udp.c revision 634e26ec75c89095090605284938356a3145f2b8
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1990 Mentat Inc. */
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/strlog.h>
#include <sys/strsun.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/timod.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/strsubr.h>
#include <sys/suntpi.h>
#include <sys/xti_inet.h>
#include <sys/kmem.h>
#include <sys/cred_impl.h>
#include <sys/policy.h>
#include <sys/priv.h>
#include <sys/ucred.h>
#include <sys/zone.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/vtrace.h>
#include <sys/sdt.h>
#include <sys/debug.h>
#include <sys/isa_defs.h>
#include <sys/random.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet/udp.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip_impl.h>
#include <inet/ipsec_impl.h>
#include <inet/ip6.h>
#include <inet/ip_ire.h>
#include <inet/ip_if.h>
#include <inet/ip_multi.h>
#include <inet/ip_ndp.h>
#include <inet/proto_set.h>
#include <inet/mib2.h>
#include <inet/nd.h>
#include <inet/optcom.h>
#include <inet/snmpcom.h>
#include <inet/kstatcom.h>
#include <inet/ipclassifier.h>
#include <sys/squeue_impl.h>
#include <inet/ipnet.h>
#include <sys/ethernet.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tnet.h>
#include <rpc/pmap_prot.h>
#include <inet/udp_impl.h>
/*
* Synchronization notes:
*
* UDP is MT and uses the usual kernel synchronization primitives. There are 2
* locks, the fanout lock (uf_lock) and conn_lock. conn_lock
* protects the contents of the udp_t. uf_lock protects the address and the
* fanout information.
* The lock order is conn_lock -> uf_lock.
*
* The fanout lock uf_lock:
* When a UDP endpoint is bound to a local port, it is inserted into
* a bind hash list. The list consists of an array of udp_fanout_t buckets.
* The size of the array is controlled by the udp_bind_fanout_size variable.
* This variable can be changed in /etc/system if the default value is
* not large enough. Each bind hash bucket is protected by a per bucket
* lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
* structure and a few other fields in the udp_t. A UDP endpoint is removed
* from the bind hash list only when it is being unbound or being closed.
* The per bucket lock also protects a UDP endpoint's state changes.
*
* Plumbing notes:
* UDP is always a device driver. For compatibility with mibopen() code
* it is possible to I_PUSH "udp", but that results in pushing a passthrough
* dummy module.
*
* The above implies that we don't support any intermediate module to
* reside in between /dev/ip and udp -- in fact, we never supported such
* scenario in the past as the inter-layer communication semantics have
* always been private.
*/
/* For /etc/system control */
uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
static void udp_addr_req(queue_t *q, mblk_t *mp);
static void udp_tpi_bind(queue_t *q, mblk_t *mp);
static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
static int udp_build_hdr_template(conn_t *, const in6_addr_t *,
const in6_addr_t *, in_port_t, uint32_t);
static void udp_capability_req(queue_t *q, mblk_t *mp);
static int udp_tpi_close(queue_t *q, int flags);
static void udp_close_free(conn_t *);
static void udp_tpi_connect(queue_t *q, mblk_t *mp);
static void udp_tpi_disconnect(queue_t *q, mblk_t *mp);
static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
int sys_error);
static void udp_err_ack_prim(queue_t *q, mblk_t *mp, t_scalar_t primitive,
t_scalar_t tlierr, int sys_error);
static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
cred_t *cr);
static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
char *value, caddr_t cp, cred_t *cr);
static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
char *value, caddr_t cp, cred_t *cr);
static void udp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
static void udp_icmp_error_ipv6(conn_t *connp, mblk_t *mp,
ip_recv_attr_t *ira);
static void udp_info_req(queue_t *q, mblk_t *mp);
static void udp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
static void udp_lrput(queue_t *, mblk_t *);
static void udp_lwput(queue_t *, mblk_t *);
static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp, boolean_t isv6);
static int udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
static int udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
int udp_opt_set(conn_t *connp, uint_t optset_context,
int level, int name, uint_t inlen,
uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
void *thisdg_attrs, cred_t *cr);
int udp_opt_get(conn_t *connp, int level, int name,
uchar_t *ptr);
static int udp_output_connected(conn_t *connp, mblk_t *mp, cred_t *cr,
pid_t pid);
static int udp_output_lastdst(conn_t *connp, mblk_t *mp, cred_t *cr,
pid_t pid, ip_xmit_attr_t *ixa);
static int udp_output_newdst(conn_t *connp, mblk_t *data_mp, sin_t *sin,
sin6_t *sin6, ushort_t ipversion, cred_t *cr, pid_t,
ip_xmit_attr_t *ixa);
static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt);
static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr);
static mblk_t *udp_prepend_hdr(conn_t *, ip_xmit_attr_t *, const ip_pkt_t *,
const in6_addr_t *, const in6_addr_t *, in_port_t, uint32_t, mblk_t *,
int *);
static mblk_t *udp_prepend_header_template(conn_t *, ip_xmit_attr_t *,
mblk_t *, const in6_addr_t *, in_port_t, uint32_t, int *);
static void udp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err);
static void udp_ud_err_connected(conn_t *, t_scalar_t);
static void udp_tpi_unbind(queue_t *q, mblk_t *mp);
static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
boolean_t random);
static void udp_wput_other(queue_t *q, mblk_t *mp);
static void udp_wput_iocdata(queue_t *q, mblk_t *mp);
static void udp_wput_fallback(queue_t *q, mblk_t *mp);
static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size);
static void *udp_stack_init(netstackid_t stackid, netstack_t *ns);
static void udp_stack_fini(netstackid_t stackid, void *arg);
static void *udp_kstat_init(netstackid_t stackid);
static void udp_kstat_fini(netstackid_t stackid, kstat_t *ksp);
static void *udp_kstat2_init(netstackid_t, udp_stat_t *);
static void udp_kstat2_fini(netstackid_t, kstat_t *);
static int udp_kstat_update(kstat_t *kp, int rw);
/* Common routines for TPI and socket module */
static void udp_ulp_recv(conn_t *, mblk_t *, uint_t, ip_recv_attr_t *);
/* Common routine for TPI and socket module */
static conn_t *udp_do_open(cred_t *, boolean_t, int, int *);
static void udp_do_close(conn_t *);
static int udp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
boolean_t);
static int udp_do_unbind(conn_t *);
int udp_getsockname(sock_lower_handle_t,
struct sockaddr *, socklen_t *, cred_t *);
int udp_getpeername(sock_lower_handle_t,
struct sockaddr *, socklen_t *, cred_t *);
static int udp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
cred_t *, pid_t);
#define UDP_RECV_HIWATER (56 * 1024)
#define UDP_RECV_LOWATER 128
#define UDP_XMIT_HIWATER (56 * 1024)
#define UDP_XMIT_LOWATER 1024
#pragma inline(udp_output_connected, udp_output_newdst, udp_output_lastdst)
/*
* Checks if the given destination addr/port is allowed out.
* If allowed, registers the (dest_addr/port, node_ID) mapping at Cluster.
* Called for each connect() and for sendto()/sendmsg() to a different
* destination.
* For connect(), called in udp_connect().
* For sendto()/sendmsg(), called in udp_output_newdst().
*
* This macro assumes that the cl_inet_connect2 hook is not NULL.
* Please check this before calling this macro.
*
* void
* CL_INET_UDP_CONNECT(conn_t cp, udp_t *udp, boolean_t is_outgoing,
* in6_addr_t *faddrp, in_port_t (or uint16_t) fport, int err);
*/
#define CL_INET_UDP_CONNECT(cp, is_outgoing, faddrp, fport, err) { \
(err) = 0; \
/* \
* Running in cluster mode - check and register active \
* "connection" information \
*/ \
if ((cp)->conn_ipversion == IPV4_VERSION) \
(err) = (*cl_inet_connect2)( \
(cp)->conn_netstack->netstack_stackid, \
IPPROTO_UDP, is_outgoing, AF_INET, \
(uint8_t *)&((cp)->conn_laddr_v4), \
(cp)->conn_lport, \
(uint8_t *)&(V4_PART_OF_V6(*faddrp)), \
(in_port_t)(fport), NULL); \
else \
(err) = (*cl_inet_connect2)( \
(cp)->conn_netstack->netstack_stackid, \
IPPROTO_UDP, is_outgoing, AF_INET6, \
(uint8_t *)&((cp)->conn_laddr_v6), \
(cp)->conn_lport, \
(uint8_t *)(faddrp), (in_port_t)(fport), NULL); \
}
static struct module_info udp_mod_info = {
UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
};
/*
* Entry points for UDP as a device.
* We have separate open functions for the /dev/udp and /dev/udp6 devices.
*/
static struct qinit udp_rinitv4 = {
NULL, NULL, udp_openv4, udp_tpi_close, NULL, &udp_mod_info, NULL
};
static struct qinit udp_rinitv6 = {
NULL, NULL, udp_openv6, udp_tpi_close, NULL, &udp_mod_info, NULL
};
static struct qinit udp_winit = {
(pfi_t)udp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, &udp_mod_info
};
/* UDP entry point during fallback */
struct qinit udp_fallback_sock_winit = {
(pfi_t)udp_wput_fallback, NULL, NULL, NULL, NULL, &udp_mod_info
};
/*
* UDP needs to handle I_LINK and I_PLINK since ifconfig
* likes to use it as a place to hang the various streams.
*/
static struct qinit udp_lrinit = {
(pfi_t)udp_lrput, NULL, udp_openv4, udp_tpi_close, NULL, &udp_mod_info
};
static struct qinit udp_lwinit = {
(pfi_t)udp_lwput, NULL, udp_openv4, udp_tpi_close, NULL, &udp_mod_info
};
/* For AF_INET aka /dev/udp */
struct streamtab udpinfov4 = {
&udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit
};
/* For AF_INET6 aka /dev/udp6 */
struct streamtab udpinfov6 = {
&udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit
};
static sin_t sin_null; /* Zero address for quick clears */
static sin6_t sin6_null; /* Zero address for quick clears */
#define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
/* Default structure copied into T_INFO_ACK messages */
static struct T_info_ack udp_g_t_info_ack_ipv4 = {
T_INFO_ACK,
UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */
T_INVALID, /* ETSU_size. udp does not support expedited data. */
T_INVALID, /* CDATA_size. udp does not support connect data. */
T_INVALID, /* DDATA_size. udp does not support disconnect data. */
sizeof (sin_t), /* ADDR_size. */
0, /* OPT_size - not initialized here */
UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */
T_CLTS, /* SERV_type. udp supports connection-less. */
TS_UNBND, /* CURRENT_state. This is set from udp_state. */
(XPG4_1|SENDZERO) /* PROVIDER_flag */
};
#define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
static struct T_info_ack udp_g_t_info_ack_ipv6 = {
T_INFO_ACK,
UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */
T_INVALID, /* ETSU_size. udp does not support expedited data. */
T_INVALID, /* CDATA_size. udp does not support connect data. */
T_INVALID, /* DDATA_size. udp does not support disconnect data. */
sizeof (sin6_t), /* ADDR_size. */
0, /* OPT_size - not initialized here */
UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */
T_CLTS, /* SERV_type. udp supports connection-less. */
TS_UNBND, /* CURRENT_state. This is set from udp_state. */
(XPG4_1|SENDZERO) /* PROVIDER_flag */
};
/* largest UDP port number */
#define UDP_MAX_PORT 65535
/*
* Table of ND variables supported by udp. These are loaded into us_nd
* in udp_open.
* All of these are alterable, within the min/max values given, at run time.
*/
/* BEGIN CSTYLED */
udpparam_t udp_param_arr[] = {
/*min max value name */
{ 0L, 256, 32, "udp_wroff_extra" },
{ 1L, 255, 255, "udp_ipv4_ttl" },
{ 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
{ 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" },
{ 0, 1, 1, "udp_do_checksum" },
{ 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" },
{ 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" },
{ UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"},
{ 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
{ UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"},
{ 65536, (1<<30), 2*1024*1024, "udp_max_buf"},
{ 0, 1, 0, "udp_pmtu_discovery" },
{ 0, 1, 0, "udp_sendto_ignerr" },
};
/* END CSTYLED */
/* Setable in /etc/system */
/* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
uint32_t udp_random_anon_port = 1;
/*
* Hook functions to enable cluster networking.
* On non-clustered systems these vectors must always be NULL
*/
void (*cl_inet_bind)(netstackid_t stack_id, uchar_t protocol,
sa_family_t addr_family, uint8_t *laddrp, in_port_t lport,
void *args) = NULL;
void (*cl_inet_unbind)(netstackid_t stack_id, uint8_t protocol,
sa_family_t addr_family, uint8_t *laddrp, in_port_t lport,
void *args) = NULL;
typedef union T_primitives *t_primp_t;
/*
* Return the next anonymous port in the privileged port range for
* bind checking.
*
* Trusted Extension (TX) notes: TX allows administrator to mark or
* reserve ports as Multilevel ports (MLP). MLP has special function
* on TX systems. Once a port is made MLP, it's not available as
* ordinary port. This creates "holes" in the port name space. It
* may be necessary to skip the "holes" find a suitable anon port.
*/
static in_port_t
udp_get_next_priv_port(udp_t *udp)
{
static in_port_t next_priv_port = IPPORT_RESERVED - 1;
in_port_t nextport;
boolean_t restart = B_FALSE;
udp_stack_t *us = udp->udp_us;
retry:
if (next_priv_port < us->us_min_anonpriv_port ||
next_priv_port >= IPPORT_RESERVED) {
next_priv_port = IPPORT_RESERVED - 1;
if (restart)
return (0);
restart = B_TRUE;
}
if (is_system_labeled() &&
(nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
next_priv_port = nextport;
goto retry;
}
return (next_priv_port--);
}
/*
* Hash list removal routine for udp_t structures.
*/
static void
udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
{
udp_t *udpnext;
kmutex_t *lockp;
udp_stack_t *us = udp->udp_us;
conn_t *connp = udp->udp_connp;
if (udp->udp_ptpbhn == NULL)
return;
/*
* Extract the lock pointer in case there are concurrent
* hash_remove's for this instance.
*/
ASSERT(connp->conn_lport != 0);
if (!caller_holds_lock) {
lockp = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport,
us->us_bind_fanout_size)].uf_lock;
ASSERT(lockp != NULL);
mutex_enter(lockp);
}
if (udp->udp_ptpbhn != NULL) {
udpnext = udp->udp_bind_hash;
if (udpnext != NULL) {
udpnext->udp_ptpbhn = udp->udp_ptpbhn;
udp->udp_bind_hash = NULL;
}
*udp->udp_ptpbhn = udpnext;
udp->udp_ptpbhn = NULL;
}
if (!caller_holds_lock) {
mutex_exit(lockp);
}
}
static void
udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
{
conn_t *connp = udp->udp_connp;
udp_t **udpp;
udp_t *udpnext;
conn_t *connext;
ASSERT(MUTEX_HELD(&uf->uf_lock));
ASSERT(udp->udp_ptpbhn == NULL);
udpp = &uf->uf_udp;
udpnext = udpp[0];
if (udpnext != NULL) {
/*
* If the new udp bound to the INADDR_ANY address
* and the first one in the list is not bound to
* INADDR_ANY we skip all entries until we find the
* first one bound to INADDR_ANY.
* This makes sure that applications binding to a
* specific address get preference over those binding to
* INADDR_ANY.
*/
connext = udpnext->udp_connp;
if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) &&
!V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) {
while ((udpnext = udpp[0]) != NULL &&
!V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) {
udpp = &(udpnext->udp_bind_hash);
}
if (udpnext != NULL)
udpnext->udp_ptpbhn = &udp->udp_bind_hash;
} else {
udpnext->udp_ptpbhn = &udp->udp_bind_hash;
}
}
udp->udp_bind_hash = udpnext;
udp->udp_ptpbhn = udpp;
udpp[0] = udp;
}
/*
* This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
* passed to udp_wput.
* It associates a port number and local address with the stream.
* It calls IP to verify the local IP address, and calls IP to insert
* the conn_t in the fanout table.
* If everything is ok it then sends the T_BIND_ACK back up.
*
* Note that UDP over IPv4 and IPv6 sockets can use the same port number
* without setting SO_REUSEADDR. This is needed so that they
* can be viewed as two independent transport protocols.
* However, anonymouns ports are allocated from the same range to avoid
* duplicating the us->us_next_port_to_try.
*/
static void
udp_tpi_bind(queue_t *q, mblk_t *mp)
{
sin_t *sin;
sin6_t *sin6;
mblk_t *mp1;
struct T_bind_req *tbr;
conn_t *connp;
udp_t *udp;
int error;
struct sockaddr *sa;
cred_t *cr;
/*
* All Solaris components should pass a db_credp
* for this TPI message, hence we ASSERT.
* But in case there is some other M_PROTO that looks
* like a TPI message sent by some other kernel
* component, we check and return an error.
*/
cr = msg_getcred(mp, NULL);
ASSERT(cr != NULL);
if (cr == NULL) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
connp = Q_TO_CONN(q);
udp = connp->conn_udp;
if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad req, len %u",
(uint_t)(mp->b_wptr - mp->b_rptr));
udp_err_ack(q, mp, TPROTO, 0);
return;
}
if (udp->udp_state != TS_UNBND) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad state, %u", udp->udp_state);
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
/*
* Reallocate the message to make sure we have enough room for an
* address.
*/
mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1);
if (mp1 == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
mp = mp1;
/* Reset the message type in preparation for shipping it back. */
DB_TYPE(mp) = M_PCPROTO;
tbr = (struct T_bind_req *)mp->b_rptr;
switch (tbr->ADDR_length) {
case 0: /* Request for a generic port */
tbr->ADDR_offset = sizeof (struct T_bind_req);
if (connp->conn_family == AF_INET) {
tbr->ADDR_length = sizeof (sin_t);
sin = (sin_t *)&tbr[1];
*sin = sin_null;
sin->sin_family = AF_INET;
mp->b_wptr = (uchar_t *)&sin[1];
sa = (struct sockaddr *)sin;
} else {
ASSERT(connp->conn_family == AF_INET6);
tbr->ADDR_length = sizeof (sin6_t);
sin6 = (sin6_t *)&tbr[1];
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
mp->b_wptr = (uchar_t *)&sin6[1];
sa = (struct sockaddr *)sin6;
}
break;
case sizeof (sin_t): /* Complete IPv4 address */
sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
sizeof (sin_t));
if (sa == NULL || !OK_32PTR((char *)sa)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (connp->conn_family != AF_INET ||
sa->sa_family != AF_INET) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
break;
case sizeof (sin6_t): /* complete IPv6 address */
sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
sizeof (sin6_t));
if (sa == NULL || !OK_32PTR((char *)sa)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (connp->conn_family != AF_INET6 ||
sa->sa_family != AF_INET6) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
break;
default: /* Invalid request */
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
udp_err_ack(q, mp, TBADADDR, 0);
return;
}
error = udp_do_bind(connp, sa, tbr->ADDR_length, cr,
tbr->PRIM_type != O_T_BIND_REQ);
if (error != 0) {
if (error > 0) {
udp_err_ack(q, mp, TSYSERR, error);
} else {
udp_err_ack(q, mp, -error, 0);
}
} else {
tbr->PRIM_type = T_BIND_ACK;
qreply(q, mp);
}
}
/*
* This routine handles each T_CONN_REQ message passed to udp. It
* associates a default destination address with the stream.
*
* After various error checks are completed, udp_connect() lays
* the target address and port into the composite header template.
* Then we ask IP for information, including a source address if we didn't
* already have one. Finally we send up the T_OK_ACK reply message.
*/
static void
udp_tpi_connect(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
int error;
socklen_t len;
struct sockaddr *sa;
struct T_conn_req *tcr;
cred_t *cr;
pid_t pid;
/*
* All Solaris components should pass a db_credp
* for this TPI message, hence we ASSERT.
* But in case there is some other M_PROTO that looks
* like a TPI message sent by some other kernel
* component, we check and return an error.
*/
cr = msg_getcred(mp, &pid);
ASSERT(cr != NULL);
if (cr == NULL) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
tcr = (struct T_conn_req *)mp->b_rptr;
/* A bit of sanity checking */
if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
udp_err_ack(q, mp, TPROTO, 0);
return;
}
if (tcr->OPT_length != 0) {
udp_err_ack(q, mp, TBADOPT, 0);
return;
}
/*
* Determine packet type based on type of address passed in
* the request should contain an IPv4 or IPv6 address.
* Make sure that address family matches the type of
* family of the address passed down.
*/
len = tcr->DEST_length;
switch (tcr->DEST_length) {
default:
udp_err_ack(q, mp, TBADADDR, 0);
return;
case sizeof (sin_t):
sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
sizeof (sin_t));
break;
case sizeof (sin6_t):
sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
sizeof (sin6_t));
break;
}
error = proto_verify_ip_addr(connp->conn_family, sa, len);
if (error != 0) {
udp_err_ack(q, mp, TSYSERR, error);
return;
}
error = udp_do_connect(connp, sa, len, cr, pid);
if (error != 0) {
if (error < 0)
udp_err_ack(q, mp, -error, 0);
else
udp_err_ack(q, mp, TSYSERR, error);
} else {
mblk_t *mp1;
/*
* We have to send a connection confirmation to
* keep TLI happy.
*/
if (connp->conn_family == AF_INET) {
mp1 = mi_tpi_conn_con(NULL, (char *)sa,
sizeof (sin_t), NULL, 0);
} else {
mp1 = mi_tpi_conn_con(NULL, (char *)sa,
sizeof (sin6_t), NULL, 0);
}
if (mp1 == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
/*
* Send ok_ack for T_CONN_REQ
*/
mp = mi_tpi_ok_ack_alloc(mp);
if (mp == NULL) {
/* Unable to reuse the T_CONN_REQ for the ack. */
udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
return;
}
putnext(connp->conn_rq, mp);
putnext(connp->conn_rq, mp1);
}
}
static int
udp_tpi_close(queue_t *q, int flags)
{
conn_t *connp;
if (flags & SO_FALLBACK) {
/*
* stream is being closed while in fallback
* simply free the resources that were allocated
*/
inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
qprocsoff(q);
goto done;
}
connp = Q_TO_CONN(q);
udp_do_close(connp);
done:
q->q_ptr = WR(q)->q_ptr = NULL;
return (0);
}
static void
udp_close_free(conn_t *connp)
{
udp_t *udp = connp->conn_udp;
/* If there are any options associated with the stream, free them. */
if (udp->udp_recv_ipp.ipp_fields != 0)
ip_pkt_free(&udp->udp_recv_ipp);
/*
* Clear any fields which the kmem_cache constructor clears.
* Only udp_connp needs to be preserved.
* TBD: We should make this more efficient to avoid clearing
* everything.
*/
ASSERT(udp->udp_connp == connp);
bzero(udp, sizeof (udp_t));
udp->udp_connp = connp;
}
static int
udp_do_disconnect(conn_t *connp)
{
udp_t *udp;
udp_fanout_t *udpf;
udp_stack_t *us;
int error;
udp = connp->conn_udp;
us = udp->udp_us;
mutex_enter(&connp->conn_lock);
if (udp->udp_state != TS_DATA_XFER) {
mutex_exit(&connp->conn_lock);
return (-TOUTSTATE);
}
udpf = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport,
us->us_bind_fanout_size)];
mutex_enter(&udpf->uf_lock);
if (connp->conn_mcbc_bind)
connp->conn_saddr_v6 = ipv6_all_zeros;
else
connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = 0;
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
/* Remove any remnants of mapped address binding */
if (connp->conn_family == AF_INET6)
connp->conn_ipversion = IPV6_VERSION;
connp->conn_v6lastdst = ipv6_all_zeros;
error = udp_build_hdr_template(connp, &connp->conn_saddr_v6,
&connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo);
mutex_exit(&connp->conn_lock);
if (error != 0)
return (error);
/*
* Tell IP to remove the full binding and revert
* to the local address binding.
*/
return (ip_laddr_fanout_insert(connp));
}
static void
udp_tpi_disconnect(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
int error;
/*
* Allocate the largest primitive we need to send back
* T_error_ack is > than T_ok_ack
*/
mp = reallocb(mp, sizeof (struct T_error_ack), 1);
if (mp == NULL) {
/* Unable to reuse the T_DISCON_REQ for the ack. */
udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, ENOMEM);
return;
}
error = udp_do_disconnect(connp);
if (error != 0) {
if (error < 0) {
udp_err_ack(q, mp, -error, 0);
} else {
udp_err_ack(q, mp, TSYSERR, error);
}
} else {
mp = mi_tpi_ok_ack_alloc(mp);
ASSERT(mp != NULL);
qreply(q, mp);
}
}
int
udp_disconnect(conn_t *connp)
{
int error;
connp->conn_dgram_errind = B_FALSE;
error = udp_do_disconnect(connp);
if (error < 0)
error = proto_tlitosyserr(-error);
return (error);
}
/* This routine creates a T_ERROR_ACK message and passes it upstream. */
static void
udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
{
if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
qreply(q, mp);
}
/* Shorthand to generate and send TPI error acks to our client */
static void
udp_err_ack_prim(queue_t *q, mblk_t *mp, t_scalar_t primitive,
t_scalar_t t_error, int sys_error)
{
struct T_error_ack *teackp;
if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
M_PCPROTO, T_ERROR_ACK)) != NULL) {
teackp = (struct T_error_ack *)mp->b_rptr;
teackp->ERROR_prim = primitive;
teackp->TLI_error = t_error;
teackp->UNIX_error = sys_error;
qreply(q, mp);
}
}
/*ARGSUSED2*/
static int
udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
int i;
udp_t *udp = Q_TO_UDP(q);
udp_stack_t *us = udp->udp_us;
for (i = 0; i < us->us_num_epriv_ports; i++) {
if (us->us_epriv_ports[i] != 0)
(void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]);
}
return (0);
}
/* ARGSUSED1 */
static int
udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr)
{
long new_value;
int i;
udp_t *udp = Q_TO_UDP(q);
udp_stack_t *us = udp->udp_us;
/*
* Fail the request if the new value does not lie within the
* port number limits.
*/
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value <= 0 || new_value >= 65536) {
return (EINVAL);
}
/* Check if the value is already in the list */
for (i = 0; i < us->us_num_epriv_ports; i++) {
if (new_value == us->us_epriv_ports[i]) {
return (EEXIST);
}
}
/* Find an empty slot */
for (i = 0; i < us->us_num_epriv_ports; i++) {
if (us->us_epriv_ports[i] == 0)
break;
}
if (i == us->us_num_epriv_ports) {
return (EOVERFLOW);
}
/* Set the new value */
us->us_epriv_ports[i] = (in_port_t)new_value;
return (0);
}
/* ARGSUSED1 */
static int
udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr)
{
long new_value;
int i;
udp_t *udp = Q_TO_UDP(q);
udp_stack_t *us = udp->udp_us;
/*
* Fail the request if the new value does not lie within the
* port number limits.
*/
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value <= 0 || new_value >= 65536) {
return (EINVAL);
}
/* Check that the value is already in the list */
for (i = 0; i < us->us_num_epriv_ports; i++) {
if (us->us_epriv_ports[i] == new_value)
break;
}
if (i == us->us_num_epriv_ports) {
return (ESRCH);
}
/* Clear the value */
us->us_epriv_ports[i] = 0;
return (0);
}
/* At minimum we need 4 bytes of UDP header */
#define ICMP_MIN_UDP_HDR 4
/*
* udp_icmp_input is called as conn_recvicmp to process ICMP messages.
* Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
* Assumes that IP has pulled up everything up to and including the ICMP header.
*/
/* ARGSUSED2 */
static void
udp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
{
conn_t *connp = (conn_t *)arg1;
icmph_t *icmph;
ipha_t *ipha;
int iph_hdr_length;
udpha_t *udpha;
sin_t sin;
sin6_t sin6;
mblk_t *mp1;
int error = 0;
udp_t *udp = connp->conn_udp;
ipha = (ipha_t *)mp->b_rptr;
ASSERT(OK_32PTR(mp->b_rptr));
if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
udp_icmp_error_ipv6(connp, mp, ira);
return;
}
ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
/* Skip past the outer IP and ICMP headers */
ASSERT(IPH_HDR_LENGTH(ipha) == ira->ira_ip_hdr_length);
iph_hdr_length = ira->ira_ip_hdr_length;
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1]; /* Inner IP header */
/* Skip past the inner IP and find the ULP header */
iph_hdr_length = IPH_HDR_LENGTH(ipha);
udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
switch (icmph->icmph_type) {
case ICMP_DEST_UNREACHABLE:
switch (icmph->icmph_code) {
case ICMP_FRAGMENTATION_NEEDED: {
ipha_t *ipha;
ip_xmit_attr_t *ixa;
/*
* IP has already adjusted the path MTU.
* But we need to adjust DF for IPv4.
*/
if (connp->conn_ipversion != IPV4_VERSION)
break;
ixa = conn_get_ixa(connp, B_FALSE);
if (ixa == NULL || ixa->ixa_ire == NULL) {
/*
* Some other thread holds conn_ixa. We will
* redo this on the next ICMP too big.
*/
if (ixa != NULL)
ixa_refrele(ixa);
break;
}
(void) ip_get_pmtu(ixa);
mutex_enter(&connp->conn_lock);
ipha = (ipha_t *)connp->conn_ht_iphc;
if (ixa->ixa_flags & IXAF_PMTU_IPV4_DF) {
ipha->ipha_fragment_offset_and_flags |=
IPH_DF_HTONS;
} else {
ipha->ipha_fragment_offset_and_flags &=
~IPH_DF_HTONS;
}
mutex_exit(&connp->conn_lock);
ixa_refrele(ixa);
break;
}
case ICMP_PORT_UNREACHABLE:
case ICMP_PROTOCOL_UNREACHABLE:
error = ECONNREFUSED;
break;
default:
/* Transient errors */
break;
}
break;
default:
/* Transient errors */
break;
}
if (error == 0) {
freemsg(mp);
return;
}
/*
* Deliver T_UDERROR_IND when the application has asked for it.
* The socket layer enables this automatically when connected.
*/
if (!connp->conn_dgram_errind) {
freemsg(mp);
return;
}
switch (connp->conn_family) {
case AF_INET:
sin = sin_null;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = ipha->ipha_dst;
sin.sin_port = udpha->uha_dst_port;
if (IPCL_IS_NONSTR(connp)) {
mutex_enter(&connp->conn_lock);
if (udp->udp_state == TS_DATA_XFER) {
if (sin.sin_port == connp->conn_fport &&
sin.sin_addr.s_addr ==
connp->conn_faddr_v4) {
mutex_exit(&connp->conn_lock);
(*connp->conn_upcalls->su_set_error)
(connp->conn_upper_handle, error);
goto done;
}
} else {
udp->udp_delayed_error = error;
*((sin_t *)&udp->udp_delayed_addr) = sin;
}
mutex_exit(&connp->conn_lock);
} else {
mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t),
NULL, 0, error);
if (mp1 != NULL)
putnext(connp->conn_rq, mp1);
}
break;
case AF_INET6:
sin6 = sin6_null;
sin6.sin6_family = AF_INET6;
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
sin6.sin6_port = udpha->uha_dst_port;
if (IPCL_IS_NONSTR(connp)) {
mutex_enter(&connp->conn_lock);
if (udp->udp_state == TS_DATA_XFER) {
if (sin6.sin6_port == connp->conn_fport &&
IN6_ARE_ADDR_EQUAL(&sin6.sin6_addr,
&connp->conn_faddr_v6)) {
mutex_exit(&connp->conn_lock);
(*connp->conn_upcalls->su_set_error)
(connp->conn_upper_handle, error);
goto done;
}
} else {
udp->udp_delayed_error = error;
*((sin6_t *)&udp->udp_delayed_addr) = sin6;
}
mutex_exit(&connp->conn_lock);
} else {
mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
NULL, 0, error);
if (mp1 != NULL)
putnext(connp->conn_rq, mp1);
}
break;
}
done:
freemsg(mp);
}
/*
* udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
* Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
* Assumes that IP has pulled up all the extension headers as well as the
* ICMPv6 header.
*/
static void
udp_icmp_error_ipv6(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira)
{
icmp6_t *icmp6;
ip6_t *ip6h, *outer_ip6h;
uint16_t iph_hdr_length;
uint8_t *nexthdrp;
udpha_t *udpha;
sin6_t sin6;
mblk_t *mp1;
int error = 0;
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
outer_ip6h = (ip6_t *)mp->b_rptr;
#ifdef DEBUG
if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6)
iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h);
else
iph_hdr_length = IPV6_HDR_LEN;
ASSERT(iph_hdr_length == ira->ira_ip_hdr_length);
#endif
/* Skip past the outer IP and ICMP headers */
iph_hdr_length = ira->ira_ip_hdr_length;
icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
/* Skip past the inner IP and find the ULP header */
ip6h = (ip6_t *)&icmp6[1]; /* Inner IP header */
if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) {
freemsg(mp);
return;
}
udpha = (udpha_t *)((char *)ip6h + iph_hdr_length);
switch (icmp6->icmp6_type) {
case ICMP6_DST_UNREACH:
switch (icmp6->icmp6_code) {
case ICMP6_DST_UNREACH_NOPORT:
error = ECONNREFUSED;
break;
case ICMP6_DST_UNREACH_ADMIN:
case ICMP6_DST_UNREACH_NOROUTE:
case ICMP6_DST_UNREACH_BEYONDSCOPE:
case ICMP6_DST_UNREACH_ADDR:
/* Transient errors */
break;
default:
break;
}
break;
case ICMP6_PACKET_TOO_BIG: {
struct T_unitdata_ind *tudi;
struct T_opthdr *toh;
size_t udi_size;
mblk_t *newmp;
t_scalar_t opt_length = sizeof (struct T_opthdr) +
sizeof (struct ip6_mtuinfo);
sin6_t *sin6;
struct ip6_mtuinfo *mtuinfo;
/*
* If the application has requested to receive path mtu
* information, send up an empty message containing an
* IPV6_PATHMTU ancillary data item.
*/
if (!connp->conn_ipv6_recvpathmtu)
break;
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
opt_length;
if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
BUMP_MIB(&us->us_udp_mib, udpInErrors);
break;
}
/*
* newmp->b_cont is left to NULL on purpose. This is an
* empty message containing only ancillary data.
*/
newmp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)newmp->b_rptr;
newmp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin6_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
tudi->OPT_length = opt_length;
sin6 = (sin6_t *)&tudi[1];
bzero(sin6, sizeof (sin6_t));
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = connp->conn_faddr_v6;
toh = (struct T_opthdr *)&sin6[1];
toh->level = IPPROTO_IPV6;
toh->name = IPV6_PATHMTU;
toh->len = opt_length;
toh->status = 0;
mtuinfo = (struct ip6_mtuinfo *)&toh[1];
bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
mtuinfo->ip6m_addr.sin6_family = AF_INET6;
mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
/*
* We've consumed everything we need from the original
* message. Free it, then send our empty message.
*/
freemsg(mp);
udp_ulp_recv(connp, newmp, msgdsize(newmp), ira);
return;
}
case ICMP6_TIME_EXCEEDED:
/* Transient errors */
break;
case ICMP6_PARAM_PROB:
/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
(uchar_t *)ip6h + icmp6->icmp6_pptr ==
(uchar_t *)nexthdrp) {
error = ECONNREFUSED;
break;
}
break;
}
if (error == 0) {
freemsg(mp);
return;
}
/*
* Deliver T_UDERROR_IND when the application has asked for it.
* The socket layer enables this automatically when connected.
*/
if (!connp->conn_dgram_errind) {
freemsg(mp);
return;
}
sin6 = sin6_null;
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = ip6h->ip6_dst;
sin6.sin6_port = udpha->uha_dst_port;
sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
if (IPCL_IS_NONSTR(connp)) {
mutex_enter(&connp->conn_lock);
if (udp->udp_state == TS_DATA_XFER) {
if (sin6.sin6_port == connp->conn_fport &&
IN6_ARE_ADDR_EQUAL(&sin6.sin6_addr,
&connp->conn_faddr_v6)) {
mutex_exit(&connp->conn_lock);
(*connp->conn_upcalls->su_set_error)
(connp->conn_upper_handle, error);
goto done;
}
} else {
udp->udp_delayed_error = error;
*((sin6_t *)&udp->udp_delayed_addr) = sin6;
}
mutex_exit(&connp->conn_lock);
} else {
mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
NULL, 0, error);
if (mp1 != NULL)
putnext(connp->conn_rq, mp1);
}
done:
freemsg(mp);
}
/*
* This routine responds to T_ADDR_REQ messages. It is called by udp_wput.
* The local address is filled in if endpoint is bound. The remote address
* is filled in if remote address has been precified ("connected endpoint")
* (The concept of connected CLTS sockets is alien to published TPI
* but we support it anyway).
*/
static void
udp_addr_req(queue_t *q, mblk_t *mp)
{
struct sockaddr *sa;
mblk_t *ackmp;
struct T_addr_ack *taa;
udp_t *udp = Q_TO_UDP(q);
conn_t *connp = udp->udp_connp;
uint_t addrlen;
/* Make it large enough for worst case */
ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2 * sizeof (sin6_t), 1);
if (ackmp == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
taa = (struct T_addr_ack *)ackmp->b_rptr;
bzero(taa, sizeof (struct T_addr_ack));
ackmp->b_wptr = (uchar_t *)&taa[1];
taa->PRIM_type = T_ADDR_ACK;
ackmp->b_datap->db_type = M_PCPROTO;
if (connp->conn_family == AF_INET)
addrlen = sizeof (sin_t);
else
addrlen = sizeof (sin6_t);
mutex_enter(&connp->conn_lock);
/*
* Note: Following code assumes 32 bit alignment of basic
* data structures like sin_t and struct T_addr_ack.
*/
if (udp->udp_state != TS_UNBND) {
/*
* Fill in local address first
*/
taa->LOCADDR_offset = sizeof (*taa);
taa->LOCADDR_length = addrlen;
sa = (struct sockaddr *)&taa[1];
(void) conn_getsockname(connp, sa, &addrlen);
ackmp->b_wptr += addrlen;
}
if (udp->udp_state == TS_DATA_XFER) {
/*
* connected, fill remote address too
*/
taa->REMADDR_length = addrlen;
/* assumed 32-bit alignment */
taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length;
sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset);
(void) conn_getpeername(connp, sa, &addrlen);
ackmp->b_wptr += addrlen;
}
mutex_exit(&connp->conn_lock);
ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
qreply(q, ackmp);
}
static void
udp_copy_info(struct T_info_ack *tap, udp_t *udp)
{
conn_t *connp = udp->udp_connp;
if (connp->conn_family == AF_INET) {
*tap = udp_g_t_info_ack_ipv4;
} else {
*tap = udp_g_t_info_ack_ipv6;
}
tap->CURRENT_state = udp->udp_state;
tap->OPT_size = udp_max_optsize;
}
static void
udp_do_capability_ack(udp_t *udp, struct T_capability_ack *tcap,
t_uscalar_t cap_bits1)
{
tcap->CAP_bits1 = 0;
if (cap_bits1 & TC1_INFO) {
udp_copy_info(&tcap->INFO_ack, udp);
tcap->CAP_bits1 |= TC1_INFO;
}
}
/*
* This routine responds to T_CAPABILITY_REQ messages. It is called by
* udp_wput. Much of the T_CAPABILITY_ACK information is copied from
* udp_g_t_info_ack. The current state of the stream is copied from
* udp_state.
*/
static void
udp_capability_req(queue_t *q, mblk_t *mp)
{
t_uscalar_t cap_bits1;
struct T_capability_ack *tcap;
udp_t *udp = Q_TO_UDP(q);
cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
mp->b_datap->db_type, T_CAPABILITY_ACK);
if (!mp)
return;
tcap = (struct T_capability_ack *)mp->b_rptr;
udp_do_capability_ack(udp, tcap, cap_bits1);
qreply(q, mp);
}
/*
* This routine responds to T_INFO_REQ messages. It is called by udp_wput.
* Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
* The current state of the stream is copied from udp_state.
*/
static void
udp_info_req(queue_t *q, mblk_t *mp)
{
udp_t *udp = Q_TO_UDP(q);
/* Create a T_INFO_ACK message. */
mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
T_INFO_ACK);
if (!mp)
return;
udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
qreply(q, mp);
}
/* For /dev/udp aka AF_INET open */
static int
udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (udp_open(q, devp, flag, sflag, credp, B_FALSE));
}
/* For /dev/udp6 aka AF_INET6 open */
static int
udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (udp_open(q, devp, flag, sflag, credp, B_TRUE));
}
/*
* This is the open routine for udp. It allocates a udp_t structure for
* the stream and, on the first open of the module, creates an ND table.
*/
static int
udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
boolean_t isv6)
{
udp_t *udp;
conn_t *connp;
dev_t conn_dev;
vmem_t *minor_arena;
int err;
/* If the stream is already open, return immediately. */
if (q->q_ptr != NULL)
return (0);
if (sflag == MODOPEN)
return (EINVAL);
if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
minor_arena = ip_minor_arena_la;
} else {
/*
* Either minor numbers in the large arena were exhausted
* or a non socket application is doing the open.
* Try to allocate from the small arena.
*/
if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0)
return (EBUSY);
minor_arena = ip_minor_arena_sa;
}
if (flag & SO_FALLBACK) {
/*
* Non streams socket needs a stream to fallback to
*/
RD(q)->q_ptr = (void *)conn_dev;
WR(q)->q_qinfo = &udp_fallback_sock_winit;
WR(q)->q_ptr = (void *)minor_arena;
qprocson(q);
return (0);
}
connp = udp_do_open(credp, isv6, KM_SLEEP, &err);
if (connp == NULL) {
inet_minor_free(minor_arena, conn_dev);
return (err);
}
udp = connp->conn_udp;
*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
connp->conn_dev = conn_dev;
connp->conn_minor_arena = minor_arena;
/*
* Initialize the udp_t structure for this stream.
*/
q->q_ptr = connp;
WR(q)->q_ptr = connp;
connp->conn_rq = q;
connp->conn_wq = WR(q);
/*
* Since this conn_t/udp_t is not yet visible to anybody else we don't
* need to lock anything.
*/
ASSERT(connp->conn_proto == IPPROTO_UDP);
ASSERT(connp->conn_udp == udp);
ASSERT(udp->udp_connp == connp);
if (flag & SO_SOCKSTR) {
udp->udp_issocket = B_TRUE;
}
WR(q)->q_hiwat = connp->conn_sndbuf;
WR(q)->q_lowat = connp->conn_sndlowat;
qprocson(q);
/* Set the Stream head write offset and high watermark. */
(void) proto_set_tx_wroff(q, connp, connp->conn_wroff);
(void) proto_set_rx_hiwat(q, connp,
udp_set_rcv_hiwat(udp, connp->conn_rcvbuf));
mutex_enter(&connp->conn_lock);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
return (0);
}
/*
* Which UDP options OK to set through T_UNITDATA_REQ...
*/
/* ARGSUSED */
static boolean_t
udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
{
return (B_TRUE);
}
/*
* This routine gets default values of certain options whose default
* values are maintained by protcol specific code
*/
int
udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
udp_t *udp = Q_TO_UDP(q);
udp_stack_t *us = udp->udp_us;
int *i1 = (int *)ptr;
switch (level) {
case IPPROTO_IP:
switch (name) {
case IP_MULTICAST_TTL:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
return (sizeof (uchar_t));
case IP_MULTICAST_LOOP:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (uchar_t));
}
break;
case IPPROTO_IPV6:
switch (name) {
case IPV6_MULTICAST_HOPS:
*i1 = IP_DEFAULT_MULTICAST_TTL;
return (sizeof (int));
case IPV6_MULTICAST_LOOP:
*i1 = IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (int));
case IPV6_UNICAST_HOPS:
*i1 = us->us_ipv6_hoplimit;
return (sizeof (int));
}
break;
}
return (-1);
}
/*
* This routine retrieves the current status of socket options.
* It returns the size of the option retrieved, or -1.
*/
int
udp_opt_get(conn_t *connp, t_scalar_t level, t_scalar_t name,
uchar_t *ptr)
{
int *i1 = (int *)ptr;
udp_t *udp = connp->conn_udp;
int len;
conn_opt_arg_t coas;
int retval;
coas.coa_connp = connp;
coas.coa_ixa = connp->conn_ixa;
coas.coa_ipp = &connp->conn_xmit_ipp;
coas.coa_ancillary = B_FALSE;
coas.coa_changed = 0;
/*
* We assume that the optcom framework has checked for the set
* of levels and names that are supported, hence we don't worry
* about rejecting based on that.
* First check for UDP specific handling, then pass to common routine.
*/
switch (level) {
case IPPROTO_IP:
/*
* Only allow IPv4 option processing on IPv4 sockets.
*/
if (connp->conn_family != AF_INET)
return (-1);
switch (name) {
case IP_OPTIONS:
case T_IP_OPTIONS:
mutex_enter(&connp->conn_lock);
if (!(udp->udp_recv_ipp.ipp_fields &
IPPF_IPV4_OPTIONS)) {
mutex_exit(&connp->conn_lock);
return (0);
}
len = udp->udp_recv_ipp.ipp_ipv4_options_len;
ASSERT(len != 0);
bcopy(udp->udp_recv_ipp.ipp_ipv4_options, ptr, len);
mutex_exit(&connp->conn_lock);
return (len);
}
break;
case IPPROTO_UDP:
switch (name) {
case UDP_NAT_T_ENDPOINT:
mutex_enter(&connp->conn_lock);
*i1 = udp->udp_nat_t_endpoint;
mutex_exit(&connp->conn_lock);
return (sizeof (int));
case UDP_RCVHDR:
mutex_enter(&connp->conn_lock);
*i1 = udp->udp_rcvhdr ? 1 : 0;
mutex_exit(&connp->conn_lock);
return (sizeof (int));
}
}
mutex_enter(&connp->conn_lock);
retval = conn_opt_get(&coas, level, name, ptr);
mutex_exit(&connp->conn_lock);
return (retval);
}
/*
* This routine retrieves the current status of socket options.
* It returns the size of the option retrieved, or -1.
*/
int
udp_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
conn_t *connp = Q_TO_CONN(q);
int err;
err = udp_opt_get(connp, level, name, ptr);
return (err);
}
/*
* This routine sets socket options.
*/
int
udp_do_opt_set(conn_opt_arg_t *coa, int level, int name,
uint_t inlen, uchar_t *invalp, cred_t *cr, boolean_t checkonly)
{
conn_t *connp = coa->coa_connp;
ip_xmit_attr_t *ixa = coa->coa_ixa;
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
int *i1 = (int *)invalp;
boolean_t onoff = (*i1 == 0) ? 0 : 1;
int error;
ASSERT(MUTEX_NOT_HELD(&coa->coa_connp->conn_lock));
/*
* First do UDP specific sanity checks and handle UDP specific
* options. Note that some IPPROTO_UDP options are handled
* by conn_opt_set.
*/
switch (level) {
case SOL_SOCKET:
switch (name) {
case SO_SNDBUF:
if (*i1 > us->us_max_buf) {
return (ENOBUFS);
}
break;
case SO_RCVBUF:
if (*i1 > us->us_max_buf) {
return (ENOBUFS);
}
break;
case SCM_UCRED: {
struct ucred_s *ucr;
cred_t *newcr;
ts_label_t *tsl;
/*
* Only sockets that have proper privileges and are
* bound to MLPs will have any other value here, so
* this implicitly tests for privilege to set label.
*/
if (connp->conn_mlp_type == mlptSingle)
break;
ucr = (struct ucred_s *)invalp;
if (inlen < sizeof (*ucr) + sizeof (bslabel_t) ||
ucr->uc_labeloff < sizeof (*ucr) ||
ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
return (EINVAL);
if (!checkonly) {
/*
* Set ixa_tsl to the new label.
* We assume that crgetzoneid doesn't change
* as part of the SCM_UCRED.
*/
ASSERT(cr != NULL);
if ((tsl = crgetlabel(cr)) == NULL)
return (EINVAL);
newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
tsl->tsl_doi, KM_NOSLEEP);
if (newcr == NULL)
return (ENOSR);
ASSERT(newcr->cr_label != NULL);
/*
* Move the hold on the cr_label to ixa_tsl by
* setting cr_label to NULL. Then release newcr.
*/
ip_xmit_attr_replace_tsl(ixa, newcr->cr_label);
ixa->ixa_flags |= IXAF_UCRED_TSL;
newcr->cr_label = NULL;
crfree(newcr);
coa->coa_changed |= COA_HEADER_CHANGED;
coa->coa_changed |= COA_WROFF_CHANGED;
}
/* Fully handled this option. */
return (0);
}
}
break;
case IPPROTO_UDP:
switch (name) {
case UDP_NAT_T_ENDPOINT:
if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
return (error);
}
/*
* Use conn_family instead so we can avoid ambiguitites
* with AF_INET6 sockets that may switch from IPv4
* to IPv6.
*/
if (connp->conn_family != AF_INET) {
return (EAFNOSUPPORT);
}
if (!checkonly) {
mutex_enter(&connp->conn_lock);
udp->udp_nat_t_endpoint = onoff;
mutex_exit(&connp->conn_lock);
coa->coa_changed |= COA_HEADER_CHANGED;
coa->coa_changed |= COA_WROFF_CHANGED;
}
/* Fully handled this option. */
return (0);
case UDP_RCVHDR:
mutex_enter(&connp->conn_lock);
udp->udp_rcvhdr = onoff;
mutex_exit(&connp->conn_lock);
return (0);
}
break;
}
error = conn_opt_set(coa, level, name, inlen, invalp,
checkonly, cr);
return (error);
}
/*
* This routine sets socket options.
*/
int
udp_opt_set(conn_t *connp, uint_t optset_context, int level,
int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
uchar_t *outvalp, void *thisdg_attrs, cred_t *cr)
{
udp_t *udp = connp->conn_udp;
int err;
conn_opt_arg_t coas, *coa;
boolean_t checkonly;
udp_stack_t *us = udp->udp_us;
switch (optset_context) {
case SETFN_OPTCOM_CHECKONLY:
checkonly = B_TRUE;
/*
* Note: Implies T_CHECK semantics for T_OPTCOM_REQ
* inlen != 0 implies value supplied and
* we have to "pretend" to set it.
* inlen == 0 implies that there is no
* value part in T_CHECK request and just validation
* done elsewhere should be enough, we just return here.
*/
if (inlen == 0) {
*outlenp = 0;
return (0);
}
break;
case SETFN_OPTCOM_NEGOTIATE:
checkonly = B_FALSE;
break;
case SETFN_UD_NEGOTIATE:
case SETFN_CONN_NEGOTIATE:
checkonly = B_FALSE;
/*
* Negotiating local and "association-related" options
* through T_UNITDATA_REQ.
*
* Following routine can filter out ones we do not
* want to be "set" this way.
*/
if (!udp_opt_allow_udr_set(level, name)) {
*outlenp = 0;
return (EINVAL);
}
break;
default:
/*
* We should never get here
*/
*outlenp = 0;
return (EINVAL);
}
ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
(optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
if (thisdg_attrs != NULL) {
/* Options from T_UNITDATA_REQ */
coa = (conn_opt_arg_t *)thisdg_attrs;
ASSERT(coa->coa_connp == connp);
ASSERT(coa->coa_ixa != NULL);
ASSERT(coa->coa_ipp != NULL);
ASSERT(coa->coa_ancillary);
} else {
coa = &coas;
coas.coa_connp = connp;
/* Get a reference on conn_ixa to prevent concurrent mods */
coas.coa_ixa = conn_get_ixa(connp, B_TRUE);
if (coas.coa_ixa == NULL) {
*outlenp = 0;
return (ENOMEM);
}
coas.coa_ipp = &connp->conn_xmit_ipp;
coas.coa_ancillary = B_FALSE;
coas.coa_changed = 0;
}
err = udp_do_opt_set(coa, level, name, inlen, invalp,
cr, checkonly);
if (err != 0) {
errout:
if (!coa->coa_ancillary)
ixa_refrele(coa->coa_ixa);
*outlenp = 0;
return (err);
}
/* Handle DHCPINIT here outside of lock */
if (level == IPPROTO_IP && name == IP_DHCPINIT_IF) {
uint_t ifindex;
ill_t *ill;
ifindex = *(uint_t *)invalp;
if (ifindex == 0) {
ill = NULL;
} else {
ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
coa->coa_ixa->ixa_ipst);
if (ill == NULL) {
err = ENXIO;
goto errout;
}
mutex_enter(&ill->ill_lock);
if (ill->ill_state_flags & ILL_CONDEMNED) {
mutex_exit(&ill->ill_lock);
ill_refrele(ill);
err = ENXIO;
goto errout;
}
if (IS_VNI(ill)) {
mutex_exit(&ill->ill_lock);
ill_refrele(ill);
err = EINVAL;
goto errout;
}
}
mutex_enter(&connp->conn_lock);
if (connp->conn_dhcpinit_ill != NULL) {
/*
* We've locked the conn so conn_cleanup_ill()
* cannot clear conn_dhcpinit_ill -- so it's
* safe to access the ill.
*/
ill_t *oill = connp->conn_dhcpinit_ill;
ASSERT(oill->ill_dhcpinit != 0);
atomic_dec_32(&oill->ill_dhcpinit);
ill_set_inputfn(connp->conn_dhcpinit_ill);
connp->conn_dhcpinit_ill = NULL;
}
if (ill != NULL) {
connp->conn_dhcpinit_ill = ill;
atomic_inc_32(&ill->ill_dhcpinit);
ill_set_inputfn(ill);
mutex_exit(&connp->conn_lock);
mutex_exit(&ill->ill_lock);
ill_refrele(ill);
} else {
mutex_exit(&connp->conn_lock);
}
}
/*
* Common case of OK return with outval same as inval.
*/
if (invalp != outvalp) {
/* don't trust bcopy for identical src/dst */
(void) bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
/*
* If this was not ancillary data, then we rebuild the headers,
* update the IRE/NCE, and IPsec as needed.
* Since the label depends on the destination we go through
* ip_set_destination first.
*/
if (coa->coa_ancillary) {
return (0);
}
if (coa->coa_changed & COA_ROUTE_CHANGED) {
in6_addr_t saddr, faddr, nexthop;
in_port_t fport;
/*
* We clear lastdst to make sure we pick up the change
* next time sending.
* If we are connected we re-cache the information.
* We ignore errors to preserve BSD behavior.
* Note that we don't redo IPsec policy lookup here
* since the final destination (or source) didn't change.
*/
mutex_enter(&connp->conn_lock);
connp->conn_v6lastdst = ipv6_all_zeros;
ip_attr_nexthop(coa->coa_ipp, coa->coa_ixa,
&connp->conn_faddr_v6, &nexthop);
saddr = connp->conn_saddr_v6;
faddr = connp->conn_faddr_v6;
fport = connp->conn_fport;
mutex_exit(&connp->conn_lock);
if (!IN6_IS_ADDR_UNSPECIFIED(&faddr) &&
!IN6_IS_ADDR_V4MAPPED_ANY(&faddr)) {
(void) ip_attr_connect(connp, coa->coa_ixa,
&saddr, &faddr, &nexthop, fport, NULL, NULL,
IPDF_ALLOW_MCBC | IPDF_VERIFY_DST);
}
}
ixa_refrele(coa->coa_ixa);
if (coa->coa_changed & COA_HEADER_CHANGED) {
/*
* Rebuild the header template if we are connected.
* Otherwise clear conn_v6lastdst so we rebuild the header
* in the data path.
*/
mutex_enter(&connp->conn_lock);
if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
!IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
err = udp_build_hdr_template(connp,
&connp->conn_saddr_v6, &connp->conn_faddr_v6,
connp->conn_fport, connp->conn_flowinfo);
if (err != 0) {
mutex_exit(&connp->conn_lock);
return (err);
}
} else {
connp->conn_v6lastdst = ipv6_all_zeros;
}
mutex_exit(&connp->conn_lock);
}
if (coa->coa_changed & COA_RCVBUF_CHANGED) {
(void) proto_set_rx_hiwat(connp->conn_rq, connp,
connp->conn_rcvbuf);
}
if ((coa->coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) {
connp->conn_wq->q_hiwat = connp->conn_sndbuf;
}
if (coa->coa_changed & COA_WROFF_CHANGED) {
/* Increase wroff if needed */
uint_t wroff;
mutex_enter(&connp->conn_lock);
wroff = connp->conn_ht_iphc_allocated + us->us_wroff_extra;
if (udp->udp_nat_t_endpoint)
wroff += sizeof (uint32_t);
if (wroff > connp->conn_wroff) {
connp->conn_wroff = wroff;
mutex_exit(&connp->conn_lock);
(void) proto_set_tx_wroff(connp->conn_rq, connp, wroff);
} else {
mutex_exit(&connp->conn_lock);
}
}
return (err);
}
/* This routine sets socket options. */
int
udp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
void *thisdg_attrs, cred_t *cr)
{
conn_t *connp = Q_TO_CONN(q);
int error;
error = udp_opt_set(connp, optset_context, level, name, inlen, invalp,
outlenp, outvalp, thisdg_attrs, cr);
return (error);
}
/*
* Setup IP and UDP headers.
* Returns NULL on allocation failure, in which case data_mp is freed.
*/
mblk_t *
udp_prepend_hdr(conn_t *connp, ip_xmit_attr_t *ixa, const ip_pkt_t *ipp,
const in6_addr_t *v6src, const in6_addr_t *v6dst, in_port_t dstport,
uint32_t flowinfo, mblk_t *data_mp, int *errorp)
{
mblk_t *mp;
udpha_t *udpha;
udp_stack_t *us = connp->conn_netstack->netstack_udp;
uint_t data_len;
uint32_t cksum;
udp_t *udp = connp->conn_udp;
boolean_t insert_spi = udp->udp_nat_t_endpoint;
uint_t ulp_hdr_len;
data_len = msgdsize(data_mp);
ulp_hdr_len = UDPH_SIZE;
if (insert_spi)
ulp_hdr_len += sizeof (uint32_t);
mp = conn_prepend_hdr(ixa, ipp, v6src, v6dst, IPPROTO_UDP, flowinfo,
ulp_hdr_len, data_mp, data_len, us->us_wroff_extra, &cksum, errorp);
if (mp == NULL) {
ASSERT(*errorp != 0);
return (NULL);
}
data_len += ulp_hdr_len;
ixa->ixa_pktlen = data_len + ixa->ixa_ip_hdr_length;
udpha = (udpha_t *)(mp->b_rptr + ixa->ixa_ip_hdr_length);
udpha->uha_src_port = connp->conn_lport;
udpha->uha_dst_port = dstport;
udpha->uha_checksum = 0;
udpha->uha_length = htons(data_len);
/*
* If there was a routing option/header then conn_prepend_hdr
* has massaged it and placed the pseudo-header checksum difference
* in the cksum argument.
*
* Setup header length and prepare for ULP checksum done in IP.
*
* We make it easy for IP to include our pseudo header
* by putting our length in uha_checksum.
* The IP source, destination, and length have already been set by
* conn_prepend_hdr.
*/
cksum += data_len;
cksum = (cksum >> 16) + (cksum & 0xFFFF);
ASSERT(cksum < 0x10000);
if (ixa->ixa_flags & IXAF_IS_IPV4) {
ipha_t *ipha = (ipha_t *)mp->b_rptr;
ASSERT(ntohs(ipha->ipha_length) == ixa->ixa_pktlen);
/* IP does the checksum if uha_checksum is non-zero */
if (us->us_do_checksum) {
if (cksum == 0)
udpha->uha_checksum = 0xffff;
else
udpha->uha_checksum = htons(cksum);
} else {
udpha->uha_checksum = 0;
}
} else {
ip6_t *ip6h = (ip6_t *)mp->b_rptr;
ASSERT(ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN == ixa->ixa_pktlen);
if (cksum == 0)
udpha->uha_checksum = 0xffff;
else
udpha->uha_checksum = htons(cksum);
}
/* Insert all-0s SPI now. */
if (insert_spi)
*((uint32_t *)(udpha + 1)) = 0;
return (mp);
}
static int
udp_build_hdr_template(conn_t *connp, const in6_addr_t *v6src,
const in6_addr_t *v6dst, in_port_t dstport, uint32_t flowinfo)
{
udpha_t *udpha;
int error;
ASSERT(MUTEX_HELD(&connp->conn_lock));
/*
* We clear lastdst to make sure we don't use the lastdst path
* next time sending since we might not have set v6dst yet.
*/
connp->conn_v6lastdst = ipv6_all_zeros;
error = conn_build_hdr_template(connp, UDPH_SIZE, 0, v6src, v6dst,
flowinfo);
if (error != 0)
return (error);
/*
* Any routing header/option has been massaged. The checksum difference
* is stored in conn_sum.
*/
udpha = (udpha_t *)connp->conn_ht_ulp;
udpha->uha_src_port = connp->conn_lport;
udpha->uha_dst_port = dstport;
udpha->uha_checksum = 0;
udpha->uha_length = htons(UDPH_SIZE); /* Filled in later */
return (0);
}
/*
* This routine retrieves the value of an ND variable in a udpparam_t
* structure. It is called through nd_getset when a user reads the
* variable.
*/
/* ARGSUSED */
static int
udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
udpparam_t *udppa = (udpparam_t *)cp;
(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
return (0);
}
/*
* Walk through the param array specified registering each element with the
* named dispatch (ND) handler.
*/
static boolean_t
udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt)
{
for (; cnt-- > 0; udppa++) {
if (udppa->udp_param_name && udppa->udp_param_name[0]) {
if (!nd_load(ndp, udppa->udp_param_name,
udp_param_get, udp_param_set,
(caddr_t)udppa)) {
nd_free(ndp);
return (B_FALSE);
}
}
}
if (!nd_load(ndp, "udp_extra_priv_ports",
udp_extra_priv_ports_get, NULL, NULL)) {
nd_free(ndp);
return (B_FALSE);
}
if (!nd_load(ndp, "udp_extra_priv_ports_add",
NULL, udp_extra_priv_ports_add, NULL)) {
nd_free(ndp);
return (B_FALSE);
}
if (!nd_load(ndp, "udp_extra_priv_ports_del",
NULL, udp_extra_priv_ports_del, NULL)) {
nd_free(ndp);
return (B_FALSE);
}
return (B_TRUE);
}
/* This routine sets an ND variable in a udpparam_t structure. */
/* ARGSUSED */
static int
udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
{
long new_value;
udpparam_t *udppa = (udpparam_t *)cp;
/*
* Fail the request if the new value does not lie within the
* required bounds.
*/
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value < udppa->udp_param_min ||
new_value > udppa->udp_param_max) {
return (EINVAL);
}
/* Set the new value */
udppa->udp_param_value = new_value;
return (0);
}
static mblk_t *
udp_queue_fallback(udp_t *udp, mblk_t *mp)
{
ASSERT(MUTEX_HELD(&udp->udp_recv_lock));
if (IPCL_IS_NONSTR(udp->udp_connp)) {
/*
* fallback has started but messages have not been moved yet
*/
if (udp->udp_fallback_queue_head == NULL) {
ASSERT(udp->udp_fallback_queue_tail == NULL);
udp->udp_fallback_queue_head = mp;
udp->udp_fallback_queue_tail = mp;
} else {
ASSERT(udp->udp_fallback_queue_tail != NULL);
udp->udp_fallback_queue_tail->b_next = mp;
udp->udp_fallback_queue_tail = mp;
}
return (NULL);
} else {
/*
* Fallback completed, let the caller putnext() the mblk.
*/
return (mp);
}
}
/*
* Deliver data to ULP. In case we have a socket, and it's falling back to
* TPI, then we'll queue the mp for later processing.
*/
static void
udp_ulp_recv(conn_t *connp, mblk_t *mp, uint_t len, ip_recv_attr_t *ira)
{
if (IPCL_IS_NONSTR(connp)) {
udp_t *udp = connp->conn_udp;
int error;
ASSERT(len == msgdsize(mp));
if ((*connp->conn_upcalls->su_recv)
(connp->conn_upper_handle, mp, len, 0, &error, NULL) < 0) {
mutex_enter(&udp->udp_recv_lock);
if (error == ENOSPC) {
/*
* let's confirm while holding the lock
*/
if ((*connp->conn_upcalls->su_recv)
(connp->conn_upper_handle, NULL, 0, 0,
&error, NULL) < 0) {
ASSERT(error == ENOSPC);
if (error == ENOSPC) {
connp->conn_flow_cntrld =
B_TRUE;
}
}
mutex_exit(&udp->udp_recv_lock);
} else {
ASSERT(error == EOPNOTSUPP);
mp = udp_queue_fallback(udp, mp);
mutex_exit(&udp->udp_recv_lock);
if (mp != NULL)
putnext(connp->conn_rq, mp);
}
}
ASSERT(MUTEX_NOT_HELD(&udp->udp_recv_lock));
} else {
if (is_system_labeled()) {
ASSERT(ira->ira_cred != NULL);
/*
* Provide for protocols above UDP such as RPC
* NOPID leaves db_cpid unchanged.
*/
mblk_setcred(mp, ira->ira_cred, NOPID);
}
putnext(connp->conn_rq, mp);
}
}
/*
* This is the inbound data path.
* IP has already pulled up the IP plus UDP headers and verified alignment
* etc.
*/
/* ARGSUSED2 */
static void
udp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
{
conn_t *connp = (conn_t *)arg1;
struct T_unitdata_ind *tudi;
uchar_t *rptr; /* Pointer to IP header */
int hdr_length; /* Length of IP+UDP headers */
int udi_size; /* Size of T_unitdata_ind */
int pkt_len;
udp_t *udp;
udpha_t *udpha;
ip_pkt_t ipps;
ip6_t *ip6h;
mblk_t *mp1;
uint32_t udp_ipv4_options_len;
crb_t recv_ancillary;
udp_stack_t *us;
ASSERT(connp->conn_flags & IPCL_UDPCONN);
udp = connp->conn_udp;
us = udp->udp_us;
rptr = mp->b_rptr;
ASSERT(DB_TYPE(mp) == M_DATA);
ASSERT(OK_32PTR(rptr));
ASSERT(ira->ira_pktlen == msgdsize(mp));
pkt_len = ira->ira_pktlen;
/*
* Get a snapshot of these and allow other threads to change
* them after that. We need the same recv_ancillary when determining
* the size as when adding the ancillary data items.
*/
mutex_enter(&connp->conn_lock);
udp_ipv4_options_len = udp->udp_recv_ipp.ipp_ipv4_options_len;
recv_ancillary = connp->conn_recv_ancillary;
mutex_exit(&connp->conn_lock);
hdr_length = ira->ira_ip_hdr_length;
/*
* IP inspected the UDP header thus all of it must be in the mblk.
* UDP length check is performed for IPv6 packets and IPv4 packets
* to check if the size of the packet as specified
* by the UDP header is the same as the length derived from the IP
* header.
*/
udpha = (udpha_t *)(rptr + hdr_length);
if (pkt_len != ntohs(udpha->uha_length) + hdr_length)
goto tossit;
hdr_length += UDPH_SIZE;
ASSERT(MBLKL(mp) >= hdr_length); /* IP did a pullup */
/* Initialize regardless of IP version */
ipps.ipp_fields = 0;
if (((ira->ira_flags & IRAF_IPV4_OPTIONS) ||
udp_ipv4_options_len > 0) &&
connp->conn_family == AF_INET) {
int err;
/*
* Record/update udp_recv_ipp with the lock
* held. Not needed for AF_INET6 sockets
* since they don't support a getsockopt of IP_OPTIONS.
*/
mutex_enter(&connp->conn_lock);
err = ip_find_hdr_v4((ipha_t *)rptr, &udp->udp_recv_ipp,
B_TRUE);
if (err != 0) {
/* Allocation failed. Drop packet */
mutex_exit(&connp->conn_lock);
freemsg(mp);
BUMP_MIB(&us->us_udp_mib, udpInErrors);
return;
}
mutex_exit(&connp->conn_lock);
}
if (recv_ancillary.crb_all != 0) {
/*
* Record packet information in the ip_pkt_t
*/
if (ira->ira_flags & IRAF_IS_IPV4) {
ASSERT(IPH_HDR_VERSION(rptr) == IPV4_VERSION);
ASSERT(MBLKL(mp) >= sizeof (ipha_t));
ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
ASSERT(ira->ira_ip_hdr_length == IPH_HDR_LENGTH(rptr));
(void) ip_find_hdr_v4((ipha_t *)rptr, &ipps, B_FALSE);
} else {
uint8_t nexthdrp;
ASSERT(IPH_HDR_VERSION(rptr) == IPV6_VERSION);
/*
* IPv6 packets can only be received by applications
* that are prepared to receive IPv6 addresses.
* The IP fanout must ensure this.
*/
ASSERT(connp->conn_family == AF_INET6);
ip6h = (ip6_t *)rptr;
/* We don't care about the length, but need the ipp */
hdr_length = ip_find_hdr_v6(mp, ip6h, B_TRUE, &ipps,
&nexthdrp);
ASSERT(hdr_length == ira->ira_ip_hdr_length);
/* Restore */
hdr_length = ira->ira_ip_hdr_length + UDPH_SIZE;
ASSERT(nexthdrp == IPPROTO_UDP);
}
}
/*
* This is the inbound data path. Packets are passed upstream as
* T_UNITDATA_IND messages.
*/
if (connp->conn_family == AF_INET) {
sin_t *sin;
ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
/*
* Normally only send up the source address.
* If any ancillary data items are wanted we add those.
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
if (recv_ancillary.crb_all != 0) {
udi_size += conn_recvancillary_size(connp,
recv_ancillary, ira, mp, &ipps);
}
/* Allocate a message block for the T_UNITDATA_IND structure. */
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
BUMP_MIB(&us->us_udp_mib, udpInErrors);
return;
}
mp1->b_cont = mp;
mp1->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp1->b_rptr;
mp1->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
sizeof (sin_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
tudi->OPT_length = udi_size;
sin = (sin_t *)&tudi[1];
sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
sin->sin_port = udpha->uha_src_port;
sin->sin_family = connp->conn_family;
*(uint32_t *)&sin->sin_zero[0] = 0;
*(uint32_t *)&sin->sin_zero[4] = 0;
/*
* Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
* IP_RECVTTL has been set.
*/
if (udi_size != 0) {
conn_recvancillary_add(connp, recv_ancillary, ira,
&ipps, (uchar_t *)&sin[1], udi_size);
}
} else {
sin6_t *sin6;
/*
* Handle both IPv4 and IPv6 packets for IPv6 sockets.
*
* Normally we only send up the address. If receiving of any
* optional receive side information is enabled, we also send
* that up as options.
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
if (recv_ancillary.crb_all != 0) {
udi_size += conn_recvancillary_size(connp,
recv_ancillary, ira, mp, &ipps);
}
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
BUMP_MIB(&us->us_udp_mib, udpInErrors);
return;
}
mp1->b_cont = mp;
mp1->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp1->b_rptr;
mp1->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin6_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
sizeof (sin6_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
tudi->OPT_length = udi_size;
sin6 = (sin6_t *)&tudi[1];
if (ira->ira_flags & IRAF_IS_IPV4) {
in6_addr_t v6dst;
IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
&sin6->sin6_addr);
IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
&v6dst);
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = 0;
sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
IPCL_ZONEID(connp), us->us_netstack);
} else {
ip6h = (ip6_t *)rptr;
sin6->sin6_addr = ip6h->ip6_src;
/* No sin6_flowinfo per API */
sin6->sin6_flowinfo = 0;
/* For link-scope pass up scope id */
if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
sin6->sin6_scope_id = ira->ira_ruifindex;
else
sin6->sin6_scope_id = 0;
sin6->__sin6_src_id = ip_srcid_find_addr(
&ip6h->ip6_dst, IPCL_ZONEID(connp),
us->us_netstack);
}
sin6->sin6_port = udpha->uha_src_port;
sin6->sin6_family = connp->conn_family;
if (udi_size != 0) {
conn_recvancillary_add(connp, recv_ancillary, ira,
&ipps, (uchar_t *)&sin6[1], udi_size);
}
}
/* Walk past the headers unless IP_RECVHDR was set. */
if (!udp->udp_rcvhdr) {
mp->b_rptr = rptr + hdr_length;
pkt_len -= hdr_length;
}
BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams);
udp_ulp_recv(connp, mp1, pkt_len, ira);
return;
tossit:
freemsg(mp);
BUMP_MIB(&us->us_udp_mib, udpInErrors);
}
/*
* return SNMP stuff in buffer in mpdata. We don't hold any lock and report
* information that can be changing beneath us.
*/
mblk_t *
udp_snmp_get(queue_t *q, mblk_t *mpctl)
{
mblk_t *mpdata;
mblk_t *mp_conn_ctl;
mblk_t *mp_attr_ctl;
mblk_t *mp6_conn_ctl;
mblk_t *mp6_attr_ctl;
mblk_t *mp_conn_tail;
mblk_t *mp_attr_tail;
mblk_t *mp6_conn_tail;
mblk_t *mp6_attr_tail;
struct opthdr *optp;
mib2_udpEntry_t ude;
mib2_udp6Entry_t ude6;
mib2_transportMLPEntry_t mlp;
int state;
zoneid_t zoneid;
int i;
connf_t *connfp;
conn_t *connp = Q_TO_CONN(q);
int v4_conn_idx;
int v6_conn_idx;
boolean_t needattr;
udp_t *udp;
ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
udp_stack_t *us = connp->conn_netstack->netstack_udp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
if (mpctl == NULL ||
(mpdata = mpctl->b_cont) == NULL ||
(mp_conn_ctl = copymsg(mpctl)) == NULL ||
(mp_attr_ctl = copymsg(mpctl)) == NULL ||
(mp6_conn_ctl = copymsg(mpctl)) == NULL ||
(mp6_attr_ctl = copymsg(mpctl)) == NULL) {
freemsg(mp_conn_ctl);
freemsg(mp_attr_ctl);
freemsg(mp6_conn_ctl);
freemsg(mpctl);
freemsg(mp2ctl);
return (0);
}
zoneid = connp->conn_zoneid;
/* fixed length structure for IPv4 and IPv6 counters */
SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
/* synchronize 64- and 32-bit counters */
SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams);
SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP;
optp->name = 0;
(void) snmp_append_data(mpdata, (char *)&us->us_udp_mib,
sizeof (us->us_udp_mib));
optp->len = msgdsize(mpdata);
qreply(q, mpctl);
mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
v4_conn_idx = v6_conn_idx = 0;
for (i = 0; i < CONN_G_HASH_SIZE; i++) {
connfp = &ipst->ips_ipcl_globalhash_fanout[i];
connp = NULL;
while ((connp = ipcl_get_next_conn(connfp, connp,
IPCL_UDPCONN))) {
udp = connp->conn_udp;
if (zoneid != connp->conn_zoneid)
continue;
/*
* Note that the port numbers are sent in
* host byte order
*/
if (udp->udp_state == TS_UNBND)
state = MIB2_UDP_unbound;
else if (udp->udp_state == TS_IDLE)
state = MIB2_UDP_idle;
else if (udp->udp_state == TS_DATA_XFER)
state = MIB2_UDP_connected;
else
state = MIB2_UDP_unknown;
needattr = B_FALSE;
bzero(&mlp, sizeof (mlp));
if (connp->conn_mlp_type != mlptSingle) {
if (connp->conn_mlp_type == mlptShared ||
connp->conn_mlp_type == mlptBoth)
mlp.tme_flags |= MIB2_TMEF_SHARED;
if (connp->conn_mlp_type == mlptPrivate ||
connp->conn_mlp_type == mlptBoth)
mlp.tme_flags |= MIB2_TMEF_PRIVATE;
needattr = B_TRUE;
}
if (connp->conn_anon_mlp) {
mlp.tme_flags |= MIB2_TMEF_ANONMLP;
needattr = B_TRUE;
}
switch (connp->conn_mac_mode) {
case CONN_MAC_DEFAULT:
break;
case CONN_MAC_AWARE:
mlp.tme_flags |= MIB2_TMEF_MACEXEMPT;
needattr = B_TRUE;
break;
case CONN_MAC_IMPLICIT:
mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT;
needattr = B_TRUE;
break;
}
mutex_enter(&connp->conn_lock);
if (udp->udp_state == TS_DATA_XFER &&
connp->conn_ixa->ixa_tsl != NULL) {
ts_label_t *tsl;
tsl = connp->conn_ixa->ixa_tsl;
mlp.tme_flags |= MIB2_TMEF_IS_LABELED;
mlp.tme_doi = label2doi(tsl);
mlp.tme_label = *label2bslabel(tsl);
needattr = B_TRUE;
}
mutex_exit(&connp->conn_lock);
/*
* Create an IPv4 table entry for IPv4 entries and also
* any IPv6 entries which are bound to in6addr_any
* (i.e. anything a IPv4 peer could connect/send to).
*/
if (connp->conn_ipversion == IPV4_VERSION ||
(udp->udp_state <= TS_IDLE &&
IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) {
ude.udpEntryInfo.ue_state = state;
/*
* If in6addr_any this will set it to
* INADDR_ANY
*/
ude.udpLocalAddress = connp->conn_laddr_v4;
ude.udpLocalPort = ntohs(connp->conn_lport);
if (udp->udp_state == TS_DATA_XFER) {
/*
* Can potentially get here for
* v6 socket if another process
* (say, ping) has just done a
* sendto(), changing the state
* from the TS_IDLE above to
* TS_DATA_XFER by the time we hit
* this part of the code.
*/
ude.udpEntryInfo.ue_RemoteAddress =
connp->conn_faddr_v4;
ude.udpEntryInfo.ue_RemotePort =
ntohs(connp->conn_fport);
} else {
ude.udpEntryInfo.ue_RemoteAddress = 0;
ude.udpEntryInfo.ue_RemotePort = 0;
}
/*
* We make the assumption that all udp_t
* structs will be created within an address
* region no larger than 32-bits.
*/
ude.udpInstance = (uint32_t)(uintptr_t)udp;
ude.udpCreationProcess =
(connp->conn_cpid < 0) ?
MIB2_UNKNOWN_PROCESS :
connp->conn_cpid;
ude.udpCreationTime = connp->conn_open_time;
(void) snmp_append_data2(mp_conn_ctl->b_cont,
&mp_conn_tail, (char *)&ude, sizeof (ude));
mlp.tme_connidx = v4_conn_idx++;
if (needattr)
(void) snmp_append_data2(
mp_attr_ctl->b_cont, &mp_attr_tail,
(char *)&mlp, sizeof (mlp));
}
if (connp->conn_ipversion == IPV6_VERSION) {
ude6.udp6EntryInfo.ue_state = state;
ude6.udp6LocalAddress = connp->conn_laddr_v6;
ude6.udp6LocalPort = ntohs(connp->conn_lport);
mutex_enter(&connp->conn_lock);
if (connp->conn_ixa->ixa_flags &
IXAF_SCOPEID_SET) {
ude6.udp6IfIndex =
connp->conn_ixa->ixa_scopeid;
} else {
ude6.udp6IfIndex = connp->conn_bound_if;
}
mutex_exit(&connp->conn_lock);
if (udp->udp_state == TS_DATA_XFER) {
ude6.udp6EntryInfo.ue_RemoteAddress =
connp->conn_faddr_v6;
ude6.udp6EntryInfo.ue_RemotePort =
ntohs(connp->conn_fport);
} else {
ude6.udp6EntryInfo.ue_RemoteAddress =
sin6_null.sin6_addr;
ude6.udp6EntryInfo.ue_RemotePort = 0;
}
/*
* We make the assumption that all udp_t
* structs will be created within an address
* region no larger than 32-bits.
*/
ude6.udp6Instance = (uint32_t)(uintptr_t)udp;
ude6.udp6CreationProcess =
(connp->conn_cpid < 0) ?
MIB2_UNKNOWN_PROCESS :
connp->conn_cpid;
ude6.udp6CreationTime = connp->conn_open_time;
(void) snmp_append_data2(mp6_conn_ctl->b_cont,
&mp6_conn_tail, (char *)&ude6,
sizeof (ude6));
mlp.tme_connidx = v6_conn_idx++;
if (needattr)
(void) snmp_append_data2(
mp6_attr_ctl->b_cont,
&mp6_attr_tail, (char *)&mlp,
sizeof (mlp));
}
}
}
/* IPv4 UDP endpoints */
optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP;
optp->name = MIB2_UDP_ENTRY;
optp->len = msgdsize(mp_conn_ctl->b_cont);
qreply(q, mp_conn_ctl);
/* table of MLP attributes... */
optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP;
optp->name = EXPER_XPORT_MLP;
optp->len = msgdsize(mp_attr_ctl->b_cont);
if (optp->len == 0)
freemsg(mp_attr_ctl);
else
qreply(q, mp_attr_ctl);
/* IPv6 UDP endpoints */
optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP6;
optp->name = MIB2_UDP6_ENTRY;
optp->len = msgdsize(mp6_conn_ctl->b_cont);
qreply(q, mp6_conn_ctl);
/* table of MLP attributes... */
optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP6;
optp->name = EXPER_XPORT_MLP;
optp->len = msgdsize(mp6_attr_ctl->b_cont);
if (optp->len == 0)
freemsg(mp6_attr_ctl);
else
qreply(q, mp6_attr_ctl);
return (mp2ctl);
}
/*
* Return 0 if invalid set request, 1 otherwise, including non-udp requests.
* NOTE: Per MIB-II, UDP has no writable data.
* TODO: If this ever actually tries to set anything, it needs to be
* to do the appropriate locking.
*/
/* ARGSUSED */
int
udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
uchar_t *ptr, int len)
{
switch (level) {
case MIB2_UDP:
return (0);
default:
return (1);
}
}
/*
* This routine creates a T_UDERROR_IND message and passes it upstream.
* The address and options are copied from the T_UNITDATA_REQ message
* passed in mp. This message is freed.
*/
static void
udp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err)
{
struct T_unitdata_req *tudr;
mblk_t *mp1;
uchar_t *destaddr;
t_scalar_t destlen;
uchar_t *optaddr;
t_scalar_t optlen;
if ((mp->b_wptr < mp->b_rptr) ||
(MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
goto done;
}
tudr = (struct T_unitdata_req *)mp->b_rptr;
destaddr = mp->b_rptr + tudr->DEST_offset;
if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
destaddr + tudr->DEST_length < mp->b_rptr ||
destaddr + tudr->DEST_length > mp->b_wptr) {
goto done;
}
optaddr = mp->b_rptr + tudr->OPT_offset;
if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
optaddr + tudr->OPT_length < mp->b_rptr ||
optaddr + tudr->OPT_length > mp->b_wptr) {
goto done;
}
destlen = tudr->DEST_length;
optlen = tudr->OPT_length;
mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
(char *)optaddr, optlen, err);
if (mp1 != NULL)
qreply(q, mp1);
done:
freemsg(mp);
}
/*
* This routine removes a port number association from a stream. It
* is called by udp_wput to handle T_UNBIND_REQ messages.
*/
static void
udp_tpi_unbind(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
int error;
error = udp_do_unbind(connp);
if (error) {
if (error < 0)
udp_err_ack(q, mp, -error, 0);
else
udp_err_ack(q, mp, TSYSERR, error);
return;
}
mp = mi_tpi_ok_ack_alloc(mp);
ASSERT(mp != NULL);
ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK);
qreply(q, mp);
}
/*
* Don't let port fall into the privileged range.
* Since the extra privileged ports can be arbitrary we also
* ensure that we exclude those from consideration.
* us->us_epriv_ports is not sorted thus we loop over it until
* there are no changes.
*/
static in_port_t
udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
{
int i;
in_port_t nextport;
boolean_t restart = B_FALSE;
udp_stack_t *us = udp->udp_us;
if (random && udp_random_anon_port != 0) {
(void) random_get_pseudo_bytes((uint8_t *)&port,
sizeof (in_port_t));
/*
* Unless changed by a sys admin, the smallest anon port
* is 32768 and the largest anon port is 65535. It is
* very likely (50%) for the random port to be smaller
* than the smallest anon port. When that happens,
* add port % (anon port range) to the smallest anon
* port to get the random port. It should fall into the
* valid anon port range.
*/
if (port < us->us_smallest_anon_port) {
port = us->us_smallest_anon_port +
port % (us->us_largest_anon_port -
us->us_smallest_anon_port);
}
}
retry:
if (port < us->us_smallest_anon_port)
port = us->us_smallest_anon_port;
if (port > us->us_largest_anon_port) {
port = us->us_smallest_anon_port;
if (restart)
return (0);
restart = B_TRUE;
}
if (port < us->us_smallest_nonpriv_port)
port = us->us_smallest_nonpriv_port;
for (i = 0; i < us->us_num_epriv_ports; i++) {
if (port == us->us_epriv_ports[i]) {
port++;
/*
* Make sure that the port is in the
* valid range.
*/
goto retry;
}
}
if (is_system_labeled() &&
(nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
port, IPPROTO_UDP, B_TRUE)) != 0) {
port = nextport;
goto retry;
}
return (port);
}
/*
* Handle T_UNITDATA_REQ with options. Both IPv4 and IPv6
* Either tudr_mp or msg is set. If tudr_mp we take ancillary data from
* the TPI options, otherwise we take them from msg_control.
* If both sin and sin6 is set it is a connected socket and we use conn_faddr.
* Always consumes mp; never consumes tudr_mp.
*/
static int
udp_output_ancillary(conn_t *connp, sin_t *sin, sin6_t *sin6, mblk_t *mp,
mblk_t *tudr_mp, struct nmsghdr *msg, cred_t *cr, pid_t pid)
{
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
int error;
ip_xmit_attr_t *ixa;
ip_pkt_t *ipp;
in6_addr_t v6src;
in6_addr_t v6dst;
in6_addr_t v6nexthop;
in_port_t dstport;
uint32_t flowinfo;
uint_t srcid;
int is_absreq_failure = 0;
conn_opt_arg_t coas, *coa;
ASSERT(tudr_mp != NULL || msg != NULL);
/*
* Get ixa before checking state to handle a disconnect race.
*
* We need an exclusive copy of conn_ixa since the ancillary data
* options might modify it. That copy has no pointers hence we
* need to set them up once we've parsed the ancillary data.
*/
ixa = conn_get_ixa_exclusive(connp);
if (ixa == NULL) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
freemsg(mp);
return (ENOMEM);
}
ASSERT(cr != NULL);
ixa->ixa_cred = cr;
ixa->ixa_cpid = pid;
if (is_system_labeled()) {
/* We need to restart with a label based on the cred */
ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
}
/* In case previous destination was multicast or multirt */
ip_attr_newdst(ixa);
/* Get a copy of conn_xmit_ipp since the options might change it */
ipp = kmem_zalloc(sizeof (*ipp), KM_NOSLEEP);
if (ipp == NULL) {
ixa_refrele(ixa);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
freemsg(mp);
return (ENOMEM);
}
mutex_enter(&connp->conn_lock);
error = ip_pkt_copy(&connp->conn_xmit_ipp, ipp, KM_NOSLEEP);
mutex_exit(&connp->conn_lock);
if (error != 0) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
freemsg(mp);
goto done;
}
/*
* Parse the options and update ixa and ipp as a result.
* Note that ixa_tsl can be updated if SCM_UCRED.
* ixa_refrele/ixa_inactivate will release any reference on ixa_tsl.
*/
coa = &coas;
coa->coa_connp = connp;
coa->coa_ixa = ixa;
coa->coa_ipp = ipp;
coa->coa_ancillary = B_TRUE;
coa->coa_changed = 0;
if (msg != NULL) {
error = process_auxiliary_options(connp, msg->msg_control,
msg->msg_controllen, coa, &udp_opt_obj, udp_opt_set, cr);
} else {
struct T_unitdata_req *tudr;
tudr = (struct T_unitdata_req *)tudr_mp->b_rptr;
ASSERT(tudr->PRIM_type == T_UNITDATA_REQ);
error = tpi_optcom_buf(connp->conn_wq, tudr_mp,
&tudr->OPT_length, tudr->OPT_offset, cr, &udp_opt_obj,
coa, &is_absreq_failure);
}
if (error != 0) {
/*
* Note: No special action needed in this
* module for "is_absreq_failure"
*/
freemsg(mp);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
goto done;
}
ASSERT(is_absreq_failure == 0);
mutex_enter(&connp->conn_lock);
/*
* If laddr is unspecified then we look at sin6_src_id.
* We will give precedence to a source address set with IPV6_PKTINFO
* (aka IPPF_ADDR) but that is handled in build_hdrs. However, we don't
* want ip_attr_connect to select a source (since it can fail) when
* IPV6_PKTINFO is specified.
* If this doesn't result in a source address then we get a source
* from ip_attr_connect() below.
*/
v6src = connp->conn_saddr_v6;
if (sin != NULL) {
IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6dst);
dstport = sin->sin_port;
flowinfo = 0;
ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
ixa->ixa_flags |= IXAF_IS_IPV4;
} else if (sin6 != NULL) {
v6dst = sin6->sin6_addr;
dstport = sin6->sin6_port;
flowinfo = sin6->sin6_flowinfo;
srcid = sin6->__sin6_src_id;
if (IN6_IS_ADDR_LINKSCOPE(&v6dst) && sin6->sin6_scope_id != 0) {
ixa->ixa_scopeid = sin6->sin6_scope_id;
ixa->ixa_flags |= IXAF_SCOPEID_SET;
} else {
ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
}
if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&v6src)) {
ip_srcid_find_id(srcid, &v6src, IPCL_ZONEID(connp),
connp->conn_netstack);
}
if (IN6_IS_ADDR_V4MAPPED(&v6dst))
ixa->ixa_flags |= IXAF_IS_IPV4;
else
ixa->ixa_flags &= ~IXAF_IS_IPV4;
} else {
/* Connected case */
v6dst = connp->conn_faddr_v6;
dstport = connp->conn_fport;
flowinfo = connp->conn_flowinfo;
}
mutex_exit(&connp->conn_lock);
/* Handle IPV6_PKTINFO setting source address. */
if (IN6_IS_ADDR_UNSPECIFIED(&v6src) &&
(ipp->ipp_fields & IPPF_ADDR)) {
if (ixa->ixa_flags & IXAF_IS_IPV4) {
if (IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
v6src = ipp->ipp_addr;
} else {
if (!IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
v6src = ipp->ipp_addr;
}
}
ip_attr_nexthop(ipp, ixa, &v6dst, &v6nexthop);
error = ip_attr_connect(connp, ixa, &v6src, &v6dst, &v6nexthop, dstport,
&v6src, NULL, IPDF_ALLOW_MCBC | IPDF_VERIFY_DST | IPDF_IPSEC);
switch (error) {
case 0:
break;
case EADDRNOTAVAIL:
/*
* IXAF_VERIFY_SOURCE tells us to pick a better source.
* Don't have the application see that errno
*/
error = ENETUNREACH;
goto failed;
case ENETDOWN:
/*
* Have !ipif_addr_ready address; drop packet silently
* until we can get applications to not send until we
* are ready.
*/
error = 0;
goto failed;
case EHOSTUNREACH:
case ENETUNREACH:
if (ixa->ixa_ire != NULL) {
/*
* Let conn_ip_output/ire_send_noroute return
* the error and send any local ICMP error.
*/
error = 0;
break;
}
/* FALLTHRU */
default:
failed:
freemsg(mp);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
goto done;
}
/*
* We might be going to a different destination than last time,
* thus check that TX allows the communication and compute any
* needed label.
*
* TSOL Note: We have an exclusive ipp and ixa for this thread so we
* don't have to worry about concurrent threads.
*/
if (is_system_labeled()) {
/* Using UDP MLP requires SCM_UCRED from user */
if (connp->conn_mlp_type != mlptSingle &&
!((ixa->ixa_flags & IXAF_UCRED_TSL))) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
error = ECONNREFUSED;
freemsg(mp);
goto done;
}
/*
* Check whether Trusted Solaris policy allows communication
* with this host, and pretend that the destination is
* unreachable if not.
* Compute any needed label and place it in ipp_label_v4/v6.
*
* Later conn_build_hdr_template/conn_prepend_hdr takes
* ipp_label_v4/v6 to form the packet.
*
* Tsol note: We have ipp structure local to this thread so
* no locking is needed.
*/
error = conn_update_label(connp, ixa, &v6dst, ipp);
if (error != 0) {
freemsg(mp);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
goto done;
}
}
mp = udp_prepend_hdr(connp, ixa, ipp, &v6src, &v6dst, dstport,
flowinfo, mp, &error);
if (mp == NULL) {
ASSERT(error != 0);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
goto done;
}
if (ixa->ixa_pktlen > IP_MAXPACKET) {
error = EMSGSIZE;
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
freemsg(mp);
goto done;
}
/* We're done. Pass the packet to ip. */
BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
error = conn_ip_output(mp, ixa);
/* No udpOutErrors if an error since IP increases its error counter */
switch (error) {
case 0:
break;
case EWOULDBLOCK:
(void) ixa_check_drain_insert(connp, ixa);
error = 0;
break;
case EADDRNOTAVAIL:
/*
* IXAF_VERIFY_SOURCE tells us to pick a better source.
* Don't have the application see that errno
*/
error = ENETUNREACH;
/* FALLTHRU */
default:
mutex_enter(&connp->conn_lock);
/*
* Clear the source and v6lastdst so we call ip_attr_connect
* for the next packet and try to pick a better source.
*/
if (connp->conn_mcbc_bind)
connp->conn_saddr_v6 = ipv6_all_zeros;
else
connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
connp->conn_v6lastdst = ipv6_all_zeros;
mutex_exit(&connp->conn_lock);
break;
}
done:
ixa_refrele(ixa);
ip_pkt_free(ipp);
kmem_free(ipp, sizeof (*ipp));
return (error);
}
/*
* Handle sending an M_DATA for a connected socket.
* Handles both IPv4 and IPv6.
*/
static int
udp_output_connected(conn_t *connp, mblk_t *mp, cred_t *cr, pid_t pid)
{
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
int error;
ip_xmit_attr_t *ixa;
/*
* If no other thread is using conn_ixa this just gets a reference to
* conn_ixa. Otherwise we get a safe copy of conn_ixa.
*/
ixa = conn_get_ixa(connp, B_FALSE);
if (ixa == NULL) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
freemsg(mp);
return (ENOMEM);
}
ASSERT(cr != NULL);
ixa->ixa_cred = cr;
ixa->ixa_cpid = pid;
mutex_enter(&connp->conn_lock);
mp = udp_prepend_header_template(connp, ixa, mp, &connp->conn_saddr_v6,
connp->conn_fport, connp->conn_flowinfo, &error);
if (mp == NULL) {
ASSERT(error != 0);
mutex_exit(&connp->conn_lock);
ixa_refrele(ixa);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
freemsg(mp);
return (error);
}
/*
* In case we got a safe copy of conn_ixa, or if opt_set made us a new
* safe copy, then we need to fill in any pointers in it.
*/
if (ixa->ixa_ire == NULL) {
in6_addr_t faddr, saddr;
in6_addr_t nexthop;
in_port_t fport;
saddr = connp->conn_saddr_v6;
faddr = connp->conn_faddr_v6;
fport = connp->conn_fport;
ip_attr_nexthop(&connp->conn_xmit_ipp, ixa, &faddr, &nexthop);
mutex_exit(&connp->conn_lock);
error = ip_attr_connect(connp, ixa, &saddr, &faddr, &nexthop,
fport, NULL, NULL, IPDF_ALLOW_MCBC | IPDF_VERIFY_DST |
IPDF_IPSEC);
switch (error) {
case 0:
break;
case EADDRNOTAVAIL:
/*
* IXAF_VERIFY_SOURCE tells us to pick a better source.
* Don't have the application see that errno
*/
error = ENETUNREACH;
goto failed;
case ENETDOWN:
/*
* Have !ipif_addr_ready address; drop packet silently
* until we can get applications to not send until we
* are ready.
*/
error = 0;
goto failed;
case EHOSTUNREACH:
case ENETUNREACH:
if (ixa->ixa_ire != NULL) {
/*
* Let conn_ip_output/ire_send_noroute return
* the error and send any local ICMP error.
*/
error = 0;
break;
}
/* FALLTHRU */
default:
failed:
ixa_refrele(ixa);
freemsg(mp);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (error);
}
} else {
/* Done with conn_t */
mutex_exit(&connp->conn_lock);
}
ASSERT(ixa->ixa_ire != NULL);
/* We're done. Pass the packet to ip. */
BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
error = conn_ip_output(mp, ixa);
/* No udpOutErrors if an error since IP increases its error counter */
switch (error) {
case 0:
break;
case EWOULDBLOCK:
(void) ixa_check_drain_insert(connp, ixa);
error = 0;
break;
case EADDRNOTAVAIL:
/*
* IXAF_VERIFY_SOURCE tells us to pick a better source.
* Don't have the application see that errno
*/
error = ENETUNREACH;
break;
}
ixa_refrele(ixa);
return (error);
}
/*
* Handle sending an M_DATA to the last destination.
* Handles both IPv4 and IPv6.
*
* NOTE: The caller must hold conn_lock and we drop it here.
*/
static int
udp_output_lastdst(conn_t *connp, mblk_t *mp, cred_t *cr, pid_t pid,
ip_xmit_attr_t *ixa)
{
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
int error;
ASSERT(MUTEX_HELD(&connp->conn_lock));
ASSERT(ixa != NULL);
ASSERT(cr != NULL);
ixa->ixa_cred = cr;
ixa->ixa_cpid = pid;
mp = udp_prepend_header_template(connp, ixa, mp, &connp->conn_v6lastsrc,
connp->conn_lastdstport, connp->conn_lastflowinfo, &error);
if (mp == NULL) {
ASSERT(error != 0);
mutex_exit(&connp->conn_lock);
ixa_refrele(ixa);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
freemsg(mp);
return (error);
}
/*
* In case we got a safe copy of conn_ixa, or if opt_set made us a new
* safe copy, then we need to fill in any pointers in it.
*/
if (ixa->ixa_ire == NULL) {
in6_addr_t lastdst, lastsrc;
in6_addr_t nexthop;
in_port_t lastport;
lastsrc = connp->conn_v6lastsrc;
lastdst = connp->conn_v6lastdst;
lastport = connp->conn_lastdstport;
ip_attr_nexthop(&connp->conn_xmit_ipp, ixa, &lastdst, &nexthop);
mutex_exit(&connp->conn_lock);
error = ip_attr_connect(connp, ixa, &lastsrc, &lastdst,
&nexthop, lastport, NULL, NULL, IPDF_ALLOW_MCBC |
IPDF_VERIFY_DST | IPDF_IPSEC);
switch (error) {
case 0:
break;
case EADDRNOTAVAIL:
/*
* IXAF_VERIFY_SOURCE tells us to pick a better source.
* Don't have the application see that errno
*/
error = ENETUNREACH;
goto failed;
case ENETDOWN:
/*
* Have !ipif_addr_ready address; drop packet silently
* until we can get applications to not send until we
* are ready.
*/
error = 0;
goto failed;
case EHOSTUNREACH:
case ENETUNREACH:
if (ixa->ixa_ire != NULL) {
/*
* Let conn_ip_output/ire_send_noroute return
* the error and send any local ICMP error.
*/
error = 0;
break;
}
/* FALLTHRU */
default:
failed:
ixa_refrele(ixa);
freemsg(mp);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (error);
}
} else {
/* Done with conn_t */
mutex_exit(&connp->conn_lock);
}
/* We're done. Pass the packet to ip. */
BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
error = conn_ip_output(mp, ixa);
/* No udpOutErrors if an error since IP increases its error counter */
switch (error) {
case 0:
break;
case EWOULDBLOCK:
(void) ixa_check_drain_insert(connp, ixa);
error = 0;
break;
case EADDRNOTAVAIL:
/*
* IXAF_VERIFY_SOURCE tells us to pick a better source.
* Don't have the application see that errno
*/
error = ENETUNREACH;
/* FALLTHRU */
default:
mutex_enter(&connp->conn_lock);
/*
* Clear the source and v6lastdst so we call ip_attr_connect
* for the next packet and try to pick a better source.
*/
if (connp->conn_mcbc_bind)
connp->conn_saddr_v6 = ipv6_all_zeros;
else
connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
connp->conn_v6lastdst = ipv6_all_zeros;
mutex_exit(&connp->conn_lock);
break;
}
ixa_refrele(ixa);
return (error);
}
/*
* Prepend the header template and then fill in the source and
* flowinfo. The caller needs to handle the destination address since
* it's setting is different if rthdr or source route.
*
* Returns NULL is allocation failed or if the packet would exceed IP_MAXPACKET.
* When it returns NULL it sets errorp.
*/
static mblk_t *
udp_prepend_header_template(conn_t *connp, ip_xmit_attr_t *ixa, mblk_t *mp,
const in6_addr_t *v6src, in_port_t dstport, uint32_t flowinfo, int *errorp)
{
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
boolean_t insert_spi = udp->udp_nat_t_endpoint;
uint_t pktlen;
uint_t alloclen;
uint_t copylen;
uint8_t *iph;
uint_t ip_hdr_length;
udpha_t *udpha;
uint32_t cksum;
ip_pkt_t *ipp;
ASSERT(MUTEX_HELD(&connp->conn_lock));
/*
* Copy the header template and leave space for an SPI
*/
copylen = connp->conn_ht_iphc_len;
alloclen = copylen + (insert_spi ? sizeof (uint32_t) : 0);
pktlen = alloclen + msgdsize(mp);
if (pktlen > IP_MAXPACKET) {
freemsg(mp);
*errorp = EMSGSIZE;
return (NULL);
}
ixa->ixa_pktlen = pktlen;
/* check/fix buffer config, setup pointers into it */
iph = mp->b_rptr - alloclen;
if (DB_REF(mp) != 1 || iph < DB_BASE(mp) || !OK_32PTR(iph)) {
mblk_t *mp1;
mp1 = allocb(alloclen + us->us_wroff_extra, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
*errorp = ENOMEM;
return (NULL);
}
mp1->b_wptr = DB_LIM(mp1);
mp1->b_cont = mp;
mp = mp1;
iph = (mp->b_wptr - alloclen);
}
mp->b_rptr = iph;
bcopy(connp->conn_ht_iphc, iph, copylen);
ip_hdr_length = (uint_t)(connp->conn_ht_ulp - connp->conn_ht_iphc);
ixa->ixa_ip_hdr_length = ip_hdr_length;
udpha = (udpha_t *)(iph + ip_hdr_length);
/*
* Setup header length and prepare for ULP checksum done in IP.
* udp_build_hdr_template has already massaged any routing header
* and placed the result in conn_sum.
*
* We make it easy for IP to include our pseudo header
* by putting our length in uha_checksum.
*/
cksum = pktlen - ip_hdr_length;
udpha->uha_length = htons(cksum);
cksum += connp->conn_sum;
cksum = (cksum >> 16) + (cksum & 0xFFFF);
ASSERT(cksum < 0x10000);
ipp = &connp->conn_xmit_ipp;
if (ixa->ixa_flags & IXAF_IS_IPV4) {
ipha_t *ipha = (ipha_t *)iph;
ipha->ipha_length = htons((uint16_t)pktlen);
/* IP does the checksum if uha_checksum is non-zero */
if (us->us_do_checksum)
udpha->uha_checksum = htons(cksum);
/* if IP_PKTINFO specified an addres it wins over bind() */
if ((ipp->ipp_fields & IPPF_ADDR) &&
IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) {
ASSERT(ipp->ipp_addr_v4 != INADDR_ANY);
ipha->ipha_src = ipp->ipp_addr_v4;
} else {
IN6_V4MAPPED_TO_IPADDR(v6src, ipha->ipha_src);
}
} else {
ip6_t *ip6h = (ip6_t *)iph;
ip6h->ip6_plen = htons((uint16_t)(pktlen - IPV6_HDR_LEN));
udpha->uha_checksum = htons(cksum);
/* if IP_PKTINFO specified an addres it wins over bind() */
if ((ipp->ipp_fields & IPPF_ADDR) &&
!IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) {
ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr));
ip6h->ip6_src = ipp->ipp_addr;
} else {
ip6h->ip6_src = *v6src;
}
ip6h->ip6_vcf =
(IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
(flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
if (ipp->ipp_fields & IPPF_TCLASS) {
/* Overrides the class part of flowinfo */
ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
ipp->ipp_tclass);
}
}
/* Insert all-0s SPI now. */
if (insert_spi)
*((uint32_t *)(udpha + 1)) = 0;
udpha->uha_dst_port = dstport;
return (mp);
}
/*
* Send a T_UDERR_IND in response to an M_DATA
*/
static void
udp_ud_err_connected(conn_t *connp, t_scalar_t error)
{
struct sockaddr_storage ss;
sin_t *sin;
sin6_t *sin6;
struct sockaddr *addr;
socklen_t addrlen;
mblk_t *mp1;
mutex_enter(&connp->conn_lock);
/* Initialize addr and addrlen as if they're passed in */
if (connp->conn_family == AF_INET) {
sin = (sin_t *)&ss;
*sin = sin_null;
sin->sin_family = AF_INET;
sin->sin_port = connp->conn_fport;
sin->sin_addr.s_addr = connp->conn_faddr_v4;
addr = (struct sockaddr *)sin;
addrlen = sizeof (*sin);
} else {
sin6 = (sin6_t *)&ss;
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
sin6->sin6_port = connp->conn_fport;
sin6->sin6_flowinfo = connp->conn_flowinfo;
sin6->sin6_addr = connp->conn_faddr_v6;
if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6) &&
(connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) {
sin6->sin6_scope_id = connp->conn_ixa->ixa_scopeid;
} else {
sin6->sin6_scope_id = 0;
}
sin6->__sin6_src_id = 0;
addr = (struct sockaddr *)sin6;
addrlen = sizeof (*sin6);
}
mutex_exit(&connp->conn_lock);
mp1 = mi_tpi_uderror_ind((char *)addr, addrlen, NULL, 0, error);
if (mp1 != NULL)
putnext(connp->conn_rq, mp1);
}
/*
* This routine handles all messages passed downstream. It either
* consumes the message or passes it downstream; it never queues a
* a message.
*
* Also entry point for sockfs when udp is in "direct sockfs" mode. This mode
* is valid when we are directly beneath the stream head, and thus sockfs
* is able to bypass STREAMS and directly call us, passing along the sockaddr
* structure without the cumbersome T_UNITDATA_REQ interface for the case of
* connected endpoints.
*/
void
udp_wput(queue_t *q, mblk_t *mp)
{
sin6_t *sin6;
sin_t *sin = NULL;
uint_t srcid;
conn_t *connp = Q_TO_CONN(q);
udp_t *udp = connp->conn_udp;
int error = 0;
struct sockaddr *addr = NULL;
socklen_t addrlen;
udp_stack_t *us = udp->udp_us;
struct T_unitdata_req *tudr;
mblk_t *data_mp;
ushort_t ipversion;
cred_t *cr;
pid_t pid;
/*
* We directly handle several cases here: T_UNITDATA_REQ message
* coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected
* socket.
*/
switch (DB_TYPE(mp)) {
case M_DATA:
if (!udp->udp_issocket || udp->udp_state != TS_DATA_XFER) {
/* Not connected; address is required */
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
UDP_DBGSTAT(us, udp_data_notconn);
UDP_STAT(us, udp_out_err_notconn);
freemsg(mp);
return;
}
/*
* All Solaris components should pass a db_credp
* for this message, hence we ASSERT.
* On production kernels we return an error to be robust against
* random streams modules sitting on top of us.
*/
cr = msg_getcred(mp, &pid);
ASSERT(cr != NULL);
if (cr == NULL) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
freemsg(mp);
return;
}
ASSERT(udp->udp_issocket);
UDP_DBGSTAT(us, udp_data_conn);
error = udp_output_connected(connp, mp, cr, pid);
if (error != 0) {
UDP_STAT(us, udp_out_err_output);
if (connp->conn_rq != NULL)
udp_ud_err_connected(connp, (t_scalar_t)error);
#ifdef DEBUG
printf("udp_output_connected returned %d\n", error);
#endif
}
return;
case M_PROTO:
case M_PCPROTO:
tudr = (struct T_unitdata_req *)mp->b_rptr;
if (MBLKL(mp) < sizeof (*tudr) ||
((t_primp_t)mp->b_rptr)->type != T_UNITDATA_REQ) {
udp_wput_other(q, mp);
return;
}
break;
default:
udp_wput_other(q, mp);
return;
}
/* Handle valid T_UNITDATA_REQ here */
data_mp = mp->b_cont;
if (data_mp == NULL) {
error = EPROTO;
goto ud_error2;
}
mp->b_cont = NULL;
if (!MBLKIN(mp, 0, tudr->DEST_offset + tudr->DEST_length)) {
error = EADDRNOTAVAIL;
goto ud_error2;
}
/*
* All Solaris components should pass a db_credp
* for this TPI message, hence we should ASSERT.
* However, RPC (svc_clts_ksend) does this odd thing where it
* passes the options from a T_UNITDATA_IND unchanged in a
* T_UNITDATA_REQ. While that is the right thing to do for
* some options, SCM_UCRED being the key one, this also makes it
* pass down IP_RECVDSTADDR. Hence we can't ASSERT here.
*/
cr = msg_getcred(mp, &pid);
if (cr == NULL) {
cr = connp->conn_cred;
pid = connp->conn_cpid;
}
/*
* If a port has not been bound to the stream, fail.
* This is not a problem when sockfs is directly
* above us, because it will ensure that the socket
* is first bound before allowing data to be sent.
*/
if (udp->udp_state == TS_UNBND) {
error = EPROTO;
goto ud_error2;
}
addr = (struct sockaddr *)&mp->b_rptr[tudr->DEST_offset];
addrlen = tudr->DEST_length;
switch (connp->conn_family) {
case AF_INET6:
sin6 = (sin6_t *)addr;
if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) ||
(sin6->sin6_family != AF_INET6)) {
error = EADDRNOTAVAIL;
goto ud_error2;
}
srcid = sin6->__sin6_src_id;
if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
/*
* Destination is a non-IPv4-compatible IPv6 address.
* Send out an IPv6 format packet.
*/
/*
* If the local address is a mapped address return
* an error.
* It would be possible to send an IPv6 packet but the
* response would never make it back to the application
* since it is bound to a mapped address.
*/
if (IN6_IS_ADDR_V4MAPPED(&connp->conn_saddr_v6)) {
error = EADDRNOTAVAIL;
goto ud_error2;
}
UDP_DBGSTAT(us, udp_out_ipv6);
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
sin6->sin6_addr = ipv6_loopback;
ipversion = IPV6_VERSION;
} else {
if (connp->conn_ipv6_v6only) {
error = EADDRNOTAVAIL;
goto ud_error2;
}
/*
* If the local address is not zero or a mapped address
* return an error. It would be possible to send an
* IPv4 packet but the response would never make it
* back to the application since it is bound to a
* non-mapped address.
*/
if (!IN6_IS_ADDR_V4MAPPED(&connp->conn_saddr_v6) &&
!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_saddr_v6)) {
error = EADDRNOTAVAIL;
goto ud_error2;
}
UDP_DBGSTAT(us, udp_out_mapped);
if (V4_PART_OF_V6(sin6->sin6_addr) == INADDR_ANY) {
V4_PART_OF_V6(sin6->sin6_addr) =
htonl(INADDR_LOOPBACK);
}
ipversion = IPV4_VERSION;
}
if (tudr->OPT_length != 0) {
/*
* If we are connected then the destination needs to be
* the same as the connected one.
*/
if (udp->udp_state == TS_DATA_XFER &&
!conn_same_as_last_v6(connp, sin6)) {
error = EISCONN;
goto ud_error2;
}
UDP_STAT(us, udp_out_opt);
error = udp_output_ancillary(connp, NULL, sin6,
data_mp, mp, NULL, cr, pid);
} else {
ip_xmit_attr_t *ixa;
/*
* We have to allocate an ip_xmit_attr_t before we grab
* conn_lock and we need to hold conn_lock once we've
* checked conn_same_as_last_v6 to handle concurrent
* send* calls on a socket.
*/
ixa = conn_get_ixa(connp, B_FALSE);
if (ixa == NULL) {
error = ENOMEM;
goto ud_error2;
}
mutex_enter(&connp->conn_lock);
if (conn_same_as_last_v6(connp, sin6) &&
connp->conn_lastsrcid == srcid &&
ipsec_outbound_policy_current(ixa)) {
UDP_DBGSTAT(us, udp_out_lastdst);
/* udp_output_lastdst drops conn_lock */
error = udp_output_lastdst(connp, data_mp, cr,
pid, ixa);
} else {
UDP_DBGSTAT(us, udp_out_diffdst);
/* udp_output_newdst drops conn_lock */
error = udp_output_newdst(connp, data_mp, NULL,
sin6, ipversion, cr, pid, ixa);
}
ASSERT(MUTEX_NOT_HELD(&connp->conn_lock));
}
if (error == 0) {
freeb(mp);
return;
}
break;
case AF_INET:
sin = (sin_t *)addr;
if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) ||
(sin->sin_family != AF_INET)) {
error = EADDRNOTAVAIL;
goto ud_error2;
}
UDP_DBGSTAT(us, udp_out_ipv4);
if (sin->sin_addr.s_addr == INADDR_ANY)
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
ipversion = IPV4_VERSION;
srcid = 0;
if (tudr->OPT_length != 0) {
/*
* If we are connected then the destination needs to be
* the same as the connected one.
*/
if (udp->udp_state == TS_DATA_XFER &&
!conn_same_as_last_v4(connp, sin)) {
error = EISCONN;
goto ud_error2;
}
UDP_STAT(us, udp_out_opt);
error = udp_output_ancillary(connp, sin, NULL,
data_mp, mp, NULL, cr, pid);
} else {
ip_xmit_attr_t *ixa;
/*
* We have to allocate an ip_xmit_attr_t before we grab
* conn_lock and we need to hold conn_lock once we've
* checked conn_same_as_last_v4 to handle concurrent
* send* calls on a socket.
*/
ixa = conn_get_ixa(connp, B_FALSE);
if (ixa == NULL) {
error = ENOMEM;
goto ud_error2;
}
mutex_enter(&connp->conn_lock);
if (conn_same_as_last_v4(connp, sin) &&
ipsec_outbound_policy_current(ixa)) {
UDP_DBGSTAT(us, udp_out_lastdst);
/* udp_output_lastdst drops conn_lock */
error = udp_output_lastdst(connp, data_mp, cr,
pid, ixa);
} else {
UDP_DBGSTAT(us, udp_out_diffdst);
/* udp_output_newdst drops conn_lock */
error = udp_output_newdst(connp, data_mp, sin,
NULL, ipversion, cr, pid, ixa);
}
ASSERT(MUTEX_NOT_HELD(&connp->conn_lock));
}
if (error == 0) {
freeb(mp);
return;
}
break;
}
UDP_STAT(us, udp_out_err_output);
ASSERT(mp != NULL);
/* mp is freed by the following routine */
udp_ud_err(q, mp, (t_scalar_t)error);
return;
ud_error2:
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
freemsg(data_mp);
UDP_STAT(us, udp_out_err_output);
ASSERT(mp != NULL);
/* mp is freed by the following routine */
udp_ud_err(q, mp, (t_scalar_t)error);
}
/*
* Handle the case of the IP address, port, flow label being different
* for both IPv4 and IPv6.
*
* NOTE: The caller must hold conn_lock and we drop it here.
*/
static int
udp_output_newdst(conn_t *connp, mblk_t *data_mp, sin_t *sin, sin6_t *sin6,
ushort_t ipversion, cred_t *cr, pid_t pid, ip_xmit_attr_t *ixa)
{
uint_t srcid;
uint32_t flowinfo;
udp_t *udp = connp->conn_udp;
int error = 0;
ip_xmit_attr_t *oldixa;
udp_stack_t *us = udp->udp_us;
in6_addr_t v6src;
in6_addr_t v6dst;
in6_addr_t v6nexthop;
in_port_t dstport;
ASSERT(MUTEX_HELD(&connp->conn_lock));
ASSERT(ixa != NULL);
/*
* We hold conn_lock across all the use and modifications of
* the conn_lastdst, conn_ixa, and conn_xmit_ipp to ensure that they
* stay consistent.
*/
ASSERT(cr != NULL);
ixa->ixa_cred = cr;
ixa->ixa_cpid = pid;
if (is_system_labeled()) {
/* We need to restart with a label based on the cred */
ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
}
/*
* If we are connected then the destination needs to be the
* same as the connected one, which is not the case here since we
* checked for that above.
*/
if (udp->udp_state == TS_DATA_XFER) {
mutex_exit(&connp->conn_lock);
error = EISCONN;
goto ud_error;
}
/* In case previous destination was multicast or multirt */
ip_attr_newdst(ixa);
/*
* If laddr is unspecified then we look at sin6_src_id.
* We will give precedence to a source address set with IPV6_PKTINFO
* (aka IPPF_ADDR) but that is handled in build_hdrs. However, we don't
* want ip_attr_connect to select a source (since it can fail) when
* IPV6_PKTINFO is specified.
* If this doesn't result in a source address then we get a source
* from ip_attr_connect() below.
*/
v6src = connp->conn_saddr_v6;
if (sin != NULL) {
IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6dst);
dstport = sin->sin_port;
flowinfo = 0;
srcid = 0;
ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
if (srcid != 0 && V4_PART_OF_V6(&v6src) == INADDR_ANY) {
ip_srcid_find_id(srcid, &v6src, IPCL_ZONEID(connp),
connp->conn_netstack);
}
ixa->ixa_flags |= IXAF_IS_IPV4;
} else {
v6dst = sin6->sin6_addr;
dstport = sin6->sin6_port;
flowinfo = sin6->sin6_flowinfo;
srcid = sin6->__sin6_src_id;
if (IN6_IS_ADDR_LINKSCOPE(&v6dst) && sin6->sin6_scope_id != 0) {
ixa->ixa_scopeid = sin6->sin6_scope_id;
ixa->ixa_flags |= IXAF_SCOPEID_SET;
} else {
ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
}
if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&v6src)) {
ip_srcid_find_id(srcid, &v6src, IPCL_ZONEID(connp),
connp->conn_netstack);
}
if (IN6_IS_ADDR_V4MAPPED(&v6dst))
ixa->ixa_flags |= IXAF_IS_IPV4;
else
ixa->ixa_flags &= ~IXAF_IS_IPV4;
}
/* Handle IPV6_PKTINFO setting source address. */
if (IN6_IS_ADDR_UNSPECIFIED(&v6src) &&
(connp->conn_xmit_ipp.ipp_fields & IPPF_ADDR)) {
ip_pkt_t *ipp = &connp->conn_xmit_ipp;
if (ixa->ixa_flags & IXAF_IS_IPV4) {
if (IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
v6src = ipp->ipp_addr;
} else {
if (!IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
v6src = ipp->ipp_addr;
}
}
ip_attr_nexthop(&connp->conn_xmit_ipp, ixa, &v6dst, &v6nexthop);
mutex_exit(&connp->conn_lock);
error = ip_attr_connect(connp, ixa, &v6src, &v6dst, &v6nexthop, dstport,
&v6src, NULL, IPDF_ALLOW_MCBC | IPDF_VERIFY_DST | IPDF_IPSEC);
switch (error) {
case 0:
break;
case EADDRNOTAVAIL:
/*
* IXAF_VERIFY_SOURCE tells us to pick a better source.
* Don't have the application see that errno
*/
error = ENETUNREACH;
goto failed;
case ENETDOWN:
/*
* Have !ipif_addr_ready address; drop packet silently
* until we can get applications to not send until we
* are ready.
*/
error = 0;
goto failed;
case EHOSTUNREACH:
case ENETUNREACH:
if (ixa->ixa_ire != NULL) {
/*
* Let conn_ip_output/ire_send_noroute return
* the error and send any local ICMP error.
*/
error = 0;
break;
}
/* FALLTHRU */
failed:
default:
goto ud_error;
}
/*
* Cluster note: we let the cluster hook know that we are sending to a
* new address and/or port.
*/
if (cl_inet_connect2 != NULL) {
CL_INET_UDP_CONNECT(connp, B_TRUE, &v6dst, dstport, error);
if (error != 0) {
error = EHOSTUNREACH;
goto ud_error;
}
}
mutex_enter(&connp->conn_lock);
/*
* While we dropped the lock some other thread might have connected
* this socket. If so we bail out with EISCONN to ensure that the
* connecting thread is the one that updates conn_ixa, conn_ht_*
* and conn_*last*.
*/
if (udp->udp_state == TS_DATA_XFER) {
mutex_exit(&connp->conn_lock);
error = EISCONN;
goto ud_error;
}
/*
* We need to rebuild the headers if
* - we are labeling packets (could be different for different
* destinations)
* - we have a source route (or routing header) since we need to
* massage that to get the pseudo-header checksum
* - the IP version is different than the last time
* - a socket option with COA_HEADER_CHANGED has been set which
* set conn_v6lastdst to zero.
*
* Otherwise the prepend function will just update the src, dst,
* dstport, and flow label.
*/
if (is_system_labeled()) {
/* TX MLP requires SCM_UCRED and don't have that here */
if (connp->conn_mlp_type != mlptSingle) {
mutex_exit(&connp->conn_lock);
error = ECONNREFUSED;
goto ud_error;
}
/*
* Check whether Trusted Solaris policy allows communication
* with this host, and pretend that the destination is
* unreachable if not.
* Compute any needed label and place it in ipp_label_v4/v6.
*
* Later conn_build_hdr_template/conn_prepend_hdr takes
* ipp_label_v4/v6 to form the packet.
*
* Tsol note: Since we hold conn_lock we know no other
* thread manipulates conn_xmit_ipp.
*/
error = conn_update_label(connp, ixa, &v6dst,
&connp->conn_xmit_ipp);
if (error != 0) {
mutex_exit(&connp->conn_lock);
goto ud_error;
}
/* Rebuild the header template */
error = udp_build_hdr_template(connp, &v6src, &v6dst, dstport,
flowinfo);
if (error != 0) {
mutex_exit(&connp->conn_lock);
goto ud_error;
}
} else if ((connp->conn_xmit_ipp.ipp_fields &
(IPPF_IPV4_OPTIONS|IPPF_RTHDR)) ||
ipversion != connp->conn_lastipversion ||
IN6_IS_ADDR_UNSPECIFIED(&connp->conn_v6lastdst)) {
/* Rebuild the header template */
error = udp_build_hdr_template(connp, &v6src, &v6dst, dstport,
flowinfo);
if (error != 0) {
mutex_exit(&connp->conn_lock);
goto ud_error;
}
} else {
/* Simply update the destination address if no source route */
if (ixa->ixa_flags & IXAF_IS_IPV4) {
ipha_t *ipha = (ipha_t *)connp->conn_ht_iphc;
IN6_V4MAPPED_TO_IPADDR(&v6dst, ipha->ipha_dst);
if (ixa->ixa_flags & IXAF_PMTU_IPV4_DF) {
ipha->ipha_fragment_offset_and_flags |=
IPH_DF_HTONS;
} else {
ipha->ipha_fragment_offset_and_flags &=
~IPH_DF_HTONS;
}
} else {
ip6_t *ip6h = (ip6_t *)connp->conn_ht_iphc;
ip6h->ip6_dst = v6dst;
}
}
/*
* Remember the dst/dstport etc which corresponds to the built header
* template and conn_ixa.
*/
oldixa = conn_replace_ixa(connp, ixa);
connp->conn_v6lastdst = v6dst;
connp->conn_lastipversion = ipversion;
connp->conn_lastdstport = dstport;
connp->conn_lastflowinfo = flowinfo;
connp->conn_lastscopeid = ixa->ixa_scopeid;
connp->conn_lastsrcid = srcid;
/* Also remember a source to use together with lastdst */
connp->conn_v6lastsrc = v6src;
data_mp = udp_prepend_header_template(connp, ixa, data_mp, &v6src,
dstport, flowinfo, &error);
/* Done with conn_t */
mutex_exit(&connp->conn_lock);
ixa_refrele(oldixa);
if (data_mp == NULL) {
ASSERT(error != 0);
goto ud_error;
}
/* We're done. Pass the packet to ip. */
BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
error = conn_ip_output(data_mp, ixa);
/* No udpOutErrors if an error since IP increases its error counter */
switch (error) {
case 0:
break;
case EWOULDBLOCK:
(void) ixa_check_drain_insert(connp, ixa);
error = 0;
break;
case EADDRNOTAVAIL:
/*
* IXAF_VERIFY_SOURCE tells us to pick a better source.
* Don't have the application see that errno
*/
error = ENETUNREACH;
/* FALLTHRU */
default:
mutex_enter(&connp->conn_lock);
/*
* Clear the source and v6lastdst so we call ip_attr_connect
* for the next packet and try to pick a better source.
*/
if (connp->conn_mcbc_bind)
connp->conn_saddr_v6 = ipv6_all_zeros;
else
connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
connp->conn_v6lastdst = ipv6_all_zeros;
mutex_exit(&connp->conn_lock);
break;
}
ixa_refrele(ixa);
return (error);
ud_error:
if (ixa != NULL)
ixa_refrele(ixa);
freemsg(data_mp);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
UDP_STAT(us, udp_out_err_output);
return (error);
}
/* ARGSUSED */
static void
udp_wput_fallback(queue_t *wq, mblk_t *mp)
{
#ifdef DEBUG
cmn_err(CE_CONT, "udp_wput_fallback: Message in fallback \n");
#endif
freemsg(mp);
}
/*
* Handle special out-of-band ioctl requests (see PSARC/2008/265).
*/
static void
udp_wput_cmdblk(queue_t *q, mblk_t *mp)
{
void *data;
mblk_t *datamp = mp->b_cont;
conn_t *connp = Q_TO_CONN(q);
udp_t *udp = connp->conn_udp;
cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
cmdp->cb_error = EPROTO;
qreply(q, mp);
return;
}
data = datamp->b_rptr;
mutex_enter(&connp->conn_lock);
switch (cmdp->cb_cmd) {
case TI_GETPEERNAME:
if (udp->udp_state != TS_DATA_XFER)
cmdp->cb_error = ENOTCONN;
else
cmdp->cb_error = conn_getpeername(connp, data,
&cmdp->cb_len);
break;
case TI_GETMYNAME:
cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len);
break;
default:
cmdp->cb_error = EINVAL;
break;
}
mutex_exit(&connp->conn_lock);
qreply(q, mp);
}
static void
udp_use_pure_tpi(udp_t *udp)
{
conn_t *connp = udp->udp_connp;
mutex_enter(&connp->conn_lock);
udp->udp_issocket = B_FALSE;
mutex_exit(&connp->conn_lock);
UDP_STAT(udp->udp_us, udp_sock_fallback);
}
static void
udp_wput_other(queue_t *q, mblk_t *mp)
{
uchar_t *rptr = mp->b_rptr;
struct iocblk *iocp;
conn_t *connp = Q_TO_CONN(q);
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
cred_t *cr;
switch (mp->b_datap->db_type) {
case M_CMD:
udp_wput_cmdblk(q, mp);
return;
case M_PROTO:
case M_PCPROTO:
if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
/*
* If the message does not contain a PRIM_type,
* throw it away.
*/
freemsg(mp);
return;
}
switch (((t_primp_t)rptr)->type) {
case T_ADDR_REQ:
udp_addr_req(q, mp);
return;
case O_T_BIND_REQ:
case T_BIND_REQ:
udp_tpi_bind(q, mp);
return;
case T_CONN_REQ:
udp_tpi_connect(q, mp);
return;
case T_CAPABILITY_REQ:
udp_capability_req(q, mp);
return;
case T_INFO_REQ:
udp_info_req(q, mp);
return;
case T_UNITDATA_REQ:
/*
* If a T_UNITDATA_REQ gets here, the address must
* be bad. Valid T_UNITDATA_REQs are handled
* in udp_wput.
*/
udp_ud_err(q, mp, EADDRNOTAVAIL);
return;
case T_UNBIND_REQ:
udp_tpi_unbind(q, mp);
return;
case T_SVR4_OPTMGMT_REQ:
/*
* All Solaris components should pass a db_credp
* for this TPI message, hence we ASSERT.
* But in case there is some other M_PROTO that looks
* like a TPI message sent by some other kernel
* component, we check and return an error.
*/
cr = msg_getcred(mp, NULL);
ASSERT(cr != NULL);
if (cr == NULL) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get,
cr)) {
svr4_optcom_req(q, mp, cr, &udp_opt_obj);
}
return;
case T_OPTMGMT_REQ:
/*
* All Solaris components should pass a db_credp
* for this TPI message, hence we ASSERT.
* But in case there is some other M_PROTO that looks
* like a TPI message sent by some other kernel
* component, we check and return an error.
*/
cr = msg_getcred(mp, NULL);
ASSERT(cr != NULL);
if (cr == NULL) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
tpi_optcom_req(q, mp, cr, &udp_opt_obj);
return;
case T_DISCON_REQ:
udp_tpi_disconnect(q, mp);
return;
/* The following TPI message is not supported by udp. */
case O_T_CONN_RES:
case T_CONN_RES:
udp_err_ack(q, mp, TNOTSUPPORT, 0);
return;
/* The following 3 TPI requests are illegal for udp. */
case T_DATA_REQ:
case T_EXDATA_REQ:
case T_ORDREL_REQ:
udp_err_ack(q, mp, TNOTSUPPORT, 0);
return;
default:
break;
}
break;
case M_FLUSH:
if (*rptr & FLUSHW)
flushq(q, FLUSHDATA);
break;
case M_IOCTL:
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case TI_GETPEERNAME:
if (udp->udp_state != TS_DATA_XFER) {
/*
* If a default destination address has not
* been associated with the stream, then we
* don't know the peer's name.
*/
iocp->ioc_error = ENOTCONN;
iocp->ioc_count = 0;
mp->b_datap->db_type = M_IOCACK;
qreply(q, mp);
return;
}
/* FALLTHRU */
case TI_GETMYNAME:
/*
* For TI_GETPEERNAME and TI_GETMYNAME, we first
* need to copyin the user's strbuf structure.
* Processing will continue in the M_IOCDATA case
* below.
*/
mi_copyin(q, mp, NULL,
SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
return;
case ND_SET:
/* nd_getset performs the necessary checking */
case ND_GET:
if (nd_getset(q, us->us_nd, mp)) {
qreply(q, mp);
return;
}
break;
case _SIOCSOCKFALLBACK:
/*
* Either sockmod is about to be popped and the
* socket would now be treated as a plain stream,
* or a module is about to be pushed so we have
* to follow pure TPI semantics.
*/
if (!udp->udp_issocket) {
DB_TYPE(mp) = M_IOCNAK;
iocp->ioc_error = EINVAL;
} else {
udp_use_pure_tpi(udp);
DB_TYPE(mp) = M_IOCACK;
iocp->ioc_error = 0;
}
iocp->ioc_count = 0;
iocp->ioc_rval = 0;
qreply(q, mp);
return;
default:
break;
}
break;
case M_IOCDATA:
udp_wput_iocdata(q, mp);
return;
default:
/* Unrecognized messages are passed through without change. */
break;
}
ip_wput_nondata(q, mp);
}
/*
* udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
* messages.
*/
static void
udp_wput_iocdata(queue_t *q, mblk_t *mp)
{
mblk_t *mp1;
struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
STRUCT_HANDLE(strbuf, sb);
uint_t addrlen;
conn_t *connp = Q_TO_CONN(q);
udp_t *udp = connp->conn_udp;
/* Make sure it is one of ours. */
switch (iocp->ioc_cmd) {
case TI_GETMYNAME:
case TI_GETPEERNAME:
break;
default:
ip_wput_nondata(q, mp);
return;
}
switch (mi_copy_state(q, mp, &mp1)) {
case -1:
return;
case MI_COPY_CASE(MI_COPY_IN, 1):
break;
case MI_COPY_CASE(MI_COPY_OUT, 1):
/*
* The address has been copied out, so now
* copyout the strbuf.
*/
mi_copyout(q, mp);
return;
case MI_COPY_CASE(MI_COPY_OUT, 2):
/*
* The address and strbuf have been copied out.
* We're done, so just acknowledge the original
* M_IOCTL.
*/
mi_copy_done(q, mp, 0);
return;
default:
/*
* Something strange has happened, so acknowledge
* the original M_IOCTL with an EPROTO error.
*/
mi_copy_done(q, mp, EPROTO);
return;
}
/*
* Now we have the strbuf structure for TI_GETMYNAME
* and TI_GETPEERNAME. Next we copyout the requested
* address and then we'll copyout the strbuf.
*/
STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
if (connp->conn_family == AF_INET)
addrlen = sizeof (sin_t);
else
addrlen = sizeof (sin6_t);
if (STRUCT_FGET(sb, maxlen) < addrlen) {
mi_copy_done(q, mp, EINVAL);
return;
}
switch (iocp->ioc_cmd) {
case TI_GETMYNAME:
break;
case TI_GETPEERNAME:
if (udp->udp_state != TS_DATA_XFER) {
mi_copy_done(q, mp, ENOTCONN);
return;
}
break;
}
mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
if (!mp1)
return;
STRUCT_FSET(sb, len, addrlen);
switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
case TI_GETMYNAME:
(void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr,
&addrlen);
break;
case TI_GETPEERNAME:
(void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr,
&addrlen);
break;
}
mp1->b_wptr += addrlen;
/* Copy out the address */
mi_copyout(q, mp);
}
void
udp_ddi_g_init(void)
{
udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
udp_opt_obj.odb_opt_arr_cnt);
/*
* We want to be informed each time a stack is created or
* destroyed in the kernel, so we can maintain the
* set of udp_stack_t's.
*/
netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini);
}
void
udp_ddi_g_destroy(void)
{
netstack_unregister(NS_UDP);
}
#define INET_NAME "ip"
/*
* Initialize the UDP stack instance.
*/
static void *
udp_stack_init(netstackid_t stackid, netstack_t *ns)
{
udp_stack_t *us;
udpparam_t *pa;
int i;
int error = 0;
major_t major;
us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP);
us->us_netstack = ns;
us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
us->us_epriv_ports[0] = 2049;
us->us_epriv_ports[1] = 4045;
/*
* The smallest anonymous port in the priviledged port range which UDP
* looks for free port. Use in the option UDP_ANONPRIVBIND.
*/
us->us_min_anonpriv_port = 512;
us->us_bind_fanout_size = udp_bind_fanout_size;
/* Roundup variable that might have been modified in /etc/system */
if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) {
/* Not a power of two. Round up to nearest power of two */
for (i = 0; i < 31; i++) {
if (us->us_bind_fanout_size < (1 << i))
break;
}
us->us_bind_fanout_size = 1 << i;
}
us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size *
sizeof (udp_fanout_t), KM_SLEEP);
for (i = 0; i < us->us_bind_fanout_size; i++) {
mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
NULL);
}
pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP);
us->us_param_arr = pa;
bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr));
(void) udp_param_register(&us->us_nd,
us->us_param_arr, A_CNT(udp_param_arr));
us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics);
us->us_mibkp = udp_kstat_init(stackid);
major = mod_name_to_major(INET_NAME);
error = ldi_ident_from_major(major, &us->us_ldi_ident);
ASSERT(error == 0);
return (us);
}
/*
* Free the UDP stack instance.
*/
static void
udp_stack_fini(netstackid_t stackid, void *arg)
{
udp_stack_t *us = (udp_stack_t *)arg;
int i;
for (i = 0; i < us->us_bind_fanout_size; i++) {
mutex_destroy(&us->us_bind_fanout[i].uf_lock);
}
kmem_free(us->us_bind_fanout, us->us_bind_fanout_size *
sizeof (udp_fanout_t));
us->us_bind_fanout = NULL;
nd_free(&us->us_nd);
kmem_free(us->us_param_arr, sizeof (udp_param_arr));
us->us_param_arr = NULL;
udp_kstat_fini(stackid, us->us_mibkp);
us->us_mibkp = NULL;
udp_kstat2_fini(stackid, us->us_kstat);
us->us_kstat = NULL;
bzero(&us->us_statistics, sizeof (us->us_statistics));
ldi_ident_release(us->us_ldi_ident);
kmem_free(us, sizeof (*us));
}
static void *
udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp)
{
kstat_t *ksp;
udp_stat_t template = {
{ "udp_sock_fallback", KSTAT_DATA_UINT64 },
{ "udp_out_opt", KSTAT_DATA_UINT64 },
{ "udp_out_err_notconn", KSTAT_DATA_UINT64 },
{ "udp_out_err_output", KSTAT_DATA_UINT64 },
{ "udp_out_err_tudr", KSTAT_DATA_UINT64 },
#ifdef DEBUG
{ "udp_data_conn", KSTAT_DATA_UINT64 },
{ "udp_data_notconn", KSTAT_DATA_UINT64 },
{ "udp_out_lastdst", KSTAT_DATA_UINT64 },
{ "udp_out_diffdst", KSTAT_DATA_UINT64 },
{ "udp_out_ipv6", KSTAT_DATA_UINT64 },
{ "udp_out_mapped", KSTAT_DATA_UINT64 },
{ "udp_out_ipv4", KSTAT_DATA_UINT64 },
#endif
};
ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net",
KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL, stackid);
if (ksp == NULL)
return (NULL);
bcopy(&template, us_statisticsp, sizeof (template));
ksp->ks_data = (void *)us_statisticsp;
ksp->ks_private = (void *)(uintptr_t)stackid;
kstat_install(ksp);
return (ksp);
}
static void
udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
{
if (ksp != NULL) {
ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
kstat_delete_netstack(ksp, stackid);
}
}
static void *
udp_kstat_init(netstackid_t stackid)
{
kstat_t *ksp;
udp_named_kstat_t template = {
{ "inDatagrams", KSTAT_DATA_UINT64, 0 },
{ "inErrors", KSTAT_DATA_UINT32, 0 },
{ "outDatagrams", KSTAT_DATA_UINT64, 0 },
{ "entrySize", KSTAT_DATA_INT32, 0 },
{ "entry6Size", KSTAT_DATA_INT32, 0 },
{ "outErrors", KSTAT_DATA_UINT32, 0 },
};
ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2",
KSTAT_TYPE_NAMED,
NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid);
if (ksp == NULL || ksp->ks_data == NULL)
return (NULL);
template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
bcopy(&template, ksp->ks_data, sizeof (template));
ksp->ks_update = udp_kstat_update;
ksp->ks_private = (void *)(uintptr_t)stackid;
kstat_install(ksp);
return (ksp);
}
static void
udp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
{
if (ksp != NULL) {
ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
kstat_delete_netstack(ksp, stackid);
}
}
static int
udp_kstat_update(kstat_t *kp, int rw)
{
udp_named_kstat_t *udpkp;
netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private;
netstack_t *ns;
udp_stack_t *us;
if ((kp == NULL) || (kp->ks_data == NULL))
return (EIO);
if (rw == KSTAT_WRITE)
return (EACCES);
ns = netstack_find_by_stackid(stackid);
if (ns == NULL)
return (-1);
us = ns->netstack_udp;
if (us == NULL) {
netstack_rele(ns);
return (-1);
}
udpkp = (udp_named_kstat_t *)kp->ks_data;
udpkp->inDatagrams.value.ui64 = us->us_udp_mib.udpHCInDatagrams;
udpkp->inErrors.value.ui32 = us->us_udp_mib.udpInErrors;
udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams;
udpkp->outErrors.value.ui32 = us->us_udp_mib.udpOutErrors;
netstack_rele(ns);
return (0);
}
static size_t
udp_set_rcv_hiwat(udp_t *udp, size_t size)
{
udp_stack_t *us = udp->udp_us;
/* We add a bit of extra buffering */
size += size >> 1;
if (size > us->us_max_buf)
size = us->us_max_buf;
udp->udp_rcv_hiwat = size;
return (size);
}
/*
* For the lower queue so that UDP can be a dummy mux.
* Nobody should be sending
* packets up this stream
*/
static void
udp_lrput(queue_t *q, mblk_t *mp)
{
switch (mp->b_datap->db_type) {
case M_FLUSH:
/* Turn around */
if (*mp->b_rptr & FLUSHW) {
*mp->b_rptr &= ~FLUSHR;
qreply(q, mp);
return;
}
break;
}
freemsg(mp);
}
/*
* For the lower queue so that UDP can be a dummy mux.
* Nobody should be sending packets down this stream.
*/
/* ARGSUSED */
void
udp_lwput(queue_t *q, mblk_t *mp)
{
freemsg(mp);
}
/*
* Below routines for UDP socket module.
*/
static conn_t *
udp_do_open(cred_t *credp, boolean_t isv6, int flags, int *errorp)
{
udp_t *udp;
conn_t *connp;
zoneid_t zoneid;
netstack_t *ns;
udp_stack_t *us;
int len;
ASSERT(errorp != NULL);
if ((*errorp = secpolicy_basic_net_access(credp)) != 0)
return (NULL);
ns = netstack_find_by_cred(credp);
ASSERT(ns != NULL);
us = ns->netstack_udp;
ASSERT(us != NULL);
/*
* For exclusive stacks we set the zoneid to zero
* to make UDP operate as if in the global zone.
*/
if (ns->netstack_stackid != GLOBAL_NETSTACKID)
zoneid = GLOBAL_ZONEID;
else
zoneid = crgetzoneid(credp);
ASSERT(flags == KM_SLEEP || flags == KM_NOSLEEP);
connp = ipcl_conn_create(IPCL_UDPCONN, flags, ns);
if (connp == NULL) {
netstack_rele(ns);
*errorp = ENOMEM;
return (NULL);
}
udp = connp->conn_udp;
/*
* ipcl_conn_create did a netstack_hold. Undo the hold that was
* done by netstack_find_by_cred()
*/
netstack_rele(ns);
/*
* Since this conn_t/udp_t is not yet visible to anybody else we don't
* need to lock anything.
*/
ASSERT(connp->conn_proto == IPPROTO_UDP);
ASSERT(connp->conn_udp == udp);
ASSERT(udp->udp_connp == connp);
/* Set the initial state of the stream and the privilege status. */
udp->udp_state = TS_UNBND;
connp->conn_ixa->ixa_flags |= IXAF_VERIFY_SOURCE;
if (isv6) {
connp->conn_family = AF_INET6;
connp->conn_ipversion = IPV6_VERSION;
connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
connp->conn_default_ttl = us->us_ipv6_hoplimit;
len = sizeof (ip6_t) + UDPH_SIZE;
} else {
connp->conn_family = AF_INET;
connp->conn_ipversion = IPV4_VERSION;
connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
connp->conn_default_ttl = us->us_ipv4_ttl;
len = sizeof (ipha_t) + UDPH_SIZE;
}
ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
connp->conn_ixa->ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
connp->conn_ixa->ixa_zoneid = zoneid;
connp->conn_zoneid = zoneid;
/*
* If the caller has the process-wide flag set, then default to MAC
* exempt mode. This allows read-down to unlabeled hosts.
*/
if (getpflags(NET_MAC_AWARE, credp) != 0)
connp->conn_mac_mode = CONN_MAC_AWARE;
connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
udp->udp_us = us;
connp->conn_rcvbuf = us->us_recv_hiwat;
connp->conn_sndbuf = us->us_xmit_hiwat;
connp->conn_sndlowat = us->us_xmit_lowat;
connp->conn_rcvlowat = udp_mod_info.mi_lowat;
connp->conn_wroff = len + us->us_wroff_extra;
connp->conn_so_type = SOCK_DGRAM;
connp->conn_recv = udp_input;
connp->conn_recvicmp = udp_icmp_input;
crhold(credp);
connp->conn_cred = credp;
connp->conn_cpid = curproc->p_pid;
connp->conn_open_time = ddi_get_lbolt64();
/* Cache things in ixa without an extra refhold */
connp->conn_ixa->ixa_cred = connp->conn_cred;
connp->conn_ixa->ixa_cpid = connp->conn_cpid;
if (is_system_labeled())
connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
*((sin6_t *)&udp->udp_delayed_addr) = sin6_null;
if (us->us_pmtu_discovery)
connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
return (connp);
}
sock_lower_handle_t
udp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
uint_t *smodep, int *errorp, int flags, cred_t *credp)
{
udp_t *udp = NULL;
udp_stack_t *us;
conn_t *connp;
boolean_t isv6;
if (type != SOCK_DGRAM || (family != AF_INET && family != AF_INET6) ||
(proto != 0 && proto != IPPROTO_UDP)) {
*errorp = EPROTONOSUPPORT;
return (NULL);
}
if (family == AF_INET6)
isv6 = B_TRUE;
else
isv6 = B_FALSE;
connp = udp_do_open(credp, isv6, flags, errorp);
if (connp == NULL)
return (NULL);
udp = connp->conn_udp;
ASSERT(udp != NULL);
us = udp->udp_us;
ASSERT(us != NULL);
udp->udp_issocket = B_TRUE;
connp->conn_flags |= IPCL_NONSTR;
/*
* Set flow control
* Since this conn_t/udp_t is not yet visible to anybody else we don't
* need to lock anything.
*/
(void) udp_set_rcv_hiwat(udp, connp->conn_rcvbuf);
udp->udp_rcv_disply_hiwat = connp->conn_rcvbuf;
connp->conn_flow_cntrld = B_FALSE;
mutex_enter(&connp->conn_lock);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
*errorp = 0;
*smodep = SM_ATOMIC;
*sock_downcalls = &sock_udp_downcalls;
return ((sock_lower_handle_t)connp);
}
/* ARGSUSED3 */
void
udp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
struct sock_proto_props sopp;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
connp->conn_upcalls = sock_upcalls;
connp->conn_upper_handle = sock_handle;
sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ;
sopp.sopp_wroff = connp->conn_wroff;
sopp.sopp_maxblk = INFPSZ;
sopp.sopp_rxhiwat = connp->conn_rcvbuf;
sopp.sopp_rxlowat = connp->conn_rcvlowat;
sopp.sopp_maxaddrlen = sizeof (sin6_t);
sopp.sopp_maxpsz =
(connp->conn_family == AF_INET) ? UDP_MAXPACKET_IPV4 :
UDP_MAXPACKET_IPV6;
sopp.sopp_minpsz = (udp_mod_info.mi_minpsz == 1) ? 0 :
udp_mod_info.mi_minpsz;
(*connp->conn_upcalls->su_set_proto_props)(connp->conn_upper_handle,
&sopp);
}
static void
udp_do_close(conn_t *connp)
{
udp_t *udp;
ASSERT(connp != NULL && IPCL_IS_UDP(connp));
udp = connp->conn_udp;
if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
/*
* Running in cluster mode - register unbind information
*/
if (connp->conn_ipversion == IPV4_VERSION) {
(*cl_inet_unbind)(
connp->conn_netstack->netstack_stackid,
IPPROTO_UDP, AF_INET,
(uint8_t *)(&V4_PART_OF_V6(connp->conn_laddr_v6)),
(in_port_t)connp->conn_lport, NULL);
} else {
(*cl_inet_unbind)(
connp->conn_netstack->netstack_stackid,
IPPROTO_UDP, AF_INET6,
(uint8_t *)&(connp->conn_laddr_v6),
(in_port_t)connp->conn_lport, NULL);
}
}
udp_bind_hash_remove(udp, B_FALSE);
ip_quiesce_conn(connp);
if (!IPCL_IS_NONSTR(connp)) {
ASSERT(connp->conn_wq != NULL);
ASSERT(connp->conn_rq != NULL);
qprocsoff(connp->conn_rq);
}
udp_close_free(connp);
/*
* Now we are truly single threaded on this stream, and can
* delete the things hanging off the connp, and finally the connp.
* We removed this connp from the fanout list, it cannot be
* accessed thru the fanouts, and we already waited for the
* conn_ref to drop to 0. We are already in close, so
* there cannot be any other thread from the top. qprocsoff
* has completed, and service has completed or won't run in
* future.
*/
ASSERT(connp->conn_ref == 1);
if (!IPCL_IS_NONSTR(connp)) {
inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
} else {
ip_free_helper_stream(connp);
}
connp->conn_ref--;
ipcl_conn_destroy(connp);
}
/* ARGSUSED1 */
int
udp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
udp_do_close(connp);
return (0);
}
static int
udp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
boolean_t bind_to_req_port_only)
{
sin_t *sin;
sin6_t *sin6;
udp_t *udp = connp->conn_udp;
int error = 0;
ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */
in_port_t port; /* Host byte order */
in_port_t requested_port; /* Host byte order */
int count;
ipaddr_t v4src; /* Set if AF_INET */
in6_addr_t v6src;
int loopmax;
udp_fanout_t *udpf;
in_port_t lport; /* Network byte order */
uint_t scopeid = 0;
zoneid_t zoneid = IPCL_ZONEID(connp);
ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
boolean_t is_inaddr_any;
mlp_type_t addrtype, mlptype;
udp_stack_t *us = udp->udp_us;
switch (len) {
case sizeof (sin_t): /* Complete IPv4 address */
sin = (sin_t *)sa;
if (sin == NULL || !OK_32PTR((char *)sin))
return (EINVAL);
if (connp->conn_family != AF_INET ||
sin->sin_family != AF_INET) {
return (EAFNOSUPPORT);
}
v4src = sin->sin_addr.s_addr;
IN6_IPADDR_TO_V4MAPPED(v4src, &v6src);
if (v4src != INADDR_ANY) {
laddr_type = ip_laddr_verify_v4(v4src, zoneid, ipst,
B_TRUE);
}
port = ntohs(sin->sin_port);
break;
case sizeof (sin6_t): /* complete IPv6 address */
sin6 = (sin6_t *)sa;
if (sin6 == NULL || !OK_32PTR((char *)sin6))
return (EINVAL);
if (connp->conn_family != AF_INET6 ||
sin6->sin6_family != AF_INET6) {
return (EAFNOSUPPORT);
}
v6src = sin6->sin6_addr;
if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
if (connp->conn_ipv6_v6only)
return (EADDRNOTAVAIL);
IN6_V4MAPPED_TO_IPADDR(&v6src, v4src);
if (v4src != INADDR_ANY) {
laddr_type = ip_laddr_verify_v4(v4src,
zoneid, ipst, B_FALSE);
}
} else {
if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) {
if (IN6_IS_ADDR_LINKSCOPE(&v6src))
scopeid = sin6->sin6_scope_id;
laddr_type = ip_laddr_verify_v6(&v6src,
zoneid, ipst, B_TRUE, scopeid);
}
}
port = ntohs(sin6->sin6_port);
break;
default: /* Invalid request */
(void) strlog(UDP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad ADDR_length length %u", len);
return (-TBADADDR);
}
/* Is the local address a valid unicast, multicast, or broadcast? */
if (laddr_type == IPVL_BAD)
return (EADDRNOTAVAIL);
requested_port = port;
if (requested_port == 0 || !bind_to_req_port_only)
bind_to_req_port_only = B_FALSE;
else /* T_BIND_REQ and requested_port != 0 */
bind_to_req_port_only = B_TRUE;
if (requested_port == 0) {
/*
* If the application passed in zero for the port number, it
* doesn't care which port number we bind to. Get one in the
* valid range.
*/
if (connp->conn_anon_priv_bind) {
port = udp_get_next_priv_port(udp);
} else {
port = udp_update_next_port(udp,
us->us_next_port_to_try, B_TRUE);
}
} else {
/*
* If the port is in the well-known privileged range,
* make sure the caller was privileged.
*/
int i;
boolean_t priv = B_FALSE;
if (port < us->us_smallest_nonpriv_port) {
priv = B_TRUE;
} else {
for (i = 0; i < us->us_num_epriv_ports; i++) {
if (port == us->us_epriv_ports[i]) {
priv = B_TRUE;
break;
}
}
}
if (priv) {
if (secpolicy_net_privaddr(cr, port, IPPROTO_UDP) != 0)
return (-TACCES);
}
}
if (port == 0)
return (-TNOADDR);
/*
* The state must be TS_UNBND. TPI mandates that users must send
* TPI primitives only 1 at a time and wait for the response before
* sending the next primitive.
*/
mutex_enter(&connp->conn_lock);
if (udp->udp_state != TS_UNBND) {
mutex_exit(&connp->conn_lock);
(void) strlog(UDP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad state, %u", udp->udp_state);
return (-TOUTSTATE);
}
/*
* Copy the source address into our udp structure. This address
* may still be zero; if so, IP will fill in the correct address
* each time an outbound packet is passed to it. Since the udp is
* not yet in the bind hash list, we don't grab the uf_lock to
* change conn_ipversion
*/
if (connp->conn_family == AF_INET) {
ASSERT(sin != NULL);
ASSERT(connp->conn_ixa->ixa_flags & IXAF_IS_IPV4);
} else {
if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
/*
* no need to hold the uf_lock to set the conn_ipversion
* since we are not yet in the fanout list
*/
connp->conn_ipversion = IPV4_VERSION;
connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
} else {
connp->conn_ipversion = IPV6_VERSION;
connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
}
}
/*
* If conn_reuseaddr is not set, then we have to make sure that
* the IP address and port number the application requested
* (or we selected for the application) is not being used by
* another stream. If another stream is already using the
* requested IP address and port, the behavior depends on
* "bind_to_req_port_only". If set the bind fails; otherwise we
* search for any an unused port to bind to the stream.
*
* As per the BSD semantics, as modified by the Deering multicast
* changes, if udp_reuseaddr is set, then we allow multiple binds
* to the same port independent of the local IP address.
*
* This is slightly different than in SunOS 4.X which did not
* support IP multicast. Note that the change implemented by the
* Deering multicast code effects all binds - not only binding
* to IP multicast addresses.
*
* Note that when binding to port zero we ignore SO_REUSEADDR in
* order to guarantee a unique port.
*/
count = 0;
if (connp->conn_anon_priv_bind) {
/*
* loopmax = (IPPORT_RESERVED-1) -
* us->us_min_anonpriv_port + 1
*/
loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port;
} else {
loopmax = us->us_largest_anon_port -
us->us_smallest_anon_port + 1;
}
is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
for (;;) {
udp_t *udp1;
boolean_t found_exclbind = B_FALSE;
conn_t *connp1;
/*
* Walk through the list of udp streams bound to
* requested port with the same IP address.
*/
lport = htons(port);
udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport,
us->us_bind_fanout_size)];
mutex_enter(&udpf->uf_lock);
for (udp1 = udpf->uf_udp; udp1 != NULL;
udp1 = udp1->udp_bind_hash) {
connp1 = udp1->udp_connp;
if (lport != connp1->conn_lport)
continue;
/*
* On a labeled system, we must treat bindings to ports
* on shared IP addresses by sockets with MAC exemption
* privilege as being in all zones, as there's
* otherwise no way to identify the right receiver.
*/
if (!IPCL_BIND_ZONE_MATCH(connp1, connp))
continue;
/*
* If UDP_EXCLBIND is set for either the bound or
* binding endpoint, the semantics of bind
* is changed according to the following chart.
*
* spec = specified address (v4 or v6)
* unspec = unspecified address (v4 or v6)
* A = specified addresses are different for endpoints
*
* bound bind to allowed?
* -------------------------------------
* unspec unspec no
* unspec spec no
* spec unspec no
* spec spec yes if A
*
* For labeled systems, SO_MAC_EXEMPT behaves the same
* as UDP_EXCLBIND, except that zoneid is ignored.
*/
if (connp1->conn_exclbind || connp->conn_exclbind ||
IPCL_CONNS_MAC(udp1->udp_connp, connp)) {
if (V6_OR_V4_INADDR_ANY(
connp1->conn_bound_addr_v6) ||
is_inaddr_any ||
IN6_ARE_ADDR_EQUAL(
&connp1->conn_bound_addr_v6,
&v6src)) {
found_exclbind = B_TRUE;
break;
}
continue;
}
/*
* Check ipversion to allow IPv4 and IPv6 sockets to
* have disjoint port number spaces.
*/
if (connp->conn_ipversion != connp1->conn_ipversion) {
/*
* On the first time through the loop, if the
* the user intentionally specified a
* particular port number, then ignore any
* bindings of the other protocol that may
* conflict. This allows the user to bind IPv6
* alone and get both v4 and v6, or bind both
* both and get each seperately. On subsequent
* times through the loop, we're checking a
* port that we chose (not the user) and thus
* we do not allow casual duplicate bindings.
*/
if (count == 0 && requested_port != 0)
continue;
}
/*
* No difference depending on SO_REUSEADDR.
*
* If existing port is bound to a
* non-wildcard IP address and
* the requesting stream is bound to
* a distinct different IP addresses
* (non-wildcard, also), keep going.
*/
if (!is_inaddr_any &&
!V6_OR_V4_INADDR_ANY(connp1->conn_bound_addr_v6) &&
!IN6_ARE_ADDR_EQUAL(&connp1->conn_laddr_v6,
&v6src)) {
continue;
}
break;
}
if (!found_exclbind &&
(connp->conn_reuseaddr && requested_port != 0)) {
break;
}
if (udp1 == NULL) {
/*
* No other stream has this IP address
* and port number. We can use it.
*/
break;
}
mutex_exit(&udpf->uf_lock);
if (bind_to_req_port_only) {
/*
* We get here only when requested port
* is bound (and only first of the for()
* loop iteration).
*
* The semantics of this bind request
* require it to fail so we return from
* the routine (and exit the loop).
*
*/
mutex_exit(&connp->conn_lock);
return (-TADDRBUSY);
}
if (connp->conn_anon_priv_bind) {
port = udp_get_next_priv_port(udp);
} else {
if ((count == 0) && (requested_port != 0)) {
/*
* If the application wants us to find
* a port, get one to start with. Set
* requested_port to 0, so that we will
* update us->us_next_port_to_try below.
*/
port = udp_update_next_port(udp,
us->us_next_port_to_try, B_TRUE);
requested_port = 0;
} else {
port = udp_update_next_port(udp, port + 1,
B_FALSE);
}
}
if (port == 0 || ++count >= loopmax) {
/*
* We've tried every possible port number and
* there are none available, so send an error
* to the user.
*/
mutex_exit(&connp->conn_lock);
return (-TNOADDR);
}
}
/*
* Copy the source address into our udp structure. This address
* may still be zero; if so, ip_attr_connect will fill in the correct
* address when a packet is about to be sent.
* If we are binding to a broadcast or multicast address then
* we just set the conn_bound_addr since we don't want to use
* that as the source address when sending.
*/
connp->conn_bound_addr_v6 = v6src;
connp->conn_laddr_v6 = v6src;
if (scopeid != 0) {
connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
connp->conn_ixa->ixa_scopeid = scopeid;
connp->conn_incoming_ifindex = scopeid;
} else {
connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
connp->conn_incoming_ifindex = connp->conn_bound_if;
}
switch (laddr_type) {
case IPVL_UNICAST_UP:
case IPVL_UNICAST_DOWN:
connp->conn_saddr_v6 = v6src;
connp->conn_mcbc_bind = B_FALSE;
break;
case IPVL_MCAST:
case IPVL_BCAST:
/* ip_set_destination will pick a source address later */
connp->conn_saddr_v6 = ipv6_all_zeros;
connp->conn_mcbc_bind = B_TRUE;
break;
}
/* Any errors after this point should use late_error */
connp->conn_lport = lport;
/*
* Now reset the next anonymous port if the application requested
* an anonymous port, or we handed out the next anonymous port.
*/
if ((requested_port == 0) && (!connp->conn_anon_priv_bind)) {
us->us_next_port_to_try = port + 1;
}
/* Initialize the T_BIND_ACK. */
if (connp->conn_family == AF_INET) {
sin->sin_port = connp->conn_lport;
} else {
sin6->sin6_port = connp->conn_lport;
}
udp->udp_state = TS_IDLE;
udp_bind_hash_insert(udpf, udp);
mutex_exit(&udpf->uf_lock);
mutex_exit(&connp->conn_lock);
if (cl_inet_bind) {
/*
* Running in cluster mode - register bind information
*/
if (connp->conn_ipversion == IPV4_VERSION) {
(*cl_inet_bind)(connp->conn_netstack->netstack_stackid,
IPPROTO_UDP, AF_INET, (uint8_t *)&v4src,
(in_port_t)connp->conn_lport, NULL);
} else {
(*cl_inet_bind)(connp->conn_netstack->netstack_stackid,
IPPROTO_UDP, AF_INET6, (uint8_t *)&v6src,
(in_port_t)connp->conn_lport, NULL);
}
}
mutex_enter(&connp->conn_lock);
connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
if (is_system_labeled() && (!connp->conn_anon_port ||
connp->conn_anon_mlp)) {
uint16_t mlpport;
zone_t *zone;
zone = crgetzone(cr);
connp->conn_mlp_type =
connp->conn_recv_ancillary.crb_recvucred ? mlptBoth :
mlptSingle;
addrtype = tsol_mlp_addr_type(
connp->conn_allzones ? ALL_ZONES : zone->zone_id,
IPV6_VERSION, &v6src, us->us_netstack->netstack_ip);
if (addrtype == mlptSingle) {
error = -TNOADDR;
mutex_exit(&connp->conn_lock);
goto late_error;
}
mlpport = connp->conn_anon_port ? PMAPPORT : port;
mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
addrtype);
/*
* It is a coding error to attempt to bind an MLP port
* without first setting SOL_SOCKET/SCM_UCRED.
*/
if (mlptype != mlptSingle &&
connp->conn_mlp_type == mlptSingle) {
error = EINVAL;
mutex_exit(&connp->conn_lock);
goto late_error;
}
/*
* It is an access violation to attempt to bind an MLP port
* without NET_BINDMLP privilege.
*/
if (mlptype != mlptSingle &&
secpolicy_net_bindmlp(cr) != 0) {
if (connp->conn_debug) {
(void) strlog(UDP_MOD_ID, 0, 1,
SL_ERROR|SL_TRACE,
"udp_bind: no priv for multilevel port %d",
mlpport);
}
error = -TACCES;
mutex_exit(&connp->conn_lock);
goto late_error;
}
/*
* If we're specifically binding a shared IP address and the
* port is MLP on shared addresses, then check to see if this
* zone actually owns the MLP. Reject if not.
*/
if (mlptype == mlptShared && addrtype == mlptShared) {
/*
* No need to handle exclusive-stack zones since
* ALL_ZONES only applies to the shared stack.
*/
zoneid_t mlpzone;
mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
htons(mlpport));
if (connp->conn_zoneid != mlpzone) {
if (connp->conn_debug) {
(void) strlog(UDP_MOD_ID, 0, 1,
SL_ERROR|SL_TRACE,
"udp_bind: attempt to bind port "
"%d on shared addr in zone %d "
"(should be %d)",
mlpport, connp->conn_zoneid,
mlpzone);
}
error = -TACCES;
mutex_exit(&connp->conn_lock);
goto late_error;
}
}
if (connp->conn_anon_port) {
error = tsol_mlp_anon(zone, mlptype, connp->conn_proto,
port, B_TRUE);
if (error != 0) {
if (connp->conn_debug) {
(void) strlog(UDP_MOD_ID, 0, 1,
SL_ERROR|SL_TRACE,
"udp_bind: cannot establish anon "
"MLP for port %d", port);
}
error = -TACCES;
mutex_exit(&connp->conn_lock);
goto late_error;
}
}
connp->conn_mlp_type = mlptype;
}
/*
* We create an initial header template here to make a subsequent
* sendto have a starting point. Since conn_last_dst is zero the
* first sendto will always follow the 'dst changed' code path.
* Note that we defer massaging options and the related checksum
* adjustment until we have a destination address.
*/
error = udp_build_hdr_template(connp, &connp->conn_saddr_v6,
&connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo);
if (error != 0) {
mutex_exit(&connp->conn_lock);
goto late_error;
}
/* Just in case */
connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = 0;
connp->conn_v6lastdst = ipv6_all_zeros;
mutex_exit(&connp->conn_lock);
error = ip_laddr_fanout_insert(connp);
if (error != 0)
goto late_error;
/* Bind succeeded */
return (0);
late_error:
/* We had already picked the port number, and then the bind failed */
mutex_enter(&connp->conn_lock);
udpf = &us->us_bind_fanout[
UDP_BIND_HASH(connp->conn_lport,
us->us_bind_fanout_size)];
mutex_enter(&udpf->uf_lock);
connp->conn_saddr_v6 = ipv6_all_zeros;
connp->conn_bound_addr_v6 = ipv6_all_zeros;
connp->conn_laddr_v6 = ipv6_all_zeros;
if (scopeid != 0) {
connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
connp->conn_incoming_ifindex = connp->conn_bound_if;
}
udp->udp_state = TS_UNBND;
udp_bind_hash_remove(udp, B_TRUE);
connp->conn_lport = 0;
mutex_exit(&udpf->uf_lock);
connp->conn_anon_port = B_FALSE;
connp->conn_mlp_type = mlptSingle;
connp->conn_v6lastdst = ipv6_all_zeros;
/* Restore the header that was built above - different source address */
(void) udp_build_hdr_template(connp, &connp->conn_saddr_v6,
&connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo);
mutex_exit(&connp->conn_lock);
return (error);
}
int
udp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
socklen_t len, cred_t *cr)
{
int error;
conn_t *connp;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
connp = (conn_t *)proto_handle;
if (sa == NULL)
error = udp_do_unbind(connp);
else
error = udp_do_bind(connp, sa, len, cr, B_TRUE);
if (error < 0) {
if (error == -TOUTSTATE)
error = EINVAL;
else
error = proto_tlitosyserr(-error);
}
return (error);
}
static int
udp_implicit_bind(conn_t *connp, cred_t *cr)
{
sin6_t sin6addr;
sin_t *sin;
sin6_t *sin6;
socklen_t len;
int error;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
if (connp->conn_family == AF_INET) {
len = sizeof (struct sockaddr_in);
sin = (sin_t *)&sin6addr;
*sin = sin_null;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = INADDR_ANY;
} else {
ASSERT(connp->conn_family == AF_INET6);
len = sizeof (sin6_t);
sin6 = (sin6_t *)&sin6addr;
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
V6_SET_ZERO(sin6->sin6_addr);
}
error = udp_do_bind(connp, (struct sockaddr *)&sin6addr, len,
cr, B_FALSE);
return ((error < 0) ? proto_tlitosyserr(-error) : error);
}
/*
* This routine removes a port number association from a stream. It
* is called by udp_unbind and udp_tpi_unbind.
*/
static int
udp_do_unbind(conn_t *connp)
{
udp_t *udp = connp->conn_udp;
udp_fanout_t *udpf;
udp_stack_t *us = udp->udp_us;
if (cl_inet_unbind != NULL) {
/*
* Running in cluster mode - register unbind information
*/
if (connp->conn_ipversion == IPV4_VERSION) {
(*cl_inet_unbind)(
connp->conn_netstack->netstack_stackid,
IPPROTO_UDP, AF_INET,
(uint8_t *)(&V4_PART_OF_V6(connp->conn_laddr_v6)),
(in_port_t)connp->conn_lport, NULL);
} else {
(*cl_inet_unbind)(
connp->conn_netstack->netstack_stackid,
IPPROTO_UDP, AF_INET6,
(uint8_t *)&(connp->conn_laddr_v6),
(in_port_t)connp->conn_lport, NULL);
}
}
mutex_enter(&connp->conn_lock);
/* If a bind has not been done, we can't unbind. */
if (udp->udp_state == TS_UNBND) {
mutex_exit(&connp->conn_lock);
return (-TOUTSTATE);
}
udpf = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport,
us->us_bind_fanout_size)];
mutex_enter(&udpf->uf_lock);
udp_bind_hash_remove(udp, B_TRUE);
connp->conn_saddr_v6 = ipv6_all_zeros;
connp->conn_bound_addr_v6 = ipv6_all_zeros;
connp->conn_laddr_v6 = ipv6_all_zeros;
connp->conn_mcbc_bind = B_FALSE;
connp->conn_lport = 0;
/* In case we were also connected */
connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = 0;
mutex_exit(&udpf->uf_lock);
connp->conn_v6lastdst = ipv6_all_zeros;
udp->udp_state = TS_UNBND;
(void) udp_build_hdr_template(connp, &connp->conn_saddr_v6,
&connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo);
mutex_exit(&connp->conn_lock);
ip_unbind(connp);
return (0);
}
/*
* It associates a default destination address with the stream.
*/
static int
udp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
cred_t *cr, pid_t pid)
{
sin6_t *sin6;
sin_t *sin;
in6_addr_t v6dst;
ipaddr_t v4dst;
uint16_t dstport;
uint32_t flowinfo;
udp_fanout_t *udpf;
udp_t *udp, *udp1;
ushort_t ipversion;
udp_stack_t *us;
int error;
conn_t *connp1;
ip_xmit_attr_t *ixa;
uint_t scopeid = 0;
uint_t srcid = 0;
in6_addr_t v6src = connp->conn_saddr_v6;
udp = connp->conn_udp;
us = udp->udp_us;
/*
* Address has been verified by the caller
*/
switch (len) {
default:
/*
* Should never happen
*/
return (EINVAL);
case sizeof (sin_t):
sin = (sin_t *)sa;
v4dst = sin->sin_addr.s_addr;
dstport = sin->sin_port;
IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
ASSERT(connp->conn_ipversion == IPV4_VERSION);
ipversion = IPV4_VERSION;
break;
case sizeof (sin6_t):
sin6 = (sin6_t *)sa;
v6dst = sin6->sin6_addr;
dstport = sin6->sin6_port;
srcid = sin6->__sin6_src_id;
if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&v6src)) {
ip_srcid_find_id(srcid, &v6src, IPCL_ZONEID(connp),
connp->conn_netstack);
}
if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
if (connp->conn_ipv6_v6only)
return (EADDRNOTAVAIL);
/*
* Destination adress is mapped IPv6 address.
* Source bound address should be unspecified or
* IPv6 mapped address as well.
*/
if (!IN6_IS_ADDR_UNSPECIFIED(
&connp->conn_bound_addr_v6) &&
!IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
return (EADDRNOTAVAIL);
}
IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
ipversion = IPV4_VERSION;
flowinfo = 0;
} else {
ipversion = IPV6_VERSION;
flowinfo = sin6->sin6_flowinfo;
if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr))
scopeid = sin6->sin6_scope_id;
}
break;
}
if (dstport == 0)
return (-TBADADDR);
/*
* If there is a different thread using conn_ixa then we get a new
* copy and cut the old one loose from conn_ixa. Otherwise we use
* conn_ixa and prevent any other thread from using/changing it.
* Once connect() is done other threads can use conn_ixa since the
* refcnt will be back at one.
*/
ixa = conn_get_ixa(connp, B_TRUE);
if (ixa == NULL)
return (ENOMEM);
ASSERT(ixa->ixa_refcnt >= 2);
ASSERT(ixa == connp->conn_ixa);
mutex_enter(&connp->conn_lock);
/*
* This udp_t must have bound to a port already before doing a connect.
* Reject if a connect is in progress (we drop conn_lock during
* udp_do_connect).
*/
if (udp->udp_state == TS_UNBND || udp->udp_state == TS_WCON_CREQ) {
mutex_exit(&connp->conn_lock);
(void) strlog(UDP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
"udp_connect: bad state, %u", udp->udp_state);
ixa_refrele(ixa);
return (-TOUTSTATE);
}
ASSERT(connp->conn_lport != 0 && udp->udp_ptpbhn != NULL);
udpf = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport,
us->us_bind_fanout_size)];
mutex_enter(&udpf->uf_lock);
if (udp->udp_state == TS_DATA_XFER) {
/* Already connected - clear out state */
if (connp->conn_mcbc_bind)
connp->conn_saddr_v6 = ipv6_all_zeros;
else
connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = 0;
udp->udp_state = TS_IDLE;
}
connp->conn_fport = dstport;
connp->conn_ipversion = ipversion;
if (ipversion == IPV4_VERSION) {
/*
* Interpret a zero destination to mean loopback.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
if (v4dst == INADDR_ANY) {
v4dst = htonl(INADDR_LOOPBACK);
IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
if (connp->conn_family == AF_INET) {
sin->sin_addr.s_addr = v4dst;
} else {
sin6->sin6_addr = v6dst;
}
}
connp->conn_faddr_v6 = v6dst;
connp->conn_flowinfo = 0;
} else {
ASSERT(connp->conn_ipversion == IPV6_VERSION);
/*
* Interpret a zero destination to mean loopback.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
v6dst = ipv6_loopback;
sin6->sin6_addr = v6dst;
}
connp->conn_faddr_v6 = v6dst;
connp->conn_flowinfo = flowinfo;
}
mutex_exit(&udpf->uf_lock);
ixa->ixa_cred = cr;
ixa->ixa_cpid = pid;
if (is_system_labeled()) {
/* We need to restart with a label based on the cred */
ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
}
if (scopeid != 0) {
ixa->ixa_flags |= IXAF_SCOPEID_SET;
ixa->ixa_scopeid = scopeid;
connp->conn_incoming_ifindex = scopeid;
} else {
ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
connp->conn_incoming_ifindex = connp->conn_bound_if;
}
/*
* conn_connect will drop conn_lock and reacquire it.
* To prevent a send* from messing with this udp_t while the lock
* is dropped we set udp_state and clear conn_v6lastdst.
* That will make all send* fail with EISCONN.
*/
connp->conn_v6lastdst = ipv6_all_zeros;
udp->udp_state = TS_WCON_CREQ;
error = conn_connect(connp, NULL, IPDF_ALLOW_MCBC);
mutex_exit(&connp->conn_lock);
if (error != 0)
goto connect_failed;
/*
* The addresses have been verified. Time to insert in
* the correct fanout list.
*/
error = ipcl_conn_insert(connp);
if (error != 0)
goto connect_failed;
mutex_enter(&connp->conn_lock);
error = udp_build_hdr_template(connp, &connp->conn_saddr_v6,
&connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo);
if (error != 0) {
mutex_exit(&connp->conn_lock);
goto connect_failed;
}
udp->udp_state = TS_DATA_XFER;
/* Record this as the "last" send even though we haven't sent any */
connp->conn_v6lastdst = connp->conn_faddr_v6;
connp->conn_lastipversion = connp->conn_ipversion;
connp->conn_lastdstport = connp->conn_fport;
connp->conn_lastflowinfo = connp->conn_flowinfo;
connp->conn_lastscopeid = scopeid;
connp->conn_lastsrcid = srcid;
/* Also remember a source to use together with lastdst */
connp->conn_v6lastsrc = v6src;
mutex_exit(&connp->conn_lock);
/*
* We've picked a source address above. Now we can
* verify that the src/port/dst/port is unique for all
* connections in TS_DATA_XFER, skipping ourselves.
*/
mutex_enter(&udpf->uf_lock);
for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
if (udp1->udp_state != TS_DATA_XFER)
continue;
if (udp1 == udp)
continue;
connp1 = udp1->udp_connp;
if (connp->conn_lport != connp1->conn_lport ||
connp->conn_ipversion != connp1->conn_ipversion ||
dstport != connp1->conn_fport ||
!IN6_ARE_ADDR_EQUAL(&connp->conn_laddr_v6,
&connp1->conn_laddr_v6) ||
!IN6_ARE_ADDR_EQUAL(&v6dst, &connp1->conn_faddr_v6) ||
!(IPCL_ZONE_MATCH(connp, connp1->conn_zoneid) ||
IPCL_ZONE_MATCH(connp1, connp->conn_zoneid)))
continue;
mutex_exit(&udpf->uf_lock);
error = -TBADADDR;
goto connect_failed;
}
if (cl_inet_connect2 != NULL) {
CL_INET_UDP_CONNECT(connp, B_TRUE, &v6dst, dstport, error);
if (error != 0) {
mutex_exit(&udpf->uf_lock);
error = -TBADADDR;
goto connect_failed;
}
}
mutex_exit(&udpf->uf_lock);
ixa_refrele(ixa);
return (0);
connect_failed:
if (ixa != NULL)
ixa_refrele(ixa);
mutex_enter(&connp->conn_lock);
mutex_enter(&udpf->uf_lock);
udp->udp_state = TS_IDLE;
connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = 0;
/* In case the source address was set above */
if (connp->conn_mcbc_bind)
connp->conn_saddr_v6 = ipv6_all_zeros;
else
connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
mutex_exit(&udpf->uf_lock);
connp->conn_v6lastdst = ipv6_all_zeros;
connp->conn_flowinfo = 0;
(void) udp_build_hdr_template(connp, &connp->conn_saddr_v6,
&connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo);
mutex_exit(&connp->conn_lock);
return (error);
}
static int
udp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
socklen_t len, sock_connid_t *id, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
udp_t *udp = connp->conn_udp;
int error;
boolean_t did_bind = B_FALSE;
pid_t pid = curproc->p_pid;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
if (sa == NULL) {
/*
* Disconnect
* Make sure we are connected
*/
if (udp->udp_state != TS_DATA_XFER)
return (EINVAL);
error = udp_disconnect(connp);
return (error);
}
error = proto_verify_ip_addr(connp->conn_family, sa, len);
if (error != 0)
goto done;
/* do an implicit bind if necessary */
if (udp->udp_state == TS_UNBND) {
error = udp_implicit_bind(connp, cr);
/*
* We could be racing with an actual bind, in which case
* we would see EPROTO. We cross our fingers and try
* to connect.
*/
if (!(error == 0 || error == EPROTO))
goto done;
did_bind = B_TRUE;
}
/*
* set SO_DGRAM_ERRIND
*/
connp->conn_dgram_errind = B_TRUE;
error = udp_do_connect(connp, sa, len, cr, pid);
if (error != 0 && did_bind) {
int unbind_err;
unbind_err = udp_do_unbind(connp);
ASSERT(unbind_err == 0);
}
if (error == 0) {
*id = 0;
(*connp->conn_upcalls->su_connected)
(connp->conn_upper_handle, 0, NULL, -1);
} else if (error < 0) {
error = proto_tlitosyserr(-error);
}
done:
if (error != 0 && udp->udp_state == TS_DATA_XFER) {
/*
* No need to hold locks to set state
* after connect failure socket state is undefined
* We set the state only to imitate old sockfs behavior
*/
udp->udp_state = TS_IDLE;
}
return (error);
}
int
udp_send(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
cred_t *cr)
{
sin6_t *sin6;
sin_t *sin = NULL;
uint_t srcid;
conn_t *connp = (conn_t *)proto_handle;
udp_t *udp = connp->conn_udp;
int error = 0;
udp_stack_t *us = udp->udp_us;
ushort_t ipversion;
pid_t pid = curproc->p_pid;
ip_xmit_attr_t *ixa;
ASSERT(DB_TYPE(mp) == M_DATA);
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
/* do an implicit bind if necessary */
if (udp->udp_state == TS_UNBND) {
error = udp_implicit_bind(connp, cr);
/*
* We could be racing with an actual bind, in which case
* we would see EPROTO. We cross our fingers and try
* to connect.
*/
if (!(error == 0 || error == EPROTO)) {
freemsg(mp);
return (error);
}
}
/* Connected? */
if (msg->msg_name == NULL) {
if (udp->udp_state != TS_DATA_XFER) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (EDESTADDRREQ);
}
if (msg->msg_controllen != 0) {
error = udp_output_ancillary(connp, NULL, NULL, mp,
NULL, msg, cr, pid);
} else {
error = udp_output_connected(connp, mp, cr, pid);
}
if (us->us_sendto_ignerr)
return (0);
else
return (error);
}
if (udp->udp_state == TS_DATA_XFER) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (EISCONN);
}
error = proto_verify_ip_addr(connp->conn_family,
(struct sockaddr *)msg->msg_name, msg->msg_namelen);
if (error != 0) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (error);
}
switch (connp->conn_family) {
case AF_INET6:
sin6 = (sin6_t *)msg->msg_name;
srcid = sin6->__sin6_src_id;
if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
/*
* Destination is a non-IPv4-compatible IPv6 address.
* Send out an IPv6 format packet.
*/
/*
* If the local address is a mapped address return
* an error.
* It would be possible to send an IPv6 packet but the
* response would never make it back to the application
* since it is bound to a mapped address.
*/
if (IN6_IS_ADDR_V4MAPPED(&connp->conn_saddr_v6)) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (EADDRNOTAVAIL);
}
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
sin6->sin6_addr = ipv6_loopback;
ipversion = IPV6_VERSION;
} else {
if (connp->conn_ipv6_v6only) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (EADDRNOTAVAIL);
}
/*
* If the local address is not zero or a mapped address
* return an error. It would be possible to send an
* IPv4 packet but the response would never make it
* back to the application since it is bound to a
* non-mapped address.
*/
if (!IN6_IS_ADDR_V4MAPPED(&connp->conn_saddr_v6) &&
!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_saddr_v6)) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (EADDRNOTAVAIL);
}
if (V4_PART_OF_V6(sin6->sin6_addr) == INADDR_ANY) {
V4_PART_OF_V6(sin6->sin6_addr) =
htonl(INADDR_LOOPBACK);
}
ipversion = IPV4_VERSION;
}
/*
* We have to allocate an ip_xmit_attr_t before we grab
* conn_lock and we need to hold conn_lock once we've check
* conn_same_as_last_v6 to handle concurrent send* calls on a
* socket.
*/
if (msg->msg_controllen == 0) {
ixa = conn_get_ixa(connp, B_FALSE);
if (ixa == NULL) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (ENOMEM);
}
} else {
ixa = NULL;
}
mutex_enter(&connp->conn_lock);
if (udp->udp_delayed_error != 0) {
sin6_t *sin2 = (sin6_t *)&udp->udp_delayed_addr;
error = udp->udp_delayed_error;
udp->udp_delayed_error = 0;
/* Compare IP address, port, and family */
if (sin6->sin6_port == sin2->sin6_port &&
IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr,
&sin2->sin6_addr) &&
sin6->sin6_family == sin2->sin6_family) {
mutex_exit(&connp->conn_lock);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
if (ixa != NULL)
ixa_refrele(ixa);
return (error);
}
}
if (msg->msg_controllen != 0) {
mutex_exit(&connp->conn_lock);
ASSERT(ixa == NULL);
error = udp_output_ancillary(connp, NULL, sin6, mp,
NULL, msg, cr, pid);
} else if (conn_same_as_last_v6(connp, sin6) &&
connp->conn_lastsrcid == srcid &&
ipsec_outbound_policy_current(ixa)) {
/* udp_output_lastdst drops conn_lock */
error = udp_output_lastdst(connp, mp, cr, pid, ixa);
} else {
/* udp_output_newdst drops conn_lock */
error = udp_output_newdst(connp, mp, NULL, sin6,
ipversion, cr, pid, ixa);
}
ASSERT(MUTEX_NOT_HELD(&connp->conn_lock));
if (us->us_sendto_ignerr)
return (0);
else
return (error);
case AF_INET:
sin = (sin_t *)msg->msg_name;
ipversion = IPV4_VERSION;
if (sin->sin_addr.s_addr == INADDR_ANY)
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
/*
* We have to allocate an ip_xmit_attr_t before we grab
* conn_lock and we need to hold conn_lock once we've check
* conn_same_as_last_v6 to handle concurrent send* on a socket.
*/
if (msg->msg_controllen == 0) {
ixa = conn_get_ixa(connp, B_FALSE);
if (ixa == NULL) {
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
return (ENOMEM);
}
} else {
ixa = NULL;
}
mutex_enter(&connp->conn_lock);
if (udp->udp_delayed_error != 0) {
sin_t *sin2 = (sin_t *)&udp->udp_delayed_addr;
error = udp->udp_delayed_error;
udp->udp_delayed_error = 0;
/* Compare IP address and port */
if (sin->sin_port == sin2->sin_port &&
sin->sin_addr.s_addr == sin2->sin_addr.s_addr) {
mutex_exit(&connp->conn_lock);
BUMP_MIB(&us->us_udp_mib, udpOutErrors);
if (ixa != NULL)
ixa_refrele(ixa);
return (error);
}
}
if (msg->msg_controllen != 0) {
mutex_exit(&connp->conn_lock);
ASSERT(ixa == NULL);
error = udp_output_ancillary(connp, sin, NULL, mp,
NULL, msg, cr, pid);
} else if (conn_same_as_last_v4(connp, sin) &&
ipsec_outbound_policy_current(ixa)) {
/* udp_output_lastdst drops conn_lock */
error = udp_output_lastdst(connp, mp, cr, pid, ixa);
} else {
/* udp_output_newdst drops conn_lock */
error = udp_output_newdst(connp, mp, sin, NULL,
ipversion, cr, pid, ixa);
}
ASSERT(MUTEX_NOT_HELD(&connp->conn_lock));
if (us->us_sendto_ignerr)
return (0);
else
return (error);
default:
return (EINVAL);
}
}
int
udp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb)
{
conn_t *connp = (conn_t *)proto_handle;
udp_t *udp;
struct T_capability_ack tca;
struct sockaddr_in6 laddr, faddr;
socklen_t laddrlen, faddrlen;
short opts;
struct stroptions *stropt;
mblk_t *stropt_mp;
int error;
udp = connp->conn_udp;
stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL);
/*
* setup the fallback stream that was allocated
*/
connp->conn_dev = (dev_t)RD(q)->q_ptr;
connp->conn_minor_arena = WR(q)->q_ptr;
RD(q)->q_ptr = WR(q)->q_ptr = connp;
WR(q)->q_qinfo = &udp_winit;
connp->conn_rq = RD(q);
connp->conn_wq = WR(q);
/* Notify stream head about options before sending up data */
stropt_mp->b_datap->db_type = M_SETOPTS;
stropt_mp->b_wptr += sizeof (*stropt);
stropt = (struct stroptions *)stropt_mp->b_rptr;
stropt->so_flags = SO_WROFF | SO_HIWAT;
stropt->so_wroff = connp->conn_wroff;
stropt->so_hiwat = udp->udp_rcv_disply_hiwat;
putnext(RD(q), stropt_mp);
/*
* Free the helper stream
*/
ip_free_helper_stream(connp);
if (!issocket)
udp_use_pure_tpi(udp);
/*
* Collect the information needed to sync with the sonode
*/
udp_do_capability_ack(udp, &tca, TC1_INFO);
laddrlen = faddrlen = sizeof (sin6_t);
(void) udp_getsockname((sock_lower_handle_t)connp,
(struct sockaddr *)&laddr, &laddrlen, CRED());
error = udp_getpeername((sock_lower_handle_t)connp,
(struct sockaddr *)&faddr, &faddrlen, CRED());
if (error != 0)
faddrlen = 0;
opts = 0;
if (connp->conn_dgram_errind)
opts |= SO_DGRAM_ERRIND;
if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE)
opts |= SO_DONTROUTE;
(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
(struct sockaddr *)&laddr, laddrlen,
(struct sockaddr *)&faddr, faddrlen, opts);
mutex_enter(&udp->udp_recv_lock);
/*
* Attempts to send data up during fallback will result in it being
* queued in udp_t. Now we push up any queued packets.
*/
while (udp->udp_fallback_queue_head != NULL) {
mblk_t *mp;
mp = udp->udp_fallback_queue_head;
udp->udp_fallback_queue_head = mp->b_next;
mutex_exit(&udp->udp_recv_lock);
mp->b_next = NULL;
putnext(RD(q), mp);
mutex_enter(&udp->udp_recv_lock);
}
udp->udp_fallback_queue_tail = udp->udp_fallback_queue_head;
/*
* No longer a streams less socket
*/
mutex_enter(&connp->conn_lock);
connp->conn_flags &= ~IPCL_NONSTR;
mutex_exit(&connp->conn_lock);
mutex_exit(&udp->udp_recv_lock);
ASSERT(connp->conn_ref >= 1);
return (0);
}
/* ARGSUSED3 */
int
udp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *sa,
socklen_t *salenp, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
udp_t *udp = connp->conn_udp;
int error;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
mutex_enter(&connp->conn_lock);
if (udp->udp_state != TS_DATA_XFER)
error = ENOTCONN;
else
error = conn_getpeername(connp, sa, salenp);
mutex_exit(&connp->conn_lock);
return (error);
}
/* ARGSUSED3 */
int
udp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *sa,
socklen_t *salenp, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
int error;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
mutex_enter(&connp->conn_lock);
error = conn_getsockname(connp, sa, salenp);
mutex_exit(&connp->conn_lock);
return (error);
}
int
udp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
void *optvalp, socklen_t *optlen, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
int error;
t_uscalar_t max_optbuf_len;
void *optvalp_buf;
int len;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
udp_opt_obj.odb_opt_des_arr,
udp_opt_obj.odb_opt_arr_cnt,
B_FALSE, B_TRUE, cr);
if (error != 0) {
if (error < 0)
error = proto_tlitosyserr(-error);
return (error);
}
optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
len = udp_opt_get(connp, level, option_name, optvalp_buf);
if (len == -1) {
kmem_free(optvalp_buf, max_optbuf_len);
return (EINVAL);
}
/*
* update optlen and copy option value
*/
t_uscalar_t size = MIN(len, *optlen);
bcopy(optvalp_buf, optvalp, size);
bcopy(&size, optlen, sizeof (size));
kmem_free(optvalp_buf, max_optbuf_len);
return (0);
}
int
udp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
const void *optvalp, socklen_t optlen, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
int error;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
error = proto_opt_check(level, option_name, optlen, NULL,
udp_opt_obj.odb_opt_des_arr,
udp_opt_obj.odb_opt_arr_cnt,
B_TRUE, B_FALSE, cr);
if (error != 0) {
if (error < 0)
error = proto_tlitosyserr(-error);
return (error);
}
error = udp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
NULL, cr);
ASSERT(error >= 0);
return (error);
}
void
udp_clr_flowctrl(sock_lower_handle_t proto_handle)
{
conn_t *connp = (conn_t *)proto_handle;
udp_t *udp = connp->conn_udp;
mutex_enter(&udp->udp_recv_lock);
connp->conn_flow_cntrld = B_FALSE;
mutex_exit(&udp->udp_recv_lock);
}
/* ARGSUSED2 */
int
udp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
/* shut down the send side */
if (how != SHUT_RD)
(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
SOCK_OPCTL_SHUT_SEND, 0);
/* shut down the recv side */
if (how != SHUT_WR)
(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
SOCK_OPCTL_SHUT_RECV, 0);
return (0);
}
int
udp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
int mode, int32_t *rvalp, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
int error;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
/*
* If we don't have a helper stream then create one.
* ip_create_helper_stream takes care of locking the conn_t,
* so this check for NULL is just a performance optimization.
*/
if (connp->conn_helper_info == NULL) {
udp_stack_t *us = connp->conn_udp->udp_us;
ASSERT(us->us_ldi_ident != NULL);
/*
* Create a helper stream for non-STREAMS socket.
*/
error = ip_create_helper_stream(connp, us->us_ldi_ident);
if (error != 0) {
ip0dbg(("tcp_ioctl: create of IP helper stream "
"failed %d\n", error));
return (error);
}
}
switch (cmd) {
case ND_SET:
case ND_GET:
case _SIOCSOCKFALLBACK:
case TI_GETPEERNAME:
case TI_GETMYNAME:
ip1dbg(("udp_ioctl: cmd 0x%x on non streams socket",
cmd));
error = EINVAL;
break;
default:
/*
* Pass on to IP using helper stream
*/
error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
cmd, arg, mode, cr, rvalp);
break;
}
return (error);
}
/* ARGSUSED */
int
udp_accept(sock_lower_handle_t lproto_handle,
sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
cred_t *cr)
{
return (EOPNOTSUPP);
}
/* ARGSUSED */
int
udp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
{
return (EOPNOTSUPP);
}
sock_downcalls_t sock_udp_downcalls = {
udp_activate, /* sd_activate */
udp_accept, /* sd_accept */
udp_bind, /* sd_bind */
udp_listen, /* sd_listen */
udp_connect, /* sd_connect */
udp_getpeername, /* sd_getpeername */
udp_getsockname, /* sd_getsockname */
udp_getsockopt, /* sd_getsockopt */
udp_setsockopt, /* sd_setsockopt */
udp_send, /* sd_send */
NULL, /* sd_send_uio */
NULL, /* sd_recv_uio */
NULL, /* sd_poll */
udp_shutdown, /* sd_shutdown */
udp_clr_flowctrl, /* sd_setflowctrl */
udp_ioctl, /* sd_ioctl */
udp_close /* sd_close */
};