udp.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1990 Mentat Inc. */
#pragma ident "%Z%%M% %I% %E% SMI"
const char udp_version[] = "%Z%%M% %I% %E% SMI";
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/strlog.h>
#include <sys/strsun.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/timod.h>
#include <sys/tiuser.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/strsubr.h>
#include <sys/suntpi.h>
#include <sys/xti_inet.h>
#include <sys/cmn_err.h>
#include <sys/kmem.h>
#include <sys/policy.h>
#include <sys/ucred.h>
#include <sys/zone.h>
#include <sys/socket.h>
#include <sys/vtrace.h>
#include <sys/debug.h>
#include <sys/isa_defs.h>
#include <sys/random.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet/udp.h>
#include <net/if.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <inet/ip_ire.h>
#include <inet/mi.h>
#include <inet/mib2.h>
#include <inet/nd.h>
#include <inet/optcom.h>
#include <inet/snmpcom.h>
#include <inet/kstatcom.h>
#include <inet/udp_impl.h>
/*
* The ipsec_info.h header file is here since it has the defination for the
* M_CTL message types used by IP to convey information to the ULP. The
* ipsec_info.h needs the pfkeyv2.h, hence the latters presence.
*/
#include <net/pfkeyv2.h>
#include <inet/ipsec_info.h>
/*
* Object to represent database of options to search passed to
* {sock,tpi}optcom_req() interface routine to take care of option
* management and associated methods.
* XXX. These and other externs should really move to a udp header file.
*/
extern optdb_obj_t udp_opt_obj;
extern uint_t udp_max_optsize;
/*
* Synchronization notes:
*
* UDP uses a combination of the queue-pair STREAMS perimeter, a global
* lock and a set of bind hash locks to protect its data structures.
*
* The queue-pair perimeter is not acquired exclusively in the put
* procedures thus when udp_rput or udp_wput needs exclusive access to
* the udp_t instance structure it will use qwriter(..., PERIM_INNER) to
* asynchronously acquire exclusive access to the udp_t instance.
*
* When UDP global data needs to be modified the udp_g_lock mutex is acquired.
* Currently, udp_g_head and udp_g_epriv_ports[] are protected by it.
*
* When an UDP endpoint is bound to a local port, it is inserted into
* a bind hash list. The list consists of an array of udp_fanout_t buckets.
* The size of the array is controlled by the udp_bind_fanout_size variable.
* This variable can be changed in /etc/system if the default value is
* not large enough. Each bind hash bucket is protected by a per bucket lock.
* It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
* structure. An UDP endpoint is removed from the bind hash list only
* when it is being unbound or being closed. The per bucket lock also
* protects an UDP endpoint's state changes.
*/
/*
* Bind hash list size and hash function. It has to be a power of 2 for
* hashing.
*/
#define UDP_BIND_FANOUT_SIZE 512
#define UDP_BIND_HASH(lport) \
((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1))
/* UDP bind fanout hash structure. */
typedef struct udp_fanout_s {
udp_t *uf_udp;
kmutex_t uf_lock;
#if defined(_LP64) || defined(_I32LPx)
char uf_pad[48];
#else
char uf_pad[56];
#endif
} udp_fanout_t;
uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
/* udp_fanout_t *udp_bind_fanout. */
static udp_fanout_t *udp_bind_fanout;
/*
* This controls the rate some ndd info report functions can be used
* by non-priviledged users. It stores the last time such info is
* requested. When those report functions are called again, this
* is checked with the current time and compare with the ndd param
* udp_ndd_get_info_interval.
*/
static clock_t udp_last_ndd_get_info_time;
#define NDD_TOO_QUICK_MSG \
"ndd get info rate too high for non-priviledged users, try again " \
"later.\n"
#define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n"
/* Named Dispatch Parameter Management Structure */
typedef struct udpparam_s {
uint32_t udp_param_min;
uint32_t udp_param_max;
uint32_t udp_param_value;
char *udp_param_name;
} udpparam_t;
static void udp_addr_req(queue_t *q, mblk_t *mp);
static void udp_bind(queue_t *q, mblk_t *mp);
static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
static int udp_build_hdrs(queue_t *q, udp_t *udp);
static void udp_capability_req(queue_t *q, mblk_t *mp);
static int udp_close(queue_t *q);
static void udp_connect(queue_t *q, mblk_t *mp);
static void udp_disconnect(queue_t *q, mblk_t *mp);
static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
int sys_error);
static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
t_scalar_t tlierr, int unixerr);
static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
cred_t *cr);
static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
char *value, caddr_t cp, cred_t *cr);
static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
char *value, caddr_t cp, cred_t *cr);
static void udp_icmp_error(queue_t *q, mblk_t *mp);
static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
static void udp_info_req(queue_t *q, mblk_t *mp);
static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
t_scalar_t addr_length);
static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
int *errorp, void *thisdg_attrs);
static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
int udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name,
uchar_t *ptr);
int udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name,
uchar_t *ptr);
int udp_opt_set(queue_t *q, uint_t optset_context,
int level, int name,
uint_t inlen, uchar_t *invalp,
uint_t *outlenp, uchar_t *outvalp,
void *thisdg_attrs, cred_t *cr, mblk_t *mblk);
static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
static boolean_t udp_param_register(udpparam_t *udppa, int cnt);
static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr);
static int udp_pkt_set(uchar_t *invalp, uint_t inlen, boolean_t sticky,
uchar_t **optbufp, uint_t *optlenp);
static void udp_report_item(mblk_t *mp, udp_t *udp);
static void udp_rput(queue_t *q, mblk_t *mp);
static void udp_rput_bind_ack(queue_t *q, mblk_t *mp);
static void udp_rput_other(queue_t *q, mblk_t *mp);
static int udp_snmp_get(queue_t *q, mblk_t *mpctl);
static int udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
uchar_t *ptr, int len);
static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
cred_t *cr);
static void udp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err);
static void udp_unbind(queue_t *q, mblk_t *mp);
static in_port_t udp_update_next_port(in_port_t port, boolean_t random);
static void udp_wput(queue_t *q, mblk_t *mp);
static void udp_wput_ipv6(queue_t *q, mblk_t *mp, sin6_t *sin6,
t_scalar_t tudr_optlen);
static void udp_wput_other(queue_t *q, mblk_t *mp);
static void udp_wput_iocdata(queue_t *q, mblk_t *mp);
static void udp_kstat_init(void);
static void udp_kstat_fini(void);
static int udp_kstat_update(kstat_t *kp, int rw);
major_t UDP6_MAJ;
#define UDP6 "udp6"
#define UDP_MAXPACKET_IPV4 \
(IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
#define UDP_MAXPACKET_IPV6 \
(IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
static struct module_info info = {
5607, "udp", 1, INFPSZ, 512, 128
};
static struct qinit rinit = {
(pfi_t)udp_rput, NULL, udp_open, udp_close, NULL, &info
};
static struct qinit winit = {
(pfi_t)udp_wput, NULL, NULL, NULL, NULL, &info
};
struct streamtab udpinfo = {
&rinit, &winit
};
static sin_t sin_null; /* Zero address for quick clears */
static sin6_t sin6_null; /* Zero address for quick clears */
/* Protected by udp_g_lock */
static void *udp_g_head; /* Head for list of open udp streams. */
kmutex_t udp_g_lock; /* Protects the above variable */
/* Hint not protected by any lock */
static in_port_t udp_g_next_port_to_try;
/*
* Extra privileged ports. In host byte order. Protected by udp_g_lock.
*/
#define UDP_NUM_EPRIV_PORTS 64
static int udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 };
/* Only modified during _init and _fini thus no locking is needed. */
static IDP udp_g_nd; /* Points to table of UDP ND variables. */
/* MIB-2 stuff for SNMP */
static mib2_udp_t udp_mib; /* SNMP fixed size info */
static kstat_t *udp_mibkp; /* kstat exporting udp_mib data */
/* Default structure copied into T_INFO_ACK messages */
static struct T_info_ack udp_g_t_info_ack_ipv4 = {
T_INFO_ACK,
UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */
T_INVALID, /* ETSU_size. udp does not support expedited data. */
T_INVALID, /* CDATA_size. udp does not support connect data. */
T_INVALID, /* DDATA_size. udp does not support disconnect data. */
sizeof (sin_t), /* ADDR_size. */
0, /* OPT_size - not initialized here */
UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */
T_CLTS, /* SERV_type. udp supports connection-less. */
TS_UNBND, /* CURRENT_state. This is set from udp_state. */
(XPG4_1|SENDZERO) /* PROVIDER_flag */
};
static struct T_info_ack udp_g_t_info_ack_ipv6 = {
T_INFO_ACK,
UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */
T_INVALID, /* ETSU_size. udp does not support expedited data. */
T_INVALID, /* CDATA_size. udp does not support connect data. */
T_INVALID, /* DDATA_size. udp does not support disconnect data. */
sizeof (sin6_t), /* ADDR_size. */
0, /* OPT_size - not initialized here */
UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */
T_CLTS, /* SERV_type. udp supports connection-less. */
TS_UNBND, /* CURRENT_state. This is set from udp_state. */
(XPG4_1|SENDZERO) /* PROVIDER_flag */
};
/* largest UDP port number */
#define UDP_MAX_PORT 65535
/*
* Table of ND variables supported by udp. These are loaded into udp_g_nd
* in udp_open.
* All of these are alterable, within the min/max values given, at run time.
*/
static udpparam_t udp_param_arr[] = {
/* min max value name */
{ 0L, 256, 32, "udp_wroff_extra" },
{ 1L, 255, 255, "udp_ipv4_ttl" },
{ 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
{ 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" },
{ 0, 1, 1, "udp_do_checksum" },
{ 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" },
{ 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" },
{ 4096, 1024*1024, 56*1024, "udp_xmit_hiwat"},
{ 0, 1024*1024, 1024, "udp_xmit_lowat"},
{ 4096, 1024*1024, 56*1024, "udp_recv_hiwat"},
{ 65536, 1024*1024*1024, 2*1024*1024, "udp_max_buf"},
{ 100, 60000, 1000, "udp_ndd_get_info_interval"},
};
#define udp_wroff_extra udp_param_arr[0].udp_param_value
#define udp_ipv4_ttl udp_param_arr[1].udp_param_value
#define udp_ipv6_hoplimit udp_param_arr[2].udp_param_value
#define udp_smallest_nonpriv_port udp_param_arr[3].udp_param_value
#define udp_do_checksum udp_param_arr[4].udp_param_value
#define udp_smallest_anon_port udp_param_arr[5].udp_param_value
#define udp_largest_anon_port udp_param_arr[6].udp_param_value
#define udp_xmit_hiwat udp_param_arr[7].udp_param_value
#define udp_xmit_lowat udp_param_arr[8].udp_param_value
#define udp_recv_hiwat udp_param_arr[9].udp_param_value
#define udp_max_buf udp_param_arr[10].udp_param_value
#define udp_ndd_get_info_interval udp_param_arr[11].udp_param_value
/*
* The smallest anonymous port in the priviledged port range which UDP
* looks for free port. Use in the option UDP_ANONPRIVBIND.
*/
static in_port_t udp_min_anonpriv_port = 512;
/* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
uint32_t udp_random_anon_port = 1;
/*
* Hook functions to enable cluster networking.
* On non-clustered systems these vectors must always be NULL
*/
void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
uint8_t *laddrp, in_port_t lport) = NULL;
void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
uint8_t *laddrp, in_port_t lport) = NULL;
/*
* Return the next anonymous port in the priviledged port range for
* bind checking.
*/
static in_port_t
udp_get_next_priv_port(void)
{
static in_port_t next_priv_port = IPPORT_RESERVED - 1;
if (next_priv_port < udp_min_anonpriv_port) {
next_priv_port = IPPORT_RESERVED - 1;
}
return (next_priv_port--);
}
/* UDP bind hash report triggered via the Named Dispatch mechanism. */
/* ARGSUSED */
static int
udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
udp_fanout_t *udpf;
udp_t *udp;
int i;
zoneid_t zoneid;
/* Refer to comments in udp_status_report(). */
if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
drv_usectohz(udp_ndd_get_info_interval * 1000)) {
(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
return (0);
}
}
if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
/* The following may work even if we cannot get a large buf. */
(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
return (0);
}
(void) mi_mpprintf(mp,
"UDP " MI_COL_HDRPAD_STR
/* 12345678[89ABCDEF] */
" zone lport src addr dest addr port state");
/* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
udp = (udp_t *)q->q_ptr;
zoneid = udp->udp_zoneid;
for (i = 0; i < udp_bind_fanout_size; i++) {
udpf = &udp_bind_fanout[i];
mutex_enter(&udpf->uf_lock);
/* Print the hash index. */
udp = udpf->uf_udp;
if (zoneid != GLOBAL_ZONEID) {
/* skip to first entry in this zone; might be none */
while (udp != NULL &&
udp->udp_zoneid != zoneid)
udp = udp->udp_bind_hash;
}
if (udp != NULL) {
uint_t print_len, buf_len;
buf_len = mp->b_cont->b_datap->db_lim -
mp->b_cont->b_wptr;
print_len = snprintf((char *)mp->b_cont->b_wptr,
buf_len, "%d\n", i);
if (print_len < buf_len) {
mp->b_cont->b_wptr += print_len;
} else {
mp->b_cont->b_wptr += buf_len;
}
for (; udp != NULL; udp = udp->udp_bind_hash) {
if (zoneid == GLOBAL_ZONEID ||
zoneid == udp->udp_zoneid)
udp_report_item(mp->b_cont, udp);
}
}
mutex_exit(&udpf->uf_lock);
}
udp_last_ndd_get_info_time = ddi_get_lbolt();
return (0);
}
/*
* Hash list removal routine for udp_t structures.
*/
static void
udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
{
udp_t *udpnext;
kmutex_t *lockp;
if (udp->udp_ptpbhn == NULL)
return;
/*
* Extract the lock pointer in case there are concurrent
* hash_remove's for this instance.
*/
ASSERT(udp->udp_port != 0);
if (!caller_holds_lock) {
lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock;
ASSERT(lockp != NULL);
mutex_enter(lockp);
}
if (udp->udp_ptpbhn != NULL) {
udpnext = udp->udp_bind_hash;
if (udpnext != NULL) {
udpnext->udp_ptpbhn = udp->udp_ptpbhn;
udp->udp_bind_hash = NULL;
}
*udp->udp_ptpbhn = udpnext;
udp->udp_ptpbhn = NULL;
}
if (!caller_holds_lock) {
mutex_exit(lockp);
}
}
static void
udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
{
udp_t **udpp;
udp_t *udpnext;
ASSERT(MUTEX_HELD(&uf->uf_lock));
if (udp->udp_ptpbhn != NULL) {
udp_bind_hash_remove(udp, B_TRUE);
}
udpp = &uf->uf_udp;
udpnext = udpp[0];
if (udpnext != NULL) {
/*
* If the new udp bound to the INADDR_ANY address
* and the first one in the list is not bound to
* INADDR_ANY we skip all entries until we find the
* first one bound to INADDR_ANY.
* This makes sure that applications binding to a
* specific address get preference over those binding to
* INADDR_ANY.
*/
if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
!V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
while ((udpnext = udpp[0]) != NULL &&
!V6_OR_V4_INADDR_ANY(
udpnext->udp_bound_v6src)) {
udpp = &(udpnext->udp_bind_hash);
}
if (udpnext != NULL)
udpnext->udp_ptpbhn = &udp->udp_bind_hash;
} else {
udpnext->udp_ptpbhn = &udp->udp_bind_hash;
}
}
udp->udp_bind_hash = udpnext;
udp->udp_ptpbhn = udpp;
udpp[0] = udp;
}
/*
* This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
* passed to udp_wput.
* It associates a port number and local address with the stream.
* The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
* protocol type (IPPROTO_UDP) placed in the message following the address.
* A T_BIND_ACK message is passed upstream when ip acknowledges the request.
* (Called as writer.)
*
* Note that UDP over IPv4 and IPv6 sockets can use the same port number
* without setting SO_REUSEADDR. This is needed so that they
* can be viewed as two independent transport protocols.
* However, anonymouns ports are allocated from the same range to avoid
* duplicating the udp_g_next_port_to_try.
*/
static void
udp_bind(queue_t *q, mblk_t *mp)
{
sin_t *sin;
sin6_t *sin6;
mblk_t *mp1;
in_port_t port; /* Host byte order */
in_port_t requested_port; /* Host byte order */
struct T_bind_req *tbr;
udp_t *udp;
int count;
in6_addr_t v6src;
boolean_t bind_to_req_port_only;
int loopmax;
udp_fanout_t *udpf;
in_port_t lport; /* Network byte order */
zoneid_t zoneid;
udp = (udp_t *)q->q_ptr;
if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad req, len %u",
(uint_t)(mp->b_wptr - mp->b_rptr));
udp_err_ack(q, mp, TPROTO, 0);
return;
}
if (udp->udp_state != TS_UNBND) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad state, %u", udp->udp_state);
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
/*
* Reallocate the message to make sure we have enough room for an
* address and the protocol type.
*/
mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
if (!mp1) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
mp = mp1;
tbr = (struct T_bind_req *)mp->b_rptr;
switch (tbr->ADDR_length) {
case 0: /* Request for a generic port */
tbr->ADDR_offset = sizeof (struct T_bind_req);
if (udp->udp_family == AF_INET) {
tbr->ADDR_length = sizeof (sin_t);
sin = (sin_t *)&tbr[1];
*sin = sin_null;
sin->sin_family = AF_INET;
mp->b_wptr = (uchar_t *)&sin[1];
} else {
ASSERT(udp->udp_family == AF_INET6);
tbr->ADDR_length = sizeof (sin6_t);
sin6 = (sin6_t *)&tbr[1];
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
mp->b_wptr = (uchar_t *)&sin6[1];
}
port = 0;
break;
case sizeof (sin_t): /* Complete IPv4 address */
sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
sizeof (sin_t));
if (sin == NULL || !OK_32PTR((char *)sin)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (udp->udp_family != AF_INET ||
sin->sin_family != AF_INET) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
port = ntohs(sin->sin_port);
break;
case sizeof (sin6_t): /* complete IPv6 address */
sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
sizeof (sin6_t));
if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (udp->udp_family != AF_INET6 ||
sin6->sin6_family != AF_INET6) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
port = ntohs(sin6->sin6_port);
break;
default: /* Invalid request */
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
udp_err_ack(q, mp, TBADADDR, 0);
return;
}
requested_port = port;
if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
bind_to_req_port_only = B_FALSE;
else /* T_BIND_REQ and requested_port != 0 */
bind_to_req_port_only = B_TRUE;
if (requested_port == 0) {
/*
* If the application passed in zero for the port number, it
* doesn't care which port number we bind to. Get one in the
* valid range.
*/
if (udp->udp_anon_priv_bind) {
port = udp_get_next_priv_port();
} else {
port = udp_update_next_port(udp_g_next_port_to_try,
B_TRUE);
}
} else {
/*
* If the port is in the well-known privileged range,
* make sure the caller was privileged.
*/
int i;
boolean_t priv = B_FALSE;
if (port < udp_smallest_nonpriv_port) {
priv = B_TRUE;
} else {
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (port == udp_g_epriv_ports[i]) {
priv = B_TRUE;
break;
}
}
}
if (priv) {
cred_t *cr = DB_CREDDEF(mp, udp->udp_credp);
if (secpolicy_net_privaddr(cr, port) != 0) {
udp_err_ack(q, mp, TACCES, 0);
return;
}
}
}
/*
* Copy the source address into our udp structure. This address
* may still be zero; if so, IP will fill in the correct address
* each time an outbound packet is passed to it.
*/
if (udp->udp_family == AF_INET) {
ASSERT(sin != NULL);
ASSERT(udp->udp_ipversion == IPV4_VERSION);
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
udp->udp_ip_snd_options_len;
IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
} else {
ASSERT(sin6 != NULL);
v6src = sin6->sin6_addr;
if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
udp->udp_ipversion = IPV4_VERSION;
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
UDPH_SIZE + udp->udp_ip_snd_options_len;
} else {
udp->udp_ipversion = IPV6_VERSION;
udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
}
}
/*
* If udp_reuseaddr is not set, then we have to make sure that
* the IP address and port number the application requested
* (or we selected for the application) is not being used by
* another stream. If another stream is already using the
* requested IP address and port, the behavior depends on
* "bind_to_req_port_only". If set the bind fails; otherwise we
* search for any an unused port to bind to the the stream.
*
* As per the BSD semantics, as modified by the Deering multicast
* changes, if udp_reuseaddr is set, then we allow multiple binds
* to the same port independent of the local IP address.
*
* This is slightly different than in SunOS 4.X which did not
* support IP multicast. Note that the change implemented by the
* Deering multicast code effects all binds - not only binding
* to IP multicast addresses.
*
* Note that when binding to port zero we ignore SO_REUSEADDR in
* order to guarantee a unique port.
*/
count = 0;
if (udp->udp_anon_priv_bind) {
/* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */
loopmax = IPPORT_RESERVED - udp_min_anonpriv_port;
} else {
loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1;
}
zoneid = udp->udp_zoneid;
for (;;) {
udp_t *udp1;
boolean_t is_inaddr_any;
boolean_t found_exclbind = B_FALSE;
is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
/*
* Walk through the list of udp streams bound to
* requested port with the same IP address.
*/
lport = htons(port);
udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)];
mutex_enter(&udpf->uf_lock);
for (udp1 = udpf->uf_udp; udp1 != NULL;
udp1 = udp1->udp_bind_hash) {
if (lport != udp1->udp_port ||
zoneid != udp1->udp_zoneid)
continue;
/*
* If UDP_EXCLBIND is set for either the bound or
* binding endpoint, the semantics of bind
* is changed according to the following chart.
*
* spec = specified address (v4 or v6)
* unspec = unspecified address (v4 or v6)
* A = specified addresses are different for endpoints
*
* bound bind to allowed?
* -------------------------------------
* unspec unspec no
* unspec spec no
* spec unspec no
* spec spec yes if A
*/
if (udp1->udp_exclbind || udp->udp_exclbind) {
if (V6_OR_V4_INADDR_ANY(
udp1->udp_bound_v6src) ||
is_inaddr_any ||
IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
&v6src)) {
found_exclbind = B_TRUE;
break;
}
continue;
}
/*
* Check ipversion to allow IPv4 and IPv6 sockets to
* have disjoint port number spaces.
*/
if (udp->udp_ipversion != udp1->udp_ipversion)
continue;
/*
* No difference depending on SO_REUSEADDR.
*
* If existing port is bound to a
* non-wildcard IP address and
* the requesting stream is bound to
* a distinct different IP addresses
* (non-wildcard, also), keep going.
*/
if (!is_inaddr_any &&
!V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
!IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
&v6src)) {
continue;
}
break;
}
if (!found_exclbind &&
(udp->udp_reuseaddr && requested_port != 0)) {
break;
}
if (udp1 == NULL) {
/*
* No other stream has this IP address
* and port number. We can use it.
*/
break;
}
mutex_exit(&udpf->uf_lock);
if (bind_to_req_port_only) {
/*
* We get here only when requested port
* is bound (and only first of the for()
* loop iteration).
*
* The semantics of this bind request
* require it to fail so we return from
* the routine (and exit the loop).
*
*/
udp_err_ack(q, mp, TADDRBUSY, 0);
return;
}
if (udp->udp_anon_priv_bind) {
port = udp_get_next_priv_port();
} else {
if ((count == 0) && (requested_port != 0)) {
/*
* If the application wants us to find
* a port, get one to start with. Set
* requested_port to 0, so that we will
* update udp_g_next_port_to_try below.
*/
port = udp_update_next_port(
udp_g_next_port_to_try, B_TRUE);
requested_port = 0;
} else {
port = udp_update_next_port(port + 1, B_FALSE);
}
}
if (++count >= loopmax) {
/*
* We've tried every possible port number and
* there are none available, so send an error
* to the user.
*/
udp_err_ack(q, mp, TNOADDR, 0);
return;
}
}
/*
* Copy the source address into our udp structure. This address
* may still be zero; if so, ip will fill in the correct address
* each time an outbound packet is passed to it.
* If we are binding to a broadcast or multicast address udp_rput
* will clear the source address when it receives the T_BIND_ACK.
*/
udp->udp_v6src = udp->udp_bound_v6src = v6src;
udp->udp_port = lport;
/*
* Now reset the the next anonymous port if the application requested
* an anonymous port, or we handed out the next anonymous port.
*/
if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
udp_g_next_port_to_try = port + 1;
}
/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
if (udp->udp_family == AF_INET) {
sin->sin_port = udp->udp_port;
} else {
int error;
sin6->sin6_port = udp->udp_port;
/* Rebuild the header template */
error = udp_build_hdrs(q, udp);
if (error != 0) {
mutex_exit(&udpf->uf_lock);
udp_err_ack(q, mp, TSYSERR, error);
return;
}
}
udp->udp_state = TS_IDLE;
udp_bind_hash_insert(udpf, udp);
mutex_exit(&udpf->uf_lock);
if (cl_inet_bind) {
/*
* Running in cluster mode - register bind information
*/
if (udp->udp_ipversion == IPV4_VERSION) {
(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
(uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
(in_port_t)udp->udp_port);
} else {
(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
(uint8_t *)&(udp->udp_v6src),
(in_port_t)udp->udp_port);
}
}
/* Pass the protocol number in the message following the address. */
*mp->b_wptr++ = IPPROTO_UDP;
if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
/*
* Append a request for an IRE if udp_v6src not
* zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
*/
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
}
putnext(q, mp);
}
/*
* This routine handles each T_CONN_REQ message passed to udp. It
* associates a default destination address with the stream.
*
* This routine sends down a T_BIND_REQ to IP with the following mblks:
* T_BIND_REQ - specifying local and remote address/port
* IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src
* T_OK_ACK - for the T_CONN_REQ
* T_CONN_CON - to keep the TPI user happy
*
* The connect completes in udp_rput.
* When a T_BIND_ACK is received information is extracted from the IRE
* and the two appended messages are sent to the TPI user.
* Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
* it to an error ack for the appropriate primitive.
*/
static void
udp_connect(queue_t *q, mblk_t *mp)
{
sin6_t *sin6;
sin_t *sin;
struct T_conn_req *tcr;
udp_t *udp, *udp1;
in6_addr_t v6dst;
ipaddr_t v4dst;
uint16_t dstport;
uint32_t flowinfo;
mblk_t *mp1, *mp2;
udp_fanout_t *udpf;
udp = (udp_t *)q->q_ptr;
tcr = (struct T_conn_req *)mp->b_rptr;
/* A bit of sanity checking */
if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
udp_err_ack(q, mp, TPROTO, 0);
return;
}
/*
* This UDP must have bound to a port already before doing
* a connect.
*/
if (udp->udp_state == TS_UNBND) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_connect: bad state, %u", udp->udp_state);
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
if (udp->udp_state == TS_DATA_XFER) {
/* Already connected - clear out state */
mutex_enter(&udpf->uf_lock);
udp->udp_v6src = udp->udp_bound_v6src;
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
}
if (tcr->OPT_length != 0) {
udp_err_ack(q, mp, TBADOPT, 0);
return;
}
/*
* Determine packet type based on type of address passed in
* the request should contain an IPv4 or IPv6 address.
* Make sure that address family matches the type of
* family of the the address passed down
*/
switch (tcr->DEST_length) {
default:
udp_err_ack(q, mp, TBADADDR, 0);
return;
case sizeof (sin_t):
sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
sizeof (sin_t));
if (sin == NULL || !OK_32PTR((char *)sin)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (udp->udp_family != AF_INET ||
sin->sin_family != AF_INET) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
v4dst = sin->sin_addr.s_addr;
dstport = sin->sin_port;
IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
ASSERT(udp->udp_ipversion == IPV4_VERSION);
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
udp->udp_ip_snd_options_len;
break;
case sizeof (sin6_t):
sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
sizeof (sin6_t));
if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (udp->udp_family != AF_INET6 ||
sin6->sin6_family != AF_INET6) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
v6dst = sin6->sin6_addr;
if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
udp->udp_ipversion = IPV4_VERSION;
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
UDPH_SIZE + udp->udp_ip_snd_options_len;
flowinfo = 0;
} else {
udp->udp_ipversion = IPV6_VERSION;
udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
flowinfo = sin6->sin6_flowinfo;
}
dstport = sin6->sin6_port;
break;
}
if (dstport == 0) {
udp_err_ack(q, mp, TBADADDR, 0);
return;
}
/*
* Create a default IP header with no IP options.
*/
udp->udp_dstport = dstport;
if (udp->udp_ipversion == IPV4_VERSION) {
/*
* Interpret a zero destination to mean loopback.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
if (v4dst == INADDR_ANY) {
v4dst = htonl(INADDR_LOOPBACK);
IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
if (udp->udp_family == AF_INET) {
sin->sin_addr.s_addr = v4dst;
} else {
sin6->sin6_addr = v6dst;
}
}
udp->udp_v6dst = v6dst;
udp->udp_flowinfo = 0;
/*
* If the destination address is multicast and
* an outgoing multicast interface has been set,
* use the address of that interface as our
* source address if no source address has been set.
*/
if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
CLASSD(v4dst) &&
udp->udp_multicast_if_addr != INADDR_ANY) {
IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
&udp->udp_v6src);
}
} else {
ASSERT(udp->udp_ipversion == IPV6_VERSION);
/*
* Interpret a zero destination to mean loopback.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
v6dst = ipv6_loopback;
sin6->sin6_addr = v6dst;
}
udp->udp_v6dst = v6dst;
udp->udp_flowinfo = flowinfo;
/*
* If the destination address is multicast and
* an outgoing multicast interface has been set,
* then the ip bind logic will pick the correct source
* address (i.e. matching the outgoing multicast interface).
*/
}
/*
* Verify that the src/port/dst/port is unique for all
* connections in TS_DATA_XFER
*/
mutex_enter(&udpf->uf_lock);
for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
if (udp1->udp_state != TS_DATA_XFER)
continue;
if (udp->udp_port != udp1->udp_port ||
udp->udp_ipversion != udp1->udp_ipversion ||
dstport != udp1->udp_dstport ||
!IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
!IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst))
continue;
mutex_exit(&udpf->uf_lock);
udp_err_ack(q, mp, TBADADDR, 0);
return;
}
udp->udp_state = TS_DATA_XFER;
mutex_exit(&udpf->uf_lock);
/*
* Send down bind to IP to verify that there is a route
* and to determine the source address.
* This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
*/
if (udp->udp_family == AF_INET)
mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
else
mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
if (mp1 == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
bind_failed:
mutex_enter(&udpf->uf_lock);
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
return;
}
/*
* We also have to send a connection confirmation to
* keep TLI happy. Prepare it for udp_rput.
*/
if (udp->udp_family == AF_INET)
mp2 = mi_tpi_conn_con(NULL, (char *)sin,
sizeof (*sin), NULL, 0);
else
mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
sizeof (*sin6), NULL, 0);
if (mp2 == NULL) {
freemsg(mp1);
udp_err_ack(q, mp, TSYSERR, ENOMEM);
goto bind_failed;
}
mp = mi_tpi_ok_ack_alloc(mp);
if (mp == NULL) {
/* Unable to reuse the T_CONN_REQ for the ack. */
freemsg(mp2);
udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
goto bind_failed;
}
/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
linkb(mp1, mp);
linkb(mp1, mp2);
putnext(q, mp1);
}
/* This is the close routine for udp. It frees the per-stream data. */
static int
udp_close(queue_t *q)
{
udp_t *udp = (udp_t *)q->q_ptr;
TRACE_1(TR_FAC_UDP, TR_UDP_CLOSE,
"udp_close: q %p", q);
qprocsoff(q);
if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
/*
* Running in cluster mode - register unbind information
*/
if (udp->udp_ipversion == IPV4_VERSION) {
(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
(uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
(in_port_t)udp->udp_port);
} else {
(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
(uint8_t *)(&(udp->udp_v6src)),
(in_port_t)udp->udp_port);
}
}
udp_bind_hash_remove(udp, B_FALSE);
mutex_enter(&udp_g_lock);
/* Unlink the udp structure and release the minor device number. */
mi_close_unlink(&udp_g_head, (IDP)udp);
mutex_exit(&udp_g_lock);
/* If there are any options associated with the stream, free them. */
if (udp->udp_ip_snd_options)
mi_free((char *)udp->udp_ip_snd_options);
if (udp->udp_ip_rcv_options)
mi_free((char *)udp->udp_ip_rcv_options);
/* Free memory associated with sticky options */
if (udp->udp_sticky_hdrs_len != 0) {
kmem_free(udp->udp_sticky_hdrs,
udp->udp_sticky_hdrs_len);
udp->udp_sticky_hdrs = NULL;
udp->udp_sticky_hdrs_len = 0;
}
if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
kmem_free(udp->udp_sticky_ipp.ipp_hopopts,
udp->udp_sticky_ipp.ipp_hopoptslen);
}
if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
kmem_free(udp->udp_sticky_ipp.ipp_rtdstopts,
udp->udp_sticky_ipp.ipp_rtdstoptslen);
}
if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
kmem_free(udp->udp_sticky_ipp.ipp_rthdr,
udp->udp_sticky_ipp.ipp_rthdrlen);
}
if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
kmem_free(udp->udp_sticky_ipp.ipp_dstopts,
udp->udp_sticky_ipp.ipp_dstoptslen);
}
udp->udp_sticky_ipp.ipp_fields &=
~(IPPF_HOPOPTS|IPPF_RTDSTOPTS|IPPF_RTHDR|IPPF_DSTOPTS);
crfree(udp->udp_credp);
/* Free the data structure */
mi_close_free((IDP)udp);
q->q_ptr = WR(q)->q_ptr = NULL;
return (0);
}
/*
* This routine handles each T_DISCON_REQ message passed to udp
* as an indicating that UDP is no longer connected. This results
* in sending a T_BIND_REQ to IP to restore the binding to just
* the local address/port.
*
* This routine sends down a T_BIND_REQ to IP with the following mblks:
* T_BIND_REQ - specifying just the local address/port
* T_OK_ACK - for the T_DISCON_REQ
*
* The disconnect completes in udp_rput.
* When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
* Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
* it to an error ack for the appropriate primitive.
*/
static void
udp_disconnect(queue_t *q, mblk_t *mp)
{
udp_t *udp;
mblk_t *mp1;
udp_fanout_t *udpf;
udp = (udp_t *)q->q_ptr;
if (udp->udp_state != TS_DATA_XFER) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_disconnect: bad state, %u", udp->udp_state);
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
mutex_enter(&udpf->uf_lock);
udp->udp_v6src = udp->udp_bound_v6src;
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
/*
* Send down bind to IP to remove the full binding and revert
* to the local address binding.
*/
if (udp->udp_family == AF_INET)
mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
else
mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
if (mp1 == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
mp = mi_tpi_ok_ack_alloc(mp);
if (mp == NULL) {
/* Unable to reuse the T_DISCON_REQ for the ack. */
udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
return;
}
if (udp->udp_family == AF_INET6) {
int error;
/* Rebuild the header template */
error = udp_build_hdrs(q, udp);
if (error != 0) {
udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
freemsg(mp1);
return;
}
}
mutex_enter(&udpf->uf_lock);
udp->udp_discon_pending = 1;
mutex_exit(&udpf->uf_lock);
/* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */
linkb(mp1, mp);
putnext(q, mp1);
}
/* This routine creates a T_ERROR_ACK message and passes it upstream. */
static void
udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
{
if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
qreply(q, mp);
}
/* Shorthand to generate and send TPI error acks to our client */
static void
udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
int sys_error)
{
struct T_error_ack *teackp;
if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
M_PCPROTO, T_ERROR_ACK)) != NULL) {
teackp = (struct T_error_ack *)mp->b_rptr;
teackp->ERROR_prim = primitive;
teackp->TLI_error = t_error;
teackp->UNIX_error = sys_error;
qreply(q, mp);
}
}
/*ARGSUSED*/
static int
udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
int i;
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (udp_g_epriv_ports[i] != 0)
(void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]);
}
return (0);
}
/*
* Hold udp_g_lock to prevent multiple threads from changing udp_g_epriv_ports
* at the same time.
*/
/* ARGSUSED */
static int
udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr)
{
long new_value;
int i;
/*
* Fail the request if the new value does not lie within the
* port number limits.
*/
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value <= 0 || new_value >= 65536) {
return (EINVAL);
}
mutex_enter(&udp_g_lock);
/* Check if the value is already in the list */
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (new_value == udp_g_epriv_ports[i]) {
mutex_exit(&udp_g_lock);
return (EEXIST);
}
}
/* Find an empty slot */
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (udp_g_epriv_ports[i] == 0)
break;
}
if (i == udp_g_num_epriv_ports) {
mutex_exit(&udp_g_lock);
return (EOVERFLOW);
}
/* Set the new value */
udp_g_epriv_ports[i] = (in_port_t)new_value;
mutex_exit(&udp_g_lock);
return (0);
}
/*
* Hold udp_g_lock to prevent multiple threads from changing udp_g_epriv_ports
* at the same time.
*/
/* ARGSUSED */
static int
udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr)
{
long new_value;
int i;
/*
* Fail the request if the new value does not lie within the
* port number limits.
*/
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value <= 0 || new_value >= 65536) {
return (EINVAL);
}
mutex_enter(&udp_g_lock);
/* Check that the value is already in the list */
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (udp_g_epriv_ports[i] == new_value)
break;
}
if (i == udp_g_num_epriv_ports) {
mutex_exit(&udp_g_lock);
return (ESRCH);
}
/* Clear the value */
udp_g_epriv_ports[i] = 0;
mutex_exit(&udp_g_lock);
return (0);
}
/* At minimum we need 4 bytes of UDP header */
#define ICMP_MIN_UDP_HDR 4
/*
* udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP.
* Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
* Assumes that IP has pulled up everything up to and including the ICMP header.
* An M_CTL could potentially come here from some other module (i.e. if UDP
* is pushed on some module other than IP). Thus, if we find that the M_CTL
* does not have enough ICMP information , following STREAMS conventions,
* we send it upstream assuming it is an M_CTL we don't understand.
*/
static void
udp_icmp_error(queue_t *q, mblk_t *mp)
{
icmph_t *icmph;
ipha_t *ipha;
int iph_hdr_length;
udpha_t *udpha;
sin_t sin;
sin6_t sin6;
mblk_t *mp1;
int error = 0;
udp_t *udp = (udp_t *)q->q_ptr;
size_t mp_size = MBLKL(mp);
/*
* Assume IP provides aligned packets - otherwise toss
*/
if (!OK_32PTR(mp->b_rptr)) {
freemsg(mp);
return;
}
/*
* Verify that we have a complete IP header and the application has
* asked for errors. If not, send it upstream.
*/
if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) {
noticmpv4:
putnext(q, mp);
return;
}
ipha = (ipha_t *)mp->b_rptr;
/*
* Verify IP version. Anything other than IPv4 or IPv6 packet is sent
* upstream. ICMPv6 is handled in udp_icmp_error_ipv6.
*/
switch (IPH_HDR_VERSION(ipha)) {
case IPV6_VERSION:
udp_icmp_error_ipv6(q, mp);
return;
case IPV4_VERSION:
break;
default:
goto noticmpv4;
}
/* Skip past the outer IP and ICMP headers */
iph_hdr_length = IPH_HDR_LENGTH(ipha);
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
/*
* If we don't have the correct outer IP header length or if the ULP
* is not IPPROTO_ICMP or if we don't have a complete inner IP header
* send the packet upstream.
*/
if (iph_hdr_length < sizeof (ipha_t) ||
ipha->ipha_protocol != IPPROTO_ICMP ||
(ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
goto noticmpv4;
}
ipha = (ipha_t *)&icmph[1];
/* Skip past the inner IP and find the ULP header */
iph_hdr_length = IPH_HDR_LENGTH(ipha);
udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
/*
* If we don't have the correct inner IP header length or if the ULP
* is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR
* bytes of UDP header, send it upstream.
*/
if (iph_hdr_length < sizeof (ipha_t) ||
ipha->ipha_protocol != IPPROTO_UDP ||
(uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) {
goto noticmpv4;
}
switch (icmph->icmph_type) {
case ICMP_DEST_UNREACHABLE:
switch (icmph->icmph_code) {
case ICMP_FRAGMENTATION_NEEDED:
/*
* IP has already adjusted the path MTU.
* XXX Somehow pass MTU indication to application?
*/
break;
case ICMP_PORT_UNREACHABLE:
case ICMP_PROTOCOL_UNREACHABLE:
error = ECONNREFUSED;
break;
default:
/* Transient errors */
break;
}
break;
default:
/* Transient errors */
break;
}
if (error == 0) {
freemsg(mp);
return;
}
switch (udp->udp_family) {
case AF_INET:
sin = sin_null;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = ipha->ipha_dst;
sin.sin_port = udpha->uha_dst_port;
mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
error);
break;
case AF_INET6:
sin6 = sin6_null;
sin6.sin6_family = AF_INET6;
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
sin6.sin6_port = udpha->uha_dst_port;
mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
NULL, 0, error);
break;
}
if (mp1)
putnext(q, mp1);
freemsg(mp);
}
/*
* udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
* Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
* Assumes that IP has pulled up all the extension headers as well as the
* ICMPv6 header.
* An M_CTL could potentially come here from some other module (i.e. if UDP
* is pushed on some module other than IP). Thus, if we find that the M_CTL
* does not have enough ICMP information , following STREAMS conventions,
* we send it upstream assuming it is an M_CTL we don't understand. The reason
* it might get here is if the non-ICMP M_CTL accidently has 6 in the version
* field (when cast to ipha_t in udp_icmp_error).
*/
static void
udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
{
udp_t *udp = (udp_t *)q->q_ptr;
icmp6_t *icmp6;
ip6_t *ip6h, *outer_ip6h;
uint16_t hdr_length;
uint8_t *nexthdrp;
udpha_t *udpha;
sin6_t sin6;
mblk_t *mp1;
int error = 0;
size_t mp_size = MBLKL(mp);
/*
* Verify that we have a complete IP header. If not, send it upstream.
*/
if (mp_size < sizeof (ip6_t)) {
noticmpv6:
putnext(q, mp);
return;
}
outer_ip6h = (ip6_t *)mp->b_rptr;
/*
* Verify this is an ICMPV6 packet, else send it upstream
*/
if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) {
hdr_length = IPV6_HDR_LEN;
} else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length,
&nexthdrp) ||
*nexthdrp != IPPROTO_ICMPV6) {
goto noticmpv6;
}
icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length];
ip6h = (ip6_t *)&icmp6[1];
/*
* Verify we have a complete ICMP and inner IP header.
*/
if ((uchar_t *)&ip6h[1] > mp->b_wptr)
goto noticmpv6;
if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp))
goto noticmpv6;
udpha = (udpha_t *)((char *)ip6h + hdr_length);
/*
* Validate inner header. If the ULP is not IPPROTO_UDP or if we don't
* have at least ICMP_MIN_UDP_HDR bytes of UDP header send the
* packet upstream.
*/
if ((*nexthdrp != IPPROTO_UDP) ||
((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) {
goto noticmpv6;
}
switch (icmp6->icmp6_type) {
case ICMP6_DST_UNREACH:
switch (icmp6->icmp6_code) {
case ICMP6_DST_UNREACH_NOPORT:
error = ECONNREFUSED;
break;
case ICMP6_DST_UNREACH_ADMIN:
case ICMP6_DST_UNREACH_NOROUTE:
case ICMP6_DST_UNREACH_BEYONDSCOPE:
case ICMP6_DST_UNREACH_ADDR:
/* Transient errors */
break;
default:
break;
}
break;
case ICMP6_PACKET_TOO_BIG: {
struct T_unitdata_ind *tudi;
struct T_opthdr *toh;
size_t udi_size;
mblk_t *newmp;
t_scalar_t opt_length = sizeof (struct T_opthdr) +
sizeof (struct ip6_mtuinfo);
sin6_t *sin6;
struct ip6_mtuinfo *mtuinfo;
/*
* If the application has requested to receive path mtu
* information, send up an empty message containing an
* IPV6_PATHMTU ancillary data item.
*/
if (!udp->udp_ipv6_recvpathmtu)
break;
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
opt_length;
if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
BUMP_MIB(&udp_mib, udpInErrors);
break;
}
/*
* newmp->b_cont is left to NULL on purpose. This is an
* empty message containing only ancillary data.
*/
newmp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)newmp->b_rptr;
newmp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin6_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
tudi->OPT_length = opt_length;
sin6 = (sin6_t *)&tudi[1];
bzero(sin6, sizeof (sin6_t));
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = udp->udp_v6dst;
toh = (struct T_opthdr *)&sin6[1];
toh->level = IPPROTO_IPV6;
toh->name = IPV6_PATHMTU;
toh->len = opt_length;
toh->status = 0;
mtuinfo = (struct ip6_mtuinfo *)&toh[1];
bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
mtuinfo->ip6m_addr.sin6_family = AF_INET6;
mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
/*
* We've consumed everything we need from the original
* message. Free it, then send our empty message.
*/
freemsg(mp);
putnext(q, newmp);
return;
}
case ICMP6_TIME_EXCEEDED:
/* Transient errors */
break;
case ICMP6_PARAM_PROB:
/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
(uchar_t *)ip6h + icmp6->icmp6_pptr ==
(uchar_t *)nexthdrp) {
error = ECONNREFUSED;
break;
}
break;
}
if (error == 0) {
freemsg(mp);
return;
}
sin6 = sin6_null;
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = ip6h->ip6_dst;
sin6.sin6_port = udpha->uha_dst_port;
sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
error);
if (mp1)
putnext(q, mp1);
freemsg(mp);
}
/*
* This routine responds to T_ADDR_REQ messages. It is called by udp_wput.
* The local address is filled in if endpoint is bound. The remote address
* is filled in if remote address has been precified ("connected endpoint")
* (The concept of connected CLTS sockets is alien to published TPI
* but we support it anyway).
*/
static void
udp_addr_req(queue_t *q, mblk_t *mp)
{
udp_t *udp = (udp_t *)q->q_ptr;
sin_t *sin;
sin6_t *sin6;
mblk_t *ackmp;
struct T_addr_ack *taa;
/* Make it large enough for worst case */
ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2 * sizeof (sin6_t), 1);
if (ackmp == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
taa = (struct T_addr_ack *)ackmp->b_rptr;
bzero(taa, sizeof (struct T_addr_ack));
ackmp->b_wptr = (uchar_t *)&taa[1];
taa->PRIM_type = T_ADDR_ACK;
ackmp->b_datap->db_type = M_PCPROTO;
/*
* Note: Following code assumes 32 bit alignment of basic
* data structures like sin_t and struct T_addr_ack.
*/
if (udp->udp_state != TS_UNBND) {
/*
* Fill in local address first
*/
taa->LOCADDR_offset = sizeof (*taa);
if (udp->udp_family == AF_INET) {
taa->LOCADDR_length = sizeof (sin_t);
sin = (sin_t *)&taa[1];
/* Fill zeroes and then initialize non-zero fields */
*sin = sin_null;
sin->sin_family = AF_INET;
if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
sin->sin_addr.s_addr);
} else {
/*
* INADDR_ANY
* udp_v6src is not set, we might be bound to
* broadcast/multicast. Use udp_bound_v6src as
* local address instead (that could
* also still be INADDR_ANY)
*/
IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
sin->sin_addr.s_addr);
}
sin->sin_port = udp->udp_port;
ackmp->b_wptr = (uchar_t *)&sin[1];
if (udp->udp_state == TS_DATA_XFER) {
/*
* connected, fill remote address too
*/
taa->REMADDR_length = sizeof (sin_t);
/* assumed 32-bit alignment */
taa->REMADDR_offset = taa->LOCADDR_offset +
taa->LOCADDR_length;
sin = (sin_t *)(ackmp->b_rptr +
taa->REMADDR_offset);
/* initialize */
*sin = sin_null;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr =
V4_PART_OF_V6(udp->udp_v6dst);
sin->sin_port = udp->udp_dstport;
ackmp->b_wptr = (uchar_t *)&sin[1];
}
} else {
taa->LOCADDR_length = sizeof (sin6_t);
sin6 = (sin6_t *)&taa[1];
/* Fill zeroes and then initialize non-zero fields */
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
sin6->sin6_addr = udp->udp_v6src;
} else {
/*
* UNSPECIFIED
* udp_v6src is not set, we might be bound to
* broadcast/multicast. Use udp_bound_v6src as
* local address instead (that could
* also still be UNSPECIFIED)
*/
sin6->sin6_addr =
udp->udp_bound_v6src;
}
sin6->sin6_port = udp->udp_port;
ackmp->b_wptr = (uchar_t *)&sin6[1];
if (udp->udp_state == TS_DATA_XFER) {
/*
* connected, fill remote address too
*/
taa->REMADDR_length = sizeof (sin6_t);
/* assumed 32-bit alignment */
taa->REMADDR_offset = taa->LOCADDR_offset +
taa->LOCADDR_length;
sin6 = (sin6_t *)(ackmp->b_rptr +
taa->REMADDR_offset);
/* initialize */
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = udp->udp_v6dst;
sin6->sin6_port = udp->udp_dstport;
ackmp->b_wptr = (uchar_t *)&sin6[1];
}
ackmp->b_wptr = (uchar_t *)&sin6[1];
}
}
ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
qreply(q, ackmp);
}
static void
udp_copy_info(struct T_info_ack *tap, udp_t *udp)
{
if (udp->udp_family == AF_INET) {
*tap = udp_g_t_info_ack_ipv4;
} else {
*tap = udp_g_t_info_ack_ipv6;
}
tap->CURRENT_state = udp->udp_state;
tap->OPT_size = udp_max_optsize;
}
/*
* This routine responds to T_CAPABILITY_REQ messages. It is called by
* udp_wput. Much of the T_CAPABILITY_ACK information is copied from
* udp_g_t_info_ack. The current state of the stream is copied from
* udp_state.
*/
static void
udp_capability_req(queue_t *q, mblk_t *mp)
{
udp_t *udp = (udp_t *)q->q_ptr;
t_uscalar_t cap_bits1;
struct T_capability_ack *tcap;
cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
mp->b_datap->db_type, T_CAPABILITY_ACK);
if (!mp)
return;
tcap = (struct T_capability_ack *)mp->b_rptr;
tcap->CAP_bits1 = 0;
if (cap_bits1 & TC1_INFO) {
udp_copy_info(&tcap->INFO_ack, udp);
tcap->CAP_bits1 |= TC1_INFO;
}
qreply(q, mp);
}
/*
* This routine responds to T_INFO_REQ messages. It is called by udp_wput.
* Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
* The current state of the stream is copied from udp_state.
*/
static void
udp_info_req(queue_t *q, mblk_t *mp)
{
udp_t *udp = (udp_t *)q->q_ptr;
/* Create a T_INFO_ACK message. */
mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
T_INFO_ACK);
if (!mp)
return;
udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
qreply(q, mp);
}
/*
* IP recognizes seven kinds of bind requests:
*
* - A zero-length address binds only to the protocol number.
*
* - A 4-byte address is treated as a request to
* validate that the address is a valid local IPv4
* address, appropriate for an application to bind to.
* IP does the verification, but does not make any note
* of the address at this time.
*
* - A 16-byte address contains is treated as a request
* to validate a local IPv6 address, as the 4-byte
* address case above.
*
* - A 16-byte sockaddr_in to validate the local IPv4 address and also
* use it for the inbound fanout of packets.
*
* - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
* use it for the inbound fanout of packets.
*
* - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
* information consisting of local and remote addresses
* and ports. In this case, the addresses are both
* validated as appropriate for this operation, and, if
* so, the information is retained for use in the
* inbound fanout.
*
* - A 36-byte address address (ipa6_conn_t) containing complete IPv6
* fanout information, like the 12-byte case above.
*
* IP will also fill in the IRE request mblk with information
* regarding our peer. In all cases, we notify IP of our protocol
* type by appending a single protocol byte to the bind request.
*/
static mblk_t *
udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
{
char *cp;
mblk_t *mp;
struct T_bind_req *tbr;
ipa_conn_t *ac;
ipa6_conn_t *ac6;
sin_t *sin;
sin6_t *sin6;
ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
if (!mp)
return (mp);
mp->b_datap->db_type = M_PROTO;
tbr = (struct T_bind_req *)mp->b_rptr;
tbr->PRIM_type = bind_prim;
tbr->ADDR_offset = sizeof (*tbr);
tbr->CONIND_number = 0;
tbr->ADDR_length = addr_length;
cp = (char *)&tbr[1];
switch (addr_length) {
case sizeof (ipa_conn_t):
ASSERT(udp->udp_family == AF_INET);
/* Append a request for an IRE */
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
freemsg(mp);
return (NULL);
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
/* cp known to be 32 bit aligned */
ac = (ipa_conn_t *)cp;
ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
ac->ac_fport = udp->udp_dstport;
ac->ac_lport = udp->udp_port;
break;
case sizeof (ipa6_conn_t):
ASSERT(udp->udp_family == AF_INET6);
/* Append a request for an IRE */
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
freemsg(mp);
return (NULL);
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
/* cp known to be 32 bit aligned */
ac6 = (ipa6_conn_t *)cp;
ac6->ac6_laddr = udp->udp_v6src;
ac6->ac6_faddr = udp->udp_v6dst;
ac6->ac6_fport = udp->udp_dstport;
ac6->ac6_lport = udp->udp_port;
break;
case sizeof (sin_t):
ASSERT(udp->udp_family == AF_INET);
/* Append a request for an IRE */
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
freemsg(mp);
return (NULL);
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
sin = (sin_t *)cp;
*sin = sin_null;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
sin->sin_port = udp->udp_port;
break;
case sizeof (sin6_t):
ASSERT(udp->udp_family == AF_INET6);
/* Append a request for an IRE */
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
freemsg(mp);
return (NULL);
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
sin6 = (sin6_t *)cp;
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = udp->udp_bound_v6src;
sin6->sin6_port = udp->udp_port;
break;
}
/* Add protocol number to end */
cp[addr_length] = (char)IPPROTO_UDP;
mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
return (mp);
}
/*
* This is the open routine for udp. It allocates a udp_t structure for
* the stream and, on the first open of the module, creates an ND table.
*/
static int
udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
int err;
udp_t *udp;
TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
/*
* Defer the qprocson until everything is initialized since
* we are D_MTPERQ and after qprocson the rput routine can
* run.
*/
/* If the stream is already open, return immediately. */
if (q->q_ptr != NULL)
return (0);
/* If this is not a push of udp as a module, fail. */
if (sflag != MODOPEN)
return (EINVAL);
/*
* Create and initialize a udp_t structure for this stream.
*/
udp = (udp_t *)mi_open_alloc_sleep(sizeof (udp_t));
/* Set the initial state of the stream and the privilege status. */
q->q_ptr = WR(q)->q_ptr = udp;
udp->udp_state = TS_UNBND;
if (getmajor(*devp) == (major_t)UDP6_MAJ) {
udp->udp_family = AF_INET6;
udp->udp_ipversion = IPV6_VERSION;
udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
udp->udp_ttl = udp_ipv6_hoplimit;
} else {
udp->udp_family = AF_INET;
udp->udp_ipversion = IPV4_VERSION;
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
udp->udp_ttl = udp_ipv4_ttl;
}
/*
* The receive hiwat is only looked at on the stream head queue.
* Store in q_hiwat in order to return on SO_RCVBUF getsockopts.
*/
q->q_hiwat = udp_recv_hiwat;
udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
udp->udp_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
udp->udp_credp = credp;
crhold(credp);
udp->udp_zoneid = getzoneid();
/*
* Acquire the lock and link it into the list of open streams.
*/
mutex_enter(&udp_g_lock);
err = mi_open_link(&udp_g_head, (IDP)udp, devp, flag, sflag, credp);
mutex_exit(&udp_g_lock);
if (err != 0)
goto error;
qprocson(q);
/*
* The transmit hiwat/lowat is only looked at on IP's queue.
* Store in q_hiwat in order to return on SO_SNDBUF
* getsockopts.
*/
WR(q)->q_hiwat = udp_xmit_hiwat;
WR(q)->q_next->q_hiwat = WR(q)->q_hiwat;
WR(q)->q_lowat = udp_xmit_lowat;
WR(q)->q_next->q_lowat = WR(q)->q_lowat;
if (udp->udp_family == AF_INET6) {
/* Build initial header template for transmit */
if ((err = udp_build_hdrs(q, udp)) != 0) {
qprocsoff(q);
/*
* Unlink the udp structure and release
* the minor device number.
*/
mutex_enter(&udp_g_lock);
mi_close_unlink(&udp_g_head, (IDP)udp);
mutex_exit(&udp_g_lock);
goto error;
}
}
/* Set the Stream head write offset. */
(void) mi_set_sth_wroff(q, udp->udp_max_hdr_len + udp_wroff_extra);
(void) mi_set_sth_hiwat(q, q->q_hiwat);
return (0);
error:
q->q_ptr = WR(q)->q_ptr = NULL;
crfree(credp);
mi_close_free((IDP)udp);
return (err);
}
/*
* Which UDP options OK to set through T_UNITDATA_REQ...
*/
/* ARGSUSED */
static boolean_t
udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
{
return (B_TRUE);
}
/*
* This routine gets default values of certain options whose default
* values are maintained by protcol specific code
*/
/* ARGSUSED */
int
udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
int *i1 = (int *)ptr;
switch (level) {
case IPPROTO_IP:
switch (name) {
case IP_MULTICAST_TTL:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
return (sizeof (uchar_t));
case IP_MULTICAST_LOOP:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (uchar_t));
}
break;
case IPPROTO_IPV6:
switch (name) {
case IPV6_MULTICAST_HOPS:
*i1 = IP_DEFAULT_MULTICAST_TTL;
return (sizeof (int));
case IPV6_MULTICAST_LOOP:
*i1 = IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (int));
case IPV6_UNICAST_HOPS:
*i1 = udp_ipv6_hoplimit;
return (sizeof (int));
}
break;
}
return (-1);
}
/*
* This routine retrieves the current status of socket options.
* It returns the size of the option retrieved.
*/
int
udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
int *i1 = (int *)ptr;
udp_t *udp = (udp_t *)q->q_ptr;
ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
switch (level) {
case SOL_SOCKET:
switch (name) {
case SO_DEBUG:
*i1 = udp->udp_debug;
break; /* goto sizeof (int) option return */
case SO_REUSEADDR:
*i1 = udp->udp_reuseaddr;
break; /* goto sizeof (int) option return */
case SO_TYPE:
*i1 = SOCK_DGRAM;
break; /* goto sizeof (int) option return */
/*
* The following three items are available here,
* but are only meaningful to IP.
*/
case SO_DONTROUTE:
*i1 = udp->udp_dontroute;
break; /* goto sizeof (int) option return */
case SO_USELOOPBACK:
*i1 = udp->udp_useloopback;
break; /* goto sizeof (int) option return */
case SO_BROADCAST:
*i1 = udp->udp_broadcast;
break; /* goto sizeof (int) option return */
case SO_SNDBUF:
*i1 = q->q_hiwat;
break; /* goto sizeof (int) option return */
case SO_RCVBUF:
*i1 = RD(q)->q_hiwat;
break; /* goto sizeof (int) option return */
case SO_DGRAM_ERRIND:
*i1 = udp->udp_dgram_errind;
break; /* goto sizeof (int) option return */
case SO_RECVUCRED:
*i1 = udp->udp_recvucred;
break; /* goto sizeof (int) option return */
default:
return (-1);
}
break;
case IPPROTO_IP:
if (udp->udp_family != AF_INET)
return (-1);
switch (name) {
case IP_OPTIONS:
case T_IP_OPTIONS:
if (udp->udp_ip_rcv_options_len)
bcopy(udp->udp_ip_rcv_options, ptr,
udp->udp_ip_rcv_options_len);
return (udp->udp_ip_rcv_options_len);
case IP_TOS:
case T_IP_TOS:
*i1 = (int)udp->udp_type_of_service;
break; /* goto sizeof (int) option return */
case IP_TTL:
*i1 = (int)udp->udp_ttl;
break; /* goto sizeof (int) option return */
case IP_MULTICAST_IF:
/* 0 address if not set */
*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
return (sizeof (ipaddr_t));
case IP_MULTICAST_TTL:
*(uchar_t *)ptr = udp->udp_multicast_ttl;
return (sizeof (uchar_t));
case IP_MULTICAST_LOOP:
*ptr = udp->udp_multicast_loop;
return (sizeof (uint8_t));
case IP_RECVOPTS:
*i1 = udp->udp_recvopts;
break; /* goto sizeof (int) option return */
case IP_RECVDSTADDR:
*i1 = udp->udp_recvdstaddr;
break; /* goto sizeof (int) option return */
case IP_RECVIF:
*i1 = udp->udp_recvif;
break; /* goto sizeof (int) option return */
case IP_RECVSLLA:
*i1 = udp->udp_recvslla;
break; /* goto sizeof (int) option return */
case IP_RECVTTL:
*i1 = udp->udp_recvttl;
break; /* goto sizeof (int) option return */
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case IP_ADD_SOURCE_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
case MCAST_JOIN_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
case IP_DONTFAILOVER_IF:
/* cannot "get" the value for these */
return (-1);
case IP_BOUND_IF:
/* Zero if not set */
*i1 = udp->udp_bound_if;
break; /* goto sizeof (int) option return */
case IP_UNSPEC_SRC:
*i1 = udp->udp_unspec_source;
break; /* goto sizeof (int) option return */
case IP_XMIT_IF:
*i1 = udp->udp_xmit_if;
break; /* goto sizeof (int) option return */
default:
return (-1);
}
break;
case IPPROTO_IPV6:
if (udp->udp_family != AF_INET6)
return (-1);
switch (name) {
case IPV6_UNICAST_HOPS:
*i1 = (unsigned int)udp->udp_ttl;
break; /* goto sizeof (int) option return */
case IPV6_MULTICAST_IF:
/* 0 index if not set */
*i1 = udp->udp_multicast_if_index;
break; /* goto sizeof (int) option return */
case IPV6_MULTICAST_HOPS:
*i1 = udp->udp_multicast_ttl;
break; /* goto sizeof (int) option return */
case IPV6_MULTICAST_LOOP:
*i1 = udp->udp_multicast_loop;
break; /* goto sizeof (int) option return */
case IPV6_JOIN_GROUP:
case IPV6_LEAVE_GROUP:
case MCAST_JOIN_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
/* cannot "get" the value for these */
return (-1);
case IPV6_BOUND_IF:
/* Zero if not set */
*i1 = udp->udp_bound_if;
break; /* goto sizeof (int) option return */
case IPV6_UNSPEC_SRC:
*i1 = udp->udp_unspec_source;
break; /* goto sizeof (int) option return */
case IPV6_RECVPKTINFO:
*i1 = udp->udp_ipv6_recvpktinfo;
break; /* goto sizeof (int) option return */
case IPV6_RECVTCLASS:
*i1 = udp->udp_ipv6_recvtclass;
break; /* goto sizeof (int) option return */
case IPV6_RECVPATHMTU:
*i1 = udp->udp_ipv6_recvpathmtu;
break; /* goto sizeof (int) option return */
case IPV6_RECVHOPLIMIT:
*i1 = udp->udp_ipv6_recvhoplimit;
break; /* goto sizeof (int) option return */
case IPV6_RECVHOPOPTS:
*i1 = udp->udp_ipv6_recvhopopts;
break; /* goto sizeof (int) option return */
case IPV6_RECVDSTOPTS:
*i1 = udp->udp_ipv6_recvdstopts;
break; /* goto sizeof (int) option return */
case _OLD_IPV6_RECVDSTOPTS:
*i1 = udp->udp_old_ipv6_recvdstopts;
break; /* goto sizeof (int) option return */
case IPV6_RECVRTHDRDSTOPTS:
*i1 = udp->udp_ipv6_recvrthdrdstopts;
break; /* goto sizeof (int) option return */
case IPV6_RECVRTHDR:
*i1 = udp->udp_ipv6_recvrthdr;
break; /* goto sizeof (int) option return */
case IPV6_PKTINFO: {
/* XXX assumes that caller has room for max size! */
struct in6_pktinfo *pkti;
pkti = (struct in6_pktinfo *)ptr;
if (ipp->ipp_fields & IPPF_IFINDEX)
pkti->ipi6_ifindex = ipp->ipp_ifindex;
else
pkti->ipi6_ifindex = 0;
if (ipp->ipp_fields & IPPF_ADDR)
pkti->ipi6_addr = ipp->ipp_addr;
else
pkti->ipi6_addr = ipv6_all_zeros;
return (sizeof (struct in6_pktinfo));
}
case IPV6_HOPLIMIT:
if (ipp->ipp_fields & IPPF_HOPLIMIT)
*i1 = ipp->ipp_hoplimit;
else
*i1 = -1; /* Not set */
break; /* goto sizeof (int) option return */
case IPV6_TCLASS:
if (ipp->ipp_fields & IPPF_TCLASS)
*i1 = ipp->ipp_tclass;
else
*i1 = IPV6_FLOW_TCLASS(
IPV6_DEFAULT_VERS_AND_FLOW);
break; /* goto sizeof (int) option return */
case IPV6_NEXTHOP: {
sin6_t *sin6 = (sin6_t *)ptr;
if (!(ipp->ipp_fields & IPPF_NEXTHOP))
return (0);
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = ipp->ipp_nexthop;
return (sizeof (sin6_t));
}
case IPV6_HOPOPTS:
if (!(ipp->ipp_fields & IPPF_HOPOPTS))
return (0);
bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen);
return (ipp->ipp_hopoptslen);
case IPV6_RTHDRDSTOPTS:
if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
return (0);
bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
return (ipp->ipp_rtdstoptslen);
case IPV6_RTHDR:
if (!(ipp->ipp_fields & IPPF_RTHDR))
return (0);
bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
return (ipp->ipp_rthdrlen);
case IPV6_DSTOPTS:
if (!(ipp->ipp_fields & IPPF_DSTOPTS))
return (0);
bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
return (ipp->ipp_dstoptslen);
case IPV6_PATHMTU:
return (ip_fill_mtuinfo(&udp->udp_v6dst,
udp->udp_dstport, (struct ip6_mtuinfo *)ptr));
default:
return (-1);
}
break;
case IPPROTO_UDP:
switch (name) {
case UDP_ANONPRIVBIND:
*i1 = udp->udp_anon_priv_bind;
break;
case UDP_EXCLBIND:
*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
break;
case UDP_RCVHDR:
*i1 = udp->udp_rcvhdr ? 1 : 0;
break;
default:
return (-1);
}
break;
default:
return (-1);
}
return (sizeof (int));
}
/* This routine sets socket options. */
/* ARGSUSED */
int
udp_opt_set(queue_t *q, uint_t optset_context, int level,
int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
{
udp_t *udp = (udp_t *)q->q_ptr;
int *i1 = (int *)invalp;
boolean_t onoff = (*i1 == 0) ? 0 : 1;
boolean_t checkonly;
int error;
switch (optset_context) {
case SETFN_OPTCOM_CHECKONLY:
checkonly = B_TRUE;
/*
* Note: Implies T_CHECK semantics for T_OPTCOM_REQ
* inlen != 0 implies value supplied and
* we have to "pretend" to set it.
* inlen == 0 implies that there is no
* value part in T_CHECK request and just validation
* done elsewhere should be enough, we just return here.
*/
if (inlen == 0) {
*outlenp = 0;
return (0);
}
break;
case SETFN_OPTCOM_NEGOTIATE:
checkonly = B_FALSE;
break;
case SETFN_UD_NEGOTIATE:
case SETFN_CONN_NEGOTIATE:
checkonly = B_FALSE;
/*
* Negotiating local and "association-related" options
* through T_UNITDATA_REQ.
*
* Following routine can filter out ones we do not
* want to be "set" this way.
*/
if (!udp_opt_allow_udr_set(level, name)) {
*outlenp = 0;
return (EINVAL);
}
break;
default:
/*
* We should never get here
*/
*outlenp = 0;
return (EINVAL);
}
ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
(optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
/*
* For fixed length options, no sanity check
* of passed in length is done. It is assumed *_optcom_req()
* routines do the right thing.
*/
switch (level) {
case SOL_SOCKET:
switch (name) {
case SO_REUSEADDR:
if (!checkonly)
udp->udp_reuseaddr = onoff;
break;
case SO_DEBUG:
if (!checkonly)
udp->udp_debug = onoff;
break;
/*
* The following three items are available here,
* but are only meaningful to IP.
*/
case SO_DONTROUTE:
if (!checkonly)
udp->udp_dontroute = onoff;
break;
case SO_USELOOPBACK:
if (!checkonly)
udp->udp_useloopback = onoff;
break;
case SO_BROADCAST:
if (!checkonly)
udp->udp_broadcast = onoff;
break;
case SO_SNDBUF:
if (*i1 > udp_max_buf) {
*outlenp = 0;
return (ENOBUFS);
}
if (!checkonly) {
q->q_hiwat = *i1;
q->q_next->q_hiwat = *i1;
}
break;
case SO_RCVBUF:
if (*i1 > udp_max_buf) {
*outlenp = 0;
return (ENOBUFS);
}
if (!checkonly) {
RD(q)->q_hiwat = *i1;
(void) mi_set_sth_hiwat(RD(q), *i1);
}
break;
case SO_DGRAM_ERRIND:
if (!checkonly)
udp->udp_dgram_errind = onoff;
break;
case SO_RECVUCRED:
if (!checkonly)
udp->udp_recvucred = onoff;
break;
default:
*outlenp = 0;
return (EINVAL);
}
break;
case IPPROTO_IP:
if (udp->udp_family != AF_INET) {
*outlenp = 0;
return (ENOPROTOOPT);
}
switch (name) {
case IP_OPTIONS:
case T_IP_OPTIONS:
/* Save options for use by IP. */
if (inlen & 0x3) {
*outlenp = 0;
return (EINVAL);
}
if (checkonly)
break;
if (udp->udp_ip_snd_options) {
mi_free((char *)udp->udp_ip_snd_options);
udp->udp_ip_snd_options_len = 0;
udp->udp_ip_snd_options = NULL;
}
if (inlen) {
udp->udp_ip_snd_options =
(uchar_t *)mi_alloc(inlen, BPRI_HI);
if (udp->udp_ip_snd_options) {
bcopy(invalp, udp->udp_ip_snd_options,
inlen);
udp->udp_ip_snd_options_len = inlen;
}
}
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
UDPH_SIZE + udp->udp_ip_snd_options_len;
(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
udp_wroff_extra);
break;
case IP_TTL:
if (!checkonly) {
udp->udp_ttl = (uchar_t)*i1;
}
break;
case IP_TOS:
case T_IP_TOS:
if (!checkonly) {
udp->udp_type_of_service = (uchar_t)*i1;
}
break;
case IP_MULTICAST_IF: {
/*
* TODO should check OPTMGMT reply and undo this if
* there is an error.
*/
struct in_addr *inap = (struct in_addr *)invalp;
if (!checkonly) {
udp->udp_multicast_if_addr =
inap->s_addr;
}
break;
}
case IP_MULTICAST_TTL:
if (!checkonly)
udp->udp_multicast_ttl = *invalp;
break;
case IP_MULTICAST_LOOP:
if (!checkonly)
udp->udp_multicast_loop = *invalp;
break;
case IP_RECVOPTS:
if (!checkonly)
udp->udp_recvopts = onoff;
break;
case IP_RECVDSTADDR:
if (!checkonly)
udp->udp_recvdstaddr = onoff;
break;
case IP_RECVIF:
if (!checkonly)
udp->udp_recvif = onoff;
break;
case IP_RECVSLLA:
if (!checkonly)
udp->udp_recvslla = onoff;
break;
case IP_RECVTTL:
if (!checkonly)
udp->udp_recvttl = onoff;
break;
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case IP_ADD_SOURCE_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
case MCAST_JOIN_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
case IP_SEC_OPT:
/*
* "soft" error (negative)
* option not handled at this level
* Do not modify *outlenp.
*/
return (-EINVAL);
case IP_BOUND_IF:
if (!checkonly)
udp->udp_bound_if = *i1;
break;
case IP_UNSPEC_SRC:
if (!checkonly)
udp->udp_unspec_source = onoff;
break;
case IP_XMIT_IF:
if (!checkonly)
udp->udp_xmit_if = *i1;
break;
default:
*outlenp = 0;
return (EINVAL);
}
break;
case IPPROTO_IPV6: {
ip6_pkt_t *ipp;
boolean_t sticky;
if (udp->udp_family != AF_INET6) {
*outlenp = 0;
return (ENOPROTOOPT);
}
/*
* Deal with both sticky options and ancillary data
*/
if (thisdg_attrs == NULL) {
/* sticky options, or none */
ipp = &udp->udp_sticky_ipp;
sticky = B_TRUE;
} else {
/* ancillary data */
ipp = (ip6_pkt_t *)thisdg_attrs;
sticky = B_FALSE;
}
switch (name) {
case IPV6_MULTICAST_IF:
if (!checkonly)
udp->udp_multicast_if_index = *i1;
break;
case IPV6_UNICAST_HOPS:
/* -1 means use default */
if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
*outlenp = 0;
return (EINVAL);
}
if (!checkonly) {
if (*i1 == -1) {
udp->udp_ttl = ipp->ipp_hoplimit =
udp_ipv6_hoplimit;
ipp->ipp_fields &= ~IPPF_HOPLIMIT;
/* Pass modified value to IP. */
*i1 = udp->udp_ttl;
} else {
udp->udp_ttl = ipp->ipp_hoplimit =
(uint8_t)*i1;
ipp->ipp_fields |= IPPF_HOPLIMIT;
}
/* Rebuild the header template */
error = udp_build_hdrs(q, udp);
if (error != 0) {
*outlenp = 0;
return (error);
}
}
break;
case IPV6_MULTICAST_HOPS:
/* -1 means use default */
if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
*outlenp = 0;
return (EINVAL);
}
if (!checkonly) {
if (*i1 == -1) {
udp->udp_multicast_ttl =
ipp->ipp_multi_hoplimit =
IP_DEFAULT_MULTICAST_TTL;
ipp->ipp_fields &= ~IPPF_MULTI_HOPLIMIT;
/* Pass modified value to IP. */
*i1 = udp->udp_multicast_ttl;
} else {
udp->udp_multicast_ttl =
ipp->ipp_multi_hoplimit =
(uint8_t)*i1;
ipp->ipp_fields |= IPPF_MULTI_HOPLIMIT;
}
/* Rebuild the header template */
error = udp_build_hdrs(q, udp);
if (error != 0) {
*outlenp = 0;
return (error);
}
}
break;
case IPV6_MULTICAST_LOOP:
if (*i1 != 0 && *i1 != 1) {
*outlenp = 0;
return (EINVAL);
}
if (!checkonly)
udp->udp_multicast_loop = *i1;
break;
case IPV6_JOIN_GROUP:
case IPV6_LEAVE_GROUP:
case MCAST_JOIN_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
/*
* "soft" error (negative)
* option not handled at this level
* Note: Do not modify *outlenp
*/
return (-EINVAL);
case IPV6_BOUND_IF:
if (!checkonly)
udp->udp_bound_if = *i1;
break;
case IPV6_UNSPEC_SRC:
if (!checkonly)
udp->udp_unspec_source = onoff;
break;
/*
* Set boolean switches for ancillary data delivery
*/
case IPV6_RECVPKTINFO:
if (!checkonly)
udp->udp_ipv6_recvpktinfo = onoff;
break;
case IPV6_RECVTCLASS:
if (!checkonly) {
udp->udp_ipv6_recvtclass = onoff;
}
break;
case IPV6_RECVPATHMTU:
if (!checkonly) {
udp->udp_ipv6_recvpathmtu = onoff;
}
break;
case IPV6_RECVHOPLIMIT:
if (!checkonly)
udp->udp_ipv6_recvhoplimit = onoff;
break;
case IPV6_RECVHOPOPTS:
if (!checkonly)
udp->udp_ipv6_recvhopopts = onoff;
break;
case IPV6_RECVDSTOPTS:
if (!checkonly)
udp->udp_ipv6_recvdstopts = onoff;
break;
case _OLD_IPV6_RECVDSTOPTS:
if (!checkonly)
udp->udp_old_ipv6_recvdstopts = onoff;
break;
case IPV6_RECVRTHDRDSTOPTS:
if (!checkonly)
udp->udp_ipv6_recvrthdrdstopts = onoff;
break;
case IPV6_RECVRTHDR:
if (!checkonly)
udp->udp_ipv6_recvrthdr = onoff;
break;
/*
* Set sticky options or ancillary data.
* If sticky options, (re)build any extension headers
* that might be needed as a result.
*/
case IPV6_PKTINFO:
/*
* The source address and ifindex are verified
* in ip_opt_set(). For ancillary data the
* source address is checked in ip_wput_v6.
*/
if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
ipp->ipp_sticky_ignored |=
(IPPF_IFINDEX|IPPF_ADDR);
} else {
struct in6_pktinfo *pkti;
pkti = (struct in6_pktinfo *)invalp;
ipp->ipp_ifindex = pkti->ipi6_ifindex;
ipp->ipp_addr = pkti->ipi6_addr;
if (ipp->ipp_ifindex != 0)
ipp->ipp_fields |= IPPF_IFINDEX;
else
ipp->ipp_fields &= ~IPPF_IFINDEX;
if (!IN6_IS_ADDR_UNSPECIFIED(
&ipp->ipp_addr))
ipp->ipp_fields |= IPPF_ADDR;
else
ipp->ipp_fields &= ~IPPF_ADDR;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
case IPV6_HOPLIMIT:
if (inlen != 0 && inlen != sizeof (int))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
ipp->ipp_fields &= ~IPPF_HOPLIMIT;
ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
} else {
if (*i1 > 255 || *i1 < -1)
return (EINVAL);
if (*i1 == -1)
ipp->ipp_hoplimit = udp_ipv6_hoplimit;
else
ipp->ipp_hoplimit = *i1;
ipp->ipp_fields |= IPPF_HOPLIMIT;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
case IPV6_TCLASS:
if (inlen != 0 && inlen != sizeof (int))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
ipp->ipp_fields &= ~IPPF_TCLASS;
ipp->ipp_sticky_ignored |= IPPF_TCLASS;
} else {
if (*i1 > 255 || *i1 < -1)
return (EINVAL);
if (*i1 == -1)
ipp->ipp_tclass = 0;
else
ipp->ipp_tclass = *i1;
ipp->ipp_fields |= IPPF_TCLASS;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
case IPV6_NEXTHOP:
/*
* IP will verify that the nexthop is reachable
* and fail for sticky options.
*/
if (inlen != 0 && inlen != sizeof (sin6_t))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
ipp->ipp_fields &= ~IPPF_NEXTHOP;
ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
} else {
sin6_t *sin6 = (sin6_t *)invalp;
if (sin6->sin6_family != AF_INET6)
return (EAFNOSUPPORT);
if (IN6_IS_ADDR_V4MAPPED(
&sin6->sin6_addr))
return (EADDRNOTAVAIL);
ipp->ipp_nexthop = sin6->sin6_addr;
if (!IN6_IS_ADDR_UNSPECIFIED(
&ipp->ipp_nexthop))
ipp->ipp_fields |= IPPF_NEXTHOP;
else
ipp->ipp_fields &= ~IPPF_NEXTHOP;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
case IPV6_HOPOPTS: {
ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
/*
* Sanity checks - minimum size, size a multiple of
* eight bytes, and matching size passed in.
*/
if (inlen != 0 &&
inlen != (8 * (hopts->ip6h_len + 1)))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
if (sticky &&
(ipp->ipp_fields & IPPF_HOPOPTS) != 0) {
kmem_free(ipp->ipp_hopopts,
ipp->ipp_hopoptslen);
ipp->ipp_hopopts = NULL;
ipp->ipp_hopoptslen = 0;
}
ipp->ipp_fields &= ~IPPF_HOPOPTS;
ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
} else {
error = udp_pkt_set(invalp, inlen, sticky,
(uchar_t **)&ipp->ipp_hopopts,
&ipp->ipp_hopoptslen);
if (error != 0)
return (error);
ipp->ipp_fields |= IPPF_HOPOPTS;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
}
case IPV6_RTHDRDSTOPTS: {
ip6_dest_t *dopts = (ip6_dest_t *)invalp;
/*
* Sanity checks - minimum size, size a multiple of
* eight bytes, and matching size passed in.
*/
if (inlen != 0 &&
inlen != (8 * (dopts->ip6d_len + 1)))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
if (sticky &&
(ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
kmem_free(ipp->ipp_rtdstopts,
ipp->ipp_rtdstoptslen);
ipp->ipp_rtdstopts = NULL;
ipp->ipp_rtdstoptslen = 0;
}
ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
} else {
error = udp_pkt_set(invalp, inlen, sticky,
(uchar_t **)&ipp->ipp_rtdstopts,
&ipp->ipp_rtdstoptslen);
if (error != 0)
return (error);
ipp->ipp_fields |= IPPF_RTDSTOPTS;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
}
case IPV6_DSTOPTS: {
ip6_dest_t *dopts = (ip6_dest_t *)invalp;
/*
* Sanity checks - minimum size, size a multiple of
* eight bytes, and matching size passed in.
*/
if (inlen != 0 &&
inlen != (8 * (dopts->ip6d_len + 1)))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
if (sticky &&
(ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
kmem_free(ipp->ipp_dstopts,
ipp->ipp_dstoptslen);
ipp->ipp_dstopts = NULL;
ipp->ipp_dstoptslen = 0;
}
ipp->ipp_fields &= ~IPPF_DSTOPTS;
ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
} else {
error = udp_pkt_set(invalp, inlen, sticky,
(uchar_t **)&ipp->ipp_dstopts,
&ipp->ipp_dstoptslen);
if (error != 0)
return (error);
ipp->ipp_fields |= IPPF_DSTOPTS;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
}
case IPV6_RTHDR: {
ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
/*
* Sanity checks - minimum size, size a multiple of
* eight bytes, and matching size passed in.
*/
if (inlen != 0 &&
inlen != (8 * (rt->ip6r_len + 1)))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
if (sticky &&
(ipp->ipp_fields & IPPF_RTHDR) != 0) {
kmem_free(ipp->ipp_rthdr,
ipp->ipp_rthdrlen);
ipp->ipp_rthdr = NULL;
ipp->ipp_rthdrlen = 0;
}
ipp->ipp_fields &= ~IPPF_RTHDR;
ipp->ipp_sticky_ignored |= IPPF_RTHDR;
} else {
error = udp_pkt_set(invalp, inlen, sticky,
(uchar_t **)&ipp->ipp_rthdr,
&ipp->ipp_rthdrlen);
if (error != 0)
return (error);
ipp->ipp_fields |= IPPF_RTHDR;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
}
case IPV6_DONTFRAG:
if (checkonly)
break;
if (onoff) {
ipp->ipp_fields |= IPPF_DONTFRAG;
} else {
ipp->ipp_fields &= ~IPPF_DONTFRAG;
}
break;
case IPV6_USE_MIN_MTU:
if (inlen != sizeof (int))
return (EINVAL);
if (*i1 < -1 || *i1 > 1)
return (EINVAL);
if (checkonly)
break;
ipp->ipp_fields |= IPPF_USE_MIN_MTU;
ipp->ipp_use_min_mtu = *i1;
break;
case IPV6_BOUND_PIF:
case IPV6_SEC_OPT:
case IPV6_DONTFAILOVER_IF:
case IPV6_SRC_PREFERENCES:
case IPV6_V6ONLY:
/* Handled at the IP level */
return (-EINVAL);
default:
*outlenp = 0;
return (EINVAL);
}
break;
} /* end IPPROTO_IPV6 */
case IPPROTO_UDP:
switch (name) {
case UDP_ANONPRIVBIND:
if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
*outlenp = 0;
return (error);
}
if (!checkonly) {
udp->udp_anon_priv_bind = onoff;
}
break;
case UDP_EXCLBIND:
if (!checkonly)
udp->udp_exclbind = onoff;
break;
case UDP_RCVHDR:
if (!checkonly)
udp->udp_rcvhdr = onoff;
break;
default:
*outlenp = 0;
return (EINVAL);
}
break;
default:
*outlenp = 0;
return (EINVAL);
}
/*
* Common case of OK return with outval same as inval.
*/
if (invalp != outvalp) {
/* don't trust bcopy for identical src/dst */
(void) bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
return (0);
}
/*
* Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
* The headers include ip6i_t (if needed), ip6_t, any sticky extension
* headers, and the udp header.
* Returns failure if can't allocate memory.
*/
static int
udp_build_hdrs(queue_t *q, udp_t *udp)
{
uchar_t *hdrs;
uint_t hdrs_len;
ip6_t *ip6h;
ip6i_t *ip6i;
udpha_t *udpha;
ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
ASSERT(hdrs_len != 0);
if (hdrs_len != udp->udp_sticky_hdrs_len) {
/* Need to reallocate */
hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
if (hdrs == NULL)
return (ENOMEM);
if (udp->udp_sticky_hdrs_len != 0) {
kmem_free(udp->udp_sticky_hdrs,
udp->udp_sticky_hdrs_len);
}
udp->udp_sticky_hdrs = hdrs;
udp->udp_sticky_hdrs_len = hdrs_len;
}
ip_build_hdrs_v6(udp->udp_sticky_hdrs,
udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
/* Set header fields not in ipp */
if (ipp->ipp_fields & IPPF_HAS_IP6I) {
ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
ip6h = (ip6_t *)&ip6i[1];
} else {
ip6h = (ip6_t *)udp->udp_sticky_hdrs;
}
if (!(ipp->ipp_fields & IPPF_ADDR))
ip6h->ip6_src = udp->udp_v6src;
/*
* If IPV6_HOPLIMIT was set in ipp, use that value.
* For sticky options, if it does not exist use
* the value in the udp structure.
* All this as per RFC 2922.
*/
if (!(ipp->ipp_fields & IPPF_HOPLIMIT))
ip6h->ip6_hops = udp->udp_ttl;
udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
udpha->uha_src_port = udp->udp_port;
/* Try to get everything in a single mblk */
if (hdrs_len > udp->udp_max_hdr_len) {
udp->udp_max_hdr_len = hdrs_len;
(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
udp_wroff_extra);
}
return (0);
}
/*
* Set optbuf and optlen for the option.
* If sticky is set allocate memory (if not already present).
* Otherwise just point optbuf and optlen at invalp and inlen.
* Returns failure if memory can not be allocated.
*/
static int
udp_pkt_set(uchar_t *invalp, uint_t inlen, boolean_t sticky,
uchar_t **optbufp, uint_t *optlenp)
{
uchar_t *optbuf;
if (!sticky) {
*optbufp = invalp;
*optlenp = inlen;
return (0);
}
if (inlen == *optlenp) {
/* Unchanged length - no need to realocate */
bcopy(invalp, *optbufp, inlen);
return (0);
}
if (inlen != 0) {
/* Allocate new buffer before free */
optbuf = kmem_alloc(inlen, KM_NOSLEEP);
if (optbuf == NULL)
return (ENOMEM);
} else {
optbuf = NULL;
}
/* Free old buffer */
if (*optlenp != 0)
kmem_free(*optbufp, *optlenp);
bcopy(invalp, optbuf, inlen);
*optbufp = optbuf;
*optlenp = inlen;
return (0);
}
/*
* This routine retrieves the value of an ND variable in a udpparam_t
* structure. It is called through nd_getset when a user reads the
* variable.
*/
/* ARGSUSED */
static int
udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
udpparam_t *udppa = (udpparam_t *)cp;
(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
return (0);
}
/*
* Walk through the param array specified registering each element with the
* named dispatch (ND) handler.
*/
static boolean_t
udp_param_register(udpparam_t *udppa, int cnt)
{
for (; cnt-- > 0; udppa++) {
if (udppa->udp_param_name && udppa->udp_param_name[0]) {
if (!nd_load(&udp_g_nd, udppa->udp_param_name,
udp_param_get, udp_param_set,
(caddr_t)udppa)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
}
}
if (!nd_load(&udp_g_nd, "udp_extra_priv_ports",
udp_extra_priv_ports_get, NULL, NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_add",
NULL, udp_extra_priv_ports_add, NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_del",
NULL, udp_extra_priv_ports_del, NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
if (!nd_load(&udp_g_nd, "udp_status", udp_status_report, NULL,
NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
if (!nd_load(&udp_g_nd, "udp_bind_hash", udp_bind_hash_report, NULL,
NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
return (B_TRUE);
}
/* This routine sets an ND variable in a udpparam_t structure. */
/* ARGSUSED */
static int
udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
{
long new_value;
udpparam_t *udppa = (udpparam_t *)cp;
/*
* Fail the request if the new value does not lie within the
* required bounds.
*/
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value < udppa->udp_param_min ||
new_value > udppa->udp_param_max) {
return (EINVAL);
}
/* Set the new value */
udppa->udp_param_value = new_value;
return (0);
}
static void
udp_rput(queue_t *q, mblk_t *mp)
{
struct T_unitdata_ind *tudi;
uchar_t *rptr;
int hdr_length;
int udi_size; /* Size of T_unitdata_ind */
udp_t *udp;
udpha_t *udpha;
int ipversion;
ip6_pkt_t ipp;
ip6_t *ip6h;
ip6i_t *ip6i;
mblk_t *mp1;
mblk_t *options_mp = NULL;
in_pktinfo_t *pinfo = NULL;
size_t mp_size = MBLKL(mp);
cred_t *cr = NULL;
pid_t cpid;
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
"udp_rput_start: q %p mp %p", q, mp);
udp = (udp_t *)q->q_ptr;
rptr = mp->b_rptr;
switch (mp->b_datap->db_type) {
case M_DATA:
/*
* M_DATA messages contain IP datagrams. They are handled
* after this switch.
*/
break;
case M_PROTO:
case M_PCPROTO:
/* M_PROTO messages contain some type of TPI message. */
if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) {
freemsg(mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "protoshort");
return;
}
qwriter(q, mp, udp_rput_other, PERIM_INNER);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "proto");
return;
case M_FLUSH:
if (*mp->b_rptr & FLUSHR)
flushq(q, FLUSHDATA);
putnext(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "flush");
return;
case M_CTL:
if (udp->udp_recvif || udp->udp_recvslla ||
udp->udp_ipv6_recvpktinfo) {
/*
* IP should have prepended the options data in an M_CTL
* Check M_CTL "type" to make sure are not here bcos of
* a valid ICMP message
*/
if (mp_size == sizeof (in_pktinfo_t) &&
((in_pktinfo_t *)mp->b_rptr)->in_pkt_ulp_type ==
IN_PKTINFO) {
pinfo = (in_pktinfo_t *)mp->b_rptr;
/*
* Jump to normal data processing, this is not
* an ICMP message
*/
break;
}
}
/*
* ICMP messages.
*/
udp_icmp_error(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "m_ctl");
return;
default:
putnext(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "default");
return;
}
/*
* If we are here bcos the IP_RECVIF or IP_RECVSLLA then we need to
* extract the mblk and adjust the rptr
*/
if (pinfo != NULL) {
ASSERT(mp->b_datap->db_type == M_CTL);
options_mp = mp;
mp = mp->b_cont;
rptr = mp->b_rptr;
mp_size = MBLKL(mp);
}
/*
* This is the inbound data path.
* First, we check to make sure the IP version number is correct,
* and then pull the IP and UDP headers into the first mblk.
*/
/*
* Assume IP provides aligned packets - otherwise toss.
* Also, check if we have a complete IP header.
*/
if (!OK_32PTR(rptr) || (mp_size < sizeof (ipha_t))) {
tossit:
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
BUMP_MIB(&udp_mib, udpInErrors);
return;
}
/* Initialize regardless if ipversion is IPv4 or IPv6 */
ipp.ipp_fields = 0;
ipversion = IPH_HDR_VERSION(rptr);
switch (ipversion) {
case IPV4_VERSION:
hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
/* Verify this is a UDP packet */
if (((ipha_t *)rptr)->ipha_protocol != IPPROTO_UDP)
goto tossit;
if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) ||
(udp->udp_ip_rcv_options_len)) {
/*
* Handle IPv4 packets with options outside of the
* main data path. Not needed for AF_INET6 sockets
* since they don't support a getsockopt of IP_OPTIONS.
*/
if (udp->udp_family == AF_INET6)
break;
/*
* UDP length check performed for IPv4 packets with
* options to check whether UDP length specified in
* the header is the same as the physical length of
* the packet.
*/
udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
if (msgdsize(mp) != (ntohs(udpha->uha_length) +
hdr_length - UDPH_SIZE)) {
goto tossit;
}
/*
* Handle the case where the packet has IP options
* and the IP_RECVSLLA & IP_RECVIF are set
*/
if (pinfo != NULL)
mp = options_mp;
qwriter(q, mp, udp_rput_other, PERIM_INNER);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "end");
return;
}
/* Handle IPV6_RECVHOPLIMIT. */
if ((udp->udp_family == AF_INET6) && (pinfo != NULL)) {
if (pinfo->in_pkt_flags & IPF_RECVIF) {
ipp.ipp_fields |= IPPF_IFINDEX;
ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
}
}
break;
case IPV6_VERSION:
/*
* IPv6 packets can only be received by applications
* that are prepared to receive IPv6 addresses.
* The IP fanout must ensure this.
*/
ASSERT(udp->udp_family == AF_INET6);
ip6h = (ip6_t *)rptr;
if ((uchar_t *)&ip6h[1] > mp->b_wptr)
goto tossit;
if (ip6h->ip6_nxt != IPPROTO_UDP) {
uint8_t nexthdrp;
/* Look for ifindex information */
if (ip6h->ip6_nxt == IPPROTO_RAW) {
ip6i = (ip6i_t *)ip6h;
if ((uchar_t *)&ip6i[1] > mp->b_wptr)
goto tossit;
if (ip6i->ip6i_flags & IP6I_IFINDEX) {
ASSERT(ip6i->ip6i_ifindex != 0);
ipp.ipp_fields |= IPPF_IFINDEX;
ipp.ipp_ifindex = ip6i->ip6i_ifindex;
}
rptr = (uchar_t *)&ip6i[1];
mp->b_rptr = rptr;
if (rptr == mp->b_wptr) {
mp1 = mp->b_cont;
freeb(mp);
mp = mp1;
rptr = mp->b_rptr;
}
if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
goto tossit;
ip6h = (ip6_t *)rptr;
}
/*
* Find any potentially interesting extension headers
* as well as the length of the IPv6 + extension
* headers.
*/
hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
UDPH_SIZE;
/* Verify this is a UDP packet */
if (nexthdrp != IPPROTO_UDP)
goto tossit;
} else {
hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
ip6i = NULL;
}
break;
default:
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "Unknown IP version");
goto tossit;
}
/*
* IP inspected the UDP header thus all of it must be in the mblk.
* UDP length check is performed for IPv6 packets and IPv4 packets
* without options to check if the size of the packet as specified
* by the header is the same as the physical size of the packet.
*/
udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
if ((MBLKL(mp) < hdr_length) ||
(msgdsize(mp) != (ntohs(udpha->uha_length) +
hdr_length - UDPH_SIZE))) {
goto tossit;
}
/* Walk past the headers. */
if (!udp->udp_rcvhdr)
mp->b_rptr = rptr + hdr_length;
/*
* This is the inbound data path. Packets are passed upstream as
* T_UNITDATA_IND messages with full IP headers still attached.
*/
if (udp->udp_family == AF_INET) {
sin_t *sin;
ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
/*
* Normally only send up the address.
* If IP_RECVDSTADDR is set we include the destination IP
* address as an option. With IP_RECVOPTS we include all
* the IP options. Only ip_rput_other() handles packets
* that contain IP options.
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
if (udp->udp_recvdstaddr) {
udi_size += sizeof (struct T_opthdr) +
sizeof (struct in_addr);
}
/*
* If the IP_RECVSLLA or the IP_RECVIF is set then allocate
* space accordingly
*/
if (udp->udp_recvif && (pinfo != NULL) &&
(pinfo->in_pkt_flags & IPF_RECVIF)) {
udi_size += sizeof (struct T_opthdr) +
sizeof (uint_t);
}
if (udp->udp_recvslla && (pinfo != NULL) &&
(pinfo->in_pkt_flags & IPF_RECVSLLA)) {
udi_size += sizeof (struct T_opthdr) +
sizeof (struct sockaddr_dl);
}
if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
udi_size += sizeof (struct T_opthdr) + ucredsize;
cpid = DB_CPID(mp);
}
/*
* If IP_RECVTTL is set allocate the appropriate sized buffer
*/
if (udp->udp_recvttl) {
udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
}
ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH);
/* Allocate a message block for the T_UNITDATA_IND structure. */
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "allocbfail");
BUMP_MIB(&udp_mib, udpInErrors);
return;
}
mp1->b_cont = mp;
mp = mp1;
mp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp->b_rptr;
mp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
sizeof (sin_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
tudi->OPT_length = udi_size;
sin = (sin_t *)&tudi[1];
sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
sin->sin_port = udpha->uha_src_port;
sin->sin_family = udp->udp_family;
*(uint32_t *)&sin->sin_zero[0] = 0;
*(uint32_t *)&sin->sin_zero[4] = 0;
/*
* Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
* IP_RECVTTL has been set.
*/
if (udi_size != 0) {
/*
* Copy in destination address before options to avoid
* any padding issues.
*/
char *dstopt;
dstopt = (char *)&sin[1];
if (udp->udp_recvdstaddr) {
struct T_opthdr *toh;
ipaddr_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVDSTADDR;
toh->len = sizeof (struct T_opthdr) +
sizeof (ipaddr_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (ipaddr_t *)dstopt;
*dstptr = ((ipha_t *)rptr)->ipha_dst;
dstopt += sizeof (ipaddr_t);
udi_size -= toh->len;
}
if (udp->udp_recvslla && (pinfo != NULL) &&
(pinfo->in_pkt_flags & IPF_RECVSLLA)) {
struct T_opthdr *toh;
struct sockaddr_dl *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVSLLA;
toh->len = sizeof (struct T_opthdr) +
sizeof (struct sockaddr_dl);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (struct sockaddr_dl *)dstopt;
bcopy(&pinfo->in_pkt_slla, dstptr,
sizeof (struct sockaddr_dl));
dstopt += sizeof (struct sockaddr_dl);
udi_size -= toh->len;
}
if (udp->udp_recvif && (pinfo != NULL) &&
(pinfo->in_pkt_flags & IPF_RECVIF)) {
struct T_opthdr *toh;
uint_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVIF;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (uint_t *)dstopt;
*dstptr = pinfo->in_pkt_ifindex;
dstopt += sizeof (uint_t);
udi_size -= toh->len;
}
if (cr != NULL) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = SOL_SOCKET;
toh->name = SCM_UCRED;
toh->len = sizeof (struct T_opthdr) + ucredsize;
toh->status = 0;
(void) cred2ucred(cr, cpid, &toh[1]);
dstopt += toh->len;
udi_size -= toh->len;
}
if (udp->udp_recvttl) {
struct T_opthdr *toh;
uint8_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVTTL;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint8_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (uint8_t *)dstopt;
*dstptr = ((ipha_t *)rptr)->ipha_ttl;
dstopt += sizeof (uint8_t);
udi_size -= toh->len;
}
/* Consumed all of allocated space */
ASSERT(udi_size == 0);
}
} else {
sin6_t *sin6;
/*
* Handle both IPv4 and IPv6 packets for IPv6 sockets.
*
* Normally we only send up the address. If receiving of any
* optional receive side information is enabled, we also send
* that up as options.
* [ Only udp_rput_other() handles packets that contain IP
* options so code to account for does not appear immediately
* below but elsewhere ]
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
IPPF_RTHDR|IPPF_IFINDEX)) {
if (udp->udp_ipv6_recvhopopts &&
(ipp.ipp_fields & IPPF_HOPOPTS)) {
udi_size += sizeof (struct T_opthdr) +
ipp.ipp_hopoptslen;
}
if ((udp->udp_ipv6_recvdstopts ||
udp->udp_old_ipv6_recvdstopts) &&
(ipp.ipp_fields & IPPF_DSTOPTS)) {
udi_size += sizeof (struct T_opthdr) +
ipp.ipp_dstoptslen;
}
if (((udp->udp_ipv6_recvdstopts &&
udp->udp_ipv6_recvrthdr &&
(ipp.ipp_fields & IPPF_RTHDR)) ||
udp->udp_ipv6_recvrthdrdstopts) &&
(ipp.ipp_fields & IPPF_RTDSTOPTS)) {
udi_size += sizeof (struct T_opthdr) +
ipp.ipp_rtdstoptslen;
}
if (udp->udp_ipv6_recvrthdr &&
(ipp.ipp_fields & IPPF_RTHDR)) {
udi_size += sizeof (struct T_opthdr) +
ipp.ipp_rthdrlen;
}
if (udp->udp_ipv6_recvpktinfo &&
(ipp.ipp_fields & IPPF_IFINDEX)) {
udi_size += sizeof (struct T_opthdr) +
sizeof (struct in6_pktinfo);
}
}
if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
udi_size += sizeof (struct T_opthdr) + ucredsize;
cpid = DB_CPID(mp);
}
if (udp->udp_ipv6_recvhoplimit)
udi_size += sizeof (struct T_opthdr) + sizeof (int);
if (udp->udp_ipv6_recvtclass)
udi_size += sizeof (struct T_opthdr) + sizeof (int);
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "allocbfail");
BUMP_MIB(&udp_mib, udpInErrors);
return;
}
mp1->b_cont = mp;
mp = mp1;
mp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp->b_rptr;
mp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin6_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
sizeof (sin6_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
tudi->OPT_length = udi_size;
sin6 = (sin6_t *)&tudi[1];
if (ipversion == IPV4_VERSION) {
in6_addr_t v6dst;
IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
&sin6->sin6_addr);
IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
&v6dst);
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = 0;
sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
udp->udp_zoneid);
} else {
sin6->sin6_addr = ip6h->ip6_src;
/* No sin6_flowinfo per API */
sin6->sin6_flowinfo = 0;
/* For link-scope source pass up scope id */
if ((ipp.ipp_fields & IPPF_IFINDEX) &&
IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
sin6->sin6_scope_id = ipp.ipp_ifindex;
else
sin6->sin6_scope_id = 0;
sin6->__sin6_src_id =
ip_srcid_find_addr(&ip6h->ip6_dst, udp->udp_zoneid);
}
sin6->sin6_port = udpha->uha_src_port;
sin6->sin6_family = udp->udp_family;
if (udi_size != 0) {
uchar_t *dstopt;
dstopt = (uchar_t *)&sin6[1];
if (udp->udp_ipv6_recvpktinfo &&
(ipp.ipp_fields & IPPF_IFINDEX)) {
struct T_opthdr *toh;
struct in6_pktinfo *pkti;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_PKTINFO;
toh->len = sizeof (struct T_opthdr) +
sizeof (*pkti);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
pkti = (struct in6_pktinfo *)dstopt;
if (ipversion == IPV6_VERSION)
pkti->ipi6_addr = ip6h->ip6_dst;
else
IN6_IPADDR_TO_V4MAPPED(
((ipha_t *)rptr)->ipha_dst,
&pkti->ipi6_addr);
pkti->ipi6_ifindex = ipp.ipp_ifindex;
dstopt += sizeof (*pkti);
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvhoplimit) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_HOPLIMIT;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
if (ipversion == IPV6_VERSION)
*(uint_t *)dstopt = ip6h->ip6_hops;
else
*(uint_t *)dstopt =
((ipha_t *)rptr)->ipha_ttl;
dstopt += sizeof (uint_t);
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvtclass) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_TCLASS;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
if (ipversion == IPV6_VERSION) {
*(uint_t *)dstopt =
IPV6_FLOW_TCLASS(ip6h->ip6_flow);
} else {
ipha_t *ipha = (ipha_t *)rptr;
*(uint_t *)dstopt =
ipha->ipha_type_of_service;
}
dstopt += sizeof (uint_t);
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvhopopts &&
(ipp.ipp_fields & IPPF_HOPOPTS)) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_HOPOPTS;
toh->len = sizeof (struct T_opthdr) +
ipp.ipp_hopoptslen;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
bcopy(ipp.ipp_hopopts, dstopt,
ipp.ipp_hopoptslen);
dstopt += ipp.ipp_hopoptslen;
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvdstopts &&
udp->udp_ipv6_recvrthdr &&
(ipp.ipp_fields & IPPF_RTHDR) &&
(ipp.ipp_fields & IPPF_RTDSTOPTS)) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_DSTOPTS;
toh->len = sizeof (struct T_opthdr) +
ipp.ipp_rtdstoptslen;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
bcopy(ipp.ipp_rtdstopts, dstopt,
ipp.ipp_rtdstoptslen);
dstopt += ipp.ipp_rtdstoptslen;
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvrthdr &&
(ipp.ipp_fields & IPPF_RTHDR)) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_RTHDR;
toh->len = sizeof (struct T_opthdr) +
ipp.ipp_rthdrlen;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
dstopt += ipp.ipp_rthdrlen;
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvdstopts &&
(ipp.ipp_fields & IPPF_DSTOPTS)) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_DSTOPTS;
toh->len = sizeof (struct T_opthdr) +
ipp.ipp_dstoptslen;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
bcopy(ipp.ipp_dstopts, dstopt,
ipp.ipp_dstoptslen);
dstopt += ipp.ipp_dstoptslen;
udi_size -= toh->len;
}
if (cr != NULL) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = SOL_SOCKET;
toh->name = SCM_UCRED;
toh->len = sizeof (struct T_opthdr) + ucredsize;
toh->status = 0;
(void) cred2ucred(cr, cpid, &toh[1]);
dstopt += toh->len;
udi_size -= toh->len;
}
/* Consumed all of allocated space */
ASSERT(udi_size == 0);
}
#undef sin6
/* No IP_RECVDSTADDR for IPv6. */
}
BUMP_MIB(&udp_mib, udpInDatagrams);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "end");
if (options_mp != NULL)
freeb(options_mp);
putnext(q, mp);
}
/*
* Process non-M_DATA messages as well as M_DATA messages that requires
* modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options.
*/
static void
udp_rput_other(queue_t *q, mblk_t *mp)
{
struct T_unitdata_ind *tudi;
mblk_t *mp1;
uchar_t *rptr;
uchar_t *new_rptr;
int hdr_length;
int udi_size; /* Size of T_unitdata_ind */
int opt_len; /* Length of IP options */
sin_t *sin;
struct T_error_ack *tea;
udp_t *udp;
mblk_t *options_mp = NULL;
in_pktinfo_t *pinfo;
boolean_t recv_on = B_FALSE;
cred_t *cr = NULL;
pid_t cpid;
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
"udp_rput_other: q %p mp %p", q, mp);
ASSERT(OK_32PTR(mp->b_rptr));
udp = (udp_t *)q->q_ptr;
rptr = mp->b_rptr;
switch (mp->b_datap->db_type) {
case M_CTL:
/*
* We are here only if IP_RECVSLLA and/or IP_RECVIF are set
*/
recv_on = B_TRUE;
options_mp = mp;
pinfo = (in_pktinfo_t *)options_mp->b_rptr;
/*
* The actual data is in mp->b_cont
*/
mp = mp->b_cont;
ASSERT(OK_32PTR(mp->b_rptr));
rptr = mp->b_rptr;
break;
case M_DATA:
/*
* M_DATA messages contain IPv4 datagrams. They are handled
* after this switch.
*/
break;
case M_PROTO:
case M_PCPROTO:
/* M_PROTO messages contain some type of TPI message. */
ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
freemsg(mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_other_end: q %p (%S)", q, "protoshort");
return;
}
tea = (struct T_error_ack *)rptr;
switch (tea->PRIM_type) {
case T_ERROR_ACK:
switch (tea->ERROR_prim) {
case O_T_BIND_REQ:
case T_BIND_REQ: {
/*
* If our O_T_BIND_REQ/T_BIND_REQ fails,
* clear out the associated port and source
* address before passing the message
* upstream. If this was caused by a T_CONN_REQ
* revert back to bound state.
*/
udp_fanout_t *udpf;
udpf = &udp_bind_fanout[
UDP_BIND_HASH(udp->udp_port)];
mutex_enter(&udpf->uf_lock);
if (udp->udp_state == TS_DATA_XFER) {
/* Connect failed */
tea->ERROR_prim = T_CONN_REQ;
/* Revert back to the bound source */
udp->udp_v6src = udp->udp_bound_v6src;
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
if (udp->udp_family == AF_INET6)
(void) udp_build_hdrs(q, udp);
break;
}
if (udp->udp_discon_pending) {
tea->ERROR_prim = T_DISCON_REQ;
udp->udp_discon_pending = 0;
}
V6_SET_ZERO(udp->udp_v6src);
V6_SET_ZERO(udp->udp_bound_v6src);
udp->udp_state = TS_UNBND;
udp_bind_hash_remove(udp, B_TRUE);
udp->udp_port = 0;
mutex_exit(&udpf->uf_lock);
if (udp->udp_family == AF_INET6)
(void) udp_build_hdrs(q, udp);
break;
}
default:
break;
}
break;
case T_BIND_ACK:
udp_rput_bind_ack(q, mp);
return;
case T_OPTMGMT_ACK:
case T_OK_ACK:
break;
default:
freemsg(mp);
return;
}
putnext(q, mp);
return;
}
/*
* This is the inbound data path.
* First, we make sure the data contains both IP and UDP headers.
*
* This handle IPv4 packets for only AF_INET sockets.
* AF_INET6 sockets can never access udp_ip_rcv_options thus there
* is no need saving the options.
*/
ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
if (mp->b_wptr - rptr < hdr_length) {
if (!pullupmsg(mp, hdr_length)) {
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
BUMP_MIB(&udp_mib, udpInErrors);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_other_end: q %p (%S)", q, "hdrshort");
BUMP_MIB(&udp_mib, udpInErrors);
return;
}
rptr = mp->b_rptr;
}
/* Walk past the headers. */
new_rptr = rptr + hdr_length;
if (!udp->udp_rcvhdr)
mp->b_rptr = new_rptr;
/* Save the options if any */
opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
if (opt_len > 0) {
if (opt_len > udp->udp_ip_rcv_options_len) {
if (udp->udp_ip_rcv_options_len)
mi_free((char *)udp->udp_ip_rcv_options);
udp->udp_ip_rcv_options_len = 0;
udp->udp_ip_rcv_options =
(uchar_t *)mi_alloc(opt_len, BPRI_HI);
if (udp->udp_ip_rcv_options)
udp->udp_ip_rcv_options_len = opt_len;
}
if (udp->udp_ip_rcv_options_len) {
bcopy(rptr + IP_SIMPLE_HDR_LENGTH,
udp->udp_ip_rcv_options, opt_len);
/* Adjust length if we are resusing the space */
udp->udp_ip_rcv_options_len = opt_len;
}
} else if (udp->udp_ip_rcv_options_len) {
mi_free((char *)udp->udp_ip_rcv_options);
udp->udp_ip_rcv_options = NULL;
udp->udp_ip_rcv_options_len = 0;
}
/*
* Normally only send up the address.
* If IP_RECVDSTADDR is set we include the destination IP
* address as an option. With IP_RECVOPTS we include all
* the IP options.
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
if (udp->udp_recvdstaddr) {
udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr);
}
if (udp->udp_recvopts && opt_len > 0)
udi_size += sizeof (struct T_opthdr) + opt_len;
/*
* If the IP_RECVSLLA or the IP_RECVIF is set then allocate
* space accordingly
*/
if (udp->udp_recvif && recv_on &&
(pinfo->in_pkt_flags & IPF_RECVIF)) {
udi_size += sizeof (struct T_opthdr) +
sizeof (uint_t);
}
if (udp->udp_recvslla && recv_on &&
(pinfo->in_pkt_flags & IPF_RECVSLLA)) {
udi_size += sizeof (struct T_opthdr) +
sizeof (struct sockaddr_dl);
}
if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
udi_size += sizeof (struct T_opthdr) + ucredsize;
cpid = DB_CPID(mp);
}
/*
* If IP_RECVTTL is set allocate the appropriate sized buffer
*/
if (udp->udp_recvttl) {
udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
}
/* Allocate a message block for the T_UNITDATA_IND structure. */
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_other_end: q %p (%S)", q, "allocbfail");
BUMP_MIB(&udp_mib, udpInErrors);
return;
}
mp1->b_cont = mp;
mp = mp1;
mp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp->b_rptr;
mp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
tudi->OPT_length = udi_size;
sin = (sin_t *)&tudi[1];
sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
sin->sin_port = ((in_port_t *)
new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))];
sin->sin_family = AF_INET;
*(uint32_t *)&sin->sin_zero[0] = 0;
*(uint32_t *)&sin->sin_zero[4] = 0;
/*
* Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
* IP_RECVTTL has been set.
*/
if (udi_size != 0) {
/*
* Copy in destination address before options to avoid any
* padding issues.
*/
char *dstopt;
dstopt = (char *)&sin[1];
if (udp->udp_recvdstaddr) {
struct T_opthdr *toh;
ipaddr_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVDSTADDR;
toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (ipaddr_t *)dstopt;
*dstptr = (((ipaddr_t *)rptr)[4]);
dstopt += sizeof (ipaddr_t);
udi_size -= toh->len;
}
if (udp->udp_recvopts && udi_size != 0) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVOPTS;
toh->len = sizeof (struct T_opthdr) + opt_len;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len);
dstopt += opt_len;
udi_size -= toh->len;
}
if (udp->udp_recvslla && recv_on &&
(pinfo->in_pkt_flags & IPF_RECVSLLA)) {
struct T_opthdr *toh;
struct sockaddr_dl *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVSLLA;
toh->len = sizeof (struct T_opthdr) +
sizeof (struct sockaddr_dl);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (struct sockaddr_dl *)dstopt;
bcopy(&pinfo->in_pkt_slla, dstptr,
sizeof (struct sockaddr_dl));
dstopt += sizeof (struct sockaddr_dl);
udi_size -= toh->len;
}
if (udp->udp_recvif && recv_on &&
(pinfo->in_pkt_flags & IPF_RECVIF)) {
struct T_opthdr *toh;
uint_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVIF;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (uint_t *)dstopt;
*dstptr = pinfo->in_pkt_ifindex;
dstopt += sizeof (uint_t);
udi_size -= toh->len;
}
if (cr != NULL) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = SOL_SOCKET;
toh->name = SCM_UCRED;
toh->len = sizeof (struct T_opthdr) + ucredsize;
toh->status = 0;
(void) cred2ucred(cr, cpid, &toh[1]);
dstopt += toh->len;
udi_size -= toh->len;
}
if (udp->udp_recvttl) {
struct T_opthdr *toh;
uint8_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVTTL;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint8_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (uint8_t *)dstopt;
*dstptr = ((ipha_t *)rptr)->ipha_ttl;
dstopt += sizeof (uint8_t);
udi_size -= toh->len;
}
ASSERT(udi_size == 0); /* "Consumed" all of allocated space */
}
BUMP_MIB(&udp_mib, udpInDatagrams);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_other_end: q %p (%S)", q, "end");
if (options_mp != NULL)
freeb(options_mp);
putnext(q, mp);
}
/*
* Process a T_BIND_ACK
*/
static void
udp_rput_bind_ack(queue_t *q, mblk_t *mp)
{
udp_t *udp = (udp_t *)q->q_ptr;
mblk_t *mp1;
ire_t *ire;
struct T_bind_ack *tba;
uchar_t *addrp;
ipa_conn_t *ac;
ipa6_conn_t *ac6;
if (udp->udp_discon_pending)
udp->udp_discon_pending = 0;
/*
* If a broadcast/multicast address was bound set
* the source address to 0.
* This ensures no datagrams with broadcast address
* as source address are emitted (which would violate
* RFC1122 - Hosts requirements)
*
* Note that when connecting the returned IRE is
* for the destination address and we only perform
* the broadcast check for the source address (it
* is OK to connect to a broadcast/multicast address.)
*/
mp1 = mp->b_cont;
if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
ire = (ire_t *)mp1->b_rptr;
/*
* Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
* local address.
*/
if (ire->ire_type == IRE_BROADCAST &&
udp->udp_state != TS_DATA_XFER) {
/* This was just a local bind to a broadcast addr */
V6_SET_ZERO(udp->udp_v6src);
if (udp->udp_family == AF_INET6)
(void) udp_build_hdrs(q, udp);
} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
/*
* Local address not yet set - pick it from the
* T_bind_ack
*/
tba = (struct T_bind_ack *)mp->b_rptr;
addrp = &mp->b_rptr[tba->ADDR_offset];
switch (udp->udp_family) {
case AF_INET:
if (tba->ADDR_length == sizeof (ipa_conn_t)) {
ac = (ipa_conn_t *)addrp;
} else {
ASSERT(tba->ADDR_length ==
sizeof (ipa_conn_x_t));
ac = &((ipa_conn_x_t *)addrp)->acx_conn;
}
IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
&udp->udp_v6src);
break;
case AF_INET6:
if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
ac6 = (ipa6_conn_t *)addrp;
} else {
ASSERT(tba->ADDR_length ==
sizeof (ipa6_conn_x_t));
ac6 = &((ipa6_conn_x_t *)
addrp)->ac6x_conn;
}
udp->udp_v6src = ac6->ac6_laddr;
(void) udp_build_hdrs(q, udp);
break;
}
}
mp1 = mp1->b_cont;
}
/*
* Look for one or more appended ACK message added by
* udp_connect or udp_disconnect.
* If none found just send up the T_BIND_ACK.
* udp_connect has appended a T_OK_ACK and a T_CONN_CON.
* udp_disconnect has appended a T_OK_ACK.
*/
if (mp1 != NULL) {
if (mp->b_cont == mp1)
mp->b_cont = NULL;
else {
ASSERT(mp->b_cont->b_cont == mp1);
mp->b_cont->b_cont = NULL;
}
freemsg(mp);
mp = mp1;
while (mp != NULL) {
mp1 = mp->b_cont;
mp->b_cont = NULL;
putnext(q, mp);
mp = mp1;
}
return;
}
freemsg(mp->b_cont);
mp->b_cont = NULL;
putnext(q, mp);
}
/*
* return SNMP stuff in buffer in mpdata
*/
static int
udp_snmp_get(queue_t *q, mblk_t *mpctl)
{
mblk_t *mpdata;
mblk_t *mp_conn_ctl;
mblk_t *mp6_conn_ctl;
mblk_t *mp_conn_data;
mblk_t *mp6_conn_data;
mblk_t *mp_conn_tail = NULL;
mblk_t *mp6_conn_tail = NULL;
struct opthdr *optp;
IDP idp;
udp_t *udp;
mib2_udpEntry_t ude;
mib2_udp6Entry_t ude6;
int state;
zoneid_t zoneid;
if (mpctl == NULL ||
(mpdata = mpctl->b_cont) == NULL ||
(mp_conn_ctl = copymsg(mpctl)) == NULL ||
(mp6_conn_ctl = copymsg(mpctl)) == NULL) {
freemsg(mp_conn_ctl);
return (0);
}
mp_conn_data = mp_conn_ctl->b_cont;
mp6_conn_data = mp6_conn_ctl->b_cont;
udp = (udp_t *)q->q_ptr;
zoneid = udp->udp_zoneid;
/* fixed length structure for IPv4 and IPv6 counters */
SET_MIB(udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
SET_MIB(udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP;
optp->name = 0;
(void) snmp_append_data(mpdata, (char *)&udp_mib, sizeof (udp_mib));
optp->len = msgdsize(mpdata);
qreply(q, mpctl);
mutex_enter(&udp_g_lock);
for (idp = mi_first_ptr(&udp_g_head);
(udp = (udp_t *)idp) != 0;
idp = mi_next_ptr(&udp_g_head, idp)) {
if (zoneid != udp->udp_zoneid)
continue;
/* Note that the port numbers are sent in host byte order */
if (udp->udp_state == TS_UNBND)
state = MIB2_UDP_unbound;
else if (udp->udp_state == TS_IDLE)
state = MIB2_UDP_idle;
else if (udp->udp_state == TS_DATA_XFER)
state = MIB2_UDP_connected;
else
state = MIB2_UDP_unknown;
/*
* Create an IPv4 table entry for IPv4 entries and also
* any IPv6 entries which are bound to in6addr_any
* (i.e. anything a IPv4 peer could connect/send to).
*/
if (udp->udp_ipversion == IPV4_VERSION ||
(udp->udp_state <= TS_IDLE &&
IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
ude.udpEntryInfo.ue_state = state;
/* If in6addr_any this will set it to INADDR_ANY */
ude.udpLocalAddress = V4_PART_OF_V6(udp->udp_v6src);
ude.udpLocalPort = ntohs(udp->udp_port);
if (udp->udp_state == TS_DATA_XFER) {
/*
* Can potentially get here for v6 socket
* if another process (say, ping) has just
* done a sendto(), changing the state
* from the TS_IDLE above to TS_DATA_XFER
* by the time we hit this part of the code.
*/
ude.udpEntryInfo.ue_RemoteAddress =
V4_PART_OF_V6(udp->udp_v6dst);
ude.udpEntryInfo.ue_RemotePort =
ntohs(udp->udp_dstport);
} else {
ude.udpEntryInfo.ue_RemoteAddress = 0;
ude.udpEntryInfo.ue_RemotePort = 0;
}
(void) snmp_append_data2(mp_conn_data, &mp_conn_tail,
(char *)&ude, sizeof (ude));
}
if (udp->udp_ipversion == IPV6_VERSION) {
ude6.udp6EntryInfo.ue_state = state;
ude6.udp6LocalAddress = udp->udp_v6src;
ude6.udp6LocalPort = ntohs(udp->udp_port);
ude6.udp6IfIndex = udp->udp_bound_if;
if (udp->udp_state == TS_DATA_XFER) {
ude6.udp6EntryInfo.ue_RemoteAddress =
udp->udp_v6dst;
ude6.udp6EntryInfo.ue_RemotePort =
ntohs(udp->udp_dstport);
} else {
ude6.udp6EntryInfo.ue_RemoteAddress =
sin6_null.sin6_addr;
ude6.udp6EntryInfo.ue_RemotePort = 0;
}
(void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail,
(char *)&ude6, sizeof (ude6));
}
}
mutex_exit(&udp_g_lock);
/* IPv4 UDP endpoints */
optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP;
optp->name = MIB2_UDP_ENTRY;
optp->len = msgdsize(mp_conn_data);
qreply(q, mp_conn_ctl);
/* IPv6 UDP endpoints */
optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP6;
optp->name = MIB2_UDP6_ENTRY;
optp->len = msgdsize(mp6_conn_data);
qreply(q, mp6_conn_ctl);
return (1);
}
/*
* Return 0 if invalid set request, 1 otherwise, including non-udp requests.
* NOTE: Per MIB-II, UDP has no writable data.
* TODO: If this ever actually tries to set anything, it needs to be
* to do the appropriate locking.
*/
/* ARGSUSED */
static int
udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
uchar_t *ptr, int len)
{
switch (level) {
case MIB2_UDP:
return (0);
default:
return (1);
}
}
static void
udp_report_item(mblk_t *mp, udp_t *udp)
{
char *state;
char addrbuf1[INET6_ADDRSTRLEN];
char addrbuf2[INET6_ADDRSTRLEN];
uint_t print_len, buf_len;
buf_len = mp->b_datap->db_lim - mp->b_wptr;
ASSERT(buf_len >= 0);
if (buf_len == 0)
return;
if (udp->udp_state == TS_UNBND)
state = "UNBOUND";
else if (udp->udp_state == TS_IDLE)
state = "IDLE";
else if (udp->udp_state == TS_DATA_XFER)
state = "CONNECTED";
else
state = "UnkState";
print_len = snprintf((char *)mp->b_wptr, buf_len,
MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
(void *)udp, udp->udp_zoneid, ntohs(udp->udp_port),
inet_ntop(AF_INET6, &udp->udp_v6src,
addrbuf1, sizeof (addrbuf1)),
inet_ntop(AF_INET6, &udp->udp_v6dst,
addrbuf2, sizeof (addrbuf2)),
ntohs(udp->udp_dstport), state);
if (print_len < buf_len) {
mp->b_wptr += print_len;
} else {
mp->b_wptr += buf_len;
}
}
/* Report for ndd "udp_status" */
/* ARGSUSED */
static int
udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
IDP idp;
udp_t *udp;
zoneid_t zoneid;
/*
* Because of the ndd constraint, at most we can have 64K buffer
* to put in all UDP info. So to be more efficient, just
* allocate a 64K buffer here, assuming we need that large buffer.
* This may be a problem as any user can read udp_status. Therefore
* we limit the rate of doing this using udp_ndd_get_info_interval.
* This should be OK as normal users should not do this too often.
*/
if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
drv_usectohz(udp_ndd_get_info_interval * 1000)) {
(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
return (0);
}
}
if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
/* The following may work even if we cannot get a large buf. */
(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
return (0);
}
(void) mi_mpprintf(mp,
"UDP " MI_COL_HDRPAD_STR
/* 12345678[89ABCDEF] */
" zone lport src addr dest addr port state");
/* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
udp = (udp_t *)q->q_ptr;
zoneid = udp->udp_zoneid;
mutex_enter(&udp_g_lock);
for (idp = mi_first_ptr(&udp_g_head);
(udp = (udp_t *)idp) != 0;
idp = mi_next_ptr(&udp_g_head, idp)) {
if (zoneid != GLOBAL_ZONEID &&
zoneid != udp->udp_zoneid)
continue;
udp_report_item(mp->b_cont, udp);
}
mutex_exit(&udp_g_lock);
udp_last_ndd_get_info_time = ddi_get_lbolt();
return (0);
}
/*
* This routine creates a T_UDERROR_IND message and passes it upstream.
* The address and options are copied from the T_UNITDATA_REQ message
* passed in mp. This message is freed.
*/
static void
udp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err)
{
mblk_t *mp1;
struct T_unitdata_req *tudr = (struct T_unitdata_req *)mp->b_rptr;
uchar_t *destaddr, *optaddr;
if ((mp->b_wptr < mp->b_rptr) ||
(mp->b_wptr - mp->b_rptr) < sizeof (struct T_unitdata_req)) {
goto done;
}
destaddr = mp->b_rptr + tudr->DEST_offset;
if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
destaddr + tudr->DEST_length < mp->b_rptr ||
destaddr + tudr->DEST_length > mp->b_wptr) {
goto done;
}
optaddr = mp->b_rptr + tudr->OPT_offset;
if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
optaddr + tudr->OPT_length < mp->b_rptr ||
optaddr + tudr->OPT_length > mp->b_wptr) {
goto done;
}
mp1 = mi_tpi_uderror_ind((char *)destaddr, tudr->DEST_length,
(char *)optaddr, tudr->OPT_length, err);
if (mp1)
qreply(q, mp1);
done:
freemsg(mp);
}
/*
* This routine removes a port number association from a stream. It
* is called by udp_wput to handle T_UNBIND_REQ messages.
*/
static void
udp_unbind(queue_t *q, mblk_t *mp)
{
udp_t *udp;
udp = (udp_t *)q->q_ptr;
/* If a bind has not been done, we can't unbind. */
if (udp->udp_state == TS_UNBND) {
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
if (cl_inet_unbind != NULL) {
/*
* Running in cluster mode - register unbind information
*/
if (udp->udp_ipversion == IPV4_VERSION) {
(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
(uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
(in_port_t)udp->udp_port);
} else {
(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
(uint8_t *)&(udp->udp_v6src),
(in_port_t)udp->udp_port);
}
}
udp_bind_hash_remove(udp, B_FALSE);
V6_SET_ZERO(udp->udp_v6src);
V6_SET_ZERO(udp->udp_bound_v6src);
udp->udp_port = 0;
udp->udp_state = TS_UNBND;
if (udp->udp_family == AF_INET6) {
int error;
/* Rebuild the header template */
error = udp_build_hdrs(q, udp);
if (error != 0) {
udp_err_ack(q, mp, TSYSERR, error);
return;
}
}
/* Pass the unbind to IP */
putnext(q, mp);
}
/*
* Don't let port fall into the privileged range.
* Since the extra priviledged ports can be arbitrary we also
* ensure that we exclude those from consideration.
* udp_g_epriv_ports is not sorted thus we loop over it until
* there are no changes.
*/
static in_port_t
udp_update_next_port(in_port_t port, boolean_t random)
{
int i;
if (random && udp_random_anon_port != 0) {
(void) random_get_pseudo_bytes((uint8_t *)&port,
sizeof (in_port_t));
/*
* Unless changed by a sys admin, the smallest anon port
* is 32768 and the largest anon port is 65535. It is
* very likely (50%) for the random port to be smaller
* than the smallest anon port. When that happens,
* add port % (anon port range) to the smallest anon
* port to get the random port. It should fall into the
* valid anon port range.
*/
if (port < udp_smallest_anon_port) {
port = udp_smallest_anon_port +
port % (udp_largest_anon_port -
udp_smallest_anon_port);
}
}
retry:
if (port < udp_smallest_anon_port || port > udp_largest_anon_port)
port = udp_smallest_anon_port;
if (port < udp_smallest_nonpriv_port)
port = udp_smallest_nonpriv_port;
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (port == udp_g_epriv_ports[i]) {
port++;
/*
* Make sure that the port is in the
* valid range.
*/
goto retry;
}
}
return (port);
}
/*
* This routine handles all messages passed downstream. It either
* consumes the message or passes it downstream; it never queues a
* a message.
*/
static void
udp_wput(queue_t *q, mblk_t *mp)
{
uchar_t *rptr = mp->b_rptr;
struct datab *db;
ipha_t *ipha;
udpha_t *udpha;
mblk_t *mp1;
int ip_hdr_length;
#define tudr ((struct T_unitdata_req *)rptr)
uint32_t ip_len;
udp_t *udp;
sin6_t *sin6;
sin_t *sin;
ipaddr_t v4dst;
uint16_t port;
uint_t srcid;
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
"udp_wput_start: q %p mp %p", q, mp);
db = mp->b_datap;
switch (db->db_type) {
case M_PROTO:
case M_PCPROTO:
ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
if (mp->b_wptr - rptr >= sizeof (struct T_unitdata_req)) {
/* Detect valid T_UNITDATA_REQ here */
if (((union T_primitives *)rptr)->type
== T_UNITDATA_REQ)
break;
}
/* FALLTHRU */
default:
qwriter(q, mp, udp_wput_other, PERIM_INNER);
return;
}
udp = (udp_t *)q->q_ptr;
/* Handle UNITDATA_REQ messages here */
if (udp->udp_state == TS_UNBND) {
/* If a port has not been bound to the stream, fail. */
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, EPROTO);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "outstate");
return;
}
mp1 = mp->b_cont;
if (mp1 == NULL) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, EPROTO);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
return;
}
if ((rptr + tudr->DEST_offset + tudr->DEST_length) > mp->b_wptr) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, EADDRNOTAVAIL);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
return;
}
switch (udp->udp_family) {
case AF_INET6:
sin6 = (sin6_t *)&rptr[tudr->DEST_offset];
if (!OK_32PTR((char *)sin6) ||
tudr->DEST_length != sizeof (sin6_t) ||
sin6->sin6_family != AF_INET6) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, EADDRNOTAVAIL);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
return;
}
if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
/*
* Destination is a non-IPv4-compatible IPv6 address.
* Send out an IPv6 format packet.
*/
udp_wput_ipv6(q, mp, sin6, tudr->OPT_length);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "udp_wput_ipv6");
return;
}
/*
* If the local address is not zero or a mapped address return
* an error.
* I would be possible to send an IPv4 packet but the
* response would never make it back to the application
* since it is bound to a non-mapped address.
*/
if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, EADDRNOTAVAIL);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
return;
}
/* Send IPv4 packet without modifying udp_ipversion */
/* Extract port and ipaddr */
port = sin6->sin6_port;
IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
srcid = sin6->__sin6_src_id;
break;
case AF_INET:
sin = (sin_t *)&rptr[tudr->DEST_offset];
if (!OK_32PTR((char *)sin) ||
tudr->DEST_length != sizeof (sin_t) ||
sin->sin_family != AF_INET) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, EADDRNOTAVAIL);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
return;
}
/* Extract port and ipaddr */
port = sin->sin_port;
v4dst = sin->sin_addr.s_addr;
srcid = 0;
break;
}
/*
* If options passed in, feed it for verification and handling
*/
if (tudr->OPT_length != 0) {
int error;
if (udp_unitdata_opt_process(q, mp, &error, NULL) < 0) {
/* failure */
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, error);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q,
"udp_unitdata_opt_process");
return;
}
ASSERT(error == 0);
/*
* Note: success in processing options.
* mp option buffer represented by
* OPT_length/offset now potentially modified
* and contain option setting results
*/
}
/* Add an IP header */
ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
udp->udp_ip_snd_options_len;
ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
if ((mp1->b_datap->db_ref != 1) ||
((uchar_t *)ipha < mp1->b_datap->db_base) ||
!OK_32PTR(ipha)) {
uchar_t *wptr;
mp1 = allocb(ip_hdr_length + udp_wroff_extra, BPRI_LO);
if (!mp1) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, ENOMEM);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "allocbfail2");
return;
}
mp1->b_cont = mp->b_cont;
mp->b_cont = mp1;
wptr = mp1->b_datap->db_lim;
mp1->b_wptr = wptr;
ipha = (ipha_t *)(wptr - ip_hdr_length);
}
mp1->b_rptr = (uchar_t *)ipha;
ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
(uintptr_t)UINT_MAX);
ip_hdr_length -= UDPH_SIZE;
#ifdef _BIG_ENDIAN
/* Set version, header length, and tos */
*(uint16_t *)&ipha->ipha_version_and_hdr_length =
((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
udp->udp_type_of_service);
/* Set ttl and protocol */
*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
#else
/* Set version, header length, and tos */
*(uint16_t *)&ipha->ipha_version_and_hdr_length =
((udp->udp_type_of_service << 8) |
((IP_VERSION << 4) | (ip_hdr_length>>2)));
/* Set ttl and protocol */
*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
#endif
/*
* Copy our address into the packet. If this is zero,
* first look at __sin6_src_id for a hint. If we leave the source
* as INADDR_ANY then ip will fill in the real source address.
*/
IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
in6_addr_t v6src;
ip_srcid_find_id(srcid, &v6src, udp->udp_zoneid);
IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
}
ipha->ipha_fragment_offset_and_flags = 0;
ipha->ipha_ident = 0;
/* Determine length of packet */
ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
{
mblk_t *mp2;
if ((mp2 = mp1->b_cont) != NULL) {
do {
ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr)
<= (uintptr_t)UINT_MAX);
ip_len += (uint32_t)(mp2->b_wptr - mp2->b_rptr);
} while ((mp2 = mp2->b_cont) != NULL);
}
}
/*
* If the size of the packet is greater than the maximum allowed by
* ip, return an error. Passing this down could cause panics because
* the size will have wrapped and be inconsistent with the msg size.
*/
if (ip_len > IP_MAXPACKET) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, EMSGSIZE);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "IP length exceeded");
return;
}
ipha->ipha_length = htons((uint16_t)ip_len);
ip_len -= ip_hdr_length;
ip_len = htons((uint16_t)ip_len);
udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
/*
* Copy in the destination address and port from the T_UNITDATA
* request
*/
if (v4dst == INADDR_ANY)
ipha->ipha_dst = htonl(INADDR_LOOPBACK);
else
ipha->ipha_dst = v4dst;
/*
* Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
*/
if (CLASSD(v4dst))
ipha->ipha_ttl = udp->udp_multicast_ttl;
udpha->uha_dst_port = port;
udpha->uha_src_port = udp->udp_port;
if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) {
uint32_t cksum;
bcopy(udp->udp_ip_snd_options, &ipha[1],
udp->udp_ip_snd_options_len);
/*
* Massage source route putting first source route in ipha_dst.
* Ignore the destination in T_unitdata_req.
* Create a checksum adjustment for a source route, if any.
*/
cksum = ip_massage_options(ipha);
cksum = (cksum & 0xFFFF) + (cksum >> 16);
cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
(ipha->ipha_dst & 0xFFFF);
if ((int)cksum < 0)
cksum--;
cksum = (cksum & 0xFFFF) + (cksum >> 16);
/*
* IP does the checksum if uha_checksum is non-zero,
* We make it easy for IP to include our pseudo header
* by putting our length in uha_checksum.
*/
cksum += ip_len;
cksum = (cksum & 0xFFFF) + (cksum >> 16);
/* There might be a carry. */
cksum = (cksum & 0xFFFF) + (cksum >> 16);
#ifdef _LITTLE_ENDIAN
if (udp_do_checksum)
ip_len = (cksum << 16) | ip_len;
#else
if (udp_do_checksum)
ip_len = (ip_len << 16) | cksum;
else
ip_len <<= 16;
#endif
} else {
/*
* IP does the checksum if uha_checksum is non-zero,
* We make it easy for IP to include our pseudo header
* by putting our length in uha_checksum.
*/
if (udp_do_checksum)
ip_len |= (ip_len << 16);
#ifndef _LITTLE_ENDIAN
else
ip_len <<= 16;
#endif
}
/* Set UDP length and checksum */
*((uint32_t *)&udpha->uha_length) = ip_len;
freeb(mp);
/* We're done. Pass the packet to ip. */
BUMP_MIB(&udp_mib, udpOutDatagrams);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "end");
putnext(q, mp1);
#undef tudr
}
/*
* udp_wput_ipv6():
* Assumes that udp_wput did some sanity checking on the destination
* address.
*/
static void
udp_wput_ipv6(queue_t *q, mblk_t *mp, sin6_t *sin6, t_scalar_t tudr_optlen)
{
ip6_t *ip6h;
ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */
mblk_t *mp1;
int udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
size_t ip_len;
udpha_t *udph;
udp_t *udp;
ip6_pkt_t ipp_s; /* For ancillary data options */
ip6_pkt_t *ipp = &ipp_s;
ip6_pkt_t *tipp; /* temporary ipp */
uint32_t csum = 0;
uint_t ignore = 0;
uint_t option_exists = 0, is_sticky = 0;
uint8_t *cp;
uint8_t *nxthdr_ptr;
udp = (udp_t *)q->q_ptr;
/*
* If the local address is a mapped address return
* an error.
* It would be possible to send an IPv6 packet but the
* response would never make it back to the application
* since it is bound to a mapped address.
*/
if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, EADDRNOTAVAIL);
return;
}
ipp->ipp_fields = 0;
ipp->ipp_sticky_ignored = 0;
/*
* If TPI options passed in, feed it for verification and handling
*/
if (tudr_optlen != 0) {
int error;
if (udp_unitdata_opt_process(q, mp, &error,
(void *)ipp) < 0) {
/* failure */
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, error);
return;
}
ignore = ipp->ipp_sticky_ignored;
ASSERT(error == 0);
}
if (sin6->sin6_scope_id != 0 &&
IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
/*
* IPPF_SCOPE_ID is special. It's neither a sticky
* option nor ancillary data. It needs to be
* explicitly set in options_exists.
*/
option_exists |= IPPF_SCOPE_ID;
}
if ((udp->udp_sticky_ipp.ipp_fields == 0) &&
(ipp->ipp_fields == 0)) {
/* No sticky options nor ancillary data. */
goto no_options;
}
/*
* Go through the options figuring out where each is going to
* come from and build two masks. The first mask indicates if
* the option exists at all. The second mask indicates if the
* option is sticky or ancillary.
*/
if (!(ignore & IPPF_HOPOPTS)) {
if (ipp->ipp_fields & IPPF_HOPOPTS) {
option_exists |= IPPF_HOPOPTS;
udp_ip_hdr_len += ipp->ipp_hopoptslen;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
option_exists |= IPPF_HOPOPTS;
is_sticky |= IPPF_HOPOPTS;
udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_hopoptslen;
}
}
if (!(ignore & IPPF_RTHDR)) {
if (ipp->ipp_fields & IPPF_RTHDR) {
option_exists |= IPPF_RTHDR;
udp_ip_hdr_len += ipp->ipp_rthdrlen;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
option_exists |= IPPF_RTHDR;
is_sticky |= IPPF_RTHDR;
udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
}
}
if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
option_exists |= IPPF_RTDSTOPTS;
udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
option_exists |= IPPF_RTDSTOPTS;
is_sticky |= IPPF_RTDSTOPTS;
udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
}
}
if (!(ignore & IPPF_DSTOPTS)) {
if (ipp->ipp_fields & IPPF_DSTOPTS) {
option_exists |= IPPF_DSTOPTS;
udp_ip_hdr_len += ipp->ipp_dstoptslen;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
option_exists |= IPPF_DSTOPTS;
is_sticky |= IPPF_DSTOPTS;
udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
}
}
if (!(ignore & IPPF_IFINDEX)) {
if (ipp->ipp_fields & IPPF_IFINDEX) {
option_exists |= IPPF_IFINDEX;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
option_exists |= IPPF_IFINDEX;
is_sticky |= IPPF_IFINDEX;
}
}
if (!(ignore & IPPF_ADDR)) {
if (ipp->ipp_fields & IPPF_ADDR) {
option_exists |= IPPF_ADDR;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
option_exists |= IPPF_ADDR;
is_sticky |= IPPF_ADDR;
}
}
if (!(ignore & IPPF_DONTFRAG)) {
if (ipp->ipp_fields & IPPF_DONTFRAG) {
option_exists |= IPPF_DONTFRAG;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
option_exists |= IPPF_DONTFRAG;
is_sticky |= IPPF_DONTFRAG;
}
}
if (!(ignore & IPPF_USE_MIN_MTU)) {
if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
option_exists |= IPPF_USE_MIN_MTU;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_USE_MIN_MTU) {
option_exists |= IPPF_USE_MIN_MTU;
is_sticky |= IPPF_USE_MIN_MTU;
}
}
if (!(ignore & IPPF_HOPLIMIT)) {
if (ipp->ipp_fields & IPPF_HOPLIMIT) {
option_exists |= IPPF_HOPLIMIT;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT) {
option_exists |= IPPF_HOPLIMIT;
is_sticky |= IPPF_HOPLIMIT;
}
}
if (!(ignore & IPPF_TCLASS)) {
if (ipp->ipp_fields & IPPF_TCLASS) {
option_exists |= IPPF_TCLASS;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
option_exists |= IPPF_TCLASS;
is_sticky |= IPPF_TCLASS;
}
}
no_options:
/*
* If any options carried in the ip6i_t were specified, we
* need to account for the ip6i_t in the data we'll be sending
* down.
*/
if (option_exists & IPPF_HAS_IP6I)
udp_ip_hdr_len += sizeof (ip6i_t);
/* check/fix buffer config, setup pointers into it */
mp1 = mp->b_cont;
ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
if ((mp1->b_datap->db_ref != 1) ||
((unsigned char *)ip6h < mp1->b_datap->db_base) ||
!OK_32PTR(ip6h)) {
/* Try to get everything in a single mblk next time */
if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
udp->udp_max_hdr_len = udp_ip_hdr_len;
(void) mi_set_sth_wroff(RD(q),
udp->udp_max_hdr_len + udp_wroff_extra);
}
mp1 = allocb(udp_ip_hdr_len + udp_wroff_extra, BPRI_LO);
if (!mp1) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, ENOMEM);
return;
}
mp1->b_cont = mp->b_cont;
mp->b_cont = mp1;
mp1->b_wptr = mp1->b_datap->db_lim;
ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
}
mp1->b_rptr = (unsigned char *)ip6h;
ip6i = (ip6i_t *)ip6h;
#define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
if (option_exists & IPPF_HAS_IP6I) {
ip6h = (ip6_t *)&ip6i[1];
ip6i->ip6i_flags = 0;
ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
/* sin6_scope_id takes precendence over IPPF_IFINDEX */
if (option_exists & IPPF_SCOPE_ID) {
ip6i->ip6i_flags |= IP6I_IFINDEX;
ip6i->ip6i_ifindex = sin6->sin6_scope_id;
} else if (option_exists & IPPF_IFINDEX) {
tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
ASSERT(tipp->ipp_ifindex != 0);
ip6i->ip6i_flags |= IP6I_IFINDEX;
ip6i->ip6i_ifindex = tipp->ipp_ifindex;
}
if (option_exists & IPPF_ADDR) {
/*
* Enable per-packet source address verification if
* IPV6_PKTINFO specified the source address.
* ip6_src is set in the transport's _wput function.
*/
ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
}
if (option_exists & IPPF_DONTFRAG) {
ip6i->ip6i_flags |= IP6I_DONTFRAG;
}
if (option_exists & IPPF_USE_MIN_MTU) {
ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
}
if (option_exists & IPPF_NEXTHOP) {
tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
ip6i->ip6i_flags |= IP6I_NEXTHOP;
ip6i->ip6i_nexthop = tipp->ipp_nexthop;
}
/*
* tell IP this is an ip6i_t private header
*/
ip6i->ip6i_nxt = IPPROTO_RAW;
}
/* Initialize IPv6 header */
ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
if (option_exists & IPPF_HOPLIMIT) {
tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPLIMIT);
ip6h->ip6_hops = tipp->ipp_hoplimit;
} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr) &&
(udp->udp_sticky_ipp.ipp_fields & IPPF_MULTI_HOPLIMIT)) {
ip6h->ip6_hops = udp->udp_multicast_ttl;
ip6i->ip6i_flags |= IP6I_HOPLIMIT;
} else {
ip6h->ip6_hops = udp->udp_ttl;
}
if (option_exists & IPPF_ADDR) {
tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
ip6h->ip6_src = tipp->ipp_addr;
} else {
/*
* The source address was not set using IPV6_PKTINFO.
* First look at the bound source.
* If unspecified fallback to __sin6_src_id.
*/
ip6h->ip6_src = udp->udp_v6src;
if (sin6->__sin6_src_id != 0 &&
IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
ip_srcid_find_id(sin6->__sin6_src_id,
&ip6h->ip6_src, udp->udp_zoneid);
}
}
nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
cp = (uint8_t *)&ip6h[1];
/*
* Here's where we have to start stringing together
* any extension headers in the right order:
* Hop-by-hop, destination, routing, and final destination opts.
*/
if (option_exists & IPPF_HOPOPTS) {
/* Hop-by-hop options */
ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
*nxthdr_ptr = IPPROTO_HOPOPTS;
nxthdr_ptr = &hbh->ip6h_nxt;
bcopy(tipp->ipp_hopopts, cp, tipp->ipp_hopoptslen);
cp += tipp->ipp_hopoptslen;
}
/*
* En-route destination options
* Only do them if there's a routing header as well
*/
if (option_exists & IPPF_RTDSTOPTS) {
ip6_dest_t *dst = (ip6_dest_t *)cp;
tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
*nxthdr_ptr = IPPROTO_DSTOPTS;
nxthdr_ptr = &dst->ip6d_nxt;
bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
cp += tipp->ipp_rtdstoptslen;
}
/*
* Routing header next
*/
if (option_exists & IPPF_RTHDR) {
ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
*nxthdr_ptr = IPPROTO_ROUTING;
nxthdr_ptr = &rt->ip6r_nxt;
bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
cp += tipp->ipp_rthdrlen;
}
/*
* Do ultimate destination options
*/
if (option_exists & IPPF_DSTOPTS) {
ip6_dest_t *dest = (ip6_dest_t *)cp;
tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
*nxthdr_ptr = IPPROTO_DSTOPTS;
nxthdr_ptr = &dest->ip6d_nxt;
bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
cp += tipp->ipp_dstoptslen;
}
/*
* Now set the last header pointer to the proto passed in
*/
ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
*nxthdr_ptr = IPPROTO_UDP;
/* Update UDP header */
udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
udph->uha_dst_port = sin6->sin6_port;
udph->uha_src_port = udp->udp_port;
/*
* Copy in the destination address
*/
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
ip6h->ip6_dst = ipv6_loopback;
else
ip6h->ip6_dst = sin6->sin6_addr;
ip6h->ip6_vcf =
(IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
(sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
if (option_exists & IPPF_TCLASS) {
tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
tipp->ipp_tclass);
}
if (option_exists & IPPF_RTHDR) {
ip6_rthdr_t *rth;
/*
* Perform any processing needed for source routing.
* We know that all extension headers will be in the same mblk
* as the IPv6 header.
*/
rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
if (rth != NULL && rth->ip6r_segleft != 0) {
if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
/*
* Drop packet - only support Type 0 routing.
* Notify the application as well.
*/
udp_ud_err(q, mp, EPROTO);
BUMP_MIB(&udp_mib, udpOutErrors);
return;
}
/*
* rth->ip6r_len is twice the number of
* addresses in the header. Thus it must be even.
*/
if (rth->ip6r_len & 0x1) {
udp_ud_err(q, mp, EPROTO);
BUMP_MIB(&udp_mib, udpOutErrors);
return;
}
/*
* Shuffle the routing header and ip6_dst
* addresses, and get the checksum difference
* between the first hop (in ip6_dst) and
* the destination (in the last routing hdr entry).
*/
csum = ip_massage_options_v6(ip6h, rth);
/*
* Verify that the first hop isn't a mapped address.
* Routers along the path need to do this verification
* for subsequent hops.
*/
if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
udp_ud_err(q, mp, EADDRNOTAVAIL);
BUMP_MIB(&udp_mib, udpOutErrors);
return;
}
cp += (rth->ip6r_len + 1)*8;
}
}
/* count up length of UDP packet */
ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
{
mblk_t *mp2;
if ((mp2 = mp1->b_cont) != NULL) {
do {
ip_len += mp2->b_wptr - mp2->b_rptr;
} while ((mp2 = mp2->b_cont) != NULL);
}
}
/*
* If the size of the packet is greater than the maximum allowed by
* ip, return an error. Passing this down could cause panics because
* the size will have wrapped and be inconsistent with the msg size.
*/
if (ip_len > IP_MAXPACKET) {
BUMP_MIB(&udp_mib, udpOutErrors);
udp_ud_err(q, mp, EMSGSIZE);
return;
}
/* Store the UDP length. Subtract length of extension hdrs */
udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
(int)((uchar_t *)udph - (uchar_t *)ip6h));
/*
* We make it easy for IP to include our pseudo header
* by putting our length in uh_checksum, modified (if
* we have a routing header) by the checksum difference
* between the ultimate destination and first hop addresses.
* Note: UDP over IPv6 must always checksum the packet.
*/
csum += udph->uha_length;
csum = (csum & 0xFFFF) + (csum >> 16);
udph->uha_checksum = (uint16_t)csum;
#ifdef _LITTLE_ENDIAN
ip_len = htons(ip_len);
#endif
ip6h->ip6_plen = ip_len;
freeb(mp);
/* We're done. Pass the packet to IP */
BUMP_MIB(&udp_mib, udpOutDatagrams);
putnext(q, mp1);
}
static void
udp_wput_other(queue_t *q, mblk_t *mp)
{
uchar_t *rptr = mp->b_rptr;
struct datab *db;
struct iocblk *iocp;
udp_t *udp;
cred_t *cr;
TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
"udp_wput_other_start: q %p", q);
udp = (udp_t *)q->q_ptr;
db = mp->b_datap;
cr = DB_CREDDEF(mp, udp->udp_credp);
switch (db->db_type) {
case M_DATA:
/* Not connected */
BUMP_MIB(&udp_mib, udpOutErrors);
freemsg(mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "not-connected");
return;
case M_PROTO:
case M_PCPROTO:
if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
freemsg(mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "protoshort");
return;
}
switch (((union T_primitives *)rptr)->type) {
case T_ADDR_REQ:
udp_addr_req(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "addrreq");
return;
case O_T_BIND_REQ:
case T_BIND_REQ:
udp_bind(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "bindreq");
return;
case T_CONN_REQ:
udp_connect(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "connreq");
return;
case T_CAPABILITY_REQ:
udp_capability_req(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "capabreq");
return;
case T_INFO_REQ:
udp_info_req(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "inforeq");
return;
case T_UNITDATA_REQ:
/*
* If a T_UNITDATA_REQ gets here, the address must
* be bad. Valid T_UNITDATA_REQs are handled
* in udp_wput.
*/
udp_ud_err(q, mp, EADDRNOTAVAIL);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "unitdatareq");
return;
case T_UNBIND_REQ:
udp_unbind(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "unbindreq");
return;
case T_SVR4_OPTMGMT_REQ:
if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr))
(void) svr4_optcom_req(q, mp, cr, &udp_opt_obj);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "optmgmtreq");
return;
case T_OPTMGMT_REQ:
(void) tpi_optcom_req(q, mp, cr, &udp_opt_obj);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "optmgmtreq");
return;
case T_DISCON_REQ:
udp_disconnect(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "disconreq");
return;
/* The following TPI message is not supported by udp. */
case O_T_CONN_RES:
case T_CONN_RES:
udp_err_ack(q, mp, TNOTSUPPORT, 0);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "connres/disconreq");
return;
/* The following 3 TPI messages are illegal for udp. */
case T_DATA_REQ:
case T_EXDATA_REQ:
case T_ORDREL_REQ:
udp_err_ack(q, mp, TNOTSUPPORT, 0);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "data/exdata/ordrel");
return;
default:
break;
}
break;
case M_FLUSH:
if (*rptr & FLUSHW)
flushq(q, FLUSHDATA);
break;
case M_IOCTL:
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case TI_GETPEERNAME:
if (udp->udp_state != TS_DATA_XFER) {
/*
* If a default destination address has not
* been associated with the stream, then we
* don't know the peer's name.
*/
iocp->ioc_error = ENOTCONN;
err_ret:;
iocp->ioc_count = 0;
mp->b_datap->db_type = M_IOCACK;
qreply(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "getpeername");
return;
}
/* FALLTHRU */
case TI_GETMYNAME: {
/*
* For TI_GETPEERNAME and TI_GETMYNAME, we first
* need to copyin the user's strbuf structure.
* Processing will continue in the M_IOCDATA case
* below.
*/
mi_copyin(q, mp, NULL,
SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "getmyname");
return;
}
case ND_SET:
/* nd_getset performs the necessary checking */
case ND_GET:
if (nd_getset(q, udp_g_nd, mp)) {
qreply(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "get");
return;
}
break;
default:
break;
}
break;
case M_IOCDATA:
udp_wput_iocdata(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "iocdata");
return;
default:
/* Unrecognized messages are passed through without change. */
break;
}
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "end");
putnext(q, mp);
}
/*
* udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
* messages.
*/
static void
udp_wput_iocdata(queue_t *q, mblk_t *mp)
{
mblk_t *mp1;
STRUCT_HANDLE(strbuf, sb);
uint16_t port;
udp_t *udp;
in6_addr_t v6addr;
ipaddr_t v4addr;
uint32_t flowinfo = 0;
int addrlen;
/* Make sure it is one of ours. */
switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
case TI_GETMYNAME:
case TI_GETPEERNAME:
break;
default:
putnext(q, mp);
return;
}
switch (mi_copy_state(q, mp, &mp1)) {
case -1:
return;
case MI_COPY_CASE(MI_COPY_IN, 1):
break;
case MI_COPY_CASE(MI_COPY_OUT, 1):
/*
* The address has been copied out, so now
* copyout the strbuf.
*/
mi_copyout(q, mp);
return;
case MI_COPY_CASE(MI_COPY_OUT, 2):
/*
* The address and strbuf have been copied out.
* We're done, so just acknowledge the original
* M_IOCTL.
*/
mi_copy_done(q, mp, 0);
return;
default:
/*
* Something strange has happened, so acknowledge
* the original M_IOCTL with an EPROTO error.
*/
mi_copy_done(q, mp, EPROTO);
return;
}
/*
* Now we have the strbuf structure for TI_GETMYNAME
* and TI_GETPEERNAME. Next we copyout the requested
* address and then we'll copyout the strbuf.
*/
STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
(void *)mp1->b_rptr);
udp = (udp_t *)q->q_ptr;
if (udp->udp_family == AF_INET)
addrlen = sizeof (sin_t);
else
addrlen = sizeof (sin6_t);
if (STRUCT_FGET(sb, maxlen) < addrlen) {
mi_copy_done(q, mp, EINVAL);
return;
}
switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
case TI_GETMYNAME:
if (udp->udp_family == AF_INET) {
ASSERT(udp->udp_ipversion == IPV4_VERSION);
if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
v4addr = V4_PART_OF_V6(udp->udp_v6src);
} else {
/*
* INADDR_ANY
* udp_v6src is not set, we might be bound to
* broadcast/multicast. Use udp_bound_v6src as
* local address instead (that could
* also still be INADDR_ANY)
*/
v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
}
} else {
/* udp->udp_family == AF_INET6 */
if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
v6addr = udp->udp_v6src;
} else {
/*
* UNSPECIFIED
* udp_v6src is not set, we might be bound to
* broadcast/multicast. Use udp_bound_v6src as
* local address instead (that could
* also still be UNSPECIFIED)
*/
v6addr = udp->udp_bound_v6src;
}
}
port = udp->udp_port;
break;
case TI_GETPEERNAME:
if (udp->udp_family == AF_INET) {
ASSERT(udp->udp_ipversion == IPV4_VERSION);
v4addr = V4_PART_OF_V6(udp->udp_v6dst);
} else {
/* udp->udp_family == AF_INET6) */
v6addr = udp->udp_v6dst;
flowinfo = udp->udp_flowinfo;
}
port = udp->udp_dstport;
break;
default:
mi_copy_done(q, mp, EPROTO);
return;
}
mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
if (!mp1)
return;
if (udp->udp_family == AF_INET) {
sin_t *sin;
STRUCT_FSET(sb, len, (int)sizeof (sin_t));
sin = (sin_t *)mp1->b_rptr;
mp1->b_wptr = (uchar_t *)&sin[1];
*sin = sin_null;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = v4addr;
sin->sin_port = port;
} else {
/* udp->udp_family == AF_INET6 */
sin6_t *sin6;
STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
sin6 = (sin6_t *)mp1->b_rptr;
mp1->b_wptr = (uchar_t *)&sin6[1];
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
sin6->sin6_flowinfo = flowinfo;
sin6->sin6_addr = v6addr;
sin6->sin6_port = port;
}
/* Copy out the address */
mi_copyout(q, mp);
}
static int
udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
void *thisdg_attrs)
{
udp_t *udp;
struct T_unitdata_req *udreqp;
int is_absreq_failure;
cred_t *cr;
ASSERT(((union T_primitives *)mp->b_rptr)->type);
udp = (udp_t *)q->q_ptr;
cr = DB_CREDDEF(mp, udp->udp_credp);
udreqp = (struct T_unitdata_req *)mp->b_rptr;
*errorp = 0;
*errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length,
udreqp->OPT_offset, cr, &udp_opt_obj,
thisdg_attrs, &is_absreq_failure);
if (*errorp != 0) {
/*
* Note: No special action needed in this
* module for "is_absreq_failure"
*/
return (-1); /* failure */
}
ASSERT(is_absreq_failure == 0);
return (0); /* success */
}
void
udp_ddi_init(void)
{
int i;
UDP6_MAJ = ddi_name_to_major(UDP6);
mutex_init(&udp_g_lock, NULL, MUTEX_DEFAULT, NULL);
udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
udp_opt_obj.odb_opt_arr_cnt);
if (udp_bind_fanout_size & (udp_bind_fanout_size - 1)) {
/* Not a power of two. Round up to nearest power of two */
for (i = 0; i < 31; i++) {
if (udp_bind_fanout_size < (1 << i))
break;
}
udp_bind_fanout_size = 1 << i;
}
udp_bind_fanout = kmem_zalloc(udp_bind_fanout_size *
sizeof (udp_fanout_t), KM_SLEEP);
for (i = 0; i < udp_bind_fanout_size; i++) {
mutex_init(&udp_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
NULL);
}
(void) udp_param_register(udp_param_arr, A_CNT(udp_param_arr));
udp_kstat_init();
}
void
udp_ddi_destroy(void)
{
int i;
nd_free(&udp_g_nd);
mutex_destroy(&udp_g_lock);
for (i = 0; i < udp_bind_fanout_size; i++) {
mutex_destroy(&udp_bind_fanout[i].uf_lock);
}
kmem_free(udp_bind_fanout, udp_bind_fanout_size *
sizeof (udp_fanout_t));
udp_kstat_fini();
}
static void
udp_kstat_init(void)
{
udp_named_kstat_t template = {
{ "inDatagrams", KSTAT_DATA_UINT32, 0 },
{ "inErrors", KSTAT_DATA_UINT32, 0 },
{ "outDatagrams", KSTAT_DATA_UINT32, 0 },
{ "entrySize", KSTAT_DATA_INT32, 0 },
{ "entry6Size", KSTAT_DATA_INT32, 0 },
{ "outErrors", KSTAT_DATA_UINT32, 0 },
};
udp_mibkp = kstat_create("udp", 0, "udp", "mib2", KSTAT_TYPE_NAMED,
NUM_OF_FIELDS(udp_named_kstat_t),
0);
if (udp_mibkp == NULL)
return;
template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
bcopy(&template, udp_mibkp->ks_data, sizeof (template));
udp_mibkp->ks_update = udp_kstat_update;
kstat_install(udp_mibkp);
}
static void
udp_kstat_fini(void)
{
if (udp_mibkp) {
kstat_delete(udp_mibkp);
udp_mibkp = NULL;
}
}
static int
udp_kstat_update(kstat_t *kp, int rw)
{
udp_named_kstat_t *udpkp;
if ((kp == NULL) || (kp->ks_data == NULL))
return (EIO);
if (rw == KSTAT_WRITE)
return (EACCES);
udpkp = (udp_named_kstat_t *)kp->ks_data;
udpkp->inDatagrams.value.ui32 = udp_mib.udpInDatagrams;
udpkp->inErrors.value.ui32 = udp_mib.udpInErrors;
udpkp->outDatagrams.value.ui32 = udp_mib.udpOutDatagrams;
udpkp->outErrors.value.ui32 = udp_mib.udpOutErrors;
return (0);
}
/*
* Little helper for IPsec's NAT-T processing.
*/
boolean_t
udp_compute_checksum(void)
{
return (udp_do_checksum);
}