aac.c revision 72888e72b624f86b06ea05b1de2287dcf9f40d23
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright 2005-08 Adaptec, Inc.
* Copyright (c) 2005-08 Adaptec Inc., Achim Leubner
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2001 Scott Long
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/devops.h>
#include <sys/pci.h>
#include <sys/types.h>
#include <sys/ddidmareq.h>
#include <sys/scsi/scsi.h>
#include <sys/ksynch.h>
#include <sys/sunddi.h>
#include <sys/byteorder.h>
#include "aac_regs.h"
#include "aac.h"
/*
* FMA header files
*/
#include <sys/ddifm.h>
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>
#include <sys/fm/io/ddi.h>
/*
* For minor nodes created by the SCSA framework, minor numbers are
* formed by left-shifting instance by INST_MINOR_SHIFT and OR in a
* number less than 64.
*
* To support cfgadm, need to confirm the SCSA framework by creating
* devctl/scsi and driver specific minor nodes under SCSA format,
* and calling scsi_hba_xxx() functions aacordingly.
*/
#define AAC_MINOR 32
#define INST2AAC(x) (((x) << INST_MINOR_SHIFT) | AAC_MINOR)
#define AAC_SCSA_MINOR(x) ((x) & TRAN_MINOR_MASK)
#define AAC_IS_SCSA_NODE(x) ((x) == DEVCTL_MINOR || (x) == SCSI_MINOR)
#define SD2TRAN(sd) ((sd)->sd_address.a_hba_tran)
#define AAC_TRAN2SOFTS(tran) ((struct aac_softstate *)(tran)->tran_hba_private)
#define AAC_DIP2TRAN(dip) ((scsi_hba_tran_t *)ddi_get_driver_private(dip))
#define AAC_DIP2SOFTS(dip) (AAC_TRAN2SOFTS(AAC_DIP2TRAN(dip)))
#define SD2AAC(sd) (AAC_TRAN2SOFTS(SD2TRAN(sd)))
#define AAC_PD(t) ((t) - AAC_MAX_LD)
#define AAC_DEV(softs, t) (((t) < AAC_MAX_LD) ? \
&(softs)->containers[(t)].dev : \
((t) < AAC_MAX_DEV(softs)) ? \
&(softs)->nondasds[AAC_PD(t)].dev : NULL)
#define AAC_DEVCFG_BEGIN(softs, tgt) \
aac_devcfg((softs), (tgt), 1)
#define AAC_DEVCFG_END(softs, tgt) \
aac_devcfg((softs), (tgt), 0)
#define PKT2AC(pkt) ((struct aac_cmd *)(pkt)->pkt_ha_private)
#define AAC_BUSYWAIT(cond, timeout /* in millisecond */) { \
if (!(cond)) { \
int count = (timeout) * 10; \
while (count) { \
drv_usecwait(100); \
if (cond) \
break; \
count--; \
} \
(timeout) = (count + 9) / 10; \
} \
}
#define AAC_SENSE_DATA_DESCR_LEN \
(sizeof (struct scsi_descr_sense_hdr) + \
sizeof (struct scsi_information_sense_descr))
#define AAC_ARQ64_LENGTH \
(sizeof (struct scsi_arq_status) + \
AAC_SENSE_DATA_DESCR_LEN - SENSE_LENGTH)
/* NOTE: GETG4ADDRTL(cdbp) is int32_t */
#define AAC_GETGXADDR(cmdlen, cdbp) \
((cmdlen == 6) ? GETG0ADDR(cdbp) : \
(cmdlen == 10) ? (uint32_t)GETG1ADDR(cdbp) : \
((uint64_t)GETG4ADDR(cdbp) << 32) | (uint32_t)GETG4ADDRTL(cdbp))
#define AAC_CDB_INQUIRY_CMDDT 0x02
#define AAC_CDB_INQUIRY_EVPD 0x01
#define AAC_VPD_PAGE_CODE 1
#define AAC_VPD_PAGE_LENGTH 3
#define AAC_VPD_PAGE_DATA 4
#define AAC_VPD_ID_CODESET 0
#define AAC_VPD_ID_TYPE 1
#define AAC_VPD_ID_LENGTH 3
#define AAC_VPD_ID_DATA 4
#define AAC_SCSI_RPTLUNS_HEAD_SIZE 0x08
#define AAC_SCSI_RPTLUNS_ADDR_SIZE 0x08
#define AAC_SCSI_RPTLUNS_ADDR_MASK 0xC0
/* 00b - peripheral device addressing method */
#define AAC_SCSI_RPTLUNS_ADDR_PERIPHERAL 0x00
/* 01b - flat space addressing method */
#define AAC_SCSI_RPTLUNS_ADDR_FLAT_SPACE 0x40
/* 10b - logical unit addressing method */
#define AAC_SCSI_RPTLUNS_ADDR_LOGICAL_UNIT 0x80
/* Return the size of FIB with data part type data_type */
#define AAC_FIB_SIZEOF(data_type) \
(sizeof (struct aac_fib_header) + sizeof (data_type))
/* Return the container size defined in mir */
#define AAC_MIR_SIZE(softs, acc, mir) \
(((softs)->flags & AAC_FLAGS_LBA_64BIT) ? \
(uint64_t)ddi_get32((acc), &(mir)->MntObj.Capacity) + \
((uint64_t)ddi_get32((acc), &(mir)->MntObj.CapacityHigh) << 32) : \
(uint64_t)ddi_get32((acc), &(mir)->MntObj.Capacity))
/* The last entry of aac_cards[] is for unknown cards */
#define AAC_UNKNOWN_CARD \
(sizeof (aac_cards) / sizeof (struct aac_card_type) - 1)
#define CARD_IS_UNKNOWN(i) (i == AAC_UNKNOWN_CARD)
#define BUF_IS_READ(bp) ((bp)->b_flags & B_READ)
#define AAC_IS_Q_EMPTY(q) ((q)->q_head == NULL)
#define AAC_CMDQ(acp) (!((acp)->flags & AAC_CMD_SYNC))
#define PCI_MEM_GET32(softs, off) \
ddi_get32((softs)->pci_mem_handle, \
(void *)((softs)->pci_mem_base_vaddr + (off)))
#define PCI_MEM_PUT32(softs, off, val) \
ddi_put32((softs)->pci_mem_handle, \
(void *)((softs)->pci_mem_base_vaddr + (off)), \
(uint32_t)(val))
#define PCI_MEM_GET16(softs, off) \
ddi_get16((softs)->pci_mem_handle, \
(void *)((softs)->pci_mem_base_vaddr + (off)))
#define PCI_MEM_PUT16(softs, off, val) \
ddi_put16((softs)->pci_mem_handle, \
(void *)((softs)->pci_mem_base_vaddr + (off)), (uint16_t)(val))
/* Write host data at valp to device mem[off] repeatedly count times */
#define PCI_MEM_REP_PUT8(softs, off, valp, count) \
ddi_rep_put8((softs)->pci_mem_handle, (uint8_t *)(valp), \
(uint8_t *)((softs)->pci_mem_base_vaddr + (off)), \
count, DDI_DEV_AUTOINCR)
/* Read device data at mem[off] to host addr valp repeatedly count times */
#define PCI_MEM_REP_GET8(softs, off, valp, count) \
ddi_rep_get8((softs)->pci_mem_handle, (uint8_t *)(valp), \
(uint8_t *)((softs)->pci_mem_base_vaddr + (off)), \
count, DDI_DEV_AUTOINCR)
#define AAC_GET_FIELD8(acc, d, s, field) \
(d)->field = ddi_get8(acc, (uint8_t *)&(s)->field)
#define AAC_GET_FIELD32(acc, d, s, field) \
(d)->field = ddi_get32(acc, (uint32_t *)&(s)->field)
#define AAC_GET_FIELD64(acc, d, s, field) \
(d)->field = ddi_get64(acc, (uint64_t *)&(s)->field)
#define AAC_REP_GET_FIELD8(acc, d, s, field, r) \
ddi_rep_get8((acc), (uint8_t *)&(d)->field, \
(uint8_t *)&(s)->field, (r), DDI_DEV_AUTOINCR)
#define AAC_REP_GET_FIELD32(acc, d, s, field, r) \
ddi_rep_get32((acc), (uint32_t *)&(d)->field, \
(uint32_t *)&(s)->field, (r), DDI_DEV_AUTOINCR)
#define AAC_ENABLE_INTR(softs) { \
if (softs->flags & AAC_FLAGS_NEW_COMM) \
PCI_MEM_PUT32(softs, AAC_OIMR, ~AAC_DB_INTR_NEW); \
else \
PCI_MEM_PUT32(softs, AAC_OIMR, ~AAC_DB_INTR_BITS); \
}
#define AAC_DISABLE_INTR(softs) PCI_MEM_PUT32(softs, AAC_OIMR, ~0)
#define AAC_STATUS_CLR(softs, mask) PCI_MEM_PUT32(softs, AAC_ODBR, mask)
#define AAC_STATUS_GET(softs) PCI_MEM_GET32(softs, AAC_ODBR)
#define AAC_NOTIFY(softs, val) PCI_MEM_PUT32(softs, AAC_IDBR, val)
#define AAC_OUTB_GET(softs) PCI_MEM_GET32(softs, AAC_OQUE)
#define AAC_OUTB_SET(softs, val) PCI_MEM_PUT32(softs, AAC_OQUE, val)
#define AAC_FWSTATUS_GET(softs) \
((softs)->aac_if.aif_get_fwstatus(softs))
#define AAC_MAILBOX_GET(softs, mb) \
((softs)->aac_if.aif_get_mailbox((softs), (mb)))
#define AAC_MAILBOX_SET(softs, cmd, arg0, arg1, arg2, arg3) \
((softs)->aac_if.aif_set_mailbox((softs), (cmd), \
(arg0), (arg1), (arg2), (arg3)))
#define AAC_THROTTLE_DRAIN -1
#define AAC_QUIESCE_TICK 1 /* 1 second */
#define AAC_QUIESCE_TIMEOUT 180 /* 180 seconds */
#define AAC_DEFAULT_TICK 10 /* 10 seconds */
#define AAC_SYNC_TICK (30*60) /* 30 minutes */
/* Poll time for aac_do_poll_io() */
#define AAC_POLL_TIME 60 /* 60 seconds */
/* IOP reset */
#define AAC_IOP_RESET_SUCCEED 0 /* IOP reset succeed */
#define AAC_IOP_RESET_FAILED -1 /* IOP reset failed */
#define AAC_IOP_RESET_ABNORMAL -2 /* Reset operation abnormal */
/*
* Hardware access functions
*/
static int aac_rx_get_fwstatus(struct aac_softstate *);
static int aac_rx_get_mailbox(struct aac_softstate *, int);
static void aac_rx_set_mailbox(struct aac_softstate *, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
static int aac_rkt_get_fwstatus(struct aac_softstate *);
static int aac_rkt_get_mailbox(struct aac_softstate *, int);
static void aac_rkt_set_mailbox(struct aac_softstate *, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
/*
* SCSA function prototypes
*/
static int aac_attach(dev_info_t *, ddi_attach_cmd_t);
static int aac_detach(dev_info_t *, ddi_detach_cmd_t);
static int aac_reset(dev_info_t *, ddi_reset_cmd_t);
static int aac_quiesce(dev_info_t *);
/*
* Interrupt handler functions
*/
static int aac_query_intrs(struct aac_softstate *, int);
static int aac_add_intrs(struct aac_softstate *);
static void aac_remove_intrs(struct aac_softstate *);
static uint_t aac_intr_old(caddr_t);
static uint_t aac_intr_new(caddr_t);
static uint_t aac_softintr(caddr_t);
/*
* Internal functions in attach
*/
static int aac_check_card_type(struct aac_softstate *);
static int aac_check_firmware(struct aac_softstate *);
static int aac_common_attach(struct aac_softstate *);
static void aac_common_detach(struct aac_softstate *);
static int aac_probe_containers(struct aac_softstate *);
static int aac_alloc_comm_space(struct aac_softstate *);
static int aac_setup_comm_space(struct aac_softstate *);
static void aac_free_comm_space(struct aac_softstate *);
static int aac_hba_setup(struct aac_softstate *);
/*
* Sync FIB operation functions
*/
int aac_sync_mbcommand(struct aac_softstate *, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t, uint32_t *);
static int aac_sync_fib(struct aac_softstate *, uint16_t, uint16_t);
/*
* Command queue operation functions
*/
static void aac_cmd_initq(struct aac_cmd_queue *);
static void aac_cmd_enqueue(struct aac_cmd_queue *, struct aac_cmd *);
static struct aac_cmd *aac_cmd_dequeue(struct aac_cmd_queue *);
static void aac_cmd_delete(struct aac_cmd_queue *, struct aac_cmd *);
/*
* FIB queue operation functions
*/
static int aac_fib_enqueue(struct aac_softstate *, int, uint32_t, uint32_t);
static int aac_fib_dequeue(struct aac_softstate *, int, int *);
/*
* Slot operation functions
*/
static int aac_create_slots(struct aac_softstate *);
static void aac_destroy_slots(struct aac_softstate *);
static void aac_alloc_fibs(struct aac_softstate *);
static void aac_destroy_fibs(struct aac_softstate *);
static struct aac_slot *aac_get_slot(struct aac_softstate *);
static void aac_release_slot(struct aac_softstate *, struct aac_slot *);
static int aac_alloc_fib(struct aac_softstate *, struct aac_slot *);
static void aac_free_fib(struct aac_slot *);
/*
* Internal functions
*/
static void aac_cmd_fib_header(struct aac_softstate *, struct aac_slot *,
uint16_t, uint16_t);
static void aac_cmd_fib_rawio(struct aac_softstate *, struct aac_cmd *);
static void aac_cmd_fib_brw64(struct aac_softstate *, struct aac_cmd *);
static void aac_cmd_fib_brw(struct aac_softstate *, struct aac_cmd *);
static void aac_cmd_fib_sync(struct aac_softstate *, struct aac_cmd *);
static void aac_cmd_fib_scsi32(struct aac_softstate *, struct aac_cmd *);
static void aac_cmd_fib_scsi64(struct aac_softstate *, struct aac_cmd *);
static void aac_start_waiting_io(struct aac_softstate *);
static void aac_drain_comp_q(struct aac_softstate *);
int aac_do_io(struct aac_softstate *, struct aac_cmd *);
static int aac_do_poll_io(struct aac_softstate *, struct aac_cmd *);
static int aac_do_sync_io(struct aac_softstate *, struct aac_cmd *);
static int aac_send_command(struct aac_softstate *, struct aac_slot *);
static void aac_cmd_timeout(struct aac_softstate *, struct aac_cmd *);
static int aac_dma_sync_ac(struct aac_cmd *);
static int aac_shutdown(struct aac_softstate *);
static int aac_reset_adapter(struct aac_softstate *);
static int aac_do_quiesce(struct aac_softstate *softs);
static int aac_do_unquiesce(struct aac_softstate *softs);
static void aac_unhold_bus(struct aac_softstate *, int);
static void aac_set_throttle(struct aac_softstate *, struct aac_device *,
int, int);
/*
* Adapter Initiated FIB handling function
*/
static int aac_handle_aif(struct aac_softstate *, struct aac_fib *);
/*
* Timeout handling thread function
*/
static void aac_daemon(void *);
/*
* IOCTL interface related functions
*/
static int aac_open(dev_t *, int, int, cred_t *);
static int aac_close(dev_t, int, int, cred_t *);
static int aac_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
extern int aac_do_ioctl(struct aac_softstate *, dev_t, int, intptr_t, int);
/*
* FMA Prototypes
*/
static void aac_fm_init(struct aac_softstate *);
static void aac_fm_fini(struct aac_softstate *);
static int aac_fm_error_cb(dev_info_t *, ddi_fm_error_t *, const void *);
int aac_check_acc_handle(ddi_acc_handle_t);
int aac_check_dma_handle(ddi_dma_handle_t);
void aac_fm_ereport(struct aac_softstate *, char *);
/*
* Auto enumeration functions
*/
static dev_info_t *aac_find_child(struct aac_softstate *, uint16_t, uint8_t);
static int aac_tran_bus_config(dev_info_t *, uint_t, ddi_bus_config_op_t,
void *, dev_info_t **);
static int aac_dr_event(struct aac_softstate *, int, int, int);
#ifdef DEBUG
/*
* UART debug output support
*/
#define AAC_PRINT_BUFFER_SIZE 512
#define AAC_PRINT_TIMEOUT 250 /* 1/4 sec. = 250 msec. */
#define AAC_FW_DBG_STRLEN_OFFSET 0x00
#define AAC_FW_DBG_FLAGS_OFFSET 0x04
#define AAC_FW_DBG_BLED_OFFSET 0x08
static int aac_get_fw_debug_buffer(struct aac_softstate *);
static void aac_print_scmd(struct aac_softstate *, struct aac_cmd *);
static void aac_print_aif(struct aac_softstate *, struct aac_aif_command *);
static char aac_prt_buf[AAC_PRINT_BUFFER_SIZE];
static char aac_fmt[] = " %s";
static char aac_fmt_header[] = " %s.%d: %s";
static kmutex_t aac_prt_mutex;
/*
* Debug flags to be put into the softstate flags field
* when initialized
*/
uint32_t aac_debug_flags =
/* AACDB_FLAGS_KERNEL_PRINT | */
/* AACDB_FLAGS_FW_PRINT | */
/* AACDB_FLAGS_MISC | */
/* AACDB_FLAGS_FUNC1 | */
/* AACDB_FLAGS_FUNC2 | */
/* AACDB_FLAGS_SCMD | */
/* AACDB_FLAGS_AIF | */
/* AACDB_FLAGS_FIB | */
/* AACDB_FLAGS_IOCTL | */
0;
uint32_t aac_debug_fib_flags =
/* AACDB_FLAGS_FIB_RW | */
/* AACDB_FLAGS_FIB_IOCTL | */
/* AACDB_FLAGS_FIB_SRB | */
/* AACDB_FLAGS_FIB_SYNC | */
/* AACDB_FLAGS_FIB_HEADER | */
/* AACDB_FLAGS_FIB_TIMEOUT | */
0;
#endif /* DEBUG */
static struct cb_ops aac_cb_ops = {
aac_open, /* open */
aac_close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
aac_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* cb_prop_op */
NULL, /* streamtab */
D_64BIT | D_NEW | D_MP | D_HOTPLUG, /* cb_flag */
CB_REV, /* cb_rev */
nodev, /* async I/O read entry point */
nodev /* async I/O write entry point */
};
static struct dev_ops aac_dev_ops = {
DEVO_REV,
0,
nodev,
nulldev,
nulldev,
aac_attach,
aac_detach,
aac_reset,
&aac_cb_ops,
NULL,
NULL,
aac_quiesce,
};
static struct modldrv aac_modldrv = {
&mod_driverops,
"AAC Driver " AAC_DRIVER_VERSION,
&aac_dev_ops,
};
static struct modlinkage aac_modlinkage = {
MODREV_1,
&aac_modldrv,
NULL
};
static struct aac_softstate *aac_softstatep;
/*
* Supported card list
* ordered in vendor id, subvendor id, subdevice id, and device id
*/
static struct aac_card_type aac_cards[] = {
{0x1028, 0x1, 0x1028, 0x1, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Di"},
{0x1028, 0x2, 0x1028, 0x2, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Di"},
{0x1028, 0x3, 0x1028, 0x3, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Si"},
{0x1028, 0x8, 0x1028, 0xcf, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Di"},
{0x1028, 0x4, 0x1028, 0xd0, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Si"},
{0x1028, 0x2, 0x1028, 0xd1, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Di"},
{0x1028, 0x2, 0x1028, 0xd9, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Di"},
{0x1028, 0xa, 0x1028, 0x106, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Di"},
{0x1028, 0xa, 0x1028, 0x11b, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Di"},
{0x1028, 0xa, 0x1028, 0x121, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG, AAC_TYPE_SCSI,
"Dell", "PERC 3/Di"},
{0x9005, 0x285, 0x1028, 0x287, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG | AAC_FLAGS_256FIBS, AAC_TYPE_SCSI,
"Dell", "PERC 320/DC"},
{0x9005, 0x285, 0x1028, 0x291, AAC_HWIF_I960RX,
AAC_FLAGS_17SG, AAC_TYPE_SATA, "Dell", "CERC SR2"},
{0x9005, 0x285, 0x1014, 0x2f2, AAC_HWIF_I960RX,
0, AAC_TYPE_SCSI, "IBM", "ServeRAID 8i"},
{0x9005, 0x285, 0x1014, 0x34d, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "IBM", "ServeRAID 8s"},
{0x9005, 0x286, 0x1014, 0x9580, AAC_HWIF_RKT,
0, AAC_TYPE_SAS, "IBM", "ServeRAID 8k"},
{0x9005, 0x285, 0x103c, 0x3227, AAC_HWIF_I960RX,
AAC_FLAGS_17SG, AAC_TYPE_SATA, "Adaptec", "2610SA"},
{0x9005, 0x285, 0xe11, 0x295, AAC_HWIF_I960RX,
AAC_FLAGS_17SG, AAC_TYPE_SATA, "Adaptec", "2610SA"},
{0x9005, 0x285, 0x9005, 0x285, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG | AAC_FLAGS_256FIBS, AAC_TYPE_SCSI,
"Adaptec", "2200S"},
{0x9005, 0x285, 0x9005, 0x286, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG | AAC_FLAGS_256FIBS, AAC_TYPE_SCSI,
"Adaptec", "2120S"},
{0x9005, 0x285, 0x9005, 0x287, AAC_HWIF_I960RX,
AAC_FLAGS_NO4GB | AAC_FLAGS_34SG | AAC_FLAGS_256FIBS, AAC_TYPE_SCSI,
"Adaptec", "2200S"},
{0x9005, 0x285, 0x9005, 0x288, AAC_HWIF_I960RX,
0, AAC_TYPE_SCSI, "Adaptec", "3230S"},
{0x9005, 0x285, 0x9005, 0x289, AAC_HWIF_I960RX,
0, AAC_TYPE_SCSI, "Adaptec", "3240S"},
{0x9005, 0x285, 0x9005, 0x28a, AAC_HWIF_I960RX,
0, AAC_TYPE_SCSI, "Adaptec", "2020ZCR"},
{0x9005, 0x285, 0x9005, 0x28b, AAC_HWIF_I960RX,
0, AAC_TYPE_SCSI, "Adaptec", "2025ZCR"},
{0x9005, 0x286, 0x9005, 0x28c, AAC_HWIF_RKT,
0, AAC_TYPE_SCSI, "Adaptec", "2230S"},
{0x9005, 0x286, 0x9005, 0x28d, AAC_HWIF_RKT,
0, AAC_TYPE_SCSI, "Adaptec", "2130S"},
{0x9005, 0x285, 0x9005, 0x28e, AAC_HWIF_I960RX,
0, AAC_TYPE_SATA, "Adaptec", "2020SA"},
{0x9005, 0x285, 0x9005, 0x28f, AAC_HWIF_I960RX,
0, AAC_TYPE_SATA, "Adaptec", "2025SA"},
{0x9005, 0x285, 0x9005, 0x290, AAC_HWIF_I960RX,
AAC_FLAGS_17SG, AAC_TYPE_SATA, "Adaptec", "2410SA"},
{0x9005, 0x285, 0x9005, 0x292, AAC_HWIF_I960RX,
AAC_FLAGS_17SG, AAC_TYPE_SATA, "Adaptec", "2810SA"},
{0x9005, 0x285, 0x9005, 0x293, AAC_HWIF_I960RX,
AAC_FLAGS_17SG, AAC_TYPE_SATA, "Adaptec", "21610SA"},
{0x9005, 0x285, 0x9005, 0x294, AAC_HWIF_I960RX,
0, AAC_TYPE_SATA, "Adaptec", "2026ZCR"},
{0x9005, 0x285, 0x9005, 0x296, AAC_HWIF_I960RX,
0, AAC_TYPE_SCSI, "Adaptec", "2240S"},
{0x9005, 0x285, 0x9005, 0x297, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "Adaptec", "4005SAS"},
{0x9005, 0x285, 0x9005, 0x298, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "Adaptec", "RAID 4000"},
{0x9005, 0x285, 0x9005, 0x299, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "Adaptec", "4800SAS"},
{0x9005, 0x285, 0x9005, 0x29a, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "Adaptec", "4805SAS"},
{0x9005, 0x286, 0x9005, 0x29b, AAC_HWIF_RKT,
0, AAC_TYPE_SATA, "Adaptec", "2820SA"},
{0x9005, 0x286, 0x9005, 0x29c, AAC_HWIF_RKT,
0, AAC_TYPE_SATA, "Adaptec", "2620SA"},
{0x9005, 0x286, 0x9005, 0x29d, AAC_HWIF_RKT,
0, AAC_TYPE_SATA, "Adaptec", "2420SA"},
{0x9005, 0x286, 0x9005, 0x29e, AAC_HWIF_RKT,
0, AAC_TYPE_SATA, "ICP", "9024RO"},
{0x9005, 0x286, 0x9005, 0x29f, AAC_HWIF_RKT,
0, AAC_TYPE_SATA, "ICP", "9014RO"},
{0x9005, 0x286, 0x9005, 0x2a0, AAC_HWIF_RKT,
0, AAC_TYPE_SATA, "ICP", "9047MA"},
{0x9005, 0x286, 0x9005, 0x2a1, AAC_HWIF_RKT,
0, AAC_TYPE_SATA, "ICP", "9087MA"},
{0x9005, 0x285, 0x9005, 0x2a4, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "ICP", "9085LI"},
{0x9005, 0x285, 0x9005, 0x2a5, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "ICP", "5085BR"},
{0x9005, 0x286, 0x9005, 0x2a6, AAC_HWIF_RKT,
0, AAC_TYPE_SATA, "ICP", "9067MA"},
{0x9005, 0x285, 0x9005, 0x2b5, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "Adaptec", "RAID 5445"},
{0x9005, 0x285, 0x9005, 0x2b6, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "Adaptec", "RAID 5805"},
{0x9005, 0x285, 0x9005, 0x2b7, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "Adaptec", "RAID 5085"},
{0x9005, 0x285, 0x9005, 0x2b8, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "ICP", "RAID ICP5445SL"},
{0x9005, 0x285, 0x9005, 0x2b9, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "ICP", "RAID ICP5085SL"},
{0x9005, 0x285, 0x9005, 0x2ba, AAC_HWIF_I960RX,
0, AAC_TYPE_SAS, "ICP", "RAID ICP5805SL"},
{0, 0, 0, 0, AAC_HWIF_UNKNOWN,
0, AAC_TYPE_UNKNOWN, "Unknown", "AAC card"},
};
/*
* Hardware access functions for i960 based cards
*/
static struct aac_interface aac_rx_interface = {
aac_rx_get_fwstatus,
aac_rx_get_mailbox,
aac_rx_set_mailbox
};
/*
* Hardware access functions for Rocket based cards
*/
static struct aac_interface aac_rkt_interface = {
aac_rkt_get_fwstatus,
aac_rkt_get_mailbox,
aac_rkt_set_mailbox
};
ddi_device_acc_attr_t aac_acc_attr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC
};
static struct {
int size;
int notify;
} aac_qinfo[] = {
{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
{AAC_HOST_HIGH_CMD_ENTRIES, 0},
{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
{AAC_HOST_HIGH_RESP_ENTRIES, 0},
{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
};
/*
* Default aac dma attributes
*/
static ddi_dma_attr_t aac_dma_attr = {
DMA_ATTR_V0,
0, /* lowest usable address */
0xffffffffull, /* high DMA address range */
0xffffffffull, /* DMA counter register */
AAC_DMA_ALIGN, /* DMA address alignment */
1, /* DMA burstsizes */
1, /* min effective DMA size */
0xffffffffull, /* max DMA xfer size */
0xffffffffull, /* segment boundary */
1, /* s/g list length */
AAC_BLK_SIZE, /* granularity of device */
0 /* DMA transfer flags */
};
struct aac_drinfo {
struct aac_softstate *softs;
int tgt;
int lun;
int event;
};
static int aac_tick = AAC_DEFAULT_TICK; /* tick for the internal timer */
static uint32_t aac_timebase = 0; /* internal timer in seconds */
static uint32_t aac_sync_time = 0; /* next time to sync. with firmware */
/*
* Warlock directives
*
* Different variables with the same types have to be protected by the
* same mutex; otherwise, warlock will complain with "variables don't
* seem to be protected consistently". For example,
* aac_softstate::{q_wait, q_comp} are type of aac_cmd_queue, and protected
* by aac_softstate::{io_lock, q_comp_mutex} respectively. We have to
* declare them as protected explictly at aac_cmd_dequeue().
*/
_NOTE(SCHEME_PROTECTS_DATA("unique per pkt", scsi_pkt scsi_cdb scsi_status \
scsi_arq_status scsi_descr_sense_hdr scsi_information_sense_descr \
mode_format mode_geometry mode_header aac_cmd))
_NOTE(SCHEME_PROTECTS_DATA("unique per aac_cmd", aac_fib ddi_dma_cookie_t \
aac_sge))
_NOTE(SCHEME_PROTECTS_DATA("unique per aac_fib", aac_blockread aac_blockwrite \
aac_blockread64 aac_raw_io aac_sg_entry aac_sg_entry64 aac_sg_entryraw \
aac_sg_table aac_srb))
_NOTE(SCHEME_PROTECTS_DATA("unique to sync fib and cdb", scsi_inquiry))
_NOTE(SCHEME_PROTECTS_DATA("stable data", scsi_device scsi_address))
_NOTE(SCHEME_PROTECTS_DATA("unique to dr event", aac_drinfo))
_NOTE(SCHEME_PROTECTS_DATA("unique to scsi_transport", buf))
int
_init(void)
{
int rval = 0;
#ifdef DEBUG
mutex_init(&aac_prt_mutex, NULL, MUTEX_DRIVER, NULL);
#endif
DBCALLED(NULL, 1);
if ((rval = ddi_soft_state_init((void *)&aac_softstatep,
sizeof (struct aac_softstate), 0)) != 0)
goto error;
if ((rval = scsi_hba_init(&aac_modlinkage)) != 0) {
ddi_soft_state_fini((void *)&aac_softstatep);
goto error;
}
if ((rval = mod_install(&aac_modlinkage)) != 0) {
ddi_soft_state_fini((void *)&aac_softstatep);
scsi_hba_fini(&aac_modlinkage);
goto error;
}
return (rval);
error:
AACDB_PRINT(NULL, CE_WARN, "Mod init error!");
#ifdef DEBUG
mutex_destroy(&aac_prt_mutex);
#endif
return (rval);
}
int
_info(struct modinfo *modinfop)
{
DBCALLED(NULL, 1);
return (mod_info(&aac_modlinkage, modinfop));
}
/*
* An HBA driver cannot be unload unless you reboot,
* so this function will be of no use.
*/
int
_fini(void)
{
int rval;
DBCALLED(NULL, 1);
if ((rval = mod_remove(&aac_modlinkage)) != 0)
goto error;
scsi_hba_fini(&aac_modlinkage);
ddi_soft_state_fini((void *)&aac_softstatep);
#ifdef DEBUG
mutex_destroy(&aac_prt_mutex);
#endif
return (0);
error:
AACDB_PRINT(NULL, CE_WARN, "AAC is busy, cannot unload!");
return (rval);
}
static int
aac_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int instance, i;
struct aac_softstate *softs = NULL;
int attach_state = 0;
char *data;
int intr_types;
DBCALLED(NULL, 1);
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
return (DDI_FAILURE);
default:
return (DDI_FAILURE);
}
instance = ddi_get_instance(dip);
/* Get soft state */
if (ddi_soft_state_zalloc(aac_softstatep, instance) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "Cannot alloc soft state");
goto error;
}
softs = ddi_get_soft_state(aac_softstatep, instance);
attach_state |= AAC_ATTACH_SOFTSTATE_ALLOCED;
softs->instance = instance;
softs->devinfo_p = dip;
softs->buf_dma_attr = softs->addr_dma_attr = aac_dma_attr;
softs->addr_dma_attr.dma_attr_granular = 1;
softs->acc_attr = aac_acc_attr;
softs->card = AAC_UNKNOWN_CARD;
#ifdef DEBUG
softs->debug_flags = aac_debug_flags;
softs->debug_fib_flags = aac_debug_fib_flags;
#endif
/* Initialize FMA */
aac_fm_init(softs);
/* Check the card type */
if (aac_check_card_type(softs) == AACERR) {
AACDB_PRINT(softs, CE_WARN, "Card not supported");
goto error;
}
/* We have found the right card and everything is OK */
attach_state |= AAC_ATTACH_CARD_DETECTED;
/* Map PCI mem space */
if (ddi_regs_map_setup(dip, 1,
(caddr_t *)&softs->pci_mem_base_vaddr, 0,
softs->map_size_min, &softs->acc_attr,
&softs->pci_mem_handle) != DDI_SUCCESS)
goto error;
softs->map_size = softs->map_size_min;
attach_state |= AAC_ATTACH_PCI_MEM_MAPPED;
AAC_DISABLE_INTR(softs);
/* Get the type of device intrrupts */
if (ddi_intr_get_supported_types(dip, &intr_types) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"ddi_intr_get_supported_types() failed");
goto error;
}
AACDB_PRINT(softs, CE_NOTE,
"ddi_intr_get_supported_types() ret: 0x%x", intr_types);
/* Query interrupt, and alloc/init all needed struct */
if (intr_types & DDI_INTR_TYPE_MSI) {
if (aac_query_intrs(softs, DDI_INTR_TYPE_MSI)
!= DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"MSI interrupt query failed");
goto error;
}
softs->intr_type = DDI_INTR_TYPE_MSI;
} else if (intr_types & DDI_INTR_TYPE_FIXED) {
if (aac_query_intrs(softs, DDI_INTR_TYPE_FIXED)
!= DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"FIXED interrupt query failed");
goto error;
}
softs->intr_type = DDI_INTR_TYPE_FIXED;
} else {
AACDB_PRINT(softs, CE_WARN,
"Device cannot suppport both FIXED and MSI interrupts");
goto error;
}
/* Init mutexes */
mutex_init(&softs->q_comp_mutex, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(softs->intr_pri));
cv_init(&softs->event, NULL, CV_DRIVER, NULL);
mutex_init(&softs->aifq_mutex, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(softs->intr_pri));
cv_init(&softs->aifv, NULL, CV_DRIVER, NULL);
cv_init(&softs->drain_cv, NULL, CV_DRIVER, NULL);
mutex_init(&softs->io_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(softs->intr_pri));
attach_state |= AAC_ATTACH_KMUTEX_INITED;
/* Check for legacy device naming support */
softs->legacy = 1; /* default to use legacy name */
if ((ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0,
"legacy-name-enable", &data) == DDI_SUCCESS)) {
if (strcmp(data, "no") == 0) {
AACDB_PRINT(softs, CE_NOTE, "legacy-name disabled");
softs->legacy = 0;
}
ddi_prop_free(data);
}
/*
* Everything has been set up till now,
* we will do some common attach.
*/
if (aac_common_attach(softs) == AACERR)
goto error;
attach_state |= AAC_ATTACH_COMM_SPACE_SETUP;
/* Check for buf breakup support */
if ((ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0,
"breakup-enable", &data) == DDI_SUCCESS)) {
if (strcmp(data, "yes") == 0) {
AACDB_PRINT(softs, CE_NOTE, "buf breakup enabled");
softs->flags |= AAC_FLAGS_BRKUP;
}
ddi_prop_free(data);
}
softs->dma_max = softs->buf_dma_attr.dma_attr_maxxfer;
if (softs->flags & AAC_FLAGS_BRKUP) {
softs->dma_max = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "dma-max", softs->dma_max);
}
/* Init the cmd queues */
for (i = 0; i < AAC_CMDQ_NUM; i++)
aac_cmd_initq(&softs->q_wait[i]);
aac_cmd_initq(&softs->q_busy);
aac_cmd_initq(&softs->q_comp);
if (aac_hba_setup(softs) != AACOK)
goto error;
attach_state |= AAC_ATTACH_SCSI_TRAN_SETUP;
/* Connect interrupt handlers */
if (ddi_add_softintr(dip, DDI_SOFTINT_LOW, &softs->softint_id,
NULL, NULL, aac_softintr, (caddr_t)softs) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"Can not setup soft interrupt handler!");
goto error;
}
attach_state |= AAC_ATTACH_SOFT_INTR_SETUP;
if (aac_add_intrs(softs) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"Interrupt registration failed, intr type: %s",
softs->intr_type == DDI_INTR_TYPE_MSI ? "MSI" : "FIXED");
goto error;
}
attach_state |= AAC_ATTACH_HARD_INTR_SETUP;
/* Create devctl/scsi nodes for cfgadm */
if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
INST2DEVCTL(instance), DDI_NT_SCSI_NEXUS, 0) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "failed to create devctl node");
goto error;
}
attach_state |= AAC_ATTACH_CREATE_DEVCTL;
if (ddi_create_minor_node(dip, "scsi", S_IFCHR, INST2SCSI(instance),
DDI_NT_SCSI_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "failed to create scsi node");
goto error;
}
attach_state |= AAC_ATTACH_CREATE_SCSI;
/* Create aac node for app. to issue ioctls */
if (ddi_create_minor_node(dip, "aac", S_IFCHR, INST2AAC(instance),
DDI_PSEUDO, 0) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "failed to create aac node");
goto error;
}
/* Create a taskq for dealing with dr events */
if ((softs->taskq = ddi_taskq_create(dip, "aac_dr_taskq", 1,
TASKQ_DEFAULTPRI, 0)) == NULL) {
AACDB_PRINT(softs, CE_WARN, "ddi_taskq_create failed");
goto error;
}
aac_unhold_bus(softs, AAC_IOCMD_SYNC | AAC_IOCMD_ASYNC);
softs->state = AAC_STATE_RUN;
/* Create a thread for command timeout */
softs->timeout_id = timeout(aac_daemon, (void *)softs,
(60 * drv_usectohz(1000000)));
/* Common attach is OK, so we are attached! */
AAC_ENABLE_INTR(softs);
ddi_report_dev(dip);
AACDB_PRINT(softs, CE_NOTE, "aac attached ok");
return (DDI_SUCCESS);
error:
if (softs && softs->taskq)
ddi_taskq_destroy(softs->taskq);
if (attach_state & AAC_ATTACH_CREATE_SCSI)
ddi_remove_minor_node(dip, "scsi");
if (attach_state & AAC_ATTACH_CREATE_DEVCTL)
ddi_remove_minor_node(dip, "devctl");
if (attach_state & AAC_ATTACH_COMM_SPACE_SETUP)
aac_common_detach(softs);
if (attach_state & AAC_ATTACH_SCSI_TRAN_SETUP) {
(void) scsi_hba_detach(dip);
scsi_hba_tran_free(AAC_DIP2TRAN(dip));
}
if (attach_state & AAC_ATTACH_HARD_INTR_SETUP)
aac_remove_intrs(softs);
if (attach_state & AAC_ATTACH_SOFT_INTR_SETUP)
ddi_remove_softintr(softs->softint_id);
if (attach_state & AAC_ATTACH_KMUTEX_INITED) {
mutex_destroy(&softs->q_comp_mutex);
cv_destroy(&softs->event);
mutex_destroy(&softs->aifq_mutex);
cv_destroy(&softs->aifv);
cv_destroy(&softs->drain_cv);
mutex_destroy(&softs->io_lock);
}
if (attach_state & AAC_ATTACH_PCI_MEM_MAPPED)
ddi_regs_map_free(&softs->pci_mem_handle);
aac_fm_fini(softs);
if (attach_state & AAC_ATTACH_CARD_DETECTED)
softs->card = AACERR;
if (attach_state & AAC_ATTACH_SOFTSTATE_ALLOCED)
ddi_soft_state_free(aac_softstatep, instance);
return (DDI_FAILURE);
}
static int
aac_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
scsi_hba_tran_t *tran = AAC_DIP2TRAN(dip);
struct aac_softstate *softs = AAC_TRAN2SOFTS(tran);
DBCALLED(softs, 1);
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
return (DDI_FAILURE);
default:
return (DDI_FAILURE);
}
mutex_enter(&softs->io_lock);
AAC_DISABLE_INTR(softs);
softs->state = AAC_STATE_STOPPED;
mutex_exit(&softs->io_lock);
(void) untimeout(softs->timeout_id);
mutex_enter(&softs->io_lock);
softs->timeout_id = 0;
ddi_taskq_destroy(softs->taskq);
ddi_remove_minor_node(dip, "aac");
ddi_remove_minor_node(dip, "scsi");
ddi_remove_minor_node(dip, "devctl");
mutex_exit(&softs->io_lock);
aac_remove_intrs(softs);
ddi_remove_softintr(softs->softint_id);
aac_common_detach(softs);
(void) scsi_hba_detach(dip);
scsi_hba_tran_free(tran);
mutex_destroy(&softs->q_comp_mutex);
cv_destroy(&softs->event);
mutex_destroy(&softs->aifq_mutex);
cv_destroy(&softs->aifv);
cv_destroy(&softs->drain_cv);
mutex_destroy(&softs->io_lock);
ddi_regs_map_free(&softs->pci_mem_handle);
aac_fm_fini(softs);
softs->hwif = AAC_HWIF_UNKNOWN;
softs->card = AAC_UNKNOWN_CARD;
ddi_soft_state_free(aac_softstatep, ddi_get_instance(dip));
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static int
aac_reset(dev_info_t *dip, ddi_reset_cmd_t cmd)
{
struct aac_softstate *softs = AAC_DIP2SOFTS(dip);
DBCALLED(softs, 1);
mutex_enter(&softs->io_lock);
(void) aac_shutdown(softs);
mutex_exit(&softs->io_lock);
return (DDI_SUCCESS);
}
/*
* quiesce(9E) entry point.
*
* This function is called when the system is single-threaded at high
* PIL with preemption disabled. Therefore, this function must not be
* blocked.
*
* This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
* DDI_FAILURE indicates an error condition and should almost never happen.
*/
static int
aac_quiesce(dev_info_t *dip)
{
struct aac_softstate *softs = AAC_DIP2SOFTS(dip);
if (softs == NULL)
return (DDI_FAILURE);
AAC_DISABLE_INTR(softs);
return (DDI_SUCCESS);
}
/*
* Bring the controller down to a dormant state and detach all child devices.
* This function is called before detach or system shutdown.
* Note: we can assume that the q_wait on the controller is empty, as we
* won't allow shutdown if any device is open.
*/
static int
aac_shutdown(struct aac_softstate *softs)
{
ddi_acc_handle_t acc = softs->sync_slot.fib_acc_handle;
struct aac_close_command *cc = (struct aac_close_command *) \
&softs->sync_slot.fibp->data[0];
int rval;
ddi_put32(acc, &cc->Command, VM_CloseAll);
ddi_put32(acc, &cc->ContainerId, 0xfffffffful);
/* Flush all caches, set FW to write through mode */
rval = aac_sync_fib(softs, ContainerCommand,
AAC_FIB_SIZEOF(struct aac_close_command));
AACDB_PRINT(softs, CE_NOTE,
"shutting down aac %s", (rval == AACOK) ? "ok" : "fail");
return (rval);
}
static uint_t
aac_softintr(caddr_t arg)
{
struct aac_softstate *softs = (void *)arg;
if (!AAC_IS_Q_EMPTY(&softs->q_comp)) {
aac_drain_comp_q(softs);
return (DDI_INTR_CLAIMED);
} else {
return (DDI_INTR_UNCLAIMED);
}
}
/*
* Setup auto sense data for pkt
*/
static void
aac_set_arq_data(struct scsi_pkt *pkt, uchar_t key,
uchar_t add_code, uchar_t qual_code, uint64_t info)
{
struct scsi_arq_status *arqstat = (void *)(pkt->pkt_scbp);
*pkt->pkt_scbp = STATUS_CHECK; /* CHECK CONDITION */
pkt->pkt_state |= STATE_ARQ_DONE;
*(uint8_t *)&arqstat->sts_rqpkt_status = STATUS_GOOD;
arqstat->sts_rqpkt_reason = CMD_CMPLT;
arqstat->sts_rqpkt_resid = 0;
arqstat->sts_rqpkt_state =
STATE_GOT_BUS |
STATE_GOT_TARGET |
STATE_SENT_CMD |
STATE_XFERRED_DATA;
arqstat->sts_rqpkt_statistics = 0;
if (info <= 0xfffffffful) {
arqstat->sts_sensedata.es_valid = 1;
arqstat->sts_sensedata.es_class = CLASS_EXTENDED_SENSE;
arqstat->sts_sensedata.es_code = CODE_FMT_FIXED_CURRENT;
arqstat->sts_sensedata.es_key = key;
arqstat->sts_sensedata.es_add_code = add_code;
arqstat->sts_sensedata.es_qual_code = qual_code;
arqstat->sts_sensedata.es_info_1 = (info >> 24) & 0xFF;
arqstat->sts_sensedata.es_info_2 = (info >> 16) & 0xFF;
arqstat->sts_sensedata.es_info_3 = (info >> 8) & 0xFF;
arqstat->sts_sensedata.es_info_4 = info & 0xFF;
} else { /* 64-bit LBA */
struct scsi_descr_sense_hdr *dsp;
struct scsi_information_sense_descr *isd;
dsp = (struct scsi_descr_sense_hdr *)&arqstat->sts_sensedata;
dsp->ds_class = CLASS_EXTENDED_SENSE;
dsp->ds_code = CODE_FMT_DESCR_CURRENT;
dsp->ds_key = key;
dsp->ds_add_code = add_code;
dsp->ds_qual_code = qual_code;
dsp->ds_addl_sense_length =
sizeof (struct scsi_information_sense_descr);
isd = (struct scsi_information_sense_descr *)(dsp+1);
isd->isd_descr_type = DESCR_INFORMATION;
isd->isd_valid = 1;
isd->isd_information[0] = (info >> 56) & 0xFF;
isd->isd_information[1] = (info >> 48) & 0xFF;
isd->isd_information[2] = (info >> 40) & 0xFF;
isd->isd_information[3] = (info >> 32) & 0xFF;
isd->isd_information[4] = (info >> 24) & 0xFF;
isd->isd_information[5] = (info >> 16) & 0xFF;
isd->isd_information[6] = (info >> 8) & 0xFF;
isd->isd_information[7] = (info) & 0xFF;
}
}
/*
* Setup auto sense data for HARDWARE ERROR
*/
static void
aac_set_arq_data_hwerr(struct aac_cmd *acp)
{
union scsi_cdb *cdbp;
uint64_t err_blkno;
cdbp = (void *)acp->pkt->pkt_cdbp;
err_blkno = AAC_GETGXADDR(acp->cmdlen, cdbp);
aac_set_arq_data(acp->pkt, KEY_HARDWARE_ERROR, 0x00, 0x00, err_blkno);
}
/*
* Setup auto sense data for UNIT ATTENTION
*/
/*ARGSUSED*/
static void
aac_set_arq_data_reset(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_container *dvp = (struct aac_container *)acp->dvp;
ASSERT(dvp->dev.type == AAC_DEV_LD);
if (dvp->reset) {
dvp->reset = 0;
aac_set_arq_data(acp->pkt, KEY_UNIT_ATTENTION, 0x29, 0x02, 0);
}
}
/*
* Send a command to the adapter in New Comm. interface
*/
static int
aac_send_command(struct aac_softstate *softs, struct aac_slot *slotp)
{
uint32_t index, device;
index = PCI_MEM_GET32(softs, AAC_IQUE);
if (index == 0xffffffffUL) {
index = PCI_MEM_GET32(softs, AAC_IQUE);
if (index == 0xffffffffUL)
return (AACERR);
}
device = index;
PCI_MEM_PUT32(softs, device,
(uint32_t)(slotp->fib_phyaddr & 0xfffffffful));
device += 4;
PCI_MEM_PUT32(softs, device, (uint32_t)(slotp->fib_phyaddr >> 32));
device += 4;
PCI_MEM_PUT32(softs, device, slotp->acp->fib_size);
PCI_MEM_PUT32(softs, AAC_IQUE, index);
return (AACOK);
}
static void
aac_end_io(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_device *dvp = acp->dvp;
int q = AAC_CMDQ(acp);
if (acp->slotp) { /* outstanding cmd */
aac_release_slot(softs, acp->slotp);
acp->slotp = NULL;
if (dvp) {
dvp->ncmds[q]--;
if (dvp->throttle[q] == AAC_THROTTLE_DRAIN &&
dvp->ncmds[q] == 0 && q == AAC_CMDQ_ASYNC)
aac_set_throttle(softs, dvp, q,
softs->total_slots);
}
softs->bus_ncmds[q]--;
(void) aac_cmd_delete(&softs->q_busy, acp);
} else { /* cmd in waiting queue */
aac_cmd_delete(&softs->q_wait[q], acp);
}
if (!(acp->flags & (AAC_CMD_NO_CB | AAC_CMD_NO_INTR))) { /* async IO */
mutex_enter(&softs->q_comp_mutex);
aac_cmd_enqueue(&softs->q_comp, acp);
mutex_exit(&softs->q_comp_mutex);
} else if (acp->flags & AAC_CMD_NO_CB) { /* sync IO */
cv_broadcast(&softs->event);
}
}
static void
aac_handle_io(struct aac_softstate *softs, int index)
{
struct aac_slot *slotp;
struct aac_cmd *acp;
uint32_t fast;
fast = index & AAC_SENDERADDR_MASK_FAST_RESPONSE;
index >>= 2;
/* Make sure firmware reported index is valid */
ASSERT(index >= 0 && index < softs->total_slots);
slotp = &softs->io_slot[index];
ASSERT(slotp->index == index);
acp = slotp->acp;
if (acp == NULL || acp->slotp != slotp) {
cmn_err(CE_WARN,
"Firmware error: invalid slot index received from FW");
return;
}
acp->flags |= AAC_CMD_CMPLT;
(void) ddi_dma_sync(slotp->fib_dma_handle, 0, 0, DDI_DMA_SYNC_FORCPU);
if (aac_check_dma_handle(slotp->fib_dma_handle) == DDI_SUCCESS) {
/*
* For fast response IO, the firmware do not return any FIB
* data, so we need to fill in the FIB status and state so that
* FIB users can handle it correctly.
*/
if (fast) {
uint32_t state;
state = ddi_get32(slotp->fib_acc_handle,
&slotp->fibp->Header.XferState);
/*
* Update state for CPU not for device, no DMA sync
* needed
*/
ddi_put32(slotp->fib_acc_handle,
&slotp->fibp->Header.XferState,
state | AAC_FIBSTATE_DONEADAP);
ddi_put32(slotp->fib_acc_handle,
(void *)&slotp->fibp->data[0], ST_OK);
}
/* Handle completed ac */
acp->ac_comp(softs, acp);
} else {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_UNAFFECTED);
acp->flags |= AAC_CMD_ERR;
if (acp->pkt) {
acp->pkt->pkt_reason = CMD_TRAN_ERR;
acp->pkt->pkt_statistics = 0;
}
}
aac_end_io(softs, acp);
}
/*
* Interrupt handler for New Comm. interface
* New Comm. interface use a different mechanism for interrupt. No explict
* message queues, and driver need only accesses the mapped PCI mem space to
* find the completed FIB or AIF.
*/
static int
aac_process_intr_new(struct aac_softstate *softs)
{
uint32_t index;
index = AAC_OUTB_GET(softs);
if (index == 0xfffffffful)
index = AAC_OUTB_GET(softs);
if (aac_check_acc_handle(softs->pci_mem_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_UNAFFECTED);
return (0);
}
if (index != 0xfffffffful) {
do {
if ((index & AAC_SENDERADDR_MASK_AIF) == 0) {
aac_handle_io(softs, index);
} else if (index != 0xfffffffeul) {
struct aac_fib *fibp; /* FIB in AIF queue */
uint16_t fib_size, fib_size0;
/*
* 0xfffffffe means that the controller wants
* more work, ignore it for now. Otherwise,
* AIF received.
*/
index &= ~2;
mutex_enter(&softs->aifq_mutex);
/*
* Copy AIF from adapter to the empty AIF slot
*/
fibp = &softs->aifq[softs->aifq_idx].d;
fib_size0 = PCI_MEM_GET16(softs, index + \
offsetof(struct aac_fib, Header.Size));
fib_size = (fib_size0 > AAC_FIB_SIZE) ?
AAC_FIB_SIZE : fib_size0;
PCI_MEM_REP_GET8(softs, index, fibp,
fib_size);
if (aac_check_acc_handle(softs-> \
pci_mem_handle) == DDI_SUCCESS)
(void) aac_handle_aif(softs, fibp);
else
ddi_fm_service_impact(softs->devinfo_p,
DDI_SERVICE_UNAFFECTED);
mutex_exit(&softs->aifq_mutex);
/*
* AIF memory is owned by the adapter, so let it
* know that we are done with it.
*/
AAC_OUTB_SET(softs, index);
AAC_STATUS_CLR(softs, AAC_DB_RESPONSE_READY);
}
index = AAC_OUTB_GET(softs);
} while (index != 0xfffffffful);
/*
* Process waiting cmds before start new ones to
* ensure first IOs are serviced first.
*/
aac_start_waiting_io(softs);
return (AAC_DB_COMMAND_READY);
} else {
return (0);
}
}
static uint_t
aac_intr_new(caddr_t arg)
{
struct aac_softstate *softs = (void *)arg;
uint_t rval;
mutex_enter(&softs->io_lock);
if (aac_process_intr_new(softs))
rval = DDI_INTR_CLAIMED;
else
rval = DDI_INTR_UNCLAIMED;
mutex_exit(&softs->io_lock);
aac_drain_comp_q(softs);
return (rval);
}
/*
* Interrupt handler for old interface
* Explicit message queues are used to send FIB to and get completed FIB from
* the adapter. Driver and adapter maitain the queues in the producer/consumer
* manner. The driver has to query the queues to find the completed FIB.
*/
static int
aac_process_intr_old(struct aac_softstate *softs)
{
uint16_t status;
status = AAC_STATUS_GET(softs);
if (aac_check_acc_handle(softs->pci_mem_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_UNAFFECTED);
return (DDI_INTR_UNCLAIMED);
}
if (status & AAC_DB_RESPONSE_READY) {
int slot_idx;
/* ACK the intr */
AAC_STATUS_CLR(softs, AAC_DB_RESPONSE_READY);
(void) AAC_STATUS_GET(softs);
while (aac_fib_dequeue(softs, AAC_HOST_NORM_RESP_Q,
&slot_idx) == AACOK)
aac_handle_io(softs, slot_idx);
/*
* Process waiting cmds before start new ones to
* ensure first IOs are serviced first.
*/
aac_start_waiting_io(softs);
return (AAC_DB_RESPONSE_READY);
} else if (status & AAC_DB_COMMAND_READY) {
int aif_idx;
AAC_STATUS_CLR(softs, AAC_DB_COMMAND_READY);
(void) AAC_STATUS_GET(softs);
if (aac_fib_dequeue(softs, AAC_HOST_NORM_CMD_Q, &aif_idx) ==
AACOK) {
ddi_acc_handle_t acc = softs->comm_space_acc_handle;
struct aac_fib *fibp; /* FIB in AIF queue */
struct aac_fib *fibp0; /* FIB in communication space */
uint16_t fib_size, fib_size0;
uint32_t fib_xfer_state;
uint32_t addr, size;
ASSERT((aif_idx >= 0) && (aif_idx < AAC_ADAPTER_FIBS));
#define AAC_SYNC_AIF(softs, aif_idx, type) \
{ (void) ddi_dma_sync((softs)->comm_space_dma_handle, \
offsetof(struct aac_comm_space, \
adapter_fibs[(aif_idx)]), AAC_FIB_SIZE, \
(type)); }
mutex_enter(&softs->aifq_mutex);
/* Copy AIF from adapter to the empty AIF slot */
fibp = &softs->aifq[softs->aifq_idx].d;
AAC_SYNC_AIF(softs, aif_idx, DDI_DMA_SYNC_FORCPU);
fibp0 = &softs->comm_space->adapter_fibs[aif_idx];
fib_size0 = ddi_get16(acc, &fibp0->Header.Size);
fib_size = (fib_size0 > AAC_FIB_SIZE) ?
AAC_FIB_SIZE : fib_size0;
ddi_rep_get8(acc, (uint8_t *)fibp, (uint8_t *)fibp0,
fib_size, DDI_DEV_AUTOINCR);
(void) aac_handle_aif(softs, fibp);
mutex_exit(&softs->aifq_mutex);
/* Complete AIF back to adapter with good status */
fib_xfer_state = LE_32(fibp->Header.XferState);
if (fib_xfer_state & AAC_FIBSTATE_FROMADAP) {
ddi_put32(acc, &fibp0->Header.XferState,
fib_xfer_state | AAC_FIBSTATE_DONEHOST);
ddi_put32(acc, (void *)&fibp0->data[0], ST_OK);
if (fib_size0 > AAC_FIB_SIZE)
ddi_put16(acc, &fibp0->Header.Size,
AAC_FIB_SIZE);
AAC_SYNC_AIF(softs, aif_idx,
DDI_DMA_SYNC_FORDEV);
}
/* Put the AIF response on the response queue */
addr = ddi_get32(acc,
&softs->comm_space->adapter_fibs[aif_idx]. \
Header.SenderFibAddress);
size = (uint32_t)ddi_get16(acc,
&softs->comm_space->adapter_fibs[aif_idx]. \
Header.Size);
ddi_put32(acc,
&softs->comm_space->adapter_fibs[aif_idx]. \
Header.ReceiverFibAddress, addr);
if (aac_fib_enqueue(softs, AAC_ADAP_NORM_RESP_Q,
addr, size) == AACERR)
cmn_err(CE_NOTE, "!AIF ack failed");
}
return (AAC_DB_COMMAND_READY);
} else if (status & AAC_DB_PRINTF_READY) {
/* ACK the intr */
AAC_STATUS_CLR(softs, AAC_DB_PRINTF_READY);
(void) AAC_STATUS_GET(softs);
(void) ddi_dma_sync(softs->comm_space_dma_handle,
offsetof(struct aac_comm_space, adapter_print_buf),
AAC_ADAPTER_PRINT_BUFSIZE, DDI_DMA_SYNC_FORCPU);
if (aac_check_dma_handle(softs->comm_space_dma_handle) ==
DDI_SUCCESS)
cmn_err(CE_NOTE, "MSG From Adapter: %s",
softs->comm_space->adapter_print_buf);
else
ddi_fm_service_impact(softs->devinfo_p,
DDI_SERVICE_UNAFFECTED);
AAC_NOTIFY(softs, AAC_DB_PRINTF_READY);
return (AAC_DB_PRINTF_READY);
} else if (status & AAC_DB_COMMAND_NOT_FULL) {
/*
* Without these two condition statements, the OS could hang
* after a while, especially if there are a lot of AIF's to
* handle, for instance if a drive is pulled from an array
* under heavy load.
*/
AAC_STATUS_CLR(softs, AAC_DB_COMMAND_NOT_FULL);
return (AAC_DB_COMMAND_NOT_FULL);
} else if (status & AAC_DB_RESPONSE_NOT_FULL) {
AAC_STATUS_CLR(softs, AAC_DB_COMMAND_NOT_FULL);
AAC_STATUS_CLR(softs, AAC_DB_RESPONSE_NOT_FULL);
return (AAC_DB_RESPONSE_NOT_FULL);
} else {
return (0);
}
}
static uint_t
aac_intr_old(caddr_t arg)
{
struct aac_softstate *softs = (void *)arg;
int rval;
mutex_enter(&softs->io_lock);
if (aac_process_intr_old(softs))
rval = DDI_INTR_CLAIMED;
else
rval = DDI_INTR_UNCLAIMED;
mutex_exit(&softs->io_lock);
aac_drain_comp_q(softs);
return (rval);
}
/*
* Query FIXED or MSI interrupts
*/
static int
aac_query_intrs(struct aac_softstate *softs, int intr_type)
{
dev_info_t *dip = softs->devinfo_p;
int avail, actual, intr_size, count;
int i, flag, ret;
AACDB_PRINT(softs, CE_NOTE,
"aac_query_intrs:interrupt type 0x%x", intr_type);
/* Get number of interrupts */
ret = ddi_intr_get_nintrs(dip, intr_type, &count);
if ((ret != DDI_SUCCESS) || (count == 0)) {
AACDB_PRINT(softs, CE_WARN,
"ddi_intr_get_nintrs() failed, ret %d count %d",
ret, count);
return (DDI_FAILURE);
}
/* Get number of available interrupts */
ret = ddi_intr_get_navail(dip, intr_type, &avail);
if ((ret != DDI_SUCCESS) || (avail == 0)) {
AACDB_PRINT(softs, CE_WARN,
"ddi_intr_get_navail() failed, ret %d avail %d",
ret, avail);
return (DDI_FAILURE);
}
AACDB_PRINT(softs, CE_NOTE,
"ddi_intr_get_nvail returned %d, navail() returned %d",
count, avail);
/* Allocate an array of interrupt handles */
intr_size = count * sizeof (ddi_intr_handle_t);
softs->htable = kmem_alloc(intr_size, KM_SLEEP);
if (intr_type == DDI_INTR_TYPE_MSI) {
count = 1; /* only one vector needed by now */
flag = DDI_INTR_ALLOC_STRICT;
} else { /* must be DDI_INTR_TYPE_FIXED */
flag = DDI_INTR_ALLOC_NORMAL;
}
/* Call ddi_intr_alloc() */
ret = ddi_intr_alloc(dip, softs->htable, intr_type, 0,
count, &actual, flag);
if ((ret != DDI_SUCCESS) || (actual == 0)) {
AACDB_PRINT(softs, CE_WARN,
"ddi_intr_alloc() failed, ret = %d", ret);
actual = 0;
goto error;
}
if (actual < count) {
AACDB_PRINT(softs, CE_NOTE,
"Requested: %d, Received: %d", count, actual);
goto error;
}
softs->intr_cnt = actual;
/* Get priority for first msi, assume remaining are all the same */
if ((ret = ddi_intr_get_pri(softs->htable[0],
&softs->intr_pri)) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"ddi_intr_get_pri() failed, ret = %d", ret);
goto error;
}
/* Test for high level mutex */
if (softs->intr_pri >= ddi_intr_get_hilevel_pri()) {
AACDB_PRINT(softs, CE_WARN,
"aac_query_intrs: Hi level interrupt not supported");
goto error;
}
return (DDI_SUCCESS);
error:
/* Free already allocated intr */
for (i = 0; i < actual; i++)
(void) ddi_intr_free(softs->htable[i]);
kmem_free(softs->htable, intr_size);
return (DDI_FAILURE);
}
/*
* Register FIXED or MSI interrupts, and enable them
*/
static int
aac_add_intrs(struct aac_softstate *softs)
{
int i, ret;
int intr_size, actual;
ddi_intr_handler_t *aac_intr;
actual = softs->intr_cnt;
intr_size = actual * sizeof (ddi_intr_handle_t);
aac_intr = (ddi_intr_handler_t *)((softs->flags & AAC_FLAGS_NEW_COMM) ?
aac_intr_new : aac_intr_old);
/* Call ddi_intr_add_handler() */
for (i = 0; i < actual; i++) {
if ((ret = ddi_intr_add_handler(softs->htable[i],
aac_intr, (caddr_t)softs, NULL)) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"ddi_intr_add_handler() failed ret = %d", ret);
/* Free already allocated intr */
for (i = 0; i < actual; i++)
(void) ddi_intr_free(softs->htable[i]);
kmem_free(softs->htable, intr_size);
return (DDI_FAILURE);
}
}
if ((ret = ddi_intr_get_cap(softs->htable[0], &softs->intr_cap))
!= DDI_SUCCESS) {
cmn_err(CE_WARN, "ddi_intr_get_cap() failed, ret = %d", ret);
/* Free already allocated intr */
for (i = 0; i < actual; i++)
(void) ddi_intr_free(softs->htable[i]);
kmem_free(softs->htable, intr_size);
return (DDI_FAILURE);
}
/* Enable interrupts */
if (softs->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* for MSI block enable */
(void) ddi_intr_block_enable(softs->htable, softs->intr_cnt);
} else {
/* Call ddi_intr_enable() for legacy/MSI non block enable */
for (i = 0; i < softs->intr_cnt; i++)
(void) ddi_intr_enable(softs->htable[i]);
}
return (DDI_SUCCESS);
}
/*
* Unregister FIXED or MSI interrupts
*/
static void
aac_remove_intrs(struct aac_softstate *softs)
{
int i;
/* Disable all interrupts */
if (softs->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_disable() */
(void) ddi_intr_block_disable(softs->htable, softs->intr_cnt);
} else {
for (i = 0; i < softs->intr_cnt; i++)
(void) ddi_intr_disable(softs->htable[i]);
}
/* Call ddi_intr_remove_handler() */
for (i = 0; i < softs->intr_cnt; i++) {
(void) ddi_intr_remove_handler(softs->htable[i]);
(void) ddi_intr_free(softs->htable[i]);
}
kmem_free(softs->htable, softs->intr_cnt * sizeof (ddi_intr_handle_t));
}
/*
* Set pkt_reason and OR in pkt_statistics flag
*/
static void
aac_set_pkt_reason(struct aac_softstate *softs, struct aac_cmd *acp,
uchar_t reason, uint_t stat)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(softs))
#endif
if (acp->pkt->pkt_reason == CMD_CMPLT)
acp->pkt->pkt_reason = reason;
acp->pkt->pkt_statistics |= stat;
}
/*
* Handle a finished pkt of soft SCMD
*/
static void
aac_soft_callback(struct aac_softstate *softs, struct aac_cmd *acp)
{
ASSERT(acp->pkt);
acp->flags |= AAC_CMD_CMPLT;
acp->pkt->pkt_state |= STATE_GOT_BUS | STATE_GOT_TARGET | \
STATE_SENT_CMD | STATE_GOT_STATUS;
if (acp->pkt->pkt_state & STATE_XFERRED_DATA)
acp->pkt->pkt_resid = 0;
/* AAC_CMD_NO_INTR means no complete callback */
if (!(acp->flags & AAC_CMD_NO_INTR)) {
mutex_enter(&softs->q_comp_mutex);
aac_cmd_enqueue(&softs->q_comp, acp);
mutex_exit(&softs->q_comp_mutex);
ddi_trigger_softintr(softs->softint_id);
}
}
/*
* Handlers for completed IOs, common to aac_intr_new() and aac_intr_old()
*/
/*
* Handle completed logical device IO command
*/
/*ARGSUSED*/
static void
aac_ld_complete(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_slot *slotp = acp->slotp;
struct aac_blockread_response *resp;
uint32_t status;
ASSERT(!(acp->flags & AAC_CMD_SYNC));
ASSERT(!(acp->flags & AAC_CMD_NO_CB));
acp->pkt->pkt_state |= STATE_GOT_STATUS;
/*
* block_read/write has a similar response header, use blockread
* response for both.
*/
resp = (struct aac_blockread_response *)&slotp->fibp->data[0];
status = ddi_get32(slotp->fib_acc_handle, &resp->Status);
if (status == ST_OK) {
acp->pkt->pkt_resid = 0;
acp->pkt->pkt_state |= STATE_XFERRED_DATA;
} else {
aac_set_arq_data_hwerr(acp);
}
}
/*
* Handle completed phys. device IO command
*/
static void
aac_pd_complete(struct aac_softstate *softs, struct aac_cmd *acp)
{
ddi_acc_handle_t acc = acp->slotp->fib_acc_handle;
struct aac_fib *fibp = acp->slotp->fibp;
struct scsi_pkt *pkt = acp->pkt;
struct aac_srb_reply *resp;
uint32_t resp_status;
ASSERT(!(acp->flags & AAC_CMD_SYNC));
ASSERT(!(acp->flags & AAC_CMD_NO_CB));
resp = (struct aac_srb_reply *)&fibp->data[0];
resp_status = ddi_get32(acc, &resp->status);
/* First check FIB status */
if (resp_status == ST_OK) {
uint32_t scsi_status;
uint32_t srb_status;
uint32_t data_xfer_length;
scsi_status = ddi_get32(acc, &resp->scsi_status);
srb_status = ddi_get32(acc, &resp->srb_status);
data_xfer_length = ddi_get32(acc, &resp->data_xfer_length);
*pkt->pkt_scbp = (uint8_t)scsi_status;
pkt->pkt_state |= STATE_GOT_STATUS;
if (scsi_status == STATUS_GOOD) {
uchar_t cmd = ((union scsi_cdb *)(void *)
(pkt->pkt_cdbp))->scc_cmd;
/* Next check SRB status */
switch (srb_status & 0x3f) {
case SRB_STATUS_DATA_OVERRUN:
AACDB_PRINT(softs, CE_NOTE, "DATA_OVERRUN: " \
"scmd=%d, xfer=%d, buflen=%d",
(uint32_t)cmd, data_xfer_length,
acp->bcount);
switch (cmd) {
case SCMD_READ:
case SCMD_WRITE:
case SCMD_READ_G1:
case SCMD_WRITE_G1:
case SCMD_READ_G4:
case SCMD_WRITE_G4:
case SCMD_READ_G5:
case SCMD_WRITE_G5:
aac_set_pkt_reason(softs, acp,
CMD_DATA_OVR, 0);
break;
}
/*FALLTHRU*/
case SRB_STATUS_ERROR_RECOVERY:
case SRB_STATUS_PENDING:
case SRB_STATUS_SUCCESS:
/*
* pkt_resid should only be calculated if the
* status is ERROR_RECOVERY/PENDING/SUCCESS/
* OVERRUN/UNDERRUN
*/
if (data_xfer_length) {
pkt->pkt_state |= STATE_XFERRED_DATA;
pkt->pkt_resid = acp->bcount - \
data_xfer_length;
ASSERT(pkt->pkt_resid >= 0);
}
break;
case SRB_STATUS_ABORTED:
AACDB_PRINT(softs, CE_NOTE,
"SRB_STATUS_ABORTED, xfer=%d, resid=%d",
data_xfer_length, pkt->pkt_resid);
aac_set_pkt_reason(softs, acp, CMD_ABORTED,
STAT_ABORTED);
break;
case SRB_STATUS_ABORT_FAILED:
AACDB_PRINT(softs, CE_NOTE,
"SRB_STATUS_ABORT_FAILED, xfer=%d, " \
"resid=%d", data_xfer_length,
pkt->pkt_resid);
aac_set_pkt_reason(softs, acp, CMD_ABORT_FAIL,
0);
break;
case SRB_STATUS_PARITY_ERROR:
AACDB_PRINT(softs, CE_NOTE,
"SRB_STATUS_PARITY_ERROR, xfer=%d, " \
"resid=%d", data_xfer_length,
pkt->pkt_resid);
aac_set_pkt_reason(softs, acp, CMD_PER_FAIL, 0);
break;
case SRB_STATUS_NO_DEVICE:
case SRB_STATUS_INVALID_PATH_ID:
case SRB_STATUS_INVALID_TARGET_ID:
case SRB_STATUS_INVALID_LUN:
case SRB_STATUS_SELECTION_TIMEOUT:
#ifdef DEBUG
if (AAC_DEV_IS_VALID(acp->dvp)) {
AACDB_PRINT(softs, CE_NOTE,
"SRB_STATUS_NO_DEVICE(%d), " \
"xfer=%d, resid=%d ",
srb_status & 0x3f,
data_xfer_length, pkt->pkt_resid);
}
#endif
aac_set_pkt_reason(softs, acp, CMD_DEV_GONE, 0);
break;
case SRB_STATUS_COMMAND_TIMEOUT:
case SRB_STATUS_TIMEOUT:
AACDB_PRINT(softs, CE_NOTE,
"SRB_STATUS_COMMAND_TIMEOUT, xfer=%d, " \
"resid=%d", data_xfer_length,
pkt->pkt_resid);
aac_set_pkt_reason(softs, acp, CMD_TIMEOUT,
STAT_TIMEOUT);
break;
case SRB_STATUS_BUS_RESET:
AACDB_PRINT(softs, CE_NOTE,
"SRB_STATUS_BUS_RESET, xfer=%d, " \
"resid=%d", data_xfer_length,
pkt->pkt_resid);
aac_set_pkt_reason(softs, acp, CMD_RESET,
STAT_BUS_RESET);
break;
default:
AACDB_PRINT(softs, CE_NOTE, "srb_status=%d, " \
"xfer=%d, resid=%d", srb_status & 0x3f,
data_xfer_length, pkt->pkt_resid);
aac_set_pkt_reason(softs, acp, CMD_TRAN_ERR, 0);
break;
}
} else if (scsi_status == STATUS_CHECK) {
/* CHECK CONDITION */
struct scsi_arq_status *arqstat =
(void *)(pkt->pkt_scbp);
uint32_t sense_data_size;
pkt->pkt_state |= STATE_ARQ_DONE;
*(uint8_t *)&arqstat->sts_rqpkt_status = STATUS_GOOD;
arqstat->sts_rqpkt_reason = CMD_CMPLT;
arqstat->sts_rqpkt_resid = 0;
arqstat->sts_rqpkt_state =
STATE_GOT_BUS |
STATE_GOT_TARGET |
STATE_SENT_CMD |
STATE_XFERRED_DATA;
arqstat->sts_rqpkt_statistics = 0;
sense_data_size = ddi_get32(acc,
&resp->sense_data_size);
ASSERT(sense_data_size <= AAC_SENSE_BUFFERSIZE);
AACDB_PRINT(softs, CE_NOTE,
"CHECK CONDITION: sense len=%d, xfer len=%d",
sense_data_size, data_xfer_length);
if (sense_data_size > SENSE_LENGTH)
sense_data_size = SENSE_LENGTH;
ddi_rep_get8(acc, (uint8_t *)&arqstat->sts_sensedata,
(uint8_t *)resp->sense_data, sense_data_size,
DDI_DEV_AUTOINCR);
} else {
AACDB_PRINT(softs, CE_WARN, "invaild scsi status: " \
"scsi_status=%d, srb_status=%d",
scsi_status, srb_status);
aac_set_pkt_reason(softs, acp, CMD_TRAN_ERR, 0);
}
} else {
AACDB_PRINT(softs, CE_NOTE, "SRB failed: fib status %d",
resp_status);
aac_set_pkt_reason(softs, acp, CMD_TRAN_ERR, 0);
}
}
/*
* Handle completed IOCTL command
*/
/*ARGSUSED*/
void
aac_ioctl_complete(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_slot *slotp = acp->slotp;
/*
* NOTE: Both aac_ioctl_send_fib() and aac_send_raw_srb()
* may wait on softs->event, so use cv_broadcast() instead
* of cv_signal().
*/
ASSERT(acp->flags & AAC_CMD_SYNC);
ASSERT(acp->flags & AAC_CMD_NO_CB);
/* Get the size of the response FIB from its FIB.Header.Size field */
acp->fib_size = ddi_get16(slotp->fib_acc_handle,
&slotp->fibp->Header.Size);
ASSERT(acp->fib_size <= softs->aac_max_fib_size);
ddi_rep_get8(slotp->fib_acc_handle, (uint8_t *)acp->fibp,
(uint8_t *)slotp->fibp, acp->fib_size, DDI_DEV_AUTOINCR);
}
/*
* Handle completed Flush command
*/
/*ARGSUSED*/
static void
aac_synccache_complete(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_slot *slotp = acp->slotp;
ddi_acc_handle_t acc = slotp->fib_acc_handle;
struct aac_synchronize_reply *resp;
uint32_t status;
ASSERT(!(acp->flags & AAC_CMD_SYNC));
acp->pkt->pkt_state |= STATE_GOT_STATUS;
resp = (struct aac_synchronize_reply *)&slotp->fibp->data[0];
status = ddi_get32(acc, &resp->Status);
if (status != CT_OK)
aac_set_arq_data_hwerr(acp);
}
/*
* Access PCI space to see if the driver can support the card
*/
static int
aac_check_card_type(struct aac_softstate *softs)
{
ddi_acc_handle_t pci_config_handle;
int card_index;
uint32_t pci_cmd;
/* Map pci configuration space */
if ((pci_config_setup(softs->devinfo_p, &pci_config_handle)) !=
DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "Cannot setup pci config space");
return (AACERR);
}
softs->vendid = pci_config_get16(pci_config_handle, PCI_CONF_VENID);
softs->devid = pci_config_get16(pci_config_handle, PCI_CONF_DEVID);
softs->subvendid = pci_config_get16(pci_config_handle,
PCI_CONF_SUBVENID);
softs->subsysid = pci_config_get16(pci_config_handle,
PCI_CONF_SUBSYSID);
card_index = 0;
while (!CARD_IS_UNKNOWN(card_index)) {
if ((aac_cards[card_index].vendor == softs->vendid) &&
(aac_cards[card_index].device == softs->devid) &&
(aac_cards[card_index].subvendor == softs->subvendid) &&
(aac_cards[card_index].subsys == softs->subsysid)) {
break;
}
card_index++;
}
softs->card = card_index;
softs->hwif = aac_cards[card_index].hwif;
/*
* Unknown aac card
* do a generic match based on the VendorID and DeviceID to
* support the new cards in the aac family
*/
if (CARD_IS_UNKNOWN(card_index)) {
if (softs->vendid != 0x9005) {
AACDB_PRINT(softs, CE_WARN,
"Unknown vendor 0x%x", softs->vendid);
goto error;
}
switch (softs->devid) {
case 0x285:
softs->hwif = AAC_HWIF_I960RX;
break;
case 0x286:
softs->hwif = AAC_HWIF_RKT;
break;
default:
AACDB_PRINT(softs, CE_WARN,
"Unknown device \"pci9005,%x\"", softs->devid);
goto error;
}
}
/* Set hardware dependent interface */
switch (softs->hwif) {
case AAC_HWIF_I960RX:
softs->aac_if = aac_rx_interface;
softs->map_size_min = AAC_MAP_SIZE_MIN_RX;
break;
case AAC_HWIF_RKT:
softs->aac_if = aac_rkt_interface;
softs->map_size_min = AAC_MAP_SIZE_MIN_RKT;
break;
default:
AACDB_PRINT(softs, CE_WARN,
"Unknown hardware interface %d", softs->hwif);
goto error;
}
/* Set card names */
(void *)strncpy(softs->vendor_name, aac_cards[card_index].vid,
AAC_VENDOR_LEN);
(void *)strncpy(softs->product_name, aac_cards[card_index].desc,
AAC_PRODUCT_LEN);
/* Set up quirks */
softs->flags = aac_cards[card_index].quirks;
/* Force the busmaster enable bit on */
pci_cmd = pci_config_get16(pci_config_handle, PCI_CONF_COMM);
if ((pci_cmd & PCI_COMM_ME) == 0) {
pci_cmd |= PCI_COMM_ME;
pci_config_put16(pci_config_handle, PCI_CONF_COMM, pci_cmd);
pci_cmd = pci_config_get16(pci_config_handle, PCI_CONF_COMM);
if ((pci_cmd & PCI_COMM_ME) == 0) {
cmn_err(CE_CONT, "?Cannot enable busmaster bit");
goto error;
}
}
/* Set memory base to map */
softs->pci_mem_base_paddr = 0xfffffff0UL & \
pci_config_get32(pci_config_handle, PCI_CONF_BASE0);
pci_config_teardown(&pci_config_handle);
return (AACOK); /* card type detected */
error:
pci_config_teardown(&pci_config_handle);
return (AACERR); /* no matched card found */
}
/*
* Check the firmware to determine the features to support and the FIB
* parameters to use.
*/
static int
aac_check_firmware(struct aac_softstate *softs)
{
uint32_t options;
uint32_t atu_size;
ddi_acc_handle_t pci_handle;
uint8_t *data;
uint32_t max_fibs;
uint32_t max_fib_size;
uint32_t sg_tablesize;
uint32_t max_sectors;
uint32_t status;
/* Get supported options */
if ((aac_sync_mbcommand(softs, AAC_MONKER_GETINFO, 0, 0, 0, 0,
&status)) != AACOK) {
if (status != SRB_STATUS_INVALID_REQUEST) {
cmn_err(CE_CONT,
"?Fatal error: request adapter info error");
return (AACERR);
}
options = 0;
atu_size = 0;
} else {
options = AAC_MAILBOX_GET(softs, 1);
atu_size = AAC_MAILBOX_GET(softs, 2);
}
if (softs->state & AAC_STATE_RESET) {
if ((softs->support_opt == options) &&
(softs->atu_size == atu_size))
return (AACOK);
cmn_err(CE_WARN,
"?Fatal error: firmware changed, system needs reboot");
return (AACERR);
}
/*
* The following critical settings are initialized only once during
* driver attachment.
*/
softs->support_opt = options;
softs->atu_size = atu_size;
/* Process supported options */
if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
(softs->flags & AAC_FLAGS_NO4GB) == 0) {
AACDB_PRINT(softs, CE_NOTE, "!Enable FIB map 4GB window");
softs->flags |= AAC_FLAGS_4GB_WINDOW;
} else {
/*
* Quirk AAC_FLAGS_NO4GB is for FIB address and thus comm space
* only. IO is handled by the DMA engine which does not suffer
* from the ATU window programming workarounds necessary for
* CPU copy operations.
*/
softs->addr_dma_attr.dma_attr_addr_lo = 0x2000ull;
softs->addr_dma_attr.dma_attr_addr_hi = 0x7fffffffull;
}
if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0) {
AACDB_PRINT(softs, CE_NOTE, "!Enable SG map 64-bit address");
softs->buf_dma_attr.dma_attr_addr_hi = 0xffffffffffffffffull;
softs->buf_dma_attr.dma_attr_seg = 0xffffffffffffffffull;
softs->flags |= AAC_FLAGS_SG_64BIT;
}
if (options & AAC_SUPPORTED_64BIT_ARRAYSIZE) {
softs->flags |= AAC_FLAGS_ARRAY_64BIT;
AACDB_PRINT(softs, CE_NOTE, "!Enable 64-bit array size");
}
if (options & AAC_SUPPORTED_NONDASD) {
if ((ddi_prop_lookup_string(DDI_DEV_T_ANY, softs->devinfo_p, 0,
"nondasd-enable", (char **)&data) == DDI_SUCCESS)) {
if (strcmp((char *)data, "yes") == 0) {
AACDB_PRINT(softs, CE_NOTE,
"!Enable Non-DASD access");
softs->flags |= AAC_FLAGS_NONDASD;
}
ddi_prop_free(data);
}
}
/* Read preferred settings */
max_fib_size = 0;
if ((aac_sync_mbcommand(softs, AAC_MONKER_GETCOMMPREF,
0, 0, 0, 0, NULL)) == AACOK) {
options = AAC_MAILBOX_GET(softs, 1);
max_fib_size = (options & 0xffff);
max_sectors = (options >> 16) << 1;
options = AAC_MAILBOX_GET(softs, 2);
sg_tablesize = (options >> 16);
options = AAC_MAILBOX_GET(softs, 3);
max_fibs = (options & 0xffff);
}
/* Enable new comm. and rawio at the same time */
if ((softs->support_opt & AAC_SUPPORTED_NEW_COMM) &&
(max_fib_size != 0)) {
/* read out and save PCI MBR */
if ((atu_size > softs->map_size) &&
(ddi_regs_map_setup(softs->devinfo_p, 1,
(caddr_t *)&data, 0, atu_size, &softs->acc_attr,
&pci_handle) == DDI_SUCCESS)) {
ddi_regs_map_free(&softs->pci_mem_handle);
softs->pci_mem_handle = pci_handle;
softs->pci_mem_base_vaddr = data;
softs->map_size = atu_size;
}
if (atu_size == softs->map_size) {
softs->flags |= AAC_FLAGS_NEW_COMM;
AACDB_PRINT(softs, CE_NOTE,
"!Enable New Comm. interface");
}
}
/* Set FIB parameters */
if (softs->flags & AAC_FLAGS_NEW_COMM) {
softs->aac_max_fibs = max_fibs;
softs->aac_max_fib_size = max_fib_size;
softs->aac_max_sectors = max_sectors;
softs->aac_sg_tablesize = sg_tablesize;
softs->flags |= AAC_FLAGS_RAW_IO;
AACDB_PRINT(softs, CE_NOTE, "!Enable RawIO");
} else {
softs->aac_max_fibs =
(softs->flags & AAC_FLAGS_256FIBS) ? 256 : 512;
softs->aac_max_fib_size = AAC_FIB_SIZE;
softs->aac_max_sectors = 128; /* 64K */
if (softs->flags & AAC_FLAGS_17SG)
softs->aac_sg_tablesize = 17;
else if (softs->flags & AAC_FLAGS_34SG)
softs->aac_sg_tablesize = 34;
else if (softs->flags & AAC_FLAGS_SG_64BIT)
softs->aac_sg_tablesize = (AAC_FIB_DATASIZE -
sizeof (struct aac_blockwrite64) +
sizeof (struct aac_sg_entry64)) /
sizeof (struct aac_sg_entry64);
else
softs->aac_sg_tablesize = (AAC_FIB_DATASIZE -
sizeof (struct aac_blockwrite) +
sizeof (struct aac_sg_entry)) /
sizeof (struct aac_sg_entry);
}
if ((softs->flags & AAC_FLAGS_RAW_IO) &&
(softs->flags & AAC_FLAGS_ARRAY_64BIT)) {
softs->flags |= AAC_FLAGS_LBA_64BIT;
AACDB_PRINT(softs, CE_NOTE, "!Enable 64-bit array");
}
softs->buf_dma_attr.dma_attr_sgllen = softs->aac_sg_tablesize;
softs->buf_dma_attr.dma_attr_maxxfer = softs->aac_max_sectors << 9;
/*
* 64K maximum segment size in scatter gather list is controlled by
* the NEW_COMM bit in the adapter information. If not set, the card
* can only accept a maximum of 64K. It is not recommended to permit
* more than 128KB of total transfer size to the adapters because
* performance is negatively impacted.
*
* For new comm, segment size equals max xfer size. For old comm,
* we use 64K for both.
*/
softs->buf_dma_attr.dma_attr_count_max =
softs->buf_dma_attr.dma_attr_maxxfer - 1;
/* Setup FIB operations */
if (softs->flags & AAC_FLAGS_RAW_IO)
softs->aac_cmd_fib = aac_cmd_fib_rawio;
else if (softs->flags & AAC_FLAGS_SG_64BIT)
softs->aac_cmd_fib = aac_cmd_fib_brw64;
else
softs->aac_cmd_fib = aac_cmd_fib_brw;
softs->aac_cmd_fib_scsi = (softs->flags & AAC_FLAGS_SG_64BIT) ? \
aac_cmd_fib_scsi64 : aac_cmd_fib_scsi32;
/* 64-bit LBA needs descriptor format sense data */
softs->slen = sizeof (struct scsi_arq_status);
if ((softs->flags & AAC_FLAGS_LBA_64BIT) &&
softs->slen < AAC_ARQ64_LENGTH)
softs->slen = AAC_ARQ64_LENGTH;
AACDB_PRINT(softs, CE_NOTE,
"!max_fibs %d max_fibsize 0x%x max_sectors %d max_sg %d",
softs->aac_max_fibs, softs->aac_max_fib_size,
softs->aac_max_sectors, softs->aac_sg_tablesize);
return (AACOK);
}
static void
aac_fsa_rev(struct aac_softstate *softs, struct FsaRev *fsarev0,
struct FsaRev *fsarev1)
{
ddi_acc_handle_t acc = softs->comm_space_acc_handle;
AAC_GET_FIELD8(acc, fsarev1, fsarev0, external.comp.dash);
AAC_GET_FIELD8(acc, fsarev1, fsarev0, external.comp.type);
AAC_GET_FIELD8(acc, fsarev1, fsarev0, external.comp.minor);
AAC_GET_FIELD8(acc, fsarev1, fsarev0, external.comp.major);
AAC_GET_FIELD32(acc, fsarev1, fsarev0, buildNumber);
}
/*
* The following function comes from Adaptec:
*
* Query adapter information and supplement adapter information
*/
static int
aac_get_adapter_info(struct aac_softstate *softs,
struct aac_adapter_info *ainfr, struct aac_supplement_adapter_info *sinfr)
{
ddi_acc_handle_t acc = softs->sync_slot.fib_acc_handle;
struct aac_fib *fibp = softs->sync_slot.fibp;
struct aac_adapter_info *ainfp;
struct aac_supplement_adapter_info *sinfp;
ddi_put8(acc, &fibp->data[0], 0);
if (aac_sync_fib(softs, RequestAdapterInfo,
sizeof (struct aac_fib_header)) != AACOK) {
AACDB_PRINT(softs, CE_WARN, "RequestAdapterInfo failed");
return (AACERR);
}
ainfp = (struct aac_adapter_info *)fibp->data;
if (ainfr) {
AAC_GET_FIELD32(acc, ainfr, ainfp, SupportedOptions);
AAC_GET_FIELD32(acc, ainfr, ainfp, PlatformBase);
AAC_GET_FIELD32(acc, ainfr, ainfp, CpuArchitecture);
AAC_GET_FIELD32(acc, ainfr, ainfp, CpuVariant);
AAC_GET_FIELD32(acc, ainfr, ainfp, ClockSpeed);
AAC_GET_FIELD32(acc, ainfr, ainfp, ExecutionMem);
AAC_GET_FIELD32(acc, ainfr, ainfp, BufferMem);
AAC_GET_FIELD32(acc, ainfr, ainfp, TotalMem);
aac_fsa_rev(softs, &ainfp->KernelRevision,
&ainfr->KernelRevision);
aac_fsa_rev(softs, &ainfp->MonitorRevision,
&ainfr->MonitorRevision);
aac_fsa_rev(softs, &ainfp->HardwareRevision,
&ainfr->HardwareRevision);
aac_fsa_rev(softs, &ainfp->BIOSRevision,
&ainfr->BIOSRevision);
AAC_GET_FIELD32(acc, ainfr, ainfp, ClusteringEnabled);
AAC_GET_FIELD32(acc, ainfr, ainfp, ClusterChannelMask);
AAC_GET_FIELD64(acc, ainfr, ainfp, SerialNumber);
AAC_GET_FIELD32(acc, ainfr, ainfp, batteryPlatform);
AAC_GET_FIELD32(acc, ainfr, ainfp, SupportedOptions);
AAC_GET_FIELD32(acc, ainfr, ainfp, OemVariant);
}
if (sinfr) {
if (!(softs->support_opt &
AAC_SUPPORTED_SUPPLEMENT_ADAPTER_INFO)) {
AACDB_PRINT(softs, CE_WARN,
"SupplementAdapterInfo not supported");
return (AACERR);
}
ddi_put8(acc, &fibp->data[0], 0);
if (aac_sync_fib(softs, RequestSupplementAdapterInfo,
sizeof (struct aac_fib_header)) != AACOK) {
AACDB_PRINT(softs, CE_WARN,
"RequestSupplementAdapterInfo failed");
return (AACERR);
}
sinfp = (struct aac_supplement_adapter_info *)fibp->data;
AAC_REP_GET_FIELD8(acc, sinfr, sinfp, AdapterTypeText[0], 17+1);
AAC_REP_GET_FIELD8(acc, sinfr, sinfp, Pad[0], 2);
AAC_GET_FIELD32(acc, sinfr, sinfp, FlashMemoryByteSize);
AAC_GET_FIELD32(acc, sinfr, sinfp, FlashImageId);
AAC_GET_FIELD32(acc, sinfr, sinfp, MaxNumberPorts);
AAC_GET_FIELD32(acc, sinfr, sinfp, Version);
AAC_GET_FIELD32(acc, sinfr, sinfp, FeatureBits);
AAC_GET_FIELD8(acc, sinfr, sinfp, SlotNumber);
AAC_REP_GET_FIELD8(acc, sinfr, sinfp, ReservedPad0[0], 3);
AAC_REP_GET_FIELD8(acc, sinfr, sinfp, BuildDate[0], 12);
AAC_GET_FIELD32(acc, sinfr, sinfp, CurrentNumberPorts);
AAC_REP_GET_FIELD8(acc, sinfr, sinfp, VpdInfo,
sizeof (struct vpd_info));
aac_fsa_rev(softs, &sinfp->FlashFirmwareRevision,
&sinfr->FlashFirmwareRevision);
AAC_GET_FIELD32(acc, sinfr, sinfp, RaidTypeMorphOptions);
aac_fsa_rev(softs, &sinfp->FlashFirmwareBootRevision,
&sinfr->FlashFirmwareBootRevision);
AAC_REP_GET_FIELD8(acc, sinfr, sinfp, MfgPcbaSerialNo,
MFG_PCBA_SERIAL_NUMBER_WIDTH);
AAC_REP_GET_FIELD8(acc, sinfr, sinfp, MfgWWNName[0],
MFG_WWN_WIDTH);
AAC_REP_GET_FIELD32(acc, sinfr, sinfp, ReservedGrowth[0], 2);
}
return (AACOK);
}
static int
aac_get_bus_info(struct aac_softstate *softs, uint32_t *bus_max,
uint32_t *tgt_max)
{
ddi_acc_handle_t acc = softs->sync_slot.fib_acc_handle;
struct aac_fib *fibp = softs->sync_slot.fibp;
struct aac_ctcfg *c_cmd;
struct aac_ctcfg_resp *c_resp;
uint32_t scsi_method_id;
struct aac_bus_info *cmd;
struct aac_bus_info_response *resp;
int rval;
/* Detect MethodId */
c_cmd = (struct aac_ctcfg *)&fibp->data[0];
ddi_put32(acc, &c_cmd->Command, VM_ContainerConfig);
ddi_put32(acc, &c_cmd->cmd, CT_GET_SCSI_METHOD);
ddi_put32(acc, &c_cmd->param, 0);
rval = aac_sync_fib(softs, ContainerCommand,
AAC_FIB_SIZEOF(struct aac_ctcfg));
c_resp = (struct aac_ctcfg_resp *)&fibp->data[0];
if (rval != AACOK || ddi_get32(acc, &c_resp->Status) != 0) {
AACDB_PRINT(softs, CE_WARN,
"VM_ContainerConfig command fail");
return (AACERR);
}
scsi_method_id = ddi_get32(acc, &c_resp->param);
/* Detect phys. bus count and max. target id first */
cmd = (struct aac_bus_info *)&fibp->data[0];
ddi_put32(acc, &cmd->Command, VM_Ioctl);
ddi_put32(acc, &cmd->ObjType, FT_DRIVE); /* physical drive */
ddi_put32(acc, &cmd->MethodId, scsi_method_id);
ddi_put32(acc, &cmd->ObjectId, 0);
ddi_put32(acc, &cmd->CtlCmd, GetBusInfo);
/*
* For VM_Ioctl, the firmware uses the Header.Size filled from the
* driver as the size to be returned. Therefore the driver has to use
* sizeof (struct aac_bus_info_response) because it is greater than
* sizeof (struct aac_bus_info).
*/
rval = aac_sync_fib(softs, ContainerCommand,
AAC_FIB_SIZEOF(struct aac_bus_info_response));
resp = (struct aac_bus_info_response *)cmd;
/* Scan all coordinates with INQUIRY */
if ((rval != AACOK) || (ddi_get32(acc, &resp->Status) != 0)) {
AACDB_PRINT(softs, CE_WARN, "GetBusInfo command fail");
return (AACERR);
}
*bus_max = ddi_get32(acc, &resp->BusCount);
*tgt_max = ddi_get32(acc, &resp->TargetsPerBus);
return (AACOK);
}
/*
* The following function comes from Adaptec:
*
* Routine to be called during initialization of communications with
* the adapter to handle possible adapter configuration issues. When
* the adapter first boots up, it examines attached drives, etc, and
* potentially comes up with a new or revised configuration (relative to
* what's stored in it's NVRAM). Additionally it may discover problems
* that make the current physical configuration unworkable (currently
* applicable only to cluster configuration issues).
*
* If there are no configuration issues or the issues are considered
* trival by the adapter, it will set it's configuration status to
* "FSACT_CONTINUE" and execute the "commit confiuguration" action
* automatically on it's own.
*
* However, if there are non-trivial issues, the adapter will set it's
* internal configuration status to "FSACT_PAUSE" or "FASCT_ABORT"
* and wait for some agent on the host to issue the "\ContainerCommand
* \VM_ContainerConfig\CT_COMMIT_CONFIG" FIB command to cause the
* adapter to commit the new/updated configuration and enable
* un-inhibited operation. The host agent should first issue the
* "\ContainerCommand\VM_ContainerConfig\CT_GET_CONFIG_STATUS" FIB
* command to obtain information about config issues detected by
* the adapter.
*
* Normally the adapter's PC BIOS will execute on the host following
* adapter poweron and reset and will be responsible for querring the
* adapter with CT_GET_CONFIG_STATUS and issuing the CT_COMMIT_CONFIG
* command if appropriate.
*
* However, with the introduction of IOP reset support, the adapter may
* boot up without the benefit of the adapter's PC BIOS host agent.
* This routine is intended to take care of these issues in situations
* where BIOS doesn't execute following adapter poweron or reset. The
* CT_COMMIT_CONFIG command is a no-op if it's already been issued, so
* there is no harm in doing this when it's already been done.
*/
static int
aac_handle_adapter_config_issues(struct aac_softstate *softs)
{
ddi_acc_handle_t acc = softs->sync_slot.fib_acc_handle;
struct aac_fib *fibp = softs->sync_slot.fibp;
struct aac_Container *cmd;
struct aac_Container_resp *resp;
struct aac_cf_status_header *cfg_sts_hdr;
uint32_t resp_status;
uint32_t ct_status;
uint32_t cfg_stat_action;
int rval;
/* Get adapter config status */
cmd = (struct aac_Container *)&fibp->data[0];
bzero(cmd, sizeof (*cmd) - CT_PACKET_SIZE);
ddi_put32(acc, &cmd->Command, VM_ContainerConfig);
ddi_put32(acc, &cmd->CTCommand.command, CT_GET_CONFIG_STATUS);
ddi_put32(acc, &cmd->CTCommand.param[CNT_SIZE],
sizeof (struct aac_cf_status_header));
rval = aac_sync_fib(softs, ContainerCommand,
AAC_FIB_SIZEOF(struct aac_Container));
resp = (struct aac_Container_resp *)cmd;
cfg_sts_hdr = (struct aac_cf_status_header *)resp->CTResponse.data;
resp_status = ddi_get32(acc, &resp->Status);
ct_status = ddi_get32(acc, &resp->CTResponse.param[0]);
if ((rval == AACOK) && (resp_status == 0) && (ct_status == CT_OK)) {
cfg_stat_action = ddi_get32(acc, &cfg_sts_hdr->action);
/* Commit configuration if it's reasonable to do so. */
if (cfg_stat_action <= CFACT_PAUSE) {
bzero(cmd, sizeof (*cmd) - CT_PACKET_SIZE);
ddi_put32(acc, &cmd->Command, VM_ContainerConfig);
ddi_put32(acc, &cmd->CTCommand.command,
CT_COMMIT_CONFIG);
rval = aac_sync_fib(softs, ContainerCommand,
AAC_FIB_SIZEOF(struct aac_Container));
resp_status = ddi_get32(acc, &resp->Status);
ct_status = ddi_get32(acc, &resp->CTResponse.param[0]);
if ((rval == AACOK) && (resp_status == 0) &&
(ct_status == CT_OK))
/* Successful completion */
rval = AACMPE_OK;
else
/* Auto-commit aborted due to error(s). */
rval = AACMPE_COMMIT_CONFIG;
} else {
/*
* Auto-commit aborted due to adapter indicating
* configuration issue(s) too dangerous to auto-commit.
*/
rval = AACMPE_CONFIG_STATUS;
}
} else {
cmn_err(CE_WARN, "!Configuration issue, auto-commit aborted");
rval = AACMPE_CONFIG_STATUS;
}
return (rval);
}
/*
* Hardware initialization and resource allocation
*/
static int
aac_common_attach(struct aac_softstate *softs)
{
uint32_t status;
int i;
DBCALLED(softs, 1);
/*
* Do a little check here to make sure there aren't any outstanding
* FIBs in the message queue. At this point there should not be and
* if there are they are probably left over from another instance of
* the driver like when the system crashes and the crash dump driver
* gets loaded.
*/
while (AAC_OUTB_GET(softs) != 0xfffffffful)
;
/*
* Wait the card to complete booting up before do anything that
* attempts to communicate with it.
*/
status = AAC_FWSTATUS_GET(softs);
if (status == AAC_SELF_TEST_FAILED || status == AAC_KERNEL_PANIC)
goto error;
i = AAC_FWUP_TIMEOUT * 1000; /* set timeout */
AAC_BUSYWAIT(AAC_FWSTATUS_GET(softs) & AAC_KERNEL_UP_AND_RUNNING, i);
if (i == 0) {
cmn_err(CE_CONT, "?Fatal error: controller not ready");
aac_fm_ereport(softs, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_LOST);
goto error;
}
/* Read and set card supported options and settings */
if (aac_check_firmware(softs) == AACERR) {
aac_fm_ereport(softs, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_LOST);
goto error;
}
/* Clear out all interrupts */
AAC_STATUS_CLR(softs, ~0);
/* Setup communication space with the card */
if (softs->comm_space_dma_handle == NULL) {
if (aac_alloc_comm_space(softs) != AACOK)
goto error;
}
if (aac_setup_comm_space(softs) != AACOK) {
cmn_err(CE_CONT, "?Setup communication space failed");
aac_fm_ereport(softs, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_LOST);
goto error;
}
#ifdef DEBUG
if (aac_get_fw_debug_buffer(softs) != AACOK)
cmn_err(CE_CONT, "?firmware UART trace not supported");
#endif
/* Allocate slots */
if ((softs->total_slots == 0) && (aac_create_slots(softs) != AACOK)) {
cmn_err(CE_CONT, "?Fatal error: slots allocate failed");
goto error;
}
AACDB_PRINT(softs, CE_NOTE, "%d slots allocated", softs->total_slots);
/* Allocate FIBs */
if (softs->total_fibs < softs->total_slots) {
aac_alloc_fibs(softs);
if (softs->total_fibs == 0)
goto error;
AACDB_PRINT(softs, CE_NOTE, "%d fibs allocated",
softs->total_fibs);
}
/* Get adapter names */
if (CARD_IS_UNKNOWN(softs->card)) {
struct aac_supplement_adapter_info sinf;
if (aac_get_adapter_info(softs, NULL, &sinf) != AACOK) {
cmn_err(CE_CONT, "?Query adapter information failed");
} else {
char *p, *p0, *p1;
/*
* Now find the controller name in supp_adapter_info->
* AdapterTypeText. Use the first word as the vendor
* and the other words as the product name.
*/
AACDB_PRINT(softs, CE_NOTE, "sinf.AdapterTypeText = "
"\"%s\"", sinf.AdapterTypeText);
p = sinf.AdapterTypeText;
p0 = p1 = NULL;
/* Skip heading spaces */
while (*p && (*p == ' ' || *p == '\t'))
p++;
p0 = p;
while (*p && (*p != ' ' && *p != '\t'))
p++;
/* Remove middle spaces */
while (*p && (*p == ' ' || *p == '\t'))
*p++ = 0;
p1 = p;
/* Remove trailing spaces */
p = p1 + strlen(p1) - 1;
while (p > p1 && (*p == ' ' || *p == '\t'))
*p-- = 0;
if (*p0 && *p1) {
(void *)strncpy(softs->vendor_name, p0,
AAC_VENDOR_LEN);
(void *)strncpy(softs->product_name, p1,
AAC_PRODUCT_LEN);
} else {
cmn_err(CE_WARN,
"?adapter name mis-formatted\n");
if (*p0)
(void *)strncpy(softs->product_name,
p0, AAC_PRODUCT_LEN);
}
}
}
cmn_err(CE_NOTE,
"!aac driver %d.%02d.%02d-%d, found card: " \
"%s %s(pci0x%x.%x.%x.%x) at 0x%x",
AAC_DRIVER_MAJOR_VERSION,
AAC_DRIVER_MINOR_VERSION,
AAC_DRIVER_BUGFIX_LEVEL,
AAC_DRIVER_BUILD,
softs->vendor_name, softs->product_name,
softs->vendid, softs->devid, softs->subvendid, softs->subsysid,
softs->pci_mem_base_paddr);
/* Perform acceptance of adapter-detected config changes if possible */
if (aac_handle_adapter_config_issues(softs) != AACMPE_OK) {
cmn_err(CE_CONT, "?Handle adapter config issues failed");
aac_fm_ereport(softs, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_LOST);
goto error;
}
/* Setup containers (logical devices) */
if (aac_probe_containers(softs) != AACOK) {
cmn_err(CE_CONT, "?Fatal error: get container info error");
goto error;
}
/* Setup phys. devices */
if (softs->flags & AAC_FLAGS_NONDASD) {
uint32_t bus_max, tgt_max;
uint32_t bus, tgt;
int index;
if (aac_get_bus_info(softs, &bus_max, &tgt_max) != AACOK) {
cmn_err(CE_CONT, "?Fatal error: get bus info error");
goto error;
}
AACDB_PRINT(softs, CE_NOTE, "bus_max=%d, tgt_max=%d",
bus_max, tgt_max);
if (bus_max != softs->bus_max || tgt_max != softs->tgt_max) {
if (softs->state & AAC_STATE_RESET) {
cmn_err(CE_WARN,
"?Fatal error: bus map changed");
goto error;
}
softs->bus_max = bus_max;
softs->tgt_max = tgt_max;
if (softs->nondasds) {
kmem_free(softs->nondasds, AAC_MAX_PD(softs) * \
sizeof (struct aac_nondasd));
}
softs->nondasds = kmem_zalloc(AAC_MAX_PD(softs) * \
sizeof (struct aac_nondasd), KM_SLEEP);
index = 0;
for (bus = 0; bus < softs->bus_max; bus++) {
for (tgt = 0; tgt < softs->tgt_max; tgt++) {
struct aac_nondasd *dvp =
&softs->nondasds[index++];
dvp->dev.type = AAC_DEV_PD;
dvp->bus = bus;
dvp->tid = tgt;
}
}
}
}
/* Check dma & acc handles allocated in attach */
if (aac_check_dma_handle(softs->comm_space_dma_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_LOST);
goto error;
}
if (aac_check_acc_handle(softs->pci_mem_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_LOST);
goto error;
}
for (i = 0; i < softs->total_slots; i++) {
if (aac_check_dma_handle(softs->io_slot[i].fib_dma_handle) !=
DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p,
DDI_SERVICE_LOST);
goto error;
}
}
return (AACOK);
error:
if (softs->state & AAC_STATE_RESET)
return (AACERR);
if (softs->nondasds) {
kmem_free(softs->nondasds, AAC_MAX_PD(softs) * \
sizeof (struct aac_nondasd));
softs->nondasds = NULL;
}
if (softs->total_fibs > 0)
aac_destroy_fibs(softs);
if (softs->total_slots > 0)
aac_destroy_slots(softs);
if (softs->comm_space_dma_handle)
aac_free_comm_space(softs);
return (AACERR);
}
/*
* Hardware shutdown and resource release
*/
static void
aac_common_detach(struct aac_softstate *softs)
{
DBCALLED(softs, 1);
(void) aac_shutdown(softs);
if (softs->nondasds) {
kmem_free(softs->nondasds, AAC_MAX_PD(softs) * \
sizeof (struct aac_nondasd));
softs->nondasds = NULL;
}
aac_destroy_fibs(softs);
aac_destroy_slots(softs);
aac_free_comm_space(softs);
}
/*
* Send a synchronous command to the controller and wait for a result.
* Indicate if the controller completed the command with an error status.
*/
int
aac_sync_mbcommand(struct aac_softstate *softs, uint32_t cmd,
uint32_t arg0, uint32_t arg1, uint32_t arg2, uint32_t arg3,
uint32_t *statusp)
{
int timeout;
uint32_t status;
if (statusp != NULL)
*statusp = SRB_STATUS_SUCCESS;
/* Fill in mailbox */
AAC_MAILBOX_SET(softs, cmd, arg0, arg1, arg2, arg3);
/* Ensure the sync command doorbell flag is cleared */
AAC_STATUS_CLR(softs, AAC_DB_SYNC_COMMAND);
/* Then set it to signal the adapter */
AAC_NOTIFY(softs, AAC_DB_SYNC_COMMAND);
/* Spin waiting for the command to complete */
timeout = AAC_IMMEDIATE_TIMEOUT * 1000;
AAC_BUSYWAIT(AAC_STATUS_GET(softs) & AAC_DB_SYNC_COMMAND, timeout);
if (!timeout) {
AACDB_PRINT(softs, CE_WARN,
"Sync command timed out after %d seconds (0x%x)!",
AAC_IMMEDIATE_TIMEOUT, AAC_FWSTATUS_GET(softs));
return (AACERR);
}
/* Clear the completion flag */
AAC_STATUS_CLR(softs, AAC_DB_SYNC_COMMAND);
/* Get the command status */
status = AAC_MAILBOX_GET(softs, 0);
if (statusp != NULL)
*statusp = status;
if (status != SRB_STATUS_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"Sync command fail: status = 0x%x", status);
return (AACERR);
}
return (AACOK);
}
/*
* Send a synchronous FIB to the adapter and wait for its completion
*/
static int
aac_sync_fib(struct aac_softstate *softs, uint16_t cmd, uint16_t fibsize)
{
struct aac_slot *slotp = &softs->sync_slot;
ddi_dma_handle_t dma = slotp->fib_dma_handle;
uint32_t status;
int rval;
/* Sync fib only supports 512 bytes */
if (fibsize > AAC_FIB_SIZE)
return (AACERR);
/*
* Setup sync fib
* Need not reinitialize FIB header if it's already been filled
* by others like aac_cmd_fib_scsi as aac_cmd.
*/
if (slotp->acp == NULL)
aac_cmd_fib_header(softs, slotp, cmd, fibsize);
AACDB_PRINT_FIB(softs, &softs->sync_slot);
(void) ddi_dma_sync(dma, offsetof(struct aac_comm_space, sync_fib),
fibsize, DDI_DMA_SYNC_FORDEV);
/* Give the FIB to the controller, wait for a response. */
rval = aac_sync_mbcommand(softs, AAC_MONKER_SYNCFIB,
slotp->fib_phyaddr, 0, 0, 0, &status);
if (rval == AACERR) {
AACDB_PRINT(softs, CE_WARN,
"Send sync fib to controller failed");
return (AACERR);
}
(void) ddi_dma_sync(dma, offsetof(struct aac_comm_space, sync_fib),
AAC_FIB_SIZE, DDI_DMA_SYNC_FORCPU);
if ((aac_check_acc_handle(softs->pci_mem_handle) != DDI_SUCCESS) ||
(aac_check_dma_handle(dma) != DDI_SUCCESS)) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_UNAFFECTED);
return (AACERR);
}
return (AACOK);
}
static void
aac_cmd_initq(struct aac_cmd_queue *q)
{
q->q_head = NULL;
q->q_tail = (struct aac_cmd *)&q->q_head;
}
/*
* Remove a cmd from the head of q
*/
static struct aac_cmd *
aac_cmd_dequeue(struct aac_cmd_queue *q)
{
struct aac_cmd *acp;
_NOTE(ASSUMING_PROTECTED(*q))
if ((acp = q->q_head) != NULL) {
if ((q->q_head = acp->next) != NULL)
acp->next = NULL;
else
q->q_tail = (struct aac_cmd *)&q->q_head;
acp->prev = NULL;
}
return (acp);
}
/*
* Add a cmd to the tail of q
*/
static void
aac_cmd_enqueue(struct aac_cmd_queue *q, struct aac_cmd *acp)
{
ASSERT(acp->next == NULL);
acp->prev = q->q_tail;
q->q_tail->next = acp;
q->q_tail = acp;
}
/*
* Remove the cmd ac from q
*/
static void
aac_cmd_delete(struct aac_cmd_queue *q, struct aac_cmd *acp)
{
if (acp->prev) {
if ((acp->prev->next = acp->next) != NULL) {
acp->next->prev = acp->prev;
acp->next = NULL;
} else {
q->q_tail = acp->prev;
}
acp->prev = NULL;
}
/* ac is not in the queue */
}
/*
* Atomically insert an entry into the nominated queue, returns 0 on success or
* AACERR if the queue is full.
*
* Note: it would be more efficient to defer notifying the controller in
* the case where we may be inserting several entries in rapid succession,
* but implementing this usefully may be difficult (it would involve a
* separate queue/notify interface).
*/
static int
aac_fib_enqueue(struct aac_softstate *softs, int queue, uint32_t fib_addr,
uint32_t fib_size)
{
ddi_dma_handle_t dma = softs->comm_space_dma_handle;
ddi_acc_handle_t acc = softs->comm_space_acc_handle;
uint32_t pi, ci;
DBCALLED(softs, 2);
ASSERT(queue == AAC_ADAP_NORM_CMD_Q || queue == AAC_ADAP_NORM_RESP_Q);
/* Get the producer/consumer indices */
(void) ddi_dma_sync(dma, (uintptr_t)softs->qtablep->qt_qindex[queue] - \
(uintptr_t)softs->comm_space, sizeof (uint32_t) * 2,
DDI_DMA_SYNC_FORCPU);
if (aac_check_dma_handle(dma) != DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_UNAFFECTED);
return (AACERR);
}
pi = ddi_get32(acc,
&softs->qtablep->qt_qindex[queue][AAC_PRODUCER_INDEX]);
ci = ddi_get32(acc,
&softs->qtablep->qt_qindex[queue][AAC_CONSUMER_INDEX]);
/*
* Wrap the queue first before we check the queue to see
* if it is full
*/
if (pi >= aac_qinfo[queue].size)
pi = 0;
/* XXX queue full */
if ((pi + 1) == ci)
return (AACERR);
/* Fill in queue entry */
ddi_put32(acc, &((softs->qentries[queue] + pi)->aq_fib_size), fib_size);
ddi_put32(acc, &((softs->qentries[queue] + pi)->aq_fib_addr), fib_addr);
(void) ddi_dma_sync(dma, (uintptr_t)(softs->qentries[queue] + pi) - \
(uintptr_t)softs->comm_space, sizeof (struct aac_queue_entry),
DDI_DMA_SYNC_FORDEV);
/* Update producer index */
ddi_put32(acc, &softs->qtablep->qt_qindex[queue][AAC_PRODUCER_INDEX],
pi + 1);
(void) ddi_dma_sync(dma,
(uintptr_t)&softs->qtablep->qt_qindex[queue][AAC_PRODUCER_INDEX] - \
(uintptr_t)softs->comm_space, sizeof (uint32_t),
DDI_DMA_SYNC_FORDEV);
if (aac_qinfo[queue].notify != 0)
AAC_NOTIFY(softs, aac_qinfo[queue].notify);
return (AACOK);
}
/*
* Atomically remove one entry from the nominated queue, returns 0 on
* success or AACERR if the queue is empty.
*/
static int
aac_fib_dequeue(struct aac_softstate *softs, int queue, int *idxp)
{
ddi_acc_handle_t acc = softs->comm_space_acc_handle;
ddi_dma_handle_t dma = softs->comm_space_dma_handle;
uint32_t pi, ci;
int unfull = 0;
DBCALLED(softs, 2);
ASSERT(idxp);
/* Get the producer/consumer indices */
(void) ddi_dma_sync(dma, (uintptr_t)softs->qtablep->qt_qindex[queue] - \
(uintptr_t)softs->comm_space, sizeof (uint32_t) * 2,
DDI_DMA_SYNC_FORCPU);
pi = ddi_get32(acc,
&softs->qtablep->qt_qindex[queue][AAC_PRODUCER_INDEX]);
ci = ddi_get32(acc,
&softs->qtablep->qt_qindex[queue][AAC_CONSUMER_INDEX]);
/* Check for queue empty */
if (ci == pi)
return (AACERR);
if (pi >= aac_qinfo[queue].size)
pi = 0;
/* Check for queue full */
if (ci == pi + 1)
unfull = 1;
/*
* The controller does not wrap the queue,
* so we have to do it by ourselves
*/
if (ci >= aac_qinfo[queue].size)
ci = 0;
/* Fetch the entry */
(void) ddi_dma_sync(dma, (uintptr_t)(softs->qentries[queue] + pi) - \
(uintptr_t)softs->comm_space, sizeof (struct aac_queue_entry),
DDI_DMA_SYNC_FORCPU);
if (aac_check_dma_handle(dma) != DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_UNAFFECTED);
return (AACERR);
}
switch (queue) {
case AAC_HOST_NORM_RESP_Q:
case AAC_HOST_HIGH_RESP_Q:
*idxp = ddi_get32(acc,
&(softs->qentries[queue] + ci)->aq_fib_addr);
break;
case AAC_HOST_NORM_CMD_Q:
case AAC_HOST_HIGH_CMD_Q:
*idxp = ddi_get32(acc,
&(softs->qentries[queue] + ci)->aq_fib_addr) / AAC_FIB_SIZE;
break;
default:
cmn_err(CE_NOTE, "!Invalid queue in aac_fib_dequeue()");
return (AACERR);
}
/* Update consumer index */
ddi_put32(acc, &softs->qtablep->qt_qindex[queue][AAC_CONSUMER_INDEX],
ci + 1);
(void) ddi_dma_sync(dma,
(uintptr_t)&softs->qtablep->qt_qindex[queue][AAC_CONSUMER_INDEX] - \
(uintptr_t)softs->comm_space, sizeof (uint32_t),
DDI_DMA_SYNC_FORDEV);
if (unfull && aac_qinfo[queue].notify != 0)
AAC_NOTIFY(softs, aac_qinfo[queue].notify);
return (AACOK);
}
/*
* Request information of the container cid
*/
static struct aac_mntinforesp *
aac_get_container_info(struct aac_softstate *softs, int cid)
{
ddi_acc_handle_t acc = softs->sync_slot.fib_acc_handle;
struct aac_fib *fibp = softs->sync_slot.fibp;
struct aac_mntinfo *mi = (struct aac_mntinfo *)&fibp->data[0];
struct aac_mntinforesp *mir;
ddi_put32(acc, &mi->Command, /* Use 64-bit LBA if enabled */
(softs->flags & AAC_FLAGS_LBA_64BIT) ?
VM_NameServe64 : VM_NameServe);
ddi_put32(acc, &mi->MntType, FT_FILESYS);
ddi_put32(acc, &mi->MntCount, cid);
if (aac_sync_fib(softs, ContainerCommand,
AAC_FIB_SIZEOF(struct aac_mntinfo)) == AACERR) {
AACDB_PRINT(softs, CE_WARN, "Error probe container %d", cid);
return (NULL);
}
mir = (struct aac_mntinforesp *)&fibp->data[0];
if (ddi_get32(acc, &mir->Status) == ST_OK)
return (mir);
return (NULL);
}
static int
aac_get_container_count(struct aac_softstate *softs, int *count)
{
ddi_acc_handle_t acc = softs->sync_slot.fib_acc_handle;
struct aac_mntinforesp *mir;
if ((mir = aac_get_container_info(softs, 0)) == NULL)
return (AACERR);
*count = ddi_get32(acc, &mir->MntRespCount);
if (*count > AAC_MAX_LD) {
AACDB_PRINT(softs, CE_CONT,
"container count(%d) > AAC_MAX_LD", *count);
return (AACERR);
}
return (AACOK);
}
static int
aac_get_container_uid(struct aac_softstate *softs, uint32_t cid, uint32_t *uid)
{
ddi_acc_handle_t acc = softs->sync_slot.fib_acc_handle;
struct aac_Container *ct = (struct aac_Container *) \
&softs->sync_slot.fibp->data[0];
bzero(ct, sizeof (*ct) - CT_PACKET_SIZE);
ddi_put32(acc, &ct->Command, VM_ContainerConfig);
ddi_put32(acc, &ct->CTCommand.command, CT_CID_TO_32BITS_UID);
ddi_put32(acc, &ct->CTCommand.param[0], cid);
if (aac_sync_fib(softs, ContainerCommand,
AAC_FIB_SIZEOF(struct aac_Container)) == AACERR)
return (AACERR);
if (ddi_get32(acc, &ct->CTCommand.param[0]) != CT_OK)
return (AACERR);
*uid = ddi_get32(acc, &ct->CTCommand.param[1]);
return (AACOK);
}
static int
aac_probe_container(struct aac_softstate *softs, uint32_t cid)
{
struct aac_container *dvp = &softs->containers[cid];
ddi_acc_handle_t acc = softs->sync_slot.fib_acc_handle;
struct aac_mntinforesp *mir;
uint64_t size;
uint32_t uid;
/* Get container basic info */
if ((mir = aac_get_container_info(softs, cid)) == NULL)
return (AACERR);
if (ddi_get32(acc, &mir->MntObj.VolType) == CT_NONE) {
if (AAC_DEV_IS_VALID(&dvp->dev)) {
AACDB_PRINT(softs, CE_NOTE,
">>> Container %d deleted", cid);
dvp->dev.flags &= ~AAC_DFLAG_VALID;
(void) aac_dr_event(softs, dvp->cid, -1,
AAC_EVT_OFFLINE);
}
} else {
size = AAC_MIR_SIZE(softs, acc, mir);
/* Get container UID */
if (aac_get_container_uid(softs, cid, &uid) == AACERR) {
AACDB_PRINT(softs, CE_CONT,
"query container %d uid failed", cid);
return (AACERR);
}
AACDB_PRINT(softs, CE_CONT, "uid=0x%08x", uid);
if (AAC_DEV_IS_VALID(&dvp->dev)) {
if (dvp->uid != uid) {
AACDB_PRINT(softs, CE_WARN,
">>> Container %u uid changed to %d",
cid, uid);
dvp->uid = uid;
}
if (dvp->size != size) {
AACDB_PRINT(softs, CE_NOTE,
">>> Container %u size changed to %"PRIu64,
cid, size);
dvp->size = size;
}
} else { /* Init new container */
AACDB_PRINT(softs, CE_NOTE,
">>> Container %d added: " \
"size=0x%x.%08x, type=%d, name=%s",
cid,
ddi_get32(acc, &mir->MntObj.CapacityHigh),
ddi_get32(acc, &mir->MntObj.Capacity),
ddi_get32(acc, &mir->MntObj.VolType),
mir->MntObj.FileSystemName);
dvp->dev.flags |= AAC_DFLAG_VALID;
dvp->dev.type = AAC_DEV_LD;
dvp->cid = cid;
dvp->uid = uid;
dvp->size = size;
dvp->locked = 0;
dvp->deleted = 0;
(void) aac_dr_event(softs, dvp->cid, -1,
AAC_EVT_ONLINE);
}
}
return (AACOK);
}
/*
* Do a rescan of all the possible containers and update the container list
* with newly online/offline containers, and prepare for autoconfiguration.
*/
static int
aac_probe_containers(struct aac_softstate *softs)
{
int i, count, total;
/* Loop over possible containers */
count = softs->container_count;
if (aac_get_container_count(softs, &count) == AACERR)
return (AACERR);
for (i = total = 0; i < count; i++) {
if (aac_probe_container(softs, i) == AACOK)
total++;
}
if (count < softs->container_count) {
struct aac_container *dvp;
for (dvp = &softs->containers[count];
dvp < &softs->containers[softs->container_count]; dvp++) {
if (!AAC_DEV_IS_VALID(&dvp->dev))
continue;
AACDB_PRINT(softs, CE_NOTE, ">>> Container %d deleted",
dvp->cid);
dvp->dev.flags &= ~AAC_DFLAG_VALID;
(void) aac_dr_event(softs, dvp->cid, -1,
AAC_EVT_OFFLINE);
}
}
softs->container_count = count;
AACDB_PRINT(softs, CE_CONT, "?Total %d container(s) found", total);
return (AACOK);
}
static int
aac_alloc_comm_space(struct aac_softstate *softs)
{
size_t rlen;
ddi_dma_cookie_t cookie;
uint_t cookien;
/* Allocate DMA for comm. space */
if (ddi_dma_alloc_handle(
softs->devinfo_p,
&softs->addr_dma_attr,
DDI_DMA_SLEEP,
NULL,
&softs->comm_space_dma_handle) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"Cannot alloc dma handle for communication area");
goto error;
}
if (ddi_dma_mem_alloc(
softs->comm_space_dma_handle,
sizeof (struct aac_comm_space),
&softs->acc_attr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
DDI_DMA_SLEEP,
NULL,
(caddr_t *)&softs->comm_space,
&rlen,
&softs->comm_space_acc_handle) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"Cannot alloc mem for communication area");
goto error;
}
if (ddi_dma_addr_bind_handle(
softs->comm_space_dma_handle,
NULL,
(caddr_t)softs->comm_space,
sizeof (struct aac_comm_space),
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
DDI_DMA_SLEEP,
NULL,
&cookie,
&cookien) != DDI_DMA_MAPPED) {
AACDB_PRINT(softs, CE_WARN,
"DMA bind failed for communication area");
goto error;
}
softs->comm_space_phyaddr = cookie.dmac_address;
/* Setup sync FIB space */
softs->sync_slot.fibp = &softs->comm_space->sync_fib;
softs->sync_slot.fib_phyaddr = softs->comm_space_phyaddr + \
offsetof(struct aac_comm_space, sync_fib);
softs->sync_slot.fib_acc_handle = softs->comm_space_acc_handle;
softs->sync_slot.fib_dma_handle = softs->comm_space_dma_handle;
return (AACOK);
error:
if (softs->comm_space_acc_handle) {
ddi_dma_mem_free(&softs->comm_space_acc_handle);
softs->comm_space_acc_handle = NULL;
}
if (softs->comm_space_dma_handle) {
ddi_dma_free_handle(&softs->comm_space_dma_handle);
softs->comm_space_dma_handle = NULL;
}
return (AACERR);
}
static void
aac_free_comm_space(struct aac_softstate *softs)
{
softs->sync_slot.fibp = NULL;
softs->sync_slot.fib_phyaddr = NULL;
softs->sync_slot.fib_acc_handle = NULL;
softs->sync_slot.fib_dma_handle = NULL;
(void) ddi_dma_unbind_handle(softs->comm_space_dma_handle);
ddi_dma_mem_free(&softs->comm_space_acc_handle);
softs->comm_space_acc_handle = NULL;
ddi_dma_free_handle(&softs->comm_space_dma_handle);
softs->comm_space_dma_handle = NULL;
softs->comm_space_phyaddr = NULL;
}
/*
* Initialize the data structures that are required for the communication
* interface to operate
*/
static int
aac_setup_comm_space(struct aac_softstate *softs)
{
ddi_dma_handle_t dma = softs->comm_space_dma_handle;
ddi_acc_handle_t acc = softs->comm_space_acc_handle;
uint32_t comm_space_phyaddr;
struct aac_adapter_init *initp;
int qoffset;
comm_space_phyaddr = softs->comm_space_phyaddr;
/* Setup adapter init struct */
initp = &softs->comm_space->init_data;
bzero(initp, sizeof (struct aac_adapter_init));
ddi_put32(acc, &initp->InitStructRevision, AAC_INIT_STRUCT_REVISION);
ddi_put32(acc, &initp->HostElapsedSeconds, ddi_get_time());
/* Setup new/old comm. specific data */
if (softs->flags & AAC_FLAGS_RAW_IO) {
ddi_put32(acc, &initp->InitStructRevision,
AAC_INIT_STRUCT_REVISION_4);
ddi_put32(acc, &initp->InitFlags,
(softs->flags & AAC_FLAGS_NEW_COMM) ?
AAC_INIT_FLAGS_NEW_COMM_SUPPORTED : 0);
/* Setup the preferred settings */
ddi_put32(acc, &initp->MaxIoCommands, softs->aac_max_fibs);
ddi_put32(acc, &initp->MaxIoSize,
(softs->aac_max_sectors << 9));
ddi_put32(acc, &initp->MaxFibSize, softs->aac_max_fib_size);
} else {
/*
* Tells the adapter about the physical location of various
* important shared data structures
*/
ddi_put32(acc, &initp->AdapterFibsPhysicalAddress,
comm_space_phyaddr + \
offsetof(struct aac_comm_space, adapter_fibs));
ddi_put32(acc, &initp->AdapterFibsVirtualAddress, 0);
ddi_put32(acc, &initp->AdapterFibAlign, AAC_FIB_SIZE);
ddi_put32(acc, &initp->AdapterFibsSize,
AAC_ADAPTER_FIBS * AAC_FIB_SIZE);
ddi_put32(acc, &initp->PrintfBufferAddress,
comm_space_phyaddr + \
offsetof(struct aac_comm_space, adapter_print_buf));
ddi_put32(acc, &initp->PrintfBufferSize,
AAC_ADAPTER_PRINT_BUFSIZE);
ddi_put32(acc, &initp->MiniPortRevision,
AAC_INIT_STRUCT_MINIPORT_REVISION);
ddi_put32(acc, &initp->HostPhysMemPages, AAC_MAX_PFN);
qoffset = (comm_space_phyaddr + \
offsetof(struct aac_comm_space, qtable)) % \
AAC_QUEUE_ALIGN;
if (qoffset)
qoffset = AAC_QUEUE_ALIGN - qoffset;
softs->qtablep = (struct aac_queue_table *) \
((char *)&softs->comm_space->qtable + qoffset);
ddi_put32(acc, &initp->CommHeaderAddress, comm_space_phyaddr + \
offsetof(struct aac_comm_space, qtable) + qoffset);
/* Init queue table */
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_HOST_NORM_CMD_Q][AAC_PRODUCER_INDEX],
AAC_HOST_NORM_CMD_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_HOST_NORM_CMD_Q][AAC_CONSUMER_INDEX],
AAC_HOST_NORM_CMD_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_HOST_HIGH_CMD_Q][AAC_PRODUCER_INDEX],
AAC_HOST_HIGH_CMD_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_HOST_HIGH_CMD_Q][AAC_CONSUMER_INDEX],
AAC_HOST_HIGH_CMD_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_ADAP_NORM_CMD_Q][AAC_PRODUCER_INDEX],
AAC_ADAP_NORM_CMD_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_ADAP_NORM_CMD_Q][AAC_CONSUMER_INDEX],
AAC_ADAP_NORM_CMD_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_ADAP_HIGH_CMD_Q][AAC_PRODUCER_INDEX],
AAC_ADAP_HIGH_CMD_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_ADAP_HIGH_CMD_Q][AAC_CONSUMER_INDEX],
AAC_ADAP_HIGH_CMD_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_HOST_NORM_RESP_Q][AAC_PRODUCER_INDEX],
AAC_HOST_NORM_RESP_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_HOST_NORM_RESP_Q][AAC_CONSUMER_INDEX],
AAC_HOST_NORM_RESP_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_HOST_HIGH_RESP_Q][AAC_PRODUCER_INDEX],
AAC_HOST_HIGH_RESP_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_HOST_HIGH_RESP_Q][AAC_CONSUMER_INDEX],
AAC_HOST_HIGH_RESP_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_ADAP_NORM_RESP_Q][AAC_PRODUCER_INDEX],
AAC_ADAP_NORM_RESP_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_ADAP_NORM_RESP_Q][AAC_CONSUMER_INDEX],
AAC_ADAP_NORM_RESP_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_ADAP_HIGH_RESP_Q][AAC_PRODUCER_INDEX],
AAC_ADAP_HIGH_RESP_ENTRIES);
ddi_put32(acc, &softs->qtablep-> \
qt_qindex[AAC_ADAP_HIGH_RESP_Q][AAC_CONSUMER_INDEX],
AAC_ADAP_HIGH_RESP_ENTRIES);
/* Init queue entries */
softs->qentries[AAC_HOST_NORM_CMD_Q] =
&softs->qtablep->qt_HostNormCmdQueue[0];
softs->qentries[AAC_HOST_HIGH_CMD_Q] =
&softs->qtablep->qt_HostHighCmdQueue[0];
softs->qentries[AAC_ADAP_NORM_CMD_Q] =
&softs->qtablep->qt_AdapNormCmdQueue[0];
softs->qentries[AAC_ADAP_HIGH_CMD_Q] =
&softs->qtablep->qt_AdapHighCmdQueue[0];
softs->qentries[AAC_HOST_NORM_RESP_Q] =
&softs->qtablep->qt_HostNormRespQueue[0];
softs->qentries[AAC_HOST_HIGH_RESP_Q] =
&softs->qtablep->qt_HostHighRespQueue[0];
softs->qentries[AAC_ADAP_NORM_RESP_Q] =
&softs->qtablep->qt_AdapNormRespQueue[0];
softs->qentries[AAC_ADAP_HIGH_RESP_Q] =
&softs->qtablep->qt_AdapHighRespQueue[0];
}
(void) ddi_dma_sync(dma, 0, 0, DDI_DMA_SYNC_FORDEV);
/* Send init structure to the card */
if (aac_sync_mbcommand(softs, AAC_MONKER_INITSTRUCT,
comm_space_phyaddr + \
offsetof(struct aac_comm_space, init_data),
0, 0, 0, NULL) == AACERR) {
AACDB_PRINT(softs, CE_WARN,
"Cannot send init structure to adapter");
return (AACERR);
}
return (AACOK);
}
static uchar_t *
aac_vendor_id(struct aac_softstate *softs, uchar_t *buf)
{
(void) memset(buf, ' ', AAC_VENDOR_LEN);
bcopy(softs->vendor_name, buf, strlen(softs->vendor_name));
return (buf + AAC_VENDOR_LEN);
}
static uchar_t *
aac_product_id(struct aac_softstate *softs, uchar_t *buf)
{
(void) memset(buf, ' ', AAC_PRODUCT_LEN);
bcopy(softs->product_name, buf, strlen(softs->product_name));
return (buf + AAC_PRODUCT_LEN);
}
/*
* Construct unit serial number from container uid
*/
static uchar_t *
aac_lun_serialno(struct aac_softstate *softs, int tgt, uchar_t *buf)
{
int i, d;
uint32_t uid;
ASSERT(tgt >= 0 && tgt < AAC_MAX_LD);
uid = softs->containers[tgt].uid;
for (i = 7; i >= 0; i--) {
d = uid & 0xf;
buf[i] = d > 9 ? 'A' + (d - 0xa) : '0' + d;
uid >>= 4;
}
return (buf + 8);
}
/*
* SPC-3 7.5 INQUIRY command implementation
*/
static void
aac_inquiry(struct aac_softstate *softs, struct scsi_pkt *pkt,
union scsi_cdb *cdbp, struct buf *bp)
{
int tgt = pkt->pkt_address.a_target;
char *b_addr = NULL;
uchar_t page = cdbp->cdb_opaque[2];
if (cdbp->cdb_opaque[1] & AAC_CDB_INQUIRY_CMDDT) {
/* Command Support Data is not supported */
aac_set_arq_data(pkt, KEY_ILLEGAL_REQUEST, 0x24, 0x00, 0);
return;
}
if (bp && bp->b_un.b_addr && bp->b_bcount) {
if (bp->b_flags & (B_PHYS | B_PAGEIO))
bp_mapin(bp);
b_addr = bp->b_un.b_addr;
}
if (cdbp->cdb_opaque[1] & AAC_CDB_INQUIRY_EVPD) {
uchar_t *vpdp = (uchar_t *)b_addr;
uchar_t *idp, *sp;
/* SPC-3 8.4 Vital product data parameters */
switch (page) {
case 0x00:
/* Supported VPD pages */
if (vpdp == NULL ||
bp->b_bcount < (AAC_VPD_PAGE_DATA + 3))
return;
bzero(vpdp, AAC_VPD_PAGE_LENGTH);
vpdp[AAC_VPD_PAGE_CODE] = 0x00;
vpdp[AAC_VPD_PAGE_LENGTH] = 3;
vpdp[AAC_VPD_PAGE_DATA] = 0x00;
vpdp[AAC_VPD_PAGE_DATA + 1] = 0x80;
vpdp[AAC_VPD_PAGE_DATA + 2] = 0x83;
pkt->pkt_state |= STATE_XFERRED_DATA;
break;
case 0x80:
/* Unit serial number page */
if (vpdp == NULL ||
bp->b_bcount < (AAC_VPD_PAGE_DATA + 8))
return;
bzero(vpdp, AAC_VPD_PAGE_LENGTH);
vpdp[AAC_VPD_PAGE_CODE] = 0x80;
vpdp[AAC_VPD_PAGE_LENGTH] = 8;
sp = &vpdp[AAC_VPD_PAGE_DATA];
(void) aac_lun_serialno(softs, tgt, sp);
pkt->pkt_state |= STATE_XFERRED_DATA;
break;
case 0x83:
/* Device identification page */
if (vpdp == NULL ||
bp->b_bcount < (AAC_VPD_PAGE_DATA + 32))
return;
bzero(vpdp, AAC_VPD_PAGE_LENGTH);
vpdp[AAC_VPD_PAGE_CODE] = 0x83;
idp = &vpdp[AAC_VPD_PAGE_DATA];
bzero(idp, AAC_VPD_ID_LENGTH);
idp[AAC_VPD_ID_CODESET] = 0x02;
idp[AAC_VPD_ID_TYPE] = 0x01;
/*
* SPC-3 Table 111 - Identifier type
* One recommanded method of constructing the remainder
* of identifier field is to concatenate the product
* identification field from the standard INQUIRY data
* field and the product serial number field from the
* unit serial number page.
*/
sp = &idp[AAC_VPD_ID_DATA];
sp = aac_vendor_id(softs, sp);
sp = aac_product_id(softs, sp);
sp = aac_lun_serialno(softs, tgt, sp);
idp[AAC_VPD_ID_LENGTH] = (uintptr_t)sp - \
(uintptr_t)&idp[AAC_VPD_ID_DATA];
vpdp[AAC_VPD_PAGE_LENGTH] = (uintptr_t)sp - \
(uintptr_t)&vpdp[AAC_VPD_PAGE_DATA];
pkt->pkt_state |= STATE_XFERRED_DATA;
break;
default:
aac_set_arq_data(pkt, KEY_ILLEGAL_REQUEST,
0x24, 0x00, 0);
break;
}
} else {
struct scsi_inquiry *inqp = (struct scsi_inquiry *)b_addr;
size_t len = sizeof (struct scsi_inquiry);
if (page != 0) {
aac_set_arq_data(pkt, KEY_ILLEGAL_REQUEST,
0x24, 0x00, 0);
return;
}
if (inqp == NULL || bp->b_bcount < len)
return;
bzero(inqp, len);
inqp->inq_len = AAC_ADDITIONAL_LEN;
inqp->inq_ansi = AAC_ANSI_VER;
inqp->inq_rdf = AAC_RESP_DATA_FORMAT;
(void) aac_vendor_id(softs, (uchar_t *)inqp->inq_vid);
(void) aac_product_id(softs, (uchar_t *)inqp->inq_pid);
bcopy("V1.0", inqp->inq_revision, 4);
inqp->inq_cmdque = 1; /* enable tagged-queuing */
/*
* For "sd-max-xfer-size" property which may impact performance
* when IO threads increase.
*/
inqp->inq_wbus32 = 1;
pkt->pkt_state |= STATE_XFERRED_DATA;
}
}
/*
* SPC-3 7.10 MODE SENSE command implementation
*/
static void
aac_mode_sense(struct aac_softstate *softs, struct scsi_pkt *pkt,
union scsi_cdb *cdbp, struct buf *bp, int capacity)
{
uchar_t pagecode;
struct mode_header *headerp;
struct mode_header_g1 *g1_headerp;
unsigned int ncyl;
caddr_t sense_data;
caddr_t next_page;
size_t sdata_size;
size_t pages_size;
int unsupport_page = 0;
ASSERT(cdbp->scc_cmd == SCMD_MODE_SENSE ||
cdbp->scc_cmd == SCMD_MODE_SENSE_G1);
if (!(bp && bp->b_un.b_addr && bp->b_bcount))
return;
if (bp->b_flags & (B_PHYS | B_PAGEIO))
bp_mapin(bp);
pkt->pkt_state |= STATE_XFERRED_DATA;
pagecode = cdbp->cdb_un.sg.scsi[0] & 0x3F;
/* calculate the size of needed buffer */
if (cdbp->scc_cmd == SCMD_MODE_SENSE)
sdata_size = MODE_HEADER_LENGTH;
else /* must be SCMD_MODE_SENSE_G1 */
sdata_size = MODE_HEADER_LENGTH_G1;
pages_size = 0;
switch (pagecode) {
case SD_MODE_SENSE_PAGE3_CODE:
pages_size += sizeof (struct mode_format);
break;
case SD_MODE_SENSE_PAGE4_CODE:
pages_size += sizeof (struct mode_geometry);
break;
case MODEPAGE_CTRL_MODE:
if (softs->flags & AAC_FLAGS_LBA_64BIT) {
pages_size += sizeof (struct mode_control_scsi3);
} else {
unsupport_page = 1;
}
break;
case MODEPAGE_ALLPAGES:
if (softs->flags & AAC_FLAGS_LBA_64BIT) {
pages_size += sizeof (struct mode_format) +
sizeof (struct mode_geometry) +
sizeof (struct mode_control_scsi3);
} else {
pages_size += sizeof (struct mode_format) +
sizeof (struct mode_geometry);
}
break;
default:
/* unsupported pages */
unsupport_page = 1;
}
/* allocate buffer to fill the send data */
sdata_size += pages_size;
sense_data = kmem_zalloc(sdata_size, KM_SLEEP);
if (cdbp->scc_cmd == SCMD_MODE_SENSE) {
headerp = (struct mode_header *)sense_data;
headerp->length = MODE_HEADER_LENGTH + pages_size -
sizeof (headerp->length);
headerp->bdesc_length = 0;
next_page = sense_data + sizeof (struct mode_header);
} else {
g1_headerp = (void *)sense_data;
g1_headerp->length = BE_16(MODE_HEADER_LENGTH_G1 + pages_size -
sizeof (g1_headerp->length));
g1_headerp->bdesc_length = 0;
next_page = sense_data + sizeof (struct mode_header_g1);
}
if (unsupport_page)
goto finish;
if (pagecode == SD_MODE_SENSE_PAGE3_CODE ||
pagecode == MODEPAGE_ALLPAGES) {
/* SBC-3 7.1.3.3 Format device page */
struct mode_format *page3p;
page3p = (void *)next_page;
page3p->mode_page.code = SD_MODE_SENSE_PAGE3_CODE;
page3p->mode_page.length = sizeof (struct mode_format);
page3p->data_bytes_sect = BE_16(AAC_SECTOR_SIZE);
page3p->sect_track = BE_16(AAC_SECTORS_PER_TRACK);
next_page += sizeof (struct mode_format);
}
if (pagecode == SD_MODE_SENSE_PAGE4_CODE ||
pagecode == MODEPAGE_ALLPAGES) {
/* SBC-3 7.1.3.8 Rigid disk device geometry page */
struct mode_geometry *page4p;
page4p = (void *)next_page;
page4p->mode_page.code = SD_MODE_SENSE_PAGE4_CODE;
page4p->mode_page.length = sizeof (struct mode_geometry);
page4p->heads = AAC_NUMBER_OF_HEADS;
page4p->rpm = BE_16(AAC_ROTATION_SPEED);
ncyl = capacity / (AAC_NUMBER_OF_HEADS * AAC_SECTORS_PER_TRACK);
page4p->cyl_lb = ncyl & 0xff;
page4p->cyl_mb = (ncyl >> 8) & 0xff;
page4p->cyl_ub = (ncyl >> 16) & 0xff;
next_page += sizeof (struct mode_geometry);
}
if ((pagecode == MODEPAGE_CTRL_MODE || pagecode == MODEPAGE_ALLPAGES) &&
softs->flags & AAC_FLAGS_LBA_64BIT) {
/* 64-bit LBA need large sense data */
struct mode_control_scsi3 *mctl;
mctl = (void *)next_page;
mctl->mode_page.code = MODEPAGE_CTRL_MODE;
mctl->mode_page.length =
sizeof (struct mode_control_scsi3) -
sizeof (struct mode_page);
mctl->d_sense = 1;
}
finish:
/* copyout the valid data. */
bcopy(sense_data, bp->b_un.b_addr, min(sdata_size, bp->b_bcount));
kmem_free(sense_data, sdata_size);
}
static int
aac_name_node(dev_info_t *dip, char *name, int len)
{
int tgt, lun;
tgt = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "target", -1);
if (tgt == -1)
return (DDI_FAILURE);
lun = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "lun", -1);
if (lun == -1)
return (DDI_FAILURE);
(void) snprintf(name, len, "%x,%x", tgt, lun);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static int
aac_tran_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip,
scsi_hba_tran_t *tran, struct scsi_device *sd)
{
struct aac_softstate *softs = AAC_TRAN2SOFTS(tran);
#if defined(DEBUG) || defined(__lock_lint)
int ctl = ddi_get_instance(softs->devinfo_p);
#endif
uint16_t tgt = sd->sd_address.a_target;
uint8_t lun = sd->sd_address.a_lun;
struct aac_device *dvp;
DBCALLED(softs, 2);
if (ndi_dev_is_persistent_node(tgt_dip) == 0) {
/*
* If no persistent node exist, we don't allow .conf node
* to be created.
*/
if (aac_find_child(softs, tgt, lun) != NULL) {
if (ndi_merge_node(tgt_dip, aac_name_node) !=
DDI_SUCCESS)
/* Create this .conf node */
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
/*
* Only support container/phys. device that has been
* detected and valid
*/
mutex_enter(&softs->io_lock);
if (tgt >= AAC_MAX_DEV(softs)) {
AACDB_PRINT_TRAN(softs,
"aac_tran_tgt_init: c%dt%dL%d out", ctl, tgt, lun);
mutex_exit(&softs->io_lock);
return (DDI_FAILURE);
}
if (tgt < AAC_MAX_LD) {
dvp = (struct aac_device *)&softs->containers[tgt];
if (lun != 0 || !AAC_DEV_IS_VALID(dvp)) {
AACDB_PRINT_TRAN(softs, "aac_tran_tgt_init: c%dt%dL%d",
ctl, tgt, lun);
mutex_exit(&softs->io_lock);
return (DDI_FAILURE);
}
/*
* Save the tgt_dip for the given target if one doesn't exist
* already. Dip's for non-existance tgt's will be cleared in
* tgt_free.
*/
if (softs->containers[tgt].dev.dip == NULL &&
strcmp(ddi_driver_name(sd->sd_dev), "sd") == 0)
softs->containers[tgt].dev.dip = tgt_dip;
} else {
dvp = (struct aac_device *)&softs->nondasds[AAC_PD(tgt)];
}
if (softs->flags & AAC_FLAGS_BRKUP) {
if (ndi_prop_update_int(DDI_DEV_T_NONE, tgt_dip,
"buf_break", 1) != DDI_PROP_SUCCESS) {
cmn_err(CE_CONT, "unable to create "
"property for t%dL%d (buf_break)", tgt, lun);
}
}
AACDB_PRINT(softs, CE_NOTE,
"aac_tran_tgt_init: c%dt%dL%d ok (%s)", ctl, tgt, lun,
(dvp->type == AAC_DEV_PD) ? "pd" : "ld");
mutex_exit(&softs->io_lock);
return (DDI_SUCCESS);
}
static void
aac_tran_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip,
scsi_hba_tran_t *hba_tran, struct scsi_device *sd)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(hba_dip, tgt_dip, hba_tran))
#endif
struct aac_softstate *softs = SD2AAC(sd);
int tgt = sd->sd_address.a_target;
mutex_enter(&softs->io_lock);
if (tgt < AAC_MAX_LD) {
if (softs->containers[tgt].dev.dip == tgt_dip)
softs->containers[tgt].dev.dip = NULL;
} else {
softs->nondasds[AAC_PD(tgt)].dev.flags &= ~AAC_DFLAG_VALID;
}
mutex_exit(&softs->io_lock);
}
/*
* Check if the firmware is Up And Running. If it is in the Kernel Panic
* state, (BlinkLED code + 1) is returned.
* 0 -- firmware up and running
* -1 -- firmware dead
* >0 -- firmware kernel panic
*/
static int
aac_check_adapter_health(struct aac_softstate *softs)
{
int rval;
rval = PCI_MEM_GET32(softs, AAC_OMR0);
if (rval & AAC_KERNEL_UP_AND_RUNNING) {
rval = 0;
} else if (rval & AAC_KERNEL_PANIC) {
cmn_err(CE_WARN, "firmware panic");
rval = ((rval >> 16) & 0xff) + 1; /* avoid 0 as return value */
} else {
cmn_err(CE_WARN, "firmware dead");
rval = -1;
}
return (rval);
}
static void
aac_abort_iocmd(struct aac_softstate *softs, struct aac_cmd *acp,
uchar_t reason)
{
acp->flags |= AAC_CMD_ABORT;
if (acp->pkt) {
/*
* Each lun should generate a unit attention
* condition when reset.
* Phys. drives are treated as logical ones
* during error recovery.
*/
if (acp->slotp) { /* outstanding cmd */
acp->pkt->pkt_state |= STATE_GOT_STATUS;
aac_set_arq_data_reset(softs, acp);
}
switch (reason) {
case CMD_TIMEOUT:
AACDB_PRINT(softs, CE_NOTE, "CMD_TIMEOUT: acp=0x%p",
acp);
aac_set_pkt_reason(softs, acp, CMD_TIMEOUT,
STAT_TIMEOUT | STAT_BUS_RESET);
break;
case CMD_RESET:
/* aac support only RESET_ALL */
AACDB_PRINT(softs, CE_NOTE, "CMD_RESET: acp=0x%p", acp);
aac_set_pkt_reason(softs, acp, CMD_RESET,
STAT_BUS_RESET);
break;
case CMD_ABORTED:
AACDB_PRINT(softs, CE_NOTE, "CMD_ABORTED: acp=0x%p",
acp);
aac_set_pkt_reason(softs, acp, CMD_ABORTED,
STAT_ABORTED);
break;
}
}
aac_end_io(softs, acp);
}
/*
* Abort all the pending commands of type iocmd or just the command pkt
* corresponding to pkt
*/
static void
aac_abort_iocmds(struct aac_softstate *softs, int iocmd, struct scsi_pkt *pkt,
int reason)
{
struct aac_cmd *ac_arg, *acp;
int i;
if (pkt == NULL) {
ac_arg = NULL;
} else {
ac_arg = PKT2AC(pkt);
iocmd = (ac_arg->flags & AAC_CMD_SYNC) ?
AAC_IOCMD_SYNC : AAC_IOCMD_ASYNC;
}
/*
* a) outstanding commands on the controller
* Note: should abort outstanding commands only after one
* IOP reset has been done.
*/
if (iocmd & AAC_IOCMD_OUTSTANDING) {
struct aac_cmd *acp;
for (i = 0; i < AAC_MAX_LD; i++) {
if (AAC_DEV_IS_VALID(&softs->containers[i].dev))
softs->containers[i].reset = 1;
}
while ((acp = softs->q_busy.q_head) != NULL)
aac_abort_iocmd(softs, acp, reason);
}
/* b) commands in the waiting queues */
for (i = 0; i < AAC_CMDQ_NUM; i++) {
if (iocmd & (1 << i)) {
if (ac_arg) {
aac_abort_iocmd(softs, ac_arg, reason);
} else {
while ((acp = softs->q_wait[i].q_head) != NULL)
aac_abort_iocmd(softs, acp, reason);
}
}
}
}
/*
* The draining thread is shared among quiesce threads. It terminates
* when the adapter is quiesced or stopped by aac_stop_drain().
*/
static void
aac_check_drain(void *arg)
{
struct aac_softstate *softs = arg;
mutex_enter(&softs->io_lock);
if (softs->ndrains) {
softs->drain_timeid = 0;
/*
* If both ASYNC and SYNC bus throttle are held,
* wake up threads only when both are drained out.
*/
if ((softs->bus_throttle[AAC_CMDQ_ASYNC] > 0 ||
softs->bus_ncmds[AAC_CMDQ_ASYNC] == 0) &&
(softs->bus_throttle[AAC_CMDQ_SYNC] > 0 ||
softs->bus_ncmds[AAC_CMDQ_SYNC] == 0))
cv_broadcast(&softs->drain_cv);
else
softs->drain_timeid = timeout(aac_check_drain, softs,
AAC_QUIESCE_TICK * drv_usectohz(1000000));
}
mutex_exit(&softs->io_lock);
}
/*
* If not draining the outstanding cmds, drain them. Otherwise,
* only update ndrains.
*/
static void
aac_start_drain(struct aac_softstate *softs)
{
if (softs->ndrains == 0) {
ASSERT(softs->drain_timeid == 0);
softs->drain_timeid = timeout(aac_check_drain, softs,
AAC_QUIESCE_TICK * drv_usectohz(1000000));
}
softs->ndrains++;
}
/*
* Stop the draining thread when no other threads use it any longer.
* Side effect: io_lock may be released in the middle.
*/
static void
aac_stop_drain(struct aac_softstate *softs)
{
softs->ndrains--;
if (softs->ndrains == 0) {
if (softs->drain_timeid != 0) {
timeout_id_t tid = softs->drain_timeid;
softs->drain_timeid = 0;
mutex_exit(&softs->io_lock);
(void) untimeout(tid);
mutex_enter(&softs->io_lock);
}
}
}
/*
* The following function comes from Adaptec:
*
* Once do an IOP reset, basically the driver have to re-initialize the card
* as if up from a cold boot, and the driver is responsible for any IO that
* is outstanding to the adapter at the time of the IOP RESET. And prepare
* for IOP RESET by making the init code modular with the ability to call it
* from multiple places.
*/
static int
aac_reset_adapter(struct aac_softstate *softs)
{
int health;
uint32_t status;
int rval = AAC_IOP_RESET_FAILED;
DBCALLED(softs, 1);
ASSERT(softs->state & AAC_STATE_RESET);
ddi_fm_acc_err_clear(softs->pci_mem_handle, DDI_FME_VER0);
/* Disable interrupt */
AAC_DISABLE_INTR(softs);
health = aac_check_adapter_health(softs);
if (health == -1) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_LOST);
goto finish;
}
if (health == 0) /* flush drives if possible */
(void) aac_shutdown(softs);
/* Execute IOP reset */
if ((aac_sync_mbcommand(softs, AAC_IOP_RESET, 0, 0, 0, 0,
&status)) != AACOK) {
ddi_acc_handle_t acc = softs->comm_space_acc_handle;
struct aac_fib *fibp;
struct aac_pause_command *pc;
if ((status & 0xf) == 0xf) {
uint32_t wait_count;
/*
* Sunrise Lake has dual cores and we must drag the
* other core with us to reset simultaneously. There
* are 2 bits in the Inbound Reset Control and Status
* Register (offset 0x38) of the Sunrise Lake to reset
* the chip without clearing out the PCI configuration
* info (COMMAND & BARS).
*/
PCI_MEM_PUT32(softs, AAC_IRCSR, AAC_IRCSR_CORES_RST);
/*
* We need to wait for 5 seconds before accessing the MU
* again 10000 * 100us = 1000,000us = 1000ms = 1s
*/
wait_count = 5 * 10000;
while (wait_count) {
drv_usecwait(100); /* delay 100 microseconds */
wait_count--;
}
} else {
if (status == SRB_STATUS_INVALID_REQUEST)
cmn_err(CE_WARN, "!IOP_RESET not supported");
else /* probably timeout */
cmn_err(CE_WARN, "!IOP_RESET failed");
/* Unwind aac_shutdown() */
fibp = softs->sync_slot.fibp;
pc = (struct aac_pause_command *)&fibp->data[0];
bzero(pc, sizeof (*pc));
ddi_put32(acc, &pc->Command, VM_ContainerConfig);
ddi_put32(acc, &pc->Type, CT_PAUSE_IO);
ddi_put32(acc, &pc->Timeout, 1);
ddi_put32(acc, &pc->Min, 1);
ddi_put32(acc, &pc->NoRescan, 1);
(void) aac_sync_fib(softs, ContainerCommand,
AAC_FIB_SIZEOF(struct aac_pause_command));
if (aac_check_adapter_health(softs) != 0)
ddi_fm_service_impact(softs->devinfo_p,
DDI_SERVICE_LOST);
else
/*
* IOP reset not supported or IOP not reseted
*/
rval = AAC_IOP_RESET_ABNORMAL;
goto finish;
}
}
/*
* Re-read and renegotiate the FIB parameters, as one of the actions
* that can result from an IOP reset is the running of a new firmware
* image.
*/
if (aac_common_attach(softs) != AACOK)
goto finish;
rval = AAC_IOP_RESET_SUCCEED;
finish:
AAC_ENABLE_INTR(softs);
return (rval);
}
static void
aac_set_throttle(struct aac_softstate *softs, struct aac_device *dvp, int q,
int throttle)
{
/*
* If the bus is draining/quiesced, no changes to the throttles
* are allowed. All throttles should have been set to 0.
*/
if ((softs->state & AAC_STATE_QUIESCED) || softs->ndrains)
return;
dvp->throttle[q] = throttle;
}
static void
aac_hold_bus(struct aac_softstate *softs, int iocmds)
{
int i, q;
/* Hold bus by holding every device on the bus */
for (q = 0; q < AAC_CMDQ_NUM; q++) {
if (iocmds & (1 << q)) {
softs->bus_throttle[q] = 0;
for (i = 0; i < AAC_MAX_LD; i++)
aac_set_throttle(softs,
&softs->containers[i].dev, q, 0);
for (i = 0; i < AAC_MAX_PD(softs); i++)
aac_set_throttle(softs,
&softs->nondasds[i].dev, q, 0);
}
}
}
static void
aac_unhold_bus(struct aac_softstate *softs, int iocmds)
{
int i, q;
for (q = 0; q < AAC_CMDQ_NUM; q++) {
if (iocmds & (1 << q)) {
/*
* Should not unhold AAC_IOCMD_ASYNC bus, if it has been
* quiesced or being drained by possibly some quiesce
* threads.
*/
if (q == AAC_CMDQ_ASYNC && ((softs->state &
AAC_STATE_QUIESCED) || softs->ndrains))
continue;
softs->bus_throttle[q] = softs->total_slots;
for (i = 0; i < AAC_MAX_LD; i++)
aac_set_throttle(softs,
&softs->containers[i].dev,
q, softs->total_slots);
for (i = 0; i < AAC_MAX_PD(softs); i++)
aac_set_throttle(softs, &softs->nondasds[i].dev,
q, softs->total_slots);
}
}
}
static int
aac_do_reset(struct aac_softstate *softs)
{
int health;
int rval;
softs->state |= AAC_STATE_RESET;
health = aac_check_adapter_health(softs);
/*
* Hold off new io commands and wait all outstanding io
* commands to complete.
*/
if (health == 0) {
int sync_cmds = softs->bus_ncmds[AAC_CMDQ_SYNC];
int async_cmds = softs->bus_ncmds[AAC_CMDQ_ASYNC];
if (sync_cmds == 0 && async_cmds == 0) {
rval = AAC_IOP_RESET_SUCCEED;
goto finish;
}
/*
* Give the adapter up to AAC_QUIESCE_TIMEOUT more seconds
* to complete the outstanding io commands
*/
int timeout = AAC_QUIESCE_TIMEOUT * 1000 * 10;
int (*intr_handler)(struct aac_softstate *);
aac_hold_bus(softs, AAC_IOCMD_SYNC | AAC_IOCMD_ASYNC);
/*
* Poll the adapter by ourselves in case interrupt is disabled
* and to avoid releasing the io_lock.
*/
intr_handler = (softs->flags & AAC_FLAGS_NEW_COMM) ?
aac_process_intr_new : aac_process_intr_old;
while ((softs->bus_ncmds[AAC_CMDQ_SYNC] ||
softs->bus_ncmds[AAC_CMDQ_ASYNC]) && timeout) {
drv_usecwait(100);
(void) intr_handler(softs);
timeout--;
}
aac_unhold_bus(softs, AAC_IOCMD_SYNC | AAC_IOCMD_ASYNC);
if (softs->bus_ncmds[AAC_CMDQ_SYNC] == 0 &&
softs->bus_ncmds[AAC_CMDQ_ASYNC] == 0) {
/* Cmds drained out */
rval = AAC_IOP_RESET_SUCCEED;
goto finish;
} else if (softs->bus_ncmds[AAC_CMDQ_SYNC] < sync_cmds ||
softs->bus_ncmds[AAC_CMDQ_ASYNC] < async_cmds) {
/* Cmds not drained out, adapter overloaded */
rval = AAC_IOP_RESET_ABNORMAL;
goto finish;
}
}
/*
* If a longer waiting time still can't drain any outstanding io
* commands, do IOP reset.
*/
if ((rval = aac_reset_adapter(softs)) == AAC_IOP_RESET_FAILED)
softs->state |= AAC_STATE_DEAD;
finish:
softs->state &= ~AAC_STATE_RESET;
return (rval);
}
static int
aac_tran_reset(struct scsi_address *ap, int level)
{
struct aac_softstate *softs = AAC_TRAN2SOFTS(ap->a_hba_tran);
int rval;
DBCALLED(softs, 1);
if (level != RESET_ALL) {
cmn_err(CE_NOTE, "!reset target/lun not supported");
return (0);
}
mutex_enter(&softs->io_lock);
switch (rval = aac_do_reset(softs)) {
case AAC_IOP_RESET_SUCCEED:
aac_abort_iocmds(softs, AAC_IOCMD_OUTSTANDING | AAC_IOCMD_ASYNC,
NULL, CMD_RESET);
aac_start_waiting_io(softs);
break;
case AAC_IOP_RESET_FAILED:
/* Abort IOCTL cmds when adapter is dead */
aac_abort_iocmds(softs, AAC_IOCMD_ALL, NULL, CMD_RESET);
break;
case AAC_IOP_RESET_ABNORMAL:
aac_start_waiting_io(softs);
}
mutex_exit(&softs->io_lock);
aac_drain_comp_q(softs);
return (rval == 0);
}
static int
aac_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct aac_softstate *softs = AAC_TRAN2SOFTS(ap->a_hba_tran);
DBCALLED(softs, 1);
mutex_enter(&softs->io_lock);
aac_abort_iocmds(softs, 0, pkt, CMD_ABORTED);
mutex_exit(&softs->io_lock);
aac_drain_comp_q(softs);
return (1);
}
void
aac_free_dmamap(struct aac_cmd *acp)
{
/* Free dma mapping */
if (acp->flags & AAC_CMD_DMA_VALID) {
ASSERT(acp->buf_dma_handle);
(void) ddi_dma_unbind_handle(acp->buf_dma_handle);
acp->flags &= ~AAC_CMD_DMA_VALID;
}
if (acp->abp != NULL) { /* free non-aligned buf DMA */
ASSERT(acp->buf_dma_handle);
if ((acp->flags & AAC_CMD_BUF_WRITE) == 0 && acp->bp)
ddi_rep_get8(acp->abh, (uint8_t *)acp->bp->b_un.b_addr,
(uint8_t *)acp->abp, acp->bp->b_bcount,
DDI_DEV_AUTOINCR);
ddi_dma_mem_free(&acp->abh);
acp->abp = NULL;
}
if (acp->buf_dma_handle) {
ddi_dma_free_handle(&acp->buf_dma_handle);
acp->buf_dma_handle = NULL;
}
}
static void
aac_unknown_scmd(struct aac_softstate *softs, struct aac_cmd *acp)
{
AACDB_PRINT(softs, CE_CONT, "SCMD 0x%x not supported",
((union scsi_cdb *)(void *)acp->pkt->pkt_cdbp)->scc_cmd);
aac_free_dmamap(acp);
aac_set_arq_data(acp->pkt, KEY_ILLEGAL_REQUEST, 0x20, 0x00, 0);
aac_soft_callback(softs, acp);
}
/*
* Handle command to logical device
*/
static int
aac_tran_start_ld(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_container *dvp;
struct scsi_pkt *pkt;
union scsi_cdb *cdbp;
struct buf *bp;
int rval;
dvp = (struct aac_container *)acp->dvp;
pkt = acp->pkt;
cdbp = (void *)pkt->pkt_cdbp;
bp = acp->bp;
switch (cdbp->scc_cmd) {
case SCMD_INQUIRY: /* inquiry */
aac_free_dmamap(acp);
aac_inquiry(softs, pkt, cdbp, bp);
aac_soft_callback(softs, acp);
rval = TRAN_ACCEPT;
break;
case SCMD_READ_CAPACITY: /* read capacity */
if (bp && bp->b_un.b_addr && bp->b_bcount) {
struct scsi_capacity cap;
uint64_t last_lba;
/* check 64-bit LBA */
last_lba = dvp->size - 1;
if (last_lba > 0xffffffffull) {
cap.capacity = 0xfffffffful;
} else {
cap.capacity = BE_32(last_lba);
}
cap.lbasize = BE_32(AAC_SECTOR_SIZE);
aac_free_dmamap(acp);
if (bp->b_flags & (B_PHYS|B_PAGEIO))
bp_mapin(bp);
bcopy(&cap, bp->b_un.b_addr, min(bp->b_bcount, 8));
pkt->pkt_state |= STATE_XFERRED_DATA;
}
aac_soft_callback(softs, acp);
rval = TRAN_ACCEPT;
break;
case SCMD_SVC_ACTION_IN_G4: /* read capacity 16 */
/* Check if containers need 64-bit LBA support */
if (cdbp->cdb_opaque[1] == SSVC_ACTION_READ_CAPACITY_G4) {
if (bp && bp->b_un.b_addr && bp->b_bcount) {
struct scsi_capacity_16 cap16;
int cap_len = sizeof (struct scsi_capacity_16);
bzero(&cap16, cap_len);
cap16.sc_capacity = BE_64(dvp->size - 1);
cap16.sc_lbasize = BE_32(AAC_SECTOR_SIZE);
aac_free_dmamap(acp);
if (bp->b_flags & (B_PHYS | B_PAGEIO))
bp_mapin(bp);
bcopy(&cap16, bp->b_un.b_addr,
min(bp->b_bcount, cap_len));
pkt->pkt_state |= STATE_XFERRED_DATA;
}
aac_soft_callback(softs, acp);
} else {
aac_unknown_scmd(softs, acp);
}
rval = TRAN_ACCEPT;
break;
case SCMD_READ_G4: /* read_16 */
case SCMD_WRITE_G4: /* write_16 */
if (softs->flags & AAC_FLAGS_RAW_IO) {
/* NOTE: GETG4ADDRTL(cdbp) is int32_t */
acp->blkno = ((uint64_t) \
GETG4ADDR(cdbp) << 32) | \
(uint32_t)GETG4ADDRTL(cdbp);
goto do_io;
}
AACDB_PRINT(softs, CE_WARN, "64-bit LBA not supported");
aac_unknown_scmd(softs, acp);
rval = TRAN_ACCEPT;
break;
case SCMD_READ: /* read_6 */
case SCMD_WRITE: /* write_6 */
acp->blkno = GETG0ADDR(cdbp);
goto do_io;
case SCMD_READ_G5: /* read_12 */
case SCMD_WRITE_G5: /* write_12 */
acp->blkno = GETG5ADDR(cdbp);
goto do_io;
case SCMD_READ_G1: /* read_10 */
case SCMD_WRITE_G1: /* write_10 */
acp->blkno = (uint32_t)GETG1ADDR(cdbp);
do_io:
if (acp->flags & AAC_CMD_DMA_VALID) {
uint64_t cnt_size = dvp->size;
/*
* If LBA > array size AND rawio, the
* adapter may hang. So check it before
* sending.
* NOTE: (blkno + blkcnt) may overflow
*/
if ((acp->blkno < cnt_size) &&
((acp->blkno + acp->bcount /
AAC_BLK_SIZE) <= cnt_size)) {
rval = aac_do_io(softs, acp);
} else {
/*
* Request exceeds the capacity of disk,
* set error block number to last LBA
* + 1.
*/
aac_set_arq_data(pkt,
KEY_ILLEGAL_REQUEST, 0x21,
0x00, cnt_size);
aac_soft_callback(softs, acp);
rval = TRAN_ACCEPT;
}
} else if (acp->bcount == 0) {
/* For 0 length IO, just return ok */
aac_soft_callback(softs, acp);
rval = TRAN_ACCEPT;
} else {
rval = TRAN_BADPKT;
}
break;
case SCMD_MODE_SENSE: /* mode_sense_6 */
case SCMD_MODE_SENSE_G1: { /* mode_sense_10 */
int capacity;
aac_free_dmamap(acp);
if (dvp->size > 0xffffffffull)
capacity = 0xfffffffful; /* 64-bit LBA */
else
capacity = dvp->size;
aac_mode_sense(softs, pkt, cdbp, bp, capacity);
aac_soft_callback(softs, acp);
rval = TRAN_ACCEPT;
break;
}
case SCMD_TEST_UNIT_READY:
case SCMD_REQUEST_SENSE:
case SCMD_FORMAT:
case SCMD_START_STOP:
aac_free_dmamap(acp);
if (bp && bp->b_un.b_addr && bp->b_bcount) {
if (acp->flags & AAC_CMD_BUF_READ) {
if (bp->b_flags & (B_PHYS|B_PAGEIO))
bp_mapin(bp);
bzero(bp->b_un.b_addr, bp->b_bcount);
}
pkt->pkt_state |= STATE_XFERRED_DATA;
}
aac_soft_callback(softs, acp);
rval = TRAN_ACCEPT;
break;
case SCMD_SYNCHRONIZE_CACHE:
acp->flags |= AAC_CMD_NTAG;
acp->aac_cmd_fib = aac_cmd_fib_sync;
acp->ac_comp = aac_synccache_complete;
rval = aac_do_io(softs, acp);
break;
case SCMD_DOORLOCK:
aac_free_dmamap(acp);
dvp->locked = (pkt->pkt_cdbp[4] & 0x01) ? 1 : 0;
aac_soft_callback(softs, acp);
rval = TRAN_ACCEPT;
break;
default: /* unknown command */
aac_unknown_scmd(softs, acp);
rval = TRAN_ACCEPT;
break;
}
return (rval);
}
static int
aac_tran_start(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct aac_softstate *softs = AAC_TRAN2SOFTS(ap->a_hba_tran);
struct aac_cmd *acp = PKT2AC(pkt);
struct aac_device *dvp = acp->dvp;
int rval;
DBCALLED(softs, 2);
/*
* Reinitialize some fields of ac and pkt; the packet may
* have been resubmitted
*/
acp->flags &= AAC_CMD_CONSISTENT | AAC_CMD_DMA_PARTIAL | \
AAC_CMD_BUF_READ | AAC_CMD_BUF_WRITE | AAC_CMD_DMA_VALID;
acp->timeout = acp->pkt->pkt_time;
if (pkt->pkt_flags & FLAG_NOINTR)
acp->flags |= AAC_CMD_NO_INTR;
#ifdef DEBUG
acp->fib_flags = AACDB_FLAGS_FIB_SCMD;
#endif
pkt->pkt_reason = CMD_CMPLT;
pkt->pkt_state = 0;
pkt->pkt_statistics = 0;
*pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */
if (acp->flags & AAC_CMD_DMA_VALID) {
pkt->pkt_resid = acp->bcount;
/* Consistent packets need to be sync'ed first */
if ((acp->flags & AAC_CMD_CONSISTENT) &&
(acp->flags & AAC_CMD_BUF_WRITE))
if (aac_dma_sync_ac(acp) != AACOK) {
ddi_fm_service_impact(softs->devinfo_p,
DDI_SERVICE_UNAFFECTED);
return (TRAN_BADPKT);
}
} else {
pkt->pkt_resid = 0;
}
mutex_enter(&softs->io_lock);
AACDB_PRINT_SCMD(softs, acp);
if ((dvp->flags & (AAC_DFLAG_VALID | AAC_DFLAG_CONFIGURING)) &&
!(softs->state & AAC_STATE_DEAD)) {
if (dvp->type == AAC_DEV_LD) {
if (ap->a_lun == 0)
rval = aac_tran_start_ld(softs, acp);
else
goto error;
} else {
rval = aac_do_io(softs, acp);
}
} else {
error:
#ifdef DEBUG
if (!(softs->state & AAC_STATE_DEAD)) {
AACDB_PRINT_TRAN(softs,
"Cannot send cmd to target t%dL%d: %s",
ap->a_target, ap->a_lun,
"target invalid");
} else {
AACDB_PRINT(softs, CE_WARN,
"Cannot send cmd to target t%dL%d: %s",
ap->a_target, ap->a_lun,
"adapter dead");
}
#endif
rval = TRAN_FATAL_ERROR;
}
mutex_exit(&softs->io_lock);
return (rval);
}
static int
aac_tran_getcap(struct scsi_address *ap, char *cap, int whom)
{
struct aac_softstate *softs = AAC_TRAN2SOFTS(ap->a_hba_tran);
struct aac_device *dvp;
int rval;
DBCALLED(softs, 2);
/* We don't allow inquiring about capabilities for other targets */
if (cap == NULL || whom == 0) {
AACDB_PRINT(softs, CE_WARN,
"GetCap> %s not supported: whom=%d", cap, whom);
return (-1);
}
mutex_enter(&softs->io_lock);
dvp = AAC_DEV(softs, ap->a_target);
if (dvp == NULL || !AAC_DEV_IS_VALID(dvp)) {
mutex_exit(&softs->io_lock);
AACDB_PRINT_TRAN(softs, "Bad target t%dL%d to getcap",
ap->a_target, ap->a_lun);
return (-1);
}
switch (scsi_hba_lookup_capstr(cap)) {
case SCSI_CAP_ARQ: /* auto request sense */
rval = 1;
break;
case SCSI_CAP_UNTAGGED_QING:
case SCSI_CAP_TAGGED_QING:
rval = 1;
break;
case SCSI_CAP_DMA_MAX:
rval = softs->dma_max;
break;
default:
rval = -1;
break;
}
mutex_exit(&softs->io_lock);
AACDB_PRINT_TRAN(softs, "GetCap> %s t%dL%d: rval=%d",
cap, ap->a_target, ap->a_lun, rval);
return (rval);
}
/*ARGSUSED*/
static int
aac_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom)
{
struct aac_softstate *softs = AAC_TRAN2SOFTS(ap->a_hba_tran);
struct aac_device *dvp;
int rval;
DBCALLED(softs, 2);
/* We don't allow inquiring about capabilities for other targets */
if (cap == NULL || whom == 0) {
AACDB_PRINT(softs, CE_WARN,
"SetCap> %s not supported: whom=%d", cap, whom);
return (-1);
}
mutex_enter(&softs->io_lock);
dvp = AAC_DEV(softs, ap->a_target);
if (dvp == NULL || !AAC_DEV_IS_VALID(dvp)) {
mutex_exit(&softs->io_lock);
AACDB_PRINT_TRAN(softs, "Bad target t%dL%d to setcap",
ap->a_target, ap->a_lun);
return (-1);
}
switch (scsi_hba_lookup_capstr(cap)) {
case SCSI_CAP_ARQ:
/* Force auto request sense */
rval = (value == 1) ? 1 : 0;
break;
case SCSI_CAP_UNTAGGED_QING:
case SCSI_CAP_TAGGED_QING:
rval = (value == 1) ? 1 : 0;
break;
default:
rval = -1;
break;
}
mutex_exit(&softs->io_lock);
AACDB_PRINT_TRAN(softs, "SetCap> %s t%dL%d val=%d: rval=%d",
cap, ap->a_target, ap->a_lun, value, rval);
return (rval);
}
static void
aac_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct aac_cmd *acp = PKT2AC(pkt);
DBCALLED(NULL, 2);
if (acp->sgt) {
kmem_free(acp->sgt, sizeof (struct aac_sge) * \
acp->left_cookien);
}
aac_free_dmamap(acp);
ASSERT(acp->slotp == NULL);
scsi_hba_pkt_free(ap, pkt);
}
int
aac_cmd_dma_alloc(struct aac_softstate *softs, struct aac_cmd *acp,
struct buf *bp, int flags, int (*cb)(), caddr_t arg)
{
int kf = (cb == SLEEP_FUNC) ? KM_SLEEP : KM_NOSLEEP;
uint_t oldcookiec;
int bioerr;
int rval;
oldcookiec = acp->left_cookien;
/* Move window to build s/g map */
if (acp->total_nwin > 0) {
if (++acp->cur_win < acp->total_nwin) {
off_t off;
size_t len;
rval = ddi_dma_getwin(acp->buf_dma_handle, acp->cur_win,
&off, &len, &acp->cookie, &acp->left_cookien);
if (rval == DDI_SUCCESS)
goto get_dma_cookies;
AACDB_PRINT(softs, CE_WARN,
"ddi_dma_getwin() fail %d", rval);
return (AACERR);
}
AACDB_PRINT(softs, CE_WARN, "Nothing to transfer");
return (AACERR);
}
/* We need to transfer data, so we alloc DMA resources for this pkt */
if (bp && bp->b_bcount != 0 && !(acp->flags & AAC_CMD_DMA_VALID)) {
uint_t dma_flags = 0;
struct aac_sge *sge;
/*
* We will still use this point to fake some
* infomation in tran_start
*/
acp->bp = bp;
/* Set dma flags */
if (BUF_IS_READ(bp)) {
dma_flags |= DDI_DMA_READ;
acp->flags |= AAC_CMD_BUF_READ;
} else {
dma_flags |= DDI_DMA_WRITE;
acp->flags |= AAC_CMD_BUF_WRITE;
}
if (flags & PKT_CONSISTENT)
dma_flags |= DDI_DMA_CONSISTENT;
if (flags & PKT_DMA_PARTIAL)
dma_flags |= DDI_DMA_PARTIAL;
/* Alloc buf dma handle */
if (!acp->buf_dma_handle) {
rval = ddi_dma_alloc_handle(softs->devinfo_p,
&softs->buf_dma_attr, cb, arg,
&acp->buf_dma_handle);
if (rval != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"Can't allocate DMA handle, errno=%d",
rval);
goto error_out;
}
}
/* Bind buf */
if (((uintptr_t)bp->b_un.b_addr & AAC_DMA_ALIGN_MASK) == 0) {
rval = ddi_dma_buf_bind_handle(acp->buf_dma_handle,
bp, dma_flags, cb, arg, &acp->cookie,
&acp->left_cookien);
} else {
size_t bufsz;
AACDB_PRINT_TRAN(softs,
"non-aligned buffer: addr=0x%p, cnt=%lu",
(void *)bp->b_un.b_addr, bp->b_bcount);
if (bp->b_flags & (B_PAGEIO|B_PHYS))
bp_mapin(bp);
rval = ddi_dma_mem_alloc(acp->buf_dma_handle,
AAC_ROUNDUP(bp->b_bcount, AAC_DMA_ALIGN),
&softs->acc_attr, DDI_DMA_STREAMING,
cb, arg, &acp->abp, &bufsz, &acp->abh);
if (rval != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_NOTE,
"Cannot alloc DMA to non-aligned buf");
bioerr = 0;
goto error_out;
}
if (acp->flags & AAC_CMD_BUF_WRITE)
ddi_rep_put8(acp->abh,
(uint8_t *)bp->b_un.b_addr,
(uint8_t *)acp->abp, bp->b_bcount,
DDI_DEV_AUTOINCR);
rval = ddi_dma_addr_bind_handle(acp->buf_dma_handle,
NULL, acp->abp, bufsz, dma_flags, cb, arg,
&acp->cookie, &acp->left_cookien);
}
switch (rval) {
case DDI_DMA_PARTIAL_MAP:
if (ddi_dma_numwin(acp->buf_dma_handle,
&acp->total_nwin) == DDI_FAILURE) {
AACDB_PRINT(softs, CE_WARN,
"Cannot get number of DMA windows");
bioerr = 0;
goto error_out;
}
AACDB_PRINT_TRAN(softs, "buf bind, %d seg(s)",
acp->left_cookien);
acp->cur_win = 0;
break;
case DDI_DMA_MAPPED:
AACDB_PRINT_TRAN(softs, "buf bind, %d seg(s)",
acp->left_cookien);
acp->cur_win = 0;
acp->total_nwin = 1;
break;
case DDI_DMA_NORESOURCES:
bioerr = 0;
AACDB_PRINT(softs, CE_WARN,
"Cannot bind buf for DMA: DDI_DMA_NORESOURCES");
goto error_out;
case DDI_DMA_BADATTR:
case DDI_DMA_NOMAPPING:
bioerr = EFAULT;
AACDB_PRINT(softs, CE_WARN,
"Cannot bind buf for DMA: DDI_DMA_NOMAPPING");
goto error_out;
case DDI_DMA_TOOBIG:
bioerr = EINVAL;
AACDB_PRINT(softs, CE_WARN,
"Cannot bind buf for DMA: DDI_DMA_TOOBIG(%d)",
bp->b_bcount);
goto error_out;
default:
bioerr = EINVAL;
AACDB_PRINT(softs, CE_WARN,
"Cannot bind buf for DMA: %d", rval);
goto error_out;
}
acp->flags |= AAC_CMD_DMA_VALID;
get_dma_cookies:
ASSERT(acp->left_cookien > 0);
if (acp->left_cookien > softs->aac_sg_tablesize) {
AACDB_PRINT(softs, CE_NOTE, "large cookiec received %d",
acp->left_cookien);
bioerr = EINVAL;
goto error_out;
}
if (oldcookiec != acp->left_cookien && acp->sgt != NULL) {
kmem_free(acp->sgt, sizeof (struct aac_sge) * \
oldcookiec);
acp->sgt = NULL;
}
if (acp->sgt == NULL) {
acp->sgt = kmem_alloc(sizeof (struct aac_sge) * \
acp->left_cookien, kf);
if (acp->sgt == NULL) {
AACDB_PRINT(softs, CE_WARN,
"sgt kmem_alloc fail");
bioerr = ENOMEM;
goto error_out;
}
}
sge = &acp->sgt[0];
sge->bcount = acp->cookie.dmac_size;
sge->addr.ad64.lo = AAC_LS32(acp->cookie.dmac_laddress);
sge->addr.ad64.hi = AAC_MS32(acp->cookie.dmac_laddress);
acp->bcount = acp->cookie.dmac_size;
for (sge++; sge < &acp->sgt[acp->left_cookien]; sge++) {
ddi_dma_nextcookie(acp->buf_dma_handle, &acp->cookie);
sge->bcount = acp->cookie.dmac_size;
sge->addr.ad64.lo = AAC_LS32(acp->cookie.dmac_laddress);
sge->addr.ad64.hi = AAC_MS32(acp->cookie.dmac_laddress);
acp->bcount += acp->cookie.dmac_size;
}
/*
* Note: The old DMA engine do not correctly handle
* dma_attr_maxxfer attribute. So we have to ensure
* it by ourself.
*/
if (acp->bcount > softs->buf_dma_attr.dma_attr_maxxfer) {
AACDB_PRINT(softs, CE_NOTE,
"large xfer size received %d\n", acp->bcount);
bioerr = EINVAL;
goto error_out;
}
acp->total_xfer += acp->bcount;
if (acp->pkt) {
/* Return remaining byte count */
if (acp->total_xfer <= bp->b_bcount) {
acp->pkt->pkt_resid = bp->b_bcount - \
acp->total_xfer;
} else {
/*
* Allocated DMA size is greater than the buf
* size of bp. This is caused by devices like
* tape. we have extra bytes allocated, but
* the packet residual has to stay correct.
*/
acp->pkt->pkt_resid = 0;
}
AACDB_PRINT_TRAN(softs,
"bp=0x%p, xfered=%d/%d, resid=%d",
(void *)bp->b_un.b_addr, (int)acp->total_xfer,
(int)bp->b_bcount, (int)acp->pkt->pkt_resid);
}
}
return (AACOK);
error_out:
bioerror(bp, bioerr);
return (AACERR);
}
static struct scsi_pkt *
aac_tran_init_pkt(struct scsi_address *ap, struct scsi_pkt *pkt,
struct buf *bp, int cmdlen, int statuslen, int tgtlen, int flags,
int (*callback)(), caddr_t arg)
{
struct aac_softstate *softs = AAC_TRAN2SOFTS(ap->a_hba_tran);
struct aac_cmd *acp, *new_acp;
DBCALLED(softs, 2);
/* Allocate pkt */
if (pkt == NULL) {
int slen;
/* Force auto request sense */
slen = (statuslen > softs->slen) ? statuslen : softs->slen;
pkt = scsi_hba_pkt_alloc(softs->devinfo_p, ap, cmdlen,
slen, tgtlen, sizeof (struct aac_cmd), callback, arg);
if (pkt == NULL) {
AACDB_PRINT(softs, CE_WARN, "Alloc scsi pkt failed");
return (NULL);
}
acp = new_acp = PKT2AC(pkt);
acp->pkt = pkt;
acp->cmdlen = cmdlen;
if (ap->a_target < AAC_MAX_LD) {
acp->dvp = &softs->containers[ap->a_target].dev;
acp->aac_cmd_fib = softs->aac_cmd_fib;
acp->ac_comp = aac_ld_complete;
} else {
_NOTE(ASSUMING_PROTECTED(softs->nondasds))
acp->dvp = &softs->nondasds[AAC_PD(ap->a_target)].dev;
acp->aac_cmd_fib = softs->aac_cmd_fib_scsi;
acp->ac_comp = aac_pd_complete;
}
} else {
acp = PKT2AC(pkt);
new_acp = NULL;
}
if (aac_cmd_dma_alloc(softs, acp, bp, flags, callback, arg) == AACOK)
return (pkt);
if (new_acp)
aac_tran_destroy_pkt(ap, pkt);
return (NULL);
}
/*
* tran_sync_pkt(9E) - explicit DMA synchronization
*/
/*ARGSUSED*/
static void
aac_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct aac_cmd *acp = PKT2AC(pkt);
DBCALLED(NULL, 2);
if (aac_dma_sync_ac(acp) != AACOK)
ddi_fm_service_impact(
(AAC_TRAN2SOFTS(ap->a_hba_tran))->devinfo_p,
DDI_SERVICE_UNAFFECTED);
}
/*
* tran_dmafree(9E) - deallocate DMA resources allocated for command
*/
/*ARGSUSED*/
static void
aac_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct aac_cmd *acp = PKT2AC(pkt);
DBCALLED(NULL, 2);
aac_free_dmamap(acp);
}
static int
aac_do_quiesce(struct aac_softstate *softs)
{
aac_hold_bus(softs, AAC_IOCMD_ASYNC);
if (softs->bus_ncmds[AAC_CMDQ_ASYNC]) {
aac_start_drain(softs);
do {
if (cv_wait_sig(&softs->drain_cv,
&softs->io_lock) == 0) {
/* Quiesce has been interrupted */
aac_stop_drain(softs);
aac_unhold_bus(softs, AAC_IOCMD_ASYNC);
aac_start_waiting_io(softs);
return (AACERR);
}
} while (softs->bus_ncmds[AAC_CMDQ_ASYNC]);
aac_stop_drain(softs);
}
softs->state |= AAC_STATE_QUIESCED;
return (AACOK);
}
static int
aac_tran_quiesce(dev_info_t *dip)
{
struct aac_softstate *softs = AAC_DIP2SOFTS(dip);
int rval;
DBCALLED(softs, 1);
mutex_enter(&softs->io_lock);
if (aac_do_quiesce(softs) == AACOK)
rval = 0;
else
rval = 1;
mutex_exit(&softs->io_lock);
return (rval);
}
static int
aac_do_unquiesce(struct aac_softstate *softs)
{
softs->state &= ~AAC_STATE_QUIESCED;
aac_unhold_bus(softs, AAC_IOCMD_ASYNC);
aac_start_waiting_io(softs);
return (AACOK);
}
static int
aac_tran_unquiesce(dev_info_t *dip)
{
struct aac_softstate *softs = AAC_DIP2SOFTS(dip);
int rval;
DBCALLED(softs, 1);
mutex_enter(&softs->io_lock);
if (aac_do_unquiesce(softs) == AACOK)
rval = 0;
else
rval = 1;
mutex_exit(&softs->io_lock);
return (rval);
}
static int
aac_hba_setup(struct aac_softstate *softs)
{
scsi_hba_tran_t *hba_tran;
int rval;
hba_tran = scsi_hba_tran_alloc(softs->devinfo_p, SCSI_HBA_CANSLEEP);
if (hba_tran == NULL)
return (AACERR);
hba_tran->tran_hba_private = softs;
hba_tran->tran_tgt_init = aac_tran_tgt_init;
hba_tran->tran_tgt_free = aac_tran_tgt_free;
hba_tran->tran_tgt_probe = scsi_hba_probe;
hba_tran->tran_start = aac_tran_start;
hba_tran->tran_getcap = aac_tran_getcap;
hba_tran->tran_setcap = aac_tran_setcap;
hba_tran->tran_init_pkt = aac_tran_init_pkt;
hba_tran->tran_destroy_pkt = aac_tran_destroy_pkt;
hba_tran->tran_reset = aac_tran_reset;
hba_tran->tran_abort = aac_tran_abort;
hba_tran->tran_sync_pkt = aac_tran_sync_pkt;
hba_tran->tran_dmafree = aac_tran_dmafree;
hba_tran->tran_quiesce = aac_tran_quiesce;
hba_tran->tran_unquiesce = aac_tran_unquiesce;
hba_tran->tran_bus_config = aac_tran_bus_config;
rval = scsi_hba_attach_setup(softs->devinfo_p, &softs->buf_dma_attr,
hba_tran, 0);
if (rval != DDI_SUCCESS) {
scsi_hba_tran_free(hba_tran);
AACDB_PRINT(softs, CE_WARN, "aac_hba_setup failed");
return (AACERR);
}
softs->hba_tran = hba_tran;
return (AACOK);
}
/*
* FIB setup operations
*/
/*
* Init FIB header
*/
static void
aac_cmd_fib_header(struct aac_softstate *softs, struct aac_slot *slotp,
uint16_t cmd, uint16_t fib_size)
{
ddi_acc_handle_t acc = slotp->fib_acc_handle;
struct aac_fib *fibp = slotp->fibp;
uint32_t xfer_state;
xfer_state =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM;
if (slotp->acp && !(slotp->acp->flags & AAC_CMD_SYNC)) {
xfer_state |=
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE /* enable fast io */;
ddi_put16(acc, &fibp->Header.SenderSize,
softs->aac_max_fib_size);
} else {
ddi_put16(acc, &fibp->Header.SenderSize, AAC_FIB_SIZE);
}
ddi_put32(acc, &fibp->Header.XferState, xfer_state);
ddi_put16(acc, &fibp->Header.Command, cmd);
ddi_put8(acc, &fibp->Header.StructType, AAC_FIBTYPE_TFIB);
ddi_put8(acc, &fibp->Header.Flags, 0); /* don't care */
ddi_put16(acc, &fibp->Header.Size, fib_size);
ddi_put32(acc, &fibp->Header.SenderFibAddress, (slotp->index << 2));
ddi_put32(acc, &fibp->Header.ReceiverFibAddress, slotp->fib_phyaddr);
ddi_put32(acc, &fibp->Header.SenderData, 0); /* don't care */
}
/*
* Init FIB for raw IO command
*/
static void
aac_cmd_fib_rawio(struct aac_softstate *softs, struct aac_cmd *acp)
{
ddi_acc_handle_t acc = acp->slotp->fib_acc_handle;
struct aac_raw_io *io = (struct aac_raw_io *)&acp->slotp->fibp->data[0];
struct aac_sg_entryraw *sgp;
struct aac_sge *sge;
/* Calculate FIB size */
acp->fib_size = sizeof (struct aac_fib_header) + \
sizeof (struct aac_raw_io) + (acp->left_cookien - 1) * \
sizeof (struct aac_sg_entryraw);
aac_cmd_fib_header(softs, acp->slotp, RawIo, acp->fib_size);
ddi_put16(acc, &io->Flags, (acp->flags & AAC_CMD_BUF_READ) ? 1 : 0);
ddi_put16(acc, &io->BpTotal, 0);
ddi_put16(acc, &io->BpComplete, 0);
ddi_put32(acc, AAC_LO32(&io->BlockNumber), AAC_LS32(acp->blkno));
ddi_put32(acc, AAC_HI32(&io->BlockNumber), AAC_MS32(acp->blkno));
ddi_put16(acc, &io->ContainerId,
((struct aac_container *)acp->dvp)->cid);
/* Fill SG table */
ddi_put32(acc, &io->SgMapRaw.SgCount, acp->left_cookien);
ddi_put32(acc, &io->ByteCount, acp->bcount);
for (sge = &acp->sgt[0], sgp = &io->SgMapRaw.SgEntryRaw[0];
sge < &acp->sgt[acp->left_cookien]; sge++, sgp++) {
ddi_put32(acc, AAC_LO32(&sgp->SgAddress), sge->addr.ad64.lo);
ddi_put32(acc, AAC_HI32(&sgp->SgAddress), sge->addr.ad64.hi);
ddi_put32(acc, &sgp->SgByteCount, sge->bcount);
sgp->Next = 0;
sgp->Prev = 0;
sgp->Flags = 0;
}
}
/* Init FIB for 64-bit block IO command */
static void
aac_cmd_fib_brw64(struct aac_softstate *softs, struct aac_cmd *acp)
{
ddi_acc_handle_t acc = acp->slotp->fib_acc_handle;
struct aac_blockread64 *br = (struct aac_blockread64 *) \
&acp->slotp->fibp->data[0];
struct aac_sg_entry64 *sgp;
struct aac_sge *sge;
acp->fib_size = sizeof (struct aac_fib_header) + \
sizeof (struct aac_blockread64) + (acp->left_cookien - 1) * \
sizeof (struct aac_sg_entry64);
aac_cmd_fib_header(softs, acp->slotp, ContainerCommand64,
acp->fib_size);
/*
* The definitions for aac_blockread64 and aac_blockwrite64
* are the same.
*/
ddi_put32(acc, &br->BlockNumber, (uint32_t)acp->blkno);
ddi_put16(acc, &br->ContainerId,
((struct aac_container *)acp->dvp)->cid);
ddi_put32(acc, &br->Command, (acp->flags & AAC_CMD_BUF_READ) ?
VM_CtHostRead64 : VM_CtHostWrite64);
ddi_put16(acc, &br->Pad, 0);
ddi_put16(acc, &br->Flags, 0);
/* Fill SG table */
ddi_put32(acc, &br->SgMap64.SgCount, acp->left_cookien);
ddi_put16(acc, &br->SectorCount, acp->bcount / AAC_BLK_SIZE);
for (sge = &acp->sgt[0], sgp = &br->SgMap64.SgEntry64[0];
sge < &acp->sgt[acp->left_cookien]; sge++, sgp++) {
ddi_put32(acc, AAC_LO32(&sgp->SgAddress), sge->addr.ad64.lo);
ddi_put32(acc, AAC_HI32(&sgp->SgAddress), sge->addr.ad64.hi);
ddi_put32(acc, &sgp->SgByteCount, sge->bcount);
}
}
/* Init FIB for block IO command */
static void
aac_cmd_fib_brw(struct aac_softstate *softs, struct aac_cmd *acp)
{
ddi_acc_handle_t acc = acp->slotp->fib_acc_handle;
struct aac_blockread *br = (struct aac_blockread *) \
&acp->slotp->fibp->data[0];
struct aac_sg_entry *sgp;
struct aac_sge *sge = &acp->sgt[0];
if (acp->flags & AAC_CMD_BUF_READ) {
acp->fib_size = sizeof (struct aac_fib_header) + \
sizeof (struct aac_blockread) + (acp->left_cookien - 1) * \
sizeof (struct aac_sg_entry);
ddi_put32(acc, &br->Command, VM_CtBlockRead);
ddi_put32(acc, &br->SgMap.SgCount, acp->left_cookien);
sgp = &br->SgMap.SgEntry[0];
} else {
struct aac_blockwrite *bw = (struct aac_blockwrite *)br;
acp->fib_size = sizeof (struct aac_fib_header) + \
sizeof (struct aac_blockwrite) + (acp->left_cookien - 1) * \
sizeof (struct aac_sg_entry);
ddi_put32(acc, &bw->Command, VM_CtBlockWrite);
ddi_put32(acc, &bw->Stable, CUNSTABLE);
ddi_put32(acc, &bw->SgMap.SgCount, acp->left_cookien);
sgp = &bw->SgMap.SgEntry[0];
}
aac_cmd_fib_header(softs, acp->slotp, ContainerCommand, acp->fib_size);
/*
* aac_blockread and aac_blockwrite have the similar
* structure head, so use br for bw here
*/
ddi_put32(acc, &br->BlockNumber, (uint32_t)acp->blkno);
ddi_put32(acc, &br->ContainerId,
((struct aac_container *)acp->dvp)->cid);
ddi_put32(acc, &br->ByteCount, acp->bcount);
/* Fill SG table */
for (sge = &acp->sgt[0];
sge < &acp->sgt[acp->left_cookien]; sge++, sgp++) {
ddi_put32(acc, &sgp->SgAddress, sge->addr.ad32);
ddi_put32(acc, &sgp->SgByteCount, sge->bcount);
}
}
/*ARGSUSED*/
void
aac_cmd_fib_copy(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_slot *slotp = acp->slotp;
struct aac_fib *fibp = slotp->fibp;
ddi_acc_handle_t acc = slotp->fib_acc_handle;
ddi_rep_put8(acc, (uint8_t *)acp->fibp, (uint8_t *)fibp,
acp->fib_size, /* only copy data of needed length */
DDI_DEV_AUTOINCR);
ddi_put32(acc, &fibp->Header.ReceiverFibAddress, slotp->fib_phyaddr);
ddi_put32(acc, &fibp->Header.SenderFibAddress, slotp->index << 2);
}
static void
aac_cmd_fib_sync(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_slot *slotp = acp->slotp;
ddi_acc_handle_t acc = slotp->fib_acc_handle;
struct aac_synchronize_command *sync =
(struct aac_synchronize_command *)&slotp->fibp->data[0];
acp->fib_size = sizeof (struct aac_fib_header) + \
sizeof (struct aac_synchronize_command);
aac_cmd_fib_header(softs, slotp, ContainerCommand, acp->fib_size);
ddi_put32(acc, &sync->Command, VM_ContainerConfig);
ddi_put32(acc, &sync->Type, (uint32_t)CT_FLUSH_CACHE);
ddi_put32(acc, &sync->Cid, ((struct aac_container *)acp->dvp)->cid);
ddi_put32(acc, &sync->Count,
sizeof (((struct aac_synchronize_reply *)0)->Data));
}
/*
* Init FIB for pass-through SCMD
*/
static void
aac_cmd_fib_srb(struct aac_cmd *acp)
{
struct aac_slot *slotp = acp->slotp;
ddi_acc_handle_t acc = slotp->fib_acc_handle;
struct aac_srb *srb = (struct aac_srb *)&slotp->fibp->data[0];
uint8_t *cdb;
ddi_put32(acc, &srb->function, SRBF_ExecuteScsi);
ddi_put32(acc, &srb->retry_limit, 0);
ddi_put32(acc, &srb->cdb_size, acp->cmdlen);
ddi_put32(acc, &srb->timeout, 0); /* use driver timeout */
if (acp->fibp == NULL) {
if (acp->flags & AAC_CMD_BUF_READ)
ddi_put32(acc, &srb->flags, SRB_DataIn);
else if (acp->flags & AAC_CMD_BUF_WRITE)
ddi_put32(acc, &srb->flags, SRB_DataOut);
ddi_put32(acc, &srb->channel,
((struct aac_nondasd *)acp->dvp)->bus);
ddi_put32(acc, &srb->id, ((struct aac_nondasd *)acp->dvp)->tid);
ddi_put32(acc, &srb->lun, 0);
cdb = acp->pkt->pkt_cdbp;
} else {
struct aac_srb *srb0 = (struct aac_srb *)&acp->fibp->data[0];
ddi_put32(acc, &srb->flags, srb0->flags);
ddi_put32(acc, &srb->channel, srb0->channel);
ddi_put32(acc, &srb->id, srb0->id);
ddi_put32(acc, &srb->lun, srb0->lun);
cdb = srb0->cdb;
}
ddi_rep_put8(acc, cdb, srb->cdb, acp->cmdlen, DDI_DEV_AUTOINCR);
}
static void
aac_cmd_fib_scsi32(struct aac_softstate *softs, struct aac_cmd *acp)
{
ddi_acc_handle_t acc = acp->slotp->fib_acc_handle;
struct aac_srb *srb = (struct aac_srb *)&acp->slotp->fibp->data[0];
struct aac_sg_entry *sgp;
struct aac_sge *sge;
acp->fib_size = sizeof (struct aac_fib_header) + \
sizeof (struct aac_srb) - sizeof (struct aac_sg_entry) + \
acp->left_cookien * sizeof (struct aac_sg_entry);
/* Fill FIB and SRB headers, and copy cdb */
aac_cmd_fib_header(softs, acp->slotp, ScsiPortCommand, acp->fib_size);
aac_cmd_fib_srb(acp);
/* Fill SG table */
ddi_put32(acc, &srb->sg.SgCount, acp->left_cookien);
ddi_put32(acc, &srb->count, acp->bcount);
for (sge = &acp->sgt[0], sgp = &srb->sg.SgEntry[0];
sge < &acp->sgt[acp->left_cookien]; sge++, sgp++) {
ddi_put32(acc, &sgp->SgAddress, sge->addr.ad32);
ddi_put32(acc, &sgp->SgByteCount, sge->bcount);
}
}
static void
aac_cmd_fib_scsi64(struct aac_softstate *softs, struct aac_cmd *acp)
{
ddi_acc_handle_t acc = acp->slotp->fib_acc_handle;
struct aac_srb *srb = (struct aac_srb *)&acp->slotp->fibp->data[0];
struct aac_sg_entry64 *sgp;
struct aac_sge *sge;
acp->fib_size = sizeof (struct aac_fib_header) + \
sizeof (struct aac_srb) - sizeof (struct aac_sg_entry) + \
acp->left_cookien * sizeof (struct aac_sg_entry64);
/* Fill FIB and SRB headers, and copy cdb */
aac_cmd_fib_header(softs, acp->slotp, ScsiPortCommandU64,
acp->fib_size);
aac_cmd_fib_srb(acp);
/* Fill SG table */
ddi_put32(acc, &srb->sg.SgCount, acp->left_cookien);
ddi_put32(acc, &srb->count, acp->bcount);
for (sge = &acp->sgt[0],
sgp = &((struct aac_sg_table64 *)&srb->sg)->SgEntry64[0];
sge < &acp->sgt[acp->left_cookien]; sge++, sgp++) {
ddi_put32(acc, AAC_LO32(&sgp->SgAddress), sge->addr.ad64.lo);
ddi_put32(acc, AAC_HI32(&sgp->SgAddress), sge->addr.ad64.hi);
ddi_put32(acc, &sgp->SgByteCount, sge->bcount);
}
}
static int
aac_cmd_slot_bind(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_slot *slotp;
if (slotp = aac_get_slot(softs)) {
acp->slotp = slotp;
slotp->acp = acp;
acp->aac_cmd_fib(softs, acp);
(void) ddi_dma_sync(slotp->fib_dma_handle, 0, 0,
DDI_DMA_SYNC_FORDEV);
return (AACOK);
}
return (AACERR);
}
static int
aac_bind_io(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_device *dvp = acp->dvp;
int q = AAC_CMDQ(acp);
if (dvp) {
if (dvp->ncmds[q] < dvp->throttle[q]) {
if (!(acp->flags & AAC_CMD_NTAG) ||
dvp->ncmds[q] == 0) {
do_bind:
return (aac_cmd_slot_bind(softs, acp));
}
ASSERT(q == AAC_CMDQ_ASYNC);
aac_set_throttle(softs, dvp, AAC_CMDQ_ASYNC,
AAC_THROTTLE_DRAIN);
}
} else {
if (softs->bus_ncmds[q] < softs->bus_throttle[q])
goto do_bind;
}
return (AACERR);
}
static void
aac_start_io(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct aac_slot *slotp = acp->slotp;
int q = AAC_CMDQ(acp);
int rval;
/* Set ac and pkt */
if (acp->pkt) { /* ac from ioctl has no pkt */
acp->pkt->pkt_state |=
STATE_GOT_BUS | STATE_GOT_TARGET | STATE_SENT_CMD;
}
if (acp->timeout) /* 0 indicates no timeout */
acp->timeout += aac_timebase + aac_tick;
if (acp->dvp)
acp->dvp->ncmds[q]++;
softs->bus_ncmds[q]++;
aac_cmd_enqueue(&softs->q_busy, acp);
AACDB_PRINT_FIB(softs, slotp);
if (softs->flags & AAC_FLAGS_NEW_COMM) {
rval = aac_send_command(softs, slotp);
} else {
/*
* If fib can not be enqueued, the adapter is in an abnormal
* state, there will be no interrupt to us.
*/
rval = aac_fib_enqueue(softs, AAC_ADAP_NORM_CMD_Q,
slotp->fib_phyaddr, acp->fib_size);
}
if (aac_check_dma_handle(slotp->fib_dma_handle) != DDI_SUCCESS)
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_UNAFFECTED);
/*
* NOTE: We send command only when slots availabe, so should never
* reach here.
*/
if (rval != AACOK) {
AACDB_PRINT(softs, CE_NOTE, "SCMD send failed");
if (acp->pkt) {
acp->pkt->pkt_state &= ~STATE_SENT_CMD;
aac_set_pkt_reason(softs, acp, CMD_INCOMPLETE, 0);
}
aac_end_io(softs, acp);
if (!(acp->flags & (AAC_CMD_NO_INTR | AAC_CMD_NO_CB)))
ddi_trigger_softintr(softs->softint_id);
}
}
static void
aac_start_waitq(struct aac_softstate *softs, struct aac_cmd_queue *q)
{
struct aac_cmd *acp, *next_acp;
/* Serve as many waiting io's as possible */
for (acp = q->q_head; acp; acp = next_acp) {
next_acp = acp->next;
if (aac_bind_io(softs, acp) == AACOK) {
aac_cmd_delete(q, acp);
aac_start_io(softs, acp);
}
if (softs->free_io_slot_head == NULL)
break;
}
}
static void
aac_start_waiting_io(struct aac_softstate *softs)
{
/*
* Sync FIB io is served before async FIB io so that io requests
* sent by interactive userland commands get responded asap.
*/
if (softs->q_wait[AAC_CMDQ_SYNC].q_head)
aac_start_waitq(softs, &softs->q_wait[AAC_CMDQ_SYNC]);
if (softs->q_wait[AAC_CMDQ_ASYNC].q_head)
aac_start_waitq(softs, &softs->q_wait[AAC_CMDQ_ASYNC]);
}
static void
aac_drain_comp_q(struct aac_softstate *softs)
{
struct aac_cmd *acp;
struct scsi_pkt *pkt;
/*CONSTCOND*/
while (1) {
mutex_enter(&softs->q_comp_mutex);
acp = aac_cmd_dequeue(&softs->q_comp);
mutex_exit(&softs->q_comp_mutex);
if (acp != NULL) {
ASSERT(acp->pkt != NULL);
pkt = acp->pkt;
if (pkt->pkt_reason == CMD_CMPLT) {
/*
* Consistent packets need to be sync'ed first
*/
if ((acp->flags & AAC_CMD_CONSISTENT) &&
(acp->flags & AAC_CMD_BUF_READ)) {
if (aac_dma_sync_ac(acp) != AACOK) {
ddi_fm_service_impact(
softs->devinfo_p,
DDI_SERVICE_UNAFFECTED);
pkt->pkt_reason = CMD_TRAN_ERR;
pkt->pkt_statistics = 0;
}
}
if ((aac_check_acc_handle(softs-> \
comm_space_acc_handle) != DDI_SUCCESS) ||
(aac_check_acc_handle(softs-> \
pci_mem_handle) != DDI_SUCCESS)) {
ddi_fm_service_impact(softs->devinfo_p,
DDI_SERVICE_UNAFFECTED);
ddi_fm_acc_err_clear(softs-> \
pci_mem_handle, DDI_FME_VER0);
pkt->pkt_reason = CMD_TRAN_ERR;
pkt->pkt_statistics = 0;
}
if (aac_check_dma_handle(softs-> \
comm_space_dma_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p,
DDI_SERVICE_UNAFFECTED);
pkt->pkt_reason = CMD_TRAN_ERR;
pkt->pkt_statistics = 0;
}
}
(*pkt->pkt_comp)(pkt);
} else {
break;
}
}
}
static int
aac_alloc_fib(struct aac_softstate *softs, struct aac_slot *slotp)
{
size_t rlen;
ddi_dma_cookie_t cookie;
uint_t cookien;
/* Allocate FIB dma resource */
if (ddi_dma_alloc_handle(
softs->devinfo_p,
&softs->addr_dma_attr,
DDI_DMA_SLEEP,
NULL,
&slotp->fib_dma_handle) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"Cannot alloc dma handle for slot fib area");
goto error;
}
if (ddi_dma_mem_alloc(
slotp->fib_dma_handle,
softs->aac_max_fib_size,
&softs->acc_attr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
DDI_DMA_SLEEP,
NULL,
(caddr_t *)&slotp->fibp,
&rlen,
&slotp->fib_acc_handle) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN,
"Cannot alloc mem for slot fib area");
goto error;
}
if (ddi_dma_addr_bind_handle(
slotp->fib_dma_handle,
NULL,
(caddr_t)slotp->fibp,
softs->aac_max_fib_size,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
DDI_DMA_SLEEP,
NULL,
&cookie,
&cookien) != DDI_DMA_MAPPED) {
AACDB_PRINT(softs, CE_WARN,
"dma bind failed for slot fib area");
goto error;
}
/* Check dma handles allocated in fib attach */
if (aac_check_dma_handle(slotp->fib_dma_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_LOST);
goto error;
}
/* Check acc handles allocated in fib attach */
if (aac_check_acc_handle(slotp->fib_acc_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(softs->devinfo_p, DDI_SERVICE_LOST);
goto error;
}
slotp->fib_phyaddr = cookie.dmac_laddress;
return (AACOK);
error:
if (slotp->fib_acc_handle) {
ddi_dma_mem_free(&slotp->fib_acc_handle);
slotp->fib_acc_handle = NULL;
}
if (slotp->fib_dma_handle) {
ddi_dma_free_handle(&slotp->fib_dma_handle);
slotp->fib_dma_handle = NULL;
}
return (AACERR);
}
static void
aac_free_fib(struct aac_slot *slotp)
{
(void) ddi_dma_unbind_handle(slotp->fib_dma_handle);
ddi_dma_mem_free(&slotp->fib_acc_handle);
slotp->fib_acc_handle = NULL;
ddi_dma_free_handle(&slotp->fib_dma_handle);
slotp->fib_dma_handle = NULL;
slotp->fib_phyaddr = 0;
}
static void
aac_alloc_fibs(struct aac_softstate *softs)
{
int i;
struct aac_slot *slotp;
for (i = 0; i < softs->total_slots &&
softs->total_fibs < softs->total_slots; i++) {
slotp = &(softs->io_slot[i]);
if (slotp->fib_phyaddr)
continue;
if (aac_alloc_fib(softs, slotp) != AACOK)
break;
/* Insert the slot to the free slot list */
aac_release_slot(softs, slotp);
softs->total_fibs++;
}
}
static void
aac_destroy_fibs(struct aac_softstate *softs)
{
struct aac_slot *slotp;
while ((slotp = softs->free_io_slot_head) != NULL) {
ASSERT(slotp->fib_phyaddr);
softs->free_io_slot_head = slotp->next;
aac_free_fib(slotp);
ASSERT(slotp->index == (slotp - softs->io_slot));
softs->total_fibs--;
}
ASSERT(softs->total_fibs == 0);
}
static int
aac_create_slots(struct aac_softstate *softs)
{
int i;
softs->total_slots = softs->aac_max_fibs;
softs->io_slot = kmem_zalloc(sizeof (struct aac_slot) * \
softs->total_slots, KM_SLEEP);
if (softs->io_slot == NULL) {
AACDB_PRINT(softs, CE_WARN, "Cannot allocate slot");
return (AACERR);
}
for (i = 0; i < softs->total_slots; i++)
softs->io_slot[i].index = i;
softs->free_io_slot_head = NULL;
softs->total_fibs = 0;
return (AACOK);
}
static void
aac_destroy_slots(struct aac_softstate *softs)
{
ASSERT(softs->free_io_slot_head == NULL);
kmem_free(softs->io_slot, sizeof (struct aac_slot) * \
softs->total_slots);
softs->io_slot = NULL;
softs->total_slots = 0;
}
struct aac_slot *
aac_get_slot(struct aac_softstate *softs)
{
struct aac_slot *slotp;
if ((slotp = softs->free_io_slot_head) != NULL) {
softs->free_io_slot_head = slotp->next;
slotp->next = NULL;
}
return (slotp);
}
static void
aac_release_slot(struct aac_softstate *softs, struct aac_slot *slotp)
{
ASSERT((slotp->index >= 0) && (slotp->index < softs->total_slots));
ASSERT(slotp == &softs->io_slot[slotp->index]);
slotp->acp = NULL;
slotp->next = softs->free_io_slot_head;
softs->free_io_slot_head = slotp;
}
int
aac_do_io(struct aac_softstate *softs, struct aac_cmd *acp)
{
if (aac_bind_io(softs, acp) == AACOK)
aac_start_io(softs, acp);
else
aac_cmd_enqueue(&softs->q_wait[AAC_CMDQ(acp)], acp);
if (!(acp->flags & (AAC_CMD_NO_CB | AAC_CMD_NO_INTR)))
return (TRAN_ACCEPT);
/*
* Because sync FIB is always 512 bytes and used for critical
* functions, async FIB is used for poll IO.
*/
if (acp->flags & AAC_CMD_NO_INTR) {
if (aac_do_poll_io(softs, acp) == AACOK)
return (TRAN_ACCEPT);
} else {
if (aac_do_sync_io(softs, acp) == AACOK)
return (TRAN_ACCEPT);
}
return (TRAN_BADPKT);
}
static int
aac_do_poll_io(struct aac_softstate *softs, struct aac_cmd *acp)
{
int (*intr_handler)(struct aac_softstate *);
/*
* Interrupt is disabled, we have to poll the adapter by ourselves.
*/
intr_handler = (softs->flags & AAC_FLAGS_NEW_COMM) ?
aac_process_intr_new : aac_process_intr_old;
while (!(acp->flags & (AAC_CMD_CMPLT | AAC_CMD_ABORT))) {
int i = AAC_POLL_TIME * 1000;
AAC_BUSYWAIT((intr_handler(softs) != AAC_DB_RESPONSE_READY), i);
if (i == 0)
aac_cmd_timeout(softs, acp);
}
ddi_trigger_softintr(softs->softint_id);
if ((acp->flags & AAC_CMD_CMPLT) && !(acp->flags & AAC_CMD_ERR))
return (AACOK);
return (AACERR);
}
static int
aac_do_sync_io(struct aac_softstate *softs, struct aac_cmd *acp)
{
ASSERT(softs && acp);
while (!(acp->flags & (AAC_CMD_CMPLT | AAC_CMD_ABORT)))
cv_wait(&softs->event, &softs->io_lock);
if (acp->flags & AAC_CMD_CMPLT)
return (AACOK);
return (AACERR);
}
static int
aac_dma_sync_ac(struct aac_cmd *acp)
{
if (acp->buf_dma_handle) {
if (acp->flags & AAC_CMD_BUF_WRITE) {
if (acp->abp != NULL)
ddi_rep_put8(acp->abh,
(uint8_t *)acp->bp->b_un.b_addr,
(uint8_t *)acp->abp, acp->bp->b_bcount,
DDI_DEV_AUTOINCR);
(void) ddi_dma_sync(acp->buf_dma_handle, 0, 0,
DDI_DMA_SYNC_FORDEV);
} else {
(void) ddi_dma_sync(acp->buf_dma_handle, 0, 0,
DDI_DMA_SYNC_FORCPU);
if (aac_check_dma_handle(acp->buf_dma_handle) !=
DDI_SUCCESS)
return (AACERR);
if (acp->abp != NULL)
ddi_rep_get8(acp->abh,
(uint8_t *)acp->bp->b_un.b_addr,
(uint8_t *)acp->abp, acp->bp->b_bcount,
DDI_DEV_AUTOINCR);
}
}
return (AACOK);
}
/*
* The following function comes from Adaptec:
*
* When driver sees a particular event that means containers are changed, it
* will rescan containers. However a change may not be complete until some
* other event is received. For example, creating or deleting an array will
* incur as many as six AifEnConfigChange events which would generate six
* container rescans. To diminish rescans, driver set a flag to wait for
* another particular event. When sees that events come in, it will do rescan.
*/
static int
aac_handle_aif(struct aac_softstate *softs, struct aac_fib *fibp)
{
ddi_acc_handle_t acc = softs->comm_space_acc_handle;
uint16_t fib_command;
struct aac_aif_command *aif;
int en_type;
int devcfg_needed;
int current, next;
fib_command = LE_16(fibp->Header.Command);
if (fib_command != AifRequest) {
cmn_err(CE_NOTE, "!Unknown command from controller: 0x%x",
fib_command);
return (AACERR);
}
/* Update internal container state */
aif = (struct aac_aif_command *)&fibp->data[0];
AACDB_PRINT_AIF(softs, aif);
devcfg_needed = 0;
en_type = LE_32((uint32_t)aif->data.EN.type);
switch (LE_32((uint32_t)aif->command)) {
case AifCmdDriverNotify: {
int cid = LE_32(aif->data.EN.data.ECC.container[0]);
switch (en_type) {
case AifDenMorphComplete:
case AifDenVolumeExtendComplete:
if (AAC_DEV_IS_VALID(&softs->containers[cid].dev))
softs->devcfg_wait_on = AifEnConfigChange;
break;
}
if (softs->devcfg_wait_on == en_type)
devcfg_needed = 1;
break;
}
case AifCmdEventNotify:
switch (en_type) {
case AifEnAddContainer:
case AifEnDeleteContainer:
softs->devcfg_wait_on = AifEnConfigChange;
break;
case AifEnContainerChange:
if (!softs->devcfg_wait_on)
softs->devcfg_wait_on = AifEnConfigChange;
break;
case AifEnContainerEvent:
if (ddi_get32(acc, &aif-> \
data.EN.data.ECE.eventType) == CT_PUP_MISSING_DRIVE)
devcfg_needed = 1;
break;
}
if (softs->devcfg_wait_on == en_type)
devcfg_needed = 1;
break;
case AifCmdJobProgress:
if (LE_32((uint32_t)aif->data.PR[0].jd.type) == AifJobCtrZero) {
int pr_status;
uint32_t pr_ftick, pr_ctick;
pr_status = LE_32((uint32_t)aif->data.PR[0].status);
pr_ctick = LE_32(aif->data.PR[0].currentTick);
pr_ftick = LE_32(aif->data.PR[0].finalTick);
if ((pr_ctick == pr_ftick) ||
(pr_status == AifJobStsSuccess))
softs->devcfg_wait_on = AifEnContainerChange;
else if ((pr_ctick == 0) &&
(pr_status == AifJobStsRunning))
softs->devcfg_wait_on = AifEnContainerChange;
}
break;
}
if (devcfg_needed) {
softs->devcfg_wait_on = 0;
(void) aac_probe_containers(softs);
}
/* Modify AIF contexts */
current = softs->aifq_idx;
next = (current + 1) % AAC_AIFQ_LENGTH;
if (next == 0) {
struct aac_fib_context *ctx;
softs->aifq_wrap = 1;
for (ctx = softs->fibctx; ctx; ctx = ctx->next) {
if (next == ctx->ctx_idx) {
ctx->ctx_filled = 1;
} else if (current == ctx->ctx_idx && ctx->ctx_filled) {
ctx->ctx_idx = next;
AACDB_PRINT(softs, CE_NOTE,
"-- AIF queue(%x) overrun", ctx->unique);
}
}
}
softs->aifq_idx = next;
/* Wakeup applications */
cv_broadcast(&softs->aifv);
return (AACOK);
}
/*
* Timeout recovery
*/
/*ARGSUSED*/
static void
aac_cmd_timeout(struct aac_softstate *softs, struct aac_cmd *acp)
{
#ifdef DEBUG
acp->fib_flags |= AACDB_FLAGS_FIB_TIMEOUT;
AACDB_PRINT(softs, CE_WARN, "acp %p timed out", acp);
AACDB_PRINT_FIB(softs, acp->slotp);
#endif
/*
* Besides the firmware in unhealthy state, an overloaded
* adapter may also incur pkt timeout.
* There is a chance for an adapter with a slower IOP to take
* longer than 60 seconds to process the commands, such as when
* to perform IOs. So the adapter is doing a build on a RAID-5
* while being required longer completion times should be
* tolerated.
*/
switch (aac_do_reset(softs)) {
case AAC_IOP_RESET_SUCCEED:
aac_abort_iocmds(softs, AAC_IOCMD_OUTSTANDING, NULL, CMD_RESET);
aac_start_waiting_io(softs);
break;
case AAC_IOP_RESET_FAILED:
/* Abort all waiting cmds when adapter is dead */
aac_abort_iocmds(softs, AAC_IOCMD_ALL, NULL, CMD_TIMEOUT);
break;
case AAC_IOP_RESET_ABNORMAL:
aac_start_waiting_io(softs);
}
}
/*
* The following function comes from Adaptec:
*
* Time sync. command added to synchronize time with firmware every 30
* minutes (required for correct AIF timestamps etc.)
*/
static int
aac_sync_tick(struct aac_softstate *softs)
{
ddi_acc_handle_t acc = softs->sync_slot.fib_acc_handle;
struct aac_fib *fibp = softs->sync_slot.fibp;
ddi_put32(acc, (void *)&fibp->data[0], ddi_get_time());
return (aac_sync_fib(softs, SendHostTime, AAC_FIB_SIZEOF(uint32_t)));
}
static void
aac_daemon(void *arg)
{
struct aac_softstate *softs = (struct aac_softstate *)arg;
struct aac_cmd *acp;
DBCALLED(softs, 2);
mutex_enter(&softs->io_lock);
/* Check slot for timeout pkts */
aac_timebase += aac_tick;
for (acp = softs->q_busy.q_head; acp; acp = acp->next) {
if (acp->timeout) {
if (acp->timeout <= aac_timebase) {
aac_cmd_timeout(softs, acp);
ddi_trigger_softintr(softs->softint_id);
}
break;
}
}
/* Time sync. with firmware every AAC_SYNC_TICK */
if (aac_sync_time <= aac_timebase) {
aac_sync_time = aac_timebase;
if (aac_sync_tick(softs) != AACOK)
aac_sync_time += aac_tick << 1; /* retry shortly */
else
aac_sync_time += AAC_SYNC_TICK;
}
if ((softs->state & AAC_STATE_RUN) && (softs->timeout_id != 0))
softs->timeout_id = timeout(aac_daemon, (void *)softs,
(aac_tick * drv_usectohz(1000000)));
mutex_exit(&softs->io_lock);
}
/*
* Architecture dependent functions
*/
static int
aac_rx_get_fwstatus(struct aac_softstate *softs)
{
return (PCI_MEM_GET32(softs, AAC_OMR0));
}
static int
aac_rx_get_mailbox(struct aac_softstate *softs, int mb)
{
return (PCI_MEM_GET32(softs, AAC_RX_MAILBOX + mb * 4));
}
static void
aac_rx_set_mailbox(struct aac_softstate *softs, uint32_t cmd,
uint32_t arg0, uint32_t arg1, uint32_t arg2, uint32_t arg3)
{
PCI_MEM_PUT32(softs, AAC_RX_MAILBOX, cmd);
PCI_MEM_PUT32(softs, AAC_RX_MAILBOX + 4, arg0);
PCI_MEM_PUT32(softs, AAC_RX_MAILBOX + 8, arg1);
PCI_MEM_PUT32(softs, AAC_RX_MAILBOX + 12, arg2);
PCI_MEM_PUT32(softs, AAC_RX_MAILBOX + 16, arg3);
}
static int
aac_rkt_get_fwstatus(struct aac_softstate *softs)
{
return (PCI_MEM_GET32(softs, AAC_OMR0));
}
static int
aac_rkt_get_mailbox(struct aac_softstate *softs, int mb)
{
return (PCI_MEM_GET32(softs, AAC_RKT_MAILBOX + mb *4));
}
static void
aac_rkt_set_mailbox(struct aac_softstate *softs, uint32_t cmd,
uint32_t arg0, uint32_t arg1, uint32_t arg2, uint32_t arg3)
{
PCI_MEM_PUT32(softs, AAC_RKT_MAILBOX, cmd);
PCI_MEM_PUT32(softs, AAC_RKT_MAILBOX + 4, arg0);
PCI_MEM_PUT32(softs, AAC_RKT_MAILBOX + 8, arg1);
PCI_MEM_PUT32(softs, AAC_RKT_MAILBOX + 12, arg2);
PCI_MEM_PUT32(softs, AAC_RKT_MAILBOX + 16, arg3);
}
/*
* cb_ops functions
*/
static int
aac_open(dev_t *devp, int flag, int otyp, cred_t *cred)
{
struct aac_softstate *softs;
int minor0, minor;
int instance;
DBCALLED(NULL, 2);
if (otyp != OTYP_BLK && otyp != OTYP_CHR)
return (EINVAL);
minor0 = getminor(*devp);
minor = AAC_SCSA_MINOR(minor0);
if (AAC_IS_SCSA_NODE(minor))
return (scsi_hba_open(devp, flag, otyp, cred));
instance = MINOR2INST(minor0);
if (instance >= AAC_MAX_ADAPTERS)
return (ENXIO);
softs = ddi_get_soft_state(aac_softstatep, instance);
if (softs == NULL)
return (ENXIO);
return (0);
}
/*ARGSUSED*/
static int
aac_close(dev_t dev, int flag, int otyp, cred_t *cred)
{
int minor0, minor;
int instance;
DBCALLED(NULL, 2);
if (otyp != OTYP_BLK && otyp != OTYP_CHR)
return (EINVAL);
minor0 = getminor(dev);
minor = AAC_SCSA_MINOR(minor0);
if (AAC_IS_SCSA_NODE(minor))
return (scsi_hba_close(dev, flag, otyp, cred));
instance = MINOR2INST(minor0);
if (instance >= AAC_MAX_ADAPTERS)
return (ENXIO);
return (0);
}
static int
aac_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p,
int *rval_p)
{
struct aac_softstate *softs;
int minor0, minor;
int instance;
DBCALLED(NULL, 2);
if (drv_priv(cred_p) != 0)
return (EPERM);
minor0 = getminor(dev);
minor = AAC_SCSA_MINOR(minor0);
if (AAC_IS_SCSA_NODE(minor))
return (scsi_hba_ioctl(dev, cmd, arg, flag, cred_p, rval_p));
instance = MINOR2INST(minor0);
if (instance < AAC_MAX_ADAPTERS) {
softs = ddi_get_soft_state(aac_softstatep, instance);
return (aac_do_ioctl(softs, dev, cmd, arg, flag));
}
return (ENXIO);
}
/*
* The IO fault service error handling callback function
*/
/*ARGSUSED*/
static int
aac_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
{
/*
* as the driver can always deal with an error in any dma or
* access handle, we can just return the fme_status value.
*/
pci_ereport_post(dip, err, NULL);
return (err->fme_status);
}
/*
* aac_fm_init - initialize fma capabilities and register with IO
* fault services.
*/
static void
aac_fm_init(struct aac_softstate *softs)
{
/*
* Need to change iblock to priority for new MSI intr
*/
ddi_iblock_cookie_t fm_ibc;
softs->fm_capabilities = ddi_getprop(DDI_DEV_T_ANY, softs->devinfo_p,
DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
/* Only register with IO Fault Services if we have some capability */
if (softs->fm_capabilities) {
/* Adjust access and dma attributes for FMA */
softs->acc_attr.devacc_attr_access |= DDI_FLAGERR_ACC;
softs->addr_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
softs->buf_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
/*
* Register capabilities with IO Fault Services.
* fm_capabilities will be updated to indicate
* capabilities actually supported (not requested.)
*/
ddi_fm_init(softs->devinfo_p, &softs->fm_capabilities, &fm_ibc);
/*
* Initialize pci ereport capabilities if ereport
* capable (should always be.)
*/
if (DDI_FM_EREPORT_CAP(softs->fm_capabilities) ||
DDI_FM_ERRCB_CAP(softs->fm_capabilities)) {
pci_ereport_setup(softs->devinfo_p);
}
/*
* Register error callback if error callback capable.
*/
if (DDI_FM_ERRCB_CAP(softs->fm_capabilities)) {
ddi_fm_handler_register(softs->devinfo_p,
aac_fm_error_cb, (void *) softs);
}
}
}
/*
* aac_fm_fini - Releases fma capabilities and un-registers with IO
* fault services.
*/
static void
aac_fm_fini(struct aac_softstate *softs)
{
/* Only unregister FMA capabilities if registered */
if (softs->fm_capabilities) {
/*
* Un-register error callback if error callback capable.
*/
if (DDI_FM_ERRCB_CAP(softs->fm_capabilities)) {
ddi_fm_handler_unregister(softs->devinfo_p);
}
/*
* Release any resources allocated by pci_ereport_setup()
*/
if (DDI_FM_EREPORT_CAP(softs->fm_capabilities) ||
DDI_FM_ERRCB_CAP(softs->fm_capabilities)) {
pci_ereport_teardown(softs->devinfo_p);
}
/* Unregister from IO Fault Services */
ddi_fm_fini(softs->devinfo_p);
/* Adjust access and dma attributes for FMA */
softs->acc_attr.devacc_attr_access &= ~DDI_FLAGERR_ACC;
softs->addr_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR;
softs->buf_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR;
}
}
int
aac_check_acc_handle(ddi_acc_handle_t handle)
{
ddi_fm_error_t de;
ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
return (de.fme_status);
}
int
aac_check_dma_handle(ddi_dma_handle_t handle)
{
ddi_fm_error_t de;
ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
return (de.fme_status);
}
void
aac_fm_ereport(struct aac_softstate *softs, char *detail)
{
uint64_t ena;
char buf[FM_MAX_CLASS];
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
ena = fm_ena_generate(0, FM_ENA_FMT1);
if (DDI_FM_EREPORT_CAP(softs->fm_capabilities)) {
ddi_fm_ereport_post(softs->devinfo_p, buf, ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERSION, NULL);
}
}
/*
* Autoconfiguration support
*/
static int
aac_parse_devname(char *devnm, int *tgt, int *lun)
{
char devbuf[SCSI_MAXNAMELEN];
char *addr;
char *p, *tp, *lp;
long num;
/* Parse dev name and address */
(void) strcpy(devbuf, devnm);
addr = "";
for (p = devbuf; *p != '\0'; p++) {
if (*p == '@') {
addr = p + 1;
*p = '\0';
} else if (*p == ':') {
*p = '\0';
break;
}
}
/* Parse taget and lun */
for (p = tp = addr, lp = NULL; *p != '\0'; p++) {
if (*p == ',') {
lp = p + 1;
*p = '\0';
break;
}
}
if (tgt && tp) {
if (ddi_strtol(tp, NULL, 0x10, &num))
return (AACERR);
*tgt = (int)num;
}
if (lun && lp) {
if (ddi_strtol(lp, NULL, 0x10, &num))
return (AACERR);
*lun = (int)num;
}
return (AACOK);
}
static dev_info_t *
aac_find_child(struct aac_softstate *softs, uint16_t tgt, uint8_t lun)
{
dev_info_t *child = NULL;
char addr[SCSI_MAXNAMELEN];
char tmp[MAXNAMELEN];
if (tgt < AAC_MAX_LD) {
if (lun == 0) {
struct aac_device *dvp = &softs->containers[tgt].dev;
child = dvp->dip;
}
} else {
(void) sprintf(addr, "%x,%x", tgt, lun);
for (child = ddi_get_child(softs->devinfo_p);
child; child = ddi_get_next_sibling(child)) {
/* We don't care about non-persistent node */
if (ndi_dev_is_persistent_node(child) == 0)
continue;
if (aac_name_node(child, tmp, MAXNAMELEN) !=
DDI_SUCCESS)
continue;
if (strcmp(addr, tmp) == 0)
break;
}
}
return (child);
}
static int
aac_config_child(struct aac_softstate *softs, struct scsi_device *sd,
dev_info_t **dipp)
{
char *nodename = NULL;
char **compatible = NULL;
int ncompatible = 0;
char *childname;
dev_info_t *ldip = NULL;
int tgt = sd->sd_address.a_target;
int lun = sd->sd_address.a_lun;
int dtype = sd->sd_inq->inq_dtype & DTYPE_MASK;
int rval;
DBCALLED(softs, 2);
scsi_hba_nodename_compatible_get(sd->sd_inq, NULL, dtype,
NULL, &nodename, &compatible, &ncompatible);
if (nodename == NULL) {
AACDB_PRINT(softs, CE_WARN,
"found no comptible driver for t%dL%d", tgt, lun);
rval = NDI_FAILURE;
goto finish;
}
childname = (softs->legacy && dtype == DTYPE_DIRECT) ? "sd" : nodename;
/* Create dev node */
rval = ndi_devi_alloc(softs->devinfo_p, childname, DEVI_SID_NODEID,
&ldip);
if (rval == NDI_SUCCESS) {
if (ndi_prop_update_int(DDI_DEV_T_NONE, ldip, "target", tgt)
!= DDI_PROP_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "unable to create "
"property for t%dL%d (target)", tgt, lun);
rval = NDI_FAILURE;
goto finish;
}
if (ndi_prop_update_int(DDI_DEV_T_NONE, ldip, "lun", lun)
!= DDI_PROP_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "unable to create "
"property for t%dL%d (lun)", tgt, lun);
rval = NDI_FAILURE;
goto finish;
}
if (ndi_prop_update_string_array(DDI_DEV_T_NONE, ldip,
"compatible", compatible, ncompatible)
!= DDI_PROP_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "unable to create "
"property for t%dL%d (compatible)", tgt, lun);
rval = NDI_FAILURE;
goto finish;
}
rval = ndi_devi_online(ldip, NDI_ONLINE_ATTACH);
if (rval != NDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "unable to online t%dL%d",
tgt, lun);
ndi_prop_remove_all(ldip);
(void) ndi_devi_free(ldip);
}
}
finish:
if (dipp)
*dipp = ldip;
scsi_hba_nodename_compatible_free(nodename, compatible);
return (rval);
}
/*ARGSUSED*/
static int
aac_probe_lun(struct aac_softstate *softs, struct scsi_device *sd)
{
int tgt = sd->sd_address.a_target;
int lun = sd->sd_address.a_lun;
DBCALLED(softs, 2);
if (tgt < AAC_MAX_LD) {
int rval;
if (lun == 0) {
mutex_enter(&softs->io_lock);
rval = aac_probe_container(softs, tgt);
mutex_exit(&softs->io_lock);
if (rval == AACOK) {
if (scsi_hba_probe(sd, NULL) ==
SCSIPROBE_EXISTS)
return (NDI_SUCCESS);
}
}
return (NDI_FAILURE);
} else {
int dtype;
if (scsi_hba_probe(sd, NULL) != SCSIPROBE_EXISTS)
return (NDI_FAILURE);
dtype = sd->sd_inq->inq_dtype & DTYPE_MASK;
AACDB_PRINT(softs, CE_NOTE,
"Phys. device found: tgt %d dtype %d: %s",
tgt, dtype, sd->sd_inq->inq_vid);
/* Only non-DASD exposed */
if (dtype != DTYPE_RODIRECT /* CDROM */ &&
dtype != DTYPE_SEQUENTIAL /* TAPE */ &&
dtype != DTYPE_ESI /* SES */)
return (NDI_FAILURE);
AACDB_PRINT(softs, CE_NOTE, "non-DASD %d found", tgt);
mutex_enter(&softs->io_lock);
softs->nondasds[AAC_PD(tgt)].dev.flags |= AAC_DFLAG_VALID;
mutex_exit(&softs->io_lock);
return (NDI_SUCCESS);
}
}
static int
aac_config_lun(struct aac_softstate *softs, uint16_t tgt, uint8_t lun,
dev_info_t **ldip)
{
struct scsi_device sd;
dev_info_t *child;
int rval;
DBCALLED(softs, 2);
if ((child = aac_find_child(softs, tgt, lun)) != NULL) {
if (ldip)
*ldip = child;
return (NDI_SUCCESS);
}
bzero(&sd, sizeof (struct scsi_device));
sd.sd_address.a_hba_tran = softs->hba_tran;
sd.sd_address.a_target = (uint16_t)tgt;
sd.sd_address.a_lun = (uint8_t)lun;
if ((rval = aac_probe_lun(softs, &sd)) == NDI_SUCCESS)
rval = aac_config_child(softs, &sd, ldip);
scsi_unprobe(&sd);
return (rval);
}
static int
aac_config_tgt(struct aac_softstate *softs, int tgt)
{
struct scsi_address ap;
struct buf *bp = NULL;
int buf_len = AAC_SCSI_RPTLUNS_HEAD_SIZE + AAC_SCSI_RPTLUNS_ADDR_SIZE;
int list_len = 0;
int lun_total = 0;
dev_info_t *ldip;
int i;
ap.a_hba_tran = softs->hba_tran;
ap.a_target = (uint16_t)tgt;
ap.a_lun = 0;
for (i = 0; i < 2; i++) {
struct scsi_pkt *pkt;
uchar_t *cdb;
uchar_t *p;
uint32_t data;
if (bp == NULL) {
if ((bp = scsi_alloc_consistent_buf(&ap, NULL,
buf_len, B_READ, NULL_FUNC, NULL)) == NULL)
return (AACERR);
}
if ((pkt = scsi_init_pkt(&ap, NULL, bp, CDB_GROUP5,
sizeof (struct scsi_arq_status), 0, PKT_CONSISTENT,
NULL, NULL)) == NULL) {
scsi_free_consistent_buf(bp);
return (AACERR);
}
cdb = pkt->pkt_cdbp;
bzero(cdb, CDB_GROUP5);
cdb[0] = SCMD_REPORT_LUNS;
/* Convert buffer len from local to LE_32 */
data = buf_len;
for (p = &cdb[9]; p > &cdb[5]; p--) {
*p = data & 0xff;
data >>= 8;
}
if (scsi_poll(pkt) < 0 ||
((struct scsi_status *)pkt->pkt_scbp)->sts_chk) {
scsi_destroy_pkt(pkt);
break;
}
/* Convert list_len from LE_32 to local */
for (p = (uchar_t *)bp->b_un.b_addr;
p < (uchar_t *)bp->b_un.b_addr + 4; p++) {
data <<= 8;
data |= *p;
}
list_len = data;
if (buf_len < list_len + AAC_SCSI_RPTLUNS_HEAD_SIZE) {
scsi_free_consistent_buf(bp);
bp = NULL;
buf_len = list_len + AAC_SCSI_RPTLUNS_HEAD_SIZE;
}
scsi_destroy_pkt(pkt);
}
if (i >= 2) {
uint8_t *buf = (uint8_t *)(bp->b_un.b_addr +
AAC_SCSI_RPTLUNS_HEAD_SIZE);
for (i = 0; i < (list_len / AAC_SCSI_RPTLUNS_ADDR_SIZE); i++) {
uint16_t lun;
/* Determine report luns addressing type */
switch (buf[0] & AAC_SCSI_RPTLUNS_ADDR_MASK) {
/*
* Vendors in the field have been found to be
* concatenating bus/target/lun to equal the
* complete lun value instead of switching to
* flat space addressing
*/
case AAC_SCSI_RPTLUNS_ADDR_PERIPHERAL:
case AAC_SCSI_RPTLUNS_ADDR_LOGICAL_UNIT:
case AAC_SCSI_RPTLUNS_ADDR_FLAT_SPACE:
lun = ((buf[0] & 0x3f) << 8) | buf[1];
if (lun > UINT8_MAX) {
AACDB_PRINT(softs, CE_WARN,
"abnormal lun number: %d", lun);
break;
}
if (aac_config_lun(softs, tgt, lun, &ldip) ==
NDI_SUCCESS)
lun_total++;
break;
}
buf += AAC_SCSI_RPTLUNS_ADDR_SIZE;
}
} else {
/* The target may do not support SCMD_REPORT_LUNS. */
if (aac_config_lun(softs, tgt, 0, &ldip) == NDI_SUCCESS)
lun_total++;
}
scsi_free_consistent_buf(bp);
return (lun_total);
}
static void
aac_devcfg(struct aac_softstate *softs, int tgt, int en)
{
struct aac_device *dvp;
mutex_enter(&softs->io_lock);
dvp = AAC_DEV(softs, tgt);
if (en)
dvp->flags |= AAC_DFLAG_CONFIGURING;
else
dvp->flags &= ~AAC_DFLAG_CONFIGURING;
mutex_exit(&softs->io_lock);
}
static int
aac_tran_bus_config(dev_info_t *parent, uint_t flags, ddi_bus_config_op_t op,
void *arg, dev_info_t **childp)
{
struct aac_softstate *softs;
int circ = 0;
int rval;
if ((softs = ddi_get_soft_state(aac_softstatep,
ddi_get_instance(parent))) == NULL)
return (NDI_FAILURE);
/* Commands for bus config should be blocked as the bus is quiesced */
mutex_enter(&softs->io_lock);
if (softs->state & AAC_STATE_QUIESCED) {
AACDB_PRINT(softs, CE_NOTE,
"bus_config abroted because bus is quiesced");
mutex_exit(&softs->io_lock);
return (NDI_FAILURE);
}
mutex_exit(&softs->io_lock);
DBCALLED(softs, 1);
/* Hold the nexus across the bus_config */
ndi_devi_enter(parent, &circ);
switch (op) {
case BUS_CONFIG_ONE: {
int tgt, lun;
if (aac_parse_devname(arg, &tgt, &lun) != AACOK) {
rval = NDI_FAILURE;
break;
}
AAC_DEVCFG_BEGIN(softs, tgt);
rval = aac_config_lun(softs, tgt, lun, childp);
AAC_DEVCFG_END(softs, tgt);
break;
}
case BUS_CONFIG_DRIVER:
case BUS_CONFIG_ALL: {
uint32_t bus, tgt;
int index, total;
for (tgt = 0; tgt < AAC_MAX_LD; tgt++) {
AAC_DEVCFG_BEGIN(softs, tgt);
(void) aac_config_lun(softs, tgt, 0, NULL);
AAC_DEVCFG_END(softs, tgt);
}
/* Config the non-DASD devices connected to the card */
total = 0;
index = AAC_MAX_LD;
for (bus = 0; bus < softs->bus_max; bus++) {
AACDB_PRINT(softs, CE_NOTE, "bus %d:", bus);
for (tgt = 0; tgt < softs->tgt_max; tgt++, index++) {
AAC_DEVCFG_BEGIN(softs, index);
if (aac_config_tgt(softs, index))
total++;
AAC_DEVCFG_END(softs, index);
}
}
AACDB_PRINT(softs, CE_CONT,
"?Total %d phys. device(s) found", total);
rval = NDI_SUCCESS;
break;
}
}
if (rval == NDI_SUCCESS)
rval = ndi_busop_bus_config(parent, flags, op, arg, childp, 0);
ndi_devi_exit(parent, circ);
return (rval);
}
static void
aac_handle_dr(struct aac_drinfo *drp)
{
struct aac_softstate *softs = drp->softs;
struct aac_device *dvp;
dev_info_t *dip;
int valid;
int circ1 = 0;
DBCALLED(softs, 1);
/* Hold the nexus across the bus_config */
mutex_enter(&softs->io_lock);
dvp = AAC_DEV(softs, drp->tgt);
valid = AAC_DEV_IS_VALID(dvp);
dip = dvp->dip;
mutex_exit(&softs->io_lock);
switch (drp->event) {
case AAC_EVT_ONLINE:
case AAC_EVT_OFFLINE:
/* Device onlined */
if (dip == NULL && valid) {
ndi_devi_enter(softs->devinfo_p, &circ1);
(void) aac_config_lun(softs, drp->tgt, 0, NULL);
AACDB_PRINT(softs, CE_NOTE, "c%dt%dL%d onlined",
softs->instance, drp->tgt, drp->lun);
ndi_devi_exit(softs->devinfo_p, circ1);
}
/* Device offlined */
if (dip && !valid) {
mutex_enter(&softs->io_lock);
(void) aac_do_reset(softs);
mutex_exit(&softs->io_lock);
(void) ndi_devi_offline(dip, NDI_DEVI_REMOVE);
AACDB_PRINT(softs, CE_NOTE, "c%dt%dL%d offlined",
softs->instance, drp->tgt, drp->lun);
}
break;
}
kmem_free(drp, sizeof (struct aac_drinfo));
}
static int
aac_dr_event(struct aac_softstate *softs, int tgt, int lun, int event)
{
struct aac_drinfo *drp;
DBCALLED(softs, 1);
if (softs->taskq == NULL ||
(drp = kmem_zalloc(sizeof (struct aac_drinfo), KM_NOSLEEP)) == NULL)
return (AACERR);
drp->softs = softs;
drp->tgt = tgt;
drp->lun = lun;
drp->event = event;
if ((ddi_taskq_dispatch(softs->taskq, (void (*)(void *))aac_handle_dr,
drp, DDI_NOSLEEP)) != DDI_SUCCESS) {
AACDB_PRINT(softs, CE_WARN, "DR task start failed");
kmem_free(drp, sizeof (struct aac_drinfo));
return (AACERR);
}
return (AACOK);
}
#ifdef DEBUG
/* -------------------------debug aid functions-------------------------- */
#define AAC_FIB_CMD_KEY_STRINGS \
TestCommandResponse, "TestCommandResponse", \
TestAdapterCommand, "TestAdapterCommand", \
LastTestCommand, "LastTestCommand", \
ReinitHostNormCommandQueue, "ReinitHostNormCommandQueue", \
ReinitHostHighCommandQueue, "ReinitHostHighCommandQueue", \
ReinitHostHighRespQueue, "ReinitHostHighRespQueue", \
ReinitHostNormRespQueue, "ReinitHostNormRespQueue", \
ReinitAdapNormCommandQueue, "ReinitAdapNormCommandQueue", \
ReinitAdapHighCommandQueue, "ReinitAdapHighCommandQueue", \
ReinitAdapHighRespQueue, "ReinitAdapHighRespQueue", \
ReinitAdapNormRespQueue, "ReinitAdapNormRespQueue", \
InterfaceShutdown, "InterfaceShutdown", \
DmaCommandFib, "DmaCommandFib", \
StartProfile, "StartProfile", \
TermProfile, "TermProfile", \
SpeedTest, "SpeedTest", \
TakeABreakPt, "TakeABreakPt", \
RequestPerfData, "RequestPerfData", \
SetInterruptDefTimer, "SetInterruptDefTimer", \
SetInterruptDefCount, "SetInterruptDefCount", \
GetInterruptDefStatus, "GetInterruptDefStatus", \
LastCommCommand, "LastCommCommand", \
NuFileSystem, "NuFileSystem", \
UFS, "UFS", \
HostFileSystem, "HostFileSystem", \
LastFileSystemCommand, "LastFileSystemCommand", \
ContainerCommand, "ContainerCommand", \
ContainerCommand64, "ContainerCommand64", \
ClusterCommand, "ClusterCommand", \
ScsiPortCommand, "ScsiPortCommand", \
ScsiPortCommandU64, "ScsiPortCommandU64", \
AifRequest, "AifRequest", \
CheckRevision, "CheckRevision", \
FsaHostShutdown, "FsaHostShutdown", \
RequestAdapterInfo, "RequestAdapterInfo", \
IsAdapterPaused, "IsAdapterPaused", \
SendHostTime, "SendHostTime", \
LastMiscCommand, "LastMiscCommand"
#define AAC_CTVM_SUBCMD_KEY_STRINGS \
VM_Null, "VM_Null", \
VM_NameServe, "VM_NameServe", \
VM_ContainerConfig, "VM_ContainerConfig", \
VM_Ioctl, "VM_Ioctl", \
VM_FilesystemIoctl, "VM_FilesystemIoctl", \
VM_CloseAll, "VM_CloseAll", \
VM_CtBlockRead, "VM_CtBlockRead", \
VM_CtBlockWrite, "VM_CtBlockWrite", \
VM_SliceBlockRead, "VM_SliceBlockRead", \
VM_SliceBlockWrite, "VM_SliceBlockWrite", \
VM_DriveBlockRead, "VM_DriveBlockRead", \
VM_DriveBlockWrite, "VM_DriveBlockWrite", \
VM_EnclosureMgt, "VM_EnclosureMgt", \
VM_Unused, "VM_Unused", \
VM_CtBlockVerify, "VM_CtBlockVerify", \
VM_CtPerf, "VM_CtPerf", \
VM_CtBlockRead64, "VM_CtBlockRead64", \
VM_CtBlockWrite64, "VM_CtBlockWrite64", \
VM_CtBlockVerify64, "VM_CtBlockVerify64", \
VM_CtHostRead64, "VM_CtHostRead64", \
VM_CtHostWrite64, "VM_CtHostWrite64", \
VM_NameServe64, "VM_NameServe64"
#define AAC_CT_SUBCMD_KEY_STRINGS \
CT_Null, "CT_Null", \
CT_GET_SLICE_COUNT, "CT_GET_SLICE_COUNT", \
CT_GET_PARTITION_COUNT, "CT_GET_PARTITION_COUNT", \
CT_GET_PARTITION_INFO, "CT_GET_PARTITION_INFO", \
CT_GET_CONTAINER_COUNT, "CT_GET_CONTAINER_COUNT", \
CT_GET_CONTAINER_INFO_OLD, "CT_GET_CONTAINER_INFO_OLD", \
CT_WRITE_MBR, "CT_WRITE_MBR", \
CT_WRITE_PARTITION, "CT_WRITE_PARTITION", \
CT_UPDATE_PARTITION, "CT_UPDATE_PARTITION", \
CT_UNLOAD_CONTAINER, "CT_UNLOAD_CONTAINER", \
CT_CONFIG_SINGLE_PRIMARY, "CT_CONFIG_SINGLE_PRIMARY", \
CT_READ_CONFIG_AGE, "CT_READ_CONFIG_AGE", \
CT_WRITE_CONFIG_AGE, "CT_WRITE_CONFIG_AGE", \
CT_READ_SERIAL_NUMBER, "CT_READ_SERIAL_NUMBER", \
CT_ZERO_PAR_ENTRY, "CT_ZERO_PAR_ENTRY", \
CT_READ_MBR, "CT_READ_MBR", \
CT_READ_PARTITION, "CT_READ_PARTITION", \
CT_DESTROY_CONTAINER, "CT_DESTROY_CONTAINER", \
CT_DESTROY2_CONTAINER, "CT_DESTROY2_CONTAINER", \
CT_SLICE_SIZE, "CT_SLICE_SIZE", \
CT_CHECK_CONFLICTS, "CT_CHECK_CONFLICTS", \
CT_MOVE_CONTAINER, "CT_MOVE_CONTAINER", \
CT_READ_LAST_DRIVE, "CT_READ_LAST_DRIVE", \
CT_WRITE_LAST_DRIVE, "CT_WRITE_LAST_DRIVE", \
CT_UNMIRROR, "CT_UNMIRROR", \
CT_MIRROR_DELAY, "CT_MIRROR_DELAY", \
CT_GEN_MIRROR, "CT_GEN_MIRROR", \
CT_GEN_MIRROR2, "CT_GEN_MIRROR2", \
CT_TEST_CONTAINER, "CT_TEST_CONTAINER", \
CT_MOVE2, "CT_MOVE2", \
CT_SPLIT, "CT_SPLIT", \
CT_SPLIT2, "CT_SPLIT2", \
CT_SPLIT_BROKEN, "CT_SPLIT_BROKEN", \
CT_SPLIT_BROKEN2, "CT_SPLIT_BROKEN2", \
CT_RECONFIG, "CT_RECONFIG", \
CT_BREAK2, "CT_BREAK2", \
CT_BREAK, "CT_BREAK", \
CT_MERGE2, "CT_MERGE2", \
CT_MERGE, "CT_MERGE", \
CT_FORCE_ERROR, "CT_FORCE_ERROR", \
CT_CLEAR_ERROR, "CT_CLEAR_ERROR", \
CT_ASSIGN_FAILOVER, "CT_ASSIGN_FAILOVER", \
CT_CLEAR_FAILOVER, "CT_CLEAR_FAILOVER", \
CT_GET_FAILOVER_DATA, "CT_GET_FAILOVER_DATA", \
CT_VOLUME_ADD, "CT_VOLUME_ADD", \
CT_VOLUME_ADD2, "CT_VOLUME_ADD2", \
CT_MIRROR_STATUS, "CT_MIRROR_STATUS", \
CT_COPY_STATUS, "CT_COPY_STATUS", \
CT_COPY, "CT_COPY", \
CT_UNLOCK_CONTAINER, "CT_UNLOCK_CONTAINER", \
CT_LOCK_CONTAINER, "CT_LOCK_CONTAINER", \
CT_MAKE_READ_ONLY, "CT_MAKE_READ_ONLY", \
CT_MAKE_READ_WRITE, "CT_MAKE_READ_WRITE", \
CT_CLEAN_DEAD, "CT_CLEAN_DEAD", \
CT_ABORT_MIRROR_COMMAND, "CT_ABORT_MIRROR_COMMAND", \
CT_SET, "CT_SET", \
CT_GET, "CT_GET", \
CT_GET_NVLOG_ENTRY, "CT_GET_NVLOG_ENTRY", \
CT_GET_DELAY, "CT_GET_DELAY", \
CT_ZERO_CONTAINER_SPACE, "CT_ZERO_CONTAINER_SPACE", \
CT_GET_ZERO_STATUS, "CT_GET_ZERO_STATUS", \
CT_SCRUB, "CT_SCRUB", \
CT_GET_SCRUB_STATUS, "CT_GET_SCRUB_STATUS", \
CT_GET_SLICE_INFO, "CT_GET_SLICE_INFO", \
CT_GET_SCSI_METHOD, "CT_GET_SCSI_METHOD", \
CT_PAUSE_IO, "CT_PAUSE_IO", \
CT_RELEASE_IO, "CT_RELEASE_IO", \
CT_SCRUB2, "CT_SCRUB2", \
CT_MCHECK, "CT_MCHECK", \
CT_CORRUPT, "CT_CORRUPT", \
CT_GET_TASK_COUNT, "CT_GET_TASK_COUNT", \
CT_PROMOTE, "CT_PROMOTE", \
CT_SET_DEAD, "CT_SET_DEAD", \
CT_CONTAINER_OPTIONS, "CT_CONTAINER_OPTIONS", \
CT_GET_NV_PARAM, "CT_GET_NV_PARAM", \
CT_GET_PARAM, "CT_GET_PARAM", \
CT_NV_PARAM_SIZE, "CT_NV_PARAM_SIZE", \
CT_COMMON_PARAM_SIZE, "CT_COMMON_PARAM_SIZE", \
CT_PLATFORM_PARAM_SIZE, "CT_PLATFORM_PARAM_SIZE", \
CT_SET_NV_PARAM, "CT_SET_NV_PARAM", \
CT_ABORT_SCRUB, "CT_ABORT_SCRUB", \
CT_GET_SCRUB_ERROR, "CT_GET_SCRUB_ERROR", \
CT_LABEL_CONTAINER, "CT_LABEL_CONTAINER", \
CT_CONTINUE_DATA, "CT_CONTINUE_DATA", \
CT_STOP_DATA, "CT_STOP_DATA", \
CT_GET_PARTITION_TABLE, "CT_GET_PARTITION_TABLE", \
CT_GET_DISK_PARTITIONS, "CT_GET_DISK_PARTITIONS", \
CT_GET_MISC_STATUS, "CT_GET_MISC_STATUS", \
CT_GET_CONTAINER_PERF_INFO, "CT_GET_CONTAINER_PERF_INFO", \
CT_GET_TIME, "CT_GET_TIME", \
CT_READ_DATA, "CT_READ_DATA", \
CT_CTR, "CT_CTR", \
CT_CTL, "CT_CTL", \
CT_DRAINIO, "CT_DRAINIO", \
CT_RELEASEIO, "CT_RELEASEIO", \
CT_GET_NVRAM, "CT_GET_NVRAM", \
CT_GET_MEMORY, "CT_GET_MEMORY", \
CT_PRINT_CT_LOG, "CT_PRINT_CT_LOG", \
CT_ADD_LEVEL, "CT_ADD_LEVEL", \
CT_NV_ZERO, "CT_NV_ZERO", \
CT_READ_SIGNATURE, "CT_READ_SIGNATURE", \
CT_THROTTLE_ON, "CT_THROTTLE_ON", \
CT_THROTTLE_OFF, "CT_THROTTLE_OFF", \
CT_GET_THROTTLE_STATS, "CT_GET_THROTTLE_STATS", \
CT_MAKE_SNAPSHOT, "CT_MAKE_SNAPSHOT", \
CT_REMOVE_SNAPSHOT, "CT_REMOVE_SNAPSHOT", \
CT_WRITE_USER_FLAGS, "CT_WRITE_USER_FLAGS", \
CT_READ_USER_FLAGS, "CT_READ_USER_FLAGS", \
CT_MONITOR, "CT_MONITOR", \
CT_GEN_MORPH, "CT_GEN_MORPH", \
CT_GET_SNAPSHOT_INFO, "CT_GET_SNAPSHOT_INFO", \
CT_CACHE_SET, "CT_CACHE_SET", \
CT_CACHE_STAT, "CT_CACHE_STAT", \
CT_TRACE_START, "CT_TRACE_START", \
CT_TRACE_STOP, "CT_TRACE_STOP", \
CT_TRACE_ENABLE, "CT_TRACE_ENABLE", \
CT_TRACE_DISABLE, "CT_TRACE_DISABLE", \
CT_FORCE_CORE_DUMP, "CT_FORCE_CORE_DUMP", \
CT_SET_SERIAL_NUMBER, "CT_SET_SERIAL_NUMBER", \
CT_RESET_SERIAL_NUMBER, "CT_RESET_SERIAL_NUMBER", \
CT_ENABLE_RAID5, "CT_ENABLE_RAID5", \
CT_CLEAR_VALID_DUMP_FLAG, "CT_CLEAR_VALID_DUMP_FLAG", \
CT_GET_MEM_STATS, "CT_GET_MEM_STATS", \
CT_GET_CORE_SIZE, "CT_GET_CORE_SIZE", \
CT_CREATE_CONTAINER_OLD, "CT_CREATE_CONTAINER_OLD", \
CT_STOP_DUMPS, "CT_STOP_DUMPS", \
CT_PANIC_ON_TAKE_A_BREAK, "CT_PANIC_ON_TAKE_A_BREAK", \
CT_GET_CACHE_STATS, "CT_GET_CACHE_STATS", \
CT_MOVE_PARTITION, "CT_MOVE_PARTITION", \
CT_FLUSH_CACHE, "CT_FLUSH_CACHE", \
CT_READ_NAME, "CT_READ_NAME", \
CT_WRITE_NAME, "CT_WRITE_NAME", \
CT_TOSS_CACHE, "CT_TOSS_CACHE", \
CT_LOCK_DRAINIO, "CT_LOCK_DRAINIO", \
CT_CONTAINER_OFFLINE, "CT_CONTAINER_OFFLINE", \
CT_SET_CACHE_SIZE, "CT_SET_CACHE_SIZE", \
CT_CLEAN_SHUTDOWN_STATUS, "CT_CLEAN_SHUTDOWN_STATUS", \
CT_CLEAR_DISKLOG_ON_DISK, "CT_CLEAR_DISKLOG_ON_DISK", \
CT_CLEAR_ALL_DISKLOG, "CT_CLEAR_ALL_DISKLOG", \
CT_CACHE_FAVOR, "CT_CACHE_FAVOR", \
CT_READ_PASSTHRU_MBR, "CT_READ_PASSTHRU_MBR", \
CT_SCRUB_NOFIX, "CT_SCRUB_NOFIX", \
CT_SCRUB2_NOFIX, "CT_SCRUB2_NOFIX", \
CT_FLUSH, "CT_FLUSH", \
CT_REBUILD, "CT_REBUILD", \
CT_FLUSH_CONTAINER, "CT_FLUSH_CONTAINER", \
CT_RESTART, "CT_RESTART", \
CT_GET_CONFIG_STATUS, "CT_GET_CONFIG_STATUS", \
CT_TRACE_FLAG, "CT_TRACE_FLAG", \
CT_RESTART_MORPH, "CT_RESTART_MORPH", \
CT_GET_TRACE_INFO, "CT_GET_TRACE_INFO", \
CT_GET_TRACE_ITEM, "CT_GET_TRACE_ITEM", \
CT_COMMIT_CONFIG, "CT_COMMIT_CONFIG", \
CT_CONTAINER_EXISTS, "CT_CONTAINER_EXISTS", \
CT_GET_SLICE_FROM_DEVT, "CT_GET_SLICE_FROM_DEVT", \
CT_OPEN_READ_WRITE, "CT_OPEN_READ_WRITE", \
CT_WRITE_MEMORY_BLOCK, "CT_WRITE_MEMORY_BLOCK", \
CT_GET_CACHE_PARAMS, "CT_GET_CACHE_PARAMS", \
CT_CRAZY_CACHE, "CT_CRAZY_CACHE", \
CT_GET_PROFILE_STRUCT, "CT_GET_PROFILE_STRUCT", \
CT_SET_IO_TRACE_FLAG, "CT_SET_IO_TRACE_FLAG", \
CT_GET_IO_TRACE_STRUCT, "CT_GET_IO_TRACE_STRUCT", \
CT_CID_TO_64BITS_UID, "CT_CID_TO_64BITS_UID", \
CT_64BITS_UID_TO_CID, "CT_64BITS_UID_TO_CID", \
CT_PAR_TO_64BITS_UID, "CT_PAR_TO_64BITS_UID", \
CT_CID_TO_32BITS_UID, "CT_CID_TO_32BITS_UID", \
CT_32BITS_UID_TO_CID, "CT_32BITS_UID_TO_CID", \
CT_PAR_TO_32BITS_UID, "CT_PAR_TO_32BITS_UID", \
CT_SET_FAILOVER_OPTION, "CT_SET_FAILOVER_OPTION", \
CT_GET_FAILOVER_OPTION, "CT_GET_FAILOVER_OPTION", \
CT_STRIPE_ADD2, "CT_STRIPE_ADD2", \
CT_CREATE_VOLUME_SET, "CT_CREATE_VOLUME_SET", \
CT_CREATE_STRIPE_SET, "CT_CREATE_STRIPE_SET", \
CT_VERIFY_CONTAINER, "CT_VERIFY_CONTAINER", \
CT_IS_CONTAINER_DEAD, "CT_IS_CONTAINER_DEAD", \
CT_GET_CONTAINER_OPTION, "CT_GET_CONTAINER_OPTION", \
CT_GET_SNAPSHOT_UNUSED_STRUCT, "CT_GET_SNAPSHOT_UNUSED_STRUCT", \
CT_CLEAR_SNAPSHOT_UNUSED_STRUCT, "CT_CLEAR_SNAPSHOT_UNUSED_STRUCT", \
CT_GET_CONTAINER_INFO, "CT_GET_CONTAINER_INFO", \
CT_CREATE_CONTAINER, "CT_CREATE_CONTAINER", \
CT_CHANGE_CREATIONINFO, "CT_CHANGE_CREATIONINFO", \
CT_CHECK_CONFLICT_UID, "CT_CHECK_CONFLICT_UID", \
CT_CONTAINER_UID_CHECK, "CT_CONTAINER_UID_CHECK", \
CT_IS_CONTAINER_MEATADATA_STANDARD, \
"CT_IS_CONTAINER_MEATADATA_STANDARD", \
CT_IS_SLICE_METADATA_STANDARD, "CT_IS_SLICE_METADATA_STANDARD", \
CT_GET_IMPORT_COUNT, "CT_GET_IMPORT_COUNT", \
CT_CANCEL_ALL_IMPORTS, "CT_CANCEL_ALL_IMPORTS", \
CT_GET_IMPORT_INFO, "CT_GET_IMPORT_INFO", \
CT_IMPORT_ARRAY, "CT_IMPORT_ARRAY", \
CT_GET_LOG_SIZE, "CT_GET_LOG_SIZE", \
CT_ALARM_GET_STATE, "CT_ALARM_GET_STATE", \
CT_ALARM_SET_STATE, "CT_ALARM_SET_STATE", \
CT_ALARM_ON_OFF, "CT_ALARM_ON_OFF", \
CT_GET_EE_OEM_ID, "CT_GET_EE_OEM_ID", \
CT_GET_PPI_HEADERS, "CT_GET_PPI_HEADERS", \
CT_GET_PPI_DATA, "CT_GET_PPI_DATA", \
CT_GET_PPI_ENTRIES, "CT_GET_PPI_ENTRIES", \
CT_DELETE_PPI_BUNDLE, "CT_DELETE_PPI_BUNDLE", \
CT_GET_PARTITION_TABLE_2, "CT_GET_PARTITION_TABLE_2", \
CT_GET_PARTITION_INFO_2, "CT_GET_PARTITION_INFO_2", \
CT_GET_DISK_PARTITIONS_2, "CT_GET_DISK_PARTITIONS_2", \
CT_QUIESCE_ADAPTER, "CT_QUIESCE_ADAPTER", \
CT_CLEAR_PPI_TABLE, "CT_CLEAR_PPI_TABLE"
#define AAC_CL_SUBCMD_KEY_STRINGS \
CL_NULL, "CL_NULL", \
DS_INIT, "DS_INIT", \
DS_RESCAN, "DS_RESCAN", \
DS_CREATE, "DS_CREATE", \
DS_DELETE, "DS_DELETE", \
DS_ADD_DISK, "DS_ADD_DISK", \
DS_REMOVE_DISK, "DS_REMOVE_DISK", \
DS_MOVE_DISK, "DS_MOVE_DISK", \
DS_TAKE_OWNERSHIP, "DS_TAKE_OWNERSHIP", \
DS_RELEASE_OWNERSHIP, "DS_RELEASE_OWNERSHIP", \
DS_FORCE_OWNERSHIP, "DS_FORCE_OWNERSHIP", \
DS_GET_DISK_SET_PARAM, "DS_GET_DISK_SET_PARAM", \
DS_GET_DRIVE_PARAM, "DS_GET_DRIVE_PARAM", \
DS_GET_SLICE_PARAM, "DS_GET_SLICE_PARAM", \
DS_GET_DISK_SETS, "DS_GET_DISK_SETS", \
DS_GET_DRIVES, "DS_GET_DRIVES", \
DS_SET_DISK_SET_PARAM, "DS_SET_DISK_SET_PARAM", \
DS_ONLINE, "DS_ONLINE", \
DS_OFFLINE, "DS_OFFLINE", \
DS_ONLINE_CONTAINERS, "DS_ONLINE_CONTAINERS", \
DS_FSAPRINT, "DS_FSAPRINT", \
CL_CFG_SET_HOST_IDS, "CL_CFG_SET_HOST_IDS", \
CL_CFG_SET_PARTNER_HOST_IDS, "CL_CFG_SET_PARTNER_HOST_IDS", \
CL_CFG_GET_CLUSTER_CONFIG, "CL_CFG_GET_CLUSTER_CONFIG", \
CC_CLI_CLEAR_MESSAGE_BUFFER, "CC_CLI_CLEAR_MESSAGE_BUFFER", \
CC_SRV_CLEAR_MESSAGE_BUFFER, "CC_SRV_CLEAR_MESSAGE_BUFFER", \
CC_CLI_SHOW_MESSAGE_BUFFER, "CC_CLI_SHOW_MESSAGE_BUFFER", \
CC_SRV_SHOW_MESSAGE_BUFFER, "CC_SRV_SHOW_MESSAGE_BUFFER", \
CC_CLI_SEND_MESSAGE, "CC_CLI_SEND_MESSAGE", \
CC_SRV_SEND_MESSAGE, "CC_SRV_SEND_MESSAGE", \
CC_CLI_GET_MESSAGE, "CC_CLI_GET_MESSAGE", \
CC_SRV_GET_MESSAGE, "CC_SRV_GET_MESSAGE", \
CC_SEND_TEST_MESSAGE, "CC_SEND_TEST_MESSAGE", \
CC_GET_BUSINFO, "CC_GET_BUSINFO", \
CC_GET_PORTINFO, "CC_GET_PORTINFO", \
CC_GET_NAMEINFO, "CC_GET_NAMEINFO", \
CC_GET_CONFIGINFO, "CC_GET_CONFIGINFO", \
CQ_QUORUM_OP, "CQ_QUORUM_OP"
#define AAC_AIF_SUBCMD_KEY_STRINGS \
AifCmdEventNotify, "AifCmdEventNotify", \
AifCmdJobProgress, "AifCmdJobProgress", \
AifCmdAPIReport, "AifCmdAPIReport", \
AifCmdDriverNotify, "AifCmdDriverNotify", \
AifReqJobList, "AifReqJobList", \
AifReqJobsForCtr, "AifReqJobsForCtr", \
AifReqJobsForScsi, "AifReqJobsForScsi", \
AifReqJobReport, "AifReqJobReport", \
AifReqTerminateJob, "AifReqTerminateJob", \
AifReqSuspendJob, "AifReqSuspendJob", \
AifReqResumeJob, "AifReqResumeJob", \
AifReqSendAPIReport, "AifReqSendAPIReport", \
AifReqAPIJobStart, "AifReqAPIJobStart", \
AifReqAPIJobUpdate, "AifReqAPIJobUpdate", \
AifReqAPIJobFinish, "AifReqAPIJobFinish"
#define AAC_IOCTL_SUBCMD_KEY_STRINGS \
Reserved_IOCTL, "Reserved_IOCTL", \
GetDeviceHandle, "GetDeviceHandle", \
BusTargetLun_to_DeviceHandle, "BusTargetLun_to_DeviceHandle", \
DeviceHandle_to_BusTargetLun, "DeviceHandle_to_BusTargetLun", \
RescanBus, "RescanBus", \
GetDeviceProbeInfo, "GetDeviceProbeInfo", \
GetDeviceCapacity, "GetDeviceCapacity", \
GetContainerProbeInfo, "GetContainerProbeInfo", \
GetRequestedMemorySize, "GetRequestedMemorySize", \
GetBusInfo, "GetBusInfo", \
GetVendorSpecific, "GetVendorSpecific", \
EnhancedGetDeviceProbeInfo, "EnhancedGetDeviceProbeInfo", \
EnhancedGetBusInfo, "EnhancedGetBusInfo", \
SetupExtendedCounters, "SetupExtendedCounters", \
GetPerformanceCounters, "GetPerformanceCounters", \
ResetPerformanceCounters, "ResetPerformanceCounters", \
ReadModePage, "ReadModePage", \
WriteModePage, "WriteModePage", \
ReadDriveParameter, "ReadDriveParameter", \
WriteDriveParameter, "WriteDriveParameter", \
ResetAdapter, "ResetAdapter", \
ResetBus, "ResetBus", \
ResetBusDevice, "ResetBusDevice", \
ExecuteSrb, "ExecuteSrb", \
Create_IO_Task, "Create_IO_Task", \
Delete_IO_Task, "Delete_IO_Task", \
Get_IO_Task_Info, "Get_IO_Task_Info", \
Check_Task_Progress, "Check_Task_Progress", \
InjectError, "InjectError", \
GetDeviceDefectCounts, "GetDeviceDefectCounts", \
GetDeviceDefectInfo, "GetDeviceDefectInfo", \
GetDeviceStatus, "GetDeviceStatus", \
ClearDeviceStatus, "ClearDeviceStatus", \
DiskSpinControl, "DiskSpinControl", \
DiskSmartControl, "DiskSmartControl", \
WriteSame, "WriteSame", \
ReadWriteLong, "ReadWriteLong", \
FormatUnit, "FormatUnit", \
TargetDeviceControl, "TargetDeviceControl", \
TargetChannelControl, "TargetChannelControl", \
FlashNewCode, "FlashNewCode", \
DiskCheck, "DiskCheck", \
RequestSense, "RequestSense", \
DiskPERControl, "DiskPERControl", \
Read10, "Read10", \
Write10, "Write10"
#define AAC_AIFEN_KEY_STRINGS \
AifEnGeneric, "Generic", \
AifEnTaskComplete, "TaskComplete", \
AifEnConfigChange, "Config change", \
AifEnContainerChange, "Container change", \
AifEnDeviceFailure, "device failed", \
AifEnMirrorFailover, "Mirror failover", \
AifEnContainerEvent, "container event", \
AifEnFileSystemChange, "File system changed", \
AifEnConfigPause, "Container pause event", \
AifEnConfigResume, "Container resume event", \
AifEnFailoverChange, "Failover space assignment changed", \
AifEnRAID5RebuildDone, "RAID5 rebuild finished", \
AifEnEnclosureManagement, "Enclosure management event", \
AifEnBatteryEvent, "battery event", \
AifEnAddContainer, "Add container", \
AifEnDeleteContainer, "Delete container", \
AifEnSMARTEvent, "SMART Event", \
AifEnBatteryNeedsRecond, "battery needs reconditioning", \
AifEnClusterEvent, "cluster event", \
AifEnDiskSetEvent, "disk set event occured", \
AifDenMorphComplete, "morph operation completed", \
AifDenVolumeExtendComplete, "VolumeExtendComplete"
struct aac_key_strings {
int key;
char *message;
};
extern struct scsi_key_strings scsi_cmds[];
static struct aac_key_strings aac_fib_cmds[] = {
AAC_FIB_CMD_KEY_STRINGS,
-1, NULL
};
static struct aac_key_strings aac_ctvm_subcmds[] = {
AAC_CTVM_SUBCMD_KEY_STRINGS,
-1, NULL
};
static struct aac_key_strings aac_ct_subcmds[] = {
AAC_CT_SUBCMD_KEY_STRINGS,
-1, NULL
};
static struct aac_key_strings aac_cl_subcmds[] = {
AAC_CL_SUBCMD_KEY_STRINGS,
-1, NULL
};
static struct aac_key_strings aac_aif_subcmds[] = {
AAC_AIF_SUBCMD_KEY_STRINGS,
-1, NULL
};
static struct aac_key_strings aac_ioctl_subcmds[] = {
AAC_IOCTL_SUBCMD_KEY_STRINGS,
-1, NULL
};
static struct aac_key_strings aac_aifens[] = {
AAC_AIFEN_KEY_STRINGS,
-1, NULL
};
/*
* The following function comes from Adaptec:
*
* Get the firmware print buffer parameters from the firmware,
* if the command was successful map in the address.
*/
static int
aac_get_fw_debug_buffer(struct aac_softstate *softs)
{
if (aac_sync_mbcommand(softs, AAC_MONKER_GETDRVPROP,
0, 0, 0, 0, NULL) == AACOK) {
uint32_t mondrv_buf_paddrl = AAC_MAILBOX_GET(softs, 1);
uint32_t mondrv_buf_paddrh = AAC_MAILBOX_GET(softs, 2);
uint32_t mondrv_buf_size = AAC_MAILBOX_GET(softs, 3);
uint32_t mondrv_hdr_size = AAC_MAILBOX_GET(softs, 4);
if (mondrv_buf_size) {
uint32_t offset = mondrv_buf_paddrl - \
softs->pci_mem_base_paddr;
/*
* See if the address is already mapped in, and
* if so set it up from the base address
*/
if ((mondrv_buf_paddrh == 0) &&
(offset + mondrv_buf_size < softs->map_size)) {
mutex_enter(&aac_prt_mutex);
softs->debug_buf_offset = offset;
softs->debug_header_size = mondrv_hdr_size;
softs->debug_buf_size = mondrv_buf_size;
softs->debug_fw_flags = 0;
softs->debug_flags &= ~AACDB_FLAGS_FW_PRINT;
mutex_exit(&aac_prt_mutex);
return (AACOK);
}
}
}
return (AACERR);
}
int
aac_dbflag_on(struct aac_softstate *softs, int flag)
{
int debug_flags = softs ? softs->debug_flags : aac_debug_flags;
return ((debug_flags & (AACDB_FLAGS_FW_PRINT | \
AACDB_FLAGS_KERNEL_PRINT)) && (debug_flags & flag));
}
static void
aac_cmn_err(struct aac_softstate *softs, uint_t lev, char sl, int noheader)
{
if (noheader) {
if (sl) {
aac_fmt[0] = sl;
cmn_err(lev, aac_fmt, aac_prt_buf);
} else {
cmn_err(lev, &aac_fmt[1], aac_prt_buf);
}
} else {
if (sl) {
aac_fmt_header[0] = sl;
cmn_err(lev, aac_fmt_header,
softs->vendor_name, softs->instance,
aac_prt_buf);
} else {
cmn_err(lev, &aac_fmt_header[1],
softs->vendor_name, softs->instance,
aac_prt_buf);
}
}
}
/*
* The following function comes from Adaptec:
*
* Format and print out the data passed in to UART or console
* as specified by debug flags.
*/
void
aac_printf(struct aac_softstate *softs, uint_t lev, const char *fmt, ...)
{
va_list args;
char sl; /* system log character */
mutex_enter(&aac_prt_mutex);
/* Set up parameters and call sprintf function to format the data */
if (strchr("^!?", fmt[0]) == NULL) {
sl = 0;
} else {
sl = fmt[0];
fmt++;
}
va_start(args, fmt);
(void) vsprintf(aac_prt_buf, fmt, args);
va_end(args);
/* Make sure the softs structure has been passed in for this section */
if (softs) {
if ((softs->debug_flags & AACDB_FLAGS_FW_PRINT) &&
/* If we are set up for a Firmware print */
(softs->debug_buf_size)) {
uint32_t count, i;
/* Make sure the string size is within boundaries */
count = strlen(aac_prt_buf);
if (count > softs->debug_buf_size)
count = (uint16_t)softs->debug_buf_size;
/*
* Wait for no more than AAC_PRINT_TIMEOUT for the
* previous message length to clear (the handshake).
*/
for (i = 0; i < AAC_PRINT_TIMEOUT; i++) {
if (!PCI_MEM_GET32(softs,
softs->debug_buf_offset + \
AAC_FW_DBG_STRLEN_OFFSET))
break;
drv_usecwait(1000);
}
/*
* If the length is clear, copy over the message, the
* flags, and the length. Make sure the length is the
* last because that is the signal for the Firmware to
* pick it up.
*/
if (!PCI_MEM_GET32(softs, softs->debug_buf_offset + \
AAC_FW_DBG_STRLEN_OFFSET)) {
PCI_MEM_REP_PUT8(softs,
softs->debug_buf_offset + \
softs->debug_header_size,
aac_prt_buf, count);
PCI_MEM_PUT32(softs,
softs->debug_buf_offset + \
AAC_FW_DBG_FLAGS_OFFSET,
softs->debug_fw_flags);
PCI_MEM_PUT32(softs,
softs->debug_buf_offset + \
AAC_FW_DBG_STRLEN_OFFSET, count);
} else {
cmn_err(CE_WARN, "UART output fail");
softs->debug_flags &= ~AACDB_FLAGS_FW_PRINT;
}
}
/*
* If the Kernel Debug Print flag is set, send it off
* to the Kernel Debugger
*/
if (softs->debug_flags & AACDB_FLAGS_KERNEL_PRINT)
aac_cmn_err(softs, lev, sl,
(softs->debug_flags & AACDB_FLAGS_NO_HEADERS));
} else {
/* Driver not initialized yet, no firmware or header output */
if (aac_debug_flags & AACDB_FLAGS_KERNEL_PRINT)
aac_cmn_err(softs, lev, sl, 1);
}
mutex_exit(&aac_prt_mutex);
}
/*
* Translate command number to description string
*/
static char *
aac_cmd_name(int cmd, struct aac_key_strings *cmdlist)
{
int i;
for (i = 0; cmdlist[i].key != -1; i++) {
if (cmd == cmdlist[i].key)
return (cmdlist[i].message);
}
return (NULL);
}
static void
aac_print_scmd(struct aac_softstate *softs, struct aac_cmd *acp)
{
struct scsi_pkt *pkt = acp->pkt;
struct scsi_address *ap = &pkt->pkt_address;
int is_pd = 0;
int ctl = ddi_get_instance(softs->devinfo_p);
int tgt = ap->a_target;
int lun = ap->a_lun;
union scsi_cdb *cdbp = (void *)pkt->pkt_cdbp;
uchar_t cmd = cdbp->scc_cmd;
char *desc;
if (tgt >= AAC_MAX_LD) {
is_pd = 1;
ctl = ((struct aac_nondasd *)acp->dvp)->bus;
tgt = ((struct aac_nondasd *)acp->dvp)->tid;
lun = 0;
}
if ((desc = aac_cmd_name(cmd,
(struct aac_key_strings *)scsi_cmds)) == NULL) {
aac_printf(softs, CE_NOTE,
"SCMD> Unknown(0x%2x) --> c%dt%dL%d %s",
cmd, ctl, tgt, lun, is_pd ? "(pd)" : "");
return;
}
switch (cmd) {
case SCMD_READ:
case SCMD_WRITE:
aac_printf(softs, CE_NOTE,
"SCMD> %s 0x%x[%d] %s --> c%dt%dL%d %s",
desc, GETG0ADDR(cdbp), GETG0COUNT(cdbp),
(acp->flags & AAC_CMD_NO_INTR) ? "poll" : "intr",
ctl, tgt, lun, is_pd ? "(pd)" : "");
break;
case SCMD_READ_G1:
case SCMD_WRITE_G1:
aac_printf(softs, CE_NOTE,
"SCMD> %s 0x%x[%d] %s --> c%dt%dL%d %s",
desc, GETG1ADDR(cdbp), GETG1COUNT(cdbp),
(acp->flags & AAC_CMD_NO_INTR) ? "poll" : "intr",
ctl, tgt, lun, is_pd ? "(pd)" : "");
break;
case SCMD_READ_G4:
case SCMD_WRITE_G4:
aac_printf(softs, CE_NOTE,
"SCMD> %s 0x%x.%08x[%d] %s --> c%dt%dL%d %s",
desc, GETG4ADDR(cdbp), GETG4ADDRTL(cdbp),
GETG4COUNT(cdbp),
(acp->flags & AAC_CMD_NO_INTR) ? "poll" : "intr",
ctl, tgt, lun, is_pd ? "(pd)" : "");
break;
case SCMD_READ_G5:
case SCMD_WRITE_G5:
aac_printf(softs, CE_NOTE,
"SCMD> %s 0x%x[%d] %s --> c%dt%dL%d %s",
desc, GETG5ADDR(cdbp), GETG5COUNT(cdbp),
(acp->flags & AAC_CMD_NO_INTR) ? "poll" : "intr",
ctl, tgt, lun, is_pd ? "(pd)" : "");
break;
default:
aac_printf(softs, CE_NOTE, "SCMD> %s --> c%dt%dL%d %s",
desc, ctl, tgt, lun, is_pd ? "(pd)" : "");
}
}
void
aac_print_fib(struct aac_softstate *softs, struct aac_slot *slotp)
{
struct aac_cmd *acp = slotp->acp;
struct aac_fib *fibp = slotp->fibp;
ddi_acc_handle_t acc = slotp->fib_acc_handle;
uint16_t fib_size;
uint32_t fib_cmd, sub_cmd;
char *cmdstr, *subcmdstr;
char *caller;
int i;
if (acp) {
if (!(softs->debug_fib_flags & acp->fib_flags))
return;
if (acp->fib_flags & AACDB_FLAGS_FIB_SCMD)
caller = "SCMD";
else if (acp->fib_flags & AACDB_FLAGS_FIB_IOCTL)
caller = "IOCTL";
else if (acp->fib_flags & AACDB_FLAGS_FIB_SRB)
caller = "SRB";
else
return;
} else {
if (!(softs->debug_fib_flags & AACDB_FLAGS_FIB_SYNC))
return;
caller = "SYNC";
}
fib_cmd = ddi_get16(acc, &fibp->Header.Command);
cmdstr = aac_cmd_name(fib_cmd, aac_fib_cmds);
sub_cmd = (uint32_t)-1;
subcmdstr = NULL;
/* Print FIB header */
if (softs->debug_fib_flags & AACDB_FLAGS_FIB_HEADER) {
aac_printf(softs, CE_NOTE, "FIB> from %s", caller);
aac_printf(softs, CE_NOTE, " XferState %d",
ddi_get32(acc, &fibp->Header.XferState));
aac_printf(softs, CE_NOTE, " Command %d",
ddi_get16(acc, &fibp->Header.Command));
aac_printf(softs, CE_NOTE, " StructType %d",
ddi_get8(acc, &fibp->Header.StructType));
aac_printf(softs, CE_NOTE, " Flags 0x%x",
ddi_get8(acc, &fibp->Header.Flags));
aac_printf(softs, CE_NOTE, " Size %d",
ddi_get16(acc, &fibp->Header.Size));
aac_printf(softs, CE_NOTE, " SenderSize %d",
ddi_get16(acc, &fibp->Header.SenderSize));
aac_printf(softs, CE_NOTE, " SenderAddr 0x%x",
ddi_get32(acc, &fibp->Header.SenderFibAddress));
aac_printf(softs, CE_NOTE, " RcvrAddr 0x%x",
ddi_get32(acc, &fibp->Header.ReceiverFibAddress));
aac_printf(softs, CE_NOTE, " SenderData 0x%x",
ddi_get32(acc, &fibp->Header.SenderData));
}
/* Print FIB data */
switch (fib_cmd) {
case ContainerCommand:
sub_cmd = ddi_get32(acc,
(void *)&(((uint32_t *)(void *)&fibp->data[0])[0]));
subcmdstr = aac_cmd_name(sub_cmd, aac_ctvm_subcmds);
if (subcmdstr == NULL)
break;
switch (sub_cmd) {
case VM_ContainerConfig: {
struct aac_Container *pContainer =
(struct aac_Container *)fibp->data;
fib_cmd = sub_cmd;
cmdstr = subcmdstr;
sub_cmd = (uint32_t)-1;
subcmdstr = NULL;
sub_cmd = ddi_get32(acc,
&pContainer->CTCommand.command);
subcmdstr = aac_cmd_name(sub_cmd, aac_ct_subcmds);
if (subcmdstr == NULL)
break;
aac_printf(softs, CE_NOTE, "FIB> %s (0x%x, 0x%x, 0x%x)",
subcmdstr,
ddi_get32(acc, &pContainer->CTCommand.param[0]),
ddi_get32(acc, &pContainer->CTCommand.param[1]),
ddi_get32(acc, &pContainer->CTCommand.param[2]));
return;
}
case VM_Ioctl:
fib_cmd = sub_cmd;
cmdstr = subcmdstr;
sub_cmd = (uint32_t)-1;
subcmdstr = NULL;
sub_cmd = ddi_get32(acc,
(void *)&(((uint32_t *)(void *)&fibp->data[0])[4]));
subcmdstr = aac_cmd_name(sub_cmd, aac_ioctl_subcmds);
break;
case VM_CtBlockRead:
case VM_CtBlockWrite: {
struct aac_blockread *br =
(struct aac_blockread *)fibp->data;
struct aac_sg_table *sg = &br->SgMap;
uint32_t sgcount = ddi_get32(acc, &sg->SgCount);
aac_printf(softs, CE_NOTE,
"FIB> %s Container %d 0x%x/%d", subcmdstr,
ddi_get32(acc, &br->ContainerId),
ddi_get32(acc, &br->BlockNumber),
ddi_get32(acc, &br->ByteCount));
for (i = 0; i < sgcount; i++)
aac_printf(softs, CE_NOTE,
" %d: 0x%08x/%d", i,
ddi_get32(acc, &sg->SgEntry[i].SgAddress),
ddi_get32(acc, &sg->SgEntry[i]. \
SgByteCount));
return;
}
}
break;
case ContainerCommand64: {
struct aac_blockread64 *br =
(struct aac_blockread64 *)fibp->data;
struct aac_sg_table64 *sg = &br->SgMap64;
uint32_t sgcount = ddi_get32(acc, &sg->SgCount);
uint64_t sgaddr;
sub_cmd = br->Command;
subcmdstr = NULL;
if (sub_cmd == VM_CtHostRead64)
subcmdstr = "VM_CtHostRead64";
else if (sub_cmd == VM_CtHostWrite64)
subcmdstr = "VM_CtHostWrite64";
else
break;
aac_printf(softs, CE_NOTE,
"FIB> %s Container %d 0x%x/%d", subcmdstr,
ddi_get16(acc, &br->ContainerId),
ddi_get32(acc, &br->BlockNumber),
ddi_get16(acc, &br->SectorCount));
for (i = 0; i < sgcount; i++) {
sgaddr = ddi_get64(acc,
&sg->SgEntry64[i].SgAddress);
aac_printf(softs, CE_NOTE,
" %d: 0x%08x.%08x/%d", i,
AAC_MS32(sgaddr), AAC_LS32(sgaddr),
ddi_get32(acc, &sg->SgEntry64[i]. \
SgByteCount));
}
return;
}
case RawIo: {
struct aac_raw_io *io = (struct aac_raw_io *)fibp->data;
struct aac_sg_tableraw *sg = &io->SgMapRaw;
uint32_t sgcount = ddi_get32(acc, &sg->SgCount);
uint64_t sgaddr;
aac_printf(softs, CE_NOTE,
"FIB> RawIo Container %d 0x%llx/%d 0x%x",
ddi_get16(acc, &io->ContainerId),
ddi_get64(acc, &io->BlockNumber),
ddi_get32(acc, &io->ByteCount),
ddi_get16(acc, &io->Flags));
for (i = 0; i < sgcount; i++) {
sgaddr = ddi_get64(acc, &sg->SgEntryRaw[i].SgAddress);
aac_printf(softs, CE_NOTE, " %d: 0x%08x.%08x/%d", i,
AAC_MS32(sgaddr), AAC_LS32(sgaddr),
ddi_get32(acc, &sg->SgEntryRaw[i].SgByteCount));
}
return;
}
case ClusterCommand:
sub_cmd = ddi_get32(acc,
(void *)&(((uint32_t *)(void *)fibp->data)[0]));
subcmdstr = aac_cmd_name(sub_cmd, aac_cl_subcmds);
break;
case AifRequest:
sub_cmd = ddi_get32(acc,
(void *)&(((uint32_t *)(void *)fibp->data)[0]));
subcmdstr = aac_cmd_name(sub_cmd, aac_aif_subcmds);
break;
default:
break;
}
fib_size = ddi_get16(acc, &(fibp->Header.Size));
if (subcmdstr)
aac_printf(softs, CE_NOTE, "FIB> %s, sz=%d",
subcmdstr, fib_size);
else if (cmdstr && sub_cmd == (uint32_t)-1)
aac_printf(softs, CE_NOTE, "FIB> %s, sz=%d",
cmdstr, fib_size);
else if (cmdstr)
aac_printf(softs, CE_NOTE, "FIB> %s: Unknown(0x%x), sz=%d",
cmdstr, sub_cmd, fib_size);
else
aac_printf(softs, CE_NOTE, "FIB> Unknown(0x%x), sz=%d",
fib_cmd, fib_size);
}
static void
aac_print_aif(struct aac_softstate *softs, struct aac_aif_command *aif)
{
int aif_command;
uint32_t aif_seqnumber;
int aif_en_type;
char *str;
aif_command = LE_32(aif->command);
aif_seqnumber = LE_32(aif->seqNumber);
aif_en_type = LE_32(aif->data.EN.type);
switch (aif_command) {
case AifCmdEventNotify:
str = aac_cmd_name(aif_en_type, aac_aifens);
if (str)
aac_printf(softs, CE_NOTE, "AIF! %s", str);
else
aac_printf(softs, CE_NOTE, "AIF! Unknown(0x%x)",
aif_en_type);
break;
case AifCmdJobProgress:
switch (LE_32(aif->data.PR[0].status)) {
case AifJobStsSuccess:
str = "success"; break;
case AifJobStsFinished:
str = "finished"; break;
case AifJobStsAborted:
str = "aborted"; break;
case AifJobStsFailed:
str = "failed"; break;
case AifJobStsSuspended:
str = "suspended"; break;
case AifJobStsRunning:
str = "running"; break;
default:
str = "unknown"; break;
}
aac_printf(softs, CE_NOTE,
"AIF! JobProgress (%d) - %s (%d, %d)",
aif_seqnumber, str,
LE_32(aif->data.PR[0].currentTick),
LE_32(aif->data.PR[0].finalTick));
break;
case AifCmdAPIReport:
aac_printf(softs, CE_NOTE, "AIF! APIReport (%d)",
aif_seqnumber);
break;
case AifCmdDriverNotify:
aac_printf(softs, CE_NOTE, "AIF! DriverNotify (%d)",
aif_seqnumber);
break;
default:
aac_printf(softs, CE_NOTE, "AIF! AIF %d (%d)",
aif_command, aif_seqnumber);
break;
}
}
#endif /* DEBUG */