arn_rc.c revision c0c934808d1b7d058148814255f32064a0e09555
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2004 Video54 Technologies, Inc.
* Copyright (c) 2004-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/time.h>
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/net80211_ht.h>
#include "arn_core.h"
#include "arn_hw.h"
#include "arn_reg.h"
static struct ath_rate_table ar5416_11na_ratetable = {
42,
{0},
{
{ VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, 12,
0, 2, 1, 0, 0, 0, 0, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
0, 3, 1, 1, 1, 1, 1, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
10000, 0x0a, 0x00, 24,
2, 4, 2, 2, 2, 2, 2, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
13900, 0x0e, 0x00, 36,
2, 6, 2, 3, 3, 3, 3, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
17300, 0x09, 0x00, 48,
4, 10, 3, 4, 4, 4, 4, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
23000, 0x0d, 0x00, 72,
4, 14, 3, 5, 5, 5, 5, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
4, 20, 3, 6, 6, 6, 6, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
29300, 0x0c, 0x00, 108,
4, 23, 3, 7, 7, 7, 7, 0 },
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
6400, 0x80, 0x00, 0,
0, 2, 3, 8, 24, 8, 24, 3216 },
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
12700, 0x81, 0x00, 1,
2, 4, 3, 9, 25, 9, 25, 6434 },
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
18800, 0x82, 0x00, 2,
2, 6, 3, 10, 26, 10, 26, 9650 },
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
25000, 0x83, 0x00, 3,
4, 10, 3, 11, 27, 11, 27, 12868 },
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
36700, 0x84, 0x00, 4,
4, 14, 3, 12, 28, 12, 28, 19304 },
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
48100, 0x85, 0x00, 5,
4, 20, 3, 13, 29, 13, 29, 25740 },
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
53500, 0x86, 0x00, 6,
4, 23, 3, 14, 30, 14, 30, 28956 },
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
59000, 0x87, 0x00, 7,
4, 25, 3, 15, 31, 15, 32, 32180 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
12700, 0x88, 0x00,
8, 0, 2, 3, 16, 33, 16, 33, 6430 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
24800, 0x89, 0x00, 9,
2, 4, 3, 17, 34, 17, 34, 12860 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
36600, 0x8a, 0x00, 10,
2, 6, 3, 18, 35, 18, 35, 19300 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
48100, 0x8b, 0x00, 11,
4, 10, 3, 19, 36, 19, 36, 25736 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
69500, 0x8c, 0x00, 12,
4, 14, 3, 20, 37, 20, 37, 38600 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
89500, 0x8d, 0x00, 13,
4, 20, 3, 21, 38, 21, 38, 51472 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
98900, 0x8e, 0x00, 14,
4, 23, 3, 22, 39, 22, 39, 57890 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
108300, 0x8f, 0x00, 15,
4, 25, 3, 23, 40, 23, 41, 64320 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
13200, 0x80, 0x00, 0,
0, 2, 3, 8, 24, 24, 24, 6684 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
25900, 0x81, 0x00, 1,
2, 4, 3, 9, 25, 25, 25, 13368 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
38600, 0x82, 0x00, 2,
2, 6, 3, 10, 26, 26, 26, 20052 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
49800, 0x83, 0x00, 3,
4, 10, 3, 11, 27, 27, 27, 26738 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
72200, 0x84, 0x00, 4,
4, 14, 3, 12, 28, 28, 28, 40104 },
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
92900, 0x85, 0x00, 5,
4, 20, 3, 13, 29, 29, 29, 53476 },
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5Mb */
102700, 0x86, 0x00, 6,
4, 23, 3, 14, 30, 30, 30, 60156 },
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
112000, 0x87, 0x00, 7,
4, 25, 3, 15, 31, 32, 32, 66840 },
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI,
150000, /* 150Mb */
122000, 0x87, 0x00, 7,
4, 25, 3, 15, 31, 32, 32, 74200 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
25800, 0x88, 0x00, 8,
0, 2, 3, 16, 33, 33, 33, 13360 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
49800, 0x89, 0x00, 9,
2, 4, 3, 17, 34, 34, 34, 26720 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
71900, 0x8a, 0x00, 10,
2, 6, 3, 18, 35, 35, 35, 40080 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
92500, 0x8b, 0x00, 11,
4, 10, 3, 19, 36, 36, 36, 53440 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
130300, 0x8c, 0x00, 12,
4, 14, 3, 20, 37, 37, 37, 80160 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
162800, 0x8d, 0x00, 13,
4, 20, 3, 21, 38, 38, 38, 106880 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
178200, 0x8e, 0x00, 14,
4, 23, 3, 22, 39, 39, 39, 120240 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
192100, 0x8f, 0x00, 15,
4, 25, 3, 23, 40, 41, 41, 133600 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI,
300000, /* 300 Mb */
207000, 0x8f, 0x00, 15,
4, 25, 3, 23, 40, 41, 41, 148400 },
},
50, /* probe interval */
50, /* rssi reduce interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
/*
* 4ms frame limit not used for NG mode. The values filled
* for HT are the 64K max aggregate limit
*/
static struct ath_rate_table ar5416_11ng_ratetable = {
46,
{0},
{
{ VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
900, 0x1b, 0x00, 2,
0, 0, 1, 0, 0, 0, 0, 0 },
{ VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
1900, 0x1a, 0x04, 4,
1, 1, 1, 1, 1, 1, 1, 0 },
{ VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
4900, 0x19, 0x04, 11,
2, 2, 2, 2, 2, 2, 2, 0 },
{ VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
8100, 0x18, 0x04, 22,
3, 3, 2, 3, 3, 3, 3, 0 },
{ INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, 12,
4, 2, 1, 4, 4, 4, 4, 0 },
{ INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
4, 3, 1, 5, 5, 5, 5, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
10100, 0x0a, 0x00, 24,
6, 4, 1, 6, 6, 6, 6, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
14100, 0x0e, 0x00, 36,
6, 6, 2, 7, 7, 7, 7, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
17700, 0x09, 0x00, 48,
8, 10, 3, 8, 8, 8, 8, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
23700, 0x0d, 0x00, 72,
8, 14, 3, 9, 9, 9, 9, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
8, 20, 3, 10, 10, 10, 10, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
30900, 0x0c, 0x00, 108,
8, 23, 3, 11, 11, 11, 11, 0 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
6400, 0x80, 0x00, 0,
4, 2, 3, 12, 28, 12, 28, 3216 },
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
12700, 0x81, 0x00, 1,
6, 4, 3, 13, 29, 13, 29, 6434 },
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
18800, 0x82, 0x00, 2,
6, 6, 3, 14, 30, 14, 30, 9650 },
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
25000, 0x83, 0x00, 3,
8, 10, 3, 15, 31, 15, 31, 12868 },
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
36700, 0x84, 0x00, 4,
8, 14, 3, 16, 32, 16, 32, 19304 },
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
48100, 0x85, 0x00, 5,
8, 20, 3, 17, 33, 17, 33, 25740 },
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
53500, 0x86, 0x00, 6,
8, 23, 3, 18, 34, 18, 34, 28956 },
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
59000, 0x87, 0x00, 7,
8, 25, 3, 19, 35, 19, 36, 32180 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
12700, 0x88, 0x00, 8,
4, 2, 3, 20, 37, 20, 37, 6430 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
24800, 0x89, 0x00, 9,
6, 4, 3, 21, 38, 21, 38, 12860 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
36600, 0x8a, 0x00, 10,
6, 6, 3, 22, 39, 22, 39, 19300 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
48100, 0x8b, 0x00, 11,
8, 10, 3, 23, 40, 23, 40, 25736 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
69500, 0x8c, 0x00, 12,
8, 14, 3, 24, 41, 24, 41, 38600 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
89500, 0x8d, 0x00, 13,
8, 20, 3, 25, 42, 25, 42, 51472 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
98900, 0x8e, 0x00, 14,
8, 23, 3, 26, 43, 26, 44, 57890 },
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
108300, 0x8f, 0x00, 15,
8, 25, 3, 27, 44, 27, 45, 64320 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
13200, 0x80, 0x00, 0,
8, 2, 3, 12, 28, 28, 28, 6684 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
25900, 0x81, 0x00, 1,
8, 4, 3, 13, 29, 29, 29, 13368 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
38600, 0x82, 0x00, 2,
8, 6, 3, 14, 30, 30, 30, 20052 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
49800, 0x83, 0x00, 3,
8, 10, 3, 15, 31, 31, 31, 26738 },
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
72200, 0x84, 0x00, 4,
8, 14, 3, 16, 32, 32, 32, 40104 },
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
92900, 0x85, 0x00, 5,
8, 20, 3, 17, 33, 33, 33, 53476 },
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS,
121500, /* 121.5 Mb */
102700, 0x86, 0x00, 6,
8, 23, 3, 18, 34, 34, 34, 60156 },
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
112000, 0x87, 0x00, 7,
8, 23, 3, 19, 35, 36, 36, 66840 },
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI,
150000, /* 150 Mb */
122000, 0x87, 0x00, 7,
8, 25, 3, 19, 35, 36, 36, 74200 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
25800, 0x88, 0x00, 8,
8, 2, 3, 20, 37, 37, 37, 13360 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
49800, 0x89, 0x00, 9,
8, 4, 3, 21, 38, 38, 38, 26720 },
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
71900, 0x8a, 0x00, 10,
8, 6, 3, 22, 39, 39, 39, 40080 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
92500, 0x8b, 0x00, 11,
8, 10, 3, 23, 40, 40, 40, 53440 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
130300, 0x8c, 0x00, 12,
8, 14, 3, 24, 41, 41, 41, 80160 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
162800, 0x8d, 0x00, 13,
8, 20, 3, 25, 42, 42, 42, 106880 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
178200, 0x8e, 0x00, 14,
8, 23, 3, 26, 43, 43, 43, 120240 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
192100, 0x8f, 0x00, 15,
8, 23, 3, 27, 44, 45, 45, 133600 },
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI,
300000, /* 300 Mb */
207000, 0x8f, 0x00, 15,
8, 25, 3, 27, 44, 45, 45, 148400 },
},
50, /* probe interval */
50, /* rssi reduce interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11a_ratetable = {
8,
{0},
{
{ VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, (0x80|12),
0, 2, 1, 0, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
0, 3, 1, 1, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
10000, 0x0a, 0x00, (0x80|24),
2, 4, 2, 2, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
13900, 0x0e, 0x00, 36,
2, 6, 2, 3, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
17300, 0x09, 0x00, (0x80|48),
4, 10, 3, 4, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
23000, 0x0d, 0x00, 72,
4, 14, 3, 5, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
4, 19, 3, 6, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
29300, 0x0c, 0x00, 108,
4, 23, 3, 7, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11g_ratetable = {
12,
{0},
{
{ VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
900, 0x1b, 0x00, 2,
0, 0, 1, 0, 0 },
{ VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
1900, 0x1a, 0x04, 4,
1, 1, 1, 1, 0 },
{ VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
4900, 0x19, 0x04, 11,
2, 2, 2, 2, 0 },
{ VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
8100, 0x18, 0x04, 22,
3, 3, 2, 3, 0 },
{ INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, 12,
4, 2, 1, 4, 0 },
{ INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
4, 3, 1, 5, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
10000, 0x0a, 0x00, 24,
6, 4, 1, 6, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
13900, 0x0e, 0x00, 36,
6, 6, 2, 7, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
17300, 0x09, 0x00, 48,
8, 10, 3, 8, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
23000, 0x0d, 0x00, 72,
8, 14, 3, 9, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
8, 19, 3, 10, 0 },
{ VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
29300, 0x0c, 0x00, 108,
8, 23, 3, 11, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11b_ratetable = {
4,
{0},
{
{ VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
900, 0x1b, 0x00, (0x80|2),
0, 0, 1, 0, 0 },
{ VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
1800, 0x1a, 0x04, (0x80|4),
1, 1, 1, 1, 0 },
{ VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
4300, 0x19, 0x04, (0x80|11),
1, 2, 2, 2, 0 },
{ VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
7100, 0x18, 0x04, (0x80|22),
1, 4, 100, 3, 0 },
},
100, /* probe interval */
100, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static inline int8_t
median(int8_t a, int8_t b, int8_t c)
{
if (a >= b) {
if (b >= c)
return (b);
else if (a > c)
return (c);
else
return (a);
} else {
if (a >= c)
return (a);
else if (b >= c)
return (c);
else
return (b);
}
}
static void
arn_rc_sort_validrates(struct ath_rate_table *rate_table,
struct ath_rate_priv *ath_rc_priv)
{
uint8_t i, j, idx, idx_next;
for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
for (j = 0; j <= i-1; j++) {
idx = ath_rc_priv->valid_rate_index[j];
idx_next = ath_rc_priv->valid_rate_index[j+1];
if (rate_table->info[idx].ratekbps >
rate_table->info[idx_next].ratekbps) {
ath_rc_priv->valid_rate_index[j] = idx_next;
ath_rc_priv->valid_rate_index[j+1] = idx;
}
}
}
}
static void
arn_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
{
uint8_t i;
for (i = 0; i < ath_rc_priv->rate_table_size; i++)
ath_rc_priv->valid_rate_index[i] = 0;
}
static inline void
arn_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
uint8_t index, int valid_tx_rate)
{
ASSERT(index <= ath_rc_priv->rate_table_size);
ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
}
static inline int
/* LINTED E_STATIC_UNUSED */
arn_rc_isvalid_txmask(struct ath_rate_priv *ath_rc_priv, uint8_t index)
{
ASSERT(index <= ath_rc_priv->rate_table_size);
return (ath_rc_priv->valid_rate_index[index]);
}
/* ARGSUSED */
static inline int
arn_rc_get_nextvalid_txrate(struct ath_rate_table *rate_table,
struct ath_rate_priv *ath_rc_priv,
uint8_t cur_valid_txrate,
uint8_t *next_idx)
{
uint8_t i;
for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = ath_rc_priv->valid_rate_index[i+1];
return (1);
}
}
/* No more valid rates */
*next_idx = 0;
return (0);
}
/* Return true only for single stream */
static int
arn_rc_valid_phyrate(uint32_t phy, uint32_t capflag, int ignore_cw)
{
if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
return (0);
if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
return (0);
if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
return (0);
if (!ignore_cw && WLAN_RC_PHY_HT(phy))
if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
return (0);
if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
return (0);
return (1);
}
/* ARGSUSED */
static inline int
arn_rc_get_nextlowervalid_txrate(struct ath_rate_table *rate_table,
struct ath_rate_priv *ath_rc_priv,
uint8_t cur_valid_txrate, uint8_t *next_idx)
{
int8_t i;
for (i = 1; i < ath_rc_priv->max_valid_rate; i++) {
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = ath_rc_priv->valid_rate_index[i-1];
return (1);
}
}
return (0);
}
static uint8_t
arn_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
struct ath_rate_table *rate_table, uint32_t capflag)
{
uint8_t i, hi = 0;
uint32_t valid;
for (i = 0; i < rate_table->rate_cnt; i++) {
valid = (ath_rc_priv->single_stream ?
rate_table->info[i].valid_single_stream :
rate_table->info[i].valid);
if (valid == 1) {
uint32_t phy = rate_table->info[i].phy;
uint8_t valid_rate_count = 0;
if (!arn_rc_valid_phyrate(phy, capflag, 0))
continue;
valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
ath_rc_priv->
valid_phy_rateidx[phy][valid_rate_count] = i;
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
arn_rc_set_valid_txmask(ath_rc_priv, i, 1);
hi = A_MAX(hi, i);
}
}
return (hi);
}
static uint8_t
arn_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
struct ath_rate_table *rate_table,
struct ath_rateset *rateset,
uint32_t capflag)
{
uint8_t i, j, hi = 0;
/* Use intersection of working rates and valid rates */
for (i = 0; i < rateset->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) {
uint32_t phy = rate_table->info[j].phy;
uint32_t valid = (ath_rc_priv->single_stream ?
rate_table->info[j].valid_single_stream :
rate_table->info[j].valid);
uint8_t rate = rateset->rs_rates[i];
uint8_t dot11rate = rate_table->info[j].dot11rate;
/*
* We allow a rate only if its valid and the
* capflag matches one of the validity
* (VALID/VALID_20/VALID_40) flags
*/
if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
((valid & WLAN_RC_CAP_MODE(capflag)) ==
WLAN_RC_CAP_MODE(capflag)) &&
!WLAN_RC_PHY_HT(phy)) {
uint8_t valid_rate_count = 0;
if (!arn_rc_valid_phyrate(phy, capflag, 0))
continue;
valid_rate_count =
ath_rc_priv->valid_phy_ratecnt[phy];
ath_rc_priv->valid_phy_rateidx[phy]
[valid_rate_count] = j;
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
arn_rc_set_valid_txmask(ath_rc_priv, j, 1);
hi = A_MAX(hi, j);
}
}
}
return (hi);
}
static uint8_t
arn_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
struct ath_rate_table *rate_table,
uint8_t *mcs_set, uint32_t capflag)
{
struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
uint8_t i, j, hi = 0;
/* Use intersection of working rates and valid rates */
for (i = 0; i < rateset->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) {
uint32_t phy = rate_table->info[j].phy;
uint32_t valid = (ath_rc_priv->single_stream ?
rate_table->info[j].valid_single_stream :
rate_table->info[j].valid);
uint8_t rate = rateset->rs_rates[i];
uint8_t dot11rate = rate_table->info[j].dot11rate;
if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
!WLAN_RC_PHY_HT(phy) ||
!WLAN_RC_PHY_HT_VALID(valid, capflag))
continue;
if (!arn_rc_valid_phyrate(phy, capflag, 0))
continue;
ath_rc_priv->valid_phy_rateidx[phy]
[ath_rc_priv->valid_phy_ratecnt[phy]] = j;
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
arn_rc_set_valid_txmask(ath_rc_priv, j, 1);
hi = A_MAX(hi, j);
}
}
return (hi);
}
/* ARGSUSED */
static uint8_t
arn_rc_ratefind_ht(struct arn_softc *sc,
struct ath_rate_priv *ath_rc_priv,
struct ath_rate_table *rate_table,
int probe_allowed, int *is_probing,
int is_retry)
{
uint32_t dt, best_thruput, this_thruput, now_msec;
uint8_t rate, next_rate, best_rate, maxindex, minindex;
int8_t rssi_last, rssi_reduce = 0, index = 0;
*is_probing = 0;
rssi_last = median(ath_rc_priv->rssi_last,
ath_rc_priv->rssi_last_prev,
ath_rc_priv->rssi_last_prev2);
/*
* Age (reduce) last ack rssi based on how old it is.
* The bizarre numbers are so the delta is 160msec,
* meaning we divide by 16.
* 0msec <= dt <= 25msec: don't derate
* 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
* 185msec <= dt: derate by 10dB
*/
/* now_msec = jiffies_to_msecs(jiffies); */
now_msec = drv_hztousec(ddi_get_lbolt())/1000; /* mescs ? */
dt = now_msec - ath_rc_priv->rssi_time;
if (dt >= 185)
rssi_reduce = 10;
else if (dt >= 25)
rssi_reduce = (uint8_t)((dt - 25) >> 4);
/* Now reduce rssi_last by rssi_reduce */
if (rssi_last < rssi_reduce)
rssi_last = 0;
else
rssi_last -= rssi_reduce;
/*
* Now look up the rate in the rssi table and return it.
* If no rates match then we return 0 (lowest rate)
*/
best_thruput = 0;
maxindex = ath_rc_priv->max_valid_rate-1;
minindex = 0;
best_rate = minindex;
/*
* Try the higher rate first. It will reduce memory moving time
* if we have very good channel characteristics.
*/
for (index = maxindex; index >= minindex; index--) {
uint8_t per_thres;
rate = ath_rc_priv->valid_rate_index[index];
if (rate > ath_rc_priv->rate_max_phy)
continue;
/*
* For TCP the average collision rate is around 11%,
* so we ignore PERs less than this. This is to
* prevent the rate we are currently using (whose
* PER might be in the 10-15 range because of TCP
* collisions) looking worse than the next lower
* rate whose PER has decayed close to 0. If we
* used to next lower rate, its PER would grow to
* 10-15 and we would be worse off then staying
* at the current rate.
*/
per_thres = ath_rc_priv->state[rate].per;
if (per_thres < 12)
per_thres = 12;
this_thruput = rate_table->info[rate].user_ratekbps *
(100 - per_thres);
if (best_thruput <= this_thruput) {
best_thruput = this_thruput;
best_rate = rate;
}
}
rate = best_rate;
/*
* if we are retrying for more than half the number
* of max retries, use the min rate for the next retry
*/
if (is_retry)
rate = ath_rc_priv->valid_rate_index[minindex];
ath_rc_priv->rssi_last_lookup = rssi_last;
/*
* Must check the actual rate (ratekbps) to account for
* non-monoticity of 11g's rate table
*/
if (rate >= ath_rc_priv->rate_max_phy && probe_allowed) {
rate = ath_rc_priv->rate_max_phy;
/* Probe the next allowed phy state */
/* FIXME:XXXX Check to make sure ratMax is checked properly */
if (arn_rc_get_nextvalid_txrate(rate_table,
ath_rc_priv, rate, &next_rate) &&
(now_msec - ath_rc_priv->probe_time >
rate_table->probe_interval) &&
(ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
rate = next_rate;
ath_rc_priv->probe_rate = rate;
ath_rc_priv->probe_time = now_msec;
ath_rc_priv->hw_maxretry_pktcnt = 0;
*is_probing = 1;
}
}
if (rate > (ath_rc_priv->rate_table_size - 1))
rate = ath_rc_priv->rate_table_size - 1;
ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
(rate_table->info[rate].valid_single_stream &&
ath_rc_priv->single_stream));
return (rate);
}
static void
arn_rc_rate_set_series(struct ath_rate_table *rate_table,
struct ath9k_tx_rate *rate,
uint8_t tries,
uint8_t rix,
int rtsctsenable)
{
#if 0
struct ieee80211_node *in;
ieee80211com_t *ic = (ieee80211com_t *)sc;
#endif
rate->count = tries;
rate->idx = rix;
if (rtsctsenable)
rate->flags |= ATH9K_TX_RC_USE_RTS_CTS;
#if 0
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
(in->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
rate->flags |= ATH9K_TX_RC_USE_SHORT_PREAMBLE;
}
#endif
if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
rate->flags |= ATH9K_TX_RC_40_MHZ_WIDTH;
if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
rate->flags |= ATH9K_TX_RC_SHORT_GI;
if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
rate->flags |= ATH9K_TX_RC_MCS;
}
/* ARGSUSED */
static uint8_t
arn_rc_rate_getidx(struct arn_softc *sc,
struct ath_rate_priv *ath_rc_priv,
struct ath_rate_table *rate_table,
uint8_t rix, uint16_t stepdown,
uint16_t min_rate)
{
uint32_t j;
uint8_t nextindex;
if (min_rate) {
for (j = RATE_TABLE_SIZE; j > 0; j--) {
if (arn_rc_get_nextlowervalid_txrate(rate_table,
ath_rc_priv, rix, &nextindex))
rix = nextindex;
else
break;
}
} else {
for (j = stepdown; j > 0; j--) {
if (arn_rc_get_nextlowervalid_txrate(rate_table,
ath_rc_priv, rix, &nextindex))
rix = nextindex;
else
break;
}
}
return (rix);
}
static void
arn_rc_ratefind(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv,
struct ath_buf *bf, int num_tries, int num_rates, int *is_probe,
boolean_t is_retry)
{
uint8_t try_per_rate = 0, i = 0, rix, nrix;
struct ath_rate_table *rate_table;
struct ath9k_tx_rate *rates = bf->rates;
ieee80211com_t *ic = (ieee80211com_t *)sc;
rate_table = sc->sc_currates;
rix = arn_rc_ratefind_ht(sc, ath_rc_priv, rate_table, 1,
is_probe, is_retry);
nrix = rix;
if (*is_probe) {
/*
* set one try for probe rates. For the
* probes don't enable rts
*/
arn_rc_rate_set_series(rate_table,
&rates[i++], 1, nrix, 0);
try_per_rate = (num_tries/num_rates);
/*
* Get the next tried/allowed rate. No RTS for the next series
* after the probe rate
*/
nrix = arn_rc_rate_getidx(sc,
ath_rc_priv, rate_table, nrix, 1, 0);
arn_rc_rate_set_series(rate_table,
&rates[i++], try_per_rate, nrix, 0);
} else {
try_per_rate = (num_tries/num_rates);
/* Set the choosen rate. No RTS for first series entry. */
arn_rc_rate_set_series(rate_table,
&rates[i++], try_per_rate, nrix, 0);
}
/* Fill in the other rates for multirate retry */
for (; i < num_rates; i++) {
uint8_t try_num;
uint8_t min_rate;
try_num = ((i + 1) == num_rates) ?
num_tries - (try_per_rate * i) : try_per_rate;
/* LINTED E_FALSE_LOGICAL_EXPR */
min_rate = (((i + 1) == num_rates) && 0);
nrix = arn_rc_rate_getidx(sc, ath_rc_priv,
rate_table, nrix, 1, min_rate);
/* All other rates in the series have RTS enabled */
arn_rc_rate_set_series(rate_table, &rates[i], try_num, nrix, 1);
}
/*
* NB:Change rate series to enable aggregation when operating
* at lower MCS rates. When first rate in series is MCS2
* in HT40 @ 2.4GHz, series should look like:
*
* {MCS2, MCS1, MCS0, MCS0}.
*
* When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
* look like:
*
* {MCS3, MCS2, MCS1, MCS1}
*
* So, set fourth rate in series to be same as third one for
* above conditions.
*/
if (IEEE80211_IS_CHAN_HTG(ic->ic_curchan)) {
uint8_t dot11rate = rate_table->info[rix].dot11rate;
uint8_t phy = rate_table->info[rix].phy;
if (i == 4 &&
((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
(dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
rates[3].idx = rates[2].idx;
rates[3].flags = rates[2].flags;
}
}
}
/* ARGSUSED */
static boolean_t
arn_rc_update_per(struct arn_softc *sc,
struct ath_rate_table *rate_table,
struct ath_rate_priv *ath_rc_priv,
struct ath_tx_info_priv *tx_info_priv,
int tx_rate, int xretries, int retries,
uint32_t now_msec)
{
boolean_t state_change = B_FALSE;
int count;
uint8_t last_per;
static uint32_t nretry_to_per_lookup[10] = {
100 * 0 / 1,
100 * 1 / 4,
100 * 1 / 2,
100 * 3 / 4,
100 * 4 / 5,
100 * 5 / 6,
100 * 6 / 7,
100 * 7 / 8,
100 * 8 / 9,
100 * 9 / 10
};
last_per = ath_rc_priv->state[tx_rate].per;
if (xretries) {
if (xretries == 1) {
ath_rc_priv->state[tx_rate].per += 30;
if (ath_rc_priv->state[tx_rate].per > 100)
ath_rc_priv->state[tx_rate].per = 100;
} else {
/* xretries == 2 */
count = ARRAY_SIZE(nretry_to_per_lookup);
if (retries >= count)
retries = count - 1;
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
ath_rc_priv->state[tx_rate].per =
(uint8_t)(last_per - (last_per >> 3) + (100 >> 3));
}
/* xretries == 1 or 2 */
if (ath_rc_priv->probe_rate == tx_rate)
ath_rc_priv->probe_rate = 0;
} else { /* xretries == 0 */
count = ARRAY_SIZE(nretry_to_per_lookup);
if (retries >= count)
retries = count - 1;
if (tx_info_priv->n_bad_frames) {
/*
* new_PER = 7/8*old_PER + 1/8*(currentPER)
* Assuming that n_frames is not 0. The current PER
* from the retries is 100 * retries / (retries+1),
* since the first retries attempts failed, and the
* next one worked. For the one that worked,
* n_bad_frames subframes out of n_frames wored,
* so the PER for that part is
* 100 * n_bad_frames / n_frames, and it contributes
* 100 * n_bad_frames / (n_frames * (retries+1)) to
* the above PER. The expression below is a
* simplified version of the sum of these two terms.
*/
if (tx_info_priv->n_frames > 0) {
int n_frames, n_bad_frames;
uint8_t cur_per, new_per;
n_bad_frames = retries *
tx_info_priv->n_frames +
tx_info_priv->n_bad_frames;
n_frames =
tx_info_priv->n_frames * (retries + 1);
cur_per =
(100 * n_bad_frames / n_frames) >> 3;
new_per = (uint8_t)
(last_per - (last_per >> 3) + cur_per);
ath_rc_priv->state[tx_rate].per = new_per;
}
} else {
ath_rc_priv->state[tx_rate].per =
(uint8_t)(last_per - (last_per >> 3) +
(nretry_to_per_lookup[retries] >> 3));
}
ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi;
ath_rc_priv->rssi_time = now_msec;
/*
* If we got at most one retry then increase the max rate if
* this was a probe. Otherwise, ignore the probe.
*/
if (ath_rc_priv->probe_rate &&
ath_rc_priv->probe_rate == tx_rate) {
if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
tx_info_priv->n_frames) {
/*
* Since we probed with just a single attempt,
* any retries means the probe failed. Also,
* if the attempt worked, but more than half
* the subframes were bad then also consider
* the probe a failure.
*/
ath_rc_priv->probe_rate = 0;
} else {
uint8_t probe_rate = 0;
ath_rc_priv->rate_max_phy =
ath_rc_priv->probe_rate;
probe_rate = ath_rc_priv->probe_rate;
if (ath_rc_priv->state[probe_rate].per > 30)
ath_rc_priv->state[probe_rate].per = 20;
ath_rc_priv->probe_rate = 0;
/*
* Since this probe succeeded, we allow the next
* probe twice as soon. This allows the maxRate
* to move up faster if the probes are
* succesful.
*/
ath_rc_priv->probe_time =
now_msec - rate_table->probe_interval / 2;
}
}
if (retries > 0) {
/*
* Don't update anything. We don't know if
* this was because of collisions or poor signal.
*
* Later: if rssi_ack is close to
* ath_rc_priv->state[txRate].rssi_thres and we see lots
* of retries, then we could increase
* ath_rc_priv->state[txRate].rssi_thres.
*/
ath_rc_priv->hw_maxretry_pktcnt = 0;
} else {
int32_t rssi_ackAvg;
int8_t rssi_thres;
int8_t rssi_ack_vmin;
/*
* It worked with no retries. First ignore bogus (small)
* rssi_ack values.
*/
if (tx_rate == ath_rc_priv->rate_max_phy &&
ath_rc_priv->hw_maxretry_pktcnt < 255) {
ath_rc_priv->hw_maxretry_pktcnt++;
}
if (tx_info_priv->tx.ts_rssi <
rate_table->info[tx_rate].rssi_ack_validmin)
goto exit;
/* Average the rssi */
if (tx_rate != ath_rc_priv->rssi_sum_rate) {
ath_rc_priv->rssi_sum_rate = tx_rate;
ath_rc_priv->rssi_sum =
ath_rc_priv->rssi_sum_cnt = 0;
}
ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi;
ath_rc_priv->rssi_sum_cnt++;
if (ath_rc_priv->rssi_sum_cnt < 4)
goto exit;
rssi_ackAvg =
(ath_rc_priv->rssi_sum + 2) / 4;
rssi_thres =
ath_rc_priv->state[tx_rate].rssi_thres;
rssi_ack_vmin =
rate_table->info[tx_rate].rssi_ack_validmin;
ath_rc_priv->rssi_sum =
ath_rc_priv->rssi_sum_cnt = 0;
/* Now reduce the current rssi threshold */
if ((rssi_ackAvg < rssi_thres + 2) &&
(rssi_thres > rssi_ack_vmin)) {
ath_rc_priv->state[tx_rate].rssi_thres--;
}
state_change = B_TRUE;
}
}
exit:
return (state_change);
}
/*
* Update PER, RSSI and whatever else that the code thinks
* it is doing. If you can make sense of all this, you really
* need to go out more.
*/
static void
arn_rc_update_ht(struct arn_softc *sc,
struct ath_rate_priv *ath_rc_priv,
struct ath_tx_info_priv *tx_info_priv,
int tx_rate, int xretries, int retries)
{
#define CHK_RSSI(rate) \
((ath_rc_priv->state[(rate)].rssi_thres + \
rate_table->info[(rate)].rssi_ack_deltamin) > \
ath_rc_priv->state[(rate)+1].rssi_thres)
/* u32 now_msec = jiffies_to_msecs(jiffies); */
uint32_t now_msec = drv_hztousec(ddi_get_lbolt())/1000; /* mescs ? */
int rate;
uint8_t last_per;
boolean_t state_change = B_FALSE;
struct ath_rate_table *rate_table = sc->sc_currates;
int size = ath_rc_priv->rate_table_size;
if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
return;
/* To compensate for some imbalance between ctrl and ext. channel */
if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
tx_info_priv->tx.ts_rssi =
tx_info_priv->tx.ts_rssi < 3 ? 0 :
tx_info_priv->tx.ts_rssi - 3;
last_per = ath_rc_priv->state[tx_rate].per;
/* Update PER first */
state_change = arn_rc_update_per(sc, rate_table, ath_rc_priv,
tx_info_priv, tx_rate, xretries,
retries, now_msec);
/*
* If this rate looks bad (high PER) then stop using it for
* a while (except if we are probing).
*/
if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
rate_table->info[tx_rate].ratekbps <=
rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
(void) arn_rc_get_nextlowervalid_txrate(rate_table,
ath_rc_priv,
(uint8_t)tx_rate,
&ath_rc_priv->rate_max_phy);
/* Don't probe for a little while. */
ath_rc_priv->probe_time = now_msec;
}
if (state_change) {
/*
* Make sure the rates above this have higher rssi thresholds.
* (Note: Monotonicity is kept within the OFDM rates and
* within the CCK rates. However, no adjustment is
* made to keep the rssi thresholds monotonically
* increasing between the CCK and OFDM rates.)
*/
for (rate = tx_rate; rate < size - 1; rate++) {
if (rate_table->info[rate+1].phy !=
rate_table->info[tx_rate].phy)
break;
if (CHK_RSSI(rate)) {
ath_rc_priv->state[rate+1].rssi_thres =
ath_rc_priv->state[rate].rssi_thres +
rate_table->info[rate].rssi_ack_deltamin;
}
}
/* Make sure the rates below this have lower rssi thresholds. */
for (rate = tx_rate - 1; rate >= 0; rate--) {
if (rate_table->info[rate].phy !=
rate_table->info[tx_rate].phy)
break;
if (CHK_RSSI(rate)) {
if (ath_rc_priv->state[rate+1].rssi_thres <
rate_table->info[rate].rssi_ack_deltamin)
ath_rc_priv->state[rate].rssi_thres = 0;
else {
ath_rc_priv->state[rate].rssi_thres =
ath_rc_priv->state[rate+1].
rssi_thres -
rate_table->info[rate].
rssi_ack_deltamin;
}
if (ath_rc_priv->state[rate].rssi_thres <
rate_table->info[rate].rssi_ack_validmin) {
ath_rc_priv->state[rate].rssi_thres =
rate_table->info[rate].
rssi_ack_validmin;
}
}
}
}
/* Make sure the rates below this have lower PER */
/* Monotonicity is kept only for rates below the current rate. */
if (ath_rc_priv->state[tx_rate].per < last_per) {
for (rate = tx_rate - 1; rate >= 0; rate--) {
if (rate_table->info[rate].phy !=
rate_table->info[tx_rate].phy)
break;
if (ath_rc_priv->state[rate].per >
ath_rc_priv->state[rate+1].per) {
ath_rc_priv->state[rate].per =
ath_rc_priv->state[rate+1].per;
}
}
}
/* Maintain monotonicity for rates above the current rate */
for (rate = tx_rate; rate < size - 1; rate++) {
if (ath_rc_priv->state[rate+1].per <
ath_rc_priv->state[rate].per)
ath_rc_priv->state[rate+1].per =
ath_rc_priv->state[rate].per;
}
/*
* Every so often, we reduce the thresholds and
* PER (different for CCK and OFDM).
*/
if (now_msec - ath_rc_priv->rssi_down_time >=
rate_table->rssi_reduce_interval) {
for (rate = 0; rate < size; rate++) {
if (ath_rc_priv->state[rate].rssi_thres >
rate_table->info[rate].rssi_ack_validmin)
ath_rc_priv->state[rate].rssi_thres -= 1;
}
ath_rc_priv->rssi_down_time = now_msec;
}
/*
* Every so often, we reduce the thresholds
* and PER (different for CCK and OFDM).
*/
if (now_msec - ath_rc_priv->per_down_time >=
rate_table->rssi_reduce_interval) {
for (rate = 0; rate < size; rate++) {
ath_rc_priv->state[rate].per =
7 * ath_rc_priv->state[rate].per / 8;
}
ath_rc_priv->per_down_time = now_msec;
}
#undef CHK_RSSI
}
static int
ath_rc_get_rateindex(struct ath_rate_table *rate_table,
struct ath9k_tx_rate *rate)
{
int rix;
if ((rate->flags & ATH9K_TX_RC_40_MHZ_WIDTH) &&
(rate->flags & ATH9K_TX_RC_SHORT_GI))
rix = rate_table->info[rate->idx].ht_index;
else if (rate->flags & ATH9K_TX_RC_SHORT_GI)
rix = rate_table->info[rate->idx].sgi_index;
else if (rate->flags & ATH9K_TX_RC_40_MHZ_WIDTH)
rix = rate_table->info[rate->idx].cw40index;
else
rix = rate_table->info[rate->idx].base_index;
return (rix);
}
static void
ath_rc_tx_status(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv,
struct ath_buf *bf, int final_ts_idx, int xretries, int long_retry)
{
struct ath_tx_info_priv *tx_info_priv =
(struct ath_tx_info_priv *)&bf->tx_info_priv;
struct ath9k_tx_rate *rates = bf->rates;
struct ath_rate_table *rate_table;
uint32_t i = 0, rix;
uint8_t flags;
rate_table = sc->sc_currates;
/*
* If the first rate is not the final index, there
* are intermediate rate failures to be processed.
*/
if (final_ts_idx != 0) {
/* Process intermediate rates that failed. */
for (i = 0; i < final_ts_idx; i++) {
if (rates[i].count != 0 && (rates[i].idx >= 0)) {
flags = rates[i].flags;
/*
* If HT40 and we have switched mode from
* 40 to 20 => don't update
*/
if ((flags & ATH9K_TX_RC_40_MHZ_WIDTH) &&
(ath_rc_priv->rc_phy_mode !=
WLAN_RC_40_FLAG))
return;
rix =
ath_rc_get_rateindex(rate_table, &rates[i]);
arn_rc_update_ht(sc, ath_rc_priv,
tx_info_priv, rix,
xretries ? 1 : 2,
rates[i].count);
}
}
} else {
/*
* Handle the special case of MIMO PS burst, where the second
* aggregate is sent out with only one rate and one try.
* Treating it as an excessive retry penalizes the rate
* inordinately.
*/
if (rates[0].count == 1 && xretries == 1)
xretries = 2;
}
flags = rates[i].flags;
/* If HT40 and we have switched mode from 40 to 20 => don't update */
if ((flags & ATH9K_TX_RC_40_MHZ_WIDTH) &&
(ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG)) {
return;
}
rix = ath_rc_get_rateindex(rate_table, &rates[i]);
arn_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
xretries, long_retry);
}
static struct ath_rate_table *
arn_choose_rate_table(struct arn_softc *sc, uint32_t cur_mode,
boolean_t is_ht, boolean_t is_cw_40)
{
int ath9k_mode;
switch (cur_mode) {
case IEEE80211_MODE_11A:
case IEEE80211_MODE_11NA:
ath9k_mode = ATH9K_MODE_11A;
if (is_ht)
ath9k_mode = ATH9K_MODE_11NA_HT20;
if (is_cw_40)
ath9k_mode = ATH9K_MODE_11NA_HT40PLUS;
break;
case IEEE80211_MODE_11B:
ath9k_mode = ATH9K_MODE_11B;
break;
case IEEE80211_MODE_11G:
case IEEE80211_MODE_11NG:
ath9k_mode = ATH9K_MODE_11G;
if (is_ht)
ath9k_mode = ATH9K_MODE_11NG_HT20;
if (is_cw_40)
ath9k_mode = ATH9K_MODE_11NG_HT40PLUS;
break;
default:
ARN_DBG((ARN_DBG_RATE, "Invalid band\n"));
return (NULL);
}
switch (ath9k_mode) {
case ATH9K_MODE_11A:
ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11A\n"));
break;
case ATH9K_MODE_11B:
ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11B\n"));
break;
case ATH9K_MODE_11G:
ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11G\n"));
break;
case ATH9K_MODE_11NA_HT20:
ARN_DBG((ARN_DBG_RATE,
"choose rate table:ATH9K_MODE_11NA_HT20\n"));
break;
case ATH9K_MODE_11NA_HT40PLUS:
ARN_DBG((ARN_DBG_RATE,
"choose rate table:ATH9K_MODE_11NA_HT40PLUS\n"));
break;
case ATH9K_MODE_11NG_HT20:
ARN_DBG((ARN_DBG_RATE,
"choose rate table:ATH9K_MODE_11NG_HT20\n"));
break;
case ATH9K_MODE_11NG_HT40PLUS:
ARN_DBG((ARN_DBG_RATE,
"choose rate table:ATH9K_MODE_11NG_HT40PLUS\n"));
break;
default:
arn_problem("Invalid band\n");
break;
}
ARN_DBG((ARN_DBG_RATE, "Choosing rate table for mode: %d\n",
ath9k_mode));
return (sc->hw_rate_table[ath9k_mode]);
}
/* Private rate contral initialization */
static void
arn_rc_init(struct arn_softc *sc,
struct ath_rate_priv *ath_rc_priv,
struct ieee80211_node *in)
{
struct ath_rate_table *rate_table = NULL;
struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
ieee80211com_t *ic = (ieee80211com_t *)sc;
uint32_t cur_mode = ic->ic_curmode;
uint8_t *ht_mcs = (uint8_t *)&ath_rc_priv->neg_ht_rates;
uint8_t i, j, k, hi = 0, hthi = 0;
boolean_t is_rc_ds;
/* FIXME: Adhoc */
if ((sc->sc_ah->ah_opmode == ATH9K_M_STA) ||
(sc->sc_ah->ah_opmode == ATH9K_M_IBSS)) {
boolean_t is_ht = in->in_flags & IEEE80211_NODE_HT;
/* 20/40 support */
boolean_t is_cw_40 =
in->in_htcap & IEEE80211_HTCAP_CHWIDTH40;
rate_table =
arn_choose_rate_table(sc, cur_mode, is_ht, is_cw_40);
} else if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) {
/* cur_rate_table would be set on init */
rate_table = sc->sc_currates;
}
if (!rate_table) {
ARN_DBG((ARN_DBG_FATAL, "Rate table not initialized\n"));
return;
}
if (in->in_flags & IEEE80211_NODE_HT) {
/* 2.6.30 */
ath_rc_priv->ht_cap = WLAN_RC_HT_FLAG;
is_rc_ds = (AR_SREV_9280_20_OR_LATER(sc->sc_ah) &&
(ath9k_hw_get_eeprom(sc->sc_ah, EEP_RC_CHAIN_MASK) == 1)) ?
B_FALSE: B_TRUE;
if (sc->sc_ah->ah_caps.tx_chainmask != 1 && is_rc_ds) {
if (sc->sc_ht_conf.rx_mcs_mask[1]) {
ath_rc_priv->ht_cap |= WLAN_RC_DS_FLAG;
}
}
if (in->in_htcap & IEEE80211_HTCAP_CHWIDTH40)
ath_rc_priv->ht_cap |= WLAN_RC_40_FLAG;
if (in->in_htcap & IEEE80211_HTCAP_SHORTGI40)
ath_rc_priv->ht_cap |= WLAN_RC_SGI_FLAG;
}
/*
* Initial rate table size. Will change depending
* on the working rate set
*/
ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
/* Initialize thresholds according to the global rate table */
for (i = 0; i < ath_rc_priv->rate_table_size; i++) {
ath_rc_priv->state[i].rssi_thres =
rate_table->info[i].rssi_ack_validmin;
ath_rc_priv->state[i].per = 0;
}
/* Determine the valid rates */
arn_rc_init_valid_txmask(ath_rc_priv);
for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < MAX_TX_RATE_PHY; j++)
ath_rc_priv->valid_phy_rateidx[i][j] = 0;
ath_rc_priv->valid_phy_ratecnt[i] = 0;
}
ath_rc_priv->rc_phy_mode = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG);
/* Set stream capability */
ath_rc_priv->single_stream =
(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? 0 : 1;
if (!rateset->rs_nrates) {
/* No working rate, just initialize valid rates */
hi = arn_rc_init_validrates(ath_rc_priv, rate_table,
ath_rc_priv->ht_cap);
} else {
/* Use intersection of working rates and valid rates */
hi = arn_rc_setvalid_rates(ath_rc_priv, rate_table,
rateset, ath_rc_priv->ht_cap);
if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
hthi = arn_rc_setvalid_htrates(ath_rc_priv,
rate_table,
ht_mcs,
ath_rc_priv->ht_cap);
}
hi = A_MAX(hi, hthi);
}
ath_rc_priv->rate_table_size = hi + 1;
ath_rc_priv->rate_max_phy = 0;
ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
ath_rc_priv->valid_rate_index[k++] =
ath_rc_priv->valid_phy_rateidx[i][j];
}
if (!arn_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) ||
!ath_rc_priv->valid_phy_ratecnt[i])
continue;
ath_rc_priv->rate_max_phy =
ath_rc_priv->valid_phy_rateidx[i][j-1];
}
ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
ASSERT(k <= RATE_TABLE_SIZE);
ath_rc_priv->max_valid_rate = k;
arn_rc_sort_validrates(rate_table, ath_rc_priv);
ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
sc->sc_currates = rate_table;
}
void
arn_tx_status(struct arn_softc *sc, struct ath_buf *bf, boolean_t is_data)
{
struct ieee80211_node *in = (struct ieee80211_node *)(bf->bf_in);
struct ath_node *an = ATH_NODE(in);
struct ath_rate_priv *ath_rc_priv =
(struct ath_rate_priv *)&an->rate_priv;
struct ath_tx_info_priv *tx_info_priv =
(struct ath_tx_info_priv *)&bf->tx_info_priv;
int final_ts_idx, tx_status = 0, is_underrun = 0;
final_ts_idx = tx_info_priv->tx.ts_rateindex;
if (!is_data || !tx_info_priv->update_rc)
return;
if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
return;
/*
* If underrun error is seen assume it as an excessive retry only
* if prefetch trigger level have reached the max (0x3f for 5416)
* Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
* times. This affects how ratectrl updates PER for the failed rate.
*/
if (tx_info_priv->tx.ts_flags &
(ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
((sc->sc_ah->ah_txTrigLevel) >= ath_rc_priv->tx_triglevel_max)) {
tx_status = 1;
is_underrun = 1;
}
if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
(tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
tx_status = 1;
ath_rc_tx_status(sc,
ath_rc_priv,
bf,
final_ts_idx,
tx_status,
(is_underrun) ? ATH_11N_TXMAXTRY : tx_info_priv->tx.ts_longretry);
}
void
arn_get_rate(struct arn_softc *sc, struct ath_buf *bf,
struct ieee80211_frame *wh)
{
struct ieee80211_node *in = (struct ieee80211_node *)(bf->bf_in);
struct ath_node *an = ATH_NODE(in);
struct ath_rate_priv *ath_rc_priv =
(struct ath_rate_priv *)&an->rate_priv;
struct ath_rate_table *rt = sc->sc_currates;
ieee80211com_t *ic = (ieee80211com_t *)sc;
int is_probe = 0;
uint8_t i;
/* lowest rate for management and multicast/broadcast frames */
if (!IEEE80211_IS_DATA(wh) || IEEE80211_IS_MULTICAST(wh->i_addr1)) {
bf->rates[0].idx = 0; /* xxx Fix me */
bf->rates[0].count =
IEEE80211_IS_MULTICAST(wh->i_addr1) ?
1 : ATH_MGT_TXMAXTRY;
return;
}
/* Find tx rate for unicast frames */
arn_rc_ratefind(sc, ath_rc_priv, bf, ATH_11N_TXMAXTRY, 4,
&is_probe, B_FALSE);
/* Temporary workaround for 'dladm show-wifi' */
for (i = 0; i < in->in_rates.ir_nrates; i++) {
ARN_DBG((ARN_DBG_RATE, "arn: arn_get_rate(): "
"in->in_rates.ir_rates[%d] = %d,"
"bf->rates[0].idx = %d,"
"rt->info[bf->rates[0].idx].dot11rate = %d\n",
i,
in->in_rates.ir_rates[i],
bf->rates[0].idx,
rt->info[bf->rates[0].idx].dot11rate));
if (rt->info[bf->rates[0].idx].dot11rate ==
in->in_rates.ir_rates[i])
break;
}
in->in_txrate = i;
if (ic->ic_curmode == IEEE80211_MODE_11NA ||
ic->ic_curmode == IEEE80211_MODE_11NG)
in->in_txrate = in->in_rates.ir_nrates - 1;
/* Check if aggregation has to be enabled for this tid */
#ifdef ARN_TX_AGGREGATION
/* should check if enabled, not supported */
if (sc->sc_ht_conf.ht_supported) {
if (ieee80211_is_data_qos(wh)) {
uint8_t *qc, tid;
struct ath_node *an;
struct ieee80211_qosframe *qwh = NULL;
qwh = (struct ieee80211_qosframe *)wh;
tid = qc[0] & 0xf;
an = (struct ath_node *)sta->drv_priv;
if (arn_tx_aggr_check(sc, an, tid))
/* to do */
}
}
#endif /* ARN_TX_AGGREGATION */
}
void
arn_rate_init(struct arn_softc *sc, struct ieee80211_node *in)
{
int i;
struct ath_node *an = ATH_NODE(in);
struct ath_rate_priv *ath_rc_priv =
(struct ath_rate_priv *)&an->rate_priv;
/* should be moved to arn_node_init later */
ath_rc_priv->rssi_down_time =
drv_hztousec(ddi_get_lbolt())/1000; /* mesc */
ath_rc_priv->tx_triglevel_max =
sc->sc_ah->ah_caps.tx_triglevel_max;
for (i = 0; i < in->in_rates.ir_nrates; i++) {
ath_rc_priv->neg_rates.rs_rates[i] = in->in_rates.ir_rates[i];
ARN_DBG((ARN_DBG_RATE, "arn:arn_rate_init()"
"ath_rc_priv->neg_rates.rs_rates[%d] = %d\n",
i, ath_rc_priv->neg_rates.rs_rates[i]));
}
ath_rc_priv->neg_rates.rs_nrates = in->in_rates.ir_nrates;
/* negotiated ht rate set ??? */
if (in->in_flags & IEEE80211_NODE_HT) {
for (i = 0; i < in->in_htrates.rs_nrates; i++) {
ath_rc_priv->neg_ht_rates.rs_rates[i] =
in->in_htrates.rs_rates[i];
ARN_DBG((ARN_DBG_RATE, "arn:arn_rate_init()"
"ath_rc_priv->neg_ht_rates.rs_rates[%d] = %d\n",
i, ath_rc_priv->neg_ht_rates.rs_rates[i]));
}
ath_rc_priv->neg_ht_rates.rs_nrates = in->in_htrates.rs_nrates;
/* arn_update_chainmask(sc); */
}
#ifdef ARN_TX_AGGREGATION
/* Temply put the following ht info init here */
uint8_t ampdu_factor, ampdu_density;
if (sc->sc_ht_conf.ht_support &&
(in->in_htcap_ie != NULL) &&
(in->in_htcap != 0) &&
(in->in_htparam != 0)) {
ampdu_factor = in->in_htparam & HT_RX_AMPDU_FACTOR_MSK;
ampdu_density = (in->in_htparam & HT_MPDU_DENSITY_MSK) >>
HT_MPDU_DENSITY_POS;
an->maxampdu =
1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR + ampdu_factor);
an->mpdudensity = parse_mpdudensity(ampdu_density);
}
/* end */
#endif /* ARN_TX_AGGREGATION */
arn_rc_init(sc, ath_rc_priv, in);
}
static void
arn_setup_rate_table(struct arn_softc *sc,
struct ath_rate_table *rate_table)
{
int i;
for (i = 0; i < 256; i++)
rate_table->rateCodeToIndex[i] = (uint8_t)-1;
for (i = 0; i < rate_table->rate_cnt; i++) {
uint8_t code = rate_table->info[i].ratecode;
uint8_t cix = rate_table->info[i].ctrl_rate;
uint8_t sh = rate_table->info[i].short_preamble;
rate_table->rateCodeToIndex[code] = (int)i;
rate_table->rateCodeToIndex[code | sh] = (int)i;
rate_table->info[i].lpAckDuration =
ath9k_hw_computetxtime(sc->sc_ah, rate_table,
WLAN_CTRL_FRAME_SIZE,
cix,
B_FALSE);
rate_table->info[i].spAckDuration =
ath9k_hw_computetxtime(sc->sc_ah, rate_table,
WLAN_CTRL_FRAME_SIZE,
cix,
B_TRUE);
}
}
void
arn_rate_attach(struct arn_softc *sc)
{
sc->hw_rate_table[ATH9K_MODE_11B] =
&ar5416_11b_ratetable;
sc->hw_rate_table[ATH9K_MODE_11A] =
&ar5416_11a_ratetable;
sc->hw_rate_table[ATH9K_MODE_11G] =
&ar5416_11g_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
&ar5416_11na_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
&ar5416_11ng_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
&ar5416_11na_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
&ar5416_11na_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
&ar5416_11ng_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
&ar5416_11ng_ratetable;
arn_setup_rate_table(sc, &ar5416_11b_ratetable);
arn_setup_rate_table(sc, &ar5416_11a_ratetable);
arn_setup_rate_table(sc, &ar5416_11g_ratetable);
arn_setup_rate_table(sc, &ar5416_11na_ratetable);
arn_setup_rate_table(sc, &ar5416_11ng_ratetable);
}
#ifdef ARN_LEGACY_RC
void
arn_rate_update(struct arn_softc *sc, struct ieee80211_node *in, int32_t rate)
{
struct ath_node *an = ATH_NODE(in);
const struct ath_rate_table *rt = sc->sc_currates;
uint8_t rix;
ASSERT(rt != NULL);
in->in_txrate = rate;
/* management/control frames always go at the lowest speed */
an->an_tx_mgtrate = rt->info[0].ratecode;
an->an_tx_mgtratesp = an->an_tx_mgtrate | rt->info[0].short_preamble;
ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_update(): "
"mgtrate=%d mgtratesp=%d\n",
an->an_tx_mgtrate, an->an_tx_mgtratesp));
/*
* Before associating a node has no rate set setup
* so we can't calculate any transmit codes to use.
* This is ok since we should never be sending anything
* but management frames and those always go at the
* lowest hardware rate.
*/
if (in->in_rates.ir_nrates == 0)
goto done;
an->an_tx_rix0 = sc->asc_rixmap[
in->in_rates.ir_rates[rate] & IEEE80211_RATE_VAL];
an->an_tx_rate0 = rt->info[an->an_tx_rix0].ratecode;
an->an_tx_rate0sp = an->an_tx_rate0 |
rt->info[an->an_tx_rix0].short_preamble;
if (sc->sc_mrretry) {
/*
* Hardware supports multi-rate retry; setup two
* step-down retry rates and make the lowest rate
* be the ``last chance''. We use 4, 2, 2, 2 tries
* respectively (4 is set here, the rest are fixed
* in the xmit routine).
*/
an->an_tx_try0 = 1 + 3; /* 4 tries at rate 0 */
if (--rate >= 0) {
rix = sc->asc_rixmap[
in->in_rates.ir_rates[rate]&IEEE80211_RATE_VAL];
an->an_tx_rate1 = rt->info[rix].ratecode;
an->an_tx_rate1sp = an->an_tx_rate1 |
rt->info[rix].short_preamble;
} else {
an->an_tx_rate1 = an->an_tx_rate1sp = 0;
}
if (--rate >= 0) {
rix = sc->asc_rixmap[
in->in_rates.ir_rates[rate]&IEEE80211_RATE_VAL];
an->an_tx_rate2 = rt->info[rix].ratecode;
an->an_tx_rate2sp = an->an_tx_rate2 |
rt->info[rix].short_preamble;
} else {
an->an_tx_rate2 = an->an_tx_rate2sp = 0;
}
if (rate > 0) {
an->an_tx_rate3 = rt->info[0].ratecode;
an->an_tx_rate3sp =
an->an_tx_mgtrate | rt->info[0].short_preamble;
} else {
an->an_tx_rate3 = an->an_tx_rate3sp = 0;
}
} else {
an->an_tx_try0 = ATH_TXMAXTRY; /* max tries at rate 0 */
an->an_tx_rate1 = an->an_tx_rate1sp = 0;
an->an_tx_rate2 = an->an_tx_rate2sp = 0;
an->an_tx_rate3 = an->an_tx_rate3sp = 0;
}
done:
an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
}
/*
* Set the starting transmit rate for a node.
*/
void
arn_rate_ctl_start(struct arn_softc *sc, struct ieee80211_node *in)
{
ieee80211com_t *ic = (ieee80211com_t *)sc;
int32_t srate;
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
/*
* No fixed rate is requested. For 11b start with
* the highest negotiated rate; otherwise, for 11g
* and 11a, we start "in the middle" at 24Mb or 36Mb.
*/
srate = in->in_rates.ir_nrates - 1;
if (sc->sc_curmode != IEEE80211_MODE_11B) {
/*
* Scan the negotiated rate set to find the
* closest rate.
*/
/* NB: the rate set is assumed sorted */
for (; srate >= 0 && IEEE80211_RATE(srate) > 72;
srate--) {}
}
} else {
/*
* A fixed rate is to be used; We know the rate is
* there because the rate set is checked when the
* station associates.
*/
/* NB: the rate set is assumed sorted */
srate = in->in_rates.ir_nrates - 1;
for (; srate >= 0 && IEEE80211_RATE(srate) != ic->ic_fixed_rate;
srate--) {}
}
ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_ctl_start(): "
"srate=%d rate=%d\n", srate, IEEE80211_RATE(srate)));
arn_rate_update(sc, in, srate);
}
void
arn_rate_cb(void *arg, struct ieee80211_node *in)
{
arn_rate_update((struct arn_softc *)arg, in, 0);
}
#endif /* ARN_LEGACY_RC */
/*
* Reset the rate control state for each 802.11 state transition.
*/
void
arn_rate_ctl_reset(struct arn_softc *sc, enum ieee80211_state state)
{
ieee80211com_t *ic = (ieee80211com_t *)sc;
struct ieee80211_node *in;
if (ic->ic_opmode == IEEE80211_M_STA) {
/*
* Reset local xmit state; this is really only
* meaningful when operating in station mode.
*/
in = (struct ieee80211_node *)ic->ic_bss;
#ifdef ARN_LEGACY_RC
if (state == IEEE80211_S_RUN) {
arn_rate_ctl_start(sc, in);
} else {
arn_rate_update(sc, in, 0);
}
#else
if (state == IEEE80211_S_RUN)
arn_rate_init(sc, in);
#endif
/* LINTED E_NOP_ELSE_STMT */
} else {
/*
* When operating as a station the node table holds
* the AP's that were discovered during scanning.
* For any other operating mode we want to reset the
* tx rate state of each node.
*/
#ifdef ARN_LEGACY_RC
ieee80211_iterate_nodes(&ic->ic_sta, arn_rate_cb, sc);
#endif
}
}
#ifdef ARN_LEGACY_RC
/*
* Examine and potentially adjust the transmit rate.
*/
void
arn_rate_ctl(void *arg, struct ieee80211_node *in)
{
struct arn_softc *sc = arg;
struct ath_node *an = ATH_NODE(in);
struct ieee80211_rateset *rs = &in->in_rates;
int32_t mod = 0, nrate, enough;
/*
* Rate control(very primitive version).
*/
sc->sc_stats.ast_rate_calls++;
enough = (an->an_tx_ok + an->an_tx_err >= 10);
/* no packet reached -> down */
if (an->an_tx_err > 0 && an->an_tx_ok == 0)
mod = -1;
/* all packets needs retry in average -> down */
if (enough && an->an_tx_ok < an->an_tx_retr)
mod = -1;
/* no error and less than 10% of packets needs retry -> up */
if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
mod = 1;
nrate = in->in_txrate;
switch (mod) {
case 0:
if (enough && an->an_tx_upper > 0)
an->an_tx_upper--;
break;
case -1:
if (nrate > 0) {
nrate--;
sc->sc_stats.ast_rate_drop++;
}
an->an_tx_upper = 0;
break;
case 1:
if (++an->an_tx_upper < 10)
break;
an->an_tx_upper = 0;
if (nrate + 1 < rs->ir_nrates) {
nrate++;
sc->sc_stats.ast_rate_raise++;
}
break;
}
if (nrate != in->in_txrate) {
ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_ctl(): %dM -> %dM "
"(%d ok, %d err, %d retr)\n",
(rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL) / 2,
(rs->ir_rates[nrate] & IEEE80211_RATE_VAL) / 2,
an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
arn_rate_update(sc, in, nrate);
} else if (enough)
an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
}
#endif /* ARN_LEGACY_RC */