bge_main.c revision 210db2243d3b5ca39c96a4c34c6d9453ddfbeaa9
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "sys/bge_impl.h"
#include <sys/sdt.h>
/*
* This is the string displayed by modinfo, etc.
* Make sure you keep the version ID up to date!
*/
static char bge_ident[] = "BCM579x driver v0.46";
/*
* Property names
*/
static char debug_propname[] = "bge-debug-flags";
static char clsize_propname[] = "cache-line-size";
static char latency_propname[] = "latency-timer";
static char localmac_boolname[] = "local-mac-address?";
static char localmac_propname[] = "local-mac-address";
static char macaddr_propname[] = "mac-address";
static char subdev_propname[] = "subsystem-id";
static char subven_propname[] = "subsystem-vendor-id";
static char rxrings_propname[] = "bge-rx-rings";
static char txrings_propname[] = "bge-tx-rings";
static int bge_add_legacy_intrs(bge_t *);
static int bge_add_msi_intrs(bge_t *);
static void bge_rem_intrs(bge_t *);
/*
* Describes the chip's DMA engine
*/
static ddi_dma_attr_t dma_attr = {
DMA_ATTR_V0, /* dma_attr version */
0x0000000000000000ull, /* dma_attr_addr_lo */
0xFFFFFFFFFFFFFFFFull, /* dma_attr_addr_hi */
0x00000000FFFFFFFFull, /* dma_attr_count_max */
0x0000000000000001ull, /* dma_attr_align */
0x00000FFF, /* dma_attr_burstsizes */
0x00000001, /* dma_attr_minxfer */
0x000000000000FFFFull, /* dma_attr_maxxfer */
0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
1, /* dma_attr_sgllen */
0x00000001, /* dma_attr_granular */
0 /* dma_attr_flags */
};
/*
* PIO access attributes for registers
*/
static ddi_device_acc_attr_t bge_reg_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC
};
/*
* DMA access attributes for descriptors: NOT to be byte swapped.
*/
static ddi_device_acc_attr_t bge_desc_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC
};
/*
* DMA access attributes for data: NOT to be byte swapped.
*/
static ddi_device_acc_attr_t bge_data_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC
};
static ether_addr_t bge_broadcast_addr = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
/*
* Versions of the O/S up to Solaris 8 didn't support network booting
* from any network interface except the first (NET0). Patching this
* flag to a non-zero value will tell the driver to work around this
* limitation by creating an extra (internal) pathname node. To do
* this, just add a line like the following to the CLIENT'S etc/system
* file ON THE ROOT FILESYSTEM SERVER before booting the client:
*
* set bge:bge_net1_boot_support = 1;
*/
static uint32_t bge_net1_boot_support = 1;
/*
* ========== Transmit and receive ring reinitialisation ==========
*/
/*
* These <reinit> routines each reset the specified ring to an initial
* state, assuming that the corresponding <init> routine has already
* been called exactly once.
*/
static void
bge_reinit_send_ring(send_ring_t *srp)
{
/*
* Reinitialise control variables ...
*/
ASSERT(srp->tx_flow == 0);
srp->tx_next = 0;
srp->tx_free = srp->desc.nslots;
ASSERT(mutex_owned(srp->tc_lock));
srp->tc_next = 0;
/*
* Zero and sync all the h/w Send Buffer Descriptors
*/
DMA_ZERO(srp->desc);
DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
}
static void
bge_reinit_recv_ring(recv_ring_t *rrp)
{
/*
* Reinitialise control variables ...
*/
rrp->rx_next = 0;
}
static void
bge_reinit_buff_ring(buff_ring_t *brp, uint64_t ring)
{
bge_rbd_t *hw_rbd_p;
sw_rbd_t *srbdp;
uint32_t bufsize;
uint32_t nslots;
uint32_t slot;
static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
RBD_FLAG_STD_RING,
RBD_FLAG_JUMBO_RING,
RBD_FLAG_MINI_RING
};
/*
* Zero, initialise and sync all the h/w Receive Buffer Descriptors
* Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
* <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
* should be zeroed, and so don't need to be set up specifically
* once the whole area has been cleared.
*/
DMA_ZERO(brp->desc);
hw_rbd_p = DMA_VPTR(brp->desc);
nslots = brp->desc.nslots;
ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
bufsize = brp->buf[0].size;
srbdp = brp->sw_rbds;
for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
hw_rbd_p->index = slot;
hw_rbd_p->len = bufsize;
hw_rbd_p->opaque = srbdp->pbuf.token;
hw_rbd_p->flags |= ring_type_flag[ring];
}
DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
/*
* Finally, reinitialise the ring control variables ...
*/
brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
}
/*
* Reinitialize all rings
*/
static void
bge_reinit_rings(bge_t *bgep)
{
uint64_t ring;
ASSERT(mutex_owned(bgep->genlock));
/*
* Send Rings ...
*/
for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
bge_reinit_send_ring(&bgep->send[ring]);
/*
* Receive Return Rings ...
*/
for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
bge_reinit_recv_ring(&bgep->recv[ring]);
/*
* Receive Producer Rings ...
*/
for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
bge_reinit_buff_ring(&bgep->buff[ring], ring);
}
/*
* ========== Internal state management entry points ==========
*/
#undef BGE_DBG
#define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */
/*
* These routines provide all the functionality required by the
* corresponding GLD entry points, but don't update the GLD state
* so they can be called internally without disturbing our record
* of what GLD thinks we should be doing ...
*/
/*
* bge_reset() -- reset h/w & rings to initial state
*/
static void
bge_reset(bge_t *bgep)
{
uint64_t ring;
int x;
BGE_TRACE(("bge_reset($%p)", (void *)bgep));
ASSERT(mutex_owned(bgep->genlock));
/*
* Grab all the other mutexes in the world (this should
* ensure no other threads are manipulating driver state)
*/
for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
mutex_enter(bgep->recv[ring].rx_lock);
for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
mutex_enter(bgep->buff[ring].rf_lock);
rw_enter(bgep->errlock, RW_WRITER);
for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
mutex_enter(bgep->send[ring].tc_lock);
if ((bgep->progress & PROGRESS_INTR) &&
(bgep->intr_type == DDI_INTR_TYPE_MSI)) {
/* Disable all interrupts */
if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_disable() */
(void) ddi_intr_block_disable(bgep->htable,
bgep->intr_cnt);
} else {
for (x = 0; x < bgep->intr_cnt; x++) {
(void) ddi_intr_disable(bgep->htable[x]);
}
}
}
bge_chip_reset(bgep, B_TRUE);
bge_reinit_rings(bgep);
/*
* Free the world ...
*/
for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
mutex_exit(bgep->send[ring].tc_lock);
rw_exit(bgep->errlock);
for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
mutex_exit(bgep->buff[ring].rf_lock);
for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
mutex_exit(bgep->recv[ring].rx_lock);
BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
}
/*
* bge_stop() -- stop processing, don't reset h/w or rings
*/
static void
bge_stop(bge_t *bgep)
{
BGE_TRACE(("bge_stop($%p)", (void *)bgep));
ASSERT(mutex_owned(bgep->genlock));
bge_chip_stop(bgep, B_FALSE);
BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
}
/*
* bge_start() -- start transmitting/receiving
*/
static void
bge_start(bge_t *bgep, boolean_t reset_phys)
{
int x;
BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
ASSERT(mutex_owned(bgep->genlock));
if ((bgep->progress & PROGRESS_INTR) &&
(bgep->intr_type == DDI_INTR_TYPE_MSI)) {
/*
* If the device driver resets the device for any reason
* then the device might end up resetting its configuration
* space modifications, so we will need to re-enable all
* interrupts.
*/
/* Enable all interrupts */
if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_enable() for MSI */
(void) ddi_intr_block_enable(bgep->htable,
bgep->intr_cnt);
} else {
/* Call ddi_intr_enable for MSI non block enable */
for (x = 0; x < bgep->intr_cnt; x++) {
(void) ddi_intr_enable(bgep->htable[x]);
}
}
}
/*
* Start chip processing, including enabling interrupts
*/
bge_chip_start(bgep, reset_phys);
BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
}
/*
* bge_restart - restart transmitting/receiving after error or suspend
*/
void
bge_restart(bge_t *bgep, boolean_t reset_phys)
{
ASSERT(mutex_owned(bgep->genlock));
bge_reset(bgep);
if (bgep->bge_mac_state == BGE_MAC_STARTED) {
bge_start(bgep, reset_phys);
bgep->watchdog = 0;
ddi_trigger_softintr(bgep->resched_id);
}
BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
}
/*
* ========== Nemo-required management entry points ==========
*/
#undef BGE_DBG
#define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */
/*
* bge_m_stop() -- stop transmitting/receiving
*/
static void
bge_m_stop(void *arg)
{
bge_t *bgep = arg; /* private device info */
BGE_TRACE(("bge_m_stop($%p)", arg));
/*
* Just stop processing, then record new GLD state
*/
mutex_enter(bgep->genlock);
bgep->link_up_msg = bgep->link_down_msg = " (stopped)";
bge_stop(bgep);
bgep->bge_mac_state = BGE_MAC_STOPPED;
BGE_DEBUG(("bge_m_stop($%p) done", arg));
mutex_exit(bgep->genlock);
}
/*
* bge_m_start() -- start transmitting/receiving
*/
static int
bge_m_start(void *arg)
{
bge_t *bgep = arg; /* private device info */
BGE_TRACE(("bge_m_start($%p)", arg));
/*
* Start processing and record new GLD state
*/
mutex_enter(bgep->genlock);
bge_reset(bgep);
bgep->link_up_msg = bgep->link_down_msg = " (initialized)";
bge_start(bgep, B_TRUE);
bgep->bge_mac_state = BGE_MAC_STARTED;
BGE_DEBUG(("bge_m_start($%p) done", arg));
mutex_exit(bgep->genlock);
return (0);
}
/*
* bge_m_unicst_set() -- set the physical network address
*/
static int
bge_m_unicst(void *arg, const uint8_t *macaddr)
{
bge_t *bgep = arg; /* private device info */
BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg,
ether_sprintf((void *)macaddr)));
/*
* Remember the new current address in the driver state
* Sync the chip's idea of the address too ...
*/
mutex_enter(bgep->genlock);
ethaddr_copy(macaddr, bgep->curr_addr.addr);
bge_chip_sync(bgep);
BGE_DEBUG(("bge_m_unicst_set($%p) done", arg));
mutex_exit(bgep->genlock);
return (0);
}
/*
* Compute the index of the required bit in the multicast hash map.
* This must mirror the way the hardware actually does it!
* See Broadcom document 570X-PG102-R page 125.
*/
static uint32_t
bge_hash_index(const uint8_t *mca)
{
uint32_t hash;
CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
return (hash);
}
/*
* bge_m_multicst_add() -- enable/disable a multicast address
*/
static int
bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
{
bge_t *bgep = arg; /* private device info */
uint32_t hash;
uint32_t index;
uint32_t word;
uint32_t bit;
uint8_t *refp;
BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
(add) ? "add" : "remove", ether_sprintf((void *)mca)));
/*
* Precalculate all required masks, pointers etc ...
*/
hash = bge_hash_index(mca);
index = hash % BGE_HASH_TABLE_SIZE;
word = index/32u;
bit = 1 << (index % 32u);
refp = &bgep->mcast_refs[index];
BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
hash, index, word, bit, *refp));
/*
* We must set the appropriate bit in the hash map (and the
* corresponding h/w register) when the refcount goes from 0
* to >0, and clear it when the last ref goes away (refcount
* goes from >0 back to 0). If we change the hash map, we
* must also update the chip's hardware map registers.
*/
mutex_enter(bgep->genlock);
if (add) {
if ((*refp)++ == 0) {
bgep->mcast_hash[word] |= bit;
bge_chip_sync(bgep);
}
} else {
if (--(*refp) == 0) {
bgep->mcast_hash[word] &= ~bit;
bge_chip_sync(bgep);
}
}
BGE_DEBUG(("bge_m_multicst($%p) done", arg));
mutex_exit(bgep->genlock);
return (0);
}
/*
* bge_m_promisc() -- set or reset promiscuous mode on the board
*
* Program the hardware to enable/disable promiscuous and/or
* receive-all-multicast modes.
*/
static int
bge_m_promisc(void *arg, boolean_t on)
{
bge_t *bgep = arg;
BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
/*
* Store MAC layer specified mode and pass to chip layer to update h/w
*/
mutex_enter(bgep->genlock);
bgep->promisc = on;
bge_chip_sync(bgep);
BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
mutex_exit(bgep->genlock);
return (0);
}
/*
* Loopback ioctl code
*/
static lb_property_t loopmodes[] = {
{ normal, "normal", BGE_LOOP_NONE },
{ external, "1000Mbps", BGE_LOOP_EXTERNAL_1000 },
{ external, "100Mbps", BGE_LOOP_EXTERNAL_100 },
{ external, "10Mbps", BGE_LOOP_EXTERNAL_10 },
{ internal, "PHY", BGE_LOOP_INTERNAL_PHY },
{ internal, "MAC", BGE_LOOP_INTERNAL_MAC }
};
static enum ioc_reply
bge_set_loop_mode(bge_t *bgep, uint32_t mode)
{
const char *msg;
/*
* If the mode isn't being changed, there's nothing to do ...
*/
if (mode == bgep->param_loop_mode)
return (IOC_ACK);
/*
* Validate the requested mode and prepare a suitable message
* to explain the link down/up cycle that the change will
* probably induce ...
*/
switch (mode) {
default:
return (IOC_INVAL);
case BGE_LOOP_NONE:
msg = " (loopback disabled)";
break;
case BGE_LOOP_EXTERNAL_1000:
case BGE_LOOP_EXTERNAL_100:
case BGE_LOOP_EXTERNAL_10:
msg = " (external loopback selected)";
break;
case BGE_LOOP_INTERNAL_PHY:
msg = " (PHY internal loopback selected)";
break;
case BGE_LOOP_INTERNAL_MAC:
msg = " (MAC internal loopback selected)";
break;
}
/*
* All OK; tell the caller to reprogram
* the PHY and/or MAC for the new mode ...
*/
bgep->link_down_msg = bgep->link_up_msg = msg;
bgep->param_loop_mode = mode;
return (IOC_RESTART_ACK);
}
static enum ioc_reply
bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
{
lb_info_sz_t *lbsp;
lb_property_t *lbpp;
uint32_t *lbmp;
int cmd;
_NOTE(ARGUNUSED(wq))
/*
* Validate format of ioctl
*/
if (mp->b_cont == NULL)
return (IOC_INVAL);
cmd = iocp->ioc_cmd;
switch (cmd) {
default:
/* NOTREACHED */
bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case LB_GET_INFO_SIZE:
if (iocp->ioc_count != sizeof (lb_info_sz_t))
return (IOC_INVAL);
lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
*lbsp = sizeof (loopmodes);
return (IOC_REPLY);
case LB_GET_INFO:
if (iocp->ioc_count != sizeof (loopmodes))
return (IOC_INVAL);
lbpp = (lb_property_t *)mp->b_cont->b_rptr;
bcopy(loopmodes, lbpp, sizeof (loopmodes));
return (IOC_REPLY);
case LB_GET_MODE:
if (iocp->ioc_count != sizeof (uint32_t))
return (IOC_INVAL);
lbmp = (uint32_t *)mp->b_cont->b_rptr;
*lbmp = bgep->param_loop_mode;
return (IOC_REPLY);
case LB_SET_MODE:
if (iocp->ioc_count != sizeof (uint32_t))
return (IOC_INVAL);
lbmp = (uint32_t *)mp->b_cont->b_rptr;
return (bge_set_loop_mode(bgep, *lbmp));
}
}
/*
* Specific bge IOCTLs, the gld module handles the generic ones.
*/
static void
bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
{
bge_t *bgep = arg;
struct iocblk *iocp;
enum ioc_reply status;
boolean_t need_privilege;
int err;
int cmd;
/*
* Validate the command before bothering with the mutex ...
*/
iocp = (struct iocblk *)mp->b_rptr;
iocp->ioc_error = 0;
need_privilege = B_TRUE;
cmd = iocp->ioc_cmd;
switch (cmd) {
default:
miocnak(wq, mp, 0, EINVAL);
return;
case BGE_MII_READ:
case BGE_MII_WRITE:
case BGE_SEE_READ:
case BGE_SEE_WRITE:
case BGE_DIAG:
case BGE_PEEK:
case BGE_POKE:
case BGE_PHY_RESET:
case BGE_SOFT_RESET:
case BGE_HARD_RESET:
break;
case LB_GET_INFO_SIZE:
case LB_GET_INFO:
case LB_GET_MODE:
need_privilege = B_FALSE;
/* FALLTHRU */
case LB_SET_MODE:
break;
case ND_GET:
need_privilege = B_FALSE;
/* FALLTHRU */
case ND_SET:
break;
}
if (need_privilege) {
/*
* Check for specific net_config privilege on Solaris 10+.
* Otherwise just check for root access ...
*/
if (secpolicy_net_config != NULL)
err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
else
err = drv_priv(iocp->ioc_cr);
if (err != 0) {
miocnak(wq, mp, 0, err);
return;
}
}
mutex_enter(bgep->genlock);
switch (cmd) {
default:
_NOTE(NOTREACHED)
status = IOC_INVAL;
break;
case BGE_MII_READ:
case BGE_MII_WRITE:
case BGE_SEE_READ:
case BGE_SEE_WRITE:
case BGE_DIAG:
case BGE_PEEK:
case BGE_POKE:
case BGE_PHY_RESET:
case BGE_SOFT_RESET:
case BGE_HARD_RESET:
status = bge_chip_ioctl(bgep, wq, mp, iocp);
break;
case LB_GET_INFO_SIZE:
case LB_GET_INFO:
case LB_GET_MODE:
case LB_SET_MODE:
status = bge_loop_ioctl(bgep, wq, mp, iocp);
break;
case ND_GET:
case ND_SET:
status = bge_nd_ioctl(bgep, wq, mp, iocp);
break;
}
/*
* Do we need to reprogram the PHY and/or the MAC?
* Do it now, while we still have the mutex.
*
* Note: update the PHY first, 'cos it controls the
* speed/duplex parameters that the MAC code uses.
*/
switch (status) {
case IOC_RESTART_REPLY:
case IOC_RESTART_ACK:
bge_phys_update(bgep);
bge_chip_sync(bgep);
if (bgep->intr_type == DDI_INTR_TYPE_MSI)
bge_chip_msi_trig(bgep);
break;
}
mutex_exit(bgep->genlock);
/*
* Finally, decide how to reply
*/
switch (status) {
default:
case IOC_INVAL:
/*
* Error, reply with a NAK and EINVAL or the specified error
*/
miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
EINVAL : iocp->ioc_error);
break;
case IOC_DONE:
/*
* OK, reply already sent
*/
break;
case IOC_RESTART_ACK:
case IOC_ACK:
/*
* OK, reply with an ACK
*/
miocack(wq, mp, 0, 0);
break;
case IOC_RESTART_REPLY:
case IOC_REPLY:
/*
* OK, send prepared reply as ACK or NAK
*/
mp->b_datap->db_type = iocp->ioc_error == 0 ?
M_IOCACK : M_IOCNAK;
qreply(wq, mp);
break;
}
}
static void
bge_m_resources(void *arg)
{
bge_t *bgep = arg;
recv_ring_t *rrp;
mac_rx_fifo_t mrf;
int ring;
mutex_enter(bgep->genlock);
/*
* Register Rx rings as resources and save mac
* resource id for future reference
*/
mrf.mrf_type = MAC_RX_FIFO;
mrf.mrf_blank = bge_chip_blank;
mrf.mrf_arg = (void *)bgep;
mrf.mrf_normal_blank_time = bge_rx_ticks_norm;
mrf.mrf_normal_pkt_count = bge_rx_count_norm;
for (ring = 0; ring < bgep->chipid.rx_rings; ring++) {
rrp = &bgep->recv[ring];
rrp->handle = mac_resource_add(bgep->macp,
(mac_resource_t *)&mrf);
}
mutex_exit(bgep->genlock);
}
/*
* ========== Per-instance setup/teardown code ==========
*/
#undef BGE_DBG
#define BGE_DBG BGE_DBG_INIT /* debug flag for this code */
/*
* Utility routine to carve a slice off a chunk of allocated memory,
* updating the chunk descriptor accordingly. The size of the slice
* is given by the product of the <qty> and <size> parameters.
*/
static void
bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
uint32_t qty, uint32_t size)
{
static uint32_t sequence = 0xbcd5704a;
size_t totsize;
totsize = qty*size;
ASSERT(size >= 0);
ASSERT(totsize <= chunk->alength);
*slice = *chunk;
slice->nslots = qty;
slice->size = size;
slice->alength = totsize;
slice->token = ++sequence;
chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
chunk->alength -= totsize;
chunk->offset += totsize;
chunk->cookie.dmac_laddress += totsize;
chunk->cookie.dmac_size -= totsize;
}
/*
* Initialise the specified Receive Producer (Buffer) Ring, using
* the information in the <dma_area> descriptors that it contains
* to set up all the other fields. This routine should be called
* only once for each ring.
*/
static void
bge_init_buff_ring(bge_t *bgep, uint64_t ring)
{
buff_ring_t *brp;
bge_status_t *bsp;
sw_rbd_t *srbdp;
dma_area_t pbuf;
uint32_t bufsize;
uint32_t nslots;
uint32_t slot;
uint32_t split;
static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
NIC_MEM_SHADOW_BUFF_STD,
NIC_MEM_SHADOW_BUFF_JUMBO,
NIC_MEM_SHADOW_BUFF_MINI
};
static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
RECV_STD_PROD_INDEX_REG,
RECV_JUMBO_PROD_INDEX_REG,
RECV_MINI_PROD_INDEX_REG
};
static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
STATUS_STD_BUFF_CONS_INDEX,
STATUS_JUMBO_BUFF_CONS_INDEX,
STATUS_MINI_BUFF_CONS_INDEX
};
BGE_TRACE(("bge_init_buff_ring($%p, %d)",
(void *)bgep, ring));
brp = &bgep->buff[ring];
nslots = brp->desc.nslots;
ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
bufsize = brp->buf[0].size;
/*
* Set up the copy of the h/w RCB
*
* Note: unlike Send & Receive Return Rings, (where the max_len
* field holds the number of slots), in a Receive Buffer Ring
* this field indicates the size of each buffer in the ring.
*/
brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
brp->hw_rcb.max_len = bufsize;
brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
/*
* Other one-off initialisation of per-ring data
*/
brp->bgep = bgep;
bsp = DMA_VPTR(bgep->status_block);
brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
brp->chip_mbx_reg = mailbox_regs[ring];
mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
(void *)(uintptr_t)bgep->intr_pri);
/*
* Allocate the array of s/w Receive Buffer Descriptors
*/
srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
brp->sw_rbds = srbdp;
/*
* Now initialise each array element once and for all
*/
for (split = 0; split < BGE_SPLIT; ++split) {
pbuf = brp->buf[split];
for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
ASSERT(pbuf.alength == 0);
}
}
/*
* Clean up initialisation done above before the memory is freed
*/
static void
bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
{
buff_ring_t *brp;
sw_rbd_t *srbdp;
BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
(void *)bgep, ring));
brp = &bgep->buff[ring];
srbdp = brp->sw_rbds;
kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
mutex_destroy(brp->rf_lock);
}
/*
* Initialise the specified Receive (Return) Ring, using the
* information in the <dma_area> descriptors that it contains
* to set up all the other fields. This routine should be called
* only once for each ring.
*/
static void
bge_init_recv_ring(bge_t *bgep, uint64_t ring)
{
recv_ring_t *rrp;
bge_status_t *bsp;
uint32_t nslots;
BGE_TRACE(("bge_init_recv_ring($%p, %d)",
(void *)bgep, ring));
/*
* The chip architecture requires that receive return rings have
* 512 or 1024 or 2048 elements per ring. See 570X-PG108-R page 103.
*/
rrp = &bgep->recv[ring];
nslots = rrp->desc.nslots;
ASSERT(nslots == 0 || nslots == 512 ||
nslots == 1024 || nslots == 2048);
/*
* Set up the copy of the h/w RCB
*/
rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
rrp->hw_rcb.max_len = nslots;
rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
rrp->hw_rcb.nic_ring_addr = 0;
/*
* Other one-off initialisation of per-ring data
*/
rrp->bgep = bgep;
bsp = DMA_VPTR(bgep->status_block);
rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
(void *)(uintptr_t)bgep->intr_pri);
}
/*
* Clean up initialisation done above before the memory is freed
*/
static void
bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
{
recv_ring_t *rrp;
BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
(void *)bgep, ring));
rrp = &bgep->recv[ring];
if (rrp->rx_softint)
ddi_remove_softintr(rrp->rx_softint);
mutex_destroy(rrp->rx_lock);
}
/*
* Initialise the specified Send Ring, using the information in the
* <dma_area> descriptors that it contains to set up all the other
* fields. This routine should be called only once for each ring.
*/
static void
bge_init_send_ring(bge_t *bgep, uint64_t ring)
{
send_ring_t *srp;
bge_status_t *bsp;
sw_sbd_t *ssbdp;
dma_area_t desc;
dma_area_t pbuf;
uint32_t nslots;
uint32_t slot;
uint32_t split;
BGE_TRACE(("bge_init_send_ring($%p, %d)",
(void *)bgep, ring));
/*
* The chip architecture requires that host-based send rings
* have 512 elements per ring. See 570X-PG102-R page 56.
*/
srp = &bgep->send[ring];
nslots = srp->desc.nslots;
ASSERT(nslots == 0 || nslots == 512);
/*
* Set up the copy of the h/w RCB
*/
srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
srp->hw_rcb.max_len = nslots;
srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
/*
* Other one-off initialisation of per-ring data
*/
srp->bgep = bgep;
bsp = DMA_VPTR(bgep->status_block);
srp->cons_index_p = SEND_INDEX_P(bsp, ring);
srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
rw_init(srp->tx_lock, NULL, RW_DRIVER,
(void *)(uintptr_t)bgep->intr_pri);
mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
(void *)(uintptr_t)bgep->intr_pri);
/*
* Allocate the array of s/w Send Buffer Descriptors
*/
ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
srp->sw_sbds = ssbdp;
/*
* Now initialise each array element once and for all
*/
desc = srp->desc;
for (split = 0; split < BGE_SPLIT; ++split) {
pbuf = srp->buf[split];
for (slot = 0; slot < nslots/BGE_SPLIT; ++ssbdp, ++slot) {
bge_slice_chunk(&ssbdp->desc, &desc, 1,
sizeof (bge_sbd_t));
bge_slice_chunk(&ssbdp->pbuf, &pbuf, 1,
bgep->chipid.snd_buff_size);
}
ASSERT(pbuf.alength == 0);
}
ASSERT(desc.alength == 0);
}
/*
* Clean up initialisation done above before the memory is freed
*/
static void
bge_fini_send_ring(bge_t *bgep, uint64_t ring)
{
send_ring_t *srp;
sw_sbd_t *ssbdp;
BGE_TRACE(("bge_fini_send_ring($%p, %d)",
(void *)bgep, ring));
srp = &bgep->send[ring];
ssbdp = srp->sw_sbds;
kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp));
rw_destroy(srp->tx_lock);
mutex_destroy(srp->tc_lock);
}
/*
* Initialise all transmit, receive, and buffer rings.
* (also a few top-level mutexen that can't be done until
* the h/w interrupt handler has been registered 'cos we
* need the cookie).
*/
static void
bge_init_rings(bge_t *bgep)
{
uint64_t ring;
BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
(void *)(uintptr_t)bgep->intr_pri);
rw_init(bgep->errlock, NULL, RW_DRIVER,
(void *)(uintptr_t)bgep->intr_pri);
/*
* Perform one-off initialisation of each ring ...
*/
for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
bge_init_send_ring(bgep, ring);
for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
bge_init_recv_ring(bgep, ring);
for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
bge_init_buff_ring(bgep, ring);
}
/*
* Undo the work of bge_init_rings() above before the memory is freed
*/
static void
bge_fini_rings(bge_t *bgep)
{
uint64_t ring;
BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
bge_fini_buff_ring(bgep, ring);
for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
bge_fini_recv_ring(bgep, ring);
for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
bge_fini_send_ring(bgep, ring);
rw_destroy(bgep->errlock);
mutex_destroy(bgep->genlock);
}
/*
* Allocate an area of memory and a DMA handle for accessing it
*/
static int
bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
uint_t dma_flags, dma_area_t *dma_p)
{
caddr_t va;
int err;
BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
(void *)bgep, memsize, attr_p, dma_flags, dma_p));
/*
* Allocate handle
*/
err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Allocate memory
*/
err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
DDI_DMA_SLEEP, NULL, &va, &dma_p->alength, &dma_p->acc_hdl);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Bind the two together
*/
dma_p->mem_va = va;
err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
va, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
&dma_p->cookie, &dma_p->ncookies);
BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
dma_p->alength, err, dma_p->ncookies));
if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
return (DDI_FAILURE);
dma_p->nslots = ~0U;
dma_p->size = ~0U;
dma_p->token = ~0U;
dma_p->offset = 0;
return (DDI_SUCCESS);
}
/*
* Free one allocated area of DMAable memory
*/
static void
bge_free_dma_mem(dma_area_t *dma_p)
{
if (dma_p->dma_hdl != NULL) {
if (dma_p->ncookies) {
(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
dma_p->ncookies = 0;
}
ddi_dma_free_handle(&dma_p->dma_hdl);
dma_p->dma_hdl = NULL;
}
if (dma_p->acc_hdl != NULL) {
ddi_dma_mem_free(&dma_p->acc_hdl);
dma_p->acc_hdl = NULL;
}
}
/*
* This function allocates all the transmit and receive buffers
* and descriptors, in four chunks (or one, if MONOLITHIC).
*/
static int
bge_alloc_bufs(bge_t *bgep)
{
dma_area_t area;
size_t rxbuffsize;
size_t txbuffsize;
size_t rxbuffdescsize;
size_t rxdescsize;
size_t txdescsize;
uint64_t ring;
uint64_t rx_rings = bgep->chipid.rx_rings;
uint64_t tx_rings = bgep->chipid.tx_rings;
int split;
int err;
BGE_TRACE(("bge_alloc_bufs($%p)",
(void *)bgep));
rxbuffsize = BGE_STD_SLOTS_USED*BGE_STD_BUFF_SIZE;
rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
txbuffsize = BGE_SEND_SLOTS_USED*bgep->chipid.snd_buff_size;
txbuffsize *= tx_rings;
rxdescsize = rx_rings*bgep->chipid.recv_slots;
rxdescsize *= sizeof (bge_rbd_t);
rxbuffdescsize = BGE_STD_SLOTS_USED;
rxbuffdescsize += bgep->chipid.jumbo_slots;
rxbuffdescsize += BGE_MINI_SLOTS_USED;
rxbuffdescsize *= sizeof (bge_rbd_t);
txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
txdescsize *= sizeof (bge_sbd_t);
txdescsize += sizeof (bge_statistics_t);
txdescsize += sizeof (bge_status_t);
txdescsize += BGE_STATUS_PADDING;
#if BGE_MONOLITHIC
err = bge_alloc_dma_mem(bgep,
rxbuffsize+txbuffsize+rxbuffdescsize+rxdescsize+txdescsize,
&bge_data_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &area);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
BGE_DEBUG(("allocated range $%p-$%p (0x%lx-0x%lx)",
DMA_VPTR(area),
(caddr_t)DMA_VPTR(area)+area.alength,
area.cookie.dmac_laddress,
area.cookie.dmac_laddress+area.alength));
bge_slice_chunk(&bgep->rx_buff[0], &area, 1, rxbuffsize);
bge_slice_chunk(&bgep->tx_buff[0], &area, 1, txbuffsize);
bge_slice_chunk(&bgep->rx_desc[0], &area, 1, rxdescsize);
bge_slice_chunk(&bgep->tx_desc, &area, 1, txdescsize);
#else
/*
* Allocate memory & handles for RX buffers
*/
ASSERT((rxbuffsize % BGE_SPLIT) == 0);
for (split = 0; split < BGE_SPLIT; ++split) {
err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
&bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
&bgep->rx_buff[split]);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
}
/*
* Allocate memory & handles for TX buffers
*/
ASSERT((txbuffsize % BGE_SPLIT) == 0);
for (split = 0; split < BGE_SPLIT; ++split) {
err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
&bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
&bgep->tx_buff[split]);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
}
/*
* Allocate memory & handles for receive return rings
*/
ASSERT((rxdescsize % rx_rings) == 0);
for (split = 0; split < rx_rings; ++split) {
err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
&bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&bgep->rx_desc[split]);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
}
/*
* Allocate memory & handles for buffer (producer) descriptor rings
*/
err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Allocate memory & handles for TX descriptor rings,
* status block, and statistics area
*/
err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
#endif /* BGE_MONOLITHIC */
/*
* Now carve up each of the allocated areas ...
*/
for (split = 0; split < BGE_SPLIT; ++split) {
area = bgep->rx_buff[split];
bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
&area, BGE_STD_SLOTS_USED/BGE_SPLIT,
BGE_STD_BUFF_SIZE);
bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
&area, bgep->chipid.jumbo_slots/BGE_SPLIT,
bgep->chipid.recv_jumbo_size);
bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
&area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
BGE_MINI_BUFF_SIZE);
ASSERT(area.alength == 0);
}
for (split = 0; split < BGE_SPLIT; ++split) {
area = bgep->tx_buff[split];
for (ring = 0; ring < tx_rings; ++ring)
bge_slice_chunk(&bgep->send[ring].buf[split],
&area, BGE_SEND_SLOTS_USED/BGE_SPLIT,
bgep->chipid.snd_buff_size);
for (; ring < BGE_SEND_RINGS_MAX; ++ring)
bge_slice_chunk(&bgep->send[ring].buf[split],
&area, 0/BGE_SPLIT,
bgep->chipid.snd_buff_size);
ASSERT(area.alength == 0);
}
for (ring = 0; ring < rx_rings; ++ring)
bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
bgep->chipid.recv_slots, sizeof (bge_rbd_t));
area = bgep->rx_desc[rx_rings];
for (; ring < BGE_RECV_RINGS_MAX; ++ring)
bge_slice_chunk(&bgep->recv[ring].desc, &area,
0, sizeof (bge_rbd_t));
bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
ASSERT(area.alength == 0);
area = bgep->tx_desc;
for (ring = 0; ring < tx_rings; ++ring)
bge_slice_chunk(&bgep->send[ring].desc, &area,
BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
for (; ring < BGE_SEND_RINGS_MAX; ++ring)
bge_slice_chunk(&bgep->send[ring].desc, &area,
0, sizeof (bge_sbd_t));
bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
ASSERT(area.alength == BGE_STATUS_PADDING);
DMA_ZERO(bgep->status_block);
return (DDI_SUCCESS);
}
/*
* This routine frees the transmit and receive buffers and descriptors.
* Make sure the chip is stopped before calling it!
*/
static void
bge_free_bufs(bge_t *bgep)
{
int split;
BGE_TRACE(("bge_free_bufs($%p)",
(void *)bgep));
#if BGE_MONOLITHIC
bge_free_dma_mem(&bgep->rx_buff[0]);
#else
bge_free_dma_mem(&bgep->tx_desc);
for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
bge_free_dma_mem(&bgep->rx_desc[split]);
for (split = 0; split < BGE_SPLIT; ++split)
bge_free_dma_mem(&bgep->tx_buff[split]);
for (split = 0; split < BGE_SPLIT; ++split)
bge_free_dma_mem(&bgep->rx_buff[split]);
#endif /* BGE_MONOLITHIC */
}
/*
* Determine (initial) MAC address ("BIA") to use for this interface
*/
static void
bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
{
struct ether_addr sysaddr;
char propbuf[8]; /* "true" or "false", plus NUL */
uchar_t *bytes;
int *ints;
uint_t nelts;
int err;
BGE_TRACE(("bge_find_mac_address($%p)",
(void *)bgep));
BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
cidp->hw_mac_addr,
ether_sprintf((void *)cidp->vendor_addr.addr),
cidp->vendor_addr.set ? "" : "not "));
/*
* The "vendor's factory-set address" may already have
* been extracted from the chip, but if the property
* "local-mac-address" is set we use that instead. It
* will normally be set by OBP, but it could also be
* specified in a .conf file(!)
*
* There doesn't seem to be a way to define byte-array
* properties in a .conf, so we check whether it looks
* like an array of 6 ints instead.
*
* Then, we check whether it looks like an array of 6
* bytes (which it should, if OBP set it). If we can't
* make sense of it either way, we'll ignore it.
*/
err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
if (err == DDI_PROP_SUCCESS) {
if (nelts == ETHERADDRL) {
while (nelts--)
cidp->vendor_addr.addr[nelts] = ints[nelts];
cidp->vendor_addr.set = 1;
}
ddi_prop_free(ints);
}
err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
if (err == DDI_PROP_SUCCESS) {
if (nelts == ETHERADDRL) {
while (nelts--)
cidp->vendor_addr.addr[nelts] = bytes[nelts];
cidp->vendor_addr.set = 1;
}
ddi_prop_free(bytes);
}
BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
ether_sprintf((void *)cidp->vendor_addr.addr),
cidp->vendor_addr.set ? "" : "not "));
/*
* Look up the OBP property "local-mac-address?". Note that even
* though its value is a string (which should be "true" or "false"),
* it can't be decoded by ddi_prop_lookup_string(9F). So, we zero
* the buffer first and then fetch the property as an untyped array;
* this may or may not include a final NUL, but since there will
* always be one left at the end of the buffer we can now treat it
* as a string anyway.
*/
nelts = sizeof (propbuf);
bzero(propbuf, nelts--);
err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
/*
* Now, if the address still isn't set from the hardware (SEEPROM)
* or the OBP or .conf property, OR if the user has foolishly set
* 'local-mac-address? = false', use "the system address" instead
* (but only if it's non-null i.e. has been set from the IDPROM).
*/
if (cidp->vendor_addr.set == 0 || strcmp(propbuf, "false") == 0)
if (localetheraddr(NULL, &sysaddr) != 0) {
ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
cidp->vendor_addr.set = 1;
}
BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
ether_sprintf((void *)cidp->vendor_addr.addr),
cidp->vendor_addr.set ? "" : "not "));
/*
* Finally(!), if there's a valid "mac-address" property (created
* if we netbooted from this interface), we must use this instead
* of any of the above to ensure that the NFS/install server doesn't
* get confused by the address changing as Solaris takes over!
*/
err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
if (err == DDI_PROP_SUCCESS) {
if (nelts == ETHERADDRL) {
while (nelts--)
cidp->vendor_addr.addr[nelts] = bytes[nelts];
cidp->vendor_addr.set = 1;
}
ddi_prop_free(bytes);
}
BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
ether_sprintf((void *)cidp->vendor_addr.addr),
cidp->vendor_addr.set ? "" : "not "));
}
static void
bge_unattach(bge_t *bgep)
{
mac_t *macp;
BGE_TRACE(("bge_unattach($%p)",
(void *)bgep));
/*
* Flag that no more activity may be initiated
*/
bgep->progress &= ~PROGRESS_READY;
/*
* Quiesce the PHY and MAC (leave it reset but still powered).
* Clean up and free all BGE data structures
*/
if (bgep->cyclic_id) {
mutex_enter(&cpu_lock);
cyclic_remove(bgep->cyclic_id);
mutex_exit(&cpu_lock);
}
if (bgep->progress & PROGRESS_KSTATS)
bge_fini_kstats(bgep);
if (bgep->progress & PROGRESS_NDD)
bge_nd_cleanup(bgep);
if (bgep->progress & PROGRESS_PHY)
bge_phys_reset(bgep);
if (bgep->progress & PROGRESS_HWINT) {
mutex_enter(bgep->genlock);
bge_chip_reset(bgep, B_FALSE);
mutex_exit(bgep->genlock);
}
if (bgep->progress & PROGRESS_INTR) {
bge_rem_intrs(bgep);
bge_fini_rings(bgep);
}
if (bgep->progress & PROGRESS_FACTOTUM)
ddi_remove_softintr(bgep->factotum_id);
if (bgep->progress & PROGRESS_RESCHED)
ddi_remove_softintr(bgep->resched_id);
bge_free_bufs(bgep);
if (bgep->progress & PROGRESS_REGS)
ddi_regs_map_free(&bgep->io_handle);
if (bgep->progress & PROGRESS_CFG)
pci_config_teardown(&bgep->cfg_handle);
ddi_remove_minor_node(bgep->devinfo, NULL);
macp = bgep->macp;
kmem_free(macp, sizeof (*macp));
kmem_free(bgep, sizeof (*bgep));
}
static int
bge_resume(dev_info_t *devinfo)
{
bge_t *bgep; /* Our private data */
chip_id_t *cidp;
chip_id_t chipid;
bgep = ddi_get_driver_private(devinfo);
if (bgep == NULL)
return (DDI_FAILURE);
/*
* Refuse to resume if the data structures aren't consistent
*/
if (bgep->devinfo != devinfo)
return (DDI_FAILURE);
/*
* Read chip ID & set up config space command register(s)
* Refuse to resume if the chip has changed its identity!
*/
cidp = &bgep->chipid;
bge_chip_cfg_init(bgep, &chipid, B_FALSE);
if (chipid.vendor != cidp->vendor)
return (DDI_FAILURE);
if (chipid.device != cidp->device)
return (DDI_FAILURE);
if (chipid.revision != cidp->revision)
return (DDI_FAILURE);
if (chipid.asic_rev != cidp->asic_rev)
return (DDI_FAILURE);
/*
* All OK, reinitialise h/w & kick off GLD scheduling
*/
mutex_enter(bgep->genlock);
bge_restart(bgep, B_TRUE);
mutex_exit(bgep->genlock);
return (DDI_SUCCESS);
}
static uint8_t ether_brdcst[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
/*
* attach(9E) -- Attach a device to the system
*
* Called once for each board successfully probed.
*/
static int
bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
{
bge_t *bgep; /* Our private data */
mac_t *macp;
chip_id_t *cidp;
cyc_handler_t cychand;
cyc_time_t cyctime;
caddr_t regs;
int instance;
int err;
mac_info_t *mip;
int intr_types;
int x;
instance = ddi_get_instance(devinfo);
BGE_GTRACE(("bge_attach($%p, %d) instance %d",
(void *)devinfo, cmd, instance));
BGE_BRKPT(NULL, "bge_attach");
switch (cmd) {
default:
return (DDI_FAILURE);
case DDI_RESUME:
return (bge_resume(devinfo));
case DDI_ATTACH:
break;
}
/*
* Allocate mac_t and BGE private structures, and
* cross-link them so that given either one of these or
* the devinfo the others can be derived.
*/
macp = kmem_zalloc(sizeof (*macp), KM_SLEEP);
bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
ddi_set_driver_private(devinfo, bgep);
bgep->bge_guard = BGE_GUARD;
bgep->devinfo = devinfo;
bgep->macp = macp;
macp->m_driver = bgep;
/*
* Initialize more fields in BGE private data
*/
bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, debug_propname, bge_debug);
(void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
BGE_DRIVER_NAME, instance);
/*
* Look up the IOMMU's page size for DVMA mappings (must be
* a power of 2) and convert to a mask. This can be used to
* determine whether a message buffer crosses a page boundary.
* Note: in 2s complement binary notation, if X is a power of
* 2, then -X has the representation "11...1100...00".
*/
bgep->pagemask = dvma_pagesize(devinfo);
ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
bgep->pagemask = -bgep->pagemask;
/*
* Map config space registers
* Read chip ID & set up config space command register(s)
*
* Note: this leaves the chip accessible by Memory Space
* accesses, but with interrupts and Bus Mastering off.
* This should ensure that nothing untoward will happen
* if it has been left active by the (net-)bootloader.
* We'll re-enable Bus Mastering once we've reset the chip,
* and allow interrupts only when everything else is set up.
*/
err = pci_config_setup(devinfo, &bgep->cfg_handle);
if (err != DDI_SUCCESS) {
bge_problem(bgep, "pci_config_setup() failed");
goto attach_fail;
}
bgep->progress |= PROGRESS_CFG;
cidp = &bgep->chipid;
bzero(cidp, sizeof (*cidp));
bge_chip_cfg_init(bgep, cidp, B_FALSE);
/*
* Update those parts of the chip ID derived from volatile
* registers with the values seen by OBP (in case the chip
* has been reset externally and therefore lost them).
*/
cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, subven_propname, cidp->subven);
cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, latency_propname, cidp->latency);
cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
/*
* Map operating registers
*/
err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
&regs, 0, 0, &bge_reg_accattr, &bgep->io_handle);
if (err != DDI_SUCCESS) {
bge_problem(bgep, "ddi_regs_map_setup() failed");
goto attach_fail;
}
bgep->io_regs = regs;
bgep->progress |= PROGRESS_REGS;
/*
* Characterise the device, so we know its requirements.
* Then allocate the appropriate TX and RX descriptors & buffers.
*/
bge_chip_id_init(bgep);
err = bge_alloc_bufs(bgep);
if (err != DDI_SUCCESS) {
bge_problem(bgep, "DMA buffer allocation failed");
goto attach_fail;
}
/*
* Add the softint handlers:
*
* Both of these handlers are used to avoid restrictions on the
* context and/or mutexes required for some operations. In
* particular, the hardware interrupt handler and its subfunctions
* can detect a number of conditions that we don't want to handle
* in that context or with that set of mutexes held. So, these
* softints are triggered instead:
*
* the <resched> softint is triggered if if we have previously
* had to refuse to send a packet because of resource shortage
* (we've run out of transmit buffers), but the send completion
* interrupt handler has now detected that more buffers have
* become available.
*
* the <factotum> is triggered if the h/w interrupt handler
* sees the <link state changed> or <error> bits in the status
* block. It's also triggered periodically to poll the link
* state, just in case we aren't getting link status change
* interrupts ...
*/
err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->resched_id,
NULL, NULL, bge_reschedule, (caddr_t)bgep);
if (err != DDI_SUCCESS) {
bge_problem(bgep, "ddi_add_softintr() failed");
goto attach_fail;
}
bgep->progress |= PROGRESS_RESCHED;
err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
if (err != DDI_SUCCESS) {
bge_problem(bgep, "ddi_add_softintr() failed");
goto attach_fail;
}
bgep->progress |= PROGRESS_FACTOTUM;
/* Get supported interrupt types */
if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
bge_error(bgep, "ddi_intr_get_supported_types failed\n");
goto attach_fail;
}
bge_log(bgep, "ddi_intr_get_supported_types() returned: %x",
intr_types);
if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.bge_msi_enabled) {
bge_log(bgep, "Using MSI interrupt type");
if (bge_add_msi_intrs(bgep) != DDI_SUCCESS) {
bge_error(bgep, "MSI registration failed, "
"trying LEGACY interrupt type\n");
} else {
bgep->intr_type = DDI_INTR_TYPE_MSI;
bgep->progress |= PROGRESS_INTR;
}
bge_log(bgep, "Using MSI interrupt type\n");
}
if (!(bgep->progress & PROGRESS_INTR) &&
(intr_types & DDI_INTR_TYPE_FIXED)) {
bge_log(bgep, "Using Legacy interrupt type\n");
if (bge_add_legacy_intrs(bgep) != DDI_SUCCESS) {
bge_error(bgep, "Legacy interrupt "
"registration failed\n");
goto attach_fail;
}
bgep->intr_type = DDI_INTR_TYPE_FIXED;
bgep->progress |= PROGRESS_INTR;
bge_log(bgep, "Using Legacy interrupt type\n");
}
if (!(bgep->progress & PROGRESS_INTR)) {
bge_error(bgep, "No interrupts registered\n");
goto attach_fail;
}
/*
* Note that interrupts are not enabled yet as
* mutex locks are not initialized.
* Initialize rings and mutex locks.
*/
bge_init_rings(bgep);
bgep->progress |= PROGRESS_HWINT;
/*
* Now that mutex locks are initialized, enable interrupts.
*/
if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_enable() for MSI */
(void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
} else {
/* Call ddi_intr_enable() for Legacy/MSI non block enable */
for (x = 0; x < bgep->intr_cnt; x++) {
(void) ddi_intr_enable(bgep->htable[x]);
}
}
/*
* Initialise link state variables
* Stop, reset & reinitialise the chip.
* Initialise the (internal) PHY.
*/
bgep->link_state = LINK_STATE_UNKNOWN;
bgep->link_up_msg = bgep->link_down_msg = " (initialised)";
mutex_enter(bgep->genlock);
/*
* Reset chip & rings to initial state; also reset address
* filtering, promiscuity, loopback mode.
*/
bge_reset(bgep);
bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
bgep->promisc = B_FALSE;
bgep->param_loop_mode = BGE_LOOP_NONE;
mutex_exit(bgep->genlock);
bge_phys_init(bgep);
bgep->progress |= PROGRESS_PHY;
/*
* Register NDD-tweakable parameters
*/
if (bge_nd_init(bgep)) {
bge_problem(bgep, "bge_nd_init() failed");
goto attach_fail;
}
bgep->progress |= PROGRESS_NDD;
/*
* Create & initialise named kstats
*/
bge_init_kstats(bgep, instance);
bgep->progress |= PROGRESS_KSTATS;
/*
* Determine whether to override the chip's own MAC address
*/
bge_find_mac_address(bgep, cidp);
ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr.addr);
bgep->curr_addr.set = 1;
/*
* Initialize pointers to device specific functions which
* will be used by the generic layer.
*/
mip = &(macp->m_info);
mip->mi_media = DL_ETHER;
mip->mi_sdu_min = 0;
mip->mi_sdu_max = cidp->ethmax_size - sizeof (struct ether_header);
mip->mi_cksum = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
mip->mi_poll = DL_CAPAB_POLL;
mip->mi_addr_length = ETHERADDRL;
bcopy(ether_brdcst, mip->mi_brdcst_addr, ETHERADDRL);
bcopy(bgep->curr_addr.addr, mip->mi_unicst_addr, ETHERADDRL);
MAC_STAT_MIB(mip->mi_stat);
mip->mi_stat[MAC_STAT_UNKNOWNS] = B_FALSE;
MAC_STAT_ETHER(mip->mi_stat);
mip->mi_stat[MAC_STAT_SQE_ERRORS] = B_FALSE;
mip->mi_stat[MAC_STAT_MACRCV_ERRORS] = B_FALSE;
if (!(bgep->chipid.flags & CHIP_FLAG_SERDES))
MAC_STAT_MII(mip->mi_stat);
macp->m_stat = bge_m_stat;
macp->m_stop = bge_m_stop;
macp->m_start = bge_m_start;
macp->m_unicst = bge_m_unicst;
macp->m_multicst = bge_m_multicst;
macp->m_promisc = bge_m_promisc;
macp->m_tx = bge_m_tx;
macp->m_resources = bge_m_resources;
macp->m_ioctl = bge_m_ioctl;
macp->m_dip = devinfo;
macp->m_ident = MAC_IDENT;
/*
* Finally, we're ready to register ourselves with the MAC layer
* interface; if this succeeds, we're all ready to start()
*/
if (mac_register(macp) != 0)
goto attach_fail;
cychand.cyh_func = bge_chip_cyclic;
cychand.cyh_arg = bgep;
cychand.cyh_level = CY_LOCK_LEVEL;
cyctime.cyt_when = 0;
cyctime.cyt_interval = BGE_CYCLIC_PERIOD;
mutex_enter(&cpu_lock);
bgep->cyclic_id = cyclic_add(&cychand, &cyctime);
mutex_exit(&cpu_lock);
bgep->progress |= PROGRESS_READY;
ASSERT(bgep->bge_guard == BGE_GUARD);
return (DDI_SUCCESS);
attach_fail:
bge_unattach(bgep);
return (DDI_FAILURE);
}
/*
* bge_suspend() -- suspend transmit/receive for powerdown
*/
static int
bge_suspend(bge_t *bgep)
{
/*
* Stop processing and idle (powerdown) the PHY ...
*/
mutex_enter(bgep->genlock);
bge_stop(bgep);
bge_phys_idle(bgep);
mutex_exit(bgep->genlock);
return (DDI_SUCCESS);
}
/*
* detach(9E) -- Detach a device from the system
*/
static int
bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
{
bge_t *bgep;
BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
bgep = ddi_get_driver_private(devinfo);
switch (cmd) {
default:
return (DDI_FAILURE);
case DDI_SUSPEND:
return (bge_suspend(bgep));
case DDI_DETACH:
break;
}
/*
* Unregister from the GLD subsystem. This can fail, in
* particular if there are DLPI style-2 streams still open -
* in which case we just return failure without shutting
* down chip operations.
*/
if (mac_unregister(bgep->macp) != 0)
return (DDI_FAILURE);
/*
* All activity stopped, so we can clean up & exit
*/
bge_unattach(bgep);
return (DDI_SUCCESS);
}
/*
* ========== Module Loading Data & Entry Points ==========
*/
#undef BGE_DBG
#define BGE_DBG BGE_DBG_INIT /* debug flag for this code */
DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach,
nodev, NULL, D_MP, NULL);
static struct modldrv bge_modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
bge_ident, /* short description */
&bge_dev_ops /* driver specific ops */
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&bge_modldrv, NULL
};
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_init(void)
{
int status;
mac_init_ops(&bge_dev_ops, "bge");
status = mod_install(&modlinkage);
if (status == DDI_SUCCESS)
mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
else
mac_fini_ops(&bge_dev_ops);
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&modlinkage);
if (status == DDI_SUCCESS) {
mac_fini_ops(&bge_dev_ops);
mutex_destroy(bge_log_mutex);
}
return (status);
}
/*
* bge_add_legacy_intrs() handles INTx and legacy interrupts
*/
static int
bge_add_legacy_intrs(bge_t *bgep)
{
dev_info_t *devinfo = bgep->devinfo;
int actual, count = 0;
int x, y, rc, inum = 0;
bge_log(bgep, "bge_add_legacy_intrs\n");
/* get number of interrupts */
rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_FIXED, &count);
if ((rc != DDI_SUCCESS) || (count == 0)) {
bge_error(bgep, "ddi_intr_get_nintrs() failure, "
"rc: %d, count: %d", rc, count);
return (DDI_FAILURE);
}
/* Allocate an array of interrupt handles */
bgep->intr_size = count * sizeof (ddi_intr_handle_t);
bgep->htable = kmem_zalloc(bgep->intr_size, KM_SLEEP);
/* call ddi_intr_alloc() */
rc = ddi_intr_alloc(devinfo, bgep->htable, DDI_INTR_TYPE_FIXED, inum,
count, &actual, DDI_INTR_ALLOC_STRICT);
if ((rc != DDI_SUCCESS) || (actual == 0)) {
bge_error(bgep, "ddi_intr_alloc() failed: %d\n", rc);
kmem_free(bgep->htable, bgep->intr_size);
return (DDI_FAILURE);
}
if (actual < count) {
bge_log(bgep, "Requested: %d, Received: %d\n",
count, actual);
for (x = 0; x < actual; x++) {
(void) ddi_intr_free(bgep->htable[x]);
}
kmem_free(bgep->htable, bgep->intr_size);
return (DDI_FAILURE);
}
bgep->intr_cnt = actual;
/* Get intr priority */
if (ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri) !=
DDI_SUCCESS) {
bge_error(bgep, "ddi_intr_get_pri() failed\n");
for (x = 0; x < actual; x++) {
(void) ddi_intr_free(bgep->htable[x]);
}
kmem_free(bgep->htable, bgep->intr_size);
return (DDI_FAILURE);
}
/* Call ddi_intr_add_handler() */
for (x = 0; x < actual; x++) {
if (ddi_intr_add_handler(bgep->htable[x],
(ddi_intr_handler_t *)bge_intr,
(caddr_t)bgep, NULL) != DDI_SUCCESS) {
bge_error(bgep, "ddi_add_intr() failed\n");
for (y = 0; y < actual; y++) {
(void) ddi_intr_free(bgep->htable[y]);
}
kmem_free(bgep->htable, bgep->intr_size);
return (DDI_FAILURE);
}
}
return (DDI_SUCCESS);
}
/*
* bge_add_msi_intrs() handles MSI interrupts
*/
static int
bge_add_msi_intrs(bge_t *bgep)
{
dev_info_t *devinfo = bgep->devinfo;
int count, avail, actual;
int x, y, rc, inum = 0;
bge_log(bgep, "bge_add_msi_intrs\n");
/* get number of interrupts */
rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_MSI, &count);
if ((rc != DDI_SUCCESS) || (count == 0)) {
cmn_err(CE_WARN, "ddi_intr_get_nintrs() failure, rc: %d, "
"count: %d", rc, count);
return (DDI_FAILURE);
}
/* get number of available interrupts */
rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_MSI, &avail);
if ((rc != DDI_SUCCESS) || (avail == 0)) {
bge_error(bgep, "ddi_intr_get_navail() failure, "
"rc: %d, avail: %d\n", rc, avail);
return (DDI_FAILURE);
}
if (avail < count) {
bge_log(bgep, "nitrs() returned %d, navail returned %d\n",
count, avail);
}
/* Allocate an array of interrupt handles */
bgep->intr_size = count * sizeof (ddi_intr_handle_t);
bgep->htable = kmem_alloc(bgep->intr_size, KM_SLEEP);
/* call ddi_intr_alloc() */
rc = ddi_intr_alloc(devinfo, bgep->htable, DDI_INTR_TYPE_MSI, inum,
count, &actual, DDI_INTR_ALLOC_NORMAL);
if ((rc != DDI_SUCCESS) || (actual == 0)) {
bge_error(bgep, "ddi_intr_alloc() failed: %d\n", rc);
kmem_free(bgep->htable, bgep->intr_size);
return (DDI_FAILURE);
}
if (actual < count) {
bge_log(bgep, "Requested: %d, Received: %d\n", count, actual);
}
bgep->intr_cnt = actual;
/*
* Get priority for first msi, assume remaining are all the same
*/
if (ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri) !=
DDI_SUCCESS) {
bge_error(bgep, "ddi_intr_get_pri() failed\n");
/* Free already allocated intr */
for (y = 0; y < actual; y++) {
(void) ddi_intr_free(bgep->htable[y]);
}
kmem_free(bgep->htable, bgep->intr_size);
return (DDI_FAILURE);
}
/* Call ddi_intr_add_handler() */
for (x = 0; x < actual; x++) {
if (ddi_intr_add_handler(bgep->htable[x],
(ddi_intr_handler_t *)bge_intr,
(caddr_t)bgep, NULL) != DDI_SUCCESS) {
bge_error(bgep, "ddi_intr_add_handler() failed\n");
/* Free already allocated intr */
for (y = 0; y < actual; y++) {
(void) ddi_intr_free(bgep->htable[y]);
}
kmem_free(bgep->htable, bgep->intr_size);
return (DDI_FAILURE);
}
}
(void) ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap);
return (DDI_SUCCESS);
}
static void
bge_rem_intrs(bge_t *bgep)
{
int x;
bge_log(bgep, "bge_rem_intrs\n");
/* Disable all interrupts */
if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_disable() */
(void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
} else {
for (x = 0; x < bgep->intr_cnt; x++) {
(void) ddi_intr_disable(bgep->htable[x]);
}
}
/* Call ddi_intr_remove_handler() */
for (x = 0; x < bgep->intr_cnt; x++) {
(void) ddi_intr_remove_handler(bgep->htable[x]);
(void) ddi_intr_free(bgep->htable[x]);
}
kmem_free(bgep->htable, bgep->intr_size);
}