arn_recv.c revision dd1de3740722a4b99a74005255effebbd20a6d70
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/byteorder.h>
#include "arn_core.h"
void
arn_setdefantenna(struct arn_softc *sc, uint32_t antenna)
{
/* XXX block beacon interrupts */
ath9k_hw_setantenna(sc->sc_ah, antenna);
sc->sc_defant = (uint8_t)antenna; /* LINT */
sc->sc_rxotherant = 0;
}
/*
* Extend 15-bit time stamp from rx descriptor to
* a full 64-bit TSF using the current h/w TSF.
*/
static uint64_t
arn_extend_tsf(struct arn_softc *sc, uint32_t rstamp)
{
uint64_t tsf;
tsf = ath9k_hw_gettsf64(sc->sc_ah);
if ((tsf & 0x7fff) < rstamp)
tsf -= 0x8000;
return ((tsf & ~0x7fff) | rstamp);
}
static void
arn_opmode_init(struct arn_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
uint32_t rfilt;
uint32_t mfilt[2];
ieee80211com_t *ic = (ieee80211com_t *)sc;
/* configure rx filter */
rfilt = arn_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
/* configure bssid mask */
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
(void) ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
/* configure operational mode */
ath9k_hw_setopmode(ah);
/* Handle any link-level address change. */
(void) ath9k_hw_setmac(ah, sc->sc_myaddr);
/* calculate and install multicast filter */
mfilt[0] = ~((uint32_t)0); /* LINT */
mfilt[1] = ~((uint32_t)0); /* LINT */
ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
ARN_DBG((ARN_DBG_RECV, "arn: arn_opmode_init(): "
"mode = %d RX filter 0x%x, MC filter %08x:%08x\n",
ic->ic_opmode, rfilt, mfilt[0], mfilt[1]));
}
/*
* Calculate the receive filter according to the
* operating mode and state:
*
* o always accept unicast, broadcast, and multicast traffic
* o maintain current state of phy error reception (the hal
* may enable phy error frames for noise immunity work)
* o probe request frames are accepted only when operating in
* hostap, adhoc, or monitor modes
* o enable promiscuous mode according to the interface state
* o accept beacons:
* - when operating in adhoc mode so the 802.11 layer creates
* node table entries for peers,
* - when operating in station mode for collecting rssi data when
* the station is otherwise quiet, or
* - when operating as a repeater so we see repeater-sta beacons
* - when scanning
*/
uint32_t
arn_calcrxfilter(struct arn_softc *sc)
{
#define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | \
ATH9K_RX_FILTER_PHYRADAR)
uint32_t rfilt;
rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE) |
ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST |
ATH9K_RX_FILTER_MCAST;
/* If not a STA, enable processing of Probe Requests */
if (sc->sc_ah->ah_opmode != ATH9K_M_STA)
rfilt |= ATH9K_RX_FILTER_PROBEREQ;
/* Can't set HOSTAP into promiscous mode */
if (((sc->sc_ah->ah_opmode != ATH9K_M_HOSTAP) &&
(sc->sc_promisc)) ||
(sc->sc_ah->ah_opmode == ATH9K_M_MONITOR)) {
rfilt |= ATH9K_RX_FILTER_PROM;
/* ??? To prevent from sending ACK */
rfilt &= ~ATH9K_RX_FILTER_UCAST;
}
if (sc->sc_ah->ah_opmode == ATH9K_M_STA ||
sc->sc_ah->ah_opmode == ATH9K_M_IBSS)
rfilt |= ATH9K_RX_FILTER_BEACON;
/*
* If in HOSTAP mode, want to enable reception of PSPOLL
* frames & beacon frames
*/
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP)
rfilt |= (ATH9K_RX_FILTER_BEACON | ATH9K_RX_FILTER_PSPOLL);
return (rfilt);
#undef RX_FILTER_PRESERVE
}
int
arn_startrecv(struct arn_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
/* clean up rx link firstly */
sc->sc_rxlink = NULL;
/* rx descriptor link set up */
bf = list_head(&sc->sc_rxbuf_list);
while (bf != NULL) {
arn_rx_buf_link(sc, bf);
bf = list_next(&sc->sc_rxbuf_list, bf);
}
bf = list_head(&sc->sc_rxbuf_list);
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
ath9k_hw_rxena(ah);
arn_opmode_init(sc);
ath9k_hw_startpcureceive(ah);
return (0);
}
boolean_t
arn_stoprecv(struct arn_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
boolean_t stopped;
ath9k_hw_stoppcurecv(ah);
ath9k_hw_setrxfilter(ah, 0);
stopped = ath9k_hw_stopdmarecv(ah);
/* 3ms is long enough for 1 frame ??? */
drv_usecwait(3000);
sc->sc_rxlink = NULL;
return (stopped);
}
/*
* Intercept management frames to collect beacon rssi data
* and to do ibss merges.
*/
void
arn_recv_mgmt(struct ieee80211com *ic, mblk_t *mp, struct ieee80211_node *in,
int subtype, int rssi, uint32_t rstamp)
{
struct arn_softc *sc = (struct arn_softc *)ic;
/*
* Call up first so subsequent work can use information
* potentially stored in the node (e.g. for ibss merge).
*/
sc->sc_recv_mgmt(ic, mp, in, subtype, rssi, rstamp);
ARN_LOCK(sc);
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_BEACON:
/* update rssi statistics */
if (sc->sc_bsync && in == ic->ic_bss &&
ic->ic_state == IEEE80211_S_RUN) {
/*
* Resync beacon timers using the tsf of the beacon
* frame we just received.
*/
arn_beacon_config(sc);
}
/* FALLTHRU */
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
if (ic->ic_opmode == IEEE80211_M_IBSS &&
ic->ic_state == IEEE80211_S_RUN &&
(in->in_capinfo & IEEE80211_CAPINFO_IBSS)) {
uint64_t tsf = arn_extend_tsf(sc, rstamp);
/*
* Handle ibss merge as needed; check the tsf on the
* frame before attempting the merge. The 802.11 spec
* says the station should change it's bssid to match
* the oldest station with the same ssid, where oldest
* is determined by the tsf. Note that hardware
* reconfiguration happens through callback to
* ath_newstate as the state machine will go from
* RUN -> RUN when this happens.
*/
if (LE_64(in->in_tstamp.tsf) >= tsf) {
ARN_DBG((ARN_DBG_BEACON, "arn: arn_recv_mgmt:"
"ibss merge, rstamp %u tsf %lu "
"tstamp %lu\n", rstamp, tsf,
in->in_tstamp.tsf));
ARN_UNLOCK(sc);
ARN_DBG((ARN_DBG_BEACON, "arn_recv_mgmt():"
"ibss_merge: rstamp=%d in_tstamp=%02x %02x"
" %02x %02x %02x %02x %02x %02x\n",
rstamp, in->in_tstamp.data[0],
in->in_tstamp.data[1],
in->in_tstamp.data[2],
in->in_tstamp.data[3],
in->in_tstamp.data[4],
in->in_tstamp.data[5],
in->in_tstamp.data[6],
in->in_tstamp.data[7]));
(void) ieee80211_ibss_merge(in);
return;
}
}
break;
}
ARN_UNLOCK(sc);
}
static void
arn_printrxbuf(struct ath_buf *bf, int32_t done)
{
struct ath_desc *ds = bf->bf_desc;
const struct ath_rx_status *rs = &ds->ds_rxstat;
ARN_DBG((ARN_DBG_RECV, "arn: R (%p %p) %08x %08x %08x "
"%08x %08x %08x %c\n",
ds, bf->bf_daddr,
ds->ds_link, ds->ds_data,
ds->ds_ctl0, ds->ds_ctl1,
ds->ds_hw[0], ds->ds_hw[1],
!done ? ' ' : (rs->rs_status == 0) ? '*' : '!'));
}
static void
arn_rx_handler(struct arn_softc *sc)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
((_pa) - (_sc)->sc_desc_dma.cookie.dmac_address)))
ieee80211com_t *ic = (ieee80211com_t *)sc;
struct ath_buf *bf;
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds;
struct ath_rx_status *rs;
mblk_t *rx_mp;
struct ieee80211_frame *wh;
int32_t len, ngood, loop = 1;
uint8_t phyerr;
int status;
struct ieee80211_node *in;
ngood = 0;
do {
mutex_enter(&sc->sc_rxbuflock);
bf = list_head(&sc->sc_rxbuf_list);
if (bf == NULL) {
ARN_DBG((ARN_DBG_RECV, "arn: arn_rx_handler(): "
"no buffer\n"));
mutex_exit(&sc->sc_rxbuflock);
break;
}
ASSERT(bf->bf_dma.cookie.dmac_address != NULL);
ds = bf->bf_desc;
if (ds->ds_link == bf->bf_daddr) {
/*
* Never process the self-linked entry at the end,
* this may be met at heavy load.
*/
mutex_exit(&sc->sc_rxbuflock);
break;
}
/*
* Must provide the virtual address of the current
* descriptor, the physical address, and the virtual
* address of the next descriptor in the h/w chain.
* This allows the HAL to look ahead to see if the
* hardware is done with a descriptor by checking the
* done bit in the following descriptor and the address
* of the current descriptor the DMA engine is working
* on. All this is necessary because of our use of
* a self-linked list to avoid rx overruns.
*/
status = ath9k_hw_rxprocdesc(ah, ds,
bf->bf_daddr,
PA2DESC(sc, ds->ds_link), 0);
if (status == EINPROGRESS) {
mutex_exit(&sc->sc_rxbuflock);
break;
}
list_remove(&sc->sc_rxbuf_list, bf);
mutex_exit(&sc->sc_rxbuflock);
rs = &ds->ds_rxstat;
if (rs->rs_status != 0) {
if (rs->rs_status & ATH9K_RXERR_CRC) {
sc->sc_stats.ast_rx_crcerr++;
}
if (rs->rs_status & ATH9K_RXERR_FIFO) {
sc->sc_stats.ast_rx_fifoerr++;
}
if (rs->rs_status & ATH9K_RXERR_DECRYPT) {
sc->sc_stats.ast_rx_badcrypt++;
}
if (rs->rs_status & ATH9K_RXERR_PHY) {
sc->sc_stats.ast_rx_phyerr++;
phyerr = rs->rs_phyerr & 0x1f;
sc->sc_stats.ast_rx_phy[phyerr]++;
}
goto rx_next;
}
len = rs->rs_datalen;
/* less than sizeof(struct ieee80211_frame) */
if (len < 20) {
sc->sc_stats.ast_rx_tooshort++;
goto rx_next;
}
if ((rx_mp = allocb(sc->sc_dmabuf_size, BPRI_MED)) == NULL) {
arn_problem("arn: arn_rx_handler(): "
"allocing mblk buffer failed.\n");
return;
}
ARN_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORCPU);
bcopy(bf->bf_dma.mem_va, rx_mp->b_rptr, len);
rx_mp->b_wptr += len;
wh = (struct ieee80211_frame *)rx_mp->b_rptr;
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_CTL) {
/*
* Ignore control frame received in promisc mode.
*/
freemsg(rx_mp);
goto rx_next;
}
/* Remove the CRC at the end of IEEE80211 frame */
rx_mp->b_wptr -= IEEE80211_CRC_LEN;
#ifdef DEBUG
arn_printrxbuf(bf, status == 0);
#endif
/*
* Locate the node for sender, track state, and then
* pass the (referenced) node up to the 802.11 layer
* for its use.
*/
in = ieee80211_find_rxnode(ic, wh);
/*
* Send the frame to net80211 for processing
*/
(void) ieee80211_input(ic, rx_mp, in,
rs->rs_rssi, rs->rs_tstamp);
/* release node */
ieee80211_free_node(in);
/*
* Arrange to update the last rx timestamp only for
* frames from our ap when operating in station mode.
* This assumes the rx key is always setup when associated.
*/
if (ic->ic_opmode == IEEE80211_M_STA &&
rs->rs_keyix != ATH9K_RXKEYIX_INVALID) {
ngood++;
}
/*
* change the default rx antenna if rx diversity chooses the
* other antenna 3 times in a row.
*/
if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
if (++sc->sc_rxotherant >= 3) {
ath9k_hw_setantenna(sc->sc_ah,
ds->ds_rxstat.rs_antenna);
sc->sc_defant = ds->ds_rxstat.rs_antenna;
sc->sc_rxotherant = 0;
}
} else {
sc->sc_rxotherant = 0;
}
rx_next:
mutex_enter(&sc->sc_rxbuflock);
list_insert_tail(&sc->sc_rxbuf_list, bf);
mutex_exit(&sc->sc_rxbuflock);
arn_rx_buf_link(sc, bf);
} while (loop);
if (ngood)
sc->sc_lastrx = ath9k_hw_gettsf64(ah);
#undef PA2DESC
}
uint_t
arn_softint_handler(caddr_t data)
{
struct arn_softc *sc = (struct arn_softc *)data;
ARN_LOCK(sc);
if (sc->sc_rx_pend) {
/* Soft interrupt for this driver */
sc->sc_rx_pend = 0;
ARN_UNLOCK(sc);
arn_rx_handler(sc);
return (DDI_INTR_CLAIMED);
}
ARN_UNLOCK(sc);
return (DDI_INTR_UNCLAIMED);
}