bge_chip2.c revision a4de4ba2aed9fb0ab6c2bcdb07b7f4fe512c4291
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "bge_impl.h"
#define PIO_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->io_regs+(offset)))
/*
* Future features ... ?
*/
#define BGE_CFG_IO8 1 /* 8/16-bit cfg space BIS/BIC */
#define BGE_IND_IO32 1 /* indirect access code */
#define BGE_SEE_IO32 1 /* SEEPROM access code */
#define BGE_FLASH_IO32 1 /* FLASH access code */
/*
* BGE MSI tunable:
*
* By default MSI is enabled on all supported platforms but it is disabled
* for some Broadcom chips due to known MSI hardware issues. Currently MSI
* is enabled only for 5714C A2 and 5715C A2 broadcom chips.
*/
#if defined(__sparc)
boolean_t bge_enable_msi = B_TRUE;
#else
boolean_t bge_enable_msi = B_FALSE;
#endif
/*
* PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
*/
boolean_t bge_relaxed_ordering = B_TRUE;
/*
* Property names
*/
static char knownids_propname[] = "bge-known-subsystems";
/*
* Patchable globals:
*
* bge_autorecover
* Enables/disables automatic recovery after fault detection
*
* bge_mlcr_default
* Value to program into the MLCR; controls the chip's GPIO pins
*
* bge_dma_{rd,wr}prio
* Relative priorities of DMA reads & DMA writes respectively.
* These may each be patched to any value 0-3. Equal values
* will give "fair" (round-robin) arbitration for PCI access.
* Unequal values will give one or the other function priority.
*
* bge_dma_rwctrl
* Value to put in the Read/Write DMA control register. See
* the Broadcom PRM for things you can fiddle with in this
* register ...
*
* bge_{tx,rx}_{count,ticks}_{norm,intr}
* Send/receive interrupt coalescing parameters. Counts are
* #s of descriptors, ticks are in microseconds. *norm* values
* apply between status updates/interrupts; the *intr* values
* refer to the 'during-interrupt' versions - see the PRM.
*
* NOTE: these values have been determined by measurement. They
* differ significantly from the values recommended in the PRM.
*/
static uint32_t bge_autorecover = 1;
static uint32_t bge_mlcr_default = MLCR_DEFAULT;
static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
static uint32_t bge_dma_rdprio = 1;
static uint32_t bge_dma_wrprio = 0;
static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
uint32_t bge_rx_ticks_norm = 128;
uint32_t bge_tx_ticks_norm = 2048; /* 8 for FJ2+ !?!? */
uint32_t bge_rx_count_norm = 8;
uint32_t bge_tx_count_norm = 128;
static uint32_t bge_rx_ticks_intr = 128;
static uint32_t bge_tx_ticks_intr = 0; /* 8 for FJ2+ !?!? */
static uint32_t bge_rx_count_intr = 2;
static uint32_t bge_tx_count_intr = 0;
/*
* Memory pool configuration parameters.
*
* These are generally specific to each member of the chip family, since
* each one may have a different memory size/configuration.
*
* Setting the mbuf pool length for a specific type of chip to 0 inhibits
* the driver from programming the various registers; instead they are left
* at their hardware defaults. This is the preferred option for later chips
* (5705+), whereas the older chips *required* these registers to be set,
* since the h/w default was 0 ;-(
*/
static uint32_t bge_mbuf_pool_base = MBUF_POOL_BASE_DEFAULT;
static uint32_t bge_mbuf_pool_base_5704 = MBUF_POOL_BASE_5704;
static uint32_t bge_mbuf_pool_base_5705 = MBUF_POOL_BASE_5705;
static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
static uint32_t bge_mbuf_pool_len = MBUF_POOL_LENGTH_DEFAULT;
static uint32_t bge_mbuf_pool_len_5704 = MBUF_POOL_LENGTH_5704;
static uint32_t bge_mbuf_pool_len_5705 = 0; /* use h/w default */
static uint32_t bge_mbuf_pool_len_5721 = 0;
/*
* Various high and low water marks, thresholds, etc ...
*
* Note: these are taken from revision 7 of the PRM, and some are different
* from both the values in earlier PRMs *and* those determined experimentally
* and used in earlier versions of this driver ...
*/
static uint32_t bge_mbuf_hi_water = MBUF_HIWAT_DEFAULT;
static uint32_t bge_mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_DEFAULT;
static uint32_t bge_mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_DEFAULT;
static uint32_t bge_dmad_lo_water = DMAD_POOL_LOWAT_DEFAULT;
static uint32_t bge_dmad_hi_water = DMAD_POOL_HIWAT_DEFAULT;
static uint32_t bge_lowat_recv_frames = LOWAT_MAX_RECV_FRAMES_DEFAULT;
static uint32_t bge_replenish_std = STD_RCV_BD_REPLENISH_DEFAULT;
static uint32_t bge_replenish_mini = MINI_RCV_BD_REPLENISH_DEFAULT;
static uint32_t bge_replenish_jumbo = JUMBO_RCV_BD_REPLENISH_DEFAULT;
static uint32_t bge_watchdog_count = 1 << 16;
static uint16_t bge_dma_miss_limit = 20;
static uint32_t bge_stop_start_on_sync = 0;
boolean_t bge_jumbo_enable = B_TRUE;
static uint32_t bge_default_jumbo_size = BGE_JUMBO_BUFF_SIZE;
/*
* bge_intr_max_loop controls the maximum loop number within bge_intr.
* When loading NIC with heavy network traffic, it is useful.
* Increasing this value could have positive effect to throughput,
* but it might also increase ticks of a bge ISR stick on CPU, which might
* lead to bad UI interactive experience. So tune this with caution.
*/
static int bge_intr_max_loop = 1;
/*
* ========== Low-level chip & ring buffer manipulation ==========
*/
#define BGE_DBG BGE_DBG_REGS /* debug flag for this code */
/*
* Config space read-modify-write routines
*/
#if BGE_CFG_IO8
/*
* 8- and 16-bit set/clr operations are not used; all the config registers
* that we need to do bit-twiddling on are 32 bits wide. I'll leave the
* code here, though, in case we ever find that we do want it after all ...
*/
static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
#pragma inline(bge_cfg_set8)
static void
bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
{
uint8_t regval;
BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, bits));
regval = pci_config_get8(bgep->cfg_handle, regno);
BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
(void *)bgep, regno, bits, regval, regval | bits));
regval |= bits;
pci_config_put8(bgep->cfg_handle, regno, regval);
}
static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
#pragma inline(bge_cfg_clr8)
static void
bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
{
uint8_t regval;
BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, bits));
regval = pci_config_get8(bgep->cfg_handle, regno);
BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
(void *)bgep, regno, bits, regval, regval & ~bits));
regval &= ~bits;
pci_config_put8(bgep->cfg_handle, regno, regval);
}
static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
#pragma inline(bge_cfg_set16)
static void
bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
{
uint16_t regval;
BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, bits));
regval = pci_config_get16(bgep->cfg_handle, regno);
BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
(void *)bgep, regno, bits, regval, regval | bits));
regval |= bits;
pci_config_put16(bgep->cfg_handle, regno, regval);
}
static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
#pragma inline(bge_cfg_clr16)
static void
bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
{
uint16_t regval;
BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, bits));
regval = pci_config_get16(bgep->cfg_handle, regno);
BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
(void *)bgep, regno, bits, regval, regval & ~bits));
regval &= ~bits;
pci_config_put16(bgep->cfg_handle, regno, regval);
}
#endif /* BGE_CFG_IO8 */
static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
#pragma inline(bge_cfg_set32)
static void
bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
{
uint32_t regval;
BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, bits));
regval = pci_config_get32(bgep->cfg_handle, regno);
BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
(void *)bgep, regno, bits, regval, regval | bits));
regval |= bits;
pci_config_put32(bgep->cfg_handle, regno, regval);
}
static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
#pragma inline(bge_cfg_clr32)
static void
bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
{
uint32_t regval;
BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, bits));
regval = pci_config_get32(bgep->cfg_handle, regno);
BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
(void *)bgep, regno, bits, regval, regval & ~bits));
regval &= ~bits;
pci_config_put32(bgep->cfg_handle, regno, regval);
}
#if BGE_IND_IO32
/*
* Indirect access to registers & RISC scratchpads, using config space
* accesses only.
*
* This isn't currently used, but someday we might want to use it for
* restoring the Subsystem Device/Vendor registers (which aren't directly
* writable in Config Space), or for downloading firmware into the RISCs
*
* In any case there are endian issues to be resolved before this code is
* enabled; the bizarre way that bytes get twisted by this chip AND by
* the PCI bridge in SPARC systems mean that we shouldn't enable it until
* it's been thoroughly tested for all access sizes on all supported
* architectures (SPARC *and* x86!).
*/
uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
#pragma inline(bge_ind_get32)
uint32_t
bge_ind_get32(bge_t *bgep, bge_regno_t regno)
{
uint32_t val;
BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
(void *)bgep, regno, val));
val = LE_32(val);
return (val);
}
void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
#pragma inline(bge_ind_put32)
void
bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
{
BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, val));
val = LE_32(val);
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
}
#endif /* BGE_IND_IO32 */
#if BGE_DEBUGGING
static void bge_pci_check(bge_t *bgep);
#pragma no_inline(bge_pci_check)
static void
bge_pci_check(bge_t *bgep)
{
uint16_t pcistatus;
pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
(void *)bgep, pcistatus));
}
#endif /* BGE_DEBUGGING */
/*
* Perform first-stage chip (re-)initialisation, using only config-space
* accesses:
*
* + Read the vendor/device/revision/subsystem/cache-line-size registers,
* returning the data in the structure pointed to by <idp>.
* + Configure the target-mode endianness (swap) options.
* + Disable interrupts and enable Memory Space accesses.
* + Enable or disable Bus Mastering according to the <enable_dma> flag.
*
* This sequence is adapted from Broadcom document 570X-PG102-R,
* page 102, steps 1-3, 6-8 and 11-13. The omitted parts of the sequence
* are 4 and 5 (Reset Core and wait) which are handled elsewhere.
*
* This function MUST be called before any non-config-space accesses
* are made; on this first call <enable_dma> is B_FALSE, and it
* effectively performs steps 3-1(!) of the initialisation sequence
* (the rest are not required but should be harmless).
*
* It MUST also be called after a chip reset, as this disables
* Memory Space cycles! In this case, <enable_dma> is B_TRUE, and
* it is effectively performing steps 6-8.
*/
void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
#pragma no_inline(bge_chip_cfg_init)
void
bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
{
ddi_acc_handle_t handle;
uint16_t command;
uint32_t mhcr;
uint16_t value16;
int i;
BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
(void *)bgep, (void *)cidp, enable_dma));
/*
* Step 3: save PCI cache line size and subsystem vendor ID
*
* Read all the config-space registers that characterise the
* chip, specifically vendor/device/revision/subsystem vendor
* and subsystem device id. We expect (but don't check) that
* (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
*
* Also save all bus-transaction related registers (cache-line
* size, bus-grant/latency parameters, etc). Some of these are
* cleared by reset, so we'll have to restore them later. This
* comes from the Broadcom document 570X-PG102-R ...
*
* Note: Broadcom document 570X-PG102-R seems to be in error
* here w.r.t. the offsets of the Subsystem Vendor ID and
* Subsystem (Device) ID registers, which are the opposite way
* round according to the PCI standard. For good measure, we
* save/restore both anyway.
*/
handle = bgep->cfg_handle;
mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
cidp->vendor, cidp->device, cidp->revision));
BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
cidp->subven, cidp->subdev, cidp->asic_rev));
BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
cidp->clsize, cidp->latency, cidp->command));
/*
* Step 2 (also step 6): disable and clear interrupts.
* Steps 11-13: configure PIO endianness options, and enable
* indirect register access. We'll also select any other
* options controlled by the MHCR (e.g. tagged status, mask
* interrupt mode) at this stage ...
*
* Note: internally, the chip is 64-bit and BIG-endian, but
* since it talks to the host over a (LITTLE-endian) PCI bus,
* it normally swaps bytes around at the PCI interface.
* However, the PCI host bridge on SPARC systems normally
* swaps the byte lanes around too, since SPARCs are also
* BIG-endian. So it turns out that on SPARC, the right
* option is to tell the chip to swap (and the host bridge
* will swap back again), whereas on x86 we ask the chip
* NOT to swap, so the natural little-endianness of the
* PCI bus is assumed. Then the only thing that doesn't
* automatically work right is access to an 8-byte register
* by a little-endian host; but we don't want to set the
* MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
* accesses don't go where expected ;-( So we live with
* that, and perform word-swaps in software in the few cases
* where a chip register is defined as an 8-byte value --
* see the code below for details ...
*
* Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
* very clear in the register description in the PRM, but
* Broadcom document 570X-PG104-R page 248 explains a little
* more (under "Broadcom Mask Mode"). The bit changes the way
* the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
* clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
* way as the 5700 did, which isn't very convenient. Setting
* the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
* bit do just what its name says -- MASK the PCI #INTA output
* (i.e. deassert the signal at the pin) leaving all internal
* state unchanged. This is much more convenient for our
* interrupt handler, so we set MASK_INTERRUPT_MODE here.
*
* Note: the inconvenient semantics of the interrupt mailbox
* (nonzero disables and acknowledges/clears the interrupt,
* zero enables AND CLEARS it) would make race conditions
* likely in the interrupt handler:
*
* (1) acknowledge & disable interrupts
* (2) while (more to do)
* process packets
* (3) enable interrupts -- also clears pending
*
* If the chip received more packets and internally generated
* an interrupt between the check at (2) and the mbox write
* at (3), this interrupt would be lost :-(
*
* The best way to avoid this is to use TAGGED STATUS mode,
* where the chip includes a unique tag in each status block
* update, and the host, when re-enabling interrupts, passes
* the last tag it saw back to the chip; then the chip can
* see whether the host is truly up to date, and regenerate
* its interrupt if not.
*/
mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
MHCR_ENABLE_TAGGED_STATUS_MODE |
MHCR_MASK_INTERRUPT_MODE |
MHCR_CLEAR_INTERRUPT_INTA;
if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
#ifdef _BIG_ENDIAN
mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
#endif /* _BIG_ENDIAN */
pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
#ifdef BGE_IPMI_ASF
bgep->asf_wordswapped = B_FALSE;
#endif
/*
* Step 1 (also step 7): Enable PCI Memory Space accesses
* Disable Memory Write/Invalidate
* Enable or disable Bus Mastering
*
* Note that all other bits are taken from the original value saved
* the first time through here, rather than from the current register
* value, 'cos that will have been cleared by a soft RESET since.
* In this way we preserve the OBP/nexus-parent's preferred settings
* of the parity-error and system-error enable bits across multiple
* chip RESETs.
*/
command = bgep->chipid.command | PCI_COMM_MAE;
command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
if (enable_dma)
command |= PCI_COMM_ME;
/*
* on BCM5714 revision A0, false parity error gets generated
* due to a logic bug. Provide a workaround by disabling parity
* error.
*/
if (((cidp->device == DEVICE_ID_5714C) ||
(cidp->device == DEVICE_ID_5714S)) &&
(cidp->revision == REVISION_ID_5714_A0)) {
command &= ~PCI_COMM_PARITY_DETECT;
}
pci_config_put16(handle, PCI_CONF_COMM, command);
/*
* On some PCI-E device, there were instances when
* the device was still link training.
*/
if (bgep->chipid.pci_type == BGE_PCI_E) {
i = 0;
value16 = pci_config_get16(handle, PCI_CONF_COMM);
while ((value16 != command) && (i < 100)) {
drv_usecwait(200);
value16 = pci_config_get16(handle, PCI_CONF_COMM);
++i;
}
}
/*
* Clear any remaining error status bits
*/
pci_config_put16(handle, PCI_CONF_STAT, ~0);
/*
* Do following if and only if the device is NOT BCM5714C OR
* BCM5715C
*/
if (!((cidp->device == DEVICE_ID_5714C) ||
(cidp->device == DEVICE_ID_5715C))) {
/*
* Make sure these indirect-access registers are sane
* rather than random after power-up or reset
*/
pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
}
/*
* Step 8: Disable PCI-X/PCI-E Relaxed Ordering
*/
bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
if (cidp->pci_type == BGE_PCI_E)
bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
}
#ifdef __amd64
/*
* Distinguish CPU types
*
* These use to distinguish AMD64 or Intel EM64T of CPU running mode.
* If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
* for PCI-Express based network interface card. This is the work-around
* for those nics.
*/
static boolean_t bge_get_em64t_type(void);
#pragma inline(bge_get_em64t_type)
static boolean_t
bge_get_em64t_type(void)
{
return (x86_vendor == X86_VENDOR_Intel);
}
#endif
/*
* Operating register get/set access routines
*/
uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
#pragma inline(bge_reg_get32)
uint32_t
bge_reg_get32(bge_t *bgep, bge_regno_t regno)
{
BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
(void *)bgep, regno));
return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
}
void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
#pragma inline(bge_reg_put32)
void
bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
{
BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, data));
ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
BGE_PCICHK(bgep);
}
void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
#pragma inline(bge_reg_set32)
void
bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
{
uint32_t regval;
BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, bits));
regval = bge_reg_get32(bgep, regno);
regval |= bits;
bge_reg_put32(bgep, regno, regval);
}
void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
#pragma inline(bge_reg_clr32)
void
bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
{
uint32_t regval;
BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, bits));
regval = bge_reg_get32(bgep, regno);
regval &= ~bits;
bge_reg_put32(bgep, regno, regval);
}
static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
#pragma inline(bge_reg_get64)
static uint64_t
bge_reg_get64(bge_t *bgep, bge_regno_t regno)
{
uint64_t regval;
#ifdef __amd64
if (bge_get_em64t_type()) {
regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
regval <<= 32;
regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
} else {
regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
}
#else
regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
#endif
#ifdef _LITTLE_ENDIAN
regval = (regval >> 32) | (regval << 32);
#endif /* _LITTLE_ENDIAN */
BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
(void *)bgep, regno, regval));
return (regval);
}
static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
#pragma inline(bge_reg_put64)
static void
bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
{
BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
(void *)bgep, regno, data));
#ifdef _LITTLE_ENDIAN
data = ((data >> 32) | (data << 32));
#endif /* _LITTLE_ENDIAN */
#ifdef __amd64
if (bge_get_em64t_type()) {
ddi_put32(bgep->io_handle,
PIO_ADDR(bgep, regno), (uint32_t)data);
BGE_PCICHK(bgep);
ddi_put32(bgep->io_handle,
PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
} else {
ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
}
#else
ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
#endif
BGE_PCICHK(bgep);
}
/*
* The DDI doesn't provide get/put functions for 128 bit data
* so we put RCBs out as two 64-bit chunks instead.
*/
static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
#pragma inline(bge_reg_putrcb)
static void
bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
{
uint64_t *p;
BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
(void *)bgep, addr, rcbp->host_ring_addr,
rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
ASSERT((addr % sizeof (*rcbp)) == 0);
p = (void *)rcbp;
bge_reg_put64(bgep, addr, *p++);
bge_reg_put64(bgep, addr+8, *p);
}
void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
#pragma inline(bge_mbx_put)
void
bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
{
BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
(void *)bgep, regno, data));
/*
* Mailbox registers are nominally 64 bits on the 5701, but
* the MSW isn't used. On the 5703, they're only 32 bits
* anyway. So here we just write the lower(!) 32 bits -
* remembering that the chip is big-endian, even though the
* PCI bus is little-endian ...
*/
#ifdef _BIG_ENDIAN
ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
#else
ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
#endif /* _BIG_ENDIAN */
BGE_PCICHK(bgep);
}
#if BGE_DEBUGGING
void bge_led_mark(bge_t *bgep);
#pragma no_inline(bge_led_mark)
void
bge_led_mark(bge_t *bgep)
{
uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
LED_CONTROL_1000MBPS_LED |
LED_CONTROL_100MBPS_LED |
LED_CONTROL_10MBPS_LED;
/*
* Blink all three LINK LEDs on simultaneously, then all off,
* then restore to automatic hardware control. This is used
* in laboratory testing to trigger a logic analyser or scope.
*/
bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
led_ctrl = LED_CONTROL_OVERRIDE_LINK;
bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
}
#endif /* BGE_DEBUGGING */
/*
* NIC on-chip memory access routines
*
* Only 32K of NIC memory is visible at a time, controlled by the
* Memory Window Base Address Register (in PCI config space). Once
* this is set, the 32K region of NIC-local memory that it refers
* to can be directly addressed in the upper 32K of the 64K of PCI
* memory space used for the device.
*/
static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
#pragma inline(bge_nic_setwin)
static void
bge_nic_setwin(bge_t *bgep, bge_regno_t base)
{
chip_id_t *cidp;
BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
(void *)bgep, base));
ASSERT((base & MWBAR_GRANULE_MASK) == 0);
/*
* Don't do repeated zero data writes,
* if the device is BCM5714C/15C.
*/
cidp = &bgep->chipid;
if ((cidp->device == DEVICE_ID_5714C) ||
(cidp->device == DEVICE_ID_5715C)) {
if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
return;
/* Adjust lastWriteZeroData */
bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
B_TRUE : B_FALSE);
}
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
}
static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
#pragma inline(bge_nic_get32)
static uint32_t
bge_nic_get32(bge_t *bgep, bge_regno_t addr)
{
uint32_t data;
#if defined(BGE_IPMI_ASF) && !defined(__sparc)
if (bgep->asf_enabled && !bgep->asf_wordswapped) {
/* workaround for word swap error */
if (addr & 4)
addr = addr - 4;
else
addr = addr + 4;
}
#endif
#ifdef __sparc
data = bge_nic_read32(bgep, addr);
#else
bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
addr &= MWBAR_GRANULE_MASK;
addr += NIC_MEM_WINDOW_OFFSET;
data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
#endif
BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
(void *)bgep, addr, data));
return (data);
}
void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
#pragma inline(bge_nic_put32)
void
bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
{
BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
(void *)bgep, addr, data));
#if defined(BGE_IPMI_ASF) && !defined(__sparc)
if (bgep->asf_enabled && !bgep->asf_wordswapped) {
/* workaround for word swap error */
if (addr & 4)
addr = addr - 4;
else
addr = addr + 4;
}
#endif
#ifdef __sparc
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
data = LE_32(data);
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
#else
bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
addr &= MWBAR_GRANULE_MASK;
addr += NIC_MEM_WINDOW_OFFSET;
ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
BGE_PCICHK(bgep);
#endif
}
static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
#pragma inline(bge_nic_get64)
static uint64_t
bge_nic_get64(bge_t *bgep, bge_regno_t addr)
{
uint64_t data;
bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
addr &= MWBAR_GRANULE_MASK;
addr += NIC_MEM_WINDOW_OFFSET;
#ifdef __amd64
if (bge_get_em64t_type()) {
data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
data <<= 32;
data |= ddi_get32(bgep->io_handle,
PIO_ADDR(bgep, addr + 4));
} else {
data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
}
#else
data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
#endif
BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
(void *)bgep, addr, data));
return (data);
}
static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
#pragma inline(bge_nic_put64)
static void
bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
{
BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
(void *)bgep, addr, data));
bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
addr &= MWBAR_GRANULE_MASK;
addr += NIC_MEM_WINDOW_OFFSET;
#ifdef __amd64
if (bge_get_em64t_type()) {
ddi_put32(bgep->io_handle,
PIO_ADDR(bgep, addr), (uint32_t)data);
BGE_PCICHK(bgep);
ddi_put32(bgep->io_handle,
PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
} else {
ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
}
#else
ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
#endif
BGE_PCICHK(bgep);
}
/*
* The DDI doesn't provide get/put functions for 128 bit data
* so we put RCBs out as two 64-bit chunks instead.
*/
static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
#pragma inline(bge_nic_putrcb)
static void
bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
{
uint64_t *p;
BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
(void *)bgep, addr, rcbp->host_ring_addr,
rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
ASSERT((addr % sizeof (*rcbp)) == 0);
bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
addr &= MWBAR_GRANULE_MASK;
addr += NIC_MEM_WINDOW_OFFSET;
p = (void *)rcbp;
#ifdef __amd64
if (bge_get_em64t_type()) {
ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
(uint32_t)(*p));
ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
(uint32_t)(*p >> 32));
ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
(uint32_t)(*(p + 1)));
ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
(uint32_t)(*p >> 32));
} else {
ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
}
#else
ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
#endif
BGE_PCICHK(bgep);
}
static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
#pragma inline(bge_nic_zero)
static void
bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
{
BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
(void *)bgep, addr, nbytes));
ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
((addr+nbytes) & ~MWBAR_GRANULE_MASK));
bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
addr &= MWBAR_GRANULE_MASK;
addr += NIC_MEM_WINDOW_OFFSET;
(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
nbytes, 1, DDI_DATA_SZ08_ACC);
BGE_PCICHK(bgep);
}
/*
* MII (PHY) register get/set access routines
*
* These use the chip's MII auto-access method, controlled by the
* MII Communication register at 0x044c, so the CPU doesn't have
* to fiddle with the individual bits.
*/
#undef BGE_DBG
#define BGE_DBG BGE_DBG_MII /* debug flag for this code */
static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
uint16_t data, uint32_t cmd);
#pragma no_inline(bge_mii_access)
static uint16_t
bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
{
uint32_t timeout;
uint32_t regval1;
uint32_t regval2;
BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
(void *)bgep, regno, data, cmd));
ASSERT(mutex_owned(bgep->genlock));
/*
* Assemble the command ...
*/
cmd |= data << MI_COMMS_DATA_SHIFT;
cmd |= regno << MI_COMMS_REGISTER_SHIFT;
cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
cmd |= MI_COMMS_START;
/*
* Wait for any command already in progress ...
*
* Note: this *shouldn't* ever find that there is a command
* in progress, because we already hold the <genlock> mutex.
* Nonetheless, we have sometimes seen the MI_COMMS_START
* bit set here -- it seems that the chip can initiate MII
* accesses internally, even with polling OFF.
*/
regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
for (timeout = 100; ; ) {
if ((regval2 & MI_COMMS_START) == 0) {
bge_reg_put32(bgep, MI_COMMS_REG, cmd);
break;
}
if (--timeout == 0)
break;
drv_usecwait(10);
regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
}
if (timeout == 0)
return ((uint16_t)~0u);
if (timeout != 100)
BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
"MI_COMMS_START set for %d us; 0x%x->0x%x",
cmd, 10*(100-timeout), regval1, regval2));
regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
for (timeout = 1000; ; ) {
if ((regval1 & MI_COMMS_START) == 0)
break;
if (--timeout == 0)
break;
drv_usecwait(10);
regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
}
/*
* Drop out early if the READ FAILED bit is set -- this chip
* could be a 5703/4S, with a SerDes instead of a PHY!
*/
if (regval2 & MI_COMMS_READ_FAILED)
return ((uint16_t)~0u);
if (timeout == 0)
return ((uint16_t)~0u);
/*
* The PRM says to wait 5us after seeing the START bit clear
* and then re-read the register to get the final value of the
* data field, in order to avoid a race condition where the
* START bit is clear but the data field isn't yet valid.
*
* Note: we don't actually seem to be encounter this race;
* except when the START bit is seen set again (see below),
* the data field doesn't change during this 5us interval.
*/
drv_usecwait(5);
regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
/*
* Unfortunately, when following the PRMs instructions above,
* we have occasionally seen the START bit set again(!) in the
* value read after the 5us delay. This seems to be due to the
* chip autonomously starting another MII access internally.
* In such cases, the command/data/etc fields relate to the
* internal command, rather than the one that we thought had
* just finished. So in this case, we fall back to returning
* the data from the original read that showed START clear.
*/
if (regval2 & MI_COMMS_START) {
BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
"MI_COMMS_START set after transaction; 0x%x->0x%x",
cmd, regval1, regval2));
regval2 = regval1;
}
if (regval2 & MI_COMMS_START)
return ((uint16_t)~0u);
if (regval2 & MI_COMMS_READ_FAILED)
return ((uint16_t)~0u);
return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
}
uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
#pragma no_inline(bge_mii_get16)
uint16_t
bge_mii_get16(bge_t *bgep, bge_regno_t regno)
{
BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
(void *)bgep, regno));
ASSERT(mutex_owned(bgep->genlock));
return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
}
void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
#pragma no_inline(bge_mii_put16)
void
bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
{
BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, data));
ASSERT(mutex_owned(bgep->genlock));
(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
}
#undef BGE_DBG
#define BGE_DBG BGE_DBG_SEEPROM /* debug flag for this code */
#if BGE_SEE_IO32 || BGE_FLASH_IO32
/*
* Basic SEEPROM get/set access routine
*
* This uses the chip's SEEPROM auto-access method, controlled by the
* Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
* doesn't have to fiddle with the individual bits.
*
* The caller should hold <genlock> and *also* have already acquired
* the right to access the SEEPROM, via bge_nvmem_acquire() above.
*
* Return value:
* 0 on success,
* ENODATA on access timeout (maybe retryable: device may just be busy)
* EPROTO on other h/w or s/w errors.
*
* <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
* from a (successful) SEEPROM_ACCESS_READ.
*/
static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
uint32_t *dp);
#pragma no_inline(bge_seeprom_access)
static int
bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
{
uint32_t tries;
uint32_t regval;
ASSERT(mutex_owned(bgep->genlock));
/*
* On the newer chips that support both SEEPROM & Flash, we need
* to specifically enable SEEPROM access (Flash is the default).
* On older chips, we don't; SEEPROM is the only NVtype supported,
* and the NVM control registers don't exist ...
*/
switch (bgep->chipid.nvtype) {
case BGE_NVTYPE_NONE:
case BGE_NVTYPE_UNKNOWN:
_NOTE(NOTREACHED)
case BGE_NVTYPE_SEEPROM:
break;
case BGE_NVTYPE_LEGACY_SEEPROM:
case BGE_NVTYPE_UNBUFFERED_FLASH:
case BGE_NVTYPE_BUFFERED_FLASH:
default:
bge_reg_set32(bgep, NVM_CONFIG1_REG,
NVM_CFG1_LEGACY_SEEPROM_MODE);
break;
}
/*
* Check there's no command in progress.
*
* Note: this *shouldn't* ever find that there is a command
* in progress, because we already hold the <genlock> mutex.
* Also, to ensure we don't have a conflict with the chip's
* internal firmware or a process accessing the same (shared)
* SEEPROM through the other port of a 5704, we've already
* been through the "software arbitration" protocol.
* So this is just a final consistency check: we shouldn't
* see EITHER the START bit (command started but not complete)
* OR the COMPLETE bit (command completed but not cleared).
*/
regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
if (regval & SEEPROM_ACCESS_START)
return (EPROTO);
if (regval & SEEPROM_ACCESS_COMPLETE)
return (EPROTO);
/*
* Assemble the command ...
*/
cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
cmd |= SEEPROM_ACCESS_START;
cmd |= SEEPROM_ACCESS_COMPLETE;
cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
/*
* By observation, a successful access takes ~20us on a 5703/4,
* but apparently much longer (up to 1000us) on the obsolescent
* BCM5700/BCM5701. We want to be sure we don't get any false
* timeouts here; but OTOH, we don't want a bogus access to lock
* out interrupts for longer than necessary. So we'll allow up
* to 1000us ...
*/
for (tries = 0; tries < 1000; ++tries) {
regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
if (regval & SEEPROM_ACCESS_COMPLETE)
break;
drv_usecwait(1);
}
if (regval & SEEPROM_ACCESS_COMPLETE) {
/*
* All OK; read the SEEPROM data register, then write back
* the value read from the address register in order to
* clear the <complete> bit and leave the SEEPROM access
* state machine idle, ready for the next access ...
*/
BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
return (0);
}
/*
* Hmm ... what happened here?
*
* Most likely, the user addressed a non-existent SEEPROM. Or
* maybe the SEEPROM was busy internally (e.g. processing a write)
* and didn't respond to being addressed. Either way, it's left
* the SEEPROM access state machine wedged. So we'll reset it
* before we leave, so it's ready for next time ...
*/
BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
return (ENODATA);
}
/*
* Basic Flash get/set access routine
*
* These use the chip's Flash auto-access method, controlled by the
* Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
* fiddle with the individual bits.
*
* The caller should hold <genlock> and *also* have already acquired
* the right to access the Flash, via bge_nvmem_acquire() above.
*
* Return value:
* 0 on success,
* ENODATA on access timeout (maybe retryable: device may just be busy)
* ENODEV if the NVmem device is missing or otherwise unusable
*
* <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
* from a (successful) NVM_FLASH_CMD_RD.
*/
static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
uint32_t *dp);
#pragma no_inline(bge_flash_access)
static int
bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
{
uint32_t tries;
uint32_t regval;
ASSERT(mutex_owned(bgep->genlock));
/*
* On the newer chips that support both SEEPROM & Flash, we need
* to specifically disable SEEPROM access while accessing Flash.
* The older chips don't support Flash, and the NVM registers don't
* exist, so we shouldn't be here at all!
*/
switch (bgep->chipid.nvtype) {
case BGE_NVTYPE_NONE:
case BGE_NVTYPE_UNKNOWN:
_NOTE(NOTREACHED)
case BGE_NVTYPE_SEEPROM:
return (ENODEV);
case BGE_NVTYPE_LEGACY_SEEPROM:
case BGE_NVTYPE_UNBUFFERED_FLASH:
case BGE_NVTYPE_BUFFERED_FLASH:
default:
bge_reg_clr32(bgep, NVM_CONFIG1_REG,
NVM_CFG1_LEGACY_SEEPROM_MODE);
break;
}
/*
* Assemble the command ...
*/
addr &= NVM_FLASH_ADDR_MASK;
cmd |= NVM_FLASH_CMD_DOIT;
cmd |= NVM_FLASH_CMD_FIRST;
cmd |= NVM_FLASH_CMD_LAST;
cmd |= NVM_FLASH_CMD_DONE;
bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
/*
* Allow up to 1000ms ...
*/
for (tries = 0; tries < 1000; ++tries) {
regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
if (regval & NVM_FLASH_CMD_DONE)
break;
drv_usecwait(1);
}
if (regval & NVM_FLASH_CMD_DONE) {
/*
* All OK; read the data from the Flash read register
*/
BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
return (0);
}
/*
* Hmm ... what happened here?
*
* Most likely, the user addressed a non-existent Flash. Or
* maybe the Flash was busy internally (e.g. processing a write)
* and didn't respond to being addressed. Either way, there's
* nothing we can here ...
*/
BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
return (ENODATA);
}
/*
* The next two functions regulate access to the NVram (if fitted).
*
* On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
* (SPI) interface, but they can be accessed through either port. These
* are managed by different instance of this driver and have no software
* state in common.
*
* In addition (and even on a single core chip) the chip's internal
* firmware can access the SEEPROM/Flash, most notably after a RESET
* when it may download code to run internally.
*
* So we need to arbitrate between these various software agents. For
* this purpose, the chip provides the Software Arbitration Register,
* which implements hardware(!) arbitration.
*
* This functionality didn't exist on older (5700/5701) chips, so there's
* nothing we can do by way of arbitration on those; also, if there's no
* SEEPROM/Flash fitted (or we couldn't determine what type), there's also
* nothing to do.
*
* The internal firmware appears to use Request 0, which is the highest
* priority. So we'd like to use Request 2, leaving one higher and one
* lower for any future developments ... but apparently this doesn't
* always work. So for now, the code uses Request 1 ;-(
*/
#define NVM_READ_REQ NVM_READ_REQ1
#define NVM_RESET_REQ NVM_RESET_REQ1
#define NVM_SET_REQ NVM_SET_REQ1
static void bge_nvmem_relinquish(bge_t *bgep);
#pragma no_inline(bge_nvmem_relinquish)
static void
bge_nvmem_relinquish(bge_t *bgep)
{
ASSERT(mutex_owned(bgep->genlock));
switch (bgep->chipid.nvtype) {
case BGE_NVTYPE_NONE:
case BGE_NVTYPE_UNKNOWN:
_NOTE(NOTREACHED)
return;
case BGE_NVTYPE_SEEPROM:
/*
* No arbitration performed, no release needed
*/
return;
case BGE_NVTYPE_LEGACY_SEEPROM:
case BGE_NVTYPE_UNBUFFERED_FLASH:
case BGE_NVTYPE_BUFFERED_FLASH:
default:
break;
}
/*
* Our own request should be present (whether or not granted) ...
*/
(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
/*
* ... this will make it go away.
*/
bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
}
/*
* Arbitrate for access to the NVmem, if necessary
*
* Return value:
* 0 on success
* EAGAIN if the device is in use (retryable)
* ENODEV if the NVmem device is missing or otherwise unusable
*/
static int bge_nvmem_acquire(bge_t *bgep);
#pragma no_inline(bge_nvmem_acquire)
static int
bge_nvmem_acquire(bge_t *bgep)
{
uint32_t regval;
uint32_t tries;
ASSERT(mutex_owned(bgep->genlock));
switch (bgep->chipid.nvtype) {
case BGE_NVTYPE_NONE:
case BGE_NVTYPE_UNKNOWN:
/*
* Access denied: no (recognisable) device fitted
*/
return (ENODEV);
case BGE_NVTYPE_SEEPROM:
/*
* Access granted: no arbitration needed (or possible)
*/
return (0);
case BGE_NVTYPE_LEGACY_SEEPROM:
case BGE_NVTYPE_UNBUFFERED_FLASH:
case BGE_NVTYPE_BUFFERED_FLASH:
default:
/*
* Access conditional: conduct arbitration protocol
*/
break;
}
/*
* We're holding the per-port mutex <genlock>, so no-one other
* thread can be attempting to access the NVmem through *this*
* port. But it could be in use by the *other* port (of a 5704),
* or by the chip's internal firmware, so we have to go through
* the full (hardware) arbitration protocol ...
*
* Note that *because* we're holding <genlock>, the interrupt handler
* won't be able to progress. So we're only willing to spin for a
* fairly short time. Specifically:
*
* We *must* wait long enough for the hardware to resolve all
* requests and determine the winner. Fortunately, this is
* "almost instantaneous", even as observed by GHz CPUs.
*
* A successful access by another Solaris thread (via either
* port) typically takes ~20us. So waiting a bit longer than
* that will give a good chance of success, if the other user
* *is* another thread on the other port.
*
* However, the internal firmware can hold on to the NVmem
* for *much* longer: at least 10 milliseconds just after a
* RESET, and maybe even longer if the NVmem actually contains
* code to download and run on the internal CPUs.
*
* So, we'll allow 50us; if that's not enough then it's up to the
* caller to retry later (hence the choice of return code EAGAIN).
*/
regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
for (tries = 0; tries < 50; ++tries) {
regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
if (regval & NVM_WON_REQ1)
break;
drv_usecwait(1);
}
if (regval & NVM_WON_REQ1) {
BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
return (0);
}
/*
* Somebody else must be accessing the NVmem, so abandon our
* attempt take control of it. The caller can try again later ...
*/
BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
bge_nvmem_relinquish(bgep);
return (EAGAIN);
}
/*
* This code assumes that the GPIO1 bit has been wired up to the NVmem
* write protect line in such a way that the NVmem is protected when
* GPIO1 is an input, or is an output but driven high. Thus, to make the
* NVmem writable we have to change GPIO1 to an output AND drive it low.
*
* Note: there's only one set of GPIO pins on a 5704, even though they
* can be accessed through either port. So the chip has to resolve what
* happens if the two ports program a single pin differently ... the rule
* it uses is that if the ports disagree about the *direction* of a pin,
* "output" wins over "input", but if they disagree about its *value* as
* an output, then the pin is TRISTATED instead! In such a case, no-one
* wins, and the external signal does whatever the external circuitry
* defines as the default -- which we've assumed is the PROTECTED state.
* So, we always change GPIO1 back to being an *input* whenever we're not
* specifically using it to unprotect the NVmem. This allows either port
* to update the NVmem, although obviously only one at a time!
*
* The caller should hold <genlock> and *also* have already acquired the
* right to access the NVmem, via bge_nvmem_acquire() above.
*/
static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
#pragma inline(bge_nvmem_protect)
static void
bge_nvmem_protect(bge_t *bgep, boolean_t protect)
{
uint32_t regval;
ASSERT(mutex_owned(bgep->genlock));
regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
if (protect) {
regval |= MLCR_MISC_PINS_OUTPUT_1;
regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
} else {
regval &= ~MLCR_MISC_PINS_OUTPUT_1;
regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
}
bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
}
/*
* Now put it all together ...
*
* Try to acquire control of the NVmem; if successful, then:
* unprotect it (if we want to write to it)
* perform the requested access
* reprotect it (after a write)
* relinquish control
*
* Return value:
* 0 on success,
* EAGAIN if the device is in use (retryable)
* ENODATA on access timeout (maybe retryable: device may just be busy)
* ENODEV if the NVmem device is missing or otherwise unusable
* EPROTO on other h/w or s/w errors.
*/
static int
bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
{
int err;
if ((err = bge_nvmem_acquire(bgep)) == 0) {
switch (cmd) {
case BGE_SEE_READ:
err = bge_seeprom_access(bgep,
SEEPROM_ACCESS_READ, addr, dp);
break;
case BGE_SEE_WRITE:
bge_nvmem_protect(bgep, B_FALSE);
err = bge_seeprom_access(bgep,
SEEPROM_ACCESS_WRITE, addr, dp);
bge_nvmem_protect(bgep, B_TRUE);
break;
case BGE_FLASH_READ:
if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
DEVICE_5714_SERIES_CHIPSETS(bgep)) {
bge_reg_set32(bgep, NVM_ACCESS_REG,
NVM_ACCESS_ENABLE);
}
err = bge_flash_access(bgep,
NVM_FLASH_CMD_RD, addr, dp);
if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
DEVICE_5714_SERIES_CHIPSETS(bgep)) {
bge_reg_clr32(bgep, NVM_ACCESS_REG,
NVM_ACCESS_ENABLE);
}
break;
case BGE_FLASH_WRITE:
if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
DEVICE_5714_SERIES_CHIPSETS(bgep)) {
bge_reg_set32(bgep, NVM_ACCESS_REG,
NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
}
bge_nvmem_protect(bgep, B_FALSE);
err = bge_flash_access(bgep,
NVM_FLASH_CMD_WR, addr, dp);
bge_nvmem_protect(bgep, B_TRUE);
if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
DEVICE_5714_SERIES_CHIPSETS(bgep)) {
bge_reg_clr32(bgep, NVM_ACCESS_REG,
NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
}
break;
default:
_NOTE(NOTREACHED)
break;
}
bge_nvmem_relinquish(bgep);
}
BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
return (err);
}
/*
* Attempt to get a MAC address from the SEEPROM or Flash, if any
*/
static uint64_t bge_get_nvmac(bge_t *bgep);
#pragma no_inline(bge_get_nvmac)
static uint64_t
bge_get_nvmac(bge_t *bgep)
{
uint32_t mac_high;
uint32_t mac_low;
uint32_t addr;
uint32_t cmd;
uint64_t mac;
BGE_TRACE(("bge_get_nvmac($%p)",
(void *)bgep));
switch (bgep->chipid.nvtype) {
case BGE_NVTYPE_NONE:
case BGE_NVTYPE_UNKNOWN:
default:
return (0ULL);
case BGE_NVTYPE_SEEPROM:
case BGE_NVTYPE_LEGACY_SEEPROM:
cmd = BGE_SEE_READ;
break;
case BGE_NVTYPE_UNBUFFERED_FLASH:
case BGE_NVTYPE_BUFFERED_FLASH:
cmd = BGE_FLASH_READ;
break;
}
addr = NVMEM_DATA_MAC_ADDRESS;
if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
return (0ULL);
addr += 4;
if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
return (0ULL);
/*
* The Broadcom chip is natively BIG-endian, so that's how the
* MAC address is represented in NVmem. We may need to swap it
* around on a little-endian host ...
*/
#ifdef _BIG_ENDIAN
mac = mac_high;
mac = mac << 32;
mac |= mac_low;
#else
mac = BGE_BSWAP_32(mac_high);
mac = mac << 32;
mac |= BGE_BSWAP_32(mac_low);
#endif /* _BIG_ENDIAN */
return (mac);
}
#else /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
/*
* Dummy version for when we're not supporting NVmem access
*/
static uint64_t bge_get_nvmac(bge_t *bgep);
#pragma inline(bge_get_nvmac)
static uint64_t
bge_get_nvmac(bge_t *bgep)
{
_NOTE(ARGUNUSED(bgep))
return (0ULL);
}
#endif /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
/*
* Determine the type of NVmem that is (or may be) attached to this chip,
*/
static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
#pragma no_inline(bge_nvmem_id)
static enum bge_nvmem_type
bge_nvmem_id(bge_t *bgep)
{
enum bge_nvmem_type nvtype;
uint32_t config1;
BGE_TRACE(("bge_nvmem_id($%p)",
(void *)bgep));
switch (bgep->chipid.device) {
default:
/*
* We shouldn't get here; it means we don't recognise
* the chip, which means we don't know how to determine
* what sort of NVmem (if any) it has. So we'll say
* NONE, to disable the NVmem access code ...
*/
nvtype = BGE_NVTYPE_NONE;
break;
case DEVICE_ID_5700:
case DEVICE_ID_5700x:
case DEVICE_ID_5701:
/*
* These devices support *only* SEEPROMs
*/
nvtype = BGE_NVTYPE_SEEPROM;
break;
case DEVICE_ID_5702:
case DEVICE_ID_5702fe:
case DEVICE_ID_5703C:
case DEVICE_ID_5703S:
case DEVICE_ID_5704C:
case DEVICE_ID_5704S:
case DEVICE_ID_5704:
case DEVICE_ID_5705M:
case DEVICE_ID_5705C:
case DEVICE_ID_5705_2:
case DEVICE_ID_5706:
case DEVICE_ID_5782:
case DEVICE_ID_5788:
case DEVICE_ID_5789:
case DEVICE_ID_5751:
case DEVICE_ID_5751M:
case DEVICE_ID_5752:
case DEVICE_ID_5752M:
case DEVICE_ID_5754:
case DEVICE_ID_5721:
case DEVICE_ID_5714C:
case DEVICE_ID_5714S:
case DEVICE_ID_5715C:
case DEVICE_ID_5715S:
config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
if (config1 & NVM_CFG1_FLASH_MODE)
if (config1 & NVM_CFG1_BUFFERED_MODE)
nvtype = BGE_NVTYPE_BUFFERED_FLASH;
else
nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
else
nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
break;
}
return (nvtype);
}
#undef BGE_DBG
#define BGE_DBG BGE_DBG_CHIP /* debug flag for this code */
static void
bge_init_recv_rule(bge_t *bgep)
{
bge_recv_rule_t *rulep;
uint32_t i;
/*
* receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
* 1. to direct UDP traffic, set:
* rulep->control = RULE_PROTO_CONTROL;
* rulep->mask_value = RULE_UDP_MASK_VALUE;
* 2. to direct ICMP traffic, set:
* rulep->control = RULE_PROTO_CONTROL;
* rulep->mask_value = RULE_ICMP_MASK_VALUE;
* 3. to direct traffic by source ip, set:
* rulep->control = RULE_SIP_CONTROL;
* rulep->mask_value = RULE_SIP_MASK_VALUE;
*/
rulep = bgep->recv_rules;
rulep->control = RULE_PROTO_CONTROL;
rulep->mask_value = RULE_TCP_MASK_VALUE;
/*
* set receive rule registers
*/
rulep = bgep->recv_rules;
for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
}
}
/*
* Using the values captured by bge_chip_cfg_init(), and additional probes
* as required, characterise the chip fully: determine the label by which
* to refer to this chip, the correct settings for various registers, and
* of course whether the device and/or subsystem are supported!
*/
int bge_chip_id_init(bge_t *bgep);
#pragma no_inline(bge_chip_id_init)
int
bge_chip_id_init(bge_t *bgep)
{
char buf[MAXPATHLEN]; /* any risk of stack overflow? */
boolean_t sys_ok;
boolean_t dev_ok;
chip_id_t *cidp;
uint32_t subid;
char *devname;
char *sysname;
int *ids;
int err;
uint_t i;
ASSERT(bgep->bge_chip_state == BGE_CHIP_INITIAL);
sys_ok = dev_ok = B_FALSE;
cidp = &bgep->chipid;
/*
* Check the PCI device ID to determine the generic chip type and
* select parameters that depend on this.
*
* Note: because the SPARC platforms in general don't fit the
* SEEPROM 'behind' the chip, the PCI revision ID register reads
* as zero - which is why we use <asic_rev> rather than <revision>
* below ...
*
* Note: in general we can't distinguish between the Copper/SerDes
* versions by ID alone, as some Copper devices (e.g. some but not
* all 5703Cs) have the same ID as the SerDes equivalents. So we
* treat them the same here, and the MII code works out the media
* type later on ...
*/
cidp->mbuf_base = bge_mbuf_pool_base;
cidp->mbuf_length = bge_mbuf_pool_len;
cidp->recv_slots = BGE_RECV_SLOTS_USED;
cidp->bge_dma_rwctrl = bge_dma_rwctrl;
cidp->pci_type = BGE_PCI_X;
cidp->statistic_type = BGE_STAT_BLK;
cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
cidp->mbuf_hi_water = bge_mbuf_hi_water;
if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
cidp->msi_enabled = B_FALSE;
switch (cidp->device) {
case DEVICE_ID_5700:
case DEVICE_ID_5700x:
cidp->chip_label = 5700;
cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
break;
case DEVICE_ID_5701:
cidp->chip_label = 5701;
dev_ok = B_TRUE;
cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
break;
case DEVICE_ID_5702:
case DEVICE_ID_5702fe:
cidp->chip_label = 5702;
dev_ok = B_TRUE;
cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
cidp->pci_type = BGE_PCI;
break;
case DEVICE_ID_5703C:
case DEVICE_ID_5703S:
case DEVICE_ID_5703:
/*
* Revision A0 of the 5703/5793 had various errata
* that we can't or don't work around, so it's not
* supported, but all later versions are
*/
cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
dev_ok = B_TRUE;
cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
break;
case DEVICE_ID_5704C:
case DEVICE_ID_5704S:
case DEVICE_ID_5704:
/*
* Revision A0 of the 5704/5794 had various errata
* but we have workarounds, so it *is* supported.
*/
cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
cidp->mbuf_base = bge_mbuf_pool_base_5704;
cidp->mbuf_length = bge_mbuf_pool_len_5704;
dev_ok = B_TRUE;
if (cidp->asic_rev < MHCR_CHIP_REV_5704_B0)
cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
break;
case DEVICE_ID_5705C:
case DEVICE_ID_5705M:
case DEVICE_ID_5705MA3:
case DEVICE_ID_5705F:
case DEVICE_ID_5705_2:
case DEVICE_ID_5754:
if (cidp->device == DEVICE_ID_5754) {
cidp->chip_label = 5754;
cidp->pci_type = BGE_PCI_E;
} else {
cidp->chip_label = 5705;
cidp->pci_type = BGE_PCI;
}
cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
cidp->mbuf_hi_water = MBUF_HIWAT_5705;
cidp->mbuf_base = bge_mbuf_pool_base_5705;
cidp->mbuf_length = bge_mbuf_pool_len_5705;
cidp->recv_slots = BGE_RECV_SLOTS_5705;
cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
cidp->flags |= CHIP_FLAG_NO_JUMBO;
cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
cidp->statistic_type = BGE_STAT_REG;
dev_ok = B_TRUE;
break;
case DEVICE_ID_5706:
cidp->chip_label = 5706;
cidp->flags |= CHIP_FLAG_NO_JUMBO;
break;
case DEVICE_ID_5782:
/*
* Apart from the label, we treat this as a 5705(?)
*/
cidp->chip_label = 5782;
cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
cidp->mbuf_hi_water = MBUF_HIWAT_5705;
cidp->mbuf_base = bge_mbuf_pool_base_5705;
cidp->mbuf_length = bge_mbuf_pool_len_5705;
cidp->recv_slots = BGE_RECV_SLOTS_5705;
cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
cidp->flags |= CHIP_FLAG_NO_JUMBO;
cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
cidp->statistic_type = BGE_STAT_REG;
dev_ok = B_TRUE;
break;
case DEVICE_ID_5788:
/*
* Apart from the label, we treat this as a 5705(?)
*/
cidp->chip_label = 5788;
cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
cidp->mbuf_hi_water = MBUF_HIWAT_5705;
cidp->mbuf_base = bge_mbuf_pool_base_5705;
cidp->mbuf_length = bge_mbuf_pool_len_5705;
cidp->recv_slots = BGE_RECV_SLOTS_5705;
cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
cidp->statistic_type = BGE_STAT_REG;
cidp->flags |= CHIP_FLAG_NO_JUMBO;
dev_ok = B_TRUE;
break;
case DEVICE_ID_5714C:
if (cidp->revision >= REVISION_ID_5714_A2)
cidp->msi_enabled = bge_enable_msi;
/* FALLTHRU */
case DEVICE_ID_5714S:
cidp->chip_label = 5714;
cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
cidp->mbuf_hi_water = MBUF_HIWAT_5705;
cidp->mbuf_base = bge_mbuf_pool_base_5721;
cidp->mbuf_length = bge_mbuf_pool_len_5721;
cidp->recv_slots = BGE_RECV_SLOTS_5721;
cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
cidp->bge_mlcr_default = bge_mlcr_default_5714;
cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
cidp->pci_type = BGE_PCI_E;
cidp->statistic_type = BGE_STAT_REG;
dev_ok = B_TRUE;
break;
case DEVICE_ID_5715C:
case DEVICE_ID_5715S:
cidp->chip_label = 5715;
cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
cidp->mbuf_hi_water = MBUF_HIWAT_5705;
cidp->mbuf_base = bge_mbuf_pool_base_5721;
cidp->mbuf_length = bge_mbuf_pool_len_5721;
cidp->recv_slots = BGE_RECV_SLOTS_5721;
cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
cidp->bge_mlcr_default = bge_mlcr_default_5714;
cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
cidp->pci_type = BGE_PCI_E;
cidp->statistic_type = BGE_STAT_REG;
if (cidp->revision >= REVISION_ID_5715_A2)
cidp->msi_enabled = bge_enable_msi;
dev_ok = B_TRUE;
break;
case DEVICE_ID_5721:
cidp->chip_label = 5721;
cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
cidp->mbuf_hi_water = MBUF_HIWAT_5705;
cidp->mbuf_base = bge_mbuf_pool_base_5721;
cidp->mbuf_length = bge_mbuf_pool_len_5721;
cidp->recv_slots = BGE_RECV_SLOTS_5721;
cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
cidp->pci_type = BGE_PCI_E;
cidp->statistic_type = BGE_STAT_REG;
cidp->flags |= CHIP_FLAG_NO_JUMBO;
dev_ok = B_TRUE;
break;
case DEVICE_ID_5751:
case DEVICE_ID_5751M:
cidp->chip_label = 5751;
cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
cidp->mbuf_hi_water = MBUF_HIWAT_5705;
cidp->mbuf_base = bge_mbuf_pool_base_5721;
cidp->mbuf_length = bge_mbuf_pool_len_5721;
cidp->recv_slots = BGE_RECV_SLOTS_5721;
cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
cidp->pci_type = BGE_PCI_E;
cidp->statistic_type = BGE_STAT_REG;
cidp->flags |= CHIP_FLAG_NO_JUMBO;
dev_ok = B_TRUE;
break;
case DEVICE_ID_5752:
case DEVICE_ID_5752M:
cidp->chip_label = 5752;
cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
cidp->mbuf_hi_water = MBUF_HIWAT_5705;
cidp->mbuf_base = bge_mbuf_pool_base_5721;
cidp->mbuf_length = bge_mbuf_pool_len_5721;
cidp->recv_slots = BGE_RECV_SLOTS_5721;
cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
cidp->pci_type = BGE_PCI_E;
cidp->statistic_type = BGE_STAT_REG;
cidp->flags |= CHIP_FLAG_NO_JUMBO;
dev_ok = B_TRUE;
break;
case DEVICE_ID_5789:
cidp->chip_label = 5789;
cidp->mbuf_base = bge_mbuf_pool_base_5721;
cidp->mbuf_length = bge_mbuf_pool_len_5721;
cidp->recv_slots = BGE_RECV_SLOTS_5721;
cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
cidp->pci_type = BGE_PCI_E;
cidp->statistic_type = BGE_STAT_REG;
cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
cidp->flags |= CHIP_FLAG_NO_JUMBO;
cidp->msi_enabled = B_TRUE;
dev_ok = B_TRUE;
break;
}
/*
* Setup the default jumbo parameter.
*/
cidp->ethmax_size = ETHERMAX;
cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
cidp->std_buf_size = BGE_STD_BUFF_SIZE;
/*
* If jumbo is enabled and this kind of chipset supports jumbo feature,
* setup below jumbo specific parameters.
*
* For BCM5714/5715, there is only one standard receive ring. So the
* std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
* feature is enabled.
*/
if (bge_jumbo_enable &&
!(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
(cidp->default_mtu > BGE_DEFAULT_MTU) &&
(cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
cidp->mbuf_lo_water_rdma =
RDMA_MBUF_LOWAT_5714_JUMBO;
cidp->mbuf_lo_water_rmac =
MAC_RX_MBUF_LOWAT_5714_JUMBO;
cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
cidp->jumbo_slots = 0;
cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
} else {
cidp->mbuf_lo_water_rdma =
RDMA_MBUF_LOWAT_JUMBO;
cidp->mbuf_lo_water_rmac =
MAC_RX_MBUF_LOWAT_JUMBO;
cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
}
cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
cidp->ethmax_size = cidp->default_mtu +
sizeof (struct ether_header);
}
/*
* Identify the NV memory type: SEEPROM or Flash?
*/
cidp->nvtype = bge_nvmem_id(bgep);
/*
* Now, we want to check whether this device is part of a
* supported subsystem (e.g., on the motherboard of a Sun
* branded platform).
*
* Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
*/
if (cidp->subven == VENDOR_ID_SUN)
sys_ok = B_TRUE;
/*
* Rule 2: If it's on the list on known subsystems, then it's OK.
* Note: 0x14e41647 should *not* appear in the list, but the code
* doesn't enforce that.
*/
err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
if (err == DDI_PROP_SUCCESS) {
/*
* Got the list; scan for a matching subsystem vendor/device
*/
subid = (cidp->subven << 16) | cidp->subdev;
while (i--)
if (ids[i] == subid)
sys_ok = B_TRUE;
ddi_prop_free(ids);
}
/*
* Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
*
* Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
* the Subsystem Vendor ID, so it defaults to Broadcom. Therefore,
* we have to check specially for the exact device paths to the
* motherboard devices on those platforms ;-(
*
* Note: we can't just use the "supported-subsystems" mechanism
* above, because the entry would have to be 0x14e41647 -- which
* would then accept *any* plugin card that *didn't* contain a
* (valid) SEEPROM ;-(
*/
sysname = ddi_node_name(ddi_root_node());
devname = ddi_pathname(bgep->devinfo, buf);
ASSERT(strlen(devname) > 0);
if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0) /* Taco */
if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
sys_ok = B_TRUE;
if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0) /* ENWS */
if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
sys_ok = B_TRUE;
/*
* Now check what we've discovered: is this truly a supported
* chip on (the motherboard of) a supported platform?
*
* Possible problems here:
* 1) it's a completely unheard-of chip (e.g. 5761)
* 2) it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
* 3) it's a chip we would support if it were on the motherboard
* of a Sun platform, but this one isn't ;-(
*/
if (cidp->chip_label == 0)
bge_problem(bgep,
"Device 'pci%04x,%04x' not recognized (%d?)",
cidp->vendor, cidp->device, cidp->device);
else if (!dev_ok)
bge_problem(bgep,
"Device 'pci%04x,%04x' (%d) revision %d not supported",
cidp->vendor, cidp->device, cidp->chip_label,
cidp->revision);
#if BGE_DEBUGGING
else if (!sys_ok)
bge_problem(bgep,
"%d-based subsystem 'pci%04x,%04x' not validated",
cidp->chip_label, cidp->subven, cidp->subdev);
#endif
else
cidp->flags |= CHIP_FLAG_SUPPORTED;
if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
return (EIO);
return (0);
}
void
bge_chip_msi_trig(bge_t *bgep)
{
uint32_t regval;
regval = bgep->param_msi_cnt<<4;
bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
}
/*
* Various registers that control the chip's internal engines (state
* machines) have a <reset> and <enable> bits (fortunately, in the
* same place in each such register :-).
*
* To reset the state machine, the <reset> bit must be written with 1;
* it will then read back as 1 while the reset is in progress, but
* self-clear to 0 when the reset completes.
*
* To enable a state machine, one must set the <enable> bit, which
* will continue to read back as 0 until the state machine is running.
*
* To disable a state machine, the <enable> bit must be cleared, but
* it will continue to read back as 1 until the state machine actually
* stops.
*
* This routine implements polling for completion of a reset, enable
* or disable operation, returning B_TRUE on success (bit reached the
* required state) or B_FALSE on timeout (200*100us == 20ms).
*/
static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
uint32_t mask, uint32_t val);
#pragma no_inline(bge_chip_poll_engine)
static boolean_t
bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
uint32_t mask, uint32_t val)
{
uint32_t regval;
uint32_t n;
BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
(void *)bgep, regno, mask, val));
for (n = 200; n; --n) {
regval = bge_reg_get32(bgep, regno);
if ((regval & mask) == val)
return (B_TRUE);
drv_usecwait(100);
}
bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
return (B_FALSE);
}
/*
* Various registers that control the chip's internal engines (state
* machines) have a <reset> bit (fortunately, in the same place in
* each such register :-). To reset the state machine, this bit must
* be written with 1; it will then read back as 1 while the reset is
* in progress, but self-clear to 0 when the reset completes.
*
* This code sets the bit, then polls for it to read back as zero.
* The return value is B_TRUE on success (reset bit cleared itself),
* or B_FALSE if the state machine didn't recover :(
*
* NOTE: the Core reset is similar to other resets, except that we
* can't poll for completion, since the Core reset disables memory
* access! So we just have to assume that it will all complete in
* 100us. See Broadcom document 570X-PG102-R, p102, steps 4-5.
*/
static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
#pragma no_inline(bge_chip_reset_engine)
static boolean_t
bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
{
uint32_t regval;
uint32_t val32;
regval = bge_reg_get32(bgep, regno);
BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
(void *)bgep, regno));
BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
regno, regval));
regval |= STATE_MACHINE_RESET_BIT;
switch (regno) {
case MISC_CONFIG_REG:
/*
* BCM5714/5721/5751 pcie chip special case. In order to avoid
* resetting PCIE block and bringing PCIE link down, bit 29
* in the register needs to be set first, and then set it again
* while the reset bit is written.
* See:P500 of 57xx-PG102-RDS.pdf.
*/
if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
DEVICE_5721_SERIES_CHIPSETS(bgep)||
DEVICE_5714_SERIES_CHIPSETS(bgep)) {
regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
if (bgep->chipid.pci_type == BGE_PCI_E) {
if (bgep->chipid.asic_rev ==
MHCR_CHIP_REV_5751_A0 ||
bgep->chipid.asic_rev ==
MHCR_CHIP_REV_5721_A0) {
val32 = bge_reg_get32(bgep,
PHY_TEST_CTRL_REG);
if (val32 == (PHY_PCIE_SCRAM_MODE |
PHY_PCIE_LTASS_MODE))
bge_reg_put32(bgep,
PHY_TEST_CTRL_REG,
PHY_PCIE_SCRAM_MODE);
val32 = pci_config_get32
(bgep->cfg_handle,
PCI_CONF_BGE_CLKCTL);
val32 |= CLKCTL_PCIE_A0_FIX;
pci_config_put32(bgep->cfg_handle,
PCI_CONF_BGE_CLKCTL, val32);
}
bge_reg_set32(bgep, regno,
MISC_CONFIG_GRC_RESET_DISABLE);
regval |= MISC_CONFIG_GRC_RESET_DISABLE;
}
}
/*
* Special case - causes Core reset
*
* On SPARC v9 we want to ensure that we don't start
* timing until the I/O access has actually reached
* the chip, otherwise we might make the next access
* too early. And we can't just force the write out
* by following it with a read (even to config space)
* because that would cause the fault we're trying
* to avoid. Hence the need for membar_sync() here.
*/
ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
#ifdef __sparcv9
membar_sync();
#endif /* __sparcv9 */
/*
* On some platforms,system need about 300us for
* link setup.
*/
drv_usecwait(300);
if (bgep->chipid.pci_type == BGE_PCI_E) {
/* PCI-E device need more reset time */
drv_usecwait(120000);
/* Set PCIE max payload size and clear error status. */
if ((bgep->chipid.chip_label == 5721) ||
(bgep->chipid.chip_label == 5751) ||
(bgep->chipid.chip_label == 5752) ||
(bgep->chipid.chip_label == 5789)) {
pci_config_put16(bgep->cfg_handle,
PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
pci_config_put16(bgep->cfg_handle,
PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
}
}
BGE_PCICHK(bgep);
return (B_TRUE);
default:
bge_reg_put32(bgep, regno, regval);
return (bge_chip_poll_engine(bgep, regno,
STATE_MACHINE_RESET_BIT, 0));
}
}
/*
* Various registers that control the chip's internal engines (state
* machines) have an <enable> bit (fortunately, in the same place in
* each such register :-). To stop the state machine, this bit must
* be written with 0, then polled to see when the state machine has
* actually stopped.
*
* The return value is B_TRUE on success (enable bit cleared), or
* B_FALSE if the state machine didn't stop :(
*/
static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
uint32_t morebits);
#pragma no_inline(bge_chip_disable_engine)
static boolean_t
bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
{
uint32_t regval;
BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, morebits));
switch (regno) {
case FTQ_RESET_REG:
/*
* For Schumacher's bugfix CR6490108
*/
#ifdef BGE_IPMI_ASF
#ifdef BGE_NETCONSOLE
if (bgep->asf_enabled)
return (B_TRUE);
#endif
#endif
/*
* Not quite like the others; it doesn't
* have an <enable> bit, but instead we
* have to set and then clear all the bits
*/
bge_reg_put32(bgep, regno, ~(uint32_t)0);
drv_usecwait(100);
bge_reg_put32(bgep, regno, 0);
return (B_TRUE);
default:
regval = bge_reg_get32(bgep, regno);
regval &= ~STATE_MACHINE_ENABLE_BIT;
regval &= ~morebits;
bge_reg_put32(bgep, regno, regval);
return (bge_chip_poll_engine(bgep, regno,
STATE_MACHINE_ENABLE_BIT, 0));
}
}
/*
* Various registers that control the chip's internal engines (state
* machines) have an <enable> bit (fortunately, in the same place in
* each such register :-). To start the state machine, this bit must
* be written with 1, then polled to see when the state machine has
* actually started.
*
* The return value is B_TRUE on success (enable bit set), or
* B_FALSE if the state machine didn't start :(
*/
static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
uint32_t morebits);
#pragma no_inline(bge_chip_enable_engine)
static boolean_t
bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
{
uint32_t regval;
BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
(void *)bgep, regno, morebits));
switch (regno) {
case FTQ_RESET_REG:
#ifdef BGE_IPMI_ASF
#ifdef BGE_NETCONSOLE
if (bgep->asf_enabled)
return (B_TRUE);
#endif
#endif
/*
* Not quite like the others; it doesn't
* have an <enable> bit, but instead we
* have to set and then clear all the bits
*/
bge_reg_put32(bgep, regno, ~(uint32_t)0);
drv_usecwait(100);
bge_reg_put32(bgep, regno, 0);
return (B_TRUE);
default:
regval = bge_reg_get32(bgep, regno);
regval |= STATE_MACHINE_ENABLE_BIT;
regval |= morebits;
bge_reg_put32(bgep, regno, regval);
return (bge_chip_poll_engine(bgep, regno,
STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
}
}
/*
* Reprogram the Ethernet, Transmit, and Receive MAC
* modes to match the param_* variables
*/
static void bge_sync_mac_modes(bge_t *bgep);
#pragma no_inline(bge_sync_mac_modes)
static void
bge_sync_mac_modes(bge_t *bgep)
{
uint32_t macmode;
uint32_t regval;
ASSERT(mutex_owned(bgep->genlock));
/*
* Reprogram the Ethernet MAC mode ...
*/
macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
macmode &= ~ETHERNET_MODE_LINK_POLARITY;
else
macmode |= ETHERNET_MODE_LINK_POLARITY;
macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
macmode |= ETHERNET_MODE_PORTMODE_TBI;
else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
macmode |= ETHERNET_MODE_PORTMODE_MII;
else
macmode |= ETHERNET_MODE_PORTMODE_GMII;
if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
macmode |= ETHERNET_MODE_HALF_DUPLEX;
else
macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
macmode |= ETHERNET_MODE_MAC_LOOPBACK;
else
macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
(void *)bgep, regval, macmode));
/*
* ... the Transmit MAC mode ...
*/
macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
if (bgep->param_link_tx_pause)
macmode |= TRANSMIT_MODE_FLOW_CONTROL;
else
macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
(void *)bgep, regval, macmode));
/*
* ... and the Receive MAC mode
*/
macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
if (bgep->param_link_rx_pause)
macmode |= RECEIVE_MODE_FLOW_CONTROL;
else
macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
(void *)bgep, regval, macmode));
}
/*
* bge_chip_sync() -- program the chip with the unicast MAC address,
* the multicast hash table, the required level of promiscuity, and
* the current loopback mode ...
*/
#ifdef BGE_IPMI_ASF
int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
#else
int bge_chip_sync(bge_t *bgep);
#endif
#pragma no_inline(bge_chip_sync)
int
#ifdef BGE_IPMI_ASF
bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
#else
bge_chip_sync(bge_t *bgep)
#endif
{
void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
boolean_t promisc;
uint64_t macaddr;
uint32_t fill;
int i, j;
int retval = DDI_SUCCESS;
BGE_TRACE(("bge_chip_sync($%p)",
(void *)bgep));
ASSERT(mutex_owned(bgep->genlock));
promisc = B_FALSE;
fill = ~(uint32_t)0;
if (bgep->promisc)
promisc = B_TRUE;
else
fill = (uint32_t)0;
/*
* If the TX/RX MAC engines are already running, we should stop
* them (and reset the RX engine) before changing the parameters.
* If they're not running, this will have no effect ...
*
* NOTE: this is currently disabled by default because stopping
* and restarting the Tx engine may cause an outgoing packet in
* transit to be truncated. Also, stopping and restarting the
* Rx engine seems to not work correctly on the 5705. Testing
* has not (yet!) revealed any problems with NOT stopping and
* restarting these engines (and Broadcom say their drivers don't
* do this), but if it is found to cause problems, this variable
* can be patched to re-enable the old behaviour ...
*/
if (bge_stop_start_on_sync) {
#ifdef BGE_IPMI_ASF
if (!bgep->asf_enabled) {
if (!bge_chip_disable_engine(bgep,
RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
retval = DDI_FAILURE;
} else {
if (!bge_chip_disable_engine(bgep,
RECEIVE_MAC_MODE_REG, 0))
retval = DDI_FAILURE;
}
#else
if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
RECEIVE_MODE_KEEP_VLAN_TAG))
retval = DDI_FAILURE;
#endif
if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
retval = DDI_FAILURE;
if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
retval = DDI_FAILURE;
}
/*
* Reprogram the hashed multicast address table ...
*/
for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
bge_reg_put32(bgep, MAC_HASH_REG(i),
bgep->mcast_hash[i] | fill);
#ifdef BGE_IPMI_ASF
if (!bgep->asf_enabled || !asf_keeplive) {
#endif
/*
* Transform the MAC address(es) from host to chip format, then
* reprogram the transmit random backoff seed and the unicast
* MAC address(es) ...
*/
for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
for (i = 0, fill = 0, macaddr = 0ull;
i < ETHERADDRL; ++i) {
macaddr <<= 8;
macaddr |= bgep->curr_addr[j].addr[i];
fill += bgep->curr_addr[j].addr[i];
}
bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
}
BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
(void *)bgep, macaddr));
#ifdef BGE_IPMI_ASF
}
#endif
/*
* Set or clear the PROMISCUOUS mode bit
*/
opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
/*
* Sync the rest of the MAC modes too ...
*/
bge_sync_mac_modes(bgep);
/*
* Restart RX/TX MAC engines if required ...
*/
if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
retval = DDI_FAILURE;
#ifdef BGE_IPMI_ASF
if (!bgep->asf_enabled) {
if (!bge_chip_enable_engine(bgep,
RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
retval = DDI_FAILURE;
} else {
if (!bge_chip_enable_engine(bgep,
RECEIVE_MAC_MODE_REG, 0))
retval = DDI_FAILURE;
}
#else
if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
RECEIVE_MODE_KEEP_VLAN_TAG))
retval = DDI_FAILURE;
#endif
}
return (retval);
}
/*
* This array defines the sequence of state machine control registers
* in which the <enable> bit must be cleared to bring the chip to a
* clean stop. Taken from Broadcom document 570X-PG102-R, p116.
*/
static bge_regno_t shutdown_engine_regs[] = {
RECEIVE_MAC_MODE_REG,
RCV_BD_INITIATOR_MODE_REG,
RCV_LIST_PLACEMENT_MODE_REG,
RCV_LIST_SELECTOR_MODE_REG, /* BCM5704 series only */
RCV_DATA_BD_INITIATOR_MODE_REG,
RCV_DATA_COMPLETION_MODE_REG,
RCV_BD_COMPLETION_MODE_REG,
SEND_BD_SELECTOR_MODE_REG,
SEND_BD_INITIATOR_MODE_REG,
SEND_DATA_INITIATOR_MODE_REG,
READ_DMA_MODE_REG,
SEND_DATA_COMPLETION_MODE_REG,
DMA_COMPLETION_MODE_REG, /* BCM5704 series only */
SEND_BD_COMPLETION_MODE_REG,
TRANSMIT_MAC_MODE_REG,
HOST_COALESCE_MODE_REG,
WRITE_DMA_MODE_REG,
MBUF_CLUSTER_FREE_MODE_REG, /* BCM5704 series only */
FTQ_RESET_REG, /* special - see code */
BUFFER_MANAGER_MODE_REG, /* BCM5704 series only */
MEMORY_ARBITER_MODE_REG, /* BCM5704 series only */
BGE_REGNO_NONE /* terminator */
};
/*
* bge_chip_stop() -- stop all chip processing
*
* If the <fault> parameter is B_TRUE, we're stopping the chip because
* we've detected a problem internally; otherwise, this is a normal
* (clean) stop (at user request i.e. the last STREAM has been closed).
*/
void bge_chip_stop(bge_t *bgep, boolean_t fault);
#pragma no_inline(bge_chip_stop)
void
bge_chip_stop(bge_t *bgep, boolean_t fault)
{
bge_regno_t regno;
bge_regno_t *rbp;
boolean_t ok;
BGE_TRACE(("bge_chip_stop($%p)",
(void *)bgep));
ASSERT(mutex_owned(bgep->genlock));
rbp = shutdown_engine_regs;
/*
* When driver try to shutdown the BCM5705/5788/5721/5751/
* 5752/5714 and 5715 chipsets,the buffer manager and the mem
* -ory arbiter should not be disabled.
*/
for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
if (DEVICE_5704_SERIES_CHIPSETS(bgep))
ok &= bge_chip_disable_engine(bgep, regno, 0);
else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
(regno != DMA_COMPLETION_MODE_REG) &&
(regno != MBUF_CLUSTER_FREE_MODE_REG)&&
(regno != BUFFER_MANAGER_MODE_REG) &&
(regno != MEMORY_ARBITER_MODE_REG))
ok &= bge_chip_disable_engine(bgep,
regno, 0);
}
if (!ok && !fault)
ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
/*
* Finally, disable (all) MAC events & clear the MAC status
*/
bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
/*
* if we're stopping the chip because of a detected fault then do
* appropriate actions
*/
if (fault) {
if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
bgep->bge_chip_state = BGE_CHIP_FAULT;
ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
if (bgep->bge_dma_error) {
/*
* need to free buffers in case the fault was
* due to a memory error in a buffer - got to
* do a fair bit of tidying first
*/
if (bgep->progress & PROGRESS_KSTATS) {
bge_fini_kstats(bgep);
bgep->progress &= ~PROGRESS_KSTATS;
}
if (bgep->progress & PROGRESS_INTR) {
bge_intr_disable(bgep);
rw_enter(bgep->errlock, RW_WRITER);
bge_fini_rings(bgep);
rw_exit(bgep->errlock);
bgep->progress &= ~PROGRESS_INTR;
}
if (bgep->progress & PROGRESS_BUFS) {
bge_free_bufs(bgep);
bgep->progress &= ~PROGRESS_BUFS;
}
bgep->bge_dma_error = B_FALSE;
}
}
} else
bgep->bge_chip_state = BGE_CHIP_STOPPED;
}
/*
* Poll for completion of chip's ROM firmware; also, at least on the
* first time through, find and return the hardware MAC address, if any.
*/
static uint64_t bge_poll_firmware(bge_t *bgep);
#pragma no_inline(bge_poll_firmware)
static uint64_t
bge_poll_firmware(bge_t *bgep)
{
uint64_t magic;
uint64_t mac;
uint32_t gen;
uint32_t i;
/*
* Step 19: poll for firmware completion (GENCOMM port set
* to the ones complement of T3_MAGIC_NUMBER).
*
* While we're at it, we also read the MAC address register;
* at some stage the firmware will load this with the
* factory-set value.
*
* When both the magic number and the MAC address are set,
* we're done; but we impose a time limit of one second
* (1000*1000us) in case the firmware fails in some fashion
* or the SEEPROM that provides that MAC address isn't fitted.
*
* After the first time through (chip state != INITIAL), we
* don't need the MAC address to be set (we've already got it
* or not, from the first time), so we don't wait for it, but
* we still have to wait for the T3_MAGIC_NUMBER.
*
* Note: the magic number is only a 32-bit quantity, but the NIC
* memory is 64-bit (and big-endian) internally. Addressing the
* GENCOMM word as "the upper half of a 64-bit quantity" makes
* it work correctly on both big- and little-endian hosts.
*/
for (i = 0; i < 1000; ++i) {
drv_usecwait(1000);
gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
#ifdef BGE_IPMI_ASF
if (!bgep->asf_enabled) {
#endif
if (gen != ~T3_MAGIC_NUMBER)
continue;
#ifdef BGE_IPMI_ASF
}
#endif
if (mac != 0ULL)
break;
if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
break;
}
magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
(void *)bgep, gen, i));
BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
mac, magic));
return (mac);
}
/*
* Maximum times of trying to get the NVRAM access lock
* by calling bge_nvmem_acquire()
*/
#define MAX_TRY_NVMEM_ACQUIRE 10000
#ifdef BGE_IPMI_ASF
int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
#else
int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
#endif
#pragma no_inline(bge_chip_reset)
int
#ifdef BGE_IPMI_ASF
bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
#else
bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
#endif
{
chip_id_t chipid;
uint64_t mac;
uint64_t magic;
uint32_t modeflags;
uint32_t mhcr;
uint32_t sx0;
uint32_t i, tries;
#ifdef BGE_IPMI_ASF
uint32_t mailbox;
#endif
int retval = DDI_SUCCESS;
BGE_TRACE(("bge_chip_reset($%p, %d)",
(void *)bgep, enable_dma));
ASSERT(mutex_owned(bgep->genlock));
BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
(void *)bgep, enable_dma, bgep->bge_chip_state));
/*
* Do we need to stop the chip cleanly before resetting?
*/
switch (bgep->bge_chip_state) {
default:
_NOTE(NOTREACHED)
return (DDI_FAILURE);
case BGE_CHIP_INITIAL:
case BGE_CHIP_STOPPED:
case BGE_CHIP_RESET:
break;
case BGE_CHIP_RUNNING:
case BGE_CHIP_ERROR:
case BGE_CHIP_FAULT:
bge_chip_stop(bgep, B_FALSE);
break;
}
#ifdef BGE_IPMI_ASF
if (bgep->asf_enabled) {
#ifdef __sparc
mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
MHCR_ENABLE_TAGGED_STATUS_MODE |
MHCR_MASK_INTERRUPT_MODE |
MHCR_MASK_PCI_INT_OUTPUT |
MHCR_CLEAR_INTERRUPT_INTA |
MHCR_ENABLE_ENDIAN_WORD_SWAP |
MHCR_ENABLE_ENDIAN_BYTE_SWAP;
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
MEMORY_ARBITER_ENABLE);
#endif
if (asf_mode == ASF_MODE_INIT) {
bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
} else if (asf_mode == ASF_MODE_SHUTDOWN) {
bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
}
}
#endif
/*
* Adapted from Broadcom document 570X-PG102-R, pp 102-116.
* Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
*
* Before reset Core clock,it is
* also required to initialize the Memory Arbiter as specified in step9
* and Misc Host Control Register as specified in step-13
* Step 4-5: reset Core clock & wait for completion
* Steps 6-8: are done by bge_chip_cfg_init()
* put the T3_MAGIC_NUMBER into the GENCOMM port before reset
*/
if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
retval = DDI_FAILURE;
mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
MHCR_ENABLE_TAGGED_STATUS_MODE |
MHCR_MASK_INTERRUPT_MODE |
MHCR_MASK_PCI_INT_OUTPUT |
MHCR_CLEAR_INTERRUPT_INTA;
#ifdef _BIG_ENDIAN
mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
#endif /* _BIG_ENDIAN */
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
#ifdef BGE_IPMI_ASF
if (bgep->asf_enabled)
bgep->asf_wordswapped = B_FALSE;
#endif
/*
* NVRAM Corruption Workaround
*/
for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
if (bge_nvmem_acquire(bgep) != EAGAIN)
break;
if (tries >= MAX_TRY_NVMEM_ACQUIRE)
BGE_DEBUG(("%s: fail to acquire nvram lock",
bgep->ifname));
#ifdef BGE_IPMI_ASF
if (!bgep->asf_enabled) {
#endif
magic = (uint64_t)T3_MAGIC_NUMBER << 32;
bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
#ifdef BGE_IPMI_ASF
}
#endif
if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
retval = DDI_FAILURE;
bge_chip_cfg_init(bgep, &chipid, enable_dma);
/*
* Step 8a: This may belong elsewhere, but BCM5721 needs
* a bit set to avoid a fifo overflow/underflow bug.
*/
if ((bgep->chipid.chip_label == 5721) ||
(bgep->chipid.chip_label == 5751) ||
(bgep->chipid.chip_label == 5752) ||
(bgep->chipid.chip_label == 5789))
bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
/*
* Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
* not be changed.
*/
if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
retval = DDI_FAILURE;
/*
* Steps 10-11: configure PIO endianness options and
* enable indirect register access -- already done
* Steps 12-13: enable writing to the PCI state & clock
* control registers -- not required; we aren't going to
* use those features.
* Steps 14-15: Configure DMA endianness options. See
* the comments on the setting of the MHCR above.
*/
#ifdef _BIG_ENDIAN
modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
#else
modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
#endif /* _BIG_ENDIAN */
#ifdef BGE_IPMI_ASF
if (bgep->asf_enabled)
modeflags |= MODE_HOST_STACK_UP;
#endif
bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
#ifdef BGE_IPMI_ASF
if (bgep->asf_enabled) {
#ifdef __sparc
bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
MEMORY_ARBITER_ENABLE |
bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
#endif
#ifdef BGE_NETCONSOLE
if (!bgep->asf_newhandshake) {
if ((asf_mode == ASF_MODE_INIT) ||
(asf_mode == ASF_MODE_POST_INIT)) {
bge_asf_post_reset_old_mode(bgep,
BGE_INIT_RESET);
} else {
bge_asf_post_reset_old_mode(bgep,
BGE_SHUTDOWN_RESET);
}
}
#endif
/* Wait for NVRAM init */
i = 0;
drv_usecwait(5000);
mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
while ((mailbox != (uint32_t)
~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
(i < 10000)) {
drv_usecwait(100);
mailbox = bge_nic_get32(bgep,
BGE_FIRMWARE_MAILBOX);
i++;
}
#ifndef BGE_NETCONSOLE
if (!bgep->asf_newhandshake) {
if ((asf_mode == ASF_MODE_INIT) ||
(asf_mode == ASF_MODE_POST_INIT)) {
bge_asf_post_reset_old_mode(bgep,
BGE_INIT_RESET);
} else {
bge_asf_post_reset_old_mode(bgep,
BGE_SHUTDOWN_RESET);
}
}
#endif
}
#endif
/*
* Steps 16-17: poll for firmware completion
*/
mac = bge_poll_firmware(bgep);
/*
* Step 18: enable external memory -- doesn't apply.
*
* However we take the opportunity to set the MLCR anyway, as
* this register also controls the SEEPROM auto-access method
* which we may want to use later ...
*
* The proper value here depends on the way the chip is wired
* into the circuit board, as this register *also* controls which
* of the "Miscellaneous I/O" pins are driven as outputs and the
* values driven onto those pins!
*
* See also step 74 in the PRM ...
*/
bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
bgep->chipid.bge_mlcr_default);
bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
/*
* Step 20: clear the Ethernet MAC mode register
*/
bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
/*
* Step 21: restore cache-line-size, latency timer, and
* subsystem ID registers to their original values (not
* those read into the local structure <chipid>, 'cos
* that was after they were cleared by the RESET).
*
* Note: the Subsystem Vendor/Device ID registers are not
* directly writable in config space, so we use the shadow
* copy in "Page Zero" of register space to restore them
* both in one go ...
*/
pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
bgep->chipid.clsize);
pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
bgep->chipid.latency);
bge_reg_put32(bgep, PCI_CONF_SUBVENID,
(bgep->chipid.subdev << 16) | bgep->chipid.subven);
/*
* The SEND INDEX registers should be reset to zero by the
* global chip reset; if they're not, there'll be trouble
* later on.
*/
sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
if (sx0 != 0) {
BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
retval = DDI_FAILURE;
}
/* Enable MSI code */
if (bgep->intr_type == DDI_INTR_TYPE_MSI)
bge_reg_set32(bgep, MSI_MODE_REG,
MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
/*
* On the first time through, save the factory-set MAC address
* (if any). If bge_poll_firmware() above didn't return one
* (from a chip register) consider looking in the attached NV
* memory device, if any. Once we have it, we save it in both
* register-image (64-bit) and byte-array forms. All-zero and
* all-one addresses are not valid, and we refuse to stash those.
*/
if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
if (mac == 0ULL)
mac = bge_get_nvmac(bgep);
if (mac != 0ULL && mac != ~0ULL) {
bgep->chipid.hw_mac_addr = mac;
for (i = ETHERADDRL; i-- != 0; ) {
bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
mac >>= 8;
}
bgep->chipid.vendor_addr.set = B_TRUE;
}
}
#ifdef BGE_IPMI_ASF
if (bgep->asf_enabled && bgep->asf_newhandshake) {
if (asf_mode != ASF_MODE_NONE) {
if ((asf_mode == ASF_MODE_INIT) ||
(asf_mode == ASF_MODE_POST_INIT)) {
bge_asf_post_reset_new_mode(bgep,
BGE_INIT_RESET);
} else {
bge_asf_post_reset_new_mode(bgep,
BGE_SHUTDOWN_RESET);
}
}
}
#endif
/*
* Record the new state
*/
bgep->chip_resets += 1;
bgep->bge_chip_state = BGE_CHIP_RESET;
return (retval);
}
/*
* bge_chip_start() -- start the chip transmitting and/or receiving,
* including enabling interrupts
*/
int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
#pragma no_inline(bge_chip_start)
int
bge_chip_start(bge_t *bgep, boolean_t reset_phys)
{
uint32_t coalmode;
uint32_t ledctl;
uint32_t mtu;
uint32_t maxring;
uint32_t stats_mask;
uint64_t ring;
int retval = DDI_SUCCESS;
BGE_TRACE(("bge_chip_start($%p)",
(void *)bgep));
ASSERT(mutex_owned(bgep->genlock));
ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
/*
* Taken from Broadcom document 570X-PG102-R, pp 102-116.
* The document specifies 95 separate steps to fully
* initialise the chip!!!!
*
* The reset code above has already got us as far as step
* 21, so we continue with ...
*
* Step 22: clear the MAC statistics block
* (0x0300-0x0aff in NIC-local memory)
*/
if (bgep->chipid.statistic_type == BGE_STAT_BLK)
bge_nic_zero(bgep, NIC_MEM_STATISTICS,
NIC_MEM_STATISTICS_SIZE);
/*
* Step 23: clear the status block (in host memory)
*/
DMA_ZERO(bgep->status_block);
/*
* Step 24: set DMA read/write control register
*/
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
bgep->chipid.bge_dma_rwctrl);
/*
* Step 25: Configure DMA endianness -- already done (16/17)
* Step 26: Configure Host-Based Send Rings
* Step 27: Indicate Host Stack Up
*/
bge_reg_set32(bgep, MODE_CONTROL_REG,
MODE_HOST_SEND_BDS |
MODE_HOST_STACK_UP);
/*
* Step 28: Configure checksum options:
* Solaris supports the hardware default checksum options.
*
* Workaround for Incorrect pseudo-header checksum calculation.
*/
if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
bge_reg_set32(bgep, MODE_CONTROL_REG,
MODE_SEND_NO_PSEUDO_HDR_CSUM);
/*
* Step 29: configure Timer Prescaler. The value is always the
* same: the Core Clock frequency in MHz (66), minus 1, shifted
* into bits 7-1. Don't set bit 0, 'cos that's the RESET bit
* for the whole chip!
*/
bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
/*
* Steps 30-31: Configure MAC local memory pool & DMA pool registers
*
* If the mbuf_length is specified as 0, we just leave these at
* their hardware defaults, rather than explicitly setting them.
* As the Broadcom HRM,driver better not change the parameters
* when the chipsets is 5705/5788/5721/5751/5714 and 5715.
*/
if ((bgep->chipid.mbuf_length != 0) &&
(DEVICE_5704_SERIES_CHIPSETS(bgep))) {
bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
bgep->chipid.mbuf_base);
bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
bgep->chipid.mbuf_length);
bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
DMAD_POOL_BASE_DEFAULT);
bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
DMAD_POOL_LENGTH_DEFAULT);
}
/*
* Step 32: configure MAC memory pool watermarks
*/
bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
bgep->chipid.mbuf_lo_water_rdma);
bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
bgep->chipid.mbuf_lo_water_rmac);
bge_reg_put32(bgep, MBUF_HIWAT_REG,
bgep->chipid.mbuf_hi_water);
/*
* Step 33: configure DMA resource watermarks
*/
if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
bge_dmad_lo_water);
bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
bge_dmad_hi_water);
}
bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
/*
* Steps 34-36: enable buffer manager & internal h/w queues
*/
if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
STATE_MACHINE_ATTN_ENABLE_BIT))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
retval = DDI_FAILURE;
/*
* Steps 37-39: initialise Receive Buffer (Producer) RCBs
*/
bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
&bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
&bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
&bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
}
/*
* Step 40: set Receive Buffer Descriptor Ring replenish thresholds
*/
bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
bge_replenish_jumbo);
bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
bge_replenish_mini);
}
/*
* Steps 41-43: clear Send Ring Producer Indices and initialise
* Send Producer Rings (0x0100-0x01ff in NIC-local memory)
*/
if (DEVICE_5704_SERIES_CHIPSETS(bgep))
maxring = BGE_SEND_RINGS_MAX;
else
maxring = BGE_SEND_RINGS_MAX_5705;
for (ring = 0; ring < maxring; ++ring) {
bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
&bgep->send[ring].hw_rcb);
}
/*
* Steps 44-45: initialise Receive Return Rings
* (0x0200-0x02ff in NIC-local memory)
*/
if (DEVICE_5704_SERIES_CHIPSETS(bgep))
maxring = BGE_RECV_RINGS_MAX;
else
maxring = BGE_RECV_RINGS_MAX_5705;
for (ring = 0; ring < maxring; ++ring)
bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
&bgep->recv[ring].hw_rcb);
/*
* Step 46: initialise Receive Buffer (Producer) Ring indexes
*/
bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
}
/*
* Step 47: configure the MAC unicast address
* Step 48: configure the random backoff seed
* Step 96: set up multicast filters
*/
#ifdef BGE_IPMI_ASF
if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
#else
if (bge_chip_sync(bgep) == DDI_FAILURE)
#endif
retval = DDI_FAILURE;
/*
* Step 49: configure the MTU
*/
mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
/*
* Step 50: configure the IPG et al
*/
bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
/*
* Step 51: configure the default Rx Return Ring
*/
bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
/*
* Steps 52-54: configure Receive List Placement,
* and enable Receive List Placement Statistics
*/
bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
RCV_LP_CONFIG(bgep->chipid.rx_rings));
switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
case MHCR_CHIP_ASIC_REV_5700:
case MHCR_CHIP_ASIC_REV_5701:
case MHCR_CHIP_ASIC_REV_5703:
case MHCR_CHIP_ASIC_REV_5704:
bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
break;
case MHCR_CHIP_ASIC_REV_5705:
break;
default:
stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
break;
}
bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
if (bgep->chipid.rx_rings > 1)
bge_init_recv_rule(bgep);
/*
* Steps 55-56: enable Send Data Initiator Statistics
*/
bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
} else {
bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
SEND_INIT_STATS_ENABLE);
}
/*
* Steps 57-58: stop (?) the Host Coalescing Engine
*/
if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
retval = DDI_FAILURE;
/*
* Steps 59-62: initialise Host Coalescing parameters
*/
bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
bge_tx_count_intr);
bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
bge_tx_ticks_intr);
bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
bge_rx_count_intr);
bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
bge_rx_ticks_intr);
}
/*
* Steps 63-64: initialise status block & statistics
* host memory addresses
* The statistic block does not exist in some chipsets
* Step 65: initialise Statistics Coalescing Tick Counter
*/
bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
bgep->status_block.cookie.dmac_laddress);
/*
* Steps 66-67: initialise status block & statistics
* NIC-local memory addresses
*/
if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
bgep->statistics.cookie.dmac_laddress);
bge_reg_put32(bgep, STATISTICS_TICKS_REG,
STATISTICS_TICKS_DEFAULT);
bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
NIC_MEM_STATUS_BLOCK);
bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
NIC_MEM_STATISTICS);
}
/*
* Steps 68-71: start the Host Coalescing Engine, the Receive BD
* Completion Engine, the Receive List Placement Engine, and the
* Receive List selector.Pay attention:0x3400 is not exist in BCM5714
* and BCM5715.
*/
if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
coalmode = COALESCE_64_BYTE_STATUS;
else
coalmode = 0;
if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
STATE_MACHINE_ATTN_ENABLE_BIT))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
retval = DDI_FAILURE;
if (DEVICE_5704_SERIES_CHIPSETS(bgep))
if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
STATE_MACHINE_ATTN_ENABLE_BIT))
retval = DDI_FAILURE;
/*
* Step 72: Enable MAC DMA engines
* Step 73: Clear & enable MAC statistics
*/
bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
ETHERNET_MODE_ENABLE_FHDE |
ETHERNET_MODE_ENABLE_RDE |
ETHERNET_MODE_ENABLE_TDE);
bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
ETHERNET_MODE_ENABLE_TX_STATS |
ETHERNET_MODE_ENABLE_RX_STATS |
ETHERNET_MODE_CLEAR_TX_STATS |
ETHERNET_MODE_CLEAR_RX_STATS);
/*
* Step 74: configure the MLCR (Miscellaneous Local Control
* Register); not required, as we set up the MLCR in step 10
* (part of the reset code) above.
*
* Step 75: clear Interrupt Mailbox 0
*/
bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
/*
* Steps 76-87: Gentlemen, start your engines ...
*
* Enable the DMA Completion Engine, the Write DMA Engine,
* the Read DMA Engine, Receive Data Completion Engine,
* the MBuf Cluster Free Engine, the Send Data Completion Engine,
* the Send BD Completion Engine, the Receive BD Initiator Engine,
* the Receive Data Initiator Engine, the Send Data Initiator Engine,
* the Send BD Initiator Engine, and the Send BD Selector Engine.
*
* Beware exhaust fumes?
*/
if (DEVICE_5704_SERIES_CHIPSETS(bgep))
if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
(bge_dma_wrprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
(bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
STATE_MACHINE_ATTN_ENABLE_BIT))
retval = DDI_FAILURE;
if (DEVICE_5704_SERIES_CHIPSETS(bgep))
if (!bge_chip_enable_engine(bgep,
MBUF_CLUSTER_FREE_MODE_REG, 0))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
STATE_MACHINE_ATTN_ENABLE_BIT))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
RCV_BD_DISABLED_RING_ATTN))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
RCV_DATA_BD_ILL_RING_ATTN))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
STATE_MACHINE_ATTN_ENABLE_BIT))
retval = DDI_FAILURE;
if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
STATE_MACHINE_ATTN_ENABLE_BIT))
retval = DDI_FAILURE;
/*
* Step 88: download firmware -- doesn't apply
* Steps 89-90: enable Transmit & Receive MAC Engines
*/
if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
retval = DDI_FAILURE;
#ifdef BGE_IPMI_ASF
if (!bgep->asf_enabled) {
if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
RECEIVE_MODE_KEEP_VLAN_TAG))
retval = DDI_FAILURE;
} else {
if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
retval = DDI_FAILURE;
}
#else
if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
RECEIVE_MODE_KEEP_VLAN_TAG))
retval = DDI_FAILURE;
#endif
/*
* Step 91: disable auto-polling of PHY status
*/
bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
/*
* Step 92: configure D0 power state (not required)
* Step 93: initialise LED control register ()
*/
ledctl = LED_CONTROL_DEFAULT;
switch (bgep->chipid.device) {
case DEVICE_ID_5700:
case DEVICE_ID_5700x:
case DEVICE_ID_5701:
/*
* Switch to 5700 (MAC) mode on these older chips
*/
ledctl &= ~LED_CONTROL_LED_MODE_MASK;
ledctl |= LED_CONTROL_LED_MODE_5700;
break;
default:
break;
}
bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
/*
* Step 94: activate link
*/
bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
/*
* Step 95: set up physical layer (PHY/SerDes)
* restart autoneg (if required)
*/
if (reset_phys)
if (bge_phys_update(bgep) == DDI_FAILURE)
retval = DDI_FAILURE;
/*
* Extra step (DSG): hand over all the Receive Buffers to the chip
*/
for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
bgep->buff[ring].rf_next);
/*
* MSI bits:The least significant MSI 16-bit word.
* ISR will be triggered different.
*/
if (bgep->intr_type == DDI_INTR_TYPE_MSI)
bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
/*
* Extra step (DSG): select which interrupts are enabled
*
* Program the Ethernet MAC engine to signal attention on
* Link Change events, then enable interrupts on MAC, DMA,
* and FLOW attention signals.
*/
bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
ETHERNET_EVENT_LINK_INT |
ETHERNET_STATUS_PCS_ERROR_INT);
#ifdef BGE_IPMI_ASF
if (bgep->asf_enabled) {
bge_reg_set32(bgep, MODE_CONTROL_REG,
MODE_INT_ON_FLOW_ATTN |
MODE_INT_ON_DMA_ATTN |
MODE_HOST_STACK_UP|
MODE_INT_ON_MAC_ATTN);
} else {
#endif
bge_reg_set32(bgep, MODE_CONTROL_REG,
MODE_INT_ON_FLOW_ATTN |
MODE_INT_ON_DMA_ATTN |
MODE_INT_ON_MAC_ATTN);
#ifdef BGE_IPMI_ASF
}
#endif
/*
* Step 97: enable PCI interrupts!!!
*/
if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
MHCR_MASK_PCI_INT_OUTPUT);
/*
* All done!
*/
bgep->bge_chip_state = BGE_CHIP_RUNNING;
return (retval);
}
/*
* ========== Hardware interrupt handler ==========
*/
#undef BGE_DBG
#define BGE_DBG BGE_DBG_INT /* debug flag for this code */
/*
* Sync the status block, then atomically clear the specified bits in
* the <flags-and-tag> field of the status block.
* the <flags> word of the status block, returning the value of the
* <tag> and the <flags> before the bits were cleared.
*/
static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
#pragma inline(bge_status_sync)
static int
bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
{
bge_status_t *bsp;
int retval;
BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
(void *)bgep, bits));
ASSERT(bgep->bge_guard == BGE_GUARD);
DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
if (retval != DDI_FM_OK)
return (retval);
bsp = DMA_VPTR(bgep->status_block);
*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
(void *)bgep, bits, *flags));
return (retval);
}
static void bge_wake_factotum(bge_t *bgep);
#pragma inline(bge_wake_factotum)
static void
bge_wake_factotum(bge_t *bgep)
{
mutex_enter(bgep->softintrlock);
if (bgep->factotum_flag == 0) {
bgep->factotum_flag = 1;
ddi_trigger_softintr(bgep->factotum_id);
}
mutex_exit(bgep->softintrlock);
}
/*
* bge_intr() -- handle chip interrupts
*/
uint_t bge_intr(caddr_t arg1, caddr_t arg2);
#pragma no_inline(bge_intr)
uint_t
bge_intr(caddr_t arg1, caddr_t arg2)
{
bge_t *bgep = (bge_t *)arg1; /* private device info */
bge_status_t *bsp;
uint64_t flags;
uint32_t regval;
uint_t result;
int retval, loop_cnt = 0;
BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
/*
* GLD v2 checks that s/w setup is complete before passing
* interrupts to this routine, thus eliminating the old
* (and well-known) race condition around ddi_add_intr()
*/
ASSERT(bgep->progress & PROGRESS_HWINT);
result = DDI_INTR_UNCLAIMED;
mutex_enter(bgep->genlock);
if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
/*
* Check whether chip's says it's asserting #INTA;
* if not, don't process or claim the interrupt.
*
* Note that the PCI signal is active low, so the
* bit is *zero* when the interrupt is asserted.
*/
regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
if (regval & MLCR_INTA_STATE) {
if (bge_check_acc_handle(bgep, bgep->io_handle)
!= DDI_FM_OK)
goto chip_stop;
mutex_exit(bgep->genlock);
return (result);
}
/*
* Block further PCI interrupts ...
*/
bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
MHCR_MASK_PCI_INT_OUTPUT);
} else {
/*
* Check MSI status
*/
regval = bge_reg_get32(bgep, MSI_STATUS_REG);
if (regval & MSI_ERROR_ATTENTION) {
BGE_REPORT((bgep, "msi error attention,"
" status=0x%x", regval));
bge_reg_put32(bgep, MSI_STATUS_REG, regval);
}
}
result = DDI_INTR_CLAIMED;
BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
/*
* Sync the status block and grab the flags-n-tag from it.
* We count the number of interrupts where there doesn't
* seem to have been a DMA update of the status block; if
* it *has* been updated, the counter will be cleared in
* the while() loop below ...
*/
bgep->missed_dmas += 1;
bsp = DMA_VPTR(bgep->status_block);
for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
/*
* bge_chip_stop() may have freed dma area etc
* while we were in this interrupt handler -
* better not call bge_status_sync()
*/
(void) bge_check_acc_handle(bgep,
bgep->io_handle);
mutex_exit(bgep->genlock);
return (DDI_INTR_CLAIMED);
}
retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
&flags);
if (retval != DDI_FM_OK) {
bgep->bge_dma_error = B_TRUE;
goto chip_stop;
}
if (!(flags & STATUS_FLAG_UPDATED))
break;
/*
* Tell the chip that we're processing the interrupt
*/
bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
INTERRUPT_MBOX_DISABLE(flags));
if (bge_check_acc_handle(bgep, bgep->io_handle) !=
DDI_FM_OK)
goto chip_stop;
/*
* Drop the mutex while we:
* Receive any newly-arrived packets
* Recycle any newly-finished send buffers
*/
bgep->bge_intr_running = B_TRUE;
mutex_exit(bgep->genlock);
bge_receive(bgep, bsp);
bge_recycle(bgep, bsp);
mutex_enter(bgep->genlock);
bgep->bge_intr_running = B_FALSE;
/*
* Tell the chip we've finished processing, and
* give it the tag that we got from the status
* block earlier, so that it knows just how far
* we've gone. If it's got more for us to do,
* it will now update the status block and try
* to assert an interrupt (but we've got the
* #INTA blocked at present). If we see the
* update, we'll loop around to do some more.
* Eventually we'll get out of here ...
*/
bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
INTERRUPT_MBOX_ENABLE(flags));
bgep->missed_dmas = 0;
}
/*
* Check for exceptional conditions that we need to handle
*
* Link status changed
* Status block not updated
*/
if (flags & STATUS_FLAG_LINK_CHANGED)
bge_wake_factotum(bgep);
if (bgep->missed_dmas) {
/*
* Probably due to the internal status tag not
* being reset. Force a status block update now;
* this should ensure that we get an update and
* a new interrupt. After that, we should be in
* sync again ...
*/
BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
"not updated?", flags));
bgep->missed_updates++;
bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
COALESCE_NOW);
if (bgep->missed_dmas >= bge_dma_miss_limit) {
/*
* If this happens multiple times in a row,
* it means DMA is just not working. Maybe
* the chip's failed, or maybe there's a
* problem on the PCI bus or in the host-PCI
* bridge (Tomatillo).
*
* At all events, we want to stop further
* interrupts and let the recovery code take
* over to see whether anything can be done
* about it ...
*/
bge_fm_ereport(bgep,
DDI_FM_DEVICE_BADINT_LIMIT);
goto chip_stop;
}
}
/*
* Reenable assertion of #INTA, unless there's a DMA fault
*/
if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
MHCR_MASK_PCI_INT_OUTPUT);
if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
DDI_FM_OK)
goto chip_stop;
}
if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
goto chip_stop;
mutex_exit(bgep->genlock);
return (result);
chip_stop:
#ifdef BGE_IPMI_ASF
if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
/*
* We must stop ASF heart beat before
* bge_chip_stop(), otherwise some
* computers (ex. IBM HS20 blade
* server) may crash.
*/
bge_asf_update_status(bgep);
bge_asf_stop_timer(bgep);
bgep->asf_status = ASF_STAT_STOP;
bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
}
#endif
bge_chip_stop(bgep, B_TRUE);
(void) bge_check_acc_handle(bgep, bgep->io_handle);
mutex_exit(bgep->genlock);
return (result);
}
/*
* ========== Factotum, implemented as a softint handler ==========
*/
#undef BGE_DBG
#define BGE_DBG BGE_DBG_FACT /* debug flag for this code */
static void bge_factotum_error_handler(bge_t *bgep);
#pragma no_inline(bge_factotum_error_handler)
static void
bge_factotum_error_handler(bge_t *bgep)
{
uint32_t flow;
uint32_t rdma;
uint32_t wdma;
uint32_t tmac;
uint32_t rmac;
uint32_t rxrs;
uint32_t txrs = 0;
ASSERT(mutex_owned(bgep->genlock));
/*
* Read all the registers that show the possible
* reasons for the ERROR bit to be asserted
*/
flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
if (DEVICE_5704_SERIES_CHIPSETS(bgep))
txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
(void *)bgep, flow, rdma, wdma));
BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
(void *)bgep, tmac, rmac, rxrs, txrs));
/*
* For now, just clear all the errors ...
*/
if (DEVICE_5704_SERIES_CHIPSETS(bgep))
bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
}
/*
* Handler for hardware link state change.
*
* When this routine is called, the hardware link state has changed
* and the new state is reflected in the param_* variables. Here
* we must update the softstate, reprogram the MAC to match, and
* record the change in the log and/or on the console.
*/
static void bge_factotum_link_handler(bge_t *bgep);
#pragma no_inline(bge_factotum_link_handler)
static void
bge_factotum_link_handler(bge_t *bgep)
{
void (*logfn)(bge_t *bgep, const char *fmt, ...);
const char *msg;
hrtime_t deltat;
ASSERT(mutex_owned(bgep->genlock));
/*
* Update the s/w link_state
*/
if (bgep->param_link_up)
bgep->link_state = LINK_STATE_UP;
else
bgep->link_state = LINK_STATE_DOWN;
/*
* Reprogram the MAC modes to match
*/
bge_sync_mac_modes(bgep);
/*
* Finally, we have to decide whether to write a message
* on the console or only in the log. If the PHY has
* been reprogrammed (at user request) "recently", then
* the message only goes in the log. Otherwise it's an
* "unexpected" event, and it goes on the console as well.
*/
deltat = bgep->phys_event_time - bgep->phys_write_time;
if (deltat > BGE_LINK_SETTLE_TIME)
msg = "";
else if (bgep->param_link_up)
msg = bgep->link_up_msg;
else
msg = bgep->link_down_msg;
logfn = (msg == NULL || *msg == '\0') ? bge_notice : bge_log;
(*logfn)(bgep, "link %s%s", bgep->link_mode_msg, msg);
}
static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
#pragma no_inline(bge_factotum_link_check)
static boolean_t
bge_factotum_link_check(bge_t *bgep, int *dma_state)
{
boolean_t check;
uint64_t flags;
uint32_t tmac_status;
ASSERT(mutex_owned(bgep->genlock));
/*
* Get & clear the writable status bits in the Tx status register
* (some bits are write-1-to-clear, others are just readonly).
*/
tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
/*
* Get & clear the ERROR and LINK_CHANGED bits from the status block
*/
*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
STATUS_FLAG_LINK_CHANGED, &flags);
if (*dma_state != DDI_FM_OK)
return (B_FALSE);
/*
* Clear any errors flagged in the status block ...
*/
if (flags & STATUS_FLAG_ERROR)
bge_factotum_error_handler(bgep);
/*
* We need to check the link status if:
* the status block says there's been a link change
* or there's any discrepancy between the various
* flags indicating the link state (link_state,
* param_link_up, and the LINK STATE bit in the
* Transmit MAC status register).
*/
check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
switch (bgep->link_state) {
case LINK_STATE_UP:
check |= (bgep->param_link_up == B_FALSE);
check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
break;
case LINK_STATE_DOWN:
check |= (bgep->param_link_up != B_FALSE);
check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
break;
default:
check = B_TRUE;
break;
}
/*
* If <check> is false, we're sure the link hasn't changed.
* If true, however, it's not yet definitive; we have to call
* bge_phys_check() to determine whether the link has settled
* into a new state yet ... and if it has, then call the link
* state change handler.But when the chip is 5700 in Dell 6650
* ,even if check is false, the link may have changed.So we
* have to call bge_phys_check() to determine the link state.
*/
if (check || bgep->chipid.device == DEVICE_ID_5700) {
check = bge_phys_check(bgep);
if (check)
bge_factotum_link_handler(bgep);
}
return (check);
}
/*
* Factotum routine to check for Tx stall, using the 'watchdog' counter
*/
static boolean_t bge_factotum_stall_check(bge_t *bgep);
#pragma no_inline(bge_factotum_stall_check)
static boolean_t
bge_factotum_stall_check(bge_t *bgep)
{
uint32_t dogval;
ASSERT(mutex_owned(bgep->genlock));
/*
* Specific check for Tx stall ...
*
* The 'watchdog' counter is incremented whenever a packet
* is queued, reset to 1 when some (but not all) buffers
* are reclaimed, reset to 0 (disabled) when all buffers
* are reclaimed, and shifted left here. If it exceeds the
* threshold value, the chip is assumed to have stalled and
* is put into the ERROR state. The factotum will then reset
* it on the next pass.
*
* All of which should ensure that we don't get into a state
* where packets are left pending indefinitely!
*/
dogval = bge_atomic_shl32(&bgep->watchdog, 1);
if (dogval < bge_watchdog_count)
return (B_FALSE);
#if !defined(BGE_NETCONSOLE)
BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
#endif
bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
return (B_TRUE);
}
/*
* The factotum is woken up when there's something to do that we'd rather
* not do from inside a hardware interrupt handler or high-level cyclic.
* Its two main tasks are:
* reset & restart the chip after an error
* check the link status whenever necessary
*/
uint_t bge_chip_factotum(caddr_t arg);
#pragma no_inline(bge_chip_factotum)
uint_t
bge_chip_factotum(caddr_t arg)
{
bge_t *bgep;
uint_t result;
boolean_t error;
boolean_t linkchg;
int dma_state;
bgep = (bge_t *)arg;
BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
mutex_enter(bgep->softintrlock);
if (bgep->factotum_flag == 0) {
mutex_exit(bgep->softintrlock);
return (DDI_INTR_UNCLAIMED);
}
bgep->factotum_flag = 0;
mutex_exit(bgep->softintrlock);
result = DDI_INTR_CLAIMED;
error = B_FALSE;
linkchg = B_FALSE;
mutex_enter(bgep->genlock);
switch (bgep->bge_chip_state) {
default:
break;
case BGE_CHIP_RUNNING:
linkchg = bge_factotum_link_check(bgep, &dma_state);
error = bge_factotum_stall_check(bgep);
if (dma_state != DDI_FM_OK) {
bgep->bge_dma_error = B_TRUE;
error = B_TRUE;
}
if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
error = B_TRUE;
if (error)
bgep->bge_chip_state = BGE_CHIP_ERROR;
break;
case BGE_CHIP_ERROR:
error = B_TRUE;
break;
case BGE_CHIP_FAULT:
/*
* Fault detected, time to reset ...
*/
if (bge_autorecover) {
if (!(bgep->progress & PROGRESS_BUFS)) {
/*
* if we can't allocate the ring buffers,
* try later
*/
if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
mutex_exit(bgep->genlock);
return (result);
}
bgep->progress |= PROGRESS_BUFS;
}
if (!(bgep->progress & PROGRESS_INTR)) {
bge_init_rings(bgep);
bge_intr_enable(bgep);
bgep->progress |= PROGRESS_INTR;
}
if (!(bgep->progress & PROGRESS_KSTATS)) {
bge_init_kstats(bgep,
ddi_get_instance(bgep->devinfo));
bgep->progress |= PROGRESS_KSTATS;
}
BGE_REPORT((bgep, "automatic recovery activated"));
if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
bgep->bge_chip_state = BGE_CHIP_ERROR;
error = B_TRUE;
}
if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
DDI_FM_OK) {
bgep->bge_chip_state = BGE_CHIP_ERROR;
error = B_TRUE;
}
if (bge_check_acc_handle(bgep, bgep->io_handle) !=
DDI_FM_OK) {
bgep->bge_chip_state = BGE_CHIP_ERROR;
error = B_TRUE;
}
if (error == B_FALSE) {
#ifdef BGE_IPMI_ASF
if (bgep->asf_enabled &&
bgep->asf_status != ASF_STAT_RUN) {
bgep->asf_timeout_id = timeout(
bge_asf_heartbeat, (void *)bgep,
drv_usectohz(
BGE_ASF_HEARTBEAT_INTERVAL));
bgep->asf_status = ASF_STAT_RUN;
}
#endif
ddi_fm_service_impact(bgep->devinfo,
DDI_SERVICE_RESTORED);
}
}
break;
}
/*
* If an error is detected, stop the chip now, marking it as
* faulty, so that it will be reset next time through ...
*
* Note that if intr_running is set, then bge_intr() has dropped
* genlock to call bge_receive/bge_recycle. Can't stop the chip at
* this point so have to wait until the next time the factotum runs.
*/
if (error && !bgep->bge_intr_running) {
#ifdef BGE_IPMI_ASF
if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
/*
* We must stop ASF heart beat before bge_chip_stop(),
* otherwise some computers (ex. IBM HS20 blade server)
* may crash.
*/
bge_asf_update_status(bgep);
bge_asf_stop_timer(bgep);
bgep->asf_status = ASF_STAT_STOP;
bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
}
#endif
bge_chip_stop(bgep, B_TRUE);
(void) bge_check_acc_handle(bgep, bgep->io_handle);
}
mutex_exit(bgep->genlock);
/*
* If the link state changed, tell the world about it.
* Note: can't do this while still holding the mutex.
*/
if (linkchg)
mac_link_update(bgep->mh, bgep->link_state);
return (result);
}
/*
* High-level cyclic handler
*
* This routine schedules a (low-level) softint callback to the
* factotum, and prods the chip to update the status block (which
* will cause a hardware interrupt when complete).
*/
void bge_chip_cyclic(void *arg);
#pragma no_inline(bge_chip_cyclic)
void
bge_chip_cyclic(void *arg)
{
bge_t *bgep;
bgep = arg;
switch (bgep->bge_chip_state) {
default:
return;
case BGE_CHIP_RUNNING:
bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
ddi_fm_service_impact(bgep->devinfo,
DDI_SERVICE_UNAFFECTED);
break;
case BGE_CHIP_FAULT:
case BGE_CHIP_ERROR:
break;
}
bge_wake_factotum(bgep);
}
/*
* ========== Ioctl subfunctions ==========
*/
#undef BGE_DBG
#define BGE_DBG BGE_DBG_PPIO /* debug flag for this code */
#if BGE_DEBUGGING || BGE_DO_PPIO
static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_peek_cfg)
static void
bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint64_t regval;
uint64_t regno;
BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
(void *)bgep, (void *)ppd));
regno = ppd->pp_acc_offset;
switch (ppd->pp_acc_size) {
case 1:
regval = pci_config_get8(bgep->cfg_handle, regno);
break;
case 2:
regval = pci_config_get16(bgep->cfg_handle, regno);
break;
case 4:
regval = pci_config_get32(bgep->cfg_handle, regno);
break;
case 8:
regval = pci_config_get64(bgep->cfg_handle, regno);
break;
}
ppd->pp_acc_data = regval;
}
static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_poke_cfg)
static void
bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint64_t regval;
uint64_t regno;
BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
(void *)bgep, (void *)ppd));
regno = ppd->pp_acc_offset;
regval = ppd->pp_acc_data;
switch (ppd->pp_acc_size) {
case 1:
pci_config_put8(bgep->cfg_handle, regno, regval);
break;
case 2:
pci_config_put16(bgep->cfg_handle, regno, regval);
break;
case 4:
pci_config_put32(bgep->cfg_handle, regno, regval);
break;
case 8:
pci_config_put64(bgep->cfg_handle, regno, regval);
break;
}
}
static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_peek_reg)
static void
bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint64_t regval;
void *regaddr;
BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
(void *)bgep, (void *)ppd));
regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
switch (ppd->pp_acc_size) {
case 1:
regval = ddi_get8(bgep->io_handle, regaddr);
break;
case 2:
regval = ddi_get16(bgep->io_handle, regaddr);
break;
case 4:
regval = ddi_get32(bgep->io_handle, regaddr);
break;
case 8:
regval = ddi_get64(bgep->io_handle, regaddr);
break;
}
ppd->pp_acc_data = regval;
}
static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_peek_reg)
static void
bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint64_t regval;
void *regaddr;
BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
(void *)bgep, (void *)ppd));
regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
regval = ppd->pp_acc_data;
switch (ppd->pp_acc_size) {
case 1:
ddi_put8(bgep->io_handle, regaddr, regval);
break;
case 2:
ddi_put16(bgep->io_handle, regaddr, regval);
break;
case 4:
ddi_put32(bgep->io_handle, regaddr, regval);
break;
case 8:
ddi_put64(bgep->io_handle, regaddr, regval);
break;
}
BGE_PCICHK(bgep);
}
static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_peek_nic)
static void
bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint64_t regoff;
uint64_t regval;
void *regaddr;
BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
(void *)bgep, (void *)ppd));
regoff = ppd->pp_acc_offset;
bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
regoff &= MWBAR_GRANULE_MASK;
regoff += NIC_MEM_WINDOW_OFFSET;
regaddr = PIO_ADDR(bgep, regoff);
switch (ppd->pp_acc_size) {
case 1:
regval = ddi_get8(bgep->io_handle, regaddr);
break;
case 2:
regval = ddi_get16(bgep->io_handle, regaddr);
break;
case 4:
regval = ddi_get32(bgep->io_handle, regaddr);
break;
case 8:
regval = ddi_get64(bgep->io_handle, regaddr);
break;
}
ppd->pp_acc_data = regval;
}
static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_poke_nic)
static void
bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint64_t regoff;
uint64_t regval;
void *regaddr;
BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
(void *)bgep, (void *)ppd));
regoff = ppd->pp_acc_offset;
bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
regoff &= MWBAR_GRANULE_MASK;
regoff += NIC_MEM_WINDOW_OFFSET;
regaddr = PIO_ADDR(bgep, regoff);
regval = ppd->pp_acc_data;
switch (ppd->pp_acc_size) {
case 1:
ddi_put8(bgep->io_handle, regaddr, regval);
break;
case 2:
ddi_put16(bgep->io_handle, regaddr, regval);
break;
case 4:
ddi_put32(bgep->io_handle, regaddr, regval);
break;
case 8:
ddi_put64(bgep->io_handle, regaddr, regval);
break;
}
BGE_PCICHK(bgep);
}
static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_peek_mii)
static void
bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
{
BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
(void *)bgep, (void *)ppd));
ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
}
static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_poke_mii)
static void
bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
{
BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
(void *)bgep, (void *)ppd));
bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
}
#if BGE_SEE_IO32
static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_peek_seeprom)
static void
bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint32_t data;
int err;
BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
(void *)bgep, (void *)ppd));
err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
ppd->pp_acc_data = err ? ~0ull : data;
}
static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_poke_seeprom)
static void
bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint32_t data;
BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
(void *)bgep, (void *)ppd));
data = ppd->pp_acc_data;
(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
}
#endif /* BGE_SEE_IO32 */
#if BGE_FLASH_IO32
static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_peek_flash)
static void
bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint32_t data;
int err;
BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
(void *)bgep, (void *)ppd));
err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
ppd->pp_acc_data = err ? ~0ull : data;
}
static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_poke_flash)
static void
bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint32_t data;
BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
(void *)bgep, (void *)ppd));
data = ppd->pp_acc_data;
(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
ppd->pp_acc_offset, &data);
}
#endif /* BGE_FLASH_IO32 */
static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_peek_mem)
static void
bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint64_t regval;
void *vaddr;
BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
(void *)bgep, (void *)ppd));
vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
switch (ppd->pp_acc_size) {
case 1:
regval = *(uint8_t *)vaddr;
break;
case 2:
regval = *(uint16_t *)vaddr;
break;
case 4:
regval = *(uint32_t *)vaddr;
break;
case 8:
regval = *(uint64_t *)vaddr;
break;
}
BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
(void *)bgep, (void *)ppd, regval, vaddr));
ppd->pp_acc_data = regval;
}
static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
#pragma no_inline(bge_chip_poke_mem)
static void
bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
{
uint64_t regval;
void *vaddr;
BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
(void *)bgep, (void *)ppd));
vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
regval = ppd->pp_acc_data;
BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
(void *)bgep, (void *)ppd, regval, vaddr));
switch (ppd->pp_acc_size) {
case 1:
*(uint8_t *)vaddr = (uint8_t)regval;
break;
case 2:
*(uint16_t *)vaddr = (uint16_t)regval;
break;
case 4:
*(uint32_t *)vaddr = (uint32_t)regval;
break;
case 8:
*(uint64_t *)vaddr = (uint64_t)regval;
break;
}
}
static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(bge_pp_ioctl)
static enum ioc_reply
bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
bge_peekpoke_t *ppd;
dma_area_t *areap;
uint64_t sizemask;
uint64_t mem_va;
uint64_t maxoff;
boolean_t peek;
switch (cmd) {
default:
/* NOTREACHED */
bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case BGE_PEEK:
peek = B_TRUE;
break;
case BGE_POKE:
peek = B_FALSE;
break;
}
/*
* Validate format of ioctl
*/
if (iocp->ioc_count != sizeof (bge_peekpoke_t))
return (IOC_INVAL);
if (mp->b_cont == NULL)
return (IOC_INVAL);
ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
/*
* Validate request parameters
*/
switch (ppd->pp_acc_space) {
default:
return (IOC_INVAL);
case BGE_PP_SPACE_CFG:
/*
* Config space
*/
sizemask = 8|4|2|1;
mem_va = 0;
maxoff = PCI_CONF_HDR_SIZE;
ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
break;
case BGE_PP_SPACE_REG:
/*
* Memory-mapped I/O space
*/
sizemask = 8|4|2|1;
mem_va = 0;
maxoff = RIAAR_REGISTER_MAX;
ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
break;
case BGE_PP_SPACE_NIC:
/*
* NIC on-chip memory
*/
sizemask = 8|4|2|1;
mem_va = 0;
maxoff = MWBAR_ONCHIP_MAX;
ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
break;
case BGE_PP_SPACE_MII:
/*
* PHY's MII registers
* NB: all PHY registers are two bytes, but the
* addresses increment in ones (word addressing).
* So we scale the address here, then undo the
* transformation inside the peek/poke functions.
*/
ppd->pp_acc_offset *= 2;
sizemask = 2;
mem_va = 0;
maxoff = (MII_MAXREG+1)*2;
ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
break;
#if BGE_SEE_IO32
case BGE_PP_SPACE_SEEPROM:
/*
* Attached SEEPROM(s), if any.
* NB: we use the high-order bits of the 'address' as
* a device select to accommodate multiple SEEPROMS,
* If each one is the maximum size (64kbytes), this
* makes them appear contiguous. Otherwise, there may
* be holes in the mapping. ENxS doesn't have any
* SEEPROMs anyway ...
*/
sizemask = 4;
mem_va = 0;
maxoff = SEEPROM_DEV_AND_ADDR_MASK;
ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
break;
#endif /* BGE_SEE_IO32 */
#if BGE_FLASH_IO32
case BGE_PP_SPACE_FLASH:
/*
* Attached Flash device (if any); a maximum of one device
* is currently supported. But it can be up to 1MB (unlike
* the 64k limit on SEEPROMs) so why would you need more ;-)
*/
sizemask = 4;
mem_va = 0;
maxoff = NVM_FLASH_ADDR_MASK;
ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
break;
#endif /* BGE_FLASH_IO32 */
case BGE_PP_SPACE_BGE:
/*
* BGE data structure!
*/
sizemask = 8|4|2|1;
mem_va = (uintptr_t)bgep;
maxoff = sizeof (*bgep);
ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
break;
case BGE_PP_SPACE_STATUS:
case BGE_PP_SPACE_STATISTICS:
case BGE_PP_SPACE_TXDESC:
case BGE_PP_SPACE_TXBUFF:
case BGE_PP_SPACE_RXDESC:
case BGE_PP_SPACE_RXBUFF:
/*
* Various DMA_AREAs
*/
switch (ppd->pp_acc_space) {
case BGE_PP_SPACE_TXDESC:
areap = &bgep->tx_desc;
break;
case BGE_PP_SPACE_TXBUFF:
areap = &bgep->tx_buff[0];
break;
case BGE_PP_SPACE_RXDESC:
areap = &bgep->rx_desc[0];
break;
case BGE_PP_SPACE_RXBUFF:
areap = &bgep->rx_buff[0];
break;
case BGE_PP_SPACE_STATUS:
areap = &bgep->status_block;
break;
case BGE_PP_SPACE_STATISTICS:
if (bgep->chipid.statistic_type == BGE_STAT_BLK)
areap = &bgep->statistics;
break;
}
sizemask = 8|4|2|1;
mem_va = (uintptr_t)areap->mem_va;
maxoff = areap->alength;
ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
break;
}
switch (ppd->pp_acc_size) {
default:
return (IOC_INVAL);
case 8:
case 4:
case 2:
case 1:
if ((ppd->pp_acc_size & sizemask) == 0)
return (IOC_INVAL);
break;
}
if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
return (IOC_INVAL);
if (ppd->pp_acc_offset >= maxoff)
return (IOC_INVAL);
if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
return (IOC_INVAL);
/*
* All OK - go do it!
*/
ppd->pp_acc_offset += mem_va;
(*ppfn)(bgep, ppd);
return (peek ? IOC_REPLY : IOC_ACK);
}
static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(bge_diag_ioctl)
static enum ioc_reply
bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
ASSERT(mutex_owned(bgep->genlock));
switch (cmd) {
default:
/* NOTREACHED */
bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case BGE_DIAG:
/*
* Currently a no-op
*/
return (IOC_ACK);
case BGE_PEEK:
case BGE_POKE:
return (bge_pp_ioctl(bgep, cmd, mp, iocp));
case BGE_PHY_RESET:
return (IOC_RESTART_ACK);
case BGE_SOFT_RESET:
case BGE_HARD_RESET:
/*
* Reset and reinitialise the 570x hardware
*/
bgep->bge_chip_state = BGE_CHIP_FAULT;
ddi_trigger_softintr(bgep->factotum_id);
(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
return (IOC_ACK);
}
/* NOTREACHED */
}
#endif /* BGE_DEBUGGING || BGE_DO_PPIO */
static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(bge_mii_ioctl)
static enum ioc_reply
bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
struct bge_mii_rw *miirwp;
/*
* Validate format of ioctl
*/
if (iocp->ioc_count != sizeof (struct bge_mii_rw))
return (IOC_INVAL);
if (mp->b_cont == NULL)
return (IOC_INVAL);
miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
/*
* Validate request parameters ...
*/
if (miirwp->mii_reg > MII_MAXREG)
return (IOC_INVAL);
switch (cmd) {
default:
/* NOTREACHED */
bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case BGE_MII_READ:
miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
return (IOC_REPLY);
case BGE_MII_WRITE:
bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
return (IOC_ACK);
}
/* NOTREACHED */
}
#if BGE_SEE_IO32
static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(bge_see_ioctl)
static enum ioc_reply
bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
struct bge_see_rw *seerwp;
/*
* Validate format of ioctl
*/
if (iocp->ioc_count != sizeof (struct bge_see_rw))
return (IOC_INVAL);
if (mp->b_cont == NULL)
return (IOC_INVAL);
seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
/*
* Validate request parameters ...
*/
if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
return (IOC_INVAL);
switch (cmd) {
default:
/* NOTREACHED */
bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case BGE_SEE_READ:
case BGE_SEE_WRITE:
iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
seerwp->see_addr, &seerwp->see_data);
return (IOC_REPLY);
}
/* NOTREACHED */
}
#endif /* BGE_SEE_IO32 */
#if BGE_FLASH_IO32
static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(bge_flash_ioctl)
static enum ioc_reply
bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
{
struct bge_flash_rw *flashrwp;
/*
* Validate format of ioctl
*/
if (iocp->ioc_count != sizeof (struct bge_flash_rw))
return (IOC_INVAL);
if (mp->b_cont == NULL)
return (IOC_INVAL);
flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
/*
* Validate request parameters ...
*/
if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
return (IOC_INVAL);
switch (cmd) {
default:
/* NOTREACHED */
bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case BGE_FLASH_READ:
case BGE_FLASH_WRITE:
iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
flashrwp->flash_addr, &flashrwp->flash_data);
return (IOC_REPLY);
}
/* NOTREACHED */
}
#endif /* BGE_FLASH_IO32 */
enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
struct iocblk *iocp);
#pragma no_inline(bge_chip_ioctl)
enum ioc_reply
bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
{
int cmd;
BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
(void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
ASSERT(mutex_owned(bgep->genlock));
cmd = iocp->ioc_cmd;
switch (cmd) {
default:
/* NOTREACHED */
bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case BGE_DIAG:
case BGE_PEEK:
case BGE_POKE:
case BGE_PHY_RESET:
case BGE_SOFT_RESET:
case BGE_HARD_RESET:
#if BGE_DEBUGGING || BGE_DO_PPIO
return (bge_diag_ioctl(bgep, cmd, mp, iocp));
#else
return (IOC_INVAL);
#endif /* BGE_DEBUGGING || BGE_DO_PPIO */
case BGE_MII_READ:
case BGE_MII_WRITE:
return (bge_mii_ioctl(bgep, cmd, mp, iocp));
#if BGE_SEE_IO32
case BGE_SEE_READ:
case BGE_SEE_WRITE:
return (bge_see_ioctl(bgep, cmd, mp, iocp));
#endif /* BGE_SEE_IO32 */
#if BGE_FLASH_IO32
case BGE_FLASH_READ:
case BGE_FLASH_WRITE:
return (bge_flash_ioctl(bgep, cmd, mp, iocp));
#endif /* BGE_FLASH_IO32 */
}
/* NOTREACHED */
}
void
bge_chip_blank(void *arg, time_t ticks, uint_t count)
{
bge_t *bgep = arg;
mutex_enter(bgep->genlock);
bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
mutex_exit(bgep->genlock);
}
#ifdef BGE_IPMI_ASF
uint32_t
bge_nic_read32(bge_t *bgep, bge_regno_t addr)
{
uint32_t data;
#ifndef __sparc
if (!bgep->asf_wordswapped) {
/* a workaround word swap error */
if (addr & 4)
addr = addr - 4;
else
addr = addr + 4;
}
#endif
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
data = LE_32(data);
return (data);
}
void
bge_asf_update_status(bge_t *bgep)
{
uint32_t event;
bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX, 3);
event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
}
/*
* The driver is supposed to notify ASF that the OS is still running
* every three seconds, otherwise the management server may attempt
* to reboot the machine. If it hasn't actually failed, this is
* not a desirable result. However, this isn't running as a real-time
* thread, and even if it were, it might not be able to generate the
* heartbeat in a timely manner due to system load. As it isn't a
* significant strain on the machine, we will set the interval to half
* of the required value.
*/
void
bge_asf_heartbeat(void *arg)
{
bge_t *bgep = (bge_t *)arg;
mutex_enter(bgep->genlock);
bge_asf_update_status((bge_t *)bgep);
if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
mutex_exit(bgep->genlock);
((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
}
void
bge_asf_stop_timer(bge_t *bgep)
{
timeout_id_t tmp_id = 0;
while ((bgep->asf_timeout_id != 0) &&
(tmp_id != bgep->asf_timeout_id)) {
tmp_id = bgep->asf_timeout_id;
(void) untimeout(tmp_id);
}
bgep->asf_timeout_id = 0;
}
/*
* This function should be placed at the earliest position of bge_attach().
*/
void
bge_asf_get_config(bge_t *bgep)
{
uint32_t nicsig;
uint32_t niccfg;
bgep->asf_enabled = B_FALSE;
nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
if (nicsig == BGE_NIC_DATA_SIG) {
niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
/*
* Here, we don't consider BAXTER, because BGE haven't
* supported BAXTER (that is 5752). Also, as I know,
* BAXTER doesn't support ASF feature.
*/
bgep->asf_enabled = B_TRUE;
else
bgep->asf_enabled = B_FALSE;
} else
bgep->asf_enabled = B_FALSE;
}
void
bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
{
uint32_t tries;
uint32_t event;
ASSERT(bgep->asf_enabled);
/* Issues "pause firmware" command and wait for ACK */
bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
tries = 0;
while ((event & RRER_ASF_EVENT) && (tries < 100)) {
drv_usecwait(1);
tries ++;
event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
}
bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
if (bgep->asf_newhandshake) {
switch (mode) {
case BGE_INIT_RESET:
bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
BGE_DRV_STATE_START);
break;
case BGE_SHUTDOWN_RESET:
bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
BGE_DRV_STATE_UNLOAD);
break;
case BGE_SUSPEND_RESET:
bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
BGE_DRV_STATE_SUSPEND);
break;
default:
break;
}
}
}
void
bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
{
switch (mode) {
case BGE_INIT_RESET:
bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
BGE_DRV_STATE_START);
break;
case BGE_SHUTDOWN_RESET:
bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
BGE_DRV_STATE_UNLOAD);
break;
case BGE_SUSPEND_RESET:
bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
BGE_DRV_STATE_SUSPEND);
break;
default:
break;
}
}
void
bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
{
switch (mode) {
case BGE_INIT_RESET:
bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
BGE_DRV_STATE_START_DONE);
break;
case BGE_SHUTDOWN_RESET:
bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
BGE_DRV_STATE_UNLOAD_DONE);
break;
default:
break;
}
}
#endif /* BGE_IPMI_ASF */