus problem - do a resync session */
cmn_err(CE_WARN, "!bscv_put8_once: Had comms fault "
"for address 0x%x.%02x - data 0x%x, fault 0x%x",
addr >> 8, addr & 0xff, val, fault);
/* Attempt to resync with the lom */
bscv_resync_comms(ssp, chan);
/*
* Note: we do not set fault status here. That
* is done if our caller decides to give up talking to
* the lom. The observant might notice that this means
* that if we mend things on the last attempt we still
* get the fault set - we just live with that!
*/
}
bscv_trace(ssp, '@', "bscv_put8_once",
"addr 0x%x.%02x <= 0x%02x", addr >> 8, addr & 0xff, val);
}
static uint8_t
bscv_get8_once(bscv_soft_state_t *ssp, int chan, bscv_addr_t addr)
{
uint8_t val;
uint32_t fault;
ASSERT(bscv_held(ssp));
ssp->command_error = 0;
if (bscv_faulty(ssp)) {
/* Bail out things are not working */
return (0xff);
} else if (ssp->nchannels == 0) {
/* Didn't manage to map handles so ddi_{get,put}* broken */
bscv_trace(ssp, '@', "bscv_get8_once",
"nchannels is 0x0 so cannot do IO");
return (0xff);
}
/* Clear any pending fault */
ddi_put32(ssp->channel[chan].handle,
(uint32_t *)BSC_NEXUS_ADDR(ssp, chan, 0, LOMBUS_FAULT_REG), 0);
/* Do the access and get fault code - may take a long time */
val = ddi_get8(ssp->channel[chan].handle,
&ssp->channel[chan].regs[addr]);
fault = ddi_get32(ssp->channel[chan].handle,
(uint32_t *)BSC_NEXUS_ADDR(ssp, chan, 0, LOMBUS_FAULT_REG));
ssp->command_error = fault;
if (fault >= LOMBUS_ERR_BASE) {
/* lombus problem - do a resync session */
cmn_err(CE_WARN, "!bscv_get8_once: Had comms fault "
"for address 0x%x.%02x - data 0x%x, fault 0x%x",
addr >> 8, addr & 0xff, val, fault);
/* Attempt to resync with the lom */
bscv_resync_comms(ssp, chan);
/*
* Note: we do not set fault status here. That
* is done if our caller decides to give up talking to
* the lom. The observant might notice that this means
* that if we mend things on the last attempt we still
* get the fault set - we just live with that!
*/
}
/*
* FIXME - should report error if you get
* EBUS_ERROR_DEVICEFAIL reported from the BSC. That gets
* logged as a failure in bscv_should_retry and may contribute
* to a permanent failure. Reference issues seen by Mitac.
*/
if (!bscv_faulty(ssp)) {
if (addr < BSC_ADDR_CACHE_LIMIT) {
/* Store cacheable entries */
ssp->lom_regs[addr] = val;
}
}
bscv_trace(ssp, '@', "bscv_get8_once",
"addr 0x%x.%02x => 0x%02x", addr >> 8, addr & 0xff, val);
return (val);
}
static uint32_t
bscv_probe(bscv_soft_state_t *ssp, int chan, uint32_t *fault)
{
uint32_t async_reg;
if (ssp->nchannels == 0) {
/*
* Failed to map handles, so cannot do any IO. Set the
* fault indicator and return a dummy value.
*/
bscv_trace(ssp, '@', "bscv_probe",
"nchannels is 0x0 so cannot do any IO");
*fault = LOMBUS_ERR_REG_NUM;
return ((~(int8_t)0));
}
/* Clear faults */
ddi_put32(ssp->channel[chan].handle,
(uint32_t *)BSC_NEXUS_ADDR(ssp, chan, 0, LOMBUS_FAULT_REG), 0);
/* Probe and Check faults */
*fault = ddi_get32(ssp->channel[chan].handle,
(uint32_t *)BSC_NEXUS_ADDR(ssp, chan, 0, LOMBUS_PROBE_REG));
/* Read status */
async_reg = ddi_get32(ssp->channel[chan].handle,
(uint32_t *)BSC_NEXUS_ADDR(ssp, chan, 0, LOMBUS_ASYNC_REG));
bscv_trace(ssp, '@', "bscv_probe",
"async status 0x%x, fault 0x%x", async_reg, *fault);
return (async_reg);
}
static void
bscv_resync_comms(bscv_soft_state_t *ssp, int chan)
{
int try;
uint32_t command_error = ssp->command_error;
uint32_t fault = 0;
if (ssp->nchannels == 0) {
/*
* Didn't manage to map handles so ddi_{get,put}* broken.
* Therefore, there is no way to resync comms.
*/
bscv_trace(ssp, '@', "bscv_resync_comms",
"nchannels is 0x0 so not possible to resync comms");
return;
}
if (command_error >= LOMBUS_ERR_BASE &&
command_error != LOMBUS_ERR_REG_NUM &&
command_error != LOMBUS_ERR_REG_SIZE &&
command_error != LOMBUS_ERR_TIMEOUT) {
/* Resync here to make sure that the lom is talking */
cmn_err(CE_WARN, "!bscv_resync_comms: "
"Attempting comms resync after comms fault 0x%x",
command_error);
for (try = 1; try <= 8; try++) {
/* Probe */
fault = ddi_get32(ssp->channel[chan].handle,
(uint32_t *)BSC_NEXUS_ADDR(ssp, chan, 0,
LOMBUS_PROBE_REG));
if (fault == 0) {
break;
} else {
cmn_err(CE_WARN, "!bscv_resync_comms: "
"comms resync (probing) - try 0x%x "
"had fault 0x%x", try, fault);
}
}
if (fault != 0) {
cmn_err(CE_WARN, "!bscv_resync_comms: "
"Failed to resync comms - giving up");
ssp->bad_resync++;
} else {
cmn_err(CE_WARN, "!bscv_resync_comms: "
"resync comms after 0x%x tries", try);
ssp->bad_resync = 0;
}
}
}
/*
* LOMLite configuration/event eeprom access routines
*
* bscv_window_setup() - Read/Sanity check the eeprom parameters.
* This must be called prior to calling bscv_eerw().
* bscv_eerw() - Read/write data from/to the eeprom.
*/
/*
* function - bscv_window_setup
* description - this routine reads the eeprom parameters and sanity
* checks them to ensure that the lom is talking sense.
* inputs - soft state ptr
* outputs - B_TRUE if the eeprom is ok, B_FALSE if the eeprom is not OK.
*/
static boolean_t
bscv_window_setup(bscv_soft_state_t *ssp)
{
ASSERT(bscv_held(ssp));
if (ssp->eeinfo_valid) {
/* Already have good cached values */
return (ssp->eeinfo_valid);
}
ssp->eeprom_size =
bscv_get8(ssp, chan_general, EBUS_IDX_EEPROM_SIZE_KB) * 1024;
ssp->eventlog_start = bscv_get16(ssp, chan_general,
EBUS_IDX_LOG_START_HI);
/*
* The log does not run to the end of the EEPROM because it is a
* logical partition. The last 8K partition is reserved for FRUID
* usage.
*/
ssp->eventlog_size = EBUS_LOG_END - ssp->eventlog_start;
bscv_trace(ssp, 'I', "bscv_window_setup", "eeprom size 0x%x log_start"
" 0x%x log_size 0x%x", ssp->eeprom_size, ssp->eventlog_start,
ssp->eventlog_size);
if (bscv_faulty(ssp) || bscv_session_error(ssp)) {
ssp->eeinfo_valid = B_FALSE;
} else if ((ssp->eeprom_size == 0) ||
(ssp->eventlog_start >= ssp->eeprom_size)) {
/* Sanity check values */
cmn_err(CE_WARN,
"!bscv_window_setup: read invalid eeprom parameters");
ssp->eeinfo_valid = B_FALSE;
} else {
ssp->eeinfo_valid = B_TRUE;
}
bscv_trace(ssp, 'I', "bscv_window_setup", "returning eeinfo_valid %s",
ssp->eeinfo_valid ? "true" : "false");
return (ssp->eeinfo_valid);
}
/*
* function - bscv_eerw
* description - this routine reads/write data from/to the eeprom.
* It takes care of setting the window on the eeprom correctly.
* inputs - soft state ptr, eeprom offset, data buffer, size, read/write
* outputs - B_TRUE if the eeprom is ok, B_FALSE if the eeprom is not OK.
*/
static int
bscv_eerw(bscv_soft_state_t *ssp, uint32_t eeoffset, uint8_t *buf,
unsigned size, boolean_t is_write)
{
uint32_t blk_addr = eeoffset;
unsigned remaining = size;
uint8_t page_idx;
uint8_t this_page;
uint8_t blk_size;
int res = 0;
while (remaining > 0) {
page_idx = blk_addr & 0xff;
if ((page_idx + remaining) > 0x100) {
blk_size = 0x100 - page_idx;
} else {
blk_size = remaining;
}
/* Select correct eeprom page */
this_page = blk_addr >> 8;
bscv_put8(ssp, chan_eeprom, EBUS_IDX_EEPROM_PAGESEL, this_page);
bscv_trace(ssp, 'M', "lom_eerw",
"%s data @0x%x.%02x, size 0x%x, 0x%x bytes remaining",
is_write ? "writing" : "reading",
this_page, page_idx, blk_size, remaining - blk_size);
bscv_rep_rw8(ssp, chan_eeprom,
buf, BSCVA(EBUS_CMD_SPACE_EEPROM, page_idx),
blk_size, DDI_DEV_AUTOINCR, is_write);
if (bscv_faulty(ssp) || bscv_session_error(ssp)) {
res = EIO;
break;
}
remaining -= blk_size;
blk_addr += blk_size;
buf += blk_size;
}
return (res);
}
static boolean_t
bscv_is_null_event(bscv_soft_state_t *ssp, lom_event_t *e)
{
ASSERT(e != NULL);
if (EVENT_DECODE_SUBSYS(e->ev_subsys) == EVENT_SUBSYS_NONE &&
e->ev_event == EVENT_NONE) {
/*
* This marks a NULL event.
*/
bscv_trace(ssp, 'E', "bscv_is_null_event",
"EVENT_SUBSYS_NONE/EVENT_NONE null event");
return (B_TRUE);
} else if (e->ev_subsys == 0xff && e->ev_event == 0xff) {
/*
* Under some circumstances, we've seen all 1s to represent
* a manually cleared event log at the BSC prompt. Only
* a test/diagnosis environment is likely to show this.
*/
bscv_trace(ssp, 'E', "bscv_is_null_event", "0xffff null event");
return (B_TRUE);
} else {
/*
* Not a NULL event.
*/
bscv_trace(ssp, 'E', "bscv_is_null_event", "returning False");
return (B_FALSE);
}
}
/*
* *********************************************************************
* IOCTL Processing
* *********************************************************************
*/
/*
* function - bscv_ioctl
* description - routine that acts as a high level manager for ioctls. It
* calls the appropriate handler for ioctls on the alarm:mon and
* alarm:ctl minor nodes respectively
*
* Unsupported ioctls (now deprecated)
* LOMIOCALCTL
* LOMIOCALSTATE
* LOMIOCCLEARLOG
* LOMIOCCTL
* LOMIOCCTL2
* LOMIOCDAEMON
* LOMIOCDMON
* LOMIOCDOGCTL, TSIOCDOGCTL
* LOMIOCDOGPAT, TSIOCDOGPAT
* LOMIOCDOGTIME, TSIOCDOGTIME
* LOMIOCEVENTLOG
* LOMIOCEVNT
* LOMIOCGETMASK
* LOMIOCMPROG
* LOMIOCNBMON, TSIOCNBMON
* LOMIOCSLEEP
* LOMIOCUNLOCK, TSIOCUNLOCK
* LOMIOCWTMON, TSIOCWTMON
*
* Supported ioctls
* LOMIOCDOGSTATE, TSIOCDOGSTATE
* LOMIOCPROG
* LOMIOCPSUSTATE
* LOMIOCFANSTATE
* LOMIOCFLEDSTATE
* LOMIOCINFO
* LOMIOCMREAD
* LOMIOCVOLTS
* LOMIOCSTATS
* LOMIOCTEMP
* LOMIOCCONS
* LOMIOCEVENTLOG2
* LOMIOCINFO2
* LOMIOCTEST
* LOMIOCMPROG2
* LOMIOCMREAD2
*
* inputs - device number, command, user space arg, filemode, user
* credentials, return value
* outputs - the return value propagated back by the lower level routines.
*/
/*ARGSUSED*/
static int
bscv_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred, int *rvalp)
{
bscv_soft_state_t *ssp;
int instance;
int res = 0;
instance = DEVICETOINSTANCE(dev);
ssp = ddi_get_soft_state(bscv_statep, instance);
if (ssp == NULL) {
return (ENXIO);
}
/*
* The Combined Switch and Service Processor takes care of configuration
* and control. The CSSP tells the BSC chip about it; therefore the
* bscv driver doesn't send such configuration and control to the BSC.
* Additionally Watchdog configuration is no longer done from userland
* lom.
*/
switch (cmd) {
case LOMIOCALCTL:
case LOMIOCALSTATE:
case LOMIOCCLEARLOG:
case LOMIOCCTL:
case LOMIOCCTL2:
case LOMIOCDAEMON:
case LOMIOCDMON:
case LOMIOCDOGCTL:
case LOMIOCDOGPAT:
case LOMIOCDOGTIME:
case LOMIOCEVENTLOG:
case LOMIOCEVNT:
case LOMIOCGETMASK:
case LOMIOCMPROG:
case LOMIOCNBMON:
case LOMIOCSLEEP:
case LOMIOCUNLOCK:
case LOMIOCWTMON:
return (ENOTSUP);
}
/*
* set the default result.
*/
*rvalp = 0;
if (ssp->cssp_prog) {
return (ENXIO);
} else if ((ssp->prog_mode_only || ssp->programming) &&
cmd != LOMIOCPROG) {
return (ENXIO);
}
/*
* Check that the caller has appropriate access permissions
* (FWRITE set in mode) for those ioctls which change lom
* state
*/
if (!(mode & FWRITE)) {
switch (cmd) {
case LOMIOCMPROG2:
case LOMIOCMREAD2:
case LOMIOCPROG:
case LOMIOCTEST:
return (EACCES);
/* NOTREACHED */
default:
/* Does not require write access */
break;
}
}
switch (cmd) {
case LOMIOCDOGSTATE:
res = bscv_ioc_dogstate(ssp, arg, mode);
break;
case LOMIOCPROG:
res = bscv_prog(ssp, arg, mode);
break;
case LOMIOCPSUSTATE:
res = bscv_ioc_psustate(ssp, arg, mode);
break;
case LOMIOCFANSTATE:
res = bscv_ioc_fanstate(ssp, arg, mode);
break;
case LOMIOCFLEDSTATE:
res = bscv_ioc_fledstate(ssp, arg, mode);
break;
case LOMIOCLEDSTATE:
res = bscv_ioc_ledstate(ssp, arg, mode);
break;
case LOMIOCINFO:
res = bscv_ioc_info(ssp, arg, mode);
break;
case LOMIOCMREAD:
res = bscv_ioc_mread(ssp, arg, mode);
break;
case LOMIOCVOLTS:
res = bscv_ioc_volts(ssp, arg, mode);
break;
case LOMIOCSTATS:
res = bscv_ioc_stats(ssp, arg, mode);
break;
case LOMIOCTEMP:
res = bscv_ioc_temp(ssp, arg, mode);
break;
case LOMIOCCONS:
res = bscv_ioc_cons(ssp, arg, mode);
break;
case LOMIOCEVENTLOG2:
res = bscv_ioc_eventlog2(ssp, arg, mode);
break;
case LOMIOCINFO2:
res = bscv_ioc_info2(ssp, arg, mode);
break;
case LOMIOCTEST:
res = bscv_ioc_test(ssp, arg, mode);
break;
case LOMIOCMPROG2:
res = bscv_ioc_mprog2(ssp, arg, mode);
break;
case LOMIOCMREAD2:
res = bscv_ioc_mread2(ssp, arg, mode);
break;
default:
bscv_trace(ssp, 'I', "bscv_ioctl", "Invalid IOCTL 0x%x", cmd);
res = EINVAL;
}
return (res);
}
/*
* LOMIOCDOGSTATE
* TSIOCDOGSTATE - indicate whether the alarm watchdog and reset
* circuitry is enabled or not.
*/
static int
bscv_ioc_dogstate(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_dogstate_t dogstate;
uint8_t dogval;
int res = 0;
dogval = bscv_get8_locked(ssp, chan_general, EBUS_IDX_WDOG_CTRL, &res);
dogstate.dog_enable = (dogval & EBUS_WDOG_ENABLE) ? 1 : 0;
dogstate.reset_enable = (dogval & EBUS_WDOG_RST) ? 1 : 0;
dogstate.dog_timeout = bscv_get8_locked(ssp, chan_general,
EBUS_IDX_WDOG_TIME, &res);
if ((res == 0) &&
(ddi_copyout((caddr_t)&dogstate,
(caddr_t)arg, sizeof (dogstate), mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCPSUSTATE - returns full information for 4 PSUs. All this
* information is available from two bytes of LOMlite RAM, but if
* on the first read it is noticed that two or more of the PSUs are
* not present only 1 byte will be read subsequently.
*/
static int
bscv_ioc_psustate(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_psudata_t psudata;
uint8_t psustat;
int i;
int res = 0;
for (i = 0; i < MAX_PSUS; i++) {
psustat = bscv_get8_locked(ssp, chan_general,
EBUS_IDX_PSU1_STAT + i, &res);
psudata.fitted[i] = psustat & EBUS_PSU_PRESENT;
psudata.output[i] = psustat & EBUS_PSU_OUTPUT;
psudata.supplyb[i] = psustat & EBUS_PSU_INPUTB;
psudata.supplya[i] = psustat & EBUS_PSU_INPUTA;
psudata.standby[i] = psustat & EBUS_PSU_STANDBY;
}
if (ddi_copyout((caddr_t)&psudata, (caddr_t)arg, sizeof (psudata),
mode) < 0) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCFANSTATE - returns full information including speed for 4
* fans and the minimum and maximum operating speeds for each fan as
* stored in the READ ONLY EEPROM data. As this EEPROM data is set
* at manufacture time, this data should only be read by the driver
* once and stored locally.
*/
static int
bscv_ioc_fanstate(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_fandata_t fandata;
int numfans;
int i;
int res = 0;
bzero(&fandata, sizeof (lom_fandata_t));
numfans = EBUS_CONFIG_NFAN_DEC(bscv_get8_locked(ssp,
chan_general, EBUS_IDX_CONFIG, &res));
for (i = 0; (i < numfans) && (res == 0); i++) {
if (ssp->fanspeed[i] != LOM_FAN_NOT_PRESENT) {
fandata.fitted[i] = 1;
fandata.speed[i] = ssp->fanspeed[i];
fandata.minspeed[i] = bscv_get8_cached(ssp,
EBUS_IDX_FAN1_LOW + i);
}
}
if ((res == 0) &&
(ddi_copyout((caddr_t)&fandata, (caddr_t)arg, sizeof (fandata),
mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCFLEDSTATE - returns the state of the fault LED
*/
static int
bscv_ioc_fledstate(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_fled_info_t fled_info;
uint8_t fledstate;
int res = 0;
fledstate = bscv_get8_locked(ssp, chan_general, EBUS_IDX_ALARM, &res);
/* Decode of 0x0F is off and 0x00-0x07 is on. */
if (EBUS_ALARM_LED_DEC(fledstate) == 0x0F) {
fled_info.on = 0;
} else {
/* has +1 here - not 2 as in the info ioctl */
fled_info.on = EBUS_ALARM_LED_DEC(fledstate) + 1;
}
if ((res == 0) &&
(ddi_copyout((caddr_t)&fled_info, (caddr_t)arg,
sizeof (fled_info), mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCLEDSTATE - returns the state of the requested LED
*/
static int
bscv_ioc_ledstate(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_led_state_t led_state;
int fw_led_state;
int res = 0;
/* copy in arguments supplied */
if (ddi_copyin((caddr_t)arg, (caddr_t)&led_state,
sizeof (lom_led_state_t), mode) < 0) {
return (EFAULT);
}
/*
* check if led index is -1, if so set it to max value for
* this implementation.
*/
if (led_state.index == -1) {
led_state.index = MAX_LED_ID;
}
/* is the index in a valid range */
if ((led_state.index > MAX_LED_ID) || (led_state.index < 0)) {
led_state.state = LOM_LED_OUTOFRANGE;
} else {
/* read the relevant led info */
fw_led_state = bscv_get8_locked(ssp, chan_general,
EBUS_IDX_LED1_STATUS + led_state.index, &res);
/* set the state values accordingly */
switch (fw_led_state) {
case LOM_LED_STATE_OFF:
led_state.state = LOM_LED_OFF;
led_state.colour = LOM_LED_COLOUR_ANY;
break;
case LOM_LED_STATE_ON_STEADY:
led_state.state = LOM_LED_ON;
led_state.colour = LOM_LED_COLOUR_ANY;
break;
case LOM_LED_STATE_ON_FLASHING:
case LOM_LED_STATE_ON_SLOWFLASH:
led_state.state = LOM_LED_BLINKING;
led_state.colour = LOM_LED_COLOUR_ANY;
break;
case LOM_LED_STATE_NOT_PRESENT:
led_state.state = LOM_LED_NOT_IMPLEMENTED;
led_state.colour = LOM_LED_COLOUR_NONE;
break;
case LOM_LED_STATE_INACCESSIBLE:
case LOM_LED_STATE_STANDBY:
default:
led_state.state = LOM_LED_ACCESS_ERROR;
led_state.colour = LOM_LED_COLOUR_NONE;
break;
}
/* set the label info */
(void) strcpy(led_state.label,
ssp->led_names[led_state.index]);
}
/* copy out lom_state */
if ((res == 0) &&
(ddi_copyout((caddr_t)&led_state, (caddr_t)arg,
sizeof (lom_led_state_t), mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCINFO - returns with a structure containing any information
* stored on the LOMlite which a user should not need to access but
* may be useful for diagnostic problems. The structure contains: the
* serial escape character, alarm3 mode, version and checksum read from
* RAM and the Product revision and ID read from EEPROM.
*/
static int
bscv_ioc_info(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_info_t info;
int i;
uint16_t csum;
int res = 0;
info.ser_char = bscv_get8_locked(ssp, chan_general, EBUS_IDX_ESCAPE,
&res);
info.a3mode = WATCHDOG;
info.fver = bscv_get8_locked(ssp, chan_general, EBUS_IDX_FW_REV, &res);
csum = bscv_get8_locked(ssp, chan_general, EBUS_IDX_CHECK_HI, &res)
<< 8;
csum |= bscv_get8_locked(ssp, chan_general, EBUS_IDX_CHECK_LO, &res);
info.fchksum = csum;
info.prod_rev = bscv_get8_locked(ssp, chan_general, EBUS_IDX_MODEL_REV,
&res);
for (i = 0; i < sizeof (info.prod_id); i++) {
info.prod_id[i] = bscv_get8_locked(ssp,
chan_general, EBUS_IDX_MODEL_ID1 + i, &res);
}
if (bscv_get8_locked(ssp, chan_general, EBUS_IDX_ALARM, &res) &
EBUS_ALARM_NOEVENTS) {
info.events = OFF;
} else {
info.events = ON;
}
if ((res == 0) &&
(ddi_copyout((caddr_t)&info, (caddr_t)arg, sizeof (info),
mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCMREAD - used to query the LOMlite configuration parameters
*/
static int
bscv_ioc_mread(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_mprog_t mprog;
int i;
int fanz;
int res = 0;
for (i = 0; i < sizeof (mprog.mod_id); i++) {
mprog.mod_id[i] = bscv_get8_locked(ssp, chan_general,
EBUS_IDX_MODEL_ID1 + i, &res);
}
mprog.mod_rev = bscv_get8_locked(ssp, chan_general, EBUS_IDX_MODEL_REV,
&res);
mprog.config = bscv_get8_locked(ssp, chan_general, EBUS_IDX_CONFIG,
&res);
/* Read the fan calibration values */
fanz = sizeof (mprog.fanhz) / sizeof (mprog.fanhz[0]);
for (i = 0; i < fanz; i++) {
mprog.fanhz[i] = bscv_get8_cached(ssp,
EBUS_IDX_FAN1_CAL + i);
mprog.fanmin[i] = bscv_get8_cached(ssp,
EBUS_IDX_FAN1_LOW + i);
}
if ((res == 0) &&
(ddi_copyout((caddr_t)&mprog, (caddr_t)arg, sizeof (mprog),
mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCVOLTS
*/
static int
bscv_ioc_volts(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
int i;
uint16_t supply;
int res = 0;
supply = (bscv_get8_locked(ssp, chan_general, EBUS_IDX_SUPPLY_HI, &res)
<< 8) | bscv_get8_locked(ssp, chan_general, EBUS_IDX_SUPPLY_LO,
&res);
for (i = 0; i < ssp->volts.num; i++) {
ssp->volts.status[i] = (supply >> i) & 1;
}
if ((res == 0) &&
(ddi_copyout((caddr_t)&ssp->volts, (caddr_t)arg,
sizeof (ssp->volts), mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCSTATS
*/
static int
bscv_ioc_stats(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
int i;
uint8_t status;
int res = 0;
status = bscv_get8_locked(ssp, chan_general, EBUS_IDX_CBREAK_STATUS,
&res);
for (i = 0; i < ssp->sflags.num; i++) {
ssp->sflags.status[i] = (int)((status >> i) & 1);
}
if ((res == 0) &&
(ddi_copyout((caddr_t)&ssp->sflags, (caddr_t)arg,
sizeof (ssp->sflags), mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCTEMP
*/
static int
bscv_ioc_temp(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
int i;
int idx;
uint8_t status_ov;
lom_temp_t temps;
int res = 0;
bzero(&temps, sizeof (temps));
idx = 0;
for (i = 0; i < ssp->temps.num; i++) {
if (ssp->temps.temp[i] != LOM_TEMP_STATE_NOT_PRESENT) {
temps.temp[idx] = ssp->temps.temp[i];
bcopy(ssp->temps.name[i], temps.name[idx],
sizeof (temps.name[idx]));
temps.warning[idx] = ssp->temps.warning[i];
temps.shutdown[idx] = ssp->temps.shutdown[i];
idx++;
}
}
temps.num = idx;
bcopy(ssp->temps.name_ov, temps.name_ov, sizeof (temps.name_ov));
temps.num_ov = ssp->temps.num_ov;
status_ov = bscv_get8_locked(ssp, chan_general, EBUS_IDX_OTEMP_STATUS,
&res);
for (i = 0; i < ssp->temps.num_ov; i++) {
ssp->temps.status_ov[i] = (status_ov >> i) & 1;
}
if ((res == 0) &&
(ddi_copyout((caddr_t)&temps, (caddr_t)arg, sizeof (temps),
mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCCONS
*/
static int
bscv_ioc_cons(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_cbuf_t cbuf;
int datasize;
int res = 0;
bzero(&cbuf, sizeof (cbuf));
datasize = EBUS_IDX1_CONS_BUF_END - EBUS_IDX1_CONS_BUF_START + 1;
/* Ensure that we do not overfill cbuf and that it is NUL terminated */
if (datasize > (sizeof (cbuf) - 1)) {
datasize = sizeof (cbuf) - 1;
}
bscv_rep_get8_locked(ssp, chan_general, (uint8_t *)cbuf.lrbuf,
BSCVA(EBUS_CMD_SPACE1, (EBUS_IDX1_CONS_BUF_END - datasize + 1)),
datasize, DDI_DEV_AUTOINCR, &res);
/* This is always within the array due to the checks above */
cbuf.lrbuf[datasize] = '\0';
if ((res == 0) &&
(ddi_copyout((caddr_t)&cbuf, (caddr_t)arg, sizeof (cbuf),
mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCEVENTLOG2
*/
static int
bscv_ioc_eventlog2(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_eventlog2_t *eventlog2;
int events_recorded;
int level;
uint16_t next_offset;
lom_event_t event;
int res = 0;
eventlog2 = (lom_eventlog2_t *)kmem_zalloc(sizeof (*eventlog2),
KM_SLEEP);
/*
* First get number of events and level requested.
*/
if (ddi_copyin((caddr_t)arg, (caddr_t)eventlog2,
sizeof (lom_eventlog2_t), mode) < 0) {
kmem_free((void *)eventlog2, sizeof (*eventlog2));
return (EFAULT);
}
bscv_enter(ssp);
/*
* OK we have full private access to the LOM now so loop
* over the eventlog addr spaces until we get the required
* number of events.
*/
if (!bscv_window_setup(ssp)) {
res = EIO;
bscv_exit(ssp);
kmem_free((void *)eventlog2, sizeof (*eventlog2));
return (res);
}
/*
* Read count, next event ptr MSB,LSB. Note a read of count
* is necessary to latch values for the next event ptr
*/
(void) bscv_get8(ssp, chan_general, EBUS_IDX_UNREAD_EVENTS);
next_offset = bscv_get16(ssp, chan_general, EBUS_IDX_LOG_PTR_HI);
bscv_trace(ssp, 'I', "bscv_ioc_eventlog2", "log_ptr_hi 0x%x",
next_offset);
events_recorded = 0;
while (events_recorded < eventlog2->num) {
/*
* Working backwards - read an event at a time.
* next_offset is one event on from where we want to be!
* Decrement next_offset and maybe wrap to the end of the
* buffer.
* Note the unsigned arithmetic, so check values first!
*/
if (next_offset <= ssp->eventlog_start) {
/* Wrap to the end of the buffer */
next_offset = ssp->eventlog_start + ssp->eventlog_size;
bscv_trace(ssp, 'I', "bscv_ioc_eventlog2", "wrapping"
" around to end of buffer; next_offset 0x%x",
next_offset);
}
next_offset -= sizeof (event);
if (bscv_eerw(ssp, next_offset, (uint8_t *)&event,
sizeof (event), B_FALSE /* read */) != 0) {
/* Fault reading data - stop */
bscv_trace(ssp, 'I', "bscv_ioc_eventlog2", "read"
" failure for offset 0x%x", next_offset);
res = EIO;
break;
}
if (bscv_is_null_event(ssp, &event)) {
/*
* No more events in this log so give up.
*/
bscv_trace(ssp, 'I', "bscv_ioc_eventlog2", "no more"
" events left at offset 0x%x", next_offset);
break;
}
/*
* Are we interested in this event
*/
level = bscv_level_of_event(&event);
if (level <= eventlog2->level) {
/* Arggh why the funny byte ordering 3, 2, 0, 1 */
eventlog2->code[events_recorded] =
((unsigned)event.ev_event |
((unsigned)event.ev_subsys << 8) |
((unsigned)event.ev_resource << 16) |
((unsigned)event.ev_detail << 24));
eventlog2->time[events_recorded] =
((unsigned)event.ev_data[0] |
((unsigned)event.ev_data[1] << 8) |
((unsigned)event.ev_data[3] << 16) |
((unsigned)event.ev_data[2] << 24));
bscv_build_eventstring(ssp,
&event, eventlog2->string[events_recorded],
eventlog2->string[events_recorded] +
sizeof (eventlog2->string[events_recorded]));
events_recorded++;
}
}
eventlog2->num = events_recorded;
bscv_exit(ssp);
if ((res == 0) &&
(ddi_copyout((caddr_t)eventlog2, (caddr_t)arg,
sizeof (lom_eventlog2_t), mode) < 0)) {
res = EFAULT;
}
kmem_free((void *)eventlog2, sizeof (lom_eventlog2_t));
return (res);
}
/*
* LOMIOCINFO2
*/
static int
bscv_ioc_info2(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom2_info_t info2;
int i;
uint16_t csum;
int res = 0;
bzero(&info2, sizeof (info2));
(void) strncpy(info2.escape_chars, ssp->escape_chars,
sizeof (info2.escape_chars));
info2.serial_events = ssp->reporting_level | ssp->serial_reporting;
info2.a3mode = WATCHDOG;
info2.fver = bscv_get8_locked(ssp, chan_general, EBUS_IDX_FW_REV, &res);
csum = bscv_get8_locked(ssp, chan_general, EBUS_IDX_CHECK_HI, &res)
<< 8;
csum |= bscv_get8_locked(ssp, chan_general, EBUS_IDX_CHECK_LO, &res);
info2.fchksum = csum;
info2.prod_rev = bscv_get8_locked(ssp, chan_general,
EBUS_IDX_MODEL_REV, &res);
for (i = 0; i < sizeof (info2.prod_id); i++) {
info2.prod_id[i] = bscv_get8_locked(ssp, chan_general,
EBUS_IDX_MODEL_ID1 + i, &res);
}
info2.serial_config = bscv_get8_locked(ssp, chan_general,
EBUS_IDX_SER_TIMEOUT, &res);
if (bscv_get8_locked(ssp, chan_general, EBUS_IDX_CONFIG_MISC, &res) &
EBUS_CONFIG_MISC_SECURITY_ENABLED) {
info2.serial_config |= LOM_SER_SECURITY;
}
if (bscv_get8_locked(ssp, chan_general, EBUS_IDX_CONFIG_MISC, &res) &
EBUS_CONFIG_MISC_AUTO_CONSOLE) {
info2.serial_config |= LOM_SER_RETURN;
}
if (bscv_get8_locked(ssp, chan_general, EBUS_IDX_WDOG_CTRL, &res) &
EBUS_WDOG_BREAK_DISABLE) {
info2.serial_config |= LOM_DISABLE_WDOG_BREAK;
}
info2.baud_rate = bscv_get8_locked(ssp, chan_general,
EBUS_IDX_SER_BAUD, &res);
info2.serial_hw_config =
((int)bscv_get8_locked(ssp, chan_general,
EBUS_IDX_SER_CHARMODE, &res) |
((int)bscv_get8_locked(ssp, chan_general,
EBUS_IDX_SER_FLOWCTL, &res) << 8) |
((int)bscv_get8_locked(ssp, chan_general,
EBUS_IDX_SER_MODEMTYPE, &res) << 16));
/*
* There is no phone home support on the blade platform. We hardcode
* FALSE and NUL for config and script respectively.
*/
info2.phone_home_config = B_FALSE;
info2.phone_home_script[0] = '\0';
for (i = 0; i < ssp->num_fans; i++) {
(void) strcpy(info2.fan_names[i], ssp->fan_names[i]);
}
if ((res == 0) &&
(ddi_copyout((caddr_t)&info2, (caddr_t)arg, sizeof (info2),
mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCTEST
*/
static int
bscv_ioc_test(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
uint32_t test;
uint8_t testnum;
uint8_t testarg;
int res = 0;
if (ddi_copyin((caddr_t)arg, (caddr_t)&test, sizeof (test),
mode) < 0) {
return (EFAULT);
}
/*
* Extract num iterations.
*/
testarg = (test & 0xff00) >> 8;
testnum = test & 0xff;
bscv_trace(ssp, 'F', "bscv_ioc_test",
"LOMIOCTEST data 0x%x (test 0x%x, arg 0x%x)",
test, (EBUS_IDX_SELFTEST0 + testnum), testarg);
switch (testnum + EBUS_IDX_SELFTEST0) {
default:
/* Invalid test */
res = EINVAL;
break;
case EBUS_IDX_SELFTEST0: /* power on self-test result */
case EBUS_IDX_SELFTEST1: /* not used currently */
case EBUS_IDX_SELFTEST2: /* not used currently */
case EBUS_IDX_SELFTEST3: /* not used currently */
case EBUS_IDX_SELFTEST4: /* not used currently */
case EBUS_IDX_SELFTEST5: /* not used currently */
case EBUS_IDX_SELFTEST6: /* LED self-test */
case EBUS_IDX_SELFTEST7: /* platform-specific tests */
/* Run the test */
/* Stop other things and then run the test */
bscv_enter(ssp);
/*
* Then we simply write the argument to the relevant register
* and wait for the return code.
*/
bscv_put8(ssp, chan_general,
EBUS_IDX_SELFTEST0 + testnum, testarg);
if (bscv_faulty(ssp)) {
res = EIO;
} else {
/* Get hold of the SunVTS error code */
test = bscv_retcode(ssp);
}
bscv_exit(ssp);
break;
}
bscv_trace(ssp, 'F', "bscv_ioc_test",
"LOMIOCTEST status 0x%x, res 0x%x", test, res);
if ((res == 0) &&
(ddi_copyout((caddr_t)&test, (caddr_t)arg, sizeof (test),
mode) < 0)) {
res = EFAULT;
}
return (res);
}
/*
* LOMIOCMPROG2
*/
static int
bscv_ioc_mprog2(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom2_mprog_t mprog2;
uint32_t base_addr;
uint32_t data_size;
uint32_t eeprom_size;
int res = 0;
if (ddi_copyin((caddr_t)arg, (caddr_t)&mprog2, sizeof (mprog2),
mode) < 0) {
return (EFAULT);
}
/*
* Note that originally this was accessed as 255 byte pages
* in address spaces 240-255. We have to emulate this behaviour.
*/
if ((mprog2.addr_space < 240) || (mprog2.addr_space > 255)) {
return (EINVAL);
}
bscv_enter(ssp);
/* Calculate required data location */
data_size = 255;
base_addr = (mprog2.addr_space - 240) * data_size;
eeprom_size = bscv_get8(ssp, chan_general, EBUS_IDX_EEPROM_SIZE_KB) *
1024;
if (bscv_faulty(ssp)) {
bscv_exit(ssp);
return (EIO);
} else if ((base_addr + data_size) > eeprom_size) {
bscv_trace(ssp, 'M', "bscv_ioc_mprog2",
"Request extends past end of eeprom");
bscv_exit(ssp);
return (ENXIO);
}
bscv_put8(ssp, chan_general, EBUS_IDX_CMD_RES, EBUS_CMD_UNLOCK1);
if (bscv_faulty(ssp)) {
bscv_trace(ssp, 'M', "bscv_ioc_mprog2", "ML1 Write failed");
bscv_exit(ssp);
return (EIO);
}
bscv_put8(ssp, chan_general, EBUS_IDX_CMD_RES, EBUS_CMD_UNLOCK2);
if (bscv_faulty(ssp)) {
bscv_trace(ssp, 'M', "bscv_ioc_mprog2", "ML2 Write failed");
bscv_exit(ssp);
return (EIO);
}
if (bscv_eerw(ssp, base_addr, &mprog2.data[0],
data_size, B_TRUE /* write */) != 0) {
res = EIO;
}
/* Read a probe key to release the lock. */
(void) bscv_get8(ssp, chan_general, EBUS_IDX_PROBEAA);
if (bscv_faulty(ssp)) {
res = EIO;
}
bscv_exit(ssp);
return (res);
}
/*
* LOMIOCMREAD2
*/
static int
bscv_ioc_mread2(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom2_mprog_t mprog2;
uint32_t base_addr;
uint32_t data_size;
uint32_t eeprom_size;
int res = 0;
if (ddi_copyin((caddr_t)arg, (caddr_t)&mprog2, sizeof (mprog2),
mode) < 0) {
return (EFAULT);
}
/*
* Need to stop the queue and then just read
* the bytes blind to the relevant addresses.
* Note that originally this was accessed as 255 byte pages
* in address spaces 240-255. We have to emulate this behaviour.
*/
if ((mprog2.addr_space < 240) || (mprog2.addr_space > 255)) {
return (EINVAL);
}
bscv_enter(ssp);
/* Calculate required data location */
data_size = 255;
base_addr = (mprog2.addr_space - 240) * data_size;
eeprom_size = bscv_get8(ssp, chan_general, EBUS_IDX_EEPROM_SIZE_KB) *
1024;
if (bscv_faulty(ssp)) {
bscv_exit(ssp);
return (EIO);
} else if ((base_addr + data_size) > eeprom_size) {
bscv_trace(ssp, 'M', "bscv_ioc_mread2",
"Request extends past end of eeprom");
bscv_exit(ssp);
return (ENXIO);
}
if (bscv_eerw(ssp, base_addr, &mprog2.data[0],
data_size, B_FALSE /* read */) != 0) {
res = EIO;
}
if (bscv_faulty(ssp)) {
res = EIO;
}
bscv_exit(ssp);
if ((res == 0) &&
(ddi_copyout((caddr_t)&mprog2, (caddr_t)arg, sizeof (mprog2),
mode) < 0)) {
res = EFAULT;
}
return (res);
}
static void
bscv_get_state_changes(bscv_soft_state_t *ssp)
{
int i = STATUS_READ_LIMIT;
uint8_t change;
uint8_t detail;
ASSERT(bscv_held(ssp));
while (i-- && !ssp->cssp_prog) {
/* Are there any changes to process? */
change = bscv_get8(ssp, chan_general, EBUS_IDX_STATE_CHNG);
change &= EBUS_STATE_MASK;
if (!change)
break;
/* Clarify the pending change */
detail = bscv_get8(ssp, chan_general, EBUS_IDX_EVENT_DETAIL);
bscv_status(ssp, change, detail);
}
bscv_trace(ssp, 'D', "bscv_get_state_changes",
"loop index %d ssp->cssp_prog 0x%x", i, ssp->cssp_prog);
}
/*
* *********************************************************************
* Event Processing
* *********************************************************************
*/
/*
* function - bscv_event_daemon
* description - Perform periodic lom tasks in a separate thread.
* inputs - LOM soft state structure pointer
* outputs - none.
*/
static void
bscv_event_daemon(void *arg)
{
bscv_soft_state_t *ssp = (void *)arg;
boolean_t do_events;
boolean_t do_status;
boolean_t do_nodename;
boolean_t do_watchdog;
uint32_t async_reg;
uint32_t fault;
clock_t poll_period = BSC_EVENT_POLL_NORMAL;
int fault_cnt = 0;
bscv_trace(ssp, 'D', "bscv_event_daemon",
"bscv_event_daemon: started");
/* Acquire task daemon lock. */
mutex_enter(&ssp->task_mu);
ssp->task_flags |= TASK_ALIVE_FLG;
for (;;) {
if ((ssp->task_flags & TASK_STOP_FLG) != 0) {
/* Stop request seen - terminate */
break;
}
if ((ssp->task_flags & TASK_PAUSE_FLG) == 0) {
/* Poll for events reported to the nexus */
mutex_exit(&ssp->task_mu);
/* Probe and Check faults */
bscv_enter(ssp);
async_reg = bscv_probe(ssp, chan_general, &fault);
bscv_trace(ssp, 'D', "bscv_event_daemon",
"process event: async_reg 0x%x, fault 0x%x",
async_reg, fault);
if (!fault) {
/* Treat non-fault conditions */
if (ssp->cssp_prog || ssp->prog_mode_only) {
/*
* The BSC has become available again.
*/
fault_cnt = 0;
ssp->cssp_prog = B_FALSE;
ssp->prog_mode_only = B_FALSE;
(void) bscv_attach_common(ssp);
} else if (fault_cnt > 0) {
/* Previous fault has cleared */
bscv_clear_fault(ssp);
fault_cnt = 0;
cmn_err(CE_WARN,
"!bscv_event_daemon previous fault "
"cleared.");
} else if (bscv_faulty(ssp)) {
/* Previous fault has cleared */
bscv_clear_fault(ssp);
/* Sleep to avoid busy waiting */
ssp->event_sleep = B_TRUE;
}
poll_period = BSC_EVENT_POLL_NORMAL;
if (async_reg) {
ssp->status_change = B_TRUE;
ssp->event_waiting = B_TRUE;
}
} else if (ssp->cssp_prog) {
/*
* Expect radio silence or error values
* when the CSSP is upgrading the BSC firmware
* so throw away any fault indication.
*/
fault = B_FALSE;
} else if (fault_cnt == BSC_PROBE_FAULT_LIMIT) {
/* Count previous faults and maybe fail */
/* Declare the lom broken */
bscv_set_fault(ssp);
poll_period = BSC_EVENT_POLL_FAULTY;
cmn_err(CE_WARN,
"!bscv_event_daemon had faults probing "
"lom - marking it as faulty.");
/*
* Increment fault_cnt to ensure that
* next time we do not report a message
* i.e. we drop out of the bottom
*/
fault_cnt = BSC_PROBE_FAULT_LIMIT + 1;
ssp->event_sleep = B_TRUE;
} else if (fault_cnt < BSC_PROBE_FAULT_LIMIT) {
if (bscv_faulty(ssp)) {
poll_period = BSC_EVENT_POLL_FAULTY;
/*
* No recovery messages in this case
* because there was never a fault
* message here.
*/
fault_cnt = 0;
} else {
/* Getting ready to explode */
fault_cnt++;
cmn_err(CE_WARN,
"!bscv_event_daemon had fault 0x%x",
fault);
}
ssp->event_sleep = B_TRUE;
}
bscv_exit(ssp);
mutex_enter(&ssp->task_mu);
}
#if defined(__i386) || defined(__amd64)
/*
* we have no platmod hook on Solaris x86 to report
* a change to the nodename so we keep a copy so
* we can detect a change and request that the bsc
* be updated when appropriate.
*/
if (strcmp(ssp->last_nodename, utsname.nodename) != 0) {
bscv_trace(ssp, 'X', "bscv_event_daemon",
"utsname.nodename='%s' possible change detected",
utsname.nodename);
ssp->nodename_change = B_TRUE;
(void) strncpy(ssp->last_nodename, utsname.nodename,
sizeof (ssp->last_nodename));
/* enforce null termination */
ssp->last_nodename[sizeof (ssp->last_nodename) - 1] =
'\0';
}
#endif /* __i386 || __amd64 */
if (((ssp->task_flags & TASK_PAUSE_FLG) == 0) &&
fault_cnt == 0 && ssp->cssp_prog == B_FALSE &&
(ssp->event_waiting || ssp->status_change ||
ssp->nodename_change || ssp->watchdog_change)) {
do_events = ssp->event_waiting;
ssp->event_waiting = B_FALSE;
ssp->task_flags |= do_events ?
TASK_EVENT_PENDING_FLG : 0;
do_status = ssp->status_change;
ssp->status_change = B_FALSE;
do_nodename = ssp->nodename_change;
ssp->nodename_change = B_FALSE;
do_watchdog = ssp->watchdog_change;
if (ssp->watchdog_change) {
ssp->watchdog_change = B_FALSE;
}
mutex_exit(&ssp->task_mu);
/*
* We must not hold task_mu whilst processing
* events because this can lead to priority
* inversion and hence our interrupts getting
* locked out.
*/
bscv_enter(ssp);
if (do_events) {
bscv_event_process(ssp, do_events);
}
if (do_nodename) {
bscv_trace(ssp, 'D', "bscv_event_daemon",
"do_nodename task");
bscv_setup_hostname(ssp);
}
if (do_watchdog) {
bscv_trace(ssp, 'D', "bscv_event_daemon",
"do_watchdog task");
bscv_setup_watchdog(ssp);
}
/*
* Pending status changes are dealt with last because
* if we see that the BSC is about to be programmed,
* then it will expect us to to quiescent in the
* first second so it can cleanly tear down its comms
* protocols; this takes ~100 ms.
*/
if (do_status) {
bscv_get_state_changes(ssp);
}
if (bscv_session_error(ssp)) {
/*
* Had fault during event session. We always
* sleep after one of these because there
* may be a problem with the lom which stops
* us doing useful work in the event daemon.
* If we don't sleep then we may livelock.
*/
bscv_trace(ssp, 'D', "bscv_event_daemon",
"had session error - sleeping");
ssp->event_sleep = B_TRUE;
}
bscv_exit(ssp);
mutex_enter(&ssp->task_mu);
if (ssp->task_flags & TASK_EVENT_PENDING_FLG) {
/*
* We have read any events which were
* pending. Let the consumer continue.
* Ignore the race condition with new events
* arriving - just let the consumer have
* whatever was pending when they asked.
*/
ssp->event_active_count++;
ssp->task_flags &= ~(TASK_EVENT_PENDING_FLG |
TASK_EVENT_CONSUMER_FLG);
cv_broadcast(&ssp->task_evnt_cv);
}
} else {
/* There was nothing to do - sleep */
ssp->event_sleep = B_TRUE;
}
if (ssp->event_sleep) {
ssp->task_flags |= TASK_SLEEPING_FLG;
/* Sleep until there is something to do */
(void) cv_timedwait(&ssp->task_cv,
&ssp->task_mu,
poll_period + ddi_get_lbolt());
ssp->task_flags &= ~TASK_SLEEPING_FLG;
ssp->event_sleep = B_FALSE;
}
}
if (ssp->task_flags & TASK_EVENT_CONSUMER_FLG) {
/*
* We are going away so wake up any event consumer.
* Pretend that any pending events have been processed.
*/
ssp->event_active_count += 2;
cv_broadcast(&ssp->task_evnt_cv);
}
ASSERT(!(ssp->task_flags & TASK_EVENT_PENDING_FLG));
ssp->task_flags &=
~(TASK_STOP_FLG | TASK_ALIVE_FLG | TASK_EVENT_CONSUMER_FLG);
mutex_exit(&ssp->task_mu);
bscv_trace(ssp, 'D', "bscv_event_daemon",
"exiting.");
}
/*
* function - bscv_start_event_daemon
* description - Create the event daemon thread.
* inputs - LOM soft state structure pointer
* outputs - none
*/
static void
bscv_start_event_daemon(bscv_soft_state_t *ssp)
{
if (ssp->progress & BSCV_THREAD)
return;
/* Start the event thread after the queue has started */
(void) thread_create(NULL, 0, (void (*)())bscv_event_daemon, ssp,
0, &p0, TS_RUN, minclsyspri);
ssp->progress |= BSCV_THREAD;
}
/*
* function - bscv_stop_event_daemon
* description - Attempt to stop the event daemon thread.
* inputs - LOM soft state structure pointer
* outputs - DDI_SUCCESS OR DDI_FAILURE
*/
static int
bscv_stop_event_daemon(bscv_soft_state_t *ssp)
{
int try;
int res = DDI_SUCCESS;
mutex_enter(&ssp->task_mu);
/* Wait for task daemon to stop running. */
for (try = 0;
((ssp->task_flags & TASK_ALIVE_FLG) && try < 10);
try++) {
/* Signal that the task daemon should stop */
ssp->task_flags |= TASK_STOP_FLG;
cv_signal(&ssp->task_cv);
/* Release task daemon lock. */
mutex_exit(&ssp->task_mu);
/*
* TODO - when the driver is modified to support
* system suspend or if this routine gets called
* during panic we should use drv_usecwait() rather
* than delay in those circumstances.
*/
delay(drv_usectohz(1000000));
mutex_enter(&ssp->task_mu);
}
if (ssp->task_flags & TASK_ALIVE_FLG) {
res = DDI_FAILURE;
}
mutex_exit(&ssp->task_mu);
return (res);
}
/*
* function - bscv_pause_event_daemon
* description - Attempt to pause the event daemon thread.
* inputs - LOM soft state structure pointer
* outputs - DDI_SUCCESS OR DDI_FAILURE
*/
static int
bscv_pause_event_daemon(bscv_soft_state_t *ssp)
{
int try;
if (!(ssp->progress & BSCV_THREAD)) {
/* Nothing to do */
return (BSCV_SUCCESS);
}
bscv_trace(ssp, 'D', "bscv_pause_event_daemon",
"Attempting to pause event daemon");
mutex_enter(&ssp->task_mu);
/* Signal that the task daemon should pause */
ssp->task_flags |= TASK_PAUSE_FLG;
/* Wait for task daemon to pause. */
for (try = 0;
(!(ssp->task_flags & TASK_SLEEPING_FLG) &&
(ssp->task_flags & TASK_ALIVE_FLG) &&
try < 10);
try++) {
/* Paranoia */
ssp->task_flags |= TASK_PAUSE_FLG;
cv_signal(&ssp->task_cv);
/* Release task daemon lock. */
mutex_exit(&ssp->task_mu);
delay(drv_usectohz(1000000));
mutex_enter(&ssp->task_mu);
}
if ((ssp->task_flags & TASK_SLEEPING_FLG) ||
!(ssp->task_flags & TASK_ALIVE_FLG)) {
mutex_exit(&ssp->task_mu);
bscv_trace(ssp, 'D', "bscv_pause_event_daemon",
"Pause event daemon - success");
return (BSCV_SUCCESS);
}
mutex_exit(&ssp->task_mu);
bscv_trace(ssp, 'D', "bscv_pause_event_daemon",
"Pause event daemon - failed");
return (BSCV_FAILURE);
}
/*
* function - bscv_resume_event_daemon
* description - Resumethe event daemon thread.
* inputs - LOM soft state structure pointer
* outputs - None.
*/
static void
bscv_resume_event_daemon(bscv_soft_state_t *ssp)
{
if (!(ssp->progress & BSCV_THREAD)) {
/* Nothing to do */
return;
}
mutex_enter(&ssp->task_mu);
/* Allow the task daemon to resume event processing */
ssp->task_flags &= ~TASK_PAUSE_FLG;
cv_signal(&ssp->task_cv);
mutex_exit(&ssp->task_mu);
bscv_trace(ssp, 'D', "bscv_pause_event_daemon",
"Event daemon resumed");
}
/*
* function - bscv_event_process
* description - process (report) events
* inputs - Soft state ptr, process event request
* outputs - none
*/
static void
bscv_event_process(bscv_soft_state_t *ssp, boolean_t do_events)
{
uint32_t currptr;
unsigned int count;
/* Raw values read from the lom */
uint8_t evcount;
uint16_t logptr;
lom_event_t event;
if (do_events) {
/*
* Read count, next event ptr MSB,LSB. Note a read of count
* latches values for the next event ptr
*/
evcount = bscv_get8(ssp, chan_general, EBUS_IDX_UNREAD_EVENTS);
logptr = bscv_get16(ssp, chan_general, EBUS_IDX_LOG_PTR_HI);
/* Sanity check the values from the lom */
count = bscv_event_validate(ssp, logptr, evcount);
if (count == -1) {
/*
* Nothing to do - or badly configured event log.
* We really do not want to touch the lom in this
* case because any data that we access may be bad!
* This differs from zero because if we have zero
* to read the lom probably things that unread is
* non-zero and we want that to be set to zero!
* Signal event fault to make the thread wait
* before attempting to re-read the log.
*/
ssp->event_sleep = B_TRUE;
goto logdone;
}
if (ssp->event_fault_reported) {
/* Clear down any old status - things are fixed */
cmn_err(CE_NOTE, "Event pointer fault recovered.");
ssp->event_fault_reported = B_FALSE;
}
/* Compute the first entry that we need to read. */
currptr = logptr - ssp->eventlog_start;
currptr += ssp->eventlog_size;
currptr -= (count * sizeof (event));
currptr %= ssp->eventlog_size;
currptr += ssp->eventlog_start;
bscv_trace(ssp, 'E', "bscv_event_process",
"processing %d events from 0x%x in 0x%x:0x%x",
count, currptr,
ssp->eventlog_start,
ssp->eventlog_start + ssp->eventlog_size);
for (; count > 0; count--) {
/* Ensure window is positioned correctly */
if (bscv_eerw(ssp, currptr, (uint8_t *)&event,
sizeof (event), B_FALSE /* read */) != 0) {
/* Fault reading data - stop */
break;
}
bscv_event_process_one(ssp, &event);
bscv_sysevent(ssp, &event);
currptr += sizeof (event);
if (currptr >= ssp->eventlog_start +
ssp->eventlog_size) {
currptr = ssp->eventlog_start;
}
}
/*
* Clear event count - write the evcount value to remove that
* many from the unread total.
* Adjust the value to reflect how many we have left to
* read just in case we had a failure reading events.
*/
if (count == 0) {
/*EMPTY*/
ASSERT(logptr == currptr);
} else if (count > evcount) {
evcount = 0;
} else {
evcount -= count;
}
bscv_put8(ssp, chan_general, EBUS_IDX_UNREAD_EVENTS, evcount);
/* Remember where we were for next time */
ssp->oldeeptr = currptr;
ssp->oldeeptr_valid = B_TRUE;
logdone:
;
}
}
/*
* function - bscv_event_validate
* description - validate the event data supplied by the lom and determine
* how many (if any) events to read.
* This function performs complex checks to ensure that
* events are not lost due to lom resets or host resets.
* A combination of lom reset and host reset (i.e. power fail)
* may cause some events to not be reported.
* inputs - Soft state ptr, next event pointer, number of unread events.
* outputs - the number of events to read. -1 on error.
* zero is a valid value because it forces the loms unread
* count to be cleared.
*/
static int
bscv_event_validate(bscv_soft_state_t *ssp, uint32_t newptr, uint8_t unread)
{
uint32_t oldptr;
unsigned int count;
if (!bscv_window_setup(ssp)) {
/* Problem with lom eeprom setup we cannot do anything */
return (-1);
}
/* Sanity check the event pointers */
if ((newptr < ssp->eventlog_start) ||
(newptr >= (ssp->eventlog_start + ssp->eventlog_size))) {
if (!ssp->event_fault_reported) {
cmn_err(CE_WARN, "Event pointer out of range. "
"Cannot read events.");
ssp->event_fault_reported = B_TRUE;
}
return (-1);
}
oldptr = ssp->oldeeptr;
/* Now sanity check log pointer against count */
if (newptr < oldptr) {
/*
* Must have wrapped add eventlog_size to get the
* correct relative values - this makes the checks
* below work!
*/
newptr += ssp->eventlog_size;
}
if (!ssp->oldeeptr_valid) {
/* We have just started up - we have to trust lom */
count = unread;
} else if ((unread == 0) && (newptr == oldptr)) {
/* Nothing to do - we were just polling */
return (-1);
} else if (oldptr + (unread * sizeof (lom_event_t)) == newptr) {
/* Ok - got as many events as we expected */
count = unread;
} else if (oldptr + (unread * sizeof (lom_event_t)) > newptr) {
/*
* Errrm more messages than there should have been.
* Possible causes:
* 1. the event log has filled - we have been
* away for a long time
* 2. software bug in lom or driver.
* 3. something that I haven't thought of!
* Always warn about this we should really never
* see it!
*/
count = (newptr - oldptr) / sizeof (lom_event_t);
bscv_trace(ssp, 'E', "bscv_event_process",
"bscv_event_process: lom reported "
"more events (%d) than expected (%d).",
unread, count);
cmn_err(CE_CONT, "only processing %d events", count);
} else {
/* Less messages - perhaps the lom has been reset */
count = (newptr - oldptr) / sizeof (lom_event_t);
bscv_trace(ssp, 'E', "bscv_event_process",
"lom reported less events (%d) than expected (%d)"
" - the lom may have been reset",
unread, count);
}
/* Whatever happens only read a maximum of 255 entries */
if ((count >= 0xff)) {
cmn_err(CE_WARN,
"bscv_event_process: too many events (%d) to "
"process - some may have been lost", count);
count = 0xff;
}
return (count);
}
/*
* function - bscv_event_process_one
* description - reports on state changes to the host.
*
* inputs - LOM soft state structure pointer.
*
* outputs - none.
*/
static void
bscv_event_process_one(bscv_soft_state_t *ssp, lom_event_t *event)
{
int level;
char eventstr[100];
int msg_type = 0;
if (bscv_is_null_event(ssp, event)) {
/* Cleared entry - do not report it */
return;
}
level = bscv_level_of_event(event);
switch (level) {
default:
msg_type = CE_NOTE;
break;
case EVENT_LEVEL_FATAL:
case EVENT_LEVEL_FAULT:
msg_type = CE_WARN;
break;
}
bscv_build_eventstring(ssp, event, eventstr, eventstr +
sizeof (eventstr));
if (level <= ssp->reporting_level) {
/*
* The message is important enough to be shown on the console
* as well as the log.
*/
cmn_err(msg_type, "%s", eventstr);
} else {
/*
* The message goes only to the log.
*/
cmn_err(msg_type, "!%s", eventstr);
}
}
/*
* time formats
*
* The BSC represents times as seconds since epoch 1970. Currently it gives
* us 32 bits, unsigned. In the future this might change to a 64-bit count,
* to allow a greater range.
*
* Timestamp values below BSC_TIME_SANITY do not represent an absolute time,
* but instead represent an offset from the last reset. This must be
* borne in mind by output routines.
*/
typedef uint32_t bsctime_t;
#define BSC_TIME_SANITY 1000000000
/*
* render a formatted time for display
*/
static size_t
bscv_event_snprintgmttime(char *buf, size_t bufsz, todinfo_t t)
{
int year;
/* tod_year is base 1900 so this code needs to adjust */
year = 1900 + t.tod_year;
return (snprintf(buf, bufsz, "%04d-%02d-%02d %02d:%02d:%02dZ",
year, t.tod_month, t.tod_day, t.tod_hour,
t.tod_min, t.tod_sec));
}
/*
* function - bscv_build_eventstring
* description - reports on state changes to the host.
*
* inputs - LOM soft state structure pointer.
*
* outputs - none.
*/
static void
bscv_build_eventstring(bscv_soft_state_t *ssp, lom_event_t *event,
char *buf, char *bufend)
{
uint8_t subsystem;
uint8_t eventtype;
bsctime_t bsctm;
bscv_trace(ssp, 'S', "bscv_build_eventstring", "event %2x%2x%2x%2x",
event->ev_subsys, event->ev_event,
event->ev_resource, event->ev_detail);
bscv_trace(ssp, 'S', "bscv_build_eventstring", "time %2x%2x%2x%2x",
event->ev_data[0], event->ev_data[1],
event->ev_data[2], event->ev_data[3]);
/*
* We accept bad subsystems and event type codes here.
* The code decodes as much as possible and then produces
* suitable output.
*/
subsystem = EVENT_DECODE_SUBSYS(event->ev_subsys);
eventtype = event->ev_event;
/* time */
bsctm = (((uint32_t)event->ev_data[0]) << 24) |
(((uint32_t)event->ev_data[1]) << 16) |
(((uint32_t)event->ev_data[2]) << 8) |
((uint32_t)event->ev_data[3]);
if (bsctm < BSC_TIME_SANITY) {
/* offset */
buf += snprintf(buf, bufend-buf, "+P%dd%02dh%02dm%02ds",
(int)(bsctm/86400), (int)(bsctm/3600%24),
(int)(bsctm/60%60), (int)(bsctm%60));
} else {
/* absolute time */
mutex_enter(&tod_lock);
buf += bscv_event_snprintgmttime(buf, bufend-buf,
utc_to_tod(bsctm));
mutex_exit(&tod_lock);
}
buf += snprintf(buf, bufend-buf, " ");
/* subsysp */
if (subsystem <
(sizeof (eventSubsysStrings)/sizeof (*eventSubsysStrings))) {
buf += snprintf(buf, bufend - buf, "%s",
eventSubsysStrings[subsystem]);
} else {
buf += snprintf(buf, bufend - buf,
"unknown subsystem %d ", subsystem);
}
/* resource */
switch (subsystem) {
case EVENT_SUBSYS_ALARM:
case EVENT_SUBSYS_TEMP:
case EVENT_SUBSYS_OVERTEMP:
case EVENT_SUBSYS_FAN:
case EVENT_SUBSYS_SUPPLY:
case EVENT_SUBSYS_BREAKER:
case EVENT_SUBSYS_PSU:
buf += snprintf(buf, bufend - buf, "%d ", event->ev_resource);
break;
case EVENT_SUBSYS_LED:
buf += snprintf(buf, bufend - buf, "%s ", bscv_get_label(
ssp->led_names, MAX_LED_ID, event->ev_resource - 1));
break;
default:
break;
}
/* fatal */
if (event->ev_subsys & EVENT_MASK_FAULT) {
if (event->ev_subsys & EVENT_MASK_FATAL) {
buf += snprintf(buf, bufend - buf, "FATAL FAULT: ");
} else {
buf += snprintf(buf, bufend - buf, "FAULT: ");
}
}
/* eventp */
if (eventtype <
(sizeof (eventTypeStrings)/sizeof (*eventTypeStrings))) {
buf += snprintf(buf, bufend - buf, "%s",
eventTypeStrings[eventtype]);
} else {
buf += snprintf(buf, bufend - buf,
"unknown event 0x%02x%02x%02x%02x",
event->ev_subsys, event->ev_event,
event->ev_resource, event->ev_detail);
}
/* detail */
switch (subsystem) {
case EVENT_SUBSYS_TEMP:
if ((eventtype != EVENT_RECOVERED) &&
eventtype != EVENT_DEVICE_INACCESSIBLE) {
buf += snprintf(buf, bufend - buf, " - %d degC",
(int8_t)event->ev_detail);
}
break;
case EVENT_SUBSYS_FAN:
if (eventtype == EVENT_FAILED) {
buf += snprintf(buf, bufend - buf,
" %d%%", event->ev_detail);
}
break;
case EVENT_SUBSYS_LOM:
switch (eventtype) {
case EVENT_FLASH_DOWNLOAD:
buf += snprintf(buf, bufend - buf,
": v%d.%d to v%d.%d",
(event->ev_resource >> 4),
(event->ev_resource & 0x0f),
(event->ev_detail >> 4),
(event->ev_detail & 0x0f));
break;
case EVENT_WATCHDOG_TRIGGER:
buf += snprintf(buf, bufend - buf,
event->ev_detail ? "- soft" : " - hard");
break;
case EVENT_UNEXPECTED_RESET:
if (event->ev_detail &
LOM_UNEXPECTEDRESET_MASK_BADTRAP) {
buf += snprintf(buf, bufend - buf,
" - unclaimed exception 0x%x",
event->ev_detail &
~LOM_UNEXPECTEDRESET_MASK_BADTRAP);
}
break;
case EVENT_RESET:
switch (event->ev_detail) {
case LOM_RESET_DETAIL_BYUSER:
buf += snprintf(buf, bufend - buf, " by user");
break;
case LOM_RESET_DETAIL_REPROGRAMMING:
buf += snprintf(buf, bufend - buf,
" after flash download");
break;
default:
buf += snprintf(buf, bufend - buf,
" - unknown reason");
break;
}
break;
default:
break;
}
break;
case EVENT_SUBSYS_LED:
switch (event->ev_detail) {
case LOM_LED_STATE_OFF:
buf += snprintf(buf, bufend - buf, ": OFF");
break;
case LOM_LED_STATE_ON_STEADY:
buf += snprintf(buf, bufend - buf, ": ON");
break;
case LOM_LED_STATE_ON_FLASHING:
case LOM_LED_STATE_ON_SLOWFLASH:
buf += snprintf(buf, bufend - buf, ": BLINKING");
break;
case LOM_LED_STATE_INACCESSIBLE:
buf += snprintf(buf, bufend - buf, ": inaccessible");
break;
case LOM_LED_STATE_STANDBY:
buf += snprintf(buf, bufend - buf, ": standby");
break;
case LOM_LED_STATE_NOT_PRESENT:
buf += snprintf(buf, bufend - buf, ": not present");
break;
default:
buf += snprintf(buf, bufend - buf, ": 0x%x",
event->ev_resource);
break;
}
break;
case EVENT_SUBSYS_USER:
switch (eventtype) {
case EVENT_USER_ADDED:
case EVENT_USER_REMOVED:
case EVENT_USER_PERMSCHANGED:
case EVENT_USER_LOGIN:
case EVENT_USER_PASSWORD_CHANGE:
case EVENT_USER_LOGINFAIL:
case EVENT_USER_LOGOUT:
buf += snprintf(buf, bufend - buf, " %d",
event->ev_resource);
default:
break;
}
break;
case EVENT_SUBSYS_PSU:
if (event->ev_detail & LOM_PSU_NOACCESS) {
buf += snprintf(buf, bufend - buf, " - inaccessible");
} else if ((event->ev_detail & LOM_PSU_STATUS_MASK)
== LOM_PSU_STATUS_MASK) {
buf += snprintf(buf, bufend - buf, " - OK");
} else {
buf += snprintf(buf, bufend - buf, " -");
/*
* If both inputs are seen to have failed then simply
* indicate that the PSU input has failed
*/
if (!(event->ev_detail &
(LOM_PSU_INPUT_A_OK | LOM_PSU_INPUT_B_OK))) {
buf += snprintf(buf, bufend - buf, " Input");
} else {
/* At least one input is ok */
if (!(event->ev_detail & LOM_PSU_INPUT_A_OK)) {
buf += snprintf(buf, bufend - buf,
" InA");
}
if (!(event->ev_detail & LOM_PSU_INPUT_B_OK)) {
buf += snprintf(buf, bufend - buf,
" InB");
}
/*
* Only flag an output error if an input is
* still present
*/
if (!(event->ev_detail & LOM_PSU_OUTPUT_OK)) {
buf += snprintf(buf, bufend - buf,
" Output");
}
}
buf += snprintf(buf, bufend - buf, " failed");
}
break;
case EVENT_SUBSYS_NONE:
if (eventtype == EVENT_FAULT_LED) {
switch (event->ev_detail) {
case 0:
buf += snprintf(buf, bufend - buf, " - ON");
break;
case 255:
buf += snprintf(buf, bufend - buf, " - OFF");
break;
default:
buf += snprintf(buf, bufend - buf,
" - %dHz", event->ev_detail);
break;
}
}
break;
case EVENT_SUBSYS_HOST:
if (eventtype == EVENT_BOOTMODE_CHANGE) {
switch (event->ev_detail &
~EBUS_BOOTMODE_FORCE_CONSOLE) {
case EBUS_BOOTMODE_FORCE_NOBOOT:
buf += snprintf(buf, bufend - buf,
" - no boot");
break;
case EBUS_BOOTMODE_RESET_DEFAULT:
buf += snprintf(buf, bufend - buf,
" - reset defaults");
break;
case EBUS_BOOTMODE_FULLDIAG:
buf += snprintf(buf, bufend - buf,
" - full diag");
break;
case EBUS_BOOTMODE_SKIPDIAG:
buf += snprintf(buf, bufend - buf,
" - skip diag");
break;
default:
break;
}
}
if (eventtype == EVENT_SCC_STATUS) {
switch (event->ev_detail) {
case 0:
buf += snprintf(buf, bufend - buf,
" - inserted");
break;
case 1:
buf += snprintf(buf, bufend - buf,
" - removed");
break;
default:
break;
}
}
break;
default:
break;
}
/* shutd */
if (event->ev_subsys & EVENT_MASK_SHUTDOWN_REQD) {
buf += snprintf(buf, bufend - buf, " - shutdown req'd");
}
buf += snprintf(buf, bufend - buf, "\n");
if (buf >= bufend) {
/* Ensure newline at end of string */
bufend[-2] = '\n';
bufend[-1] = '\0';
#ifdef DEBUG
cmn_err(CE_WARN, "!bscv_build_eventstring: buffer too small!");
#endif /* DEBUG */
}
}
/*
* function - bscv_level_of_event
* description - This routine determines which level an event should be
* reported at.
* inputs - lom event structure pointer
* outputs - event level.
*/
static int
bscv_level_of_event(lom_event_t *event)
{
int level;
/*
* This is the same criteria that the firmware uses except we
* log the fault led on as being EVENT_LEVEL_FAULT
*/
if (EVENT_DECODE_SUBSYS(event->ev_subsys) == EVENT_SUBSYS_USER) {
level = EVENT_LEVEL_USER;
} else if ((EVENT_DECODE_SUBSYS(event->ev_subsys) ==
EVENT_SUBSYS_ALARM) && (event->ev_event == EVENT_STATE_ON)) {
level = EVENT_LEVEL_FAULT;
} else if ((EVENT_DECODE_SUBSYS(event->ev_subsys) ==
EVENT_SUBSYS_NONE) &&
(event->ev_event == EVENT_FAULT_LED) &&
(event->ev_detail != 0xff)) {
level = EVENT_LEVEL_FAULT;
} else if ((EVENT_DECODE_SUBSYS(event->ev_subsys) ==
EVENT_SUBSYS_LOM) && event->ev_event == EVENT_TIME_REFERENCE) {
level = EVENT_LEVEL_NOTICE;
} else if (event->ev_event == EVENT_RECOVERED) {
/*
* All recovery messages need to be reported to the console
* because during boot, the faults which occurred whilst
* Solaris was not running are relayed to the console. There
* is a case whereby a fatal fault (eg. over temp) could
* have occurred and then recovered. The recovery condition
* needs to be reported so the user doesn't think that the
* failure (over temp) is still present.
*/
level = EVENT_LEVEL_FAULT;
} else if (EVENT_DECODE_FAULT(event->ev_subsys) == 0) {
/* None of FAULT, FATAL or SHUTDOWN REQD are set */
level = EVENT_LEVEL_NOTICE;
} else if (EVENT_DECODE_FAULT(event->ev_subsys) == EVENT_MASK_FAULT) {
/* Only FAULT set i.e not FATAL or SHUTDOWN REQD */
level = EVENT_LEVEL_FAULT;
} else {
level = EVENT_LEVEL_FATAL;
}
return (level);
}
/*
* function - bscv_status
* description - This routine is called when any change in the LOMlite2 status
* is indicated by the status registers.
*
* inputs - LOM soft state structure pointer
*
* outputs - none.
*/
static void
bscv_status(bscv_soft_state_t *ssp, uint8_t state_chng, uint8_t dev_no)
{
int8_t temp;
uint8_t fanspeed;
ASSERT(bscv_held(ssp));
bscv_trace(ssp, 'D', "bscv_status", "state_chng 0x%x dev_no 0x%x",
state_chng, dev_no);
/*
* The device that has changed is given by the state change
* register and the event detail register so react
* accordingly.
*/
if (state_chng == EBUS_STATE_NOTIFY) {
/*
* The BSC is indicating a self state change
*/
if (dev_no == EBUS_DETAIL_FLASH) {
ssp->cssp_prog = B_TRUE;
bscv_trace(ssp, 'D', "bscv_status",
"ssp->cssp_prog changed to 0x%x",
ssp->cssp_prog);
/*
* It takes the BSC at least 100 ms to
* clear down the comms protocol.
* We back-off from talking to the
* BSC during this period.
*/
delay(BSC_EVENT_POLL_NORMAL);
bscv_trace(ssp, 'D', "bscv_status",
"completed delay");
} else if (dev_no == EBUS_DETAIL_RESET) {
/*
* The bsc has reset
*/
bscv_trace(ssp, 'D', "bscv_status",
"BSC reset occured, re-synching");
(void) bscv_attach_common(ssp);
bscv_trace(ssp, 'D', "bscv_status",
"completed attach_common");
}
}
if ((state_chng & EBUS_STATE_FAN) && ((dev_no - 1) < MAX_FANS)) {
fanspeed = bscv_get8(ssp, chan_general,
EBUS_IDX_FAN1_SPEED + dev_no - 1);
/*
* Only remember fanspeeds which are real values or
* NOT PRESENT values.
*/
if ((fanspeed <= LOM_FAN_MAX_SPEED) ||
(fanspeed == LOM_FAN_NOT_PRESENT)) {
ssp->fanspeed[dev_no - 1] = fanspeed;
}
}
if ((state_chng & EBUS_STATE_PSU) && ((dev_no - 1) < MAX_PSUS)) {
(void) bscv_get8(ssp, chan_general,
EBUS_IDX_PSU1_STAT + dev_no - 1);
}
if (state_chng & EBUS_STATE_GP) {
(void) bscv_get8(ssp, chan_general, EBUS_IDX_GPIP);
}
if (state_chng & EBUS_STATE_CB) {
(void) bscv_get8(ssp, chan_general, EBUS_IDX_CBREAK_STATUS);
}
if ((state_chng & EBUS_STATE_TEMPERATURE) &&
((dev_no - 1) < MAX_TEMPS)) {
temp = bscv_get8(ssp, chan_general,
EBUS_IDX_TEMP1 + dev_no - 1);
/*
* Only remember temperatures which are real values or
* a NOT PRESENT value.
*/
if ((temp <= LOM_TEMP_MAX_VALUE) ||
(temp == LOM_TEMP_STATE_NOT_PRESENT)) {
ssp->temps.temp[dev_no - 1] = temp;
}
}
if (state_chng & EBUS_STATE_RAIL) {
(void) bscv_get8(ssp, chan_general, EBUS_IDX_SUPPLY_LO);
(void) bscv_get8(ssp, chan_general, EBUS_IDX_SUPPLY_HI);
}
}
char *
bscv_get_label(char labels[][MAX_LOM2_NAME_STR], int limit, int index)
{
if (labels == NULL)
return ("");
if (limit < 0 || index < 0 || index > limit)
return ("-");
return (labels[index]);
}
static void
bscv_generic_sysevent(bscv_soft_state_t *ssp, char *class, char *subclass,
char *fru_id, char *res_id, int32_t fru_state, char *msg)
{
int rv;
nvlist_t *attr_list;
bscv_trace(ssp, 'E', "bscv_generic_sysevent", "%s/%s:(%s,%s,%d) %s",
class, subclass, fru_id, res_id, fru_state, msg);
if (nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, KM_SLEEP)) {
bscv_trace(ssp, 'E', "bscv_generic_sysevent",
"nvlist alloc failure");
return;
}
if (nvlist_add_uint32(attr_list, ENV_VERSION, 1)) {
bscv_trace(ssp, 'E', "bscv_generic_sysevent",
"nvlist ENV_VERSION failure");
nvlist_free(attr_list);
return;
}
if (nvlist_add_string(attr_list, ENV_FRU_ID, fru_id)) {
bscv_trace(ssp, 'E', "bscv_generic_sysevent",
"nvlist ENV_FRU_ID failure");
nvlist_free(attr_list);
return;
}
if (nvlist_add_string(attr_list, ENV_FRU_RESOURCE_ID, res_id)) {
bscv_trace(ssp, 'E', "bscv_generic_sysevent",
"nvlist ENV_FRU_RESOURCE_ID failure");
nvlist_free(attr_list);
return;
}
if (nvlist_add_string(attr_list, ENV_FRU_DEVICE, ENV_RESERVED_ATTR)) {
bscv_trace(ssp, 'E', "bscv_generic_sysevent",
"nvlist ENV_FRU_DEVICE failure");
nvlist_free(attr_list);
return;
}
if (nvlist_add_int32(attr_list, ENV_FRU_STATE, fru_state)) {
bscv_trace(ssp, 'E', "bscv_generic_sysevent",
"nvlist ENV_FRU_STATE failure");
nvlist_free(attr_list);
return;
}
if (nvlist_add_string(attr_list, ENV_MSG, msg)) {
bscv_trace(ssp, 'E', "bscv_generic_sysevent",
"nvlist ENV_MSG failure");
nvlist_free(attr_list);
return;
}
rv = ddi_log_sysevent(ssp->dip, DDI_VENDOR_SUNW, class,
subclass, attr_list, NULL, DDI_SLEEP);
if (rv == DDI_SUCCESS) {
bscv_trace(ssp, 'E', "bscv_generic_sysevent", "sent sysevent");
} else {
cmn_err(CE_WARN, "!cannot deliver sysevent");
}
nvlist_free(attr_list);
}
/*
* function - bscv_sysevent
* description - send out a sysevent on the given change if needed
* inputs - soft state pointer, event to report
* outputs - none
*/
static void
bscv_sysevent(bscv_soft_state_t *ssp, lom_event_t *event)
{
char *class = NULL;
char *subclass = NULL;
char *fru_id = "Blade"; /* The blade is only one FRU */
char *res_id;
int32_t fru_state = 0;
bscv_trace(ssp, 'E', "bscv_sysevent", "processing event");
ASSERT(event != NULL);
/* Map ev_subsys to sysevent class/sub-class */
switch (EVENT_DECODE_SUBSYS(event->ev_subsys)) {
case EVENT_SUBSYS_NONE:
break;
case EVENT_SUBSYS_ALARM:
break;
case EVENT_SUBSYS_TEMP:
class = EC_ENV, subclass = ESC_ENV_TEMP;
res_id = bscv_get_label(ssp->temps.name, ssp->temps.num,
event->ev_resource - 1);
switch (event->ev_event) {
case EVENT_SEVERE_OVERHEAT:
fru_state = ENV_FAILED;
break;
case EVENT_OVERHEAT:
fru_state = ENV_WARNING;
break;
case EVENT_NO_OVERHEAT:
fru_state = ENV_OK;
break;
default:
return;
}
break;
case EVENT_SUBSYS_OVERTEMP:
break;
case EVENT_SUBSYS_FAN:
class = EC_ENV, subclass = ESC_ENV_FAN;
res_id = bscv_get_label(ssp->fan_names, ssp->num_fans,
event->ev_resource - 1);
switch (event->ev_event) {
case EVENT_FAILED:
fru_state = ENV_FAILED;
break;
case EVENT_RECOVERED:
fru_state = ENV_OK;
break;
default:
return;
}
break;
case EVENT_SUBSYS_SUPPLY:
class = EC_ENV, subclass = ESC_ENV_POWER;
res_id = bscv_get_label(ssp->sflags.name, ssp->sflags.num,
event->ev_resource - 1);
switch (event->ev_event) {
case EVENT_FAILED:
fru_state = ENV_FAILED;
break;
case EVENT_RECOVERED:
fru_state = ENV_OK;
break;
default:
return;
}
break;
case EVENT_SUBSYS_BREAKER:
break;
case EVENT_SUBSYS_PSU:
break;
case EVENT_SUBSYS_USER:
break;
case EVENT_SUBSYS_PHONEHOME:
break;
case EVENT_SUBSYS_LOM:
break;
case EVENT_SUBSYS_HOST:
break;
case EVENT_SUBSYS_EVENTLOG:
break;
case EVENT_SUBSYS_EXTRA:
break;
case EVENT_SUBSYS_LED:
if (event->ev_event != EVENT_FAULT_LED &&
event->ev_event != EVENT_STATE_CHANGE)
return;
/*
* There are 3 LEDs : Power, Service, Ready-to-Remove on a
* JBOS blade. We'll never report the Power since Solaris
* won't be running when it is _switched_ ON. Ready-to-Remove
* will only be lit when we're powered down which also means
* Solaris won't be running. We don't want to report it
* during system testing / Sun VTS exercising the LEDs.
*
* Therefore, we only report the Service Required LED.
*/
class = EC_ENV, subclass = ESC_ENV_LED;
res_id = bscv_get_label(ssp->led_names, MAX_LED_ID,
event->ev_resource - 1);
switch (event->ev_detail) {
case LOM_LED_STATE_ON_STEADY:
fru_state = ENV_LED_ON;
break;
case LOM_LED_STATE_ON_FLASHING:
case LOM_LED_STATE_ON_SLOWFLASH:
fru_state = ENV_LED_BLINKING;
break;
case LOM_LED_STATE_OFF:
fru_state = ENV_LED_OFF;
break;
case LOM_LED_STATE_INACCESSIBLE:
fru_state = ENV_LED_INACCESSIBLE;
break;
case LOM_LED_STATE_STANDBY:
fru_state = ENV_LED_STANDBY;
break;
case LOM_LED_STATE_NOT_PRESENT:
fru_state = ENV_LED_NOT_PRESENT;
break;
default:
fru_state = ENV_LED_INACCESSIBLE;
break;
}
break;
default :
break;
}
if (class == NULL || subclass == NULL) {
bscv_trace(ssp, 'E', "bscv_sysevent", "class/subclass NULL");
return;
}
bscv_generic_sysevent(ssp, class, subclass, fru_id, res_id, fru_state,
ENV_RESERVED_ATTR);
}
/*
* *********************************************************************
* Firmware download (programming)
* *********************************************************************
*/
/*
* function - bscv_prog
* description - LOMlite2 flash programming code.
*
* bscv_prog_image - download a complete image to the lom.
* bscv_prog_receive_image - receive data to build up a
* complete image.
* bscv_prog_stop_lom - pause the event daemon and prepare
* lom for firmware upgrade.
* bscv_prog_start_lom - reinit the driver/lom after upgrade
* and restart the event daemon
*
* inputs - soft state pointer, arg ptr, ioctl mode
* outputs - status
*/
static int
bscv_prog(bscv_soft_state_t *ssp, intptr_t arg, int mode)
{
lom_prog_t *prog;
int res = 0;
/*
* We will get repeatedly called with bits of data first for
* loader, then for main image.
*/
prog = (lom_prog_t *)kmem_alloc(sizeof (lom_prog_t), KM_SLEEP);
if (ddi_copyin((caddr_t)arg, (caddr_t)prog, sizeof (*prog),
mode) < 0) {
kmem_free((void *)prog, sizeof (*prog));
return (EFAULT);
}
bscv_trace(ssp, 'U', "bscv_prog",
"index 0x%x size 0x%x", prog->index, prog->size);
mutex_enter(&ssp->prog_mu);
if (prog->size == 0) {
if (prog->index == 2) {
/*
* This is the initial request for the chip type so we
* know what we are programming.
* The type will have been read in at init so just
* return it in data[0].
*/
prog->data[0] = bscv_get8_cached(ssp,
EBUS_IDX_CPU_IDENT);
if (ddi_copyout((caddr_t)prog, (caddr_t)arg,
sizeof (lom_prog_t), mode) < 0) {
res = EFAULT;
}
} else if (prog->index == 0) {
res = bscv_prog_stop_lom(ssp);
} else if (prog->index == 1) {
res = bscv_prog_start_lom(ssp);
} else {
res = EINVAL;
}
} else {
if (ssp->image == NULL) {
ssp->image = (uint8_t *)kmem_zalloc(
BSC_IMAGE_MAX_SIZE, KM_SLEEP);
}
res = bscv_prog_receive_image(ssp, prog,
ssp->image, BSC_IMAGE_MAX_SIZE);
}
mutex_exit(&ssp->prog_mu);
kmem_free((void *)prog, sizeof (lom_prog_t));
return (res);
}
static int
bscv_check_loader_config(bscv_soft_state_t *ssp, boolean_t is_image2)
{
bscv_trace(ssp, 'U', "bscv_check_loader_config",
"loader_running %d, is_image2 %d",
ssp->loader_running, is_image2);
/*
* loader_running TRUE means that we have told the microcontroller to
* JUMP into the loader code which has been downloaded into its RAM.
* At this point its an error to try and download another loader. We
* should be downloading the actual image at this point.
* Conversely, it is an error to download an image when the loader is
* not already downloaded and the microcontroller hasn't JUMPed into it.
* is_image2 TRUE means the image is being downloaded.
* is_image2 FALSE means the loader is being downloaded.
*/
if (ssp->loader_running && !is_image2) {
cmn_err(CE_WARN, "Attempt to download loader image "
"with loader image already active");
cmn_err(CE_CONT, "This maybe an attempt to restart a "
"failed firmware download - ignoring download attempt");
return (B_FALSE);
} else if (!ssp->loader_running && is_image2) {
cmn_err(CE_WARN, "Attempt to download firmware image "
"without loader image active");
return (B_FALSE);
}
return (B_TRUE);
}
static uint32_t
bscv_get_pagesize(bscv_soft_state_t *ssp)
{
uint32_t pagesize;
ASSERT(bscv_held(ssp));
pagesize = bscv_get32(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PAGE0));
bscv_trace(ssp, 'U', "bscv_get_pagesize", "pagesize 0x%x", pagesize);
return (pagesize);
}
/*
* Sets the pagesize, returning the old value.
*/
static uint32_t
bscv_set_pagesize(bscv_soft_state_t *ssp, uint32_t pagesize)
{
uint32_t old_pagesize;
ASSERT(bscv_held(ssp));
old_pagesize = bscv_get_pagesize(ssp);
/*
* The microcontroller remembers this value until until someone
* changes it.
*/
bscv_put32(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PSIZ0), pagesize);
return (old_pagesize);
}
static uint8_t
bscv_enter_programming_mode(bscv_soft_state_t *ssp)
{
uint8_t retval;
ASSERT(bscv_held(ssp));
bscv_put8(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PCSR),
EBUS_PROGRAM_PCR_PRGMODE_ON);
retval = bscv_get8(ssp, chan_prog, BSCVA(EBUS_CMD_SPACE_PROGRAM,
EBUS_PROGRAM_PCSR));
return (retval);
}
static void
bscv_leave_programming_mode(bscv_soft_state_t *ssp, boolean_t with_jmp)
{
uint8_t reg;
ASSERT(bscv_held(ssp));
if (with_jmp) {
reg = EBUS_PROGRAM_PCR_PROGOFF_JUMPTOADDR;
bscv_trace(ssp, 'U', "bscv_leave_programming_mode",
"jumptoaddr");
} else {
reg = EBUS_PROGRAM_PCR_PRGMODE_OFF;
bscv_trace(ssp, 'U', "bscv_leave_programming_mode",
"prgmode_off");
}
bscv_put8(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PCSR), reg);
}
static void
bscv_set_jump_to_addr(bscv_soft_state_t *ssp, uint32_t loadaddr)
{
ASSERT(bscv_held(ssp));
bscv_put32(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PADR0), loadaddr);
bscv_trace(ssp, 'U', "bscv_set_jump_to_addr",
"set jump to loadaddr 0x%x", loadaddr);
}
static uint8_t
bscv_erase_once(bscv_soft_state_t *ssp, uint32_t loadaddr, uint32_t image_size)
{
uint8_t retval;
ASSERT(bscv_held(ssp));
/*
* write PADR, PSIZ to define area to be erased
* We do not send erase for zero size because the current
* downloader gets this wrong
*/
/*
* start at 0
*/
bscv_trace(ssp, 'U', "bscv_erase_once", "sending erase command");
bscv_put32(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PADR0),
loadaddr);
/* set PSIZ to full size of image to be programmed */
bscv_put32(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PSIZ0),
image_size);
/* write ERASE to PCSR */
bscv_put8(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PCSR),
EBUS_PROGRAM_PCR_ERASE);
/* read PCSR to check status */
retval = bscv_get8(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PCSR));
return (retval);
}
static uint8_t
bscv_do_erase(bscv_soft_state_t *ssp, uint32_t loadaddr, uint32_t image_size,
boolean_t is_image2)
{
int retryable = BSC_ERASE_RETRY_LIMIT;
uint8_t retval;
while (retryable--) {
retval = bscv_erase_once(ssp, loadaddr, image_size);
if (PSR_SUCCESS(retval))
break;
else
cmn_err(CE_WARN, "erase error 0x%x, attempt %d"
", base 0x%x, size 0x%x, %s image",
retval, BSC_ERASE_RETRY_LIMIT - retryable,
loadaddr, image_size,
is_image2 ? "main" : "loader");
}
return (retval);
}
static uint8_t
bscv_set_page(bscv_soft_state_t *ssp, uint32_t addr)
{
uint32_t retval;
int retryable = BSC_PAGE_RETRY_LIMIT;
ASSERT(bscv_held(ssp));
while (retryable--) {
/*
* Write the page address and read it back for confirmation.
*/
bscv_put32(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PADR0),
addr);
retval = bscv_get32(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PADR0));
if (retval == addr)
break;
else {
cmn_err(CE_WARN, "programmming error, attempt %d, "
"set page 0x%x, read back 0x%x",
BSC_PAGE_RETRY_LIMIT - retryable,
addr, retval);
}
}
return ((addr == retval) ? EBUS_PROGRAM_PSR_SUCCESS :
EBUS_PROGRAM_PSR_INVALID_OPERATION);
}
static uint8_t
bscv_do_page_data_once(bscv_soft_state_t *ssp, uint32_t index,
uint32_t image_size, uint32_t pagesize, uint8_t *imagep,
uint16_t *calcd_chksum)
{
uint32_t size;
uint16_t chksum;
int i;
uint8_t retval;
ASSERT(bscv_held(ssp));
bscv_trace(ssp, 'P', "bscv_do_page_data_once", "index 0x%x", index);
/* write PSIZ bytes to PDAT */
if (index + pagesize < image_size) {
bscv_rep_rw8(ssp, chan_prog, imagep + index,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_DATA),
pagesize, DDI_DEV_NO_AUTOINCR, B_TRUE /* write */);
size = pagesize;
} else {
bscv_trace(ssp, 'P', "bscv_do_page_once",
"Sending last block, last 0x%x bytes",
(image_size % pagesize));
size = (image_size - index);
bscv_rep_rw8(ssp, chan_prog, imagep + index,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_DATA),
size, DDI_DEV_NO_AUTOINCR, B_TRUE /* write */);
/* Now pad the rest of the page with zeros */
for (i = size; i < pagesize; i++) {
bscv_put8(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM,
EBUS_PROGRAM_DATA),
0);
}
}
/* write the checksum to PCSM */
chksum = 0;
for (i = 0; i < size; i++) {
chksum = ((chksum << 3) | (chksum >> 13)) ^
*(imagep + index + i);
}
/* Cope with non-pagesize sized bufers */
for (; i < pagesize; i++) {
chksum = ((chksum << 3) | (chksum >> 13)) ^ 0;
}
bscv_put16(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PCSM0), chksum);
bscv_put8(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PCSR),
EBUS_PROGRAM_PCR_PROGRAM);
retval = bscv_get8(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PCSR));
*calcd_chksum = chksum;
return (retval);
}
static uint8_t bscv_do_page(bscv_soft_state_t *ssp, uint32_t loadaddr,
uint32_t index, uint32_t image_size, uint32_t pagesize, uint8_t *imagep,
boolean_t is_image2)
{
int retryable = BSC_PAGE_RETRY_LIMIT;
uint8_t retval;
uint16_t checksum;
bscv_trace(ssp, 'P', "bscv_do_page", "index 0x%x", index);
while (retryable--) {
/*
* Set the page address (with retries). If this is not
* successful, then there is no point carrying on and sending
* the page's data since that could cause random memory
* corruption in the microcontroller.
*/
retval = bscv_set_page(ssp, loadaddr + index);
if (!PSR_SUCCESS(retval)) {
cmn_err(CE_WARN, "programming error 0x%x, "
"could not setup page address 0x%x, %s image",
retval, loadaddr + index,
is_image2 ? "main" : "loader");
break;
}
/*
* Send down the data for the page
*/
bscv_trace(ssp, 'P', "bscv_do_page", "sending data for page");
retval = bscv_do_page_data_once(ssp, index, image_size,
pagesize, imagep, &checksum);
if (PSR_SUCCESS(retval))
break;
else
cmn_err(CE_WARN, "programming error 0x%x,"
" attempt %d, index 0x%x, checksum 0x%x, %s image",
retval, BSC_PAGE_RETRY_LIMIT - retryable,
index, checksum, is_image2 ? "main" : "loader");
}
bscv_trace(ssp, 'U', "bscv_do_page", "Returning 0x%x for index 0x%x,"
" checksum 0x%x, %s image", retval, index, checksum,
is_image2 ? "main" : "loader");
return (retval);
}
static uint8_t
bscv_do_pages(bscv_soft_state_t *ssp, uint32_t loadaddr, uint32_t image_size,
uint32_t pagesize, uint8_t *imagep, boolean_t is_image2)
{
uint8_t retval;
uint32_t index;
bscv_trace(ssp, 'P', "bscv_do_pages", "entered");
for (index = 0; index < image_size; index += pagesize) {
retval = bscv_do_page(ssp, loadaddr, index, image_size,
pagesize, imagep, is_image2);
if (bscv_faulty(ssp) || !PSR_SUCCESS(retval)) {
bscv_trace(ssp, 'U', "bscv_do_pages",
"Failed to program lom (status 0x%x)", retval);
break;
}
}
return (retval);
}
static int
bscv_prog_image(bscv_soft_state_t *ssp, boolean_t is_image2,
uint8_t *imagep, int image_size, uint32_t loadaddr)
{
uint32_t pagesize;
int res = 0;
uint8_t retval;
bscv_trace(ssp, 'U', "bscv_prog_image",
"image 0x%x, imagep %p, size 0x%x",
is_image2 ? 2 : 1, imagep, image_size);
if (!bscv_check_loader_config(ssp, is_image2))
/*
* Return no error to allow userland to continue on with
* downloading the image.
*/
return (0);
bscv_enter(ssp);
pagesize = bscv_get_pagesize(ssp);
retval = bscv_enter_programming_mode(ssp);
if (bscv_faulty(ssp) || !PSR_PROG(retval)) {
cmn_err(CE_WARN, "lom: Failed to enter program mode, error 0x%x"
", %s image", retval, is_image2 ? "main" : "loader");
res = EIO;
goto BSCV_PROG_IMAGE_END;
}
bscv_trace(ssp, 'U', "bscv_prog_image", "entered programming mode");
/*
* Only issue an erase if we are downloading the image. The loader
* does not need this step.
*/
if (is_image2 && (image_size != 0)) {
retval = bscv_do_erase(ssp, loadaddr, image_size, is_image2);
if (bscv_faulty(ssp) || !PSR_SUCCESS(retval)) {
cmn_err(CE_WARN,
"lom: Erase failed during programming, status 0x%x",
retval);
res = EIO;
goto BSCV_PROG_IMAGE_END;
} else {
bscv_trace(ssp, 'U', "bscv_prog_image",
"erase complete - programming...");
}
}
(void) bscv_set_pagesize(ssp, pagesize);
retval = bscv_do_pages(ssp, loadaddr, image_size, pagesize, imagep,
is_image2);
if (bscv_faulty(ssp) || !PSR_SUCCESS(retval)) {
bscv_trace(ssp, 'U', "bscv_prog_image",
"Failed to program lom (status 0x%x)", retval);
res = EIO;
goto BSCV_PROG_IMAGE_END;
}
BSCV_PROG_IMAGE_END:
if (res == 0 && !is_image2) {
/*
* We've downloaded the loader successfully. Now make the
* microcontroller jump to it.
*/
bscv_set_jump_to_addr(ssp, loadaddr);
ssp->loader_running = B_TRUE;
bscv_leave_programming_mode(ssp, B_TRUE);
} else {
/*
* We've just downloaded either the loader which failed, or
* the image (which may or may not have been successful).
*/
bscv_set_jump_to_addr(ssp, 0);
if (res != 0) {
bscv_trace(ssp, 'U', "bscv_prog_image",
"got error 0x%x - leaving programming mode",
res);
cmn_err(CE_WARN, "programming error 0x%x, %s image",
res, is_image2 ? "main" : "loader");
} else {
bscv_trace(ssp, 'U', "bscv_prog_image",
"programming complete - leaving programming mode");
}
bscv_leave_programming_mode(ssp, B_FALSE);
ssp->loader_running = B_FALSE;
}
bscv_exit(ssp);
return (res);
}
static int
bscv_prog_receive_image(bscv_soft_state_t *ssp, lom_prog_t *prog,
uint8_t *imagep, int max_size)
{
int res = 0;
uint_t size;
int32_t loadaddr;
lom_prog_data_t *prog_data;
if ((prog->index & 0x7FFF) != ssp->prog_index) {
bscv_trace(ssp, 'U', "bscv_prog_receive_image",
"Got wrong buffer 0x%x, expected 0x%x",
prog->index & 0x7fff, ssp->prog_index);
return (EINVAL);
}
/*
* We want to get the whole image and then do the download.
* It is assumed the device is now in programming mode.
*/
if ((prog->index & 0x7fff) == 0) {
/* Starting a new image */
ssp->image_ptr = 0;
}
if ((ssp->image_ptr + prog->size) > max_size) {
cmn_err(CE_WARN,
"lom image exceeded maximum size: got 0x%x, maximum 0x%x",
(ssp->image_ptr + prog->size), max_size);
return (EFAULT);
}
bcopy(prog->data, &imagep[ssp->image_ptr], prog->size);
ssp->image_ptr += prog->size;
ssp->prog_index++;
if (prog->index & 0x8000) {
/*
* OK we have the whole image so synch up and start download.
*/
prog_data = (lom_prog_data_t *)imagep;
if (prog_data->header.magic != PROG_MAGIC) {
/* Old style programming data */
/* Take care image may not fill all of structure */
/* sign extend loadaddr from 16 to 32 bits */
loadaddr = (int16_t)((uint16_t)((imagep[2] << 8) +
imagep[3]));
size = (imagep[0] << 8) + imagep[1];
if (size != (ssp->image_ptr - 4)) {
cmn_err(CE_WARN, "Image size mismatch:"
" expected 0x%x, got 0x%x",
size, (ssp->image_ptr - 1));
}
res = bscv_prog_image(ssp,
ssp->image2_processing,
imagep + 4, ssp->image_ptr - 4, loadaddr);
/*
* Done the loading so set the flag to say we are doing
* the other image.
*/
ssp->image2_processing = !ssp->image2_processing;
} else if ((ssp->image_ptr < sizeof (*prog_data)) ||
(prog_data->platform.bscv.size !=
(ssp->image_ptr - sizeof (*prog_data)))) {
/* Image too small for new style image */
cmn_err(CE_WARN, "image too small");
res = EINVAL;
} else {
/* New style programming image */
switch (prog_data->platmagic) {
case PROG_PLAT_BSCV_IMAGE:
res = bscv_prog_image(ssp, B_TRUE,
imagep + sizeof (*prog_data),
prog_data->platform.bscv.size,
prog_data->platform.bscv.loadaddr);
ssp->image2_processing = B_FALSE;
break;
case PROG_PLAT_BSCV_LOADER:
res = bscv_prog_image(ssp, B_FALSE,
imagep + sizeof (*prog_data),
prog_data->platform.bscv.size,
prog_data->platform.bscv.loadaddr);
ssp->image2_processing = B_TRUE;
break;
default:
cmn_err(CE_WARN, "unknown platmagic 0x%x",
prog_data->platmagic);
res = EINVAL;
break;
}
}
ssp->prog_index = 0;
ssp->image_ptr = 0;
}
return (res);
}
static int
bscv_prog_stop_lom(bscv_soft_state_t *ssp)
{
if (ssp->programming) {
/*
* Already programming - this may be a retry of a failed
* programming attempt or just a software error!
*/
goto queue_stopped;
}
if (bscv_pause_event_daemon(ssp) == BSCV_FAILURE) {
bscv_trace(ssp, 'Q', "bscv_prog_stop_lom",
"failed to pause event daemon thread");
return (EAGAIN);
}
bscv_enter(ssp);
ssp->programming = B_TRUE;
bscv_exit(ssp);
queue_stopped:
ssp->prog_index = 0;
ssp->image2_processing = B_FALSE;
return (0);
}
static int
bscv_prog_start_lom(bscv_soft_state_t *ssp)
{
int res = 0;
if (!ssp->programming) {
/* Not programming so this is not a valid command */
return (EINVAL);
}
if (ssp->image != NULL) {
kmem_free((void *)ssp->image, BSC_IMAGE_MAX_SIZE);
ssp->image = NULL;
}
/*
* OK we are out of reset now so:
* Probe the firmware and set everything up.
*/
bscv_enter(ssp);
/* Explicit clear fault because things may have been mended now */
bscv_clear_fault(ssp);
if (ssp->loader_running) {
cmn_err(CE_WARN, "Firmware upgrade failed to exit loader - "
"performing forced exit");
/* Must try to restart the lom here. */
/* Ensure prog mode entry to enable PRGMODE_OFF */
bscv_put8(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PCSR),
EBUS_PROGRAM_PCR_PRGMODE_ON);
bscv_put8(ssp, chan_prog,
BSCVA(EBUS_CMD_SPACE_PROGRAM, EBUS_PROGRAM_PCSR),
EBUS_PROGRAM_PCR_PRGMODE_OFF);
ssp->loader_running = B_FALSE;
/* give the lom chance to recover */
delay(drv_usectohz(5000000)); /* 5 seconds */
}
ssp->prog_mode_only = B_FALSE;
ssp->programming = B_FALSE;
if (bscv_attach_common(ssp) == DDI_FAILURE) {
ssp->prog_mode_only = B_TRUE;
res = EIO;
}
bscv_exit(ssp);
if (!ssp->prog_mode_only) {
/*
* Start the event thread after the queue has started
*
* Not sure if this is entirely correct because
* the other code at the end of bscv_attach()
* does not get run here.
*/
bscv_start_event_daemon(ssp);
bscv_resume_event_daemon(ssp);
}
return (res);
}
/*
* *********************************************************************
* Attach processing
* *********************************************************************
*/
/*
* function - bscv_attach_common
* description - this routine co-ordinates the initialisation of the
* driver both at attach time and after firmware programming.
* sequence - bscv_setup_capability - read LOMlite2 capabilities
* bscv_probe_check - test comms and setup register cache
* bscv_setup_hostname - sync stored name in lom with nodename.
* bscv_setup_static_info - read device names etc.
* bscv_setup_events - start event daemon etc.
*
* inputs - device information structure, DDI_ATTACH command
* outputs - DDI_SUCCESS or DDI_FAILURE
*/
static int
bscv_attach_common(bscv_soft_state_t *ssp)
{
ASSERT(bscv_held(ssp));
bscv_trace(ssp, 'A', "bscv_attach_common:", "");
/*
* Set the threshold for reporting messages to the console to
* Warnings or higher.
*/
ssp->reporting_level = 2;
/*
* When the system is not running the Operating System, make
* the microcontroller print event messages straight onto the
* console.
*/
ssp->serial_reporting = LOM_SER_EVENTS_DEF;
/* Setup capabilities */
bscv_setup_capability(ssp);
if (bscv_probe_check(ssp) == DDI_FAILURE) {
cmn_err(CE_WARN, "BSC chip not responding");
/*
* We want lom -G to talk to this driver upon broken firmware
* so we prematurely return success here.
*/
return (DDI_SUCCESS);
}
bscv_setup_hostname(ssp);
bscv_setup_static_info(ssp);
bscv_setup_events(ssp);
#if defined(__i386) || defined(__amd64)
bscv_inform_bsc(ssp, BSC_INFORM_ONLINE);
#endif /* __i386 || __amd64 */
/*
* Watchdog configuration and CPU signatures are sent asynchronously
* with respect to attach so only inform the BSC if we've already
* sent the data in the past.
*/
if (ssp->progress & BSCV_WDOG_CFG)
bscv_setup_watchdog(ssp);
#ifdef __sparc
if (ssp->progress & BSCV_SIG_SENT)
bscv_write_sig(ssp, ssp->last_sig);
#endif /* __sparc */
return (DDI_SUCCESS);
}
/*
* function - bscv_cleanup
* description - routine that does the necessary tidying up if the attach
* request fails or the driver is to be detached.
* If the event thread has been started we may fail to
* stop it (because it is busy) so we fail the cleanup
* and hence the detach. All other calls to bscv_cleanup
* are done before the event daemon is started.
* inputs - soft state structure address.
* outputs - DDI_SUCCESS or DDI_FAILURE.
*/
static int
bscv_cleanup(bscv_soft_state_t *ssp)
{
int instance;
uint8_t bits2set;
uint8_t bits2clear;
instance = ssp->instance;
if (ssp->progress & BSCV_LOCKS) {
bscv_enter(ssp);
}
if (ssp->progress & BSCV_THREAD) {
if (bscv_stop_event_daemon(ssp) == DDI_FAILURE) {
/* Fail the cleanup - may be able to cleanup later */
if (ssp->progress & BSCV_LOCKS) {
bscv_exit(ssp);
}
return (DDI_FAILURE);
}
}
if (ssp->progress & BSCV_NODES) {
ddi_remove_minor_node(ssp->dip, NULL);
}
if (ssp->progress & BSCV_MAPPED_REGS) {
/*
* switch back on serial event reporting - cover all configs.
*/
bits2set = 0;
bits2clear = 0;
if (ssp->serial_reporting == LOM_SER_EVENTS_ON) {
bits2clear |= EBUS_ALARM_NOEVENTS;
} else if (ssp->serial_reporting == LOM_SER_EVENTS_OFF) {
bits2set |= EBUS_ALARM_NOEVENTS;
} else if (ssp->serial_reporting == LOM_SER_EVENTS_DEF) {
bits2clear |= EBUS_ALARM_NOEVENTS;
}
bscv_setclear8_volatile(ssp, chan_general, EBUS_IDX_ALARM,
bits2set, bits2clear);
/*
* disable the reset function if we have enabled
* it. We don't want any nasty surprises like system
* rebooting unexpectedly. If we timeout on the busy
* flag we just have to carry on.
*/
bscv_trace(ssp, 'W', "bscv_cleanup",
"bscv_cleanup - disable wdog");
if (bscv_get8_cached(ssp, EBUS_IDX_WDOG_CTRL) &
EBUS_WDOG_ENABLE) {
bscv_setclear8(ssp, chan_general, EBUS_IDX_WDOG_CTRL,
0, EBUS_WDOG_RST | EBUS_WDOG_ENABLE);
}
}
/*
* unmap registers
*/
if (ssp->progress & BSCV_MAPPED_REGS) {
bscv_unmap_regs(ssp);
}
/*
* release any memory allocated for mutexes and condition
* variables before deallocating the structures containing them
*/
if (ssp->progress & BSCV_LOCKS) {
bscv_exit(ssp);
cv_destroy(&ssp->task_cv);
cv_destroy(&ssp->task_evnt_cv);
mutex_destroy(&ssp->task_mu);
mutex_destroy(&ssp->prog_mu);
mutex_destroy(&ssp->cmd_mutex);
}
if (ssp->image != NULL) {
kmem_free((void *)ssp->image, BSC_IMAGE_MAX_SIZE);
}
#if defined(__i386) || defined(__amd64)
bscv_watchdog_cyclic_remove(ssp);
#endif /* __i386 || __amd64 */
ddi_soft_state_free(bscv_statep, instance);
return (DDI_SUCCESS);
}
/*
* function - bscv_setup_capability
* description - probe the lom find what capabilities are present for
* us to use.
* inputs - soft state ptr
* outputs - returns DDI_SUCCESS or DDI_FAILURE
*/
static void bscv_setup_capability(bscv_soft_state_t *ssp)
{
ASSERT(bscv_held(ssp));
if (ssp->prog_mode_only) {
/* Turn off all capabilities */
ssp->cap0 = 0;
ssp->cap1 = 0;
ssp->cap2 = 0;
return;
}
ssp->cap0 = bscv_get8(ssp, chan_general, EBUS_IDX_CAP0);
ssp->cap1 = bscv_get8(ssp, chan_general, EBUS_IDX_CAP1);
ssp->cap2 = bscv_get8(ssp, chan_general, EBUS_IDX_CAP2);
if (!bscv_faulty(ssp)) {
bscv_trace(ssp, 'A', "bscv_setup_capability",
"Capability flags cap0=0x%x cap1=0x%x, cap2=0x%x",
ssp->cap0, ssp->cap1, ssp->cap2);
} else {
cmn_err(CE_WARN, "!Could not read capability flags");
ssp->cap0 = 0; ssp->cap1 = 0; ssp->cap2 = 0;
}
}
/*
* function - bscv_probe_check
* description - probe the lom to check for correct operation
* has a side effect of setting up the cached registers and
* updates ssp->prog_mode_only.
* inputs - soft state ptr
* outputs - returns DDI_SUCCESS or DDI_FAILURE
*/
static int bscv_probe_check(bscv_soft_state_t *ssp)
{
int i;
uint8_t probeval;
ASSERT(bscv_held(ssp));
bscv_trace(ssp, 'A', "bscv_probe_check", "");
if (!ssp->prog_mode_only) {
/*
* Make sure probe location is OK so that we are
* in sync.
* We want to make sure that this is not faulty so we
* do a bscv_clear_fault to clear any existing
* fault records down.
*/
bscv_clear_fault(ssp);
probeval = bscv_get8(ssp, chan_general, EBUS_IDX_PROBEAA);
if (bscv_faulty(ssp)) {
ssp->prog_mode_only = B_TRUE;
} else if (probeval != 0xAA) {
bscv_trace(ssp, 'A', "bscv_probe_check",
"LOMlite out of sync");
/*
* It may be that the LOMlite was out of
* sync so lets try the read again.
*/
probeval = bscv_get8(ssp, chan_general,
EBUS_IDX_PROBEAA);
if (bscv_faulty(ssp)) {
bscv_trace(ssp, 'A', "bscv_probe_check",
"Init readAA1 failed");
ssp->prog_mode_only = B_TRUE;
} else if (probeval != 0xAA) {
/*
* OK that is twice we are out so I
* guess the LOMlite is in trouble
*/
bscv_trace(ssp, 'A', "bscv_probe_check",
"Init readAA probe failed - got 0x%x",
probeval);
ssp->prog_mode_only = B_TRUE;
}
}
}
/*
* Read in all page zero lom registers.
* Read state change 1st so we dont miss anything and clear it.
* Note: we discard the values because we rely on bscv_get8 to
* setup the cache of register values.
*/
if (!ssp->prog_mode_only) {
(void) bscv_get8(ssp, chan_general, EBUS_IDX_STATE_CHNG);
if (bscv_faulty(ssp)) {
bscv_trace(ssp, 'A', "bscv_probe_check",
"Read of state change register failed");
ssp->prog_mode_only = B_TRUE;
}
}
if (!ssp->prog_mode_only) {
for (i = 1; i < 0x80; i++) {
switch (i) {
case EBUS_IDX_STATE_CHNG:
case EBUS_IDX_CMD_RES:
case EBUS_IDX_HNAME_CHAR:
/*
* Should not read these - they have side
* effects.
*/
break;
default:
(void) bscv_get8(ssp, chan_general, i);
break;
}
if (bscv_faulty(ssp)) {
bscv_trace(ssp, 'A', "bscv_probe_check",
"Initial read or register %2x failed", i);
ssp->prog_mode_only = B_TRUE;
/* Might as well give up now! */
break;
}
}
}
/*
* Check the probe keys so we know the lom is OK
*/
if (!ssp->prog_mode_only) {
if ((bscv_get8_cached(ssp, EBUS_IDX_PROBE55) != 0x55) ||
(bscv_get8_cached(ssp, EBUS_IDX_PROBEAA) != 0xAA)) {
bscv_trace(ssp, 'A', "bscv_probe_check",
"LOMlite Probe failed");
for (i = 0; i < 0x8; i++) {
bscv_trace(ssp, 'A', "bscv_probe_check",
"%2x %2x %2x %2x %2x %2x %2x %2x %2x "
"%2x %2x %2x %2x %2x %2x %2x %2x %2x",
bscv_get8_cached(ssp, i),
bscv_get8_cached(ssp, i + 1),
bscv_get8_cached(ssp, i + 2),
bscv_get8_cached(ssp, i + 3),
bscv_get8_cached(ssp, i + 4),
bscv_get8_cached(ssp, i + 5),
bscv_get8_cached(ssp, i + 6),
bscv_get8_cached(ssp, i + 7),
bscv_get8_cached(ssp, i + 8),
bscv_get8_cached(ssp, i + 9),
bscv_get8_cached(ssp, i + 10),
bscv_get8_cached(ssp, i + 11),
bscv_get8_cached(ssp, i + 12),
bscv_get8_cached(ssp, i + 13),
bscv_get8_cached(ssp, i + 14),
bscv_get8_cached(ssp, i + 15));
}
ssp->prog_mode_only = B_TRUE;
}
}
return ((ssp->prog_mode_only == B_FALSE) ? DDI_SUCCESS : DDI_FAILURE);
}
#ifdef __sparc
/*
* function - bscv_idi_set
* description - bscv inter driver interface set function
* inputs - structure which defines type of service required and data
* ouputs - none
*
* This is the Entry Point function for the platmod driver. It works out which
* X Bus channel ought to deliver the service requested.
*/
void
bscv_idi_set(struct bscv_idi_info info)
{
struct bscv_idi_callout *tbl;
boolean_t retval;
ASSERT(bscv_idi_mgr.magic == BSCV_IDI_CALLOUT_MAGIC);
if (bscv_idi_mgr.tbl == NULL) {
if (bscv_idi_err())
cmn_err(CE_WARN, "!bscv_idi_set : cannot find "
"bscv_callout_table");
return;
} else if (bscv_idi_mgr.valid_inst == (uint32_t)~0) {
if (bscv_idi_err())
/*
* This error message can appear in the context of
* another driver, say platmod or todblade. We want
* to clearly indicate the culprit driver so put in
* the driver name.
*/
cmn_err(CE_WARN, "!bscv_idi_set : no valid "
"driver instance of "
MYNAME);
return;
}
tbl = bscv_idi_mgr.tbl;
while (tbl->type != BSCV_IDI_NULL) {
if (tbl->type == info.type) {
/*
* We service the request with a valid instance number
* for the driver.
*/
retval = ((tbl->fn) (info));
/*
* If the request was serviced, clear any accumulated
* error counters so future warnings will be reported if
* seen.
*/
if (retval == B_TRUE)
bscv_idi_clear_err();
return;
} else {
tbl++;
}
}
if (bscv_idi_err())
cmn_err(CE_WARN, "!bscv_idi_set : cannot match info.type %d",
info.type);
}
/*
* function - bscv_nodename_set
* description - notify the event thread that a nodename change has occurred.
* inputs - data from client driver
* outputs - none.
* side-effects - the event thread will schedule an update to the lom firmware.
*/
/*ARGSUSED*/
static boolean_t
bscv_nodename_set(struct bscv_idi_info info)
{
bscv_soft_state_t *ssp;
ssp = ddi_get_soft_state(bscv_statep, bscv_idi_mgr.valid_inst);
if (ssp == NULL) {
if (bscv_idi_err())
cmn_err(CE_WARN, "!blade_nodename_set: cannot get ssp");
return (B_FALSE);
}
/* Get a lock on the SSP, notify our change, then exit */
mutex_enter(&ssp->task_mu);
ssp->nodename_change = B_TRUE;
cv_signal(&ssp->task_cv);
mutex_exit(&ssp->task_mu);
return (B_TRUE);
}
/*
* function - bscv_sig_set
* description - write a signature
* inputs - data from client driver
* outputs - none.
*/
static boolean_t
bscv_sig_set(struct bscv_idi_info info)
{
bscv_soft_state_t *ssp;
bscv_sig_t sig;
ssp = ddi_get_soft_state(bscv_statep, bscv_idi_mgr.valid_inst);
if (ssp == NULL) {
if (bscv_idi_err())
cmn_err(CE_WARN, "!blade_nodename_set: cannot get ssp");
return (B_FALSE);
}
/* Service the request */
bcopy(info.data, &sig, sizeof (sig));
bscv_enter(ssp);
bscv_write_sig(ssp, sig);
bscv_exit(ssp);
return (B_TRUE);
}
#endif /* __sparc */
static void
bscv_wdog_do_pat(bscv_soft_state_t *ssp)
{
uint8_t pat;
/*
* The value of the dog pat is a sequence number which wraps around,
* bounded by BSCV_WDOG_PAT_SEQ_MASK.
*/
pat = ssp->pat_seq++;
pat &= EBUS_WDOG_NB_PAT_SEQ_MASK;
/* Set top nibble to indicate a pat */
pat |= EBUS_WDOG_NB_PAT;
/*
* Now pat the dog. This exercises a special protocol in the
* bus nexus that offers : non-blocking IO, and timely delivery,
* callable from high-level interrupt context. The requirement
* on us is that the channel is not shared for any other use.
* This means for chan_wdogpat, nothing may use channel[chan].regs
* or channel.[chan].handle.
*/
ddi_put8(ssp->channel[chan_wdogpat].handle,
ssp->channel[chan_wdogpat].regs, pat);
bscv_trace(ssp, 'W', "bscv_wdog_pat", "patted the dog with seq %d",
pat);
}
#ifdef __sparc
/*
* function - bscv_wdog_pat
* description - pat the watchdog
* inputs - data from client driver
* outputs - none.
*/
/*ARGSUSED*/
static boolean_t
bscv_wdog_pat(struct bscv_idi_info info)
{
/*
* This function remembers if it has ever been called with the
* configure option set.
*/
bscv_soft_state_t *ssp;
ssp = ddi_get_soft_state(bscv_statep, bscv_idi_mgr.valid_inst);
if (ssp == NULL) {
if (bscv_idi_err())
cmn_err(CE_WARN, "!bscv_wdog_pat: cannot get ssp");
return (B_FALSE);
} else if (ssp->nchannels == 0) {
/* Didn't manage to map handles so ddi_{get,put}* broken */
if (bscv_idi_err())
cmn_err(CE_WARN, "!bscv_wdog_pat: handle not mapped");
return (B_FALSE);
}
bscv_wdog_do_pat(ssp);
return (B_TRUE);
}
/*
* function - bscv_wdog_cfg
* description - configure the watchdog
* inputs - data from client driver
* outputs - none.
*/
static boolean_t
bscv_wdog_cfg(struct bscv_idi_info info)
{
bscv_soft_state_t *ssp;
ssp = ddi_get_soft_state(bscv_statep, bscv_idi_mgr.valid_inst);
if (ssp == NULL) {
if (bscv_idi_err())
cmn_err(CE_WARN, "!bscv_wdog_cfg: cannot get ssp");
return (B_FALSE);
} else if (ssp->nchannels == 0) {
/* Didn't manage to map handles so ddi_{get,put}* broken */
if (bscv_idi_err())
cmn_err(CE_WARN, "!bscv_wdog_cfg: handle not mapped");
return (B_FALSE);
}
if (sizeof (bscv_wdog_t) != info.size) {
bscv_trace(ssp, 'W', "bscv_wdog_set", "data passed in is size"
" %d instead of %d", info.size,
sizeof (bscv_wdog_t));
return (B_FALSE);
}
bscv_trace(ssp, 'W', "bscv_wdog_cfg", "enable_wdog %s, "
"wdog_timeout_s %d, reset_system_on_timeout %s",
((bscv_wdog_t *)info.data)->enable_wdog ? "enabled" : "disabled",
((bscv_wdog_t *)info.data)->wdog_timeout_s,
((bscv_wdog_t *)info.data)->reset_system_on_timeout ? "yes" : "no");
bscv_write_wdog_cfg(ssp,
((bscv_wdog_t *)info.data)->wdog_timeout_s,
((bscv_wdog_t *)info.data)->enable_wdog,
((bscv_wdog_t *)info.data)->reset_system_on_timeout);
return (B_TRUE);
}
#endif /* __sparc */
static void
bscv_write_wdog_cfg(bscv_soft_state_t *ssp,
uint_t wdog_timeout_s,
boolean_t enable_wdog,
uint8_t reset_system_on_timeout)
{
uint8_t cfg = EBUS_WDOG_NB_CFG;
/*
* Configure the timeout value (1 to 127 seconds).
* Note that a policy is implemented at the bsc/ssp which bounds
* the value further. The bounding here is to fit the timeout value
* into the 7 bits the bsc uses.
*/
if (wdog_timeout_s < 1)
ssp->watchdog_timeout = 1;
else if (wdog_timeout_s > 127)
ssp->watchdog_timeout = 127;
else
ssp->watchdog_timeout = wdog_timeout_s;
/*
* Configure the watchdog on or off.
*/
if (enable_wdog)
cfg |= EBUS_WDOG_NB_CFG_ENB;
else
cfg &= ~EBUS_WDOG_NB_CFG_ENB;
/*
* Configure whether the microcontroller should reset the system when
* the watchdog expires.
*/
ssp->watchdog_reset_on_timeout = reset_system_on_timeout;
ddi_put8(ssp->channel[chan_wdogpat].handle,
ssp->channel[chan_wdogpat].regs, cfg);
/* have the event daemon set the timeout value and whether to reset */
ssp->watchdog_change = B_TRUE;
bscv_trace(ssp, 'W', "bscv_wdog_cfg",
"configured the dog with cfg 0x%x", cfg);
}
/*
* function - bscv_setup_watchdog
* description - setup the bsc watchdog
* inputs - soft state ptr
* outputs -
*/
static void bscv_setup_watchdog(bscv_soft_state_t *ssp)
{
uint8_t set = 0;
uint8_t clear = 0;
#ifdef __sparc
extern int watchdog_activated;
#endif /* __sparc */
ASSERT(bscv_held(ssp));
/* Set the timeout */
bscv_put8(ssp, chan_general,
EBUS_IDX_WDOG_TIME, ssp->watchdog_timeout);
/* Set whether to reset the system on timeout */
if (ssp->watchdog_reset_on_timeout) {
set |= EBUS_WDOG_RST;
} else {
clear |= EBUS_WDOG_RST;
}
if (watchdog_activated) {
set |= EBUS_WDOG_ENABLE;
} else {
clear |= EBUS_WDOG_ENABLE;
}
/* Set other host defaults */
clear |= (EBUS_WDOG_BREAK_DISABLE | EBUS_WDOG_AL3_FANPSU
| EBUS_WDOG_AL3_WDOG);
bscv_setclear8_volatile(ssp, chan_general, EBUS_IDX_WDOG_CTRL,
set, clear);
#if defined(__i386) || defined(__amd64)
/* start the cyclic based watchdog patter */
bscv_watchdog_cyclic_add(ssp);
#endif /* __i386 || __amd64 */
ssp->progress |= BSCV_WDOG_CFG;
}
/*
* function - bscv_setup_hostname
* description - setup the lom hostname if different from the nodename
* inputs - soft state ptr
* outputs - none
*/
static void bscv_setup_hostname(bscv_soft_state_t *ssp)
{
char host_nodename[128];
char lom_nodename[128];
size_t hostlen;
size_t nodelen;
ASSERT(bscv_held(ssp));
/*
* Check machine label is the same as the
* system nodename.
*/
(void) strncpy(host_nodename, utsname.nodename,
sizeof (host_nodename));
/* read in lom hostname */
bscv_read_hostname(ssp, lom_nodename);
/* Enforce null termination */
host_nodename[sizeof (host_nodename) - 1] = '\0';
lom_nodename[sizeof (lom_nodename) - 1] = '\0';
hostlen = (size_t)bscv_get8(ssp, chan_general, EBUS_IDX_HNAME_LENGTH);
nodelen = (size_t)strlen(host_nodename);
if ((nodelen > 0) &&
((hostlen != nodelen) || (strcmp((const char *)&lom_nodename,
(const char *)&host_nodename)) ||
(hostlen == 0))) {
bscv_trace(ssp, 'A', "bscv_setup_hostname",
"nodename(%s,%d) != bsc label(%s,%d)",
host_nodename, nodelen, lom_nodename, hostlen);
/* Write new label into LOM EEPROM */
bscv_write_hostname(ssp,
host_nodename,
(uint8_t)strlen(host_nodename));
}
ssp->progress |= BSCV_HOSTNAME_DONE;
}
/*
* function - bscv_read_hostname
* description - read the current hostname from the lom
* inputs - soft state pointer and buffer to store the hostname in.
* outputs - none
*/
static void
bscv_read_hostname(bscv_soft_state_t *ssp, char *lom_nodename)
{
int num_failures;
boolean_t needretry;
int length;
int i;
ASSERT(bscv_held(ssp));
/*
* We have a special failure case here because a retry of a read
* causes data to be lost. Thus we handle the retries ourselves
* and are also responsible for detemining if the lom is faulty
*/
for (num_failures = 0;
num_failures < BSC_FAILURE_RETRY_LIMIT;
num_failures++) {
bscv_clear_fault(ssp);
length = bscv_get8(ssp, chan_general, EBUS_IDX_HNAME_LENGTH);
if (bscv_faulty(ssp)) {
needretry = 1;
} else {
needretry = 0;
for (i = 0; i < length; i++) {
lom_nodename[i] = bscv_get8_once(ssp,
chan_general, EBUS_IDX_HNAME_CHAR);
/* Retry on any error */
if (bscv_retcode(ssp) != 0) {
needretry = 1;
break;
}
}
/* null terminate for strcmp later */
lom_nodename[length] = '\0';
}
if (!needretry) {
break;
}
/* Force the nodename to be empty */
lom_nodename[0] = '\0';
}
if (needretry) {
/* Failure - we ran out of retries */
cmn_err(CE_WARN,
"bscv_read_hostname: retried %d times, giving up",
num_failures);
ssp->had_fault = B_TRUE;
} else if (num_failures > 0) {
bscv_trace(ssp, 'R', "bscv_read_hostname",
"retried %d times, succeeded", num_failures);
}
}
/*
* function - bscv_write_hostname
* description - write a new hostname to the lom
* inputs - soft state pointer, pointer to new name, name length
* outputs - none
*/
static void
bscv_write_hostname(bscv_soft_state_t *ssp,
char *host_nodename, uint8_t length)
{
int num_failures;
boolean_t needretry;
int i;
ASSERT(bscv_held(ssp));
/*
* We have a special failure case here because a retry of a read
* causes data to be lost. Thus we handle the retries ourselves
* and are also responsible for detemining if the lom is faulty
*/
for (num_failures = 0;
num_failures < BSC_FAILURE_RETRY_LIMIT;
num_failures++) {
bscv_clear_fault(ssp);
bscv_put8(ssp, chan_general, EBUS_IDX_HNAME_LENGTH, length);
if (bscv_faulty(ssp)) {
needretry = 1;
} else {
needretry = 0;
for (i = 0; i < length; i++) {
bscv_put8_once(ssp, chan_general,
EBUS_IDX_HNAME_CHAR, host_nodename[i]);
/* Retry on any error */
if (bscv_retcode(ssp) != 0) {
needretry = 1;
break;
}
}
}
if (!needretry) {
break;
}
}
if (needretry) {
/* Failure - we ran out of retries */
cmn_err(CE_WARN,
"bscv_write_hostname: retried %d times, giving up",
num_failures);
ssp->had_fault = B_TRUE;
} else if (num_failures > 0) {
bscv_trace(ssp, 'R', "bscv_write_hostname",
"retried %d times, succeeded", num_failures);
}
}
/*
* function - bscv_setup_static_info
* description - read in static information from the lom at attach time.
* inputs - soft state ptr
* outputs - none
*/
static void
bscv_setup_static_info(bscv_soft_state_t *ssp)
{
uint8_t addr_space_ptr;
uint16_t mask;
uint8_t fanspeed;
int oldtemps[MAX_TEMPS];
int8_t temp;
int i;
ASSERT(bscv_held(ssp));
/*
* Finally read in some static info like device names,
* shutdown enabled, etc before the queue starts.
*/
/*
* To get the volts static info we need address space 2
*/
bzero(&ssp->volts, sizeof (lom_volts_t));
ssp->volts.num = EBUS_CONFIG2_NSUPPLY_DEC(
bscv_get8(ssp, chan_general, EBUS_IDX_CONFIG2));
if (ssp->volts.num > MAX_VOLTS) {
cmn_err(CE_WARN,
"lom: firmware reported too many voltage lines. ");
cmn_err(CE_CONT, "Reported %d, maximum is %d",
ssp->volts.num, MAX_VOLTS);
ssp->volts.num = MAX_VOLTS;
}
bscv_trace(ssp, 'A', "bscv_setup_static_info",
"num volts %d", ssp->volts.num);
(void) bscv_read_env_name(ssp,
EBUS_CMD_SPACE2,
EBUS_IDX2_SUPPLY_NAME_START,
EBUS_IDX2_SUPPLY_NAME_END,
ssp->volts.name,
ssp->volts.num);
mask = bscv_get8(ssp, chan_general, BSCVA(EBUS_CMD_SPACE2,
EBUS_IDX2_SUPPLY_FATAL_MASK1)) << 8;
mask |= bscv_get8(ssp, chan_general, BSCVA(EBUS_CMD_SPACE2,
EBUS_IDX2_SUPPLY_FATAL_MASK2));
for (i = 0; i < ssp->volts.num; i++) {
ssp->volts.shutdown_enabled[i] =
(((mask >> i) & 1) == 0) ? 0 : 1;
}
/*
* Get the temperature static info and populate initial temperatures.
* Do not destroy old temperature values if the new value is not
* known i.e. if the device is inaccessible.
*/
bcopy(ssp->temps.temp, oldtemps, sizeof (oldtemps));
bzero(&ssp->temps, sizeof (lom_temp_t));
ssp->temps.num = EBUS_CONFIG2_NTEMP_DEC(
bscv_get8(ssp, chan_general, EBUS_IDX_CONFIG2));
if (ssp->temps.num > MAX_TEMPS) {
cmn_err(CE_WARN,
"lom: firmware reported too many temperatures being "
"monitored.");
cmn_err(CE_CONT, "Reported %d, maximum is %d",
ssp->temps.num, MAX_TEMPS);
ssp->temps.num = MAX_TEMPS;
}
ssp->temps.num_ov = EBUS_CONFIG3_NOTEMP_DEC(
bscv_get8(ssp, chan_general, EBUS_IDX_CONFIG3));
if (ssp->temps.num_ov > MAX_TEMPS) {
cmn_err(CE_WARN,
"lom: firmware reported too many over temperatures being "
"monitored.");
cmn_err(CE_CONT, "Reported %d, maximum is %d",
ssp->temps.num_ov, MAX_TEMPS);
ssp->temps.num_ov = MAX_TEMPS;
}
bscv_trace(ssp, 'A', "bscv_setup_static_info",
"num temps %d, over temps %d",
ssp->temps.num, ssp->temps.num_ov);
addr_space_ptr = bscv_read_env_name(ssp,
EBUS_CMD_SPACE4,
EBUS_IDX4_TEMP_NAME_START,
EBUS_IDX4_TEMP_NAME_END,
ssp->temps.name,
ssp->temps.num);
for (i = 0; i < ssp->temps.num; i++) {
ssp->temps.warning[i] = (int8_t)bscv_get8(ssp, chan_general,
BSCVA(EBUS_CMD_SPACE4, EBUS_IDX4_TEMP_WARN1 + i));
/*
* If shutdown is not enabled then set it as zero so
* it is not displayed by the utility.
*/
if ((bscv_get8(ssp, chan_general, BSCVA(EBUS_CMD_SPACE4,
EBUS_IDX4_TEMP_FATAL_MASK)) >> i) & 0x01) {
ssp->temps.shutdown[i] = (int8_t)bscv_get8(ssp,
chan_general,
BSCVA(EBUS_CMD_SPACE4, EBUS_IDX4_TEMP_SDOWN1 + i));
} else {
ssp->temps.shutdown[i] = 0;
}
}
for (i = 0; i < ssp->temps.num; i++) {
temp = bscv_get8(ssp, chan_general, EBUS_IDX_TEMP1 + i);
if ((temp <= LOM_TEMP_MAX_VALUE) ||
(temp == LOM_TEMP_STATE_NOT_PRESENT)) {
ssp->temps.temp[i] = temp;
} else {
/* New value is not known - use old value */
ssp->temps.temp[i] = oldtemps[i];
}
}
/*
* Check for and skip a single 0xff character between the
* temperature and over temperature names
*/
if (bscv_get8(ssp, chan_general,
BSCVA(EBUS_CMD_SPACE4, addr_space_ptr)) == 0xff) {
addr_space_ptr++;
}
(void) bscv_read_env_name(ssp,
EBUS_CMD_SPACE4,
addr_space_ptr,
EBUS_IDX4_TEMP_NAME_END,
ssp->temps.name_ov,
ssp->temps.num_ov);
/*
* To get the CB static info we need address space 3
*/
bzero(&ssp->sflags, sizeof (lom_sflags_t));
ssp->sflags.num = EBUS_CONFIG3_NBREAKERS_DEC(bscv_get8(ssp,
chan_general, EBUS_IDX_CONFIG3));
if (ssp->sflags.num > MAX_STATS) {
cmn_err(CE_WARN,
"lom: firmware reported too many status flags.");
cmn_err(CE_CONT,
"Reported %d, maximum is %d",
ssp->sflags.num, MAX_STATS);
ssp->sflags.num = MAX_STATS;
}
bscv_trace(ssp, 'A', "bscv_setup_static_info",
"num sflags %d", ssp->sflags.num);
(void) bscv_read_env_name(ssp,
EBUS_CMD_SPACE3,
EBUS_IDX3_BREAKER_NAME_START,
EBUS_IDX3_BREAKER_NAME_END,
ssp->sflags.name,
ssp->sflags.num);
/*
* To get the fan static info we need address space 5
*/
ssp->num_fans = EBUS_CONFIG_NFAN_DEC(
bscv_get8(ssp, chan_general, EBUS_IDX_CONFIG));
if (ssp->num_fans > MAX_FANS) {
cmn_err(CE_WARN,
"lom: firmware reported too many fans. ");
cmn_err(CE_CONT,
"Reported %d, maximum is %d",
ssp->num_fans, MAX_FANS);
ssp->num_fans = MAX_FANS;
}
for (i = 0; i < ssp->num_fans; i++) {
fanspeed = bscv_get8(ssp, chan_general,
EBUS_IDX_FAN1_SPEED + i);
if ((fanspeed <= LOM_FAN_MAX_SPEED) ||
(fanspeed == LOM_FAN_NOT_PRESENT)) {
/*
* Do not destroy previous values unless the
* value is definitive.
*/
ssp->fanspeed[i] = fanspeed;
}
}
bscv_trace(ssp, 'A', "bscv_setup_static_info",
"num fans %d", ssp->num_fans);
(void) bscv_read_env_name(ssp,
EBUS_CMD_SPACE5,
EBUS_IDX5_FAN_NAME_START,
EBUS_IDX5_FAN_NAME_END,
ssp->fan_names,
ssp->num_fans);
/* Get led static information from address space 10 */
(void) bscv_read_env_name(ssp,
EBUS_CMD_SPACE_LEDS,
EBUS_IDX10_LED_NAME_START,
EBUS_IDX10_LED_NAME_END,
ssp->led_names,
MAX_LED_ID);
}
/*
* function - bscv_read_env_name
* description - read in static environment names
* warning changes address space and the caller relies
* on this behaviour.
* inputs - soft state ptr, chosen address space,
* start of name data, end of name data,
* name storage, number of names.
* outputs - next address for reading name data.
*/
static uint8_t
bscv_read_env_name(bscv_soft_state_t *ssp,
uint8_t addr_space,
uint8_t addr_start,
uint8_t addr_end,
char namebuf[][MAX_LOM2_NAME_STR],
int numnames)
{
int i;
int nameidx;
int namemax;
unsigned int addr_space_ptr;
uint8_t this_char;
ASSERT(bscv_held(ssp));
bscv_trace(ssp, 'A', "bscv_read_env_name",
"bscv_read_env_name, space %d, start 0x%x, end 0x%x, numnames %d",
addr_space, addr_start, addr_end, numnames);
addr_space_ptr = addr_start;
for (i = 0; i < numnames; i++) {
nameidx = 0;
namemax = sizeof (namebuf[i]);
bzero(namebuf[i], namemax);
while (addr_space_ptr <= addr_end) {
/*
* Read the current character.
*/
this_char = bscv_get8(ssp, chan_general,
BSCVA(addr_space, addr_space_ptr));
if (this_char == 0xff) {
/*
* Ran out of names - this must
* be the end of the name.
* This is really an error because
* we have just seen either a non-NUL
* terminated string or the number of
* strings did not match what was
* reported.
*/
break;
}
/*
* We increment the buffer pointer now so that
* it is ready for the next read
*/
addr_space_ptr++;
if (this_char == '\0') {
/* Found end of string - done */
break;
}
if (nameidx < (namemax - 1)) {
/*
* Buffer not full - record character
* NOTE we always leave room for the NUL
* terminator.
*/
namebuf[i][nameidx++] = this_char;
}
}
/* Ensure null termination */
namebuf[i][nameidx] = '\0';
}
/* Clamp addr_space_ptr to 0xff because we return uint8_t */
if (addr_space_ptr > 0xff) {
addr_space_ptr = 0xff;
}
return (addr_space_ptr);
}
/*
* function - bscv_setup_events
* description - initialise the event reporting code
* inputs - soft state ptr
* outputs - DDI_SUCCESS or DDI_FAILURE
*/
static void
bscv_setup_events(bscv_soft_state_t *ssp)
{
uint8_t bits2set;
uint8_t bits2clear;
ASSERT(bscv_held(ssp));
/*
* deal with event reporting - cover all cases
*/
bits2set = 0;
bits2clear = 0;
if (ssp->serial_reporting == LOM_SER_EVENTS_ON) {
bits2clear |= EBUS_ALARM_NOEVENTS;
} else if (ssp->serial_reporting == LOM_SER_EVENTS_OFF) {
bits2set |= EBUS_ALARM_NOEVENTS;
} else if (ssp->serial_reporting == LOM_SER_EVENTS_DEF) {
bits2set |= EBUS_ALARM_NOEVENTS;
}
bscv_setclear8_volatile(ssp, chan_general, EBUS_IDX_ALARM,
bits2set, bits2clear);
}
#ifdef __sparc
/*
* function - bscv_write_sig
* description - write out a signature, taking care to deal with any strange
* values for CPU ID
* inputs - soft state ptr, signature
* outputs - none
*/
static void
bscv_write_sig(bscv_soft_state_t *ssp, bscv_sig_t s)
{
ASSERT(bscv_held(ssp));
/* Upload the signature */
bscv_put32(ssp, chan_cpusig,
BSCVA(EBUS_CMD_SPACE_CPUSIG, EBUS_IDX11_CPU_SIG_MSB),
s.sig_info.signature);
/*
* We always write the CPU ID last because this tells the firmware
* that the signature is fully uploaded and therefore to consume the
* data. This is required since the signature is > 1 byte in size
* and we transmit data in single bytes.
*/
if (s.cpu == ~0) {
/* ~0 means the signature applies to any CPU. */
bscv_put8(ssp, chan_cpusig,
BSCVA(EBUS_CMD_SPACE_CPUSIG, EBUS_IDX11_CPU_ID),
EBUS_ANY_CPU_ID);
} else {
if (s.cpu > 255) {
/*
* The CPU ID supplied is unexpectedly large. Lets
* just use the bottom bits, in case other high order
* bits are being used for special meaning.
*/
cmn_err(CE_WARN, "CPU Signature ID 0x%x > 255", s.cpu);
s.cpu %= 256;
cmn_err(CE_CONT, "using ID 0x%x instead ", s.cpu);
}
bscv_put8(ssp, chan_cpusig,
BSCVA(EBUS_CMD_SPACE_CPUSIG, EBUS_IDX11_CPU_ID),
(uint8_t)s.cpu);
}
ssp->last_sig = s;
ssp->progress |= BSCV_SIG_SENT;
}
#endif /* __sparc */
#if defined(__i386) || defined(__amd64)
/*
* function - bscv_inform_bsc
* description - inform bsc of driver state for logging purposes
* inputs - driver soft state, state
* outputs - none
*
*/
static void
bscv_inform_bsc(bscv_soft_state_t *ssp, uint32_t state)
{
ASSERT(bscv_held(ssp));
bscv_trace(ssp, 'X', "bscv_inform_bsc",
"bscv_inform_bsc: state=%d", state);
bscv_put32(ssp, chan_general,
BSCVA(EBUS_CMD_SPACE_CPUSIG, EBUS_IDX11_CPU_SIG_MSB), state);
bscv_put8(ssp, chan_cpusig,
BSCVA(EBUS_CMD_SPACE_CPUSIG, EBUS_IDX11_CPU_ID), EBUS_ANY_CPU_ID);
}
/*
* function - bscv_watchdog_pat_request
* description - request a heartbeat pat
* inputs - timeout value in seconds
* outputs - none
*/
static void
bscv_watchdog_pat_request(void *arg)
{
bscv_soft_state_t *ssp = (bscv_soft_state_t *)arg;
bscv_wdog_do_pat(ssp);
}
/*
* function - bscv_watchdog_cfg_request
* description - request configuration of the bsc hardware watchdog
* inputs - new state (0=disabled, 1=enabled)
* outputs - one if successful, zero if unsuccesful
*/
static void
bscv_watchdog_cfg_request(bscv_soft_state_t *ssp, uint8_t new_state)
{
ASSERT(new_state == WDOG_ON || new_state == WDOG_OFF);
watchdog_activated = new_state;
bscv_trace(ssp, 'X', "bscv_watchdog_cfg_request",
"watchdog_activated=%d", watchdog_activated);
bscv_write_wdog_cfg(ssp,
bscv_watchdog_timeout_seconds,
new_state,
wdog_reset_on_timeout);
}
/*
* function - bscv_set_watchdog_timer
* description - setup the heartbeat timeout value
* inputs - timeout value in seconds
* outputs - zero if the value was not changed
* otherwise the current value
*/
static uint_t
bscv_set_watchdog_timer(bscv_soft_state_t *ssp, uint_t timeoutval)
{
bscv_trace(ssp, 'X', "bscv_set_watchdog_timer:",
"timeout=%d", timeoutval);
/*
* We get started during bscv_attach only
* if bscv_watchdog_enable is set.
*/
if (bscv_watchdog_available && (!watchdog_activated ||
(watchdog_activated &&
(timeoutval != bscv_watchdog_timeout_seconds)))) {
bscv_watchdog_timeout_seconds = timeoutval;
bscv_watchdog_cfg_request(ssp, WDOG_ON);
return (bscv_watchdog_timeout_seconds);
}
return (0);
}
/*
* function - bscv_clear_watchdog_timer
* description - add the watchdog patter cyclic
* inputs - driver soft state
* outputs - value of watchdog timeout in seconds
*
* This function is a copy of the SPARC implementation
* in the todblade clock driver.
*/
static void
bscv_clear_watchdog_timer(bscv_soft_state_t *ssp)
{
bscv_trace(ssp, 'X', "bscv_clear_watchdog_timer", "");
if (bscv_watchdog_available && watchdog_activated) {
bscv_watchdog_enable = 0;
bscv_watchdog_cfg_request(ssp, WDOG_OFF);
}
}
/*
* function - bscv_panic_callback
* description - called when we panic so we can disabled the watchdog
* inputs - driver soft state pointer
* outputs - DDI_SUCCESS
*/
/*ARGSUSED1*/
static boolean_t
bscv_panic_callback(void *arg, int code)
{
bscv_soft_state_t *ssp = (bscv_soft_state_t *)arg;
bscv_trace(ssp, 'X', "bscv_panic_callback",
"disabling watchdog");
bscv_clear_watchdog_timer(ssp);
/*
* We dont get interrupts during the panic callback. But bscbus
* takes care of all this
*/
bscv_full_stop(ssp);
return (DDI_SUCCESS);
}
/*
* function - bscv_watchdog_cyclic_add
* description - add the watchdog patter cyclic
* inputs - driver soft state
* outputs - none
*/
static void
bscv_watchdog_cyclic_add(bscv_soft_state_t *ssp)
{
if (ssp->periodic_id != NULL) {
return;
}
ssp->periodic_id = ddi_periodic_add(bscv_watchdog_pat_request, ssp,
WATCHDOG_PAT_INTERVAL, DDI_IPL_10);
bscv_trace(ssp, 'X', "bscv_watchdog_cyclic_add:",
"cyclic added");
}
/*
* function - bscv_watchdog_cyclic_remove
* description - remove the watchdog patter cyclic
* inputs - soft state ptr
* outputs - none
*/
static void
bscv_watchdog_cyclic_remove(bscv_soft_state_t *ssp)
{
if (ssp->periodic_id == NULL) {
return;
}
ddi_periodic_delete(ssp->periodic_id);
ssp->periodic_id = NULL;
bscv_trace(ssp, 'X', "bscv_watchdog_cyclic_remove:",
"cyclic removed");
}
#endif /* __i386 || __amd64 */
/*
* General utility routines ...
*/
#ifdef DEBUG
static void
bscv_trace(bscv_soft_state_t *ssp, char code, const char *caller,
const char *fmt, ...)
{
char buf[256];
char *p;
va_list va;
if (ssp->debug & (1 << (code-'@'))) {
p = buf;
(void) snprintf(p, sizeof (buf) - (p - buf),
"%s/%s: ", MYNAME, caller);
p += strlen(p);
va_start(va, fmt);
(void) vsnprintf(p, sizeof (buf) - (p - buf), fmt, va);
va_end(va);
buf[sizeof (buf) - 1] = '\0';
(void) strlog((short)ssp->majornum, (short)ssp->minornum, code,
SL_TRACE, buf);
}
}
#else /* DEBUG */
_NOTE(ARGSUSED(0))
static void
bscv_trace(bscv_soft_state_t *ssp, char code, const char *caller,
const char *fmt, ...)
{
}
#endif /* DEBUG */