udp.c revision 45916cd2fec6e79bca5dee0421bd39e3c2910d1e
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1990 Mentat Inc. */
#pragma ident "%Z%%M% %I% %E% SMI"
const char udp_version[] = "%Z%%M% %I% %E% SMI";
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/dlpi.h>
#include <sys/pattr.h>
#include <sys/stropts.h>
#include <sys/strlog.h>
#include <sys/strsun.h>
#include <sys/time.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/timod.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/strsubr.h>
#include <sys/suntpi.h>
#include <sys/xti_inet.h>
#include <sys/cmn_err.h>
#include <sys/kmem.h>
#include <sys/policy.h>
#include <sys/ucred.h>
#include <sys/zone.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/vtrace.h>
#include <sys/debug.h>
#include <sys/isa_defs.h>
#include <sys/random.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet/udp.h>
#include <net/if.h>
#include <net/route.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip_impl.h>
#include <inet/ip6.h>
#include <inet/ip_ire.h>
#include <inet/ip_if.h>
#include <inet/ip_multi.h>
#include <inet/mi.h>
#include <inet/mib2.h>
#include <inet/nd.h>
#include <inet/optcom.h>
#include <inet/snmpcom.h>
#include <inet/kstatcom.h>
#include <inet/udp_impl.h>
#include <inet/ipclassifier.h>
#include <inet/ipsec_impl.h>
#include <inet/ipp_common.h>
/*
* The ipsec_info.h header file is here since it has the definition for the
* M_CTL message types used by IP to convey information to the ULP. The
* ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
*/
#include <net/pfkeyv2.h>
#include <inet/ipsec_info.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tnet.h>
#include <rpc/pmap_prot.h>
/*
* Synchronization notes:
*
* UDP uses a combination of its internal perimeter, a global lock and
* a set of bind hash locks to protect its data structures. Please see
* the note above udp_mode_assertions for details about the internal
* perimeter.
*
* When a UDP endpoint is bound to a local port, it is inserted into
* a bind hash list. The list consists of an array of udp_fanout_t buckets.
* The size of the array is controlled by the udp_bind_fanout_size variable.
* This variable can be changed in /etc/system if the default value is
* not large enough. Each bind hash bucket is protected by a per bucket
* lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
* structure. An UDP endpoint is removed from the bind hash list only
* when it is being unbound or being closed. The per bucket lock also
* protects a UDP endpoint's state changes.
*
* Plumbing notes:
*
* Both udp and ip are merged, but the streams plumbing is kept unchanged
* in that udp is always pushed atop /dev/ip. This is done to preserve
* backwards compatibility for certain applications which rely on such
* plumbing geometry to do things such as issuing I_POP on the stream
* in order to obtain direct access to /dev/ip, etc.
*
* All UDP processings happen in the /dev/ip instance; the udp module
* instance does not possess any state about the endpoint, and merely
* acts as a dummy module whose presence is to keep the streams plumbing
* appearance unchanged. At open time /dev/ip allocates a conn_t that
* happens to embed a udp_t. This stays dormant until the time udp is
* pushed, which indicates to /dev/ip that it must convert itself from
* an IP to a UDP endpoint.
*
* We only allow for the following plumbing cases:
*
* Normal:
* /dev/ip is first opened and later udp is pushed directly on top.
* This is the default action that happens when a udp socket or
* /dev/udp is opened. The conn_t created by /dev/ip instance is
* now shared and is marked with IPCL_UDP.
*
* SNMP-only:
* udp is pushed on top of a module other than /dev/ip. When this
* happens it will support only SNMP semantics. A new conn_t is
* allocated and marked with IPCL_UDPMOD.
*
* The above cases imply that we don't support any intermediate module to
* reside in between /dev/ip and udp -- in fact, we never supported such
* scenario in the past as the inter-layer communication semantics have
* always been private. Also note that the normal case allows for SNMP
* requests to be processed in addition to the rest of UDP operations.
*
* The normal case plumbing is depicted by the following diagram:
*
* +---------------+---------------+
* | | | udp
* | udp_wq | udp_rq |
* | | UDP_RD |
* | | |
* +---------------+---------------+
* | ^
* v |
* +---------------+---------------+
* | | | /dev/ip
* | ip_wq | ip_rq | conn_t
* | UDP_WR | |
* | | |
* +---------------+---------------+
*
* Messages arriving at udp_wq from above will end up in ip_wq before
* it gets processed, i.e. udp write entry points will advance udp_wq
* and use its q_next value as ip_wq in order to use the conn_t that
* is stored in its q_ptr. Likewise, messages generated by ip to the
* module above udp will appear as if they are originated from udp_rq,
* i.e. putnext() calls to the module above udp is done using the
* udp_rq instead of ip_rq in order to avoid udp_rput() which does
* nothing more than calling putnext().
*
* The above implies the following rule of thumb:
*
* 1. udp_t is obtained from conn_t, which is created by the /dev/ip
* instance and is stored in q_ptr of both ip_wq and ip_rq. There
* is no direct reference to conn_t from either udp_wq or udp_rq.
*
* 2. Write-side entry points of udp can obtain the conn_t via the
* Q_TO_CONN() macro, using the queue value obtain from UDP_WR().
*
* 3. While in /dev/ip context, putnext() to the module above udp can
* be done by supplying the queue value obtained from UDP_RD().
*
*/
static queue_t *UDP_WR(queue_t *);
static queue_t *UDP_RD(queue_t *);
udp_stat_t udp_statistics = {
{ "udp_ip_send", KSTAT_DATA_UINT64 },
{ "udp_ip_ire_send", KSTAT_DATA_UINT64 },
{ "udp_ire_null", KSTAT_DATA_UINT64 },
{ "udp_drain", KSTAT_DATA_UINT64 },
{ "udp_sock_fallback", KSTAT_DATA_UINT64 },
{ "udp_rrw_busy", KSTAT_DATA_UINT64 },
{ "udp_rrw_msgcnt", KSTAT_DATA_UINT64 },
{ "udp_out_sw_cksum", KSTAT_DATA_UINT64 },
{ "udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 },
{ "udp_out_opt", KSTAT_DATA_UINT64 },
{ "udp_out_err_notconn", KSTAT_DATA_UINT64 },
{ "udp_out_err_output", KSTAT_DATA_UINT64 },
{ "udp_out_err_tudr", KSTAT_DATA_UINT64 },
{ "udp_in_pktinfo", KSTAT_DATA_UINT64 },
{ "udp_in_recvdstaddr", KSTAT_DATA_UINT64 },
{ "udp_in_recvopts", KSTAT_DATA_UINT64 },
{ "udp_in_recvif", KSTAT_DATA_UINT64 },
{ "udp_in_recvslla", KSTAT_DATA_UINT64 },
{ "udp_in_recvucred", KSTAT_DATA_UINT64 },
{ "udp_in_recvttl", KSTAT_DATA_UINT64 },
{ "udp_in_recvhopopts", KSTAT_DATA_UINT64 },
{ "udp_in_recvhoplimit", KSTAT_DATA_UINT64 },
{ "udp_in_recvdstopts", KSTAT_DATA_UINT64 },
{ "udp_in_recvrtdstopts", KSTAT_DATA_UINT64 },
{ "udp_in_recvrthdr", KSTAT_DATA_UINT64 },
{ "udp_in_recvpktinfo", KSTAT_DATA_UINT64 },
{ "udp_in_recvtclass", KSTAT_DATA_UINT64 },
{ "udp_in_timestamp", KSTAT_DATA_UINT64 },
#ifdef DEBUG
{ "udp_data_conn", KSTAT_DATA_UINT64 },
{ "udp_data_notconn", KSTAT_DATA_UINT64 },
#endif
};
static kstat_t *udp_ksp;
struct kmem_cache *udp_cache;
/*
* Bind hash list size and hash function. It has to be a power of 2 for
* hashing.
*/
#define UDP_BIND_FANOUT_SIZE 512
#define UDP_BIND_HASH(lport) \
((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1))
/* UDP bind fanout hash structure. */
typedef struct udp_fanout_s {
udp_t *uf_udp;
kmutex_t uf_lock;
#if defined(_LP64) || defined(_I32LPx)
char uf_pad[48];
#else
char uf_pad[56];
#endif
} udp_fanout_t;
uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
/* udp_fanout_t *udp_bind_fanout. */
static udp_fanout_t *udp_bind_fanout;
/*
* This controls the rate some ndd info report functions can be used
* by non-privileged users. It stores the last time such info is
* requested. When those report functions are called again, this
* is checked with the current time and compare with the ndd param
* udp_ndd_get_info_interval.
*/
static clock_t udp_last_ndd_get_info_time;
#define NDD_TOO_QUICK_MSG \
"ndd get info rate too high for non-privileged users, try again " \
"later.\n"
#define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n"
/* Option processing attrs */
typedef struct udpattrs_s {
ip6_pkt_t *udpattr_ipp;
mblk_t *udpattr_mb;
boolean_t udpattr_credset;
} udpattrs_t;
static void udp_addr_req(queue_t *q, mblk_t *mp);
static void udp_bind(queue_t *q, mblk_t *mp);
static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
static int udp_build_hdrs(queue_t *q, udp_t *udp);
static void udp_capability_req(queue_t *q, mblk_t *mp);
static int udp_close(queue_t *q);
static void udp_connect(queue_t *q, mblk_t *mp);
static void udp_disconnect(queue_t *q, mblk_t *mp);
static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
int sys_error);
static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
t_scalar_t tlierr, int unixerr);
static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
cred_t *cr);
static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
char *value, caddr_t cp, cred_t *cr);
static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
char *value, caddr_t cp, cred_t *cr);
static void udp_icmp_error(queue_t *q, mblk_t *mp);
static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
static void udp_info_req(queue_t *q, mblk_t *mp);
static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
t_scalar_t addr_length);
static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
int *errorp, udpattrs_t *udpattrs);
static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
static boolean_t udp_param_register(udpparam_t *udppa, int cnt);
static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr);
static void udp_report_item(mblk_t *mp, udp_t *udp);
static void udp_rput(queue_t *q, mblk_t *mp);
static void udp_rput_other(queue_t *, mblk_t *);
static int udp_rinfop(queue_t *q, infod_t *dp);
static int udp_rrw(queue_t *q, struiod_t *dp);
static void udp_rput_bind_ack(queue_t *q, mblk_t *mp);
static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
cred_t *cr);
static void udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha);
static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
t_scalar_t destlen, t_scalar_t err);
static void udp_unbind(queue_t *q, mblk_t *mp);
static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
boolean_t random);
static void udp_wput(queue_t *q, mblk_t *mp);
static mblk_t *udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst,
uint16_t port, uint_t srcid, int *error);
static mblk_t *udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
int *error);
static void udp_wput_other(queue_t *q, mblk_t *mp);
static void udp_wput_iocdata(queue_t *q, mblk_t *mp);
static void udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr,
socklen_t addrlen);
static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size);
static void udp_kstat_init(void);
static void udp_kstat_fini(void);
static int udp_kstat_update(kstat_t *kp, int rw);
static void udp_input_wrapper(void *arg, mblk_t *mp, void *arg2);
static void udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
static void udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
static void udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2);
static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
uint_t pkt_len);
static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
static void udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t);
static void udp_exit(conn_t *);
static void udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t);
#ifdef DEBUG
static void udp_mode_assertions(udp_t *, int);
#endif /* DEBUG */
major_t UDP6_MAJ;
#define UDP6 "udp6"
#define UDP_RECV_HIWATER (56 * 1024)
#define UDP_RECV_LOWATER 128
#define UDP_XMIT_HIWATER (56 * 1024)
#define UDP_XMIT_LOWATER 1024
static struct module_info udp_info = {
UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
};
static struct qinit udp_rinit = {
(pfi_t)udp_rput, NULL, udp_open, udp_close, NULL,
&udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
};
static struct qinit udp_winit = {
(pfi_t)udp_wput, NULL, NULL, NULL, NULL,
&udp_info, NULL, NULL, NULL, STRUIOT_NONE
};
static struct qinit winit = {
(pfi_t)putnext, NULL, NULL, NULL, NULL,
&udp_info, NULL, NULL, NULL, STRUIOT_NONE
};
/* Support for just SNMP if UDP is not pushed directly over device IP */
struct qinit udp_snmp_rinit = {
(pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL,
&udp_info, NULL, NULL, NULL, STRUIOT_NONE
};
struct qinit udp_snmp_winit = {
(pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL,
&udp_info, NULL, NULL, NULL, STRUIOT_NONE
};
struct streamtab udpinfo = {
&udp_rinit, &winit
};
static sin_t sin_null; /* Zero address for quick clears */
static sin6_t sin6_null; /* Zero address for quick clears */
/* Hint not protected by any lock */
static in_port_t udp_g_next_port_to_try;
/*
* Extra privileged ports. In host byte order.
*/
#define UDP_NUM_EPRIV_PORTS 64
static int udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 };
/* Only modified during _init and _fini thus no locking is needed. */
static IDP udp_g_nd; /* Points to table of UDP ND variables. */
/* MIB-2 stuff for SNMP */
static mib2_udp_t udp_mib; /* SNMP fixed size info */
static kstat_t *udp_mibkp; /* kstat exporting udp_mib data */
#define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
/* Default structure copied into T_INFO_ACK messages */
static struct T_info_ack udp_g_t_info_ack_ipv4 = {
T_INFO_ACK,
UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */
T_INVALID, /* ETSU_size. udp does not support expedited data. */
T_INVALID, /* CDATA_size. udp does not support connect data. */
T_INVALID, /* DDATA_size. udp does not support disconnect data. */
sizeof (sin_t), /* ADDR_size. */
0, /* OPT_size - not initialized here */
UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */
T_CLTS, /* SERV_type. udp supports connection-less. */
TS_UNBND, /* CURRENT_state. This is set from udp_state. */
(XPG4_1|SENDZERO) /* PROVIDER_flag */
};
#define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
static struct T_info_ack udp_g_t_info_ack_ipv6 = {
T_INFO_ACK,
UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */
T_INVALID, /* ETSU_size. udp does not support expedited data. */
T_INVALID, /* CDATA_size. udp does not support connect data. */
T_INVALID, /* DDATA_size. udp does not support disconnect data. */
sizeof (sin6_t), /* ADDR_size. */
0, /* OPT_size - not initialized here */
UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */
T_CLTS, /* SERV_type. udp supports connection-less. */
TS_UNBND, /* CURRENT_state. This is set from udp_state. */
(XPG4_1|SENDZERO) /* PROVIDER_flag */
};
/* largest UDP port number */
#define UDP_MAX_PORT 65535
/*
* Table of ND variables supported by udp. These are loaded into udp_g_nd
* in udp_open.
* All of these are alterable, within the min/max values given, at run time.
*/
/* BEGIN CSTYLED */
udpparam_t udp_param_arr[] = {
/*min max value name */
{ 0L, 256, 32, "udp_wroff_extra" },
{ 1L, 255, 255, "udp_ipv4_ttl" },
{ 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
{ 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" },
{ 0, 1, 1, "udp_do_checksum" },
{ 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" },
{ 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" },
{ UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"},
{ 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
{ UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"},
{ 65536, (1<<30), 2*1024*1024, "udp_max_buf"},
{ 100, 60000, 1000, "udp_ndd_get_info_interval"},
};
/* END CSTYLED */
/*
* The smallest anonymous port in the privileged port range which UDP
* looks for free port. Use in the option UDP_ANONPRIVBIND.
*/
static in_port_t udp_min_anonpriv_port = 512;
/* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
uint32_t udp_random_anon_port = 1;
/*
* Hook functions to enable cluster networking.
* On non-clustered systems these vectors must always be NULL
*/
void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
uint8_t *laddrp, in_port_t lport) = NULL;
void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
uint8_t *laddrp, in_port_t lport) = NULL;
typedef union T_primitives *t_primp_t;
#define UDP_ENQUEUE_MP(udp, mp, proc, tag) { \
ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL); \
ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \
(mp)->b_queue = (queue_t *)((uintptr_t)tag); \
(mp)->b_prev = (mblk_t *)proc; \
if ((udp)->udp_mphead == NULL) \
(udp)->udp_mphead = (mp); \
else \
(udp)->udp_mptail->b_next = (mp); \
(udp)->udp_mptail = (mp); \
(udp)->udp_mpcount++; \
}
#define UDP_READERS_INCREF(udp) { \
ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \
(udp)->udp_reader_count++; \
}
#define UDP_READERS_DECREF(udp) { \
ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \
(udp)->udp_reader_count--; \
if ((udp)->udp_reader_count == 0) \
cv_broadcast(&(udp)->udp_connp->conn_cv); \
}
#define UDP_SQUEUE_DECREF(udp) { \
ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \
(udp)->udp_squeue_count--; \
if ((udp)->udp_squeue_count == 0) \
cv_broadcast(&(udp)->udp_connp->conn_cv); \
}
/*
* Notes on UDP endpoint synchronization:
*
* UDP needs exclusive operation on a per endpoint basis, when executing
* functions that modify the endpoint state. udp_rput_other() deals with
* packets with IP options, and processing these packets end up having
* to update the endpoint's option related state. udp_wput_other() deals
* with control operations from the top, e.g. connect() that needs to
* update the endpoint state. These could be synchronized using locks,
* but the current version uses squeues for this purpose. squeues may
* give performance improvement for certain cases such as connected UDP
* sockets; thus the framework allows for using squeues.
*
* The perimeter routines are described as follows:
*
* udp_enter():
* Enter the UDP endpoint perimeter.
*
* udp_become_writer():
* Become exclusive on the UDP endpoint. Specifies a function
* that will be called exclusively either immediately or later
* when the perimeter is available exclusively.
*
* udp_exit():
* Exit the UDP perimeter.
*
* Entering UDP from the top or from the bottom must be done using
* udp_enter(). No lock must be held while attempting to enter the UDP
* perimeter. When finished, udp_exit() must be called to get out of
* the perimeter.
*
* UDP operates in either MT_HOT mode or in SQUEUE mode. In MT_HOT mode,
* multiple threads may enter a UDP endpoint concurrently. This is used
* for sending and/or receiving normal data. Control operations and other
* special cases call udp_become_writer() to become exclusive on a per
* endpoint basis and this results in transitioning to SQUEUE mode. squeue
* by definition serializes access to the conn_t. When there are no more
* pending messages on the squeue for the UDP connection, the endpoint
* reverts to MT_HOT mode. During the interregnum when not all MT threads
* of an endpoint have finished, messages are queued in the UDP endpoint
* and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode.
*
* These modes have the following analogs:
*
* UDP_MT_HOT/udp_reader_count==0 none
* UDP_MT_HOT/udp_reader_count>0 RW_READ_LOCK
* UDP_MT_QUEUED RW_WRITE_WANTED
* UDP_SQUEUE or UDP_QUEUED_SQUEUE RW_WRITE_LOCKED
*
* Stable modes: UDP_MT_HOT, UDP_SQUEUE
* Transient modes: UDP_MT_QUEUED, UDP_QUEUED_SQUEUE
*
* While in stable modes, UDP keeps track of the number of threads
* operating on the endpoint. The udp_reader_count variable represents
* the number of threads entering the endpoint as readers while it is
* in UDP_MT_HOT mode. Transitioning to UDP_SQUEUE happens when there
* is only a single reader, i.e. when this counter drops to 1. Likewise,
* udp_squeue_count represents the number of threads operating on the
* endpoint's squeue while it is in UDP_SQUEUE mode. The mode transition
* to UDP_MT_HOT happens after the last thread exits the endpoint, i.e.
* when this counter drops to 0.
*
* The default mode is set to UDP_MT_HOT and UDP alternates between
* UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below.
*
* Mode transition:
* ----------------------------------------------------------------
* old mode Event New mode
* ----------------------------------------------------------------
* UDP_MT_HOT Call to udp_become_writer() UDP_SQUEUE
* and udp_reader_count == 1
*
* UDP_MT_HOT Call to udp_become_writer() UDP_MT_QUEUED
* and udp_reader_count > 1
*
* UDP_MT_QUEUED udp_reader_count drops to zero UDP_QUEUED_SQUEUE
*
* UDP_QUEUED_SQUEUE All messages enqueued on the UDP_SQUEUE
* internal UDP queue successfully
* moved to squeue AND udp_squeue_count != 0
*
* UDP_QUEUED_SQUEUE All messages enqueued on the UDP_MT_HOT
* internal UDP queue successfully
* moved to squeue AND udp_squeue_count
* drops to zero
*
* UDP_SQUEUE udp_squeue_count drops to zero UDP_MT_HOT
* ----------------------------------------------------------------
*/
static queue_t *
UDP_WR(queue_t *q)
{
ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL);
ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL);
ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next)));
return (_WR(q)->q_next);
}
static queue_t *
UDP_RD(queue_t *q)
{
ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL);
ASSERT(IPCL_IS_UDP(Q_TO_CONN(q)));
ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL);
return (_RD(q)->q_next);
}
#ifdef DEBUG
#define UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller)
#else
#define UDP_MODE_ASSERTIONS(udp, caller)
#endif
/* Invariants */
#ifdef DEBUG
uint32_t udp_count[4];
/* Context of udp_mode_assertions */
#define UDP_ENTER 1
#define UDP_BECOME_WRITER 2
#define UDP_EXIT 3
static void
udp_mode_assertions(udp_t *udp, int caller)
{
ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock));
switch (udp->udp_mode) {
case UDP_MT_HOT:
/*
* Messages have not yet been enqueued on the internal queue,
* otherwise we would have switched to UDP_MT_QUEUED. Likewise
* by definition, there can't be any messages enqueued on the
* squeue. The UDP could be quiescent, so udp_reader_count
* could be zero at entry.
*/
ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 &&
udp->udp_squeue_count == 0);
ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0);
udp_count[0]++;
break;
case UDP_MT_QUEUED:
/*
* The last MT thread to exit the udp perimeter empties the
* internal queue and then switches the UDP to
* UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED
* mode, it means there must be at least 1 MT thread still in
* the perimeter and at least 1 message on the internal queue.
*/
ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL &&
udp->udp_mpcount != 0 && udp->udp_squeue_count == 0);
udp_count[1]++;
break;
case UDP_QUEUED_SQUEUE:
/*
* The switch has happened from MT to SQUEUE. So there can't
* any MT threads. Messages could still pile up on the internal
* queue until the transition is complete and we move to
* UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count
* since the squeue could drain any time.
*/
ASSERT(udp->udp_reader_count == 0);
udp_count[2]++;
break;
case UDP_SQUEUE:
/*
* The transition is complete. Thre can't be any messages on
* the internal queue. The udp could be quiescent or the squeue
* could drain any time, so we can't assert on nonzero
* udp_squeue_count during entry. Nor can we assert that
* udp_reader_count is zero, since, a reader thread could have
* directly become writer in line by calling udp_become_writer
* without going through the queued states.
*/
ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0);
ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0);
udp_count[3]++;
break;
}
}
#endif
#define _UDP_ENTER(connp, mp, proc, tag) { \
udp_t *_udp = (connp)->conn_udp; \
\
mutex_enter(&(connp)->conn_lock); \
if ((connp)->conn_state_flags & CONN_CLOSING) { \
mutex_exit(&(connp)->conn_lock); \
freemsg(mp); \
} else { \
UDP_MODE_ASSERTIONS(_udp, UDP_ENTER); \
\
switch (_udp->udp_mode) { \
case UDP_MT_HOT: \
/* We can execute as reader right away. */ \
UDP_READERS_INCREF(_udp); \
mutex_exit(&(connp)->conn_lock); \
(*(proc))(connp, mp, (connp)->conn_sqp); \
break; \
\
case UDP_SQUEUE: \
/* \
* We are in squeue mode, send the \
* packet to the squeue \
*/ \
_udp->udp_squeue_count++; \
CONN_INC_REF_LOCKED(connp); \
mutex_exit(&(connp)->conn_lock); \
squeue_enter((connp)->conn_sqp, mp, proc, \
connp, tag); \
break; \
\
case UDP_MT_QUEUED: \
case UDP_QUEUED_SQUEUE: \
/* \
* Some messages may have been enqueued \
* ahead of us. Enqueue the new message \
* at the tail of the internal queue to \
* preserve message ordering. \
*/ \
UDP_ENQUEUE_MP(_udp, mp, proc, tag); \
mutex_exit(&(connp)->conn_lock); \
break; \
} \
} \
}
static void
udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
{
_UDP_ENTER(connp, mp, proc, tag);
}
static void
udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
{
udp_t *udp;
udp = connp->conn_udp;
mutex_enter(&connp->conn_lock);
UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER);
switch (udp->udp_mode) {
case UDP_MT_HOT:
if (udp->udp_reader_count == 1) {
/*
* We are the only MT thread. Switch to squeue mode
* immediately.
*/
udp->udp_mode = UDP_SQUEUE;
udp->udp_squeue_count = 1;
CONN_INC_REF_LOCKED(connp);
mutex_exit(&connp->conn_lock);
squeue_enter(connp->conn_sqp, mp, proc, connp, tag);
return;
}
/* FALLTHRU */
case UDP_MT_QUEUED:
/* Enqueue the packet internally in UDP */
udp->udp_mode = UDP_MT_QUEUED;
UDP_ENQUEUE_MP(udp, mp, proc, tag);
mutex_exit(&connp->conn_lock);
return;
case UDP_SQUEUE:
case UDP_QUEUED_SQUEUE:
/*
* We are already exclusive. i.e. we are already
* writer. Simply call the desired function.
*/
udp->udp_squeue_count++;
mutex_exit(&connp->conn_lock);
(*proc)(connp, mp, connp->conn_sqp);
return;
}
}
/*
* Transition from MT mode to SQUEUE mode, when the last MT thread
* is exiting the UDP perimeter. Move all messages from the internal
* udp queue to the squeue. A better way would be to move all the
* messages in one shot, this needs more support from the squeue framework
*/
static void
udp_switch_to_squeue(udp_t *udp)
{
mblk_t *mp;
mblk_t *mp_next;
sqproc_t proc;
uint8_t tag;
conn_t *connp = udp->udp_connp;
ASSERT(MUTEX_HELD(&connp->conn_lock));
ASSERT(udp->udp_mode == UDP_MT_QUEUED);
while (udp->udp_mphead != NULL) {
mp = udp->udp_mphead;
udp->udp_mphead = NULL;
udp->udp_mptail = NULL;
udp->udp_mpcount = 0;
udp->udp_mode = UDP_QUEUED_SQUEUE;
mutex_exit(&connp->conn_lock);
/*
* It is best not to hold any locks across the calls
* to squeue functions. Since we drop the lock we
* need to go back and check the udp_mphead once again
* after the squeue_fill and hence the while loop at
* the top of this function
*/
for (; mp != NULL; mp = mp_next) {
mp_next = mp->b_next;
proc = (sqproc_t)mp->b_prev;
tag = (uint8_t)((uintptr_t)mp->b_queue);
mp->b_next = NULL;
mp->b_prev = NULL;
mp->b_queue = NULL;
CONN_INC_REF(connp);
udp->udp_squeue_count++;
squeue_fill(connp->conn_sqp, mp, proc, connp,
tag);
}
mutex_enter(&connp->conn_lock);
}
/*
* udp_squeue_count of zero implies that the squeue has drained
* even before we arrived here (i.e. after the squeue_fill above)
*/
udp->udp_mode = (udp->udp_squeue_count != 0) ?
UDP_SQUEUE : UDP_MT_HOT;
}
#define _UDP_EXIT(connp) { \
udp_t *_udp = (connp)->conn_udp; \
\
mutex_enter(&(connp)->conn_lock); \
UDP_MODE_ASSERTIONS(_udp, UDP_EXIT); \
\
switch (_udp->udp_mode) { \
case UDP_MT_HOT: \
UDP_READERS_DECREF(_udp); \
mutex_exit(&(connp)->conn_lock); \
break; \
\
case UDP_SQUEUE: \
UDP_SQUEUE_DECREF(_udp); \
if (_udp->udp_squeue_count == 0) \
_udp->udp_mode = UDP_MT_HOT; \
mutex_exit(&(connp)->conn_lock); \
break; \
\
case UDP_MT_QUEUED: \
/* \
* If this is the last MT thread, we need to \
* switch to squeue mode \
*/ \
UDP_READERS_DECREF(_udp); \
if (_udp->udp_reader_count == 0) \
udp_switch_to_squeue(_udp); \
mutex_exit(&(connp)->conn_lock); \
break; \
\
case UDP_QUEUED_SQUEUE: \
UDP_SQUEUE_DECREF(_udp); \
/* \
* Even if the udp_squeue_count drops to zero, we \
* don't want to change udp_mode to UDP_MT_HOT here. \
* The thread in udp_switch_to_squeue will take care \
* of the transition to UDP_MT_HOT, after emptying \
* any more new messages that have been enqueued in \
* udp_mphead. \
*/ \
mutex_exit(&(connp)->conn_lock); \
break; \
} \
}
static void
udp_exit(conn_t *connp)
{
_UDP_EXIT(connp);
}
/*
* Return the next anonymous port in the privileged port range for
* bind checking.
*
* Trusted Extension (TX) notes: TX allows administrator to mark or
* reserve ports as Multilevel ports (MLP). MLP has special function
* on TX systems. Once a port is made MLP, it's not available as
* ordinary port. This creates "holes" in the port name space. It
* may be necessary to skip the "holes" find a suitable anon port.
*/
static in_port_t
udp_get_next_priv_port(udp_t *udp)
{
static in_port_t next_priv_port = IPPORT_RESERVED - 1;
in_port_t nextport;
boolean_t restart = B_FALSE;
retry:
if (next_priv_port < udp_min_anonpriv_port ||
next_priv_port >= IPPORT_RESERVED) {
next_priv_port = IPPORT_RESERVED - 1;
if (restart)
return (0);
restart = B_TRUE;
}
if (is_system_labeled() &&
(nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
next_priv_port = nextport;
goto retry;
}
return (next_priv_port--);
}
/* UDP bind hash report triggered via the Named Dispatch mechanism. */
/* ARGSUSED */
static int
udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
udp_fanout_t *udpf;
int i;
zoneid_t zoneid;
conn_t *connp;
udp_t *udp;
connp = Q_TO_CONN(q);
udp = connp->conn_udp;
/* Refer to comments in udp_status_report(). */
if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
drv_usectohz(udp_ndd_get_info_interval * 1000)) {
(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
return (0);
}
}
if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
/* The following may work even if we cannot get a large buf. */
(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
return (0);
}
(void) mi_mpprintf(mp,
"UDP " MI_COL_HDRPAD_STR
/* 12345678[89ABCDEF] */
" zone lport src addr dest addr port state");
/* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
zoneid = connp->conn_zoneid;
for (i = 0; i < udp_bind_fanout_size; i++) {
udpf = &udp_bind_fanout[i];
mutex_enter(&udpf->uf_lock);
/* Print the hash index. */
udp = udpf->uf_udp;
if (zoneid != GLOBAL_ZONEID) {
/* skip to first entry in this zone; might be none */
while (udp != NULL &&
udp->udp_connp->conn_zoneid != zoneid)
udp = udp->udp_bind_hash;
}
if (udp != NULL) {
uint_t print_len, buf_len;
buf_len = mp->b_cont->b_datap->db_lim -
mp->b_cont->b_wptr;
print_len = snprintf((char *)mp->b_cont->b_wptr,
buf_len, "%d\n", i);
if (print_len < buf_len) {
mp->b_cont->b_wptr += print_len;
} else {
mp->b_cont->b_wptr += buf_len;
}
for (; udp != NULL; udp = udp->udp_bind_hash) {
if (zoneid == GLOBAL_ZONEID ||
zoneid == udp->udp_connp->conn_zoneid)
udp_report_item(mp->b_cont, udp);
}
}
mutex_exit(&udpf->uf_lock);
}
udp_last_ndd_get_info_time = ddi_get_lbolt();
return (0);
}
/*
* Hash list removal routine for udp_t structures.
*/
static void
udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
{
udp_t *udpnext;
kmutex_t *lockp;
if (udp->udp_ptpbhn == NULL)
return;
/*
* Extract the lock pointer in case there are concurrent
* hash_remove's for this instance.
*/
ASSERT(udp->udp_port != 0);
if (!caller_holds_lock) {
lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock;
ASSERT(lockp != NULL);
mutex_enter(lockp);
}
if (udp->udp_ptpbhn != NULL) {
udpnext = udp->udp_bind_hash;
if (udpnext != NULL) {
udpnext->udp_ptpbhn = udp->udp_ptpbhn;
udp->udp_bind_hash = NULL;
}
*udp->udp_ptpbhn = udpnext;
udp->udp_ptpbhn = NULL;
}
if (!caller_holds_lock) {
mutex_exit(lockp);
}
}
static void
udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
{
udp_t **udpp;
udp_t *udpnext;
ASSERT(MUTEX_HELD(&uf->uf_lock));
if (udp->udp_ptpbhn != NULL) {
udp_bind_hash_remove(udp, B_TRUE);
}
udpp = &uf->uf_udp;
udpnext = udpp[0];
if (udpnext != NULL) {
/*
* If the new udp bound to the INADDR_ANY address
* and the first one in the list is not bound to
* INADDR_ANY we skip all entries until we find the
* first one bound to INADDR_ANY.
* This makes sure that applications binding to a
* specific address get preference over those binding to
* INADDR_ANY.
*/
if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
!V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
while ((udpnext = udpp[0]) != NULL &&
!V6_OR_V4_INADDR_ANY(
udpnext->udp_bound_v6src)) {
udpp = &(udpnext->udp_bind_hash);
}
if (udpnext != NULL)
udpnext->udp_ptpbhn = &udp->udp_bind_hash;
} else {
udpnext->udp_ptpbhn = &udp->udp_bind_hash;
}
}
udp->udp_bind_hash = udpnext;
udp->udp_ptpbhn = udpp;
udpp[0] = udp;
}
/*
* This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
* passed to udp_wput.
* It associates a port number and local address with the stream.
* The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
* protocol type (IPPROTO_UDP) placed in the message following the address.
* A T_BIND_ACK message is passed upstream when ip acknowledges the request.
* (Called as writer.)
*
* Note that UDP over IPv4 and IPv6 sockets can use the same port number
* without setting SO_REUSEADDR. This is needed so that they
* can be viewed as two independent transport protocols.
* However, anonymouns ports are allocated from the same range to avoid
* duplicating the udp_g_next_port_to_try.
*/
static void
udp_bind(queue_t *q, mblk_t *mp)
{
sin_t *sin;
sin6_t *sin6;
mblk_t *mp1;
in_port_t port; /* Host byte order */
in_port_t requested_port; /* Host byte order */
struct T_bind_req *tbr;
int count;
in6_addr_t v6src;
boolean_t bind_to_req_port_only;
int loopmax;
udp_fanout_t *udpf;
in_port_t lport; /* Network byte order */
zoneid_t zoneid;
conn_t *connp;
udp_t *udp;
boolean_t is_inaddr_any;
mlp_type_t addrtype, mlptype;
connp = Q_TO_CONN(q);
udp = connp->conn_udp;
if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad req, len %u",
(uint_t)(mp->b_wptr - mp->b_rptr));
udp_err_ack(q, mp, TPROTO, 0);
return;
}
if (udp->udp_state != TS_UNBND) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad state, %u", udp->udp_state);
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
/*
* Reallocate the message to make sure we have enough room for an
* address and the protocol type.
*/
mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
if (!mp1) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
mp = mp1;
tbr = (struct T_bind_req *)mp->b_rptr;
switch (tbr->ADDR_length) {
case 0: /* Request for a generic port */
tbr->ADDR_offset = sizeof (struct T_bind_req);
if (udp->udp_family == AF_INET) {
tbr->ADDR_length = sizeof (sin_t);
sin = (sin_t *)&tbr[1];
*sin = sin_null;
sin->sin_family = AF_INET;
mp->b_wptr = (uchar_t *)&sin[1];
} else {
ASSERT(udp->udp_family == AF_INET6);
tbr->ADDR_length = sizeof (sin6_t);
sin6 = (sin6_t *)&tbr[1];
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
mp->b_wptr = (uchar_t *)&sin6[1];
}
port = 0;
break;
case sizeof (sin_t): /* Complete IPv4 address */
sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
sizeof (sin_t));
if (sin == NULL || !OK_32PTR((char *)sin)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (udp->udp_family != AF_INET ||
sin->sin_family != AF_INET) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
port = ntohs(sin->sin_port);
break;
case sizeof (sin6_t): /* complete IPv6 address */
sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
sizeof (sin6_t));
if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (udp->udp_family != AF_INET6 ||
sin6->sin6_family != AF_INET6) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
port = ntohs(sin6->sin6_port);
break;
default: /* Invalid request */
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
udp_err_ack(q, mp, TBADADDR, 0);
return;
}
requested_port = port;
if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
bind_to_req_port_only = B_FALSE;
else /* T_BIND_REQ and requested_port != 0 */
bind_to_req_port_only = B_TRUE;
if (requested_port == 0) {
/*
* If the application passed in zero for the port number, it
* doesn't care which port number we bind to. Get one in the
* valid range.
*/
if (udp->udp_anon_priv_bind) {
port = udp_get_next_priv_port(udp);
} else {
port = udp_update_next_port(udp,
udp_g_next_port_to_try, B_TRUE);
}
} else {
/*
* If the port is in the well-known privileged range,
* make sure the caller was privileged.
*/
int i;
boolean_t priv = B_FALSE;
if (port < udp_smallest_nonpriv_port) {
priv = B_TRUE;
} else {
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (port == udp_g_epriv_ports[i]) {
priv = B_TRUE;
break;
}
}
}
if (priv) {
cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
if (secpolicy_net_privaddr(cr, port) != 0) {
udp_err_ack(q, mp, TACCES, 0);
return;
}
}
}
if (port == 0) {
udp_err_ack(q, mp, TNOADDR, 0);
return;
}
/*
* Copy the source address into our udp structure. This address
* may still be zero; if so, IP will fill in the correct address
* each time an outbound packet is passed to it.
*/
if (udp->udp_family == AF_INET) {
ASSERT(sin != NULL);
ASSERT(udp->udp_ipversion == IPV4_VERSION);
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
udp->udp_ip_snd_options_len;
IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
} else {
ASSERT(sin6 != NULL);
v6src = sin6->sin6_addr;
if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
udp->udp_ipversion = IPV4_VERSION;
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
UDPH_SIZE + udp->udp_ip_snd_options_len;
} else {
udp->udp_ipversion = IPV6_VERSION;
udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
}
}
/*
* If udp_reuseaddr is not set, then we have to make sure that
* the IP address and port number the application requested
* (or we selected for the application) is not being used by
* another stream. If another stream is already using the
* requested IP address and port, the behavior depends on
* "bind_to_req_port_only". If set the bind fails; otherwise we
* search for any an unused port to bind to the the stream.
*
* As per the BSD semantics, as modified by the Deering multicast
* changes, if udp_reuseaddr is set, then we allow multiple binds
* to the same port independent of the local IP address.
*
* This is slightly different than in SunOS 4.X which did not
* support IP multicast. Note that the change implemented by the
* Deering multicast code effects all binds - not only binding
* to IP multicast addresses.
*
* Note that when binding to port zero we ignore SO_REUSEADDR in
* order to guarantee a unique port.
*/
count = 0;
if (udp->udp_anon_priv_bind) {
/* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */
loopmax = IPPORT_RESERVED - udp_min_anonpriv_port;
} else {
loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1;
}
is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
zoneid = connp->conn_zoneid;
for (;;) {
udp_t *udp1;
boolean_t found_exclbind = B_FALSE;
/*
* Walk through the list of udp streams bound to
* requested port with the same IP address.
*/
lport = htons(port);
udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)];
mutex_enter(&udpf->uf_lock);
for (udp1 = udpf->uf_udp; udp1 != NULL;
udp1 = udp1->udp_bind_hash) {
if (lport != udp1->udp_port)
continue;
/*
* On a labeled system, we must treat bindings to ports
* on shared IP addresses by sockets with MAC exemption
* privilege as being in all zones, as there's
* otherwise no way to identify the right receiver.
*/
if (zoneid != udp1->udp_connp->conn_zoneid &&
!udp->udp_mac_exempt && !udp1->udp_mac_exempt)
continue;
/*
* If UDP_EXCLBIND is set for either the bound or
* binding endpoint, the semantics of bind
* is changed according to the following chart.
*
* spec = specified address (v4 or v6)
* unspec = unspecified address (v4 or v6)
* A = specified addresses are different for endpoints
*
* bound bind to allowed?
* -------------------------------------
* unspec unspec no
* unspec spec no
* spec unspec no
* spec spec yes if A
*
* For labeled systems, SO_MAC_EXEMPT behaves the same
* as UDP_EXCLBIND, except that zoneid is ignored.
*/
if (udp1->udp_exclbind || udp->udp_exclbind ||
udp1->udp_mac_exempt || udp->udp_mac_exempt) {
if (V6_OR_V4_INADDR_ANY(
udp1->udp_bound_v6src) ||
is_inaddr_any ||
IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
&v6src)) {
found_exclbind = B_TRUE;
break;
}
continue;
}
/*
* Check ipversion to allow IPv4 and IPv6 sockets to
* have disjoint port number spaces.
*/
if (udp->udp_ipversion != udp1->udp_ipversion)
continue;
/*
* No difference depending on SO_REUSEADDR.
*
* If existing port is bound to a
* non-wildcard IP address and
* the requesting stream is bound to
* a distinct different IP addresses
* (non-wildcard, also), keep going.
*/
if (!is_inaddr_any &&
!V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
!IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
&v6src)) {
continue;
}
break;
}
if (!found_exclbind &&
(udp->udp_reuseaddr && requested_port != 0)) {
break;
}
if (udp1 == NULL) {
/*
* No other stream has this IP address
* and port number. We can use it.
*/
break;
}
mutex_exit(&udpf->uf_lock);
if (bind_to_req_port_only) {
/*
* We get here only when requested port
* is bound (and only first of the for()
* loop iteration).
*
* The semantics of this bind request
* require it to fail so we return from
* the routine (and exit the loop).
*
*/
udp_err_ack(q, mp, TADDRBUSY, 0);
return;
}
if (udp->udp_anon_priv_bind) {
port = udp_get_next_priv_port(udp);
} else {
if ((count == 0) && (requested_port != 0)) {
/*
* If the application wants us to find
* a port, get one to start with. Set
* requested_port to 0, so that we will
* update udp_g_next_port_to_try below.
*/
port = udp_update_next_port(udp,
udp_g_next_port_to_try, B_TRUE);
requested_port = 0;
} else {
port = udp_update_next_port(udp, port + 1,
B_FALSE);
}
}
if (port == 0 || ++count >= loopmax) {
/*
* We've tried every possible port number and
* there are none available, so send an error
* to the user.
*/
udp_err_ack(q, mp, TNOADDR, 0);
return;
}
}
/*
* Copy the source address into our udp structure. This address
* may still be zero; if so, ip will fill in the correct address
* each time an outbound packet is passed to it.
* If we are binding to a broadcast or multicast address udp_rput
* will clear the source address when it receives the T_BIND_ACK.
*/
udp->udp_v6src = udp->udp_bound_v6src = v6src;
udp->udp_port = lport;
/*
* Now reset the the next anonymous port if the application requested
* an anonymous port, or we handed out the next anonymous port.
*/
if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
udp_g_next_port_to_try = port + 1;
}
/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
if (udp->udp_family == AF_INET) {
sin->sin_port = udp->udp_port;
} else {
int error;
sin6->sin6_port = udp->udp_port;
/* Rebuild the header template */
error = udp_build_hdrs(q, udp);
if (error != 0) {
mutex_exit(&udpf->uf_lock);
udp_err_ack(q, mp, TSYSERR, error);
return;
}
}
udp->udp_state = TS_IDLE;
udp_bind_hash_insert(udpf, udp);
mutex_exit(&udpf->uf_lock);
if (cl_inet_bind) {
/*
* Running in cluster mode - register bind information
*/
if (udp->udp_ipversion == IPV4_VERSION) {
(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
(uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
(in_port_t)udp->udp_port);
} else {
(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
(uint8_t *)&(udp->udp_v6src),
(in_port_t)udp->udp_port);
}
}
connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
if (is_system_labeled() && (!connp->conn_anon_port ||
connp->conn_anon_mlp)) {
uint16_t mlpport;
cred_t *cr = connp->conn_cred;
zone_t *zone;
connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
mlptSingle;
addrtype = tsol_mlp_addr_type(zoneid, IPV6_VERSION, &v6src);
if (addrtype == mlptSingle) {
udp_err_ack(q, mp, TNOADDR, 0);
connp->conn_anon_port = B_FALSE;
connp->conn_mlp_type = mlptSingle;
return;
}
mlpport = connp->conn_anon_port ? PMAPPORT : port;
zone = crgetzone(cr);
mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
addrtype);
if (mlptype != mlptSingle &&
(connp->conn_mlp_type == mlptSingle ||
secpolicy_net_bindmlp(cr) != 0)) {
if (udp->udp_debug) {
(void) strlog(UDP_MOD_ID, 0, 1,
SL_ERROR|SL_TRACE,
"udp_bind: no priv for multilevel port %d",
mlpport);
}
udp_err_ack(q, mp, TACCES, 0);
connp->conn_anon_port = B_FALSE;
connp->conn_mlp_type = mlptSingle;
return;
}
/*
* If we're specifically binding a shared IP address and the
* port is MLP on shared addresses, then check to see if this
* zone actually owns the MLP. Reject if not.
*/
if (mlptype == mlptShared && addrtype == mlptShared) {
zoneid_t mlpzone;
mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
htons(mlpport));
if (connp->conn_zoneid != mlpzone) {
if (udp->udp_debug) {
(void) strlog(UDP_MOD_ID, 0, 1,
SL_ERROR|SL_TRACE,
"udp_bind: attempt to bind port "
"%d on shared addr in zone %d "
"(should be %d)",
mlpport, connp->conn_zoneid,
mlpzone);
}
udp_err_ack(q, mp, TACCES, 0);
connp->conn_anon_port = B_FALSE;
connp->conn_mlp_type = mlptSingle;
return;
}
}
if (connp->conn_anon_port) {
int error;
error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
port, B_TRUE);
if (error != 0) {
if (udp->udp_debug) {
(void) strlog(UDP_MOD_ID, 0, 1,
SL_ERROR|SL_TRACE,
"udp_bind: cannot establish anon "
"MLP for port %d", port);
}
udp_err_ack(q, mp, TACCES, 0);
connp->conn_anon_port = B_FALSE;
connp->conn_mlp_type = mlptSingle;
return;
}
}
connp->conn_mlp_type = mlptype;
}
/* Pass the protocol number in the message following the address. */
*mp->b_wptr++ = IPPROTO_UDP;
if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
/*
* Append a request for an IRE if udp_v6src not
* zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
*/
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
}
if (udp->udp_family == AF_INET6)
mp = ip_bind_v6(q, mp, connp, NULL);
else
mp = ip_bind_v4(q, mp, connp);
if (mp != NULL)
udp_rput_other(_RD(q), mp);
else
CONN_INC_REF(connp);
}
void
udp_resume_bind(conn_t *connp, mblk_t *mp)
{
udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY);
}
/*
* This is called from ip_wput_nondata to resume a deferred UDP bind.
*/
/* ARGSUSED */
static void
udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2)
{
conn_t *connp = arg;
ASSERT(connp != NULL && IPCL_IS_UDP(connp));
udp_rput_other(connp->conn_rq, mp);
CONN_OPER_PENDING_DONE(connp);
udp_exit(connp);
}
/*
* This routine handles each T_CONN_REQ message passed to udp. It
* associates a default destination address with the stream.
*
* This routine sends down a T_BIND_REQ to IP with the following mblks:
* T_BIND_REQ - specifying local and remote address/port
* IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src
* T_OK_ACK - for the T_CONN_REQ
* T_CONN_CON - to keep the TPI user happy
*
* The connect completes in udp_rput.
* When a T_BIND_ACK is received information is extracted from the IRE
* and the two appended messages are sent to the TPI user.
* Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
* it to an error ack for the appropriate primitive.
*/
static void
udp_connect(queue_t *q, mblk_t *mp)
{
sin6_t *sin6;
sin_t *sin;
struct T_conn_req *tcr;
in6_addr_t v6dst;
ipaddr_t v4dst;
uint16_t dstport;
uint32_t flowinfo;
mblk_t *mp1, *mp2;
udp_fanout_t *udpf;
udp_t *udp, *udp1;
udp = Q_TO_UDP(q);
tcr = (struct T_conn_req *)mp->b_rptr;
/* A bit of sanity checking */
if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
udp_err_ack(q, mp, TPROTO, 0);
return;
}
/*
* This UDP must have bound to a port already before doing
* a connect.
*/
if (udp->udp_state == TS_UNBND) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_connect: bad state, %u", udp->udp_state);
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
if (udp->udp_state == TS_DATA_XFER) {
/* Already connected - clear out state */
mutex_enter(&udpf->uf_lock);
udp->udp_v6src = udp->udp_bound_v6src;
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
}
if (tcr->OPT_length != 0) {
udp_err_ack(q, mp, TBADOPT, 0);
return;
}
/*
* Determine packet type based on type of address passed in
* the request should contain an IPv4 or IPv6 address.
* Make sure that address family matches the type of
* family of the the address passed down
*/
switch (tcr->DEST_length) {
default:
udp_err_ack(q, mp, TBADADDR, 0);
return;
case sizeof (sin_t):
sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
sizeof (sin_t));
if (sin == NULL || !OK_32PTR((char *)sin)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (udp->udp_family != AF_INET ||
sin->sin_family != AF_INET) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
v4dst = sin->sin_addr.s_addr;
dstport = sin->sin_port;
IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
ASSERT(udp->udp_ipversion == IPV4_VERSION);
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
udp->udp_ip_snd_options_len;
break;
case sizeof (sin6_t):
sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
sizeof (sin6_t));
if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (udp->udp_family != AF_INET6 ||
sin6->sin6_family != AF_INET6) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
v6dst = sin6->sin6_addr;
if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
udp->udp_ipversion = IPV4_VERSION;
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
UDPH_SIZE + udp->udp_ip_snd_options_len;
flowinfo = 0;
} else {
udp->udp_ipversion = IPV6_VERSION;
udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
flowinfo = sin6->sin6_flowinfo;
}
dstport = sin6->sin6_port;
break;
}
if (dstport == 0) {
udp_err_ack(q, mp, TBADADDR, 0);
return;
}
/*
* Create a default IP header with no IP options.
*/
udp->udp_dstport = dstport;
if (udp->udp_ipversion == IPV4_VERSION) {
/*
* Interpret a zero destination to mean loopback.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
if (v4dst == INADDR_ANY) {
v4dst = htonl(INADDR_LOOPBACK);
IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
if (udp->udp_family == AF_INET) {
sin->sin_addr.s_addr = v4dst;
} else {
sin6->sin6_addr = v6dst;
}
}
udp->udp_v6dst = v6dst;
udp->udp_flowinfo = 0;
/*
* If the destination address is multicast and
* an outgoing multicast interface has been set,
* use the address of that interface as our
* source address if no source address has been set.
*/
if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
CLASSD(v4dst) &&
udp->udp_multicast_if_addr != INADDR_ANY) {
IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
&udp->udp_v6src);
}
} else {
ASSERT(udp->udp_ipversion == IPV6_VERSION);
/*
* Interpret a zero destination to mean loopback.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
v6dst = ipv6_loopback;
sin6->sin6_addr = v6dst;
}
udp->udp_v6dst = v6dst;
udp->udp_flowinfo = flowinfo;
/*
* If the destination address is multicast and
* an outgoing multicast interface has been set,
* then the ip bind logic will pick the correct source
* address (i.e. matching the outgoing multicast interface).
*/
}
/*
* Verify that the src/port/dst/port is unique for all
* connections in TS_DATA_XFER
*/
mutex_enter(&udpf->uf_lock);
for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
if (udp1->udp_state != TS_DATA_XFER)
continue;
if (udp->udp_port != udp1->udp_port ||
udp->udp_ipversion != udp1->udp_ipversion ||
dstport != udp1->udp_dstport ||
!IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
!IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst))
continue;
mutex_exit(&udpf->uf_lock);
udp_err_ack(q, mp, TBADADDR, 0);
return;
}
udp->udp_state = TS_DATA_XFER;
mutex_exit(&udpf->uf_lock);
/*
* Send down bind to IP to verify that there is a route
* and to determine the source address.
* This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
*/
if (udp->udp_family == AF_INET)
mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
else
mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
if (mp1 == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
bind_failed:
mutex_enter(&udpf->uf_lock);
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
return;
}
/*
* We also have to send a connection confirmation to
* keep TLI happy. Prepare it for udp_rput.
*/
if (udp->udp_family == AF_INET)
mp2 = mi_tpi_conn_con(NULL, (char *)sin,
sizeof (*sin), NULL, 0);
else
mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
sizeof (*sin6), NULL, 0);
if (mp2 == NULL) {
freemsg(mp1);
udp_err_ack(q, mp, TSYSERR, ENOMEM);
goto bind_failed;
}
mp = mi_tpi_ok_ack_alloc(mp);
if (mp == NULL) {
/* Unable to reuse the T_CONN_REQ for the ack. */
freemsg(mp2);
udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
goto bind_failed;
}
/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
linkb(mp1, mp);
linkb(mp1, mp2);
mblk_setcred(mp1, udp->udp_connp->conn_cred);
if (udp->udp_family == AF_INET)
mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
else
mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
if (mp1 != NULL)
udp_rput_other(_RD(q), mp1);
else
CONN_INC_REF(udp->udp_connp);
}
static int
udp_close(queue_t *q)
{
conn_t *connp = Q_TO_CONN(UDP_WR(q));
udp_t *udp;
queue_t *ip_rq = RD(UDP_WR(q));
ASSERT(connp != NULL && IPCL_IS_UDP(connp));
udp = connp->conn_udp;
ip_quiesce_conn(connp);
/*
* Disable read-side synchronous stream
* interface and drain any queued data.
*/
udp_rcv_drain(q, udp, B_TRUE);
ASSERT(!udp->udp_direct_sockfs);
qprocsoff(q);
/* restore IP module's high and low water marks to default values */
ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat;
WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat;
WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat;
ASSERT(udp->udp_rcv_cnt == 0);
ASSERT(udp->udp_rcv_msgcnt == 0);
ASSERT(udp->udp_rcv_list_head == NULL);
ASSERT(udp->udp_rcv_list_tail == NULL);
/* connp is now single threaded. */
udp_close_free(connp);
/*
* Restore connp as an IP endpoint. We don't need
* any locks since we are now single threaded
*/
connp->conn_flags &= ~IPCL_UDP;
connp->conn_state_flags &=
~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED);
connp->conn_ulp_labeled = B_FALSE;
return (0);
}
/*
* Called in the close path from IP (ip_quiesce_conn) to quiesce the conn
*/
void
udp_quiesce_conn(conn_t *connp)
{
udp_t *udp = connp->conn_udp;
if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
/*
* Running in cluster mode - register unbind information
*/
if (udp->udp_ipversion == IPV4_VERSION) {
(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
(uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
(in_port_t)udp->udp_port);
} else {
(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
(uint8_t *)(&(udp->udp_v6src)),
(in_port_t)udp->udp_port);
}
}
udp_bind_hash_remove(udp, B_FALSE);
mutex_enter(&connp->conn_lock);
while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 ||
udp->udp_mode != UDP_MT_HOT) {
cv_wait(&connp->conn_cv, &connp->conn_lock);
}
mutex_exit(&connp->conn_lock);
}
void
udp_close_free(conn_t *connp)
{
udp_t *udp = connp->conn_udp;
/* If there are any options associated with the stream, free them. */
if (udp->udp_ip_snd_options) {
mi_free((char *)udp->udp_ip_snd_options);
udp->udp_ip_snd_options = NULL;
}
if (udp->udp_ip_rcv_options) {
mi_free((char *)udp->udp_ip_rcv_options);
udp->udp_ip_rcv_options = NULL;
}
/* Free memory associated with sticky options */
if (udp->udp_sticky_hdrs_len != 0) {
kmem_free(udp->udp_sticky_hdrs,
udp->udp_sticky_hdrs_len);
udp->udp_sticky_hdrs = NULL;
udp->udp_sticky_hdrs_len = 0;
}
ip6_pkt_free(&udp->udp_sticky_ipp);
udp->udp_connp = NULL;
connp->conn_udp = NULL;
kmem_cache_free(udp_cache, udp);
}
/*
* This routine handles each T_DISCON_REQ message passed to udp
* as an indicating that UDP is no longer connected. This results
* in sending a T_BIND_REQ to IP to restore the binding to just
* the local address/port.
*
* This routine sends down a T_BIND_REQ to IP with the following mblks:
* T_BIND_REQ - specifying just the local address/port
* T_OK_ACK - for the T_DISCON_REQ
*
* The disconnect completes in udp_rput.
* When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
* Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
* it to an error ack for the appropriate primitive.
*/
static void
udp_disconnect(queue_t *q, mblk_t *mp)
{
udp_t *udp = Q_TO_UDP(q);
mblk_t *mp1;
udp_fanout_t *udpf;
if (udp->udp_state != TS_DATA_XFER) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_disconnect: bad state, %u", udp->udp_state);
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
mutex_enter(&udpf->uf_lock);
udp->udp_v6src = udp->udp_bound_v6src;
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
/*
* Send down bind to IP to remove the full binding and revert
* to the local address binding.
*/
if (udp->udp_family == AF_INET)
mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
else
mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
if (mp1 == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
mp = mi_tpi_ok_ack_alloc(mp);
if (mp == NULL) {
/* Unable to reuse the T_DISCON_REQ for the ack. */
udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
return;
}
if (udp->udp_family == AF_INET6) {
int error;
/* Rebuild the header template */
error = udp_build_hdrs(q, udp);
if (error != 0) {
udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
freemsg(mp1);
return;
}
}
mutex_enter(&udpf->uf_lock);
udp->udp_discon_pending = 1;
mutex_exit(&udpf->uf_lock);
/* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */
linkb(mp1, mp);
if (udp->udp_family == AF_INET6)
mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
else
mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
if (mp1 != NULL)
udp_rput_other(_RD(q), mp1);
else
CONN_INC_REF(udp->udp_connp);
}
/* This routine creates a T_ERROR_ACK message and passes it upstream. */
static void
udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
{
if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
putnext(UDP_RD(q), mp);
}
/* Shorthand to generate and send TPI error acks to our client */
static void
udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
int sys_error)
{
struct T_error_ack *teackp;
if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
M_PCPROTO, T_ERROR_ACK)) != NULL) {
teackp = (struct T_error_ack *)mp->b_rptr;
teackp->ERROR_prim = primitive;
teackp->TLI_error = t_error;
teackp->UNIX_error = sys_error;
putnext(UDP_RD(q), mp);
}
}
/*ARGSUSED*/
static int
udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
int i;
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (udp_g_epriv_ports[i] != 0)
(void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]);
}
return (0);
}
/* ARGSUSED */
static int
udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr)
{
long new_value;
int i;
/*
* Fail the request if the new value does not lie within the
* port number limits.
*/
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value <= 0 || new_value >= 65536) {
return (EINVAL);
}
/* Check if the value is already in the list */
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (new_value == udp_g_epriv_ports[i]) {
return (EEXIST);
}
}
/* Find an empty slot */
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (udp_g_epriv_ports[i] == 0)
break;
}
if (i == udp_g_num_epriv_ports) {
return (EOVERFLOW);
}
/* Set the new value */
udp_g_epriv_ports[i] = (in_port_t)new_value;
return (0);
}
/* ARGSUSED */
static int
udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr)
{
long new_value;
int i;
/*
* Fail the request if the new value does not lie within the
* port number limits.
*/
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value <= 0 || new_value >= 65536) {
return (EINVAL);
}
/* Check that the value is already in the list */
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (udp_g_epriv_ports[i] == new_value)
break;
}
if (i == udp_g_num_epriv_ports) {
return (ESRCH);
}
/* Clear the value */
udp_g_epriv_ports[i] = 0;
return (0);
}
/* At minimum we need 4 bytes of UDP header */
#define ICMP_MIN_UDP_HDR 4
/*
* udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP.
* Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
* Assumes that IP has pulled up everything up to and including the ICMP header.
* An M_CTL could potentially come here from some other module (i.e. if UDP
* is pushed on some module other than IP). Thus, if we find that the M_CTL
* does not have enough ICMP information , following STREAMS conventions,
* we send it upstream assuming it is an M_CTL we don't understand.
*/
static void
udp_icmp_error(queue_t *q, mblk_t *mp)
{
icmph_t *icmph;
ipha_t *ipha;
int iph_hdr_length;
udpha_t *udpha;
sin_t sin;
sin6_t sin6;
mblk_t *mp1;
int error = 0;
size_t mp_size = MBLKL(mp);
udp_t *udp = Q_TO_UDP(q);
/*
* Assume IP provides aligned packets - otherwise toss
*/
if (!OK_32PTR(mp->b_rptr)) {
freemsg(mp);
return;
}
/*
* Verify that we have a complete IP header and the application has
* asked for errors. If not, send it upstream.
*/
if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) {
noticmpv4:
putnext(UDP_RD(q), mp);
return;
}
ipha = (ipha_t *)mp->b_rptr;
/*
* Verify IP version. Anything other than IPv4 or IPv6 packet is sent
* upstream. ICMPv6 is handled in udp_icmp_error_ipv6.
*/
switch (IPH_HDR_VERSION(ipha)) {
case IPV6_VERSION:
udp_icmp_error_ipv6(q, mp);
return;
case IPV4_VERSION:
break;
default:
goto noticmpv4;
}
/* Skip past the outer IP and ICMP headers */
iph_hdr_length = IPH_HDR_LENGTH(ipha);
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
/*
* If we don't have the correct outer IP header length or if the ULP
* is not IPPROTO_ICMP or if we don't have a complete inner IP header
* send the packet upstream.
*/
if (iph_hdr_length < sizeof (ipha_t) ||
ipha->ipha_protocol != IPPROTO_ICMP ||
(ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
goto noticmpv4;
}
ipha = (ipha_t *)&icmph[1];
/* Skip past the inner IP and find the ULP header */
iph_hdr_length = IPH_HDR_LENGTH(ipha);
udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
/*
* If we don't have the correct inner IP header length or if the ULP
* is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR
* bytes of UDP header, send it upstream.
*/
if (iph_hdr_length < sizeof (ipha_t) ||
ipha->ipha_protocol != IPPROTO_UDP ||
(uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) {
goto noticmpv4;
}
switch (icmph->icmph_type) {
case ICMP_DEST_UNREACHABLE:
switch (icmph->icmph_code) {
case ICMP_FRAGMENTATION_NEEDED:
/*
* IP has already adjusted the path MTU.
* XXX Somehow pass MTU indication to application?
*/
break;
case ICMP_PORT_UNREACHABLE:
case ICMP_PROTOCOL_UNREACHABLE:
error = ECONNREFUSED;
break;
default:
/* Transient errors */
break;
}
break;
default:
/* Transient errors */
break;
}
if (error == 0) {
freemsg(mp);
return;
}
switch (udp->udp_family) {
case AF_INET:
sin = sin_null;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = ipha->ipha_dst;
sin.sin_port = udpha->uha_dst_port;
mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
error);
break;
case AF_INET6:
sin6 = sin6_null;
sin6.sin6_family = AF_INET6;
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
sin6.sin6_port = udpha->uha_dst_port;
mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
NULL, 0, error);
break;
}
if (mp1)
putnext(UDP_RD(q), mp1);
freemsg(mp);
}
/*
* udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
* Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
* Assumes that IP has pulled up all the extension headers as well as the
* ICMPv6 header.
* An M_CTL could potentially come here from some other module (i.e. if UDP
* is pushed on some module other than IP). Thus, if we find that the M_CTL
* does not have enough ICMP information , following STREAMS conventions,
* we send it upstream assuming it is an M_CTL we don't understand. The reason
* it might get here is if the non-ICMP M_CTL accidently has 6 in the version
* field (when cast to ipha_t in udp_icmp_error).
*/
static void
udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
{
icmp6_t *icmp6;
ip6_t *ip6h, *outer_ip6h;
uint16_t hdr_length;
uint8_t *nexthdrp;
udpha_t *udpha;
sin6_t sin6;
mblk_t *mp1;
int error = 0;
size_t mp_size = MBLKL(mp);
udp_t *udp = Q_TO_UDP(q);
/*
* Verify that we have a complete IP header. If not, send it upstream.
*/
if (mp_size < sizeof (ip6_t)) {
noticmpv6:
putnext(UDP_RD(q), mp);
return;
}
outer_ip6h = (ip6_t *)mp->b_rptr;
/*
* Verify this is an ICMPV6 packet, else send it upstream
*/
if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) {
hdr_length = IPV6_HDR_LEN;
} else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length,
&nexthdrp) ||
*nexthdrp != IPPROTO_ICMPV6) {
goto noticmpv6;
}
icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length];
ip6h = (ip6_t *)&icmp6[1];
/*
* Verify we have a complete ICMP and inner IP header.
*/
if ((uchar_t *)&ip6h[1] > mp->b_wptr)
goto noticmpv6;
if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp))
goto noticmpv6;
udpha = (udpha_t *)((char *)ip6h + hdr_length);
/*
* Validate inner header. If the ULP is not IPPROTO_UDP or if we don't
* have at least ICMP_MIN_UDP_HDR bytes of UDP header send the
* packet upstream.
*/
if ((*nexthdrp != IPPROTO_UDP) ||
((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) {
goto noticmpv6;
}
switch (icmp6->icmp6_type) {
case ICMP6_DST_UNREACH:
switch (icmp6->icmp6_code) {
case ICMP6_DST_UNREACH_NOPORT:
error = ECONNREFUSED;
break;
case ICMP6_DST_UNREACH_ADMIN:
case ICMP6_DST_UNREACH_NOROUTE:
case ICMP6_DST_UNREACH_BEYONDSCOPE:
case ICMP6_DST_UNREACH_ADDR:
/* Transient errors */
break;
default:
break;
}
break;
case ICMP6_PACKET_TOO_BIG: {
struct T_unitdata_ind *tudi;
struct T_opthdr *toh;
size_t udi_size;
mblk_t *newmp;
t_scalar_t opt_length = sizeof (struct T_opthdr) +
sizeof (struct ip6_mtuinfo);
sin6_t *sin6;
struct ip6_mtuinfo *mtuinfo;
/*
* If the application has requested to receive path mtu
* information, send up an empty message containing an
* IPV6_PATHMTU ancillary data item.
*/
if (!udp->udp_ipv6_recvpathmtu)
break;
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
opt_length;
if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
BUMP_MIB(&udp_mib, udpInErrors);
break;
}
/*
* newmp->b_cont is left to NULL on purpose. This is an
* empty message containing only ancillary data.
*/
newmp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)newmp->b_rptr;
newmp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin6_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
tudi->OPT_length = opt_length;
sin6 = (sin6_t *)&tudi[1];
bzero(sin6, sizeof (sin6_t));
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = udp->udp_v6dst;
toh = (struct T_opthdr *)&sin6[1];
toh->level = IPPROTO_IPV6;
toh->name = IPV6_PATHMTU;
toh->len = opt_length;
toh->status = 0;
mtuinfo = (struct ip6_mtuinfo *)&toh[1];
bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
mtuinfo->ip6m_addr.sin6_family = AF_INET6;
mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
/*
* We've consumed everything we need from the original
* message. Free it, then send our empty message.
*/
freemsg(mp);
putnext(UDP_RD(q), newmp);
return;
}
case ICMP6_TIME_EXCEEDED:
/* Transient errors */
break;
case ICMP6_PARAM_PROB:
/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
(uchar_t *)ip6h + icmp6->icmp6_pptr ==
(uchar_t *)nexthdrp) {
error = ECONNREFUSED;
break;
}
break;
}
if (error == 0) {
freemsg(mp);
return;
}
sin6 = sin6_null;
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = ip6h->ip6_dst;
sin6.sin6_port = udpha->uha_dst_port;
sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
error);
if (mp1)
putnext(UDP_RD(q), mp1);
freemsg(mp);
}
/*
* This routine responds to T_ADDR_REQ messages. It is called by udp_wput.
* The local address is filled in if endpoint is bound. The remote address
* is filled in if remote address has been precified ("connected endpoint")
* (The concept of connected CLTS sockets is alien to published TPI
* but we support it anyway).
*/
static void
udp_addr_req(queue_t *q, mblk_t *mp)
{
sin_t *sin;
sin6_t *sin6;
mblk_t *ackmp;
struct T_addr_ack *taa;
udp_t *udp = Q_TO_UDP(q);
/* Make it large enough for worst case */
ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2 * sizeof (sin6_t), 1);
if (ackmp == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
taa = (struct T_addr_ack *)ackmp->b_rptr;
bzero(taa, sizeof (struct T_addr_ack));
ackmp->b_wptr = (uchar_t *)&taa[1];
taa->PRIM_type = T_ADDR_ACK;
ackmp->b_datap->db_type = M_PCPROTO;
/*
* Note: Following code assumes 32 bit alignment of basic
* data structures like sin_t and struct T_addr_ack.
*/
if (udp->udp_state != TS_UNBND) {
/*
* Fill in local address first
*/
taa->LOCADDR_offset = sizeof (*taa);
if (udp->udp_family == AF_INET) {
taa->LOCADDR_length = sizeof (sin_t);
sin = (sin_t *)&taa[1];
/* Fill zeroes and then initialize non-zero fields */
*sin = sin_null;
sin->sin_family = AF_INET;
if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
sin->sin_addr.s_addr);
} else {
/*
* INADDR_ANY
* udp_v6src is not set, we might be bound to
* broadcast/multicast. Use udp_bound_v6src as
* local address instead (that could
* also still be INADDR_ANY)
*/
IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
sin->sin_addr.s_addr);
}
sin->sin_port = udp->udp_port;
ackmp->b_wptr = (uchar_t *)&sin[1];
if (udp->udp_state == TS_DATA_XFER) {
/*
* connected, fill remote address too
*/
taa->REMADDR_length = sizeof (sin_t);
/* assumed 32-bit alignment */
taa->REMADDR_offset = taa->LOCADDR_offset +
taa->LOCADDR_length;
sin = (sin_t *)(ackmp->b_rptr +
taa->REMADDR_offset);
/* initialize */
*sin = sin_null;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr =
V4_PART_OF_V6(udp->udp_v6dst);
sin->sin_port = udp->udp_dstport;
ackmp->b_wptr = (uchar_t *)&sin[1];
}
} else {
taa->LOCADDR_length = sizeof (sin6_t);
sin6 = (sin6_t *)&taa[1];
/* Fill zeroes and then initialize non-zero fields */
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
sin6->sin6_addr = udp->udp_v6src;
} else {
/*
* UNSPECIFIED
* udp_v6src is not set, we might be bound to
* broadcast/multicast. Use udp_bound_v6src as
* local address instead (that could
* also still be UNSPECIFIED)
*/
sin6->sin6_addr =
udp->udp_bound_v6src;
}
sin6->sin6_port = udp->udp_port;
ackmp->b_wptr = (uchar_t *)&sin6[1];
if (udp->udp_state == TS_DATA_XFER) {
/*
* connected, fill remote address too
*/
taa->REMADDR_length = sizeof (sin6_t);
/* assumed 32-bit alignment */
taa->REMADDR_offset = taa->LOCADDR_offset +
taa->LOCADDR_length;
sin6 = (sin6_t *)(ackmp->b_rptr +
taa->REMADDR_offset);
/* initialize */
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = udp->udp_v6dst;
sin6->sin6_port = udp->udp_dstport;
ackmp->b_wptr = (uchar_t *)&sin6[1];
}
ackmp->b_wptr = (uchar_t *)&sin6[1];
}
}
ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
putnext(UDP_RD(q), ackmp);
}
static void
udp_copy_info(struct T_info_ack *tap, udp_t *udp)
{
if (udp->udp_family == AF_INET) {
*tap = udp_g_t_info_ack_ipv4;
} else {
*tap = udp_g_t_info_ack_ipv6;
}
tap->CURRENT_state = udp->udp_state;
tap->OPT_size = udp_max_optsize;
}
/*
* This routine responds to T_CAPABILITY_REQ messages. It is called by
* udp_wput. Much of the T_CAPABILITY_ACK information is copied from
* udp_g_t_info_ack. The current state of the stream is copied from
* udp_state.
*/
static void
udp_capability_req(queue_t *q, mblk_t *mp)
{
t_uscalar_t cap_bits1;
struct T_capability_ack *tcap;
udp_t *udp = Q_TO_UDP(q);
cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
mp->b_datap->db_type, T_CAPABILITY_ACK);
if (!mp)
return;
tcap = (struct T_capability_ack *)mp->b_rptr;
tcap->CAP_bits1 = 0;
if (cap_bits1 & TC1_INFO) {
udp_copy_info(&tcap->INFO_ack, udp);
tcap->CAP_bits1 |= TC1_INFO;
}
putnext(UDP_RD(q), mp);
}
/*
* This routine responds to T_INFO_REQ messages. It is called by udp_wput.
* Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
* The current state of the stream is copied from udp_state.
*/
static void
udp_info_req(queue_t *q, mblk_t *mp)
{
udp_t *udp = Q_TO_UDP(q);
/* Create a T_INFO_ACK message. */
mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
T_INFO_ACK);
if (!mp)
return;
udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
putnext(UDP_RD(q), mp);
}
/*
* IP recognizes seven kinds of bind requests:
*
* - A zero-length address binds only to the protocol number.
*
* - A 4-byte address is treated as a request to
* validate that the address is a valid local IPv4
* address, appropriate for an application to bind to.
* IP does the verification, but does not make any note
* of the address at this time.
*
* - A 16-byte address contains is treated as a request
* to validate a local IPv6 address, as the 4-byte
* address case above.
*
* - A 16-byte sockaddr_in to validate the local IPv4 address and also
* use it for the inbound fanout of packets.
*
* - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
* use it for the inbound fanout of packets.
*
* - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
* information consisting of local and remote addresses
* and ports. In this case, the addresses are both
* validated as appropriate for this operation, and, if
* so, the information is retained for use in the
* inbound fanout.
*
* - A 36-byte address address (ipa6_conn_t) containing complete IPv6
* fanout information, like the 12-byte case above.
*
* IP will also fill in the IRE request mblk with information
* regarding our peer. In all cases, we notify IP of our protocol
* type by appending a single protocol byte to the bind request.
*/
static mblk_t *
udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
{
char *cp;
mblk_t *mp;
struct T_bind_req *tbr;
ipa_conn_t *ac;
ipa6_conn_t *ac6;
sin_t *sin;
sin6_t *sin6;
ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
if (!mp)
return (mp);
mp->b_datap->db_type = M_PROTO;
tbr = (struct T_bind_req *)mp->b_rptr;
tbr->PRIM_type = bind_prim;
tbr->ADDR_offset = sizeof (*tbr);
tbr->CONIND_number = 0;
tbr->ADDR_length = addr_length;
cp = (char *)&tbr[1];
switch (addr_length) {
case sizeof (ipa_conn_t):
ASSERT(udp->udp_family == AF_INET);
/* Append a request for an IRE */
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
freemsg(mp);
return (NULL);
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
/* cp known to be 32 bit aligned */
ac = (ipa_conn_t *)cp;
ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
ac->ac_fport = udp->udp_dstport;
ac->ac_lport = udp->udp_port;
break;
case sizeof (ipa6_conn_t):
ASSERT(udp->udp_family == AF_INET6);
/* Append a request for an IRE */
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
freemsg(mp);
return (NULL);
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
/* cp known to be 32 bit aligned */
ac6 = (ipa6_conn_t *)cp;
ac6->ac6_laddr = udp->udp_v6src;
ac6->ac6_faddr = udp->udp_v6dst;
ac6->ac6_fport = udp->udp_dstport;
ac6->ac6_lport = udp->udp_port;
break;
case sizeof (sin_t):
ASSERT(udp->udp_family == AF_INET);
/* Append a request for an IRE */
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
freemsg(mp);
return (NULL);
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
sin = (sin_t *)cp;
*sin = sin_null;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
sin->sin_port = udp->udp_port;
break;
case sizeof (sin6_t):
ASSERT(udp->udp_family == AF_INET6);
/* Append a request for an IRE */
mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
if (!mp->b_cont) {
freemsg(mp);
return (NULL);
}
mp->b_cont->b_wptr += sizeof (ire_t);
mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
sin6 = (sin6_t *)cp;
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = udp->udp_bound_v6src;
sin6->sin6_port = udp->udp_port;
break;
}
/* Add protocol number to end */
cp[addr_length] = (char)IPPROTO_UDP;
mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
return (mp);
}
/*
* This is the open routine for udp. It allocates a udp_t structure for
* the stream and, on the first open of the module, creates an ND table.
*/
/* ARGSUSED */
static int
udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
int err;
udp_t *udp;
conn_t *connp;
zoneid_t zoneid = getzoneid();
queue_t *ip_wq;
char *name;
TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
/* If the stream is already open, return immediately. */
if (q->q_ptr != NULL)
return (0);
/* If this is not a push of udp as a module, fail. */
if (sflag != MODOPEN)
return (EINVAL);
q->q_hiwat = udp_recv_hiwat;
WR(q)->q_hiwat = udp_xmit_hiwat;
WR(q)->q_lowat = udp_xmit_lowat;
/* Insert ourselves in the stream since we're about to walk q_next */
qprocson(q);
udp = kmem_cache_alloc(udp_cache, KM_SLEEP);
bzero(udp, sizeof (*udp));
/*
* UDP is supported only as a module and it has to be pushed directly
* above the device instance of IP. If UDP is pushed anywhere else
* on a stream, it will support just T_SVR4_OPTMGMT_REQ for the
* sake of MIB browsers and fail everything else.
*/
ip_wq = WR(q)->q_next;
if (ip_wq->q_next != NULL ||
(name = ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL ||
strcmp(name, IP_MOD_NAME) != 0 ||
ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) {
/* Support just SNMP for MIB browsers */
connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP);
connp->conn_rq = q;
connp->conn_wq = WR(q);
connp->conn_flags |= IPCL_UDPMOD;
connp->conn_cred = credp;
connp->conn_zoneid = zoneid;
connp->conn_udp = udp;
udp->udp_connp = connp;
q->q_ptr = WR(q)->q_ptr = connp;
crhold(credp);
q->q_qinfo = &udp_snmp_rinit;
WR(q)->q_qinfo = &udp_snmp_winit;
return (0);
}
/*
* Initialize the udp_t structure for this stream.
*/
q = RD(ip_wq);
connp = Q_TO_CONN(q);
mutex_enter(&connp->conn_lock);
connp->conn_proto = IPPROTO_UDP;
connp->conn_flags |= IPCL_UDP;
connp->conn_sqp = IP_SQUEUE_GET(lbolt);
connp->conn_udp = udp;
/* Set the initial state of the stream and the privilege status. */
udp->udp_connp = connp;
udp->udp_state = TS_UNBND;
udp->udp_mode = UDP_MT_HOT;
if (getmajor(*devp) == (major_t)UDP6_MAJ) {
udp->udp_family = AF_INET6;
udp->udp_ipversion = IPV6_VERSION;
udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
udp->udp_ttl = udp_ipv6_hoplimit;
connp->conn_af_isv6 = B_TRUE;
connp->conn_flags |= IPCL_ISV6;
} else {
udp->udp_family = AF_INET;
udp->udp_ipversion = IPV4_VERSION;
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
udp->udp_ttl = udp_ipv4_ttl;
connp->conn_af_isv6 = B_FALSE;
connp->conn_flags &= ~IPCL_ISV6;
}
udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
connp->conn_zoneid = zoneid;
/*
* If the caller has the process-wide flag set, then default to MAC
* exempt mode. This allows read-down to unlabeled hosts.
*/
if (getpflags(NET_MAC_AWARE, credp) != 0)
udp->udp_mac_exempt = B_TRUE;
if (connp->conn_flags & IPCL_SOCKET) {
udp->udp_issocket = B_TRUE;
udp->udp_direct_sockfs = B_TRUE;
}
connp->conn_ulp_labeled = is_system_labeled();
mutex_exit(&connp->conn_lock);
/*
* The transmit hiwat/lowat is only looked at on IP's queue.
* Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF
* getsockopts.
*/
q->q_hiwat = udp_recv_hiwat;
WR(q)->q_hiwat = udp_xmit_hiwat;
WR(q)->q_lowat = udp_xmit_lowat;
if (udp->udp_family == AF_INET6) {
/* Build initial header template for transmit */
if ((err = udp_build_hdrs(q, udp)) != 0) {
error:
qprocsoff(UDP_RD(q));
udp->udp_connp = NULL;
connp->conn_udp = NULL;
kmem_cache_free(udp_cache, udp);
return (err);
}
}
/* Set the Stream head write offset and high watermark. */
(void) mi_set_sth_wroff(UDP_RD(q),
udp->udp_max_hdr_len + udp_wroff_extra);
(void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat));
WR(UDP_RD(q))->q_qinfo = &udp_winit;
return (0);
}
/*
* Which UDP options OK to set through T_UNITDATA_REQ...
*/
/* ARGSUSED */
static boolean_t
udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
{
return (B_TRUE);
}
/*
* This routine gets default values of certain options whose default
* values are maintained by protcol specific code
*/
/* ARGSUSED */
int
udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
int *i1 = (int *)ptr;
switch (level) {
case IPPROTO_IP:
switch (name) {
case IP_MULTICAST_TTL:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
return (sizeof (uchar_t));
case IP_MULTICAST_LOOP:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (uchar_t));
}
break;
case IPPROTO_IPV6:
switch (name) {
case IPV6_MULTICAST_HOPS:
*i1 = IP_DEFAULT_MULTICAST_TTL;
return (sizeof (int));
case IPV6_MULTICAST_LOOP:
*i1 = IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (int));
case IPV6_UNICAST_HOPS:
*i1 = udp_ipv6_hoplimit;
return (sizeof (int));
}
break;
}
return (-1);
}
/*
* This routine retrieves the current status of socket options
* and expects the caller to pass in the queue pointer of the
* upper instance. It returns the size of the option retrieved.
*/
int
udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
int *i1 = (int *)ptr;
conn_t *connp;
udp_t *udp;
ip6_pkt_t *ipp;
int len;
q = UDP_WR(q);
connp = Q_TO_CONN(q);
udp = connp->conn_udp;
ipp = &udp->udp_sticky_ipp;
switch (level) {
case SOL_SOCKET:
switch (name) {
case SO_DEBUG:
*i1 = udp->udp_debug;
break; /* goto sizeof (int) option return */
case SO_REUSEADDR:
*i1 = udp->udp_reuseaddr;
break; /* goto sizeof (int) option return */
case SO_TYPE:
*i1 = SOCK_DGRAM;
break; /* goto sizeof (int) option return */
/*
* The following three items are available here,
* but are only meaningful to IP.
*/
case SO_DONTROUTE:
*i1 = udp->udp_dontroute;
break; /* goto sizeof (int) option return */
case SO_USELOOPBACK:
*i1 = udp->udp_useloopback;
break; /* goto sizeof (int) option return */
case SO_BROADCAST:
*i1 = udp->udp_broadcast;
break; /* goto sizeof (int) option return */
case SO_SNDBUF:
*i1 = q->q_hiwat;
break; /* goto sizeof (int) option return */
case SO_RCVBUF:
*i1 = RD(q)->q_hiwat;
break; /* goto sizeof (int) option return */
case SO_DGRAM_ERRIND:
*i1 = udp->udp_dgram_errind;
break; /* goto sizeof (int) option return */
case SO_RECVUCRED:
*i1 = udp->udp_recvucred;
break; /* goto sizeof (int) option return */
case SO_TIMESTAMP:
*i1 = udp->udp_timestamp;
break;
case SO_ANON_MLP:
*i1 = udp->udp_anon_mlp;
break; /* goto sizeof (int) option return */
case SO_MAC_EXEMPT:
*i1 = udp->udp_mac_exempt;
break; /* goto sizeof (int) option return */
default:
return (-1);
}
break;
case IPPROTO_IP:
if (udp->udp_family != AF_INET)
return (-1);
switch (name) {
case IP_OPTIONS:
case T_IP_OPTIONS:
len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
if (len > 0) {
bcopy(udp->udp_ip_rcv_options +
udp->udp_label_len, ptr, len);
}
return (len);
case IP_TOS:
case T_IP_TOS:
*i1 = (int)udp->udp_type_of_service;
break; /* goto sizeof (int) option return */
case IP_TTL:
*i1 = (int)udp->udp_ttl;
break; /* goto sizeof (int) option return */
case IP_NEXTHOP:
/* Handled at IP level */
return (-EINVAL);
case IP_MULTICAST_IF:
/* 0 address if not set */
*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
return (sizeof (ipaddr_t));
case IP_MULTICAST_TTL:
*(uchar_t *)ptr = udp->udp_multicast_ttl;
return (sizeof (uchar_t));
case IP_MULTICAST_LOOP:
*ptr = connp->conn_multicast_loop;
return (sizeof (uint8_t));
case IP_RECVOPTS:
*i1 = udp->udp_recvopts;
break; /* goto sizeof (int) option return */
case IP_RECVDSTADDR:
*i1 = udp->udp_recvdstaddr;
break; /* goto sizeof (int) option return */
case IP_RECVIF:
*i1 = udp->udp_recvif;
break; /* goto sizeof (int) option return */
case IP_RECVSLLA:
*i1 = udp->udp_recvslla;
break; /* goto sizeof (int) option return */
case IP_RECVTTL:
*i1 = udp->udp_recvttl;
break; /* goto sizeof (int) option return */
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case IP_ADD_SOURCE_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
case MCAST_JOIN_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
case IP_DONTFAILOVER_IF:
/* cannot "get" the value for these */
return (-1);
case IP_BOUND_IF:
/* Zero if not set */
*i1 = udp->udp_bound_if;
break; /* goto sizeof (int) option return */
case IP_UNSPEC_SRC:
*i1 = udp->udp_unspec_source;
break; /* goto sizeof (int) option return */
case IP_XMIT_IF:
*i1 = udp->udp_xmit_if;
break; /* goto sizeof (int) option return */
default:
return (-1);
}
break;
case IPPROTO_IPV6:
if (udp->udp_family != AF_INET6)
return (-1);
switch (name) {
case IPV6_UNICAST_HOPS:
*i1 = (unsigned int)udp->udp_ttl;
break; /* goto sizeof (int) option return */
case IPV6_MULTICAST_IF:
/* 0 index if not set */
*i1 = udp->udp_multicast_if_index;
break; /* goto sizeof (int) option return */
case IPV6_MULTICAST_HOPS:
*i1 = udp->udp_multicast_ttl;
break; /* goto sizeof (int) option return */
case IPV6_MULTICAST_LOOP:
*i1 = connp->conn_multicast_loop;
break; /* goto sizeof (int) option return */
case IPV6_JOIN_GROUP:
case IPV6_LEAVE_GROUP:
case MCAST_JOIN_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
/* cannot "get" the value for these */
return (-1);
case IPV6_BOUND_IF:
/* Zero if not set */
*i1 = udp->udp_bound_if;
break; /* goto sizeof (int) option return */
case IPV6_UNSPEC_SRC:
*i1 = udp->udp_unspec_source;
break; /* goto sizeof (int) option return */
case IPV6_RECVPKTINFO:
*i1 = udp->udp_ipv6_recvpktinfo;
break; /* goto sizeof (int) option return */
case IPV6_RECVTCLASS:
*i1 = udp->udp_ipv6_recvtclass;
break; /* goto sizeof (int) option return */
case IPV6_RECVPATHMTU:
*i1 = udp->udp_ipv6_recvpathmtu;
break; /* goto sizeof (int) option return */
case IPV6_RECVHOPLIMIT:
*i1 = udp->udp_ipv6_recvhoplimit;
break; /* goto sizeof (int) option return */
case IPV6_RECVHOPOPTS:
*i1 = udp->udp_ipv6_recvhopopts;
break; /* goto sizeof (int) option return */
case IPV6_RECVDSTOPTS:
*i1 = udp->udp_ipv6_recvdstopts;
break; /* goto sizeof (int) option return */
case _OLD_IPV6_RECVDSTOPTS:
*i1 = udp->udp_old_ipv6_recvdstopts;
break; /* goto sizeof (int) option return */
case IPV6_RECVRTHDRDSTOPTS:
*i1 = udp->udp_ipv6_recvrthdrdstopts;
break; /* goto sizeof (int) option return */
case IPV6_RECVRTHDR:
*i1 = udp->udp_ipv6_recvrthdr;
break; /* goto sizeof (int) option return */
case IPV6_PKTINFO: {
/* XXX assumes that caller has room for max size! */
struct in6_pktinfo *pkti;
pkti = (struct in6_pktinfo *)ptr;
if (ipp->ipp_fields & IPPF_IFINDEX)
pkti->ipi6_ifindex = ipp->ipp_ifindex;
else
pkti->ipi6_ifindex = 0;
if (ipp->ipp_fields & IPPF_ADDR)
pkti->ipi6_addr = ipp->ipp_addr;
else
pkti->ipi6_addr = ipv6_all_zeros;
return (sizeof (struct in6_pktinfo));
}
case IPV6_TCLASS:
if (ipp->ipp_fields & IPPF_TCLASS)
*i1 = ipp->ipp_tclass;
else
*i1 = IPV6_FLOW_TCLASS(
IPV6_DEFAULT_VERS_AND_FLOW);
break; /* goto sizeof (int) option return */
case IPV6_NEXTHOP: {
sin6_t *sin6 = (sin6_t *)ptr;
if (!(ipp->ipp_fields & IPPF_NEXTHOP))
return (0);
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = ipp->ipp_nexthop;
return (sizeof (sin6_t));
}
case IPV6_HOPOPTS:
if (!(ipp->ipp_fields & IPPF_HOPOPTS))
return (0);
if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
return (0);
/*
* The cipso/label option is added by kernel.
* User is not usually aware of this option.
* We copy out the hbh opt after the label option.
*/
bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
if (udp->udp_label_len_v6 > 0) {
ptr[0] = ((char *)ipp->ipp_hopopts)[0];
ptr[1] = (ipp->ipp_hopoptslen -
udp->udp_label_len_v6 + 7) / 8 - 1;
}
return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
case IPV6_RTHDRDSTOPTS:
if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
return (0);
bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
return (ipp->ipp_rtdstoptslen);
case IPV6_RTHDR:
if (!(ipp->ipp_fields & IPPF_RTHDR))
return (0);
bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
return (ipp->ipp_rthdrlen);
case IPV6_DSTOPTS:
if (!(ipp->ipp_fields & IPPF_DSTOPTS))
return (0);
bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
return (ipp->ipp_dstoptslen);
case IPV6_PATHMTU:
return (ip_fill_mtuinfo(&udp->udp_v6dst,
udp->udp_dstport, (struct ip6_mtuinfo *)ptr));
default:
return (-1);
}
break;
case IPPROTO_UDP:
switch (name) {
case UDP_ANONPRIVBIND:
*i1 = udp->udp_anon_priv_bind;
break;
case UDP_EXCLBIND:
*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
break;
case UDP_RCVHDR:
*i1 = udp->udp_rcvhdr ? 1 : 0;
break;
default:
return (-1);
}
break;
default:
return (-1);
}
return (sizeof (int));
}
/*
* This routine sets socket options; it expects the caller
* to pass in the queue pointer of the upper instance.
*/
/* ARGSUSED */
int
udp_opt_set(queue_t *q, uint_t optset_context, int level,
int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
{
udpattrs_t *attrs = thisdg_attrs;
int *i1 = (int *)invalp;
boolean_t onoff = (*i1 == 0) ? 0 : 1;
boolean_t checkonly;
int error;
conn_t *connp;
udp_t *udp;
uint_t newlen;
q = UDP_WR(q);
connp = Q_TO_CONN(q);
udp = connp->conn_udp;
switch (optset_context) {
case SETFN_OPTCOM_CHECKONLY:
checkonly = B_TRUE;
/*
* Note: Implies T_CHECK semantics for T_OPTCOM_REQ
* inlen != 0 implies value supplied and
* we have to "pretend" to set it.
* inlen == 0 implies that there is no
* value part in T_CHECK request and just validation
* done elsewhere should be enough, we just return here.
*/
if (inlen == 0) {
*outlenp = 0;
return (0);
}
break;
case SETFN_OPTCOM_NEGOTIATE:
checkonly = B_FALSE;
break;
case SETFN_UD_NEGOTIATE:
case SETFN_CONN_NEGOTIATE:
checkonly = B_FALSE;
/*
* Negotiating local and "association-related" options
* through T_UNITDATA_REQ.
*
* Following routine can filter out ones we do not
* want to be "set" this way.
*/
if (!udp_opt_allow_udr_set(level, name)) {
*outlenp = 0;
return (EINVAL);
}
break;
default:
/*
* We should never get here
*/
*outlenp = 0;
return (EINVAL);
}
ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
(optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
/*
* For fixed length options, no sanity check
* of passed in length is done. It is assumed *_optcom_req()
* routines do the right thing.
*/
switch (level) {
case SOL_SOCKET:
switch (name) {
case SO_REUSEADDR:
if (!checkonly)
udp->udp_reuseaddr = onoff;
break;
case SO_DEBUG:
if (!checkonly)
udp->udp_debug = onoff;
break;
/*
* The following three items are available here,
* but are only meaningful to IP.
*/
case SO_DONTROUTE:
if (!checkonly)
udp->udp_dontroute = onoff;
break;
case SO_USELOOPBACK:
if (!checkonly)
udp->udp_useloopback = onoff;
break;
case SO_BROADCAST:
if (!checkonly)
udp->udp_broadcast = onoff;
break;
case SO_SNDBUF:
if (*i1 > udp_max_buf) {
*outlenp = 0;
return (ENOBUFS);
}
if (!checkonly) {
q->q_hiwat = *i1;
WR(UDP_RD(q))->q_hiwat = *i1;
}
break;
case SO_RCVBUF:
if (*i1 > udp_max_buf) {
*outlenp = 0;
return (ENOBUFS);
}
if (!checkonly) {
RD(q)->q_hiwat = *i1;
UDP_RD(q)->q_hiwat = *i1;
(void) mi_set_sth_hiwat(UDP_RD(q),
udp_set_rcv_hiwat(udp, *i1));
}
break;
case SO_DGRAM_ERRIND:
if (!checkonly)
udp->udp_dgram_errind = onoff;
break;
case SO_RECVUCRED:
if (!checkonly)
udp->udp_recvucred = onoff;
break;
case SO_TIMESTAMP:
if (!checkonly)
udp->udp_timestamp = onoff;
break;
case SO_ANON_MLP:
if (!checkonly)
udp->udp_anon_mlp = onoff;
break;
case SO_MAC_EXEMPT:
if (secpolicy_net_mac_aware(cr) != 0 ||
udp->udp_state != TS_UNBND)
return (EACCES);
if (!checkonly)
udp->udp_mac_exempt = onoff;
break;
case SCM_UCRED: {
struct ucred_s *ucr;
cred_t *cr, *newcr;
ts_label_t *tsl;
/*
* Only sockets that have proper privileges and are
* bound to MLPs will have any other value here, so
* this implicitly tests for privilege to set label.
*/
if (connp->conn_mlp_type == mlptSingle)
break;
ucr = (struct ucred_s *)invalp;
if (inlen != ucredsize ||
ucr->uc_labeloff < sizeof (*ucr) ||
ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
return (EINVAL);
if (!checkonly) {
mblk_t *mb;
if (attrs == NULL ||
(mb = attrs->udpattr_mb) == NULL)
return (EINVAL);
if ((cr = DB_CRED(mb)) == NULL)
cr = udp->udp_connp->conn_cred;
ASSERT(cr != NULL);
if ((tsl = crgetlabel(cr)) == NULL)
return (EINVAL);
newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
tsl->tsl_doi, KM_NOSLEEP);
if (newcr == NULL)
return (ENOSR);
mblk_setcred(mb, newcr);
attrs->udpattr_credset = B_TRUE;
crfree(newcr);
}
break;
}
default:
*outlenp = 0;
return (EINVAL);
}
break;
case IPPROTO_IP:
if (udp->udp_family != AF_INET) {
*outlenp = 0;
return (ENOPROTOOPT);
}
switch (name) {
case IP_OPTIONS:
case T_IP_OPTIONS:
/* Save options for use by IP. */
newlen = inlen + udp->udp_label_len;
if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
*outlenp = 0;
return (EINVAL);
}
if (checkonly)
break;
if (!tsol_option_set(&udp->udp_ip_snd_options,
&udp->udp_ip_snd_options_len,
udp->udp_label_len, invalp, inlen)) {
*outlenp = 0;
return (ENOMEM);
}
udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
UDPH_SIZE + udp->udp_ip_snd_options_len;
(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
udp_wroff_extra);
break;
case IP_TTL:
if (!checkonly) {
udp->udp_ttl = (uchar_t)*i1;
}
break;
case IP_TOS:
case T_IP_TOS:
if (!checkonly) {
udp->udp_type_of_service = (uchar_t)*i1;
}
break;
case IP_MULTICAST_IF: {
/*
* TODO should check OPTMGMT reply and undo this if
* there is an error.
*/
struct in_addr *inap = (struct in_addr *)invalp;
if (!checkonly) {
udp->udp_multicast_if_addr =
inap->s_addr;
}
break;
}
case IP_MULTICAST_TTL:
if (!checkonly)
udp->udp_multicast_ttl = *invalp;
break;
case IP_MULTICAST_LOOP:
if (!checkonly)
connp->conn_multicast_loop = *invalp;
break;
case IP_RECVOPTS:
if (!checkonly)
udp->udp_recvopts = onoff;
break;
case IP_RECVDSTADDR:
if (!checkonly)
udp->udp_recvdstaddr = onoff;
break;
case IP_RECVIF:
if (!checkonly)
udp->udp_recvif = onoff;
break;
case IP_RECVSLLA:
if (!checkonly)
udp->udp_recvslla = onoff;
break;
case IP_RECVTTL:
if (!checkonly)
udp->udp_recvttl = onoff;
break;
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case IP_ADD_SOURCE_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
case MCAST_JOIN_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
case IP_SEC_OPT:
case IP_NEXTHOP:
/*
* "soft" error (negative)
* option not handled at this level
* Do not modify *outlenp.
*/
return (-EINVAL);
case IP_BOUND_IF:
if (!checkonly)
udp->udp_bound_if = *i1;
break;
case IP_UNSPEC_SRC:
if (!checkonly)
udp->udp_unspec_source = onoff;
break;
case IP_XMIT_IF:
if (!checkonly)
udp->udp_xmit_if = *i1;
break;
default:
*outlenp = 0;
return (EINVAL);
}
break;
case IPPROTO_IPV6: {
ip6_pkt_t *ipp;
boolean_t sticky;
if (udp->udp_family != AF_INET6) {
*outlenp = 0;
return (ENOPROTOOPT);
}
/*
* Deal with both sticky options and ancillary data
*/
sticky = B_FALSE;
if (attrs == NULL || (ipp = attrs->udpattr_ipp) == NULL) {
/* sticky options, or none */
ipp = &udp->udp_sticky_ipp;
sticky = B_TRUE;
}
switch (name) {
case IPV6_MULTICAST_IF:
if (!checkonly)
udp->udp_multicast_if_index = *i1;
break;
case IPV6_UNICAST_HOPS:
/* -1 means use default */
if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
*outlenp = 0;
return (EINVAL);
}
if (!checkonly) {
if (*i1 == -1) {
udp->udp_ttl = ipp->ipp_unicast_hops =
udp_ipv6_hoplimit;
ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
/* Pass modified value to IP. */
*i1 = udp->udp_ttl;
} else {
udp->udp_ttl = ipp->ipp_unicast_hops =
(uint8_t)*i1;
ipp->ipp_fields |= IPPF_UNICAST_HOPS;
}
/* Rebuild the header template */
error = udp_build_hdrs(q, udp);
if (error != 0) {
*outlenp = 0;
return (error);
}
}
break;
case IPV6_MULTICAST_HOPS:
/* -1 means use default */
if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
*outlenp = 0;
return (EINVAL);
}
if (!checkonly) {
if (*i1 == -1) {
udp->udp_multicast_ttl =
ipp->ipp_multicast_hops =
IP_DEFAULT_MULTICAST_TTL;
ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
/* Pass modified value to IP. */
*i1 = udp->udp_multicast_ttl;
} else {
udp->udp_multicast_ttl =
ipp->ipp_multicast_hops =
(uint8_t)*i1;
ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
}
}
break;
case IPV6_MULTICAST_LOOP:
if (*i1 != 0 && *i1 != 1) {
*outlenp = 0;
return (EINVAL);
}
if (!checkonly)
connp->conn_multicast_loop = *i1;
break;
case IPV6_JOIN_GROUP:
case IPV6_LEAVE_GROUP:
case MCAST_JOIN_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
/*
* "soft" error (negative)
* option not handled at this level
* Note: Do not modify *outlenp
*/
return (-EINVAL);
case IPV6_BOUND_IF:
if (!checkonly)
udp->udp_bound_if = *i1;
break;
case IPV6_UNSPEC_SRC:
if (!checkonly)
udp->udp_unspec_source = onoff;
break;
/*
* Set boolean switches for ancillary data delivery
*/
case IPV6_RECVPKTINFO:
if (!checkonly)
udp->udp_ipv6_recvpktinfo = onoff;
break;
case IPV6_RECVTCLASS:
if (!checkonly) {
udp->udp_ipv6_recvtclass = onoff;
}
break;
case IPV6_RECVPATHMTU:
if (!checkonly) {
udp->udp_ipv6_recvpathmtu = onoff;
}
break;
case IPV6_RECVHOPLIMIT:
if (!checkonly)
udp->udp_ipv6_recvhoplimit = onoff;
break;
case IPV6_RECVHOPOPTS:
if (!checkonly)
udp->udp_ipv6_recvhopopts = onoff;
break;
case IPV6_RECVDSTOPTS:
if (!checkonly)
udp->udp_ipv6_recvdstopts = onoff;
break;
case _OLD_IPV6_RECVDSTOPTS:
if (!checkonly)
udp->udp_old_ipv6_recvdstopts = onoff;
break;
case IPV6_RECVRTHDRDSTOPTS:
if (!checkonly)
udp->udp_ipv6_recvrthdrdstopts = onoff;
break;
case IPV6_RECVRTHDR:
if (!checkonly)
udp->udp_ipv6_recvrthdr = onoff;
break;
/*
* Set sticky options or ancillary data.
* If sticky options, (re)build any extension headers
* that might be needed as a result.
*/
case IPV6_PKTINFO:
/*
* The source address and ifindex are verified
* in ip_opt_set(). For ancillary data the
* source address is checked in ip_wput_v6.
*/
if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
ipp->ipp_sticky_ignored |=
(IPPF_IFINDEX|IPPF_ADDR);
} else {
struct in6_pktinfo *pkti;
pkti = (struct in6_pktinfo *)invalp;
ipp->ipp_ifindex = pkti->ipi6_ifindex;
ipp->ipp_addr = pkti->ipi6_addr;
if (ipp->ipp_ifindex != 0)
ipp->ipp_fields |= IPPF_IFINDEX;
else
ipp->ipp_fields &= ~IPPF_IFINDEX;
if (!IN6_IS_ADDR_UNSPECIFIED(
&ipp->ipp_addr))
ipp->ipp_fields |= IPPF_ADDR;
else
ipp->ipp_fields &= ~IPPF_ADDR;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
case IPV6_HOPLIMIT:
if (sticky)
return (EINVAL);
if (inlen != 0 && inlen != sizeof (int))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
ipp->ipp_fields &= ~IPPF_HOPLIMIT;
ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
} else {
if (*i1 > 255 || *i1 < -1)
return (EINVAL);
if (*i1 == -1)
ipp->ipp_hoplimit = udp_ipv6_hoplimit;
else
ipp->ipp_hoplimit = *i1;
ipp->ipp_fields |= IPPF_HOPLIMIT;
}
break;
case IPV6_TCLASS:
if (inlen != 0 && inlen != sizeof (int))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
ipp->ipp_fields &= ~IPPF_TCLASS;
ipp->ipp_sticky_ignored |= IPPF_TCLASS;
} else {
if (*i1 > 255 || *i1 < -1)
return (EINVAL);
if (*i1 == -1)
ipp->ipp_tclass = 0;
else
ipp->ipp_tclass = *i1;
ipp->ipp_fields |= IPPF_TCLASS;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
case IPV6_NEXTHOP:
/*
* IP will verify that the nexthop is reachable
* and fail for sticky options.
*/
if (inlen != 0 && inlen != sizeof (sin6_t))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
ipp->ipp_fields &= ~IPPF_NEXTHOP;
ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
} else {
sin6_t *sin6 = (sin6_t *)invalp;
if (sin6->sin6_family != AF_INET6)
return (EAFNOSUPPORT);
if (IN6_IS_ADDR_V4MAPPED(
&sin6->sin6_addr))
return (EADDRNOTAVAIL);
ipp->ipp_nexthop = sin6->sin6_addr;
if (!IN6_IS_ADDR_UNSPECIFIED(
&ipp->ipp_nexthop))
ipp->ipp_fields |= IPPF_NEXTHOP;
else
ipp->ipp_fields &= ~IPPF_NEXTHOP;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
case IPV6_HOPOPTS: {
ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
/*
* Sanity checks - minimum size, size a multiple of
* eight bytes, and matching size passed in.
*/
if (inlen != 0 &&
inlen != (8 * (hopts->ip6h_len + 1)))
return (EINVAL);
if (checkonly)
break;
error = optcom_pkt_set(invalp, inlen, sticky,
(uchar_t **)&ipp->ipp_hopopts,
&ipp->ipp_hopoptslen,
sticky ? udp->udp_label_len_v6 : 0);
if (error != 0)
return (error);
if (ipp->ipp_hopoptslen == 0) {
ipp->ipp_fields &= ~IPPF_HOPOPTS;
ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
} else {
ipp->ipp_fields |= IPPF_HOPOPTS;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
}
case IPV6_RTHDRDSTOPTS: {
ip6_dest_t *dopts = (ip6_dest_t *)invalp;
/*
* Sanity checks - minimum size, size a multiple of
* eight bytes, and matching size passed in.
*/
if (inlen != 0 &&
inlen != (8 * (dopts->ip6d_len + 1)))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
if (sticky &&
(ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
kmem_free(ipp->ipp_rtdstopts,
ipp->ipp_rtdstoptslen);
ipp->ipp_rtdstopts = NULL;
ipp->ipp_rtdstoptslen = 0;
}
ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
} else {
error = optcom_pkt_set(invalp, inlen, sticky,
(uchar_t **)&ipp->ipp_rtdstopts,
&ipp->ipp_rtdstoptslen, 0);
if (error != 0)
return (error);
ipp->ipp_fields |= IPPF_RTDSTOPTS;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
}
case IPV6_DSTOPTS: {
ip6_dest_t *dopts = (ip6_dest_t *)invalp;
/*
* Sanity checks - minimum size, size a multiple of
* eight bytes, and matching size passed in.
*/
if (inlen != 0 &&
inlen != (8 * (dopts->ip6d_len + 1)))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
if (sticky &&
(ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
kmem_free(ipp->ipp_dstopts,
ipp->ipp_dstoptslen);
ipp->ipp_dstopts = NULL;
ipp->ipp_dstoptslen = 0;
}
ipp->ipp_fields &= ~IPPF_DSTOPTS;
ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
} else {
error = optcom_pkt_set(invalp, inlen, sticky,
(uchar_t **)&ipp->ipp_dstopts,
&ipp->ipp_dstoptslen, 0);
if (error != 0)
return (error);
ipp->ipp_fields |= IPPF_DSTOPTS;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
}
case IPV6_RTHDR: {
ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
/*
* Sanity checks - minimum size, size a multiple of
* eight bytes, and matching size passed in.
*/
if (inlen != 0 &&
inlen != (8 * (rt->ip6r_len + 1)))
return (EINVAL);
if (checkonly)
break;
if (inlen == 0) {
if (sticky &&
(ipp->ipp_fields & IPPF_RTHDR) != 0) {
kmem_free(ipp->ipp_rthdr,
ipp->ipp_rthdrlen);
ipp->ipp_rthdr = NULL;
ipp->ipp_rthdrlen = 0;
}
ipp->ipp_fields &= ~IPPF_RTHDR;
ipp->ipp_sticky_ignored |= IPPF_RTHDR;
} else {
error = optcom_pkt_set(invalp, inlen, sticky,
(uchar_t **)&ipp->ipp_rthdr,
&ipp->ipp_rthdrlen, 0);
if (error != 0)
return (error);
ipp->ipp_fields |= IPPF_RTHDR;
}
if (sticky) {
error = udp_build_hdrs(q, udp);
if (error != 0)
return (error);
}
break;
}
case IPV6_DONTFRAG:
if (checkonly)
break;
if (onoff) {
ipp->ipp_fields |= IPPF_DONTFRAG;
} else {
ipp->ipp_fields &= ~IPPF_DONTFRAG;
}
break;
case IPV6_USE_MIN_MTU:
if (inlen != sizeof (int))
return (EINVAL);
if (*i1 < -1 || *i1 > 1)
return (EINVAL);
if (checkonly)
break;
ipp->ipp_fields |= IPPF_USE_MIN_MTU;
ipp->ipp_use_min_mtu = *i1;
break;
case IPV6_BOUND_PIF:
case IPV6_SEC_OPT:
case IPV6_DONTFAILOVER_IF:
case IPV6_SRC_PREFERENCES:
case IPV6_V6ONLY:
/* Handled at the IP level */
return (-EINVAL);
default:
*outlenp = 0;
return (EINVAL);
}
break;
} /* end IPPROTO_IPV6 */
case IPPROTO_UDP:
switch (name) {
case UDP_ANONPRIVBIND:
if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
*outlenp = 0;
return (error);
}
if (!checkonly) {
udp->udp_anon_priv_bind = onoff;
}
break;
case UDP_EXCLBIND:
if (!checkonly)
udp->udp_exclbind = onoff;
break;
case UDP_RCVHDR:
if (!checkonly)
udp->udp_rcvhdr = onoff;
break;
default:
*outlenp = 0;
return (EINVAL);
}
break;
default:
*outlenp = 0;
return (EINVAL);
}
/*
* Common case of OK return with outval same as inval.
*/
if (invalp != outvalp) {
/* don't trust bcopy for identical src/dst */
(void) bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
return (0);
}
/*
* Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
* The headers include ip6i_t (if needed), ip6_t, any sticky extension
* headers, and the udp header.
* Returns failure if can't allocate memory.
*/
static int
udp_build_hdrs(queue_t *q, udp_t *udp)
{
uchar_t *hdrs;
uint_t hdrs_len;
ip6_t *ip6h;
ip6i_t *ip6i;
udpha_t *udpha;
ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
ASSERT(hdrs_len != 0);
if (hdrs_len != udp->udp_sticky_hdrs_len) {
/* Need to reallocate */
hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
if (hdrs == NULL)
return (ENOMEM);
if (udp->udp_sticky_hdrs_len != 0) {
kmem_free(udp->udp_sticky_hdrs,
udp->udp_sticky_hdrs_len);
}
udp->udp_sticky_hdrs = hdrs;
udp->udp_sticky_hdrs_len = hdrs_len;
}
ip_build_hdrs_v6(udp->udp_sticky_hdrs,
udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
/* Set header fields not in ipp */
if (ipp->ipp_fields & IPPF_HAS_IP6I) {
ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
ip6h = (ip6_t *)&ip6i[1];
} else {
ip6h = (ip6_t *)udp->udp_sticky_hdrs;
}
if (!(ipp->ipp_fields & IPPF_ADDR))
ip6h->ip6_src = udp->udp_v6src;
udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
udpha->uha_src_port = udp->udp_port;
/* Try to get everything in a single mblk */
if (hdrs_len > udp->udp_max_hdr_len) {
udp->udp_max_hdr_len = hdrs_len;
(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
udp_wroff_extra);
}
return (0);
}
/*
* This routine retrieves the value of an ND variable in a udpparam_t
* structure. It is called through nd_getset when a user reads the
* variable.
*/
/* ARGSUSED */
static int
udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
udpparam_t *udppa = (udpparam_t *)cp;
(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
return (0);
}
/*
* Walk through the param array specified registering each element with the
* named dispatch (ND) handler.
*/
static boolean_t
udp_param_register(udpparam_t *udppa, int cnt)
{
for (; cnt-- > 0; udppa++) {
if (udppa->udp_param_name && udppa->udp_param_name[0]) {
if (!nd_load(&udp_g_nd, udppa->udp_param_name,
udp_param_get, udp_param_set,
(caddr_t)udppa)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
}
}
if (!nd_load(&udp_g_nd, "udp_extra_priv_ports",
udp_extra_priv_ports_get, NULL, NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_add",
NULL, udp_extra_priv_ports_add, NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_del",
NULL, udp_extra_priv_ports_del, NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
if (!nd_load(&udp_g_nd, "udp_status", udp_status_report, NULL,
NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
if (!nd_load(&udp_g_nd, "udp_bind_hash", udp_bind_hash_report, NULL,
NULL)) {
nd_free(&udp_g_nd);
return (B_FALSE);
}
return (B_TRUE);
}
/* This routine sets an ND variable in a udpparam_t structure. */
/* ARGSUSED */
static int
udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
{
long new_value;
udpparam_t *udppa = (udpparam_t *)cp;
/*
* Fail the request if the new value does not lie within the
* required bounds.
*/
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value < udppa->udp_param_min ||
new_value > udppa->udp_param_max) {
return (EINVAL);
}
/* Set the new value */
udppa->udp_param_value = new_value;
return (0);
}
/*
* Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
* T_opthdr) and return the number of bytes copied. 'dbuf' may be NULL to
* just count the length needed for allocation. If 'dbuf' is non-NULL,
* then it's assumed to be allocated to be large enough.
*
* Returns zero if trimming of the security option causes all options to go
* away.
*/
static size_t
copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
{
struct T_opthdr *toh;
size_t hol = ipp->ipp_hopoptslen;
ip6_hbh_t *dstopt = NULL;
const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
size_t tlen, olen, plen;
boolean_t deleting;
const struct ip6_opt *sopt, *lastpad;
struct ip6_opt *dopt;
if ((toh = (struct T_opthdr *)dbuf) != NULL) {
toh->level = IPPROTO_IPV6;
toh->name = IPV6_HOPOPTS;
toh->status = 0;
dstopt = (ip6_hbh_t *)(toh + 1);
}
/*
* If labeling is enabled, then skip the label option
* but get other options if there are any.
*/
if (is_system_labeled()) {
dopt = NULL;
if (dstopt != NULL) {
/* will fill in ip6h_len later */
dstopt->ip6h_nxt = srcopt->ip6h_nxt;
dopt = (struct ip6_opt *)(dstopt + 1);
}
sopt = (const struct ip6_opt *)(srcopt + 1);
hol -= sizeof (*srcopt);
tlen = sizeof (*dstopt);
lastpad = NULL;
deleting = B_FALSE;
/*
* This loop finds the first (lastpad pointer) of any number of
* pads that preceeds the security option, then treats the
* security option as though it were a pad, and then finds the
* next non-pad option (or end of list).
*
* It then treats the entire block as one big pad. To preserve
* alignment of any options that follow, or just the end of the
* list, it computes a minimal new padding size that keeps the
* same alignment for the next option.
*
* If it encounters just a sequence of pads with no security
* option, those are copied as-is rather than collapsed.
*
* Note that to handle the end of list case, the code makes one
* loop with 'hol' set to zero.
*/
for (;;) {
if (hol > 0) {
if (sopt->ip6o_type == IP6OPT_PAD1) {
if (lastpad == NULL)
lastpad = sopt;
sopt = (const struct ip6_opt *)
&sopt->ip6o_len;
hol--;
continue;
}
olen = sopt->ip6o_len + sizeof (*sopt);
if (olen > hol)
olen = hol;
if (sopt->ip6o_type == IP6OPT_PADN ||
sopt->ip6o_type == ip6opt_ls) {
if (sopt->ip6o_type == ip6opt_ls)
deleting = B_TRUE;
if (lastpad == NULL)
lastpad = sopt;
sopt = (const struct ip6_opt *)
((const char *)sopt + olen);
hol -= olen;
continue;
}
} else {
/* if nothing was copied at all, then delete */
if (tlen == sizeof (*dstopt))
return (0);
/* last pass; pick up any trailing padding */
olen = 0;
}
if (deleting) {
/*
* compute aligning effect of deleted material
* to reproduce with pad.
*/
plen = ((const char *)sopt -
(const char *)lastpad) & 7;
tlen += plen;
if (dopt != NULL) {
if (plen == 1) {
dopt->ip6o_type = IP6OPT_PAD1;
} else if (plen > 1) {
plen -= sizeof (*dopt);
dopt->ip6o_type = IP6OPT_PADN;
dopt->ip6o_len = plen;
if (plen > 0)
bzero(dopt + 1, plen);
}
dopt = (struct ip6_opt *)
((char *)dopt + plen);
}
deleting = B_FALSE;
lastpad = NULL;
}
/* if there's uncopied padding, then copy that now */
if (lastpad != NULL) {
olen += (const char *)sopt -
(const char *)lastpad;
sopt = lastpad;
lastpad = NULL;
}
if (dopt != NULL && olen > 0) {
bcopy(sopt, dopt, olen);
dopt = (struct ip6_opt *)((char *)dopt + olen);
}
if (hol == 0)
break;
tlen += olen;
sopt = (const struct ip6_opt *)
((const char *)sopt + olen);
hol -= olen;
}
/* go back and patch up the length value, rounded upward */
if (dstopt != NULL)
dstopt->ip6h_len = (tlen - 1) >> 3;
} else {
tlen = hol;
if (dstopt != NULL)
bcopy(srcopt, dstopt, hol);
}
tlen += sizeof (*toh);
if (toh != NULL)
toh->len = tlen;
return (tlen);
}
static void
udp_input(conn_t *connp, mblk_t *mp)
{
struct T_unitdata_ind *tudi;
uchar_t *rptr; /* Pointer to IP header */
int hdr_length; /* Length of IP+UDP headers */
int udi_size; /* Size of T_unitdata_ind */
int mp_len;
udp_t *udp;
udpha_t *udpha;
int ipversion;
ip6_pkt_t ipp;
ip6_t *ip6h;
ip6i_t *ip6i;
mblk_t *mp1;
mblk_t *options_mp = NULL;
in_pktinfo_t *pinfo = NULL;
cred_t *cr = NULL;
queue_t *q = connp->conn_rq;
pid_t cpid;
cred_t *rcr = connp->conn_cred;
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
"udp_rput_start: q %p mp %p", q, mp);
udp = connp->conn_udp;
rptr = mp->b_rptr;
ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
ASSERT(OK_32PTR(rptr));
/*
* IP should have prepended the options data in an M_CTL
* Check M_CTL "type" to make sure are not here bcos of
* a valid ICMP message
*/
if (DB_TYPE(mp) == M_CTL) {
if (MBLKL(mp) == sizeof (in_pktinfo_t) &&
((in_pktinfo_t *)mp->b_rptr)->in_pkt_ulp_type ==
IN_PKTINFO) {
/*
* IP_RECVIF or IP_RECVSLLA information has been
* appended to the packet by IP. We need to
* extract the mblk and adjust the rptr
*/
pinfo = (in_pktinfo_t *)mp->b_rptr;
options_mp = mp;
mp = mp->b_cont;
rptr = mp->b_rptr;
UDP_STAT(udp_in_pktinfo);
} else {
/*
* ICMP messages.
*/
udp_icmp_error(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "m_ctl");
return;
}
}
mp_len = msgdsize(mp);
/*
* This is the inbound data path.
* First, we check to make sure the IP version number is correct,
* and then pull the IP and UDP headers into the first mblk.
* Assume IP provides aligned packets - otherwise toss.
* Also, check if we have a complete IP header.
*/
/* Initialize regardless if ipversion is IPv4 or IPv6 */
ipp.ipp_fields = 0;
ipversion = IPH_HDR_VERSION(rptr);
switch (ipversion) {
case IPV4_VERSION:
ASSERT(MBLKL(mp) >= sizeof (ipha_t));
ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) ||
(udp->udp_ip_rcv_options_len)) {
/*
* Handle IPv4 packets with options outside of the
* main data path. Not needed for AF_INET6 sockets
* since they don't support a getsockopt of IP_OPTIONS.
*/
if (udp->udp_family == AF_INET6)
break;
/*
* UDP length check performed for IPv4 packets with
* options to check whether UDP length specified in
* the header is the same as the physical length of
* the packet.
*/
udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
if (mp_len != (ntohs(udpha->uha_length) +
hdr_length - UDPH_SIZE)) {
goto tossit;
}
/*
* Handle the case where the packet has IP options
* and the IP_RECVSLLA & IP_RECVIF are set
*/
if (pinfo != NULL)
mp = options_mp;
udp_become_writer(connp, mp, udp_rput_other_wrapper,
SQTAG_UDP_INPUT);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "end");
return;
}
/* Handle IPV6_RECVHOPLIMIT. */
if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
udp->udp_ipv6_recvpktinfo) {
if (pinfo->in_pkt_flags & IPF_RECVIF) {
ipp.ipp_fields |= IPPF_IFINDEX;
ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
}
}
break;
case IPV6_VERSION:
/*
* IPv6 packets can only be received by applications
* that are prepared to receive IPv6 addresses.
* The IP fanout must ensure this.
*/
ASSERT(udp->udp_family == AF_INET6);
ip6h = (ip6_t *)rptr;
ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
if (ip6h->ip6_nxt != IPPROTO_UDP) {
uint8_t nexthdrp;
/* Look for ifindex information */
if (ip6h->ip6_nxt == IPPROTO_RAW) {
ip6i = (ip6i_t *)ip6h;
if ((uchar_t *)&ip6i[1] > mp->b_wptr)
goto tossit;
if (ip6i->ip6i_flags & IP6I_IFINDEX) {
ASSERT(ip6i->ip6i_ifindex != 0);
ipp.ipp_fields |= IPPF_IFINDEX;
ipp.ipp_ifindex = ip6i->ip6i_ifindex;
}
rptr = (uchar_t *)&ip6i[1];
mp->b_rptr = rptr;
if (rptr == mp->b_wptr) {
mp1 = mp->b_cont;
freeb(mp);
mp = mp1;
rptr = mp->b_rptr;
}
if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
goto tossit;
ip6h = (ip6_t *)rptr;
mp_len = msgdsize(mp);
}
/*
* Find any potentially interesting extension headers
* as well as the length of the IPv6 + extension
* headers.
*/
hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
UDPH_SIZE;
ASSERT(nexthdrp == IPPROTO_UDP);
} else {
hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
ip6i = NULL;
}
break;
default:
ASSERT(0);
}
/*
* IP inspected the UDP header thus all of it must be in the mblk.
* UDP length check is performed for IPv6 packets and IPv4 packets
* without options to check if the size of the packet as specified
* by the header is the same as the physical size of the packet.
*/
udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
if ((MBLKL(mp) < hdr_length) ||
(mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
goto tossit;
}
/* Walk past the headers. */
if (!udp->udp_rcvhdr) {
mp->b_rptr = rptr + hdr_length;
mp_len -= hdr_length;
}
/*
* This is the inbound data path. Packets are passed upstream as
* T_UNITDATA_IND messages with full IP headers still attached.
*/
if (udp->udp_family == AF_INET) {
sin_t *sin;
ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
/*
* Normally only send up the address.
* If IP_RECVDSTADDR is set we include the destination IP
* address as an option. With IP_RECVOPTS we include all
* the IP options. Only ip_rput_other() handles packets
* that contain IP options.
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
if (udp->udp_recvdstaddr) {
udi_size += sizeof (struct T_opthdr) +
sizeof (struct in_addr);
UDP_STAT(udp_in_recvdstaddr);
}
/*
* If the IP_RECVSLLA or the IP_RECVIF is set then allocate
* space accordingly
*/
if (udp->udp_recvif && (pinfo != NULL) &&
(pinfo->in_pkt_flags & IPF_RECVIF)) {
udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
UDP_STAT(udp_in_recvif);
}
if (udp->udp_recvslla && (pinfo != NULL) &&
(pinfo->in_pkt_flags & IPF_RECVSLLA)) {
udi_size += sizeof (struct T_opthdr) +
sizeof (struct sockaddr_dl);
UDP_STAT(udp_in_recvslla);
}
if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
udi_size += sizeof (struct T_opthdr) + ucredsize;
cpid = DB_CPID(mp);
UDP_STAT(udp_in_recvucred);
}
/*
* If IP_RECVTTL is set allocate the appropriate sized buffer
*/
if (udp->udp_recvttl) {
udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
UDP_STAT(udp_in_recvttl);
}
/*
* If SO_TIMESTAMP is set allocate the appropriate sized
* buffer. Since gethrestime() expects a pointer aligned
* argument, we allocate space necessary for extra
* alignment (even though it might not be used).
*/
if (udp->udp_timestamp) {
udi_size += sizeof (struct T_opthdr) +
sizeof (timestruc_t) + _POINTER_ALIGNMENT;
UDP_STAT(udp_in_timestamp);
}
ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH);
/* Allocate a message block for the T_UNITDATA_IND structure. */
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "allocbfail");
BUMP_MIB(&udp_mib, udpInErrors);
return;
}
mp1->b_cont = mp;
mp = mp1;
mp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp->b_rptr;
mp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
sizeof (sin_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
tudi->OPT_length = udi_size;
sin = (sin_t *)&tudi[1];
sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
sin->sin_port = udpha->uha_src_port;
sin->sin_family = udp->udp_family;
*(uint32_t *)&sin->sin_zero[0] = 0;
*(uint32_t *)&sin->sin_zero[4] = 0;
/*
* Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
* IP_RECVTTL has been set.
*/
if (udi_size != 0) {
/*
* Copy in destination address before options to avoid
* any padding issues.
*/
char *dstopt;
dstopt = (char *)&sin[1];
if (udp->udp_recvdstaddr) {
struct T_opthdr *toh;
ipaddr_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVDSTADDR;
toh->len = sizeof (struct T_opthdr) +
sizeof (ipaddr_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (ipaddr_t *)dstopt;
*dstptr = ((ipha_t *)rptr)->ipha_dst;
dstopt += sizeof (ipaddr_t);
udi_size -= toh->len;
}
if (udp->udp_recvslla && (pinfo != NULL) &&
(pinfo->in_pkt_flags & IPF_RECVSLLA)) {
struct T_opthdr *toh;
struct sockaddr_dl *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVSLLA;
toh->len = sizeof (struct T_opthdr) +
sizeof (struct sockaddr_dl);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (struct sockaddr_dl *)dstopt;
bcopy(&pinfo->in_pkt_slla, dstptr,
sizeof (struct sockaddr_dl));
dstopt += sizeof (struct sockaddr_dl);
udi_size -= toh->len;
}
if (udp->udp_recvif && (pinfo != NULL) &&
(pinfo->in_pkt_flags & IPF_RECVIF)) {
struct T_opthdr *toh;
uint_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVIF;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (uint_t *)dstopt;
*dstptr = pinfo->in_pkt_ifindex;
dstopt += sizeof (uint_t);
udi_size -= toh->len;
}
if (cr != NULL) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = SOL_SOCKET;
toh->name = SCM_UCRED;
toh->len = sizeof (struct T_opthdr) + ucredsize;
toh->status = 0;
(void) cred2ucred(cr, cpid, &toh[1], rcr);
dstopt += toh->len;
udi_size -= toh->len;
}
if (udp->udp_recvttl) {
struct T_opthdr *toh;
uint8_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVTTL;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint8_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (uint8_t *)dstopt;
*dstptr = ((ipha_t *)rptr)->ipha_ttl;
dstopt += sizeof (uint8_t);
udi_size -= toh->len;
}
if (udp->udp_timestamp) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = SOL_SOCKET;
toh->name = SCM_TIMESTAMP;
toh->len = sizeof (struct T_opthdr) +
sizeof (timestruc_t) + _POINTER_ALIGNMENT;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
/* Align for gethrestime() */
dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
sizeof (intptr_t));
gethrestime((timestruc_t *)dstopt);
dstopt += sizeof (timestruc_t);
udi_size -= toh->len;
}
/* Consumed all of allocated space */
ASSERT(udi_size == 0);
}
} else {
sin6_t *sin6;
/*
* Handle both IPv4 and IPv6 packets for IPv6 sockets.
*
* Normally we only send up the address. If receiving of any
* optional receive side information is enabled, we also send
* that up as options.
* [ Only udp_rput_other() handles packets that contain IP
* options so code to account for does not appear immediately
* below but elsewhere ]
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
IPPF_RTHDR|IPPF_IFINDEX)) {
if (udp->udp_ipv6_recvhopopts &&
(ipp.ipp_fields & IPPF_HOPOPTS)) {
size_t hlen;
UDP_STAT(udp_in_recvhopopts);
hlen = copy_hop_opts(&ipp, NULL);
if (hlen == 0)
ipp.ipp_fields &= ~IPPF_HOPOPTS;
udi_size += hlen;
}
if ((udp->udp_ipv6_recvdstopts ||
udp->udp_old_ipv6_recvdstopts) &&
(ipp.ipp_fields & IPPF_DSTOPTS)) {
udi_size += sizeof (struct T_opthdr) +
ipp.ipp_dstoptslen;
UDP_STAT(udp_in_recvdstopts);
}
if (((udp->udp_ipv6_recvdstopts &&
udp->udp_ipv6_recvrthdr &&
(ipp.ipp_fields & IPPF_RTHDR)) ||
udp->udp_ipv6_recvrthdrdstopts) &&
(ipp.ipp_fields & IPPF_RTDSTOPTS)) {
udi_size += sizeof (struct T_opthdr) +
ipp.ipp_rtdstoptslen;
UDP_STAT(udp_in_recvrtdstopts);
}
if (udp->udp_ipv6_recvrthdr &&
(ipp.ipp_fields & IPPF_RTHDR)) {
udi_size += sizeof (struct T_opthdr) +
ipp.ipp_rthdrlen;
UDP_STAT(udp_in_recvrthdr);
}
if (udp->udp_ipv6_recvpktinfo &&
(ipp.ipp_fields & IPPF_IFINDEX)) {
udi_size += sizeof (struct T_opthdr) +
sizeof (struct in6_pktinfo);
UDP_STAT(udp_in_recvpktinfo);
}
}
if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
udi_size += sizeof (struct T_opthdr) + ucredsize;
cpid = DB_CPID(mp);
UDP_STAT(udp_in_recvucred);
}
if (udp->udp_ipv6_recvhoplimit) {
udi_size += sizeof (struct T_opthdr) + sizeof (int);
UDP_STAT(udp_in_recvhoplimit);
}
if (udp->udp_ipv6_recvtclass) {
udi_size += sizeof (struct T_opthdr) + sizeof (int);
UDP_STAT(udp_in_recvtclass);
}
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "allocbfail");
BUMP_MIB(&udp_mib, udpInErrors);
return;
}
mp1->b_cont = mp;
mp = mp1;
mp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp->b_rptr;
mp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin6_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
sizeof (sin6_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
tudi->OPT_length = udi_size;
sin6 = (sin6_t *)&tudi[1];
if (ipversion == IPV4_VERSION) {
in6_addr_t v6dst;
IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
&sin6->sin6_addr);
IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
&v6dst);
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = 0;
sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
connp->conn_zoneid);
} else {
sin6->sin6_addr = ip6h->ip6_src;
/* No sin6_flowinfo per API */
sin6->sin6_flowinfo = 0;
/* For link-scope source pass up scope id */
if ((ipp.ipp_fields & IPPF_IFINDEX) &&
IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
sin6->sin6_scope_id = ipp.ipp_ifindex;
else
sin6->sin6_scope_id = 0;
sin6->__sin6_src_id = ip_srcid_find_addr(
&ip6h->ip6_dst, connp->conn_zoneid);
}
sin6->sin6_port = udpha->uha_src_port;
sin6->sin6_family = udp->udp_family;
if (udi_size != 0) {
uchar_t *dstopt;
dstopt = (uchar_t *)&sin6[1];
if (udp->udp_ipv6_recvpktinfo &&
(ipp.ipp_fields & IPPF_IFINDEX)) {
struct T_opthdr *toh;
struct in6_pktinfo *pkti;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_PKTINFO;
toh->len = sizeof (struct T_opthdr) +
sizeof (*pkti);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
pkti = (struct in6_pktinfo *)dstopt;
if (ipversion == IPV6_VERSION)
pkti->ipi6_addr = ip6h->ip6_dst;
else
IN6_IPADDR_TO_V4MAPPED(
((ipha_t *)rptr)->ipha_dst,
&pkti->ipi6_addr);
pkti->ipi6_ifindex = ipp.ipp_ifindex;
dstopt += sizeof (*pkti);
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvhoplimit) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_HOPLIMIT;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
if (ipversion == IPV6_VERSION)
*(uint_t *)dstopt = ip6h->ip6_hops;
else
*(uint_t *)dstopt =
((ipha_t *)rptr)->ipha_ttl;
dstopt += sizeof (uint_t);
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvtclass) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_TCLASS;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
if (ipversion == IPV6_VERSION) {
*(uint_t *)dstopt =
IPV6_FLOW_TCLASS(ip6h->ip6_flow);
} else {
ipha_t *ipha = (ipha_t *)rptr;
*(uint_t *)dstopt =
ipha->ipha_type_of_service;
}
dstopt += sizeof (uint_t);
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvhopopts &&
(ipp.ipp_fields & IPPF_HOPOPTS)) {
size_t hlen;
hlen = copy_hop_opts(&ipp, dstopt);
dstopt += hlen;
udi_size -= hlen;
}
if (udp->udp_ipv6_recvdstopts &&
udp->udp_ipv6_recvrthdr &&
(ipp.ipp_fields & IPPF_RTHDR) &&
(ipp.ipp_fields & IPPF_RTDSTOPTS)) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_DSTOPTS;
toh->len = sizeof (struct T_opthdr) +
ipp.ipp_rtdstoptslen;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
bcopy(ipp.ipp_rtdstopts, dstopt,
ipp.ipp_rtdstoptslen);
dstopt += ipp.ipp_rtdstoptslen;
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvrthdr &&
(ipp.ipp_fields & IPPF_RTHDR)) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_RTHDR;
toh->len = sizeof (struct T_opthdr) +
ipp.ipp_rthdrlen;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
dstopt += ipp.ipp_rthdrlen;
udi_size -= toh->len;
}
if (udp->udp_ipv6_recvdstopts &&
(ipp.ipp_fields & IPPF_DSTOPTS)) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IPV6;
toh->name = IPV6_DSTOPTS;
toh->len = sizeof (struct T_opthdr) +
ipp.ipp_dstoptslen;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
bcopy(ipp.ipp_dstopts, dstopt,
ipp.ipp_dstoptslen);
dstopt += ipp.ipp_dstoptslen;
udi_size -= toh->len;
}
if (cr != NULL) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = SOL_SOCKET;
toh->name = SCM_UCRED;
toh->len = sizeof (struct T_opthdr) + ucredsize;
toh->status = 0;
(void) cred2ucred(cr, cpid, &toh[1], rcr);
dstopt += toh->len;
udi_size -= toh->len;
}
/* Consumed all of allocated space */
ASSERT(udi_size == 0);
}
#undef sin6
/* No IP_RECVDSTADDR for IPv6. */
}
BUMP_MIB(&udp_mib, udpInDatagrams);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_end: q %p (%S)", q, "end");
if (options_mp != NULL)
freeb(options_mp);
if (udp->udp_direct_sockfs) {
/*
* There is nothing above us except for the stream head;
* use the read-side synchronous stream interface in
* order to reduce the time spent in interrupt thread.
*/
ASSERT(udp->udp_issocket);
udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len);
} else {
/*
* Use regular STREAMS interface to pass data upstream
* if this is not a socket endpoint, or if we have
* switched over to the slow mode due to sockmod being
* popped or a module being pushed on top of us.
*/
putnext(UDP_RD(q), mp);
}
return;
tossit:
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
BUMP_MIB(&udp_mib, udpInErrors);
}
void
udp_conn_recv(conn_t *connp, mblk_t *mp)
{
_UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT);
}
/* ARGSUSED */
static void
udp_input_wrapper(void *arg, mblk_t *mp, void *arg2)
{
udp_input((conn_t *)arg, mp);
_UDP_EXIT((conn_t *)arg);
}
/*
* Process non-M_DATA messages as well as M_DATA messages that requires
* modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options.
*/
static void
udp_rput_other(queue_t *q, mblk_t *mp)
{
struct T_unitdata_ind *tudi;
mblk_t *mp1;
uchar_t *rptr;
uchar_t *new_rptr;
int hdr_length;
int udi_size; /* Size of T_unitdata_ind */
int opt_len; /* Length of IP options */
sin_t *sin;
struct T_error_ack *tea;
mblk_t *options_mp = NULL;
in_pktinfo_t *pinfo;
boolean_t recv_on = B_FALSE;
cred_t *cr = NULL;
udp_t *udp = Q_TO_UDP(q);
pid_t cpid;
cred_t *rcr = udp->udp_connp->conn_cred;
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
"udp_rput_other: q %p mp %p", q, mp);
ASSERT(OK_32PTR(mp->b_rptr));
rptr = mp->b_rptr;
switch (mp->b_datap->db_type) {
case M_CTL:
/*
* We are here only if IP_RECVSLLA and/or IP_RECVIF are set
*/
recv_on = B_TRUE;
options_mp = mp;
pinfo = (in_pktinfo_t *)options_mp->b_rptr;
/*
* The actual data is in mp->b_cont
*/
mp = mp->b_cont;
ASSERT(OK_32PTR(mp->b_rptr));
rptr = mp->b_rptr;
break;
case M_DATA:
/*
* M_DATA messages contain IPv4 datagrams. They are handled
* after this switch.
*/
break;
case M_PROTO:
case M_PCPROTO:
/* M_PROTO messages contain some type of TPI message. */
ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
freemsg(mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_other_end: q %p (%S)", q, "protoshort");
return;
}
tea = (struct T_error_ack *)rptr;
switch (tea->PRIM_type) {
case T_ERROR_ACK:
switch (tea->ERROR_prim) {
case O_T_BIND_REQ:
case T_BIND_REQ: {
/*
* If our O_T_BIND_REQ/T_BIND_REQ fails,
* clear out the associated port and source
* address before passing the message
* upstream. If this was caused by a T_CONN_REQ
* revert back to bound state.
*/
udp_fanout_t *udpf;
udpf = &udp_bind_fanout[
UDP_BIND_HASH(udp->udp_port)];
mutex_enter(&udpf->uf_lock);
if (udp->udp_state == TS_DATA_XFER) {
/* Connect failed */
tea->ERROR_prim = T_CONN_REQ;
/* Revert back to the bound source */
udp->udp_v6src = udp->udp_bound_v6src;
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
if (udp->udp_family == AF_INET6)
(void) udp_build_hdrs(q, udp);
break;
}
if (udp->udp_discon_pending) {
tea->ERROR_prim = T_DISCON_REQ;
udp->udp_discon_pending = 0;
}
V6_SET_ZERO(udp->udp_v6src);
V6_SET_ZERO(udp->udp_bound_v6src);
udp->udp_state = TS_UNBND;
udp_bind_hash_remove(udp, B_TRUE);
udp->udp_port = 0;
mutex_exit(&udpf->uf_lock);
if (udp->udp_family == AF_INET6)
(void) udp_build_hdrs(q, udp);
break;
}
default:
break;
}
break;
case T_BIND_ACK:
udp_rput_bind_ack(q, mp);
return;
case T_OPTMGMT_ACK:
case T_OK_ACK:
break;
default:
freemsg(mp);
return;
}
putnext(UDP_RD(q), mp);
return;
}
/*
* This is the inbound data path.
* First, we make sure the data contains both IP and UDP headers.
*
* This handle IPv4 packets for only AF_INET sockets.
* AF_INET6 sockets can never access udp_ip_rcv_options thus there
* is no need saving the options.
*/
ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
if (mp->b_wptr - rptr < hdr_length) {
if (!pullupmsg(mp, hdr_length)) {
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
BUMP_MIB(&udp_mib, udpInErrors);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_other_end: q %p (%S)", q, "hdrshort");
BUMP_MIB(&udp_mib, udpInErrors);
return;
}
rptr = mp->b_rptr;
}
/* Walk past the headers. */
new_rptr = rptr + hdr_length;
if (!udp->udp_rcvhdr)
mp->b_rptr = new_rptr;
/* Save the options if any */
opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
if (opt_len > 0) {
if (opt_len > udp->udp_ip_rcv_options_len) {
if (udp->udp_ip_rcv_options_len)
mi_free((char *)udp->udp_ip_rcv_options);
udp->udp_ip_rcv_options_len = 0;
udp->udp_ip_rcv_options =
(uchar_t *)mi_alloc(opt_len, BPRI_HI);
if (udp->udp_ip_rcv_options)
udp->udp_ip_rcv_options_len = opt_len;
}
if (udp->udp_ip_rcv_options_len) {
bcopy(rptr + IP_SIMPLE_HDR_LENGTH,
udp->udp_ip_rcv_options, opt_len);
/* Adjust length if we are resusing the space */
udp->udp_ip_rcv_options_len = opt_len;
}
} else if (udp->udp_ip_rcv_options_len) {
mi_free((char *)udp->udp_ip_rcv_options);
udp->udp_ip_rcv_options = NULL;
udp->udp_ip_rcv_options_len = 0;
}
/*
* Normally only send up the address.
* If IP_RECVDSTADDR is set we include the destination IP
* address as an option. With IP_RECVOPTS we include all
* the IP options.
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
if (udp->udp_recvdstaddr) {
udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr);
UDP_STAT(udp_in_recvdstaddr);
}
if (udp->udp_recvopts && opt_len > 0) {
udi_size += sizeof (struct T_opthdr) + opt_len;
UDP_STAT(udp_in_recvopts);
}
/*
* If the IP_RECVSLLA or the IP_RECVIF is set then allocate
* space accordingly
*/
if (udp->udp_recvif && recv_on &&
(pinfo->in_pkt_flags & IPF_RECVIF)) {
udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
UDP_STAT(udp_in_recvif);
}
if (udp->udp_recvslla && recv_on &&
(pinfo->in_pkt_flags & IPF_RECVSLLA)) {
udi_size += sizeof (struct T_opthdr) +
sizeof (struct sockaddr_dl);
UDP_STAT(udp_in_recvslla);
}
if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
udi_size += sizeof (struct T_opthdr) + ucredsize;
cpid = DB_CPID(mp);
UDP_STAT(udp_in_recvucred);
}
/*
* If IP_RECVTTL is set allocate the appropriate sized buffer
*/
if (udp->udp_recvttl) {
udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
UDP_STAT(udp_in_recvttl);
}
/* Allocate a message block for the T_UNITDATA_IND structure. */
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
if (options_mp != NULL)
freeb(options_mp);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_other_end: q %p (%S)", q, "allocbfail");
BUMP_MIB(&udp_mib, udpInErrors);
return;
}
mp1->b_cont = mp;
mp = mp1;
mp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp->b_rptr;
mp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
tudi->OPT_length = udi_size;
sin = (sin_t *)&tudi[1];
sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
sin->sin_port = ((in_port_t *)
new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))];
sin->sin_family = AF_INET;
*(uint32_t *)&sin->sin_zero[0] = 0;
*(uint32_t *)&sin->sin_zero[4] = 0;
/*
* Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
* IP_RECVTTL has been set.
*/
if (udi_size != 0) {
/*
* Copy in destination address before options to avoid any
* padding issues.
*/
char *dstopt;
dstopt = (char *)&sin[1];
if (udp->udp_recvdstaddr) {
struct T_opthdr *toh;
ipaddr_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVDSTADDR;
toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (ipaddr_t *)dstopt;
*dstptr = (((ipaddr_t *)rptr)[4]);
dstopt += sizeof (ipaddr_t);
udi_size -= toh->len;
}
if (udp->udp_recvopts && udi_size != 0) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVOPTS;
toh->len = sizeof (struct T_opthdr) + opt_len;
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len);
dstopt += opt_len;
udi_size -= toh->len;
}
if (udp->udp_recvslla && recv_on &&
(pinfo->in_pkt_flags & IPF_RECVSLLA)) {
struct T_opthdr *toh;
struct sockaddr_dl *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVSLLA;
toh->len = sizeof (struct T_opthdr) +
sizeof (struct sockaddr_dl);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (struct sockaddr_dl *)dstopt;
bcopy(&pinfo->in_pkt_slla, dstptr,
sizeof (struct sockaddr_dl));
dstopt += sizeof (struct sockaddr_dl);
udi_size -= toh->len;
}
if (udp->udp_recvif && recv_on &&
(pinfo->in_pkt_flags & IPF_RECVIF)) {
struct T_opthdr *toh;
uint_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVIF;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (uint_t *)dstopt;
*dstptr = pinfo->in_pkt_ifindex;
dstopt += sizeof (uint_t);
udi_size -= toh->len;
}
if (cr != NULL) {
struct T_opthdr *toh;
toh = (struct T_opthdr *)dstopt;
toh->level = SOL_SOCKET;
toh->name = SCM_UCRED;
toh->len = sizeof (struct T_opthdr) + ucredsize;
toh->status = 0;
(void) cred2ucred(cr, cpid, &toh[1], rcr);
dstopt += toh->len;
udi_size -= toh->len;
}
if (udp->udp_recvttl) {
struct T_opthdr *toh;
uint8_t *dstptr;
toh = (struct T_opthdr *)dstopt;
toh->level = IPPROTO_IP;
toh->name = IP_RECVTTL;
toh->len = sizeof (struct T_opthdr) +
sizeof (uint8_t);
toh->status = 0;
dstopt += sizeof (struct T_opthdr);
dstptr = (uint8_t *)dstopt;
*dstptr = ((ipha_t *)rptr)->ipha_ttl;
dstopt += sizeof (uint8_t);
udi_size -= toh->len;
}
ASSERT(udi_size == 0); /* "Consumed" all of allocated space */
}
BUMP_MIB(&udp_mib, udpInDatagrams);
TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
"udp_rput_other_end: q %p (%S)", q, "end");
if (options_mp != NULL)
freeb(options_mp);
if (udp->udp_direct_sockfs) {
/*
* There is nothing above us except for the stream head;
* use the read-side synchronous stream interface in
* order to reduce the time spent in interrupt thread.
*/
ASSERT(udp->udp_issocket);
udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp));
} else {
/*
* Use regular STREAMS interface to pass data upstream
* if this is not a socket endpoint, or if we have
* switched over to the slow mode due to sockmod being
* popped or a module being pushed on top of us.
*/
putnext(UDP_RD(q), mp);
}
}
/* ARGSUSED */
static void
udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
{
conn_t *connp = arg;
udp_rput_other(connp->conn_rq, mp);
udp_exit(connp);
}
/*
* Process a T_BIND_ACK
*/
static void
udp_rput_bind_ack(queue_t *q, mblk_t *mp)
{
udp_t *udp = Q_TO_UDP(q);
mblk_t *mp1;
ire_t *ire;
struct T_bind_ack *tba;
uchar_t *addrp;
ipa_conn_t *ac;
ipa6_conn_t *ac6;
if (udp->udp_discon_pending)
udp->udp_discon_pending = 0;
/*
* If a broadcast/multicast address was bound set
* the source address to 0.
* This ensures no datagrams with broadcast address
* as source address are emitted (which would violate
* RFC1122 - Hosts requirements)
*
* Note that when connecting the returned IRE is
* for the destination address and we only perform
* the broadcast check for the source address (it
* is OK to connect to a broadcast/multicast address.)
*/
mp1 = mp->b_cont;
if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
ire = (ire_t *)mp1->b_rptr;
/*
* Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
* local address.
*/
if (ire->ire_type == IRE_BROADCAST &&
udp->udp_state != TS_DATA_XFER) {
/* This was just a local bind to a broadcast addr */
V6_SET_ZERO(udp->udp_v6src);
if (udp->udp_family == AF_INET6)
(void) udp_build_hdrs(q, udp);
} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
/*
* Local address not yet set - pick it from the
* T_bind_ack
*/
tba = (struct T_bind_ack *)mp->b_rptr;
addrp = &mp->b_rptr[tba->ADDR_offset];
switch (udp->udp_family) {
case AF_INET:
if (tba->ADDR_length == sizeof (ipa_conn_t)) {
ac = (ipa_conn_t *)addrp;
} else {
ASSERT(tba->ADDR_length ==
sizeof (ipa_conn_x_t));
ac = &((ipa_conn_x_t *)addrp)->acx_conn;
}
IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
&udp->udp_v6src);
break;
case AF_INET6:
if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
ac6 = (ipa6_conn_t *)addrp;
} else {
ASSERT(tba->ADDR_length ==
sizeof (ipa6_conn_x_t));
ac6 = &((ipa6_conn_x_t *)
addrp)->ac6x_conn;
}
udp->udp_v6src = ac6->ac6_laddr;
(void) udp_build_hdrs(q, udp);
break;
}
}
mp1 = mp1->b_cont;
}
/*
* Look for one or more appended ACK message added by
* udp_connect or udp_disconnect.
* If none found just send up the T_BIND_ACK.
* udp_connect has appended a T_OK_ACK and a T_CONN_CON.
* udp_disconnect has appended a T_OK_ACK.
*/
if (mp1 != NULL) {
if (mp->b_cont == mp1)
mp->b_cont = NULL;
else {
ASSERT(mp->b_cont->b_cont == mp1);
mp->b_cont->b_cont = NULL;
}
freemsg(mp);
mp = mp1;
while (mp != NULL) {
mp1 = mp->b_cont;
mp->b_cont = NULL;
putnext(UDP_RD(q), mp);
mp = mp1;
}
return;
}
freemsg(mp->b_cont);
mp->b_cont = NULL;
putnext(UDP_RD(q), mp);
}
/*
* return SNMP stuff in buffer in mpdata
*/
int
udp_snmp_get(queue_t *q, mblk_t *mpctl)
{
mblk_t *mpdata;
mblk_t *mp_conn_ctl;
mblk_t *mp_attr_ctl;
mblk_t *mp6_conn_ctl;
mblk_t *mp6_attr_ctl;
mblk_t *mp_conn_tail;
mblk_t *mp_attr_tail;
mblk_t *mp6_conn_tail;
mblk_t *mp6_attr_tail;
struct opthdr *optp;
mib2_udpEntry_t ude;
mib2_udp6Entry_t ude6;
mib2_transportMLPEntry_t mlp;
int state;
zoneid_t zoneid;
int i;
connf_t *connfp;
conn_t *connp = Q_TO_CONN(q);
udp_t *udp = connp->conn_udp;
int v4_conn_idx;
int v6_conn_idx;
boolean_t needattr;
mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
if (mpctl == NULL ||
(mpdata = mpctl->b_cont) == NULL ||
(mp_conn_ctl = copymsg(mpctl)) == NULL ||
(mp_attr_ctl = copymsg(mpctl)) == NULL ||
(mp6_conn_ctl = copymsg(mpctl)) == NULL ||
(mp6_attr_ctl = copymsg(mpctl)) == NULL) {
freemsg(mp_conn_ctl);
freemsg(mp_attr_ctl);
freemsg(mp6_conn_ctl);
return (0);
}
zoneid = connp->conn_zoneid;
/* fixed length structure for IPv4 and IPv6 counters */
SET_MIB(udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
SET_MIB(udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP;
optp->name = 0;
(void) snmp_append_data(mpdata, (char *)&udp_mib, sizeof (udp_mib));
optp->len = msgdsize(mpdata);
qreply(q, mpctl);
mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
v4_conn_idx = v6_conn_idx = 0;
for (i = 0; i < CONN_G_HASH_SIZE; i++) {
connfp = &ipcl_globalhash_fanout[i];
connp = NULL;
while ((connp = ipcl_get_next_conn(connfp, connp,
IPCL_UDP))) {
udp = connp->conn_udp;
if (zoneid != connp->conn_zoneid)
continue;
/*
* Note that the port numbers are sent in
* host byte order
*/
if (udp->udp_state == TS_UNBND)
state = MIB2_UDP_unbound;
else if (udp->udp_state == TS_IDLE)
state = MIB2_UDP_idle;
else if (udp->udp_state == TS_DATA_XFER)
state = MIB2_UDP_connected;
else
state = MIB2_UDP_unknown;
needattr = B_FALSE;
bzero(&mlp, sizeof (mlp));
if (connp->conn_mlp_type != mlptSingle) {
if (connp->conn_mlp_type == mlptShared ||
connp->conn_mlp_type == mlptBoth)
mlp.tme_flags |= MIB2_TMEF_SHARED;
if (connp->conn_mlp_type == mlptPrivate ||
connp->conn_mlp_type == mlptBoth)
mlp.tme_flags |= MIB2_TMEF_PRIVATE;
needattr = B_TRUE;
}
/*
* Create an IPv4 table entry for IPv4 entries and also
* any IPv6 entries which are bound to in6addr_any
* (i.e. anything a IPv4 peer could connect/send to).
*/
if (udp->udp_ipversion == IPV4_VERSION ||
(udp->udp_state <= TS_IDLE &&
IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
ude.udpEntryInfo.ue_state = state;
/*
* If in6addr_any this will set it to
* INADDR_ANY
*/
ude.udpLocalAddress =
V4_PART_OF_V6(udp->udp_v6src);
ude.udpLocalPort = ntohs(udp->udp_port);
if (udp->udp_state == TS_DATA_XFER) {
/*
* Can potentially get here for
* v6 socket if another process
* (say, ping) has just done a
* sendto(), changing the state
* from the TS_IDLE above to
* TS_DATA_XFER by the time we hit
* this part of the code.
*/
ude.udpEntryInfo.ue_RemoteAddress =
V4_PART_OF_V6(udp->udp_v6dst);
ude.udpEntryInfo.ue_RemotePort =
ntohs(udp->udp_dstport);
} else {
ude.udpEntryInfo.ue_RemoteAddress = 0;
ude.udpEntryInfo.ue_RemotePort = 0;
}
(void) snmp_append_data2(mp_conn_ctl->b_cont,
&mp_conn_tail, (char *)&ude, sizeof (ude));
mlp.tme_connidx = v4_conn_idx++;
if (needattr)
(void) snmp_append_data2(
mp_attr_ctl->b_cont, &mp_attr_tail,
(char *)&mlp, sizeof (mlp));
}
if (udp->udp_ipversion == IPV6_VERSION) {
ude6.udp6EntryInfo.ue_state = state;
ude6.udp6LocalAddress = udp->udp_v6src;
ude6.udp6LocalPort = ntohs(udp->udp_port);
ude6.udp6IfIndex = udp->udp_bound_if;
if (udp->udp_state == TS_DATA_XFER) {
ude6.udp6EntryInfo.ue_RemoteAddress =
udp->udp_v6dst;
ude6.udp6EntryInfo.ue_RemotePort =
ntohs(udp->udp_dstport);
} else {
ude6.udp6EntryInfo.ue_RemoteAddress =
sin6_null.sin6_addr;
ude6.udp6EntryInfo.ue_RemotePort = 0;
}
(void) snmp_append_data2(mp6_conn_ctl->b_cont,
&mp6_conn_tail, (char *)&ude6,
sizeof (ude6));
mlp.tme_connidx = v6_conn_idx++;
if (needattr)
(void) snmp_append_data2(
mp6_attr_ctl->b_cont,
&mp6_attr_tail, (char *)&mlp,
sizeof (mlp));
}
}
}
/* IPv4 UDP endpoints */
optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP;
optp->name = MIB2_UDP_ENTRY;
optp->len = msgdsize(mp_conn_ctl->b_cont);
qreply(q, mp_conn_ctl);
/* table of MLP attributes... */
optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP;
optp->name = EXPER_XPORT_MLP;
optp->len = msgdsize(mp_attr_ctl->b_cont);
if (optp->len == 0)
freemsg(mp_attr_ctl);
else
qreply(q, mp_attr_ctl);
/* IPv6 UDP endpoints */
optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP6;
optp->name = MIB2_UDP6_ENTRY;
optp->len = msgdsize(mp6_conn_ctl->b_cont);
qreply(q, mp6_conn_ctl);
/* table of MLP attributes... */
optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_UDP6;
optp->name = EXPER_XPORT_MLP;
optp->len = msgdsize(mp6_attr_ctl->b_cont);
if (optp->len == 0)
freemsg(mp6_attr_ctl);
else
qreply(q, mp6_attr_ctl);
return (1);
}
/*
* Return 0 if invalid set request, 1 otherwise, including non-udp requests.
* NOTE: Per MIB-II, UDP has no writable data.
* TODO: If this ever actually tries to set anything, it needs to be
* to do the appropriate locking.
*/
/* ARGSUSED */
int
udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
uchar_t *ptr, int len)
{
switch (level) {
case MIB2_UDP:
return (0);
default:
return (1);
}
}
static void
udp_report_item(mblk_t *mp, udp_t *udp)
{
char *state;
char addrbuf1[INET6_ADDRSTRLEN];
char addrbuf2[INET6_ADDRSTRLEN];
uint_t print_len, buf_len;
buf_len = mp->b_datap->db_lim - mp->b_wptr;
ASSERT(buf_len >= 0);
if (buf_len == 0)
return;
if (udp->udp_state == TS_UNBND)
state = "UNBOUND";
else if (udp->udp_state == TS_IDLE)
state = "IDLE";
else if (udp->udp_state == TS_DATA_XFER)
state = "CONNECTED";
else
state = "UnkState";
print_len = snprintf((char *)mp->b_wptr, buf_len,
MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
(void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
inet_ntop(AF_INET6, &udp->udp_v6src,
addrbuf1, sizeof (addrbuf1)),
inet_ntop(AF_INET6, &udp->udp_v6dst,
addrbuf2, sizeof (addrbuf2)),
ntohs(udp->udp_dstport), state);
if (print_len < buf_len) {
mp->b_wptr += print_len;
} else {
mp->b_wptr += buf_len;
}
}
/* Report for ndd "udp_status" */
/* ARGSUSED */
static int
udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
zoneid_t zoneid;
connf_t *connfp;
conn_t *connp = Q_TO_CONN(q);
udp_t *udp = connp->conn_udp;
int i;
/*
* Because of the ndd constraint, at most we can have 64K buffer
* to put in all UDP info. So to be more efficient, just
* allocate a 64K buffer here, assuming we need that large buffer.
* This may be a problem as any user can read udp_status. Therefore
* we limit the rate of doing this using udp_ndd_get_info_interval.
* This should be OK as normal users should not do this too often.
*/
if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
drv_usectohz(udp_ndd_get_info_interval * 1000)) {
(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
return (0);
}
}
if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
/* The following may work even if we cannot get a large buf. */
(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
return (0);
}
(void) mi_mpprintf(mp,
"UDP " MI_COL_HDRPAD_STR
/* 12345678[89ABCDEF] */
" zone lport src addr dest addr port state");
/* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
zoneid = connp->conn_zoneid;
for (i = 0; i < CONN_G_HASH_SIZE; i++) {
connfp = &ipcl_globalhash_fanout[i];
connp = NULL;
while ((connp = ipcl_get_next_conn(connfp, connp,
IPCL_UDP))) {
udp = connp->conn_udp;
if (zoneid != GLOBAL_ZONEID &&
zoneid != connp->conn_zoneid)
continue;
udp_report_item(mp->b_cont, udp);
}
}
udp_last_ndd_get_info_time = ddi_get_lbolt();
return (0);
}
/*
* This routine creates a T_UDERROR_IND message and passes it upstream.
* The address and options are copied from the T_UNITDATA_REQ message
* passed in mp. This message is freed.
*/
static void
udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
t_scalar_t err)
{
struct T_unitdata_req *tudr;
mblk_t *mp1;
uchar_t *optaddr;
t_scalar_t optlen;
if (DB_TYPE(mp) == M_DATA) {
ASSERT(destaddr != NULL && destlen != 0);
optaddr = NULL;
optlen = 0;
} else {
if ((mp->b_wptr < mp->b_rptr) ||
(MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
goto done;
}
tudr = (struct T_unitdata_req *)mp->b_rptr;
destaddr = mp->b_rptr + tudr->DEST_offset;
if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
destaddr + tudr->DEST_length < mp->b_rptr ||
destaddr + tudr->DEST_length > mp->b_wptr) {
goto done;
}
optaddr = mp->b_rptr + tudr->OPT_offset;
if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
optaddr + tudr->OPT_length < mp->b_rptr ||
optaddr + tudr->OPT_length > mp->b_wptr) {
goto done;
}
destlen = tudr->DEST_length;
optlen = tudr->OPT_length;
}
mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
(char *)optaddr, optlen, err);
if (mp1 != NULL)
putnext(UDP_RD(q), mp1);
done:
freemsg(mp);
}
/*
* This routine removes a port number association from a stream. It
* is called by udp_wput to handle T_UNBIND_REQ messages.
*/
static void
udp_unbind(queue_t *q, mblk_t *mp)
{
udp_t *udp = Q_TO_UDP(q);
/* If a bind has not been done, we can't unbind. */
if (udp->udp_state == TS_UNBND) {
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
if (cl_inet_unbind != NULL) {
/*
* Running in cluster mode - register unbind information
*/
if (udp->udp_ipversion == IPV4_VERSION) {
(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
(uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
(in_port_t)udp->udp_port);
} else {
(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
(uint8_t *)&(udp->udp_v6src),
(in_port_t)udp->udp_port);
}
}
udp_bind_hash_remove(udp, B_FALSE);
V6_SET_ZERO(udp->udp_v6src);
V6_SET_ZERO(udp->udp_bound_v6src);
udp->udp_port = 0;
udp->udp_state = TS_UNBND;
if (udp->udp_family == AF_INET6) {
int error;
/* Rebuild the header template */
error = udp_build_hdrs(q, udp);
if (error != 0) {
udp_err_ack(q, mp, TSYSERR, error);
return;
}
}
/*
* Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
* and therefore ip_unbind must never return NULL.
*/
mp = ip_unbind(q, mp);
ASSERT(mp != NULL);
putnext(UDP_RD(q), mp);
}
/*
* Don't let port fall into the privileged range.
* Since the extra privileged ports can be arbitrary we also
* ensure that we exclude those from consideration.
* udp_g_epriv_ports is not sorted thus we loop over it until
* there are no changes.
*/
static in_port_t
udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
{
int i;
in_port_t nextport;
boolean_t restart = B_FALSE;
if (random && udp_random_anon_port != 0) {
(void) random_get_pseudo_bytes((uint8_t *)&port,
sizeof (in_port_t));
/*
* Unless changed by a sys admin, the smallest anon port
* is 32768 and the largest anon port is 65535. It is
* very likely (50%) for the random port to be smaller
* than the smallest anon port. When that happens,
* add port % (anon port range) to the smallest anon
* port to get the random port. It should fall into the
* valid anon port range.
*/
if (port < udp_smallest_anon_port) {
port = udp_smallest_anon_port +
port % (udp_largest_anon_port -
udp_smallest_anon_port);
}
}
retry:
if (port < udp_smallest_anon_port)
port = udp_smallest_anon_port;
if (port > udp_largest_anon_port) {
port = udp_smallest_anon_port;
if (restart)
return (0);
restart = B_TRUE;
}
if (port < udp_smallest_nonpriv_port)
port = udp_smallest_nonpriv_port;
for (i = 0; i < udp_g_num_epriv_ports; i++) {
if (port == udp_g_epriv_ports[i]) {
port++;
/*
* Make sure that the port is in the
* valid range.
*/
goto retry;
}
}
if (is_system_labeled() &&
(nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
port, IPPROTO_UDP, B_TRUE)) != 0) {
port = nextport;
goto retry;
}
return (port);
}
static int
udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
{
int err;
uchar_t opt_storage[IP_MAX_OPT_LENGTH];
udp_t *udp = Q_TO_UDP(wq);
err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
opt_storage, udp->udp_mac_exempt);
if (err == 0) {
err = tsol_update_options(&udp->udp_ip_snd_options,
&udp->udp_ip_snd_options_len, &udp->udp_label_len,
opt_storage);
}
if (err != 0) {
DTRACE_PROBE4(
tx__ip__log__info__updatelabel__udp,
char *, "queue(1) failed to update options(2) on mp(3)",
queue_t *, wq, char *, opt_storage, mblk_t *, mp);
} else {
IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
}
return (err);
}
static mblk_t *
udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
uint_t srcid, int *error)
{
udp_t *udp = connp->conn_udp;
queue_t *q = connp->conn_wq;
mblk_t *mp1 = mp;
mblk_t *mp2;
ipha_t *ipha;
int ip_hdr_length;
uint32_t ip_len;
udpha_t *udpha;
udpattrs_t attrs;
*error = 0;
if (v4dst == INADDR_ANY)
v4dst = htonl(INADDR_LOOPBACK);
/*
* If options passed in, feed it for verification and handling
*/
attrs.udpattr_credset = B_FALSE;
if (DB_TYPE(mp) != M_DATA) {
mp1 = mp->b_cont;
if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
attrs.udpattr_ipp = NULL;
attrs.udpattr_mb = mp;
if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
goto done;
/*
* Note: success in processing options.
* mp option buffer represented by
* OPT_length/offset now potentially modified
* and contain option setting results
*/
ASSERT(*error == 0);
}
}
/* mp1 points to the M_DATA mblk carrying the packet */
ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
/* Check if our saved options are valid; update if not */
if (is_system_labeled()) {
/* Using UDP MLP requires SCM_UCRED from user */
if (connp->conn_mlp_type != mlptSingle &&
!attrs.udpattr_credset) {
DTRACE_PROBE4(
tx__ip__log__info__output__udp,
char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
*error = ECONNREFUSED;
goto done;
}
if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst) &&
(*error = udp_update_label(q, mp, v4dst)) != 0)
goto done;
}
/* Add an IP header */
ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
udp->udp_ip_snd_options_len;
ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
!OK_32PTR(ipha)) {
mp2 = allocb(ip_hdr_length + udp_wroff_extra, BPRI_LO);
if (mp2 == NULL) {
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "allocbfail2");
*error = ENOMEM;
goto done;
}
mp2->b_wptr = DB_LIM(mp2);
mp2->b_cont = mp1;
mp1 = mp2;
if (DB_TYPE(mp) != M_DATA)
mp->b_cont = mp1;
else
mp = mp1;
ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
}
ip_hdr_length -= UDPH_SIZE;
#ifdef _BIG_ENDIAN
/* Set version, header length, and tos */
*(uint16_t *)&ipha->ipha_version_and_hdr_length =
((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
udp->udp_type_of_service);
/* Set ttl and protocol */
*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
#else
/* Set version, header length, and tos */
*(uint16_t *)&ipha->ipha_version_and_hdr_length =
((udp->udp_type_of_service << 8) |
((IP_VERSION << 4) | (ip_hdr_length>>2)));
/* Set ttl and protocol */
*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
#endif
/*
* Copy our address into the packet. If this is zero,
* first look at __sin6_src_id for a hint. If we leave the source
* as INADDR_ANY then ip will fill in the real source address.
*/
IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
in6_addr_t v6src;
ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid);
IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
}
ipha->ipha_fragment_offset_and_flags = 0;
ipha->ipha_ident = 0;
mp1->b_rptr = (uchar_t *)ipha;
ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
(uintptr_t)UINT_MAX);
/* Determine length of packet */
ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
if ((mp2 = mp1->b_cont) != NULL) {
do {
ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
ip_len += (uint32_t)MBLKL(mp2);
} while ((mp2 = mp2->b_cont) != NULL);
}
/*
* If the size of the packet is greater than the maximum allowed by
* ip, return an error. Passing this down could cause panics because
* the size will have wrapped and be inconsistent with the msg size.
*/
if (ip_len > IP_MAXPACKET) {
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "IP length exceeded");
*error = EMSGSIZE;
goto done;
}
ipha->ipha_length = htons((uint16_t)ip_len);
ip_len -= ip_hdr_length;
ip_len = htons((uint16_t)ip_len);
udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
/*
* Copy in the destination address
*/
ipha->ipha_dst = v4dst;
/*
* Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
*/
if (CLASSD(v4dst))
ipha->ipha_ttl = udp->udp_multicast_ttl;
udpha->uha_dst_port = port;
udpha->uha_src_port = udp->udp_port;
if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) {
uint32_t cksum;
bcopy(udp->udp_ip_snd_options, &ipha[1],
udp->udp_ip_snd_options_len);
/*
* Massage source route putting first source route in ipha_dst.
* Ignore the destination in T_unitdata_req.
* Create a checksum adjustment for a source route, if any.
*/
cksum = ip_massage_options(ipha);
cksum = (cksum & 0xFFFF) + (cksum >> 16);
cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
(ipha->ipha_dst & 0xFFFF);
if ((int)cksum < 0)
cksum--;
cksum = (cksum & 0xFFFF) + (cksum >> 16);
/*
* IP does the checksum if uha_checksum is non-zero,
* We make it easy for IP to include our pseudo header
* by putting our length in uha_checksum.
*/
cksum += ip_len;
cksum = (cksum & 0xFFFF) + (cksum >> 16);
/* There might be a carry. */
cksum = (cksum & 0xFFFF) + (cksum >> 16);
#ifdef _LITTLE_ENDIAN
if (udp_do_checksum)
ip_len = (cksum << 16) | ip_len;
#else
if (udp_do_checksum)
ip_len = (ip_len << 16) | cksum;
else
ip_len <<= 16;
#endif
} else {
/*
* IP does the checksum if uha_checksum is non-zero,
* We make it easy for IP to include our pseudo header
* by putting our length in uha_checksum.
*/
if (udp_do_checksum)
ip_len |= (ip_len << 16);
#ifndef _LITTLE_ENDIAN
else
ip_len <<= 16;
#endif
}
/* Set UDP length and checksum */
*((uint32_t *)&udpha->uha_length) = ip_len;
if (DB_CRED(mp) != NULL)
mblk_setcred(mp1, DB_CRED(mp));
if (DB_TYPE(mp) != M_DATA) {
ASSERT(mp != mp1);
freeb(mp);
}
/* mp has been consumed and we'll return success */
ASSERT(*error == 0);
mp = NULL;
/* We're done. Pass the packet to ip. */
BUMP_MIB(&udp_mib, udpOutDatagrams);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "end");
if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
CONN_OUTBOUND_POLICY_PRESENT(connp) ||
connp->conn_dontroute || connp->conn_xmit_if_ill != NULL ||
connp->conn_nofailover_ill != NULL ||
connp->conn_outgoing_ill != NULL ||
ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
IPP_ENABLED(IPP_LOCAL_OUT) || ip_g_mrouter != NULL) {
UDP_STAT(udp_ip_send);
ip_output(connp, mp1, connp->conn_wq, IP_WPUT);
} else {
udp_send_data(udp, connp->conn_wq, mp1, ipha);
}
done:
if (*error != 0) {
ASSERT(mp != NULL);
BUMP_MIB(&udp_mib, udpOutErrors);
}
return (mp);
}
static void
udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
{
conn_t *connp = udp->udp_connp;
ipaddr_t src, dst;
ill_t *ill;
ire_t *ire;
ipif_t *ipif = NULL;
mblk_t *ire_fp_mp;
uint_t ire_fp_mp_len;
uint16_t *up;
uint32_t cksum, hcksum_txflags;
queue_t *dev_q;
boolean_t retry_caching;
dst = ipha->ipha_dst;
src = ipha->ipha_src;
ASSERT(ipha->ipha_ident == 0);
if (CLASSD(dst)) {
int err;
ipif = conn_get_held_ipif(connp,
&connp->conn_multicast_ipif, &err);
if (ipif == NULL || ipif->ipif_isv6 ||
(ipif->ipif_ill->ill_phyint->phyint_flags &
PHYI_LOOPBACK)) {
if (ipif != NULL)
ipif_refrele(ipif);
UDP_STAT(udp_ip_send);
ip_output(connp, mp, q, IP_WPUT);
return;
}
}
retry_caching = B_FALSE;
mutex_enter(&connp->conn_lock);
ire = connp->conn_ire_cache;
ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
if (ire == NULL || ire->ire_addr != dst ||
(ire->ire_marks & IRE_MARK_CONDEMNED)) {
retry_caching = B_TRUE;
} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
ASSERT(ipif != NULL);
if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
stq_ill->ill_group != ipif->ipif_ill->ill_group))
retry_caching = B_TRUE;
}
if (!retry_caching) {
ASSERT(ire != NULL);
IRE_REFHOLD(ire);
mutex_exit(&connp->conn_lock);
} else {
boolean_t cached = B_FALSE;
connp->conn_ire_cache = NULL;
mutex_exit(&connp->conn_lock);
/* Release the old ire */
if (ire != NULL) {
IRE_REFRELE_NOTR(ire);
ire = NULL;
}
if (CLASSD(dst)) {
ASSERT(ipif != NULL);
ire = ire_ctable_lookup(dst, 0, 0, ipif,
connp->conn_zoneid, MBLK_GETLABEL(mp),
MATCH_IRE_ILL_GROUP);
} else {
ASSERT(ipif == NULL);
ire = ire_cache_lookup(dst, connp->conn_zoneid,
MBLK_GETLABEL(mp));
}
if (ire == NULL) {
if (ipif != NULL)
ipif_refrele(ipif);
UDP_STAT(udp_ire_null);
ip_output(connp, mp, q, IP_WPUT);
return;
}
IRE_REFHOLD_NOTR(ire);
mutex_enter(&connp->conn_lock);
if (!(connp->conn_state_flags & CONN_CLOSING) &&
connp->conn_ire_cache == NULL) {
rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
connp->conn_ire_cache = ire;
cached = B_TRUE;
}
rw_exit(&ire->ire_bucket->irb_lock);
}
mutex_exit(&connp->conn_lock);
/*
* We can continue to use the ire but since it was not
* cached, we should drop the extra reference.
*/
if (!cached)
IRE_REFRELE_NOTR(ire);
}
ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
ASSERT(!CLASSD(dst) || ipif != NULL);
if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
(ire->ire_flags & RTF_MULTIRT) || ire->ire_stq == NULL ||
ire->ire_max_frag < ntohs(ipha->ipha_length) ||
(ire_fp_mp = ire->ire_fp_mp) == NULL ||
(connp->conn_nexthop_set) ||
(ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
if (ipif != NULL)
ipif_refrele(ipif);
UDP_STAT(udp_ip_ire_send);
IRE_REFRELE(ire);
ip_output(connp, mp, q, IP_WPUT);
return;
}
BUMP_MIB(&ip_mib, ipOutRequests);
ill = ire_to_ill(ire);
ASSERT(ill != NULL);
dev_q = ire->ire_stq->q_next;
ASSERT(dev_q != NULL);
/*
* If the service thread is already running, or if the driver
* queue is currently flow-controlled, queue this packet.
*/
if ((q->q_first != NULL || connp->conn_draining) ||
((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) {
if (ip_output_queue) {
(void) putq(q, mp);
} else {
BUMP_MIB(&ip_mib, ipOutDiscards);
freemsg(mp);
}
if (ipif != NULL)
ipif_refrele(ipif);
IRE_REFRELE(ire);
return;
}
ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
#ifndef _BIG_ENDIAN
ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
#endif
if (src == INADDR_ANY && !connp->conn_unspec_src) {
if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
src = ipha->ipha_src = ipif->ipif_src_addr;
else
src = ipha->ipha_src = ire->ire_src_addr;
}
if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
ASSERT(ill->ill_hcksum_capab != NULL);
hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
} else {
hcksum_txflags = 0;
}
/* pseudo-header checksum (do it in parts for IP header checksum) */
cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
if (*up != 0) {
IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
ntohs(ipha->ipha_length), cksum);
/* Software checksum? */
if (DB_CKSUMFLAGS(mp) == 0) {
UDP_STAT(udp_out_sw_cksum);
UDP_STAT_UPDATE(udp_out_sw_cksum_bytes,
ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
}
}
ipha->ipha_fragment_offset_and_flags |=
(uint32_t)htons(ire->ire_frag_flag);
/* Calculate IP header checksum if hardware isn't capable */
if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
((uint16_t *)ipha)[4]);
}
if (CLASSD(dst)) {
ilm_t *ilm;
ILM_WALKER_HOLD(ill);
ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
ILM_WALKER_RELE(ill);
if (ilm != NULL) {
ip_multicast_loopback(q, ill, mp,
connp->conn_multicast_loop ? 0 :
IP_FF_NO_MCAST_LOOP, connp->conn_zoneid);
}
/* If multicast TTL is 0 then we are done */
if (ipha->ipha_ttl == 0) {
if (ipif != NULL)
ipif_refrele(ipif);
freemsg(mp);
IRE_REFRELE(ire);
return;
}
}
ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
UPDATE_OB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
if (ILL_DLS_CAPABLE(ill)) {
/*
* Send the packet directly to DLD, where it may be queued
* depending on the availability of transmit resources at
* the media layer.
*/
IP_DLS_ILL_TX(ill, mp);
} else {
putnext(ire->ire_stq, mp);
}
if (ipif != NULL)
ipif_refrele(ipif);
IRE_REFRELE(ire);
}
static boolean_t
udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
{
udp_t *udp = Q_TO_UDP(wq);
int err;
uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
dst, opt_storage, udp->udp_mac_exempt);
if (err == 0) {
err = tsol_update_sticky(&udp->udp_sticky_ipp,
&udp->udp_label_len_v6, opt_storage);
}
if (err != 0) {
DTRACE_PROBE4(
tx__ip__log__drop__updatelabel__udp6,
char *, "queue(1) failed to update options(2) on mp(3)",
queue_t *, wq, char *, opt_storage, mblk_t *, mp);
} else {
udp->udp_v6lastdst = *dst;
}
return (err);
}
/*
* This routine handles all messages passed downstream. It either
* consumes the message or passes it downstream; it never queues a
* a message.
*/
static void
udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
{
sin6_t *sin6;
sin_t *sin;
ipaddr_t v4dst;
uint16_t port;
uint_t srcid;
queue_t *q = connp->conn_wq;
udp_t *udp = connp->conn_udp;
int error = 0;
struct sockaddr_storage ss;
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
"udp_wput_start: connp %p mp %p", connp, mp);
/*
* We directly handle several cases here: T_UNITDATA_REQ message
* coming down as M_PROTO/M_PCPROTO and M_DATA messages for both
* connected and non-connected socket. The latter carries the
* address structure along when this routine gets called.
*/
switch (DB_TYPE(mp)) {
case M_DATA:
if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
if (!udp->udp_direct_sockfs ||
addr == NULL || addrlen == 0) {
/* Not connected; address is required */
BUMP_MIB(&udp_mib, udpOutErrors);
UDP_STAT(udp_out_err_notconn);
freemsg(mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: connp %p (%S)", connp,
"not-connected; address required");
return;
}
ASSERT(udp->udp_issocket);
UDP_DBGSTAT(udp_data_notconn);
/* Not connected; do some more checks below */
break;
}
/* M_DATA for connected socket */
UDP_DBGSTAT(udp_data_conn);
IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
/* Initialize addr and addrlen as if they're passed in */
if (udp->udp_family == AF_INET) {
sin = (sin_t *)&ss;
sin->sin_family = AF_INET;
sin->sin_port = udp->udp_dstport;
sin->sin_addr.s_addr = v4dst;
addr = (struct sockaddr *)sin;
addrlen = sizeof (*sin);
} else {
sin6 = (sin6_t *)&ss;
sin6->sin6_family = AF_INET6;
sin6->sin6_port = udp->udp_dstport;
sin6->sin6_flowinfo = udp->udp_flowinfo;
sin6->sin6_addr = udp->udp_v6dst;
sin6->sin6_scope_id = 0;
sin6->__sin6_src_id = 0;
addr = (struct sockaddr *)sin6;
addrlen = sizeof (*sin6);
}
if (udp->udp_family == AF_INET ||
IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) {
/*
* Handle both AF_INET and AF_INET6; the latter
* for IPV4 mapped destination addresses. Note
* here that both addr and addrlen point to the
* corresponding struct depending on the address
* family of the socket.
*/
mp = udp_output_v4(connp, mp, v4dst,
udp->udp_dstport, 0, &error);
} else {
mp = udp_output_v6(connp, mp, sin6, &error);
}
if (error != 0) {
ASSERT(addr != NULL && addrlen != 0);
goto ud_error;
}
return;
case M_PROTO:
case M_PCPROTO: {
struct T_unitdata_req *tudr;
ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
tudr = (struct T_unitdata_req *)mp->b_rptr;
/* Handle valid T_UNITDATA_REQ here */
if (MBLKL(mp) >= sizeof (*tudr) &&
((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
if (mp->b_cont == NULL) {
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
error = EPROTO;
goto ud_error;
}
if (!MBLKIN(mp, 0, tudr->DEST_offset +
tudr->DEST_length)) {
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
error = EADDRNOTAVAIL;
goto ud_error;
}
/*
* If a port has not been bound to the stream, fail.
* This is not a problem when sockfs is directly
* above us, because it will ensure that the socket
* is first bound before allowing data to be sent.
*/
if (udp->udp_state == TS_UNBND) {
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "outstate");
error = EPROTO;
goto ud_error;
}
addr = (struct sockaddr *)
&mp->b_rptr[tudr->DEST_offset];
addrlen = tudr->DEST_length;
if (tudr->OPT_length != 0)
UDP_STAT(udp_out_opt);
break;
}
/* FALLTHRU */
}
default:
udp_become_writer(connp, mp, udp_wput_other_wrapper,
SQTAG_UDP_OUTPUT);
return;
}
ASSERT(addr != NULL);
switch (udp->udp_family) {
case AF_INET6:
sin6 = (sin6_t *)addr;
if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) ||
sin6->sin6_family != AF_INET6) {
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
error = EADDRNOTAVAIL;
goto ud_error;
}
if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
/*
* Destination is a non-IPv4-compatible IPv6 address.
* Send out an IPv6 format packet.
*/
mp = udp_output_v6(connp, mp, sin6, &error);
if (error != 0)
goto ud_error;
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "udp_output_v6");
return;
}
/*
* If the local address is not zero or a mapped address
* return an error. It would be possible to send an IPv4
* packet but the response would never make it back to the
* application since it is bound to a non-mapped address.
*/
if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
error = EADDRNOTAVAIL;
goto ud_error;
}
/* Send IPv4 packet without modifying udp_ipversion */
/* Extract port and ipaddr */
port = sin6->sin6_port;
IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
srcid = sin6->__sin6_src_id;
break;
case AF_INET:
sin = (sin_t *)addr;
if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) ||
sin->sin_family != AF_INET) {
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
"udp_wput_end: q %p (%S)", q, "badaddr");
error = EADDRNOTAVAIL;
goto ud_error;
}
/* Extract port and ipaddr */
port = sin->sin_port;
v4dst = sin->sin_addr.s_addr;
srcid = 0;
break;
}
mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error);
if (error != 0) {
ud_error:
UDP_STAT(udp_out_err_output);
ASSERT(mp != NULL);
/* mp is freed by the following routine */
udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
(t_scalar_t)error);
}
}
/* ARGSUSED */
static void
udp_output_wrapper(void *arg, mblk_t *mp, void *arg2)
{
udp_output((conn_t *)arg, mp, NULL, 0);
_UDP_EXIT((conn_t *)arg);
}
static void
udp_wput(queue_t *q, mblk_t *mp)
{
_UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper,
SQTAG_UDP_WPUT);
}
/*
* Allocate and prepare a T_UNITDATA_REQ message.
*/
static mblk_t *
udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen)
{
struct T_unitdata_req *tudr;
mblk_t *mp;
mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED);
if (mp != NULL) {
mp->b_wptr += sizeof (*tudr) + addrlen;
DB_TYPE(mp) = M_PROTO;
tudr = (struct T_unitdata_req *)mp->b_rptr;
tudr->PRIM_type = T_UNITDATA_REQ;
tudr->DEST_length = addrlen;
tudr->DEST_offset = (t_scalar_t)sizeof (*tudr);
tudr->OPT_length = 0;
tudr->OPT_offset = 0;
bcopy(addr, tudr+1, addrlen);
}
return (mp);
}
/*
* Entry point for sockfs when udp is in "direct sockfs" mode. This mode
* is valid when we are directly beneath the stream head, and thus sockfs
* is able to bypass STREAMS and directly call us, passing along the sockaddr
* structure without the cumbersome T_UNITDATA_REQ interface. Note that
* this is done for both connected and non-connected endpoint.
*/
void
udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
{
conn_t *connp;
udp_t *udp;
q = UDP_WR(q);
connp = Q_TO_CONN(q);
udp = connp->conn_udp;
/* udpsockfs should only send down M_DATA for this entry point */
ASSERT(DB_TYPE(mp) == M_DATA);
mutex_enter(&connp->conn_lock);
UDP_MODE_ASSERTIONS(udp, UDP_ENTER);
if (udp->udp_mode != UDP_MT_HOT) {
/*
* We can't enter this conn right away because another
* thread is currently executing as writer; therefore we
* need to deposit the message into the squeue to be
* drained later. If a socket address is present, we
* need to create a T_UNITDATA_REQ message as placeholder.
*/
if (addr != NULL && addrlen != 0) {
mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen);
if (tudr_mp == NULL) {
mutex_exit(&connp->conn_lock);
BUMP_MIB(&udp_mib, udpOutErrors);
UDP_STAT(udp_out_err_tudr);
freemsg(mp);
return;
}
/* Tag the packet with T_UNITDATA_REQ */
tudr_mp->b_cont = mp;
mp = tudr_mp;
}
mutex_exit(&connp->conn_lock);
udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT);
return;
}
/* We can execute as reader right away. */
UDP_READERS_INCREF(udp);
mutex_exit(&connp->conn_lock);
udp_output(connp, mp, addr, addrlen);
udp_exit(connp);
}
/*
* udp_output_v6():
* Assumes that udp_wput did some sanity checking on the destination
* address.
*/
static mblk_t *
udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
{
ip6_t *ip6h;
ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */
mblk_t *mp1 = mp;
mblk_t *mp2;
int udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
size_t ip_len;
udpha_t *udph;
udp_t *udp = connp->conn_udp;
queue_t *q = connp->conn_wq;
ip6_pkt_t ipp_s; /* For ancillary data options */
ip6_pkt_t *ipp = &ipp_s;
ip6_pkt_t *tipp; /* temporary ipp */
uint32_t csum = 0;
uint_t ignore = 0;
uint_t option_exists = 0, is_sticky = 0;
uint8_t *cp;
uint8_t *nxthdr_ptr;
in6_addr_t ip6_dst;
udpattrs_t attrs;
boolean_t opt_present;
*error = 0;
/*
* If the local address is a mapped address return
* an error.
* It would be possible to send an IPv6 packet but the
* response would never make it back to the application
* since it is bound to a mapped address.
*/
if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
*error = EADDRNOTAVAIL;
goto done;
}
ipp->ipp_fields = 0;
ipp->ipp_sticky_ignored = 0;
/*
* If TPI options passed in, feed it for verification and handling
*/
attrs.udpattr_credset = B_FALSE;
opt_present = B_FALSE;
if (DB_TYPE(mp) != M_DATA) {
mp1 = mp->b_cont;
if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
attrs.udpattr_ipp = ipp;
attrs.udpattr_mb = mp;
if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
goto done;
ASSERT(*error == 0);
opt_present = B_TRUE;
}
}
ignore = ipp->ipp_sticky_ignored;
/* mp1 points to the M_DATA mblk carrying the packet */
ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
if (sin6->sin6_scope_id != 0 &&
IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
/*
* IPPF_SCOPE_ID is special. It's neither a sticky
* option nor ancillary data. It needs to be
* explicitly set in options_exists.
*/
option_exists |= IPPF_SCOPE_ID;
}
/*
* Compute the destination address
*/
ip6_dst = sin6->sin6_addr;
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
ip6_dst = ipv6_loopback;
/*
* If we're not going to the same destination as last time, then
* recompute the label required. This is done in a separate routine to
* avoid blowing up our stack here.
*/
if (is_system_labeled()) {
/* Using UDP MLP requires SCM_UCRED from user */
if (connp->conn_mlp_type != mlptSingle &&
!attrs.udpattr_credset) {
DTRACE_PROBE4(
tx__ip__log__info__output__udp6,
char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
*error = ECONNREFUSED;
goto done;
}
if ((opt_present ||
!IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst)) &&
(*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0)
goto done;
}
/*
* If there's a security label here, then we ignore any options the
* user may try to set. We keep the peer's label as a hidden sticky
* option.
*/
if (udp->udp_label_len_v6 > 0) {
ignore &= ~IPPF_HOPOPTS;
ipp->ipp_fields &= ~IPPF_HOPOPTS;
}
if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
/* No sticky options nor ancillary data. */
goto no_options;
}
/*
* Go through the options figuring out where each is going to
* come from and build two masks. The first mask indicates if
* the option exists at all. The second mask indicates if the
* option is sticky or ancillary.
*/
if (!(ignore & IPPF_HOPOPTS)) {
if (ipp->ipp_fields & IPPF_HOPOPTS) {
option_exists |= IPPF_HOPOPTS;
udp_ip_hdr_len += ipp->ipp_hopoptslen;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
option_exists |= IPPF_HOPOPTS;
is_sticky |= IPPF_HOPOPTS;
udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_hopoptslen;
}
}
if (!(ignore & IPPF_RTHDR)) {
if (ipp->ipp_fields & IPPF_RTHDR) {
option_exists |= IPPF_RTHDR;
udp_ip_hdr_len += ipp->ipp_rthdrlen;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
option_exists |= IPPF_RTHDR;
is_sticky |= IPPF_RTHDR;
udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
}
}
if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
option_exists |= IPPF_RTDSTOPTS;
udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
option_exists |= IPPF_RTDSTOPTS;
is_sticky |= IPPF_RTDSTOPTS;
udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
}
}
if (!(ignore & IPPF_DSTOPTS)) {
if (ipp->ipp_fields & IPPF_DSTOPTS) {
option_exists |= IPPF_DSTOPTS;
udp_ip_hdr_len += ipp->ipp_dstoptslen;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
option_exists |= IPPF_DSTOPTS;
is_sticky |= IPPF_DSTOPTS;
udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
}
}
if (!(ignore & IPPF_IFINDEX)) {
if (ipp->ipp_fields & IPPF_IFINDEX) {
option_exists |= IPPF_IFINDEX;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
option_exists |= IPPF_IFINDEX;
is_sticky |= IPPF_IFINDEX;
}
}
if (!(ignore & IPPF_ADDR)) {
if (ipp->ipp_fields & IPPF_ADDR) {
option_exists |= IPPF_ADDR;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
option_exists |= IPPF_ADDR;
is_sticky |= IPPF_ADDR;
}
}
if (!(ignore & IPPF_DONTFRAG)) {
if (ipp->ipp_fields & IPPF_DONTFRAG) {
option_exists |= IPPF_DONTFRAG;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
option_exists |= IPPF_DONTFRAG;
is_sticky |= IPPF_DONTFRAG;
}
}
if (!(ignore & IPPF_USE_MIN_MTU)) {
if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
option_exists |= IPPF_USE_MIN_MTU;
} else if (udp->udp_sticky_ipp.ipp_fields &
IPPF_USE_MIN_MTU) {
option_exists |= IPPF_USE_MIN_MTU;
is_sticky |= IPPF_USE_MIN_MTU;
}
}
if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
option_exists |= IPPF_HOPLIMIT;
/* IPV6_HOPLIMIT can never be sticky */
ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
if (!(ignore & IPPF_UNICAST_HOPS) &&
(udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
option_exists |= IPPF_UNICAST_HOPS;
is_sticky |= IPPF_UNICAST_HOPS;
}
if (!(ignore & IPPF_MULTICAST_HOPS) &&
(udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
option_exists |= IPPF_MULTICAST_HOPS;
is_sticky |= IPPF_MULTICAST_HOPS;
}
if (!(ignore & IPPF_TCLASS)) {
if (ipp->ipp_fields & IPPF_TCLASS) {
option_exists |= IPPF_TCLASS;
} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
option_exists |= IPPF_TCLASS;
is_sticky |= IPPF_TCLASS;
}
}
no_options:
/*
* If any options carried in the ip6i_t were specified, we
* need to account for the ip6i_t in the data we'll be sending
* down.
*/
if (option_exists & IPPF_HAS_IP6I)
udp_ip_hdr_len += sizeof (ip6i_t);
/* check/fix buffer config, setup pointers into it */
ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
!OK_32PTR(ip6h)) {
/* Try to get everything in a single mblk next time */
if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
udp->udp_max_hdr_len = udp_ip_hdr_len;
(void) mi_set_sth_wroff(UDP_RD(q),
udp->udp_max_hdr_len + udp_wroff_extra);
}
mp2 = allocb(udp_ip_hdr_len + udp_wroff_extra, BPRI_LO);
if (mp2 == NULL) {
*error = ENOMEM;
goto done;
}
mp2->b_wptr = DB_LIM(mp2);
mp2->b_cont = mp1;
mp1 = mp2;
if (DB_TYPE(mp) != M_DATA)
mp->b_cont = mp1;
else
mp = mp1;
ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
}
mp1->b_rptr = (unsigned char *)ip6h;
ip6i = (ip6i_t *)ip6h;
#define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
if (option_exists & IPPF_HAS_IP6I) {
ip6h = (ip6_t *)&ip6i[1];
ip6i->ip6i_flags = 0;
ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
/* sin6_scope_id takes precendence over IPPF_IFINDEX */
if (option_exists & IPPF_SCOPE_ID) {
ip6i->ip6i_flags |= IP6I_IFINDEX;
ip6i->ip6i_ifindex = sin6->sin6_scope_id;
} else if (option_exists & IPPF_IFINDEX) {
tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
ASSERT(tipp->ipp_ifindex != 0);
ip6i->ip6i_flags |= IP6I_IFINDEX;
ip6i->ip6i_ifindex = tipp->ipp_ifindex;
}
if (option_exists & IPPF_ADDR) {
/*
* Enable per-packet source address verification if
* IPV6_PKTINFO specified the source address.
* ip6_src is set in the transport's _wput function.
*/
ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
}
if (option_exists & IPPF_DONTFRAG) {
ip6i->ip6i_flags |= IP6I_DONTFRAG;
}
if (option_exists & IPPF_USE_MIN_MTU) {
ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
}
if (option_exists & IPPF_NEXTHOP) {
tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
ip6i->ip6i_flags |= IP6I_NEXTHOP;
ip6i->ip6i_nexthop = tipp->ipp_nexthop;
}
/*
* tell IP this is an ip6i_t private header
*/
ip6i->ip6i_nxt = IPPROTO_RAW;
}
/* Initialize IPv6 header */
ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
/* Set the hoplimit of the outgoing packet. */
if (option_exists & IPPF_HOPLIMIT) {
/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
ip6h->ip6_hops = ipp->ipp_hoplimit;
ip6i->ip6i_flags |= IP6I_HOPLIMIT;
} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
ip6h->ip6_hops = udp->udp_multicast_ttl;
if (option_exists & IPPF_MULTICAST_HOPS)
ip6i->ip6i_flags |= IP6I_HOPLIMIT;
} else {
ip6h->ip6_hops = udp->udp_ttl;
if (option_exists & IPPF_UNICAST_HOPS)
ip6i->ip6i_flags |= IP6I_HOPLIMIT;
}
if (option_exists & IPPF_ADDR) {
tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
ip6h->ip6_src = tipp->ipp_addr;
} else {
/*
* The source address was not set using IPV6_PKTINFO.
* First look at the bound source.
* If unspecified fallback to __sin6_src_id.
*/
ip6h->ip6_src = udp->udp_v6src;
if (sin6->__sin6_src_id != 0 &&
IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
ip_srcid_find_id(sin6->__sin6_src_id,
&ip6h->ip6_src, connp->conn_zoneid);
}
}
nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
cp = (uint8_t *)&ip6h[1];
/*
* Here's where we have to start stringing together
* any extension headers in the right order:
* Hop-by-hop, destination, routing, and final destination opts.
*/
if (option_exists & IPPF_HOPOPTS) {
/* Hop-by-hop options */
ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
*nxthdr_ptr = IPPROTO_HOPOPTS;
nxthdr_ptr = &hbh->ip6h_nxt;
bcopy(tipp->ipp_hopopts, cp, tipp->ipp_hopoptslen);
cp += tipp->ipp_hopoptslen;
}
/*
* En-route destination options
* Only do them if there's a routing header as well
*/
if (option_exists & IPPF_RTDSTOPTS) {
ip6_dest_t *dst = (ip6_dest_t *)cp;
tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
*nxthdr_ptr = IPPROTO_DSTOPTS;
nxthdr_ptr = &dst->ip6d_nxt;
bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
cp += tipp->ipp_rtdstoptslen;
}
/*
* Routing header next
*/
if (option_exists & IPPF_RTHDR) {
ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
*nxthdr_ptr = IPPROTO_ROUTING;
nxthdr_ptr = &rt->ip6r_nxt;
bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
cp += tipp->ipp_rthdrlen;
}
/*
* Do ultimate destination options
*/
if (option_exists & IPPF_DSTOPTS) {
ip6_dest_t *dest = (ip6_dest_t *)cp;
tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
*nxthdr_ptr = IPPROTO_DSTOPTS;
nxthdr_ptr = &dest->ip6d_nxt;
bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
cp += tipp->ipp_dstoptslen;
}
/*
* Now set the last header pointer to the proto passed in
*/
ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
*nxthdr_ptr = IPPROTO_UDP;
/* Update UDP header */
udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
udph->uha_dst_port = sin6->sin6_port;
udph->uha_src_port = udp->udp_port;
/*
* Copy in the destination address
*/
ip6h->ip6_dst = ip6_dst;
ip6h->ip6_vcf =
(IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
(sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
if (option_exists & IPPF_TCLASS) {
tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
tipp->ipp_tclass);
}
if (option_exists & IPPF_RTHDR) {
ip6_rthdr_t *rth;
/*
* Perform any processing needed for source routing.
* We know that all extension headers will be in the same mblk
* as the IPv6 header.
*/
rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
if (rth != NULL && rth->ip6r_segleft != 0) {
if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
/*
* Drop packet - only support Type 0 routing.
* Notify the application as well.
*/
*error = EPROTO;
goto done;
}
/*
* rth->ip6r_len is twice the number of
* addresses in the header. Thus it must be even.
*/
if (rth->ip6r_len & 0x1) {
*error = EPROTO;
goto done;
}
/*
* Shuffle the routing header and ip6_dst
* addresses, and get the checksum difference
* between the first hop (in ip6_dst) and
* the destination (in the last routing hdr entry).
*/
csum = ip_massage_options_v6(ip6h, rth);
/*
* Verify that the first hop isn't a mapped address.
* Routers along the path need to do this verification
* for subsequent hops.
*/
if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
*error = EADDRNOTAVAIL;
goto done;
}
cp += (rth->ip6r_len + 1)*8;
}
}
/* count up length of UDP packet */
ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
if ((mp2 = mp1->b_cont) != NULL) {
do {
ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
ip_len += (uint32_t)MBLKL(mp2);
} while ((mp2 = mp2->b_cont) != NULL);
}
/*
* If the size of the packet is greater than the maximum allowed by
* ip, return an error. Passing this down could cause panics because
* the size will have wrapped and be inconsistent with the msg size.
*/
if (ip_len > IP_MAXPACKET) {
*error = EMSGSIZE;
goto done;
}
/* Store the UDP length. Subtract length of extension hdrs */
udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
(int)((uchar_t *)udph - (uchar_t *)ip6h));
/*
* We make it easy for IP to include our pseudo header
* by putting our length in uh_checksum, modified (if
* we have a routing header) by the checksum difference
* between the ultimate destination and first hop addresses.
* Note: UDP over IPv6 must always checksum the packet.
*/
csum += udph->uha_length;
csum = (csum & 0xFFFF) + (csum >> 16);
udph->uha_checksum = (uint16_t)csum;
#ifdef _LITTLE_ENDIAN
ip_len = htons(ip_len);
#endif
ip6h->ip6_plen = ip_len;
if (DB_CRED(mp) != NULL)
mblk_setcred(mp1, DB_CRED(mp));
if (DB_TYPE(mp) != M_DATA) {
ASSERT(mp != mp1);
freeb(mp);
}
/* mp has been consumed and we'll return success */
ASSERT(*error == 0);
mp = NULL;
/* We're done. Pass the packet to IP */
BUMP_MIB(&udp_mib, udpOutDatagrams);
ip_output_v6(connp, mp1, q, IP_WPUT);
done:
if (*error != 0) {
ASSERT(mp != NULL);
BUMP_MIB(&udp_mib, udpOutErrors);
}
return (mp);
}
static void
udp_wput_other(queue_t *q, mblk_t *mp)
{
uchar_t *rptr = mp->b_rptr;
struct datab *db;
struct iocblk *iocp;
cred_t *cr;
conn_t *connp = Q_TO_CONN(q);
udp_t *udp = connp->conn_udp;
TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
"udp_wput_other_start: q %p", q);
db = mp->b_datap;
cr = DB_CREDDEF(mp, connp->conn_cred);
switch (db->db_type) {
case M_PROTO:
case M_PCPROTO:
if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
freemsg(mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "protoshort");
return;
}
switch (((t_primp_t)rptr)->type) {
case T_ADDR_REQ:
udp_addr_req(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "addrreq");
return;
case O_T_BIND_REQ:
case T_BIND_REQ:
udp_bind(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "bindreq");
return;
case T_CONN_REQ:
udp_connect(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "connreq");
return;
case T_CAPABILITY_REQ:
udp_capability_req(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "capabreq");
return;
case T_INFO_REQ:
udp_info_req(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "inforeq");
return;
case T_UNITDATA_REQ:
/*
* If a T_UNITDATA_REQ gets here, the address must
* be bad. Valid T_UNITDATA_REQs are handled
* in udp_wput.
*/
udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "unitdatareq");
return;
case T_UNBIND_REQ:
udp_unbind(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "unbindreq");
return;
case T_SVR4_OPTMGMT_REQ:
if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr))
/*
* Use upper queue for option processing in
* case the request is not handled at this
* level and needs to be passed down to IP.
*/
(void) svr4_optcom_req(_WR(UDP_RD(q)),
mp, cr, &udp_opt_obj);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "optmgmtreq");
return;
case T_OPTMGMT_REQ:
/*
* Use upper queue for option processing in
* case the request is not handled at this
* level and needs to be passed down to IP.
*/
(void) tpi_optcom_req(_WR(UDP_RD(q)),
mp, cr, &udp_opt_obj);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "optmgmtreq");
return;
case T_DISCON_REQ:
udp_disconnect(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "disconreq");
return;
/* The following TPI message is not supported by udp. */
case O_T_CONN_RES:
case T_CONN_RES:
udp_err_ack(q, mp, TNOTSUPPORT, 0);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "connres/disconreq");
return;
/* The following 3 TPI messages are illegal for udp. */
case T_DATA_REQ:
case T_EXDATA_REQ:
case T_ORDREL_REQ:
udp_err_ack(q, mp, TNOTSUPPORT, 0);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "data/exdata/ordrel");
return;
default:
break;
}
break;
case M_FLUSH:
if (*rptr & FLUSHW)
flushq(q, FLUSHDATA);
break;
case M_IOCTL:
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case TI_GETPEERNAME:
if (udp->udp_state != TS_DATA_XFER) {
/*
* If a default destination address has not
* been associated with the stream, then we
* don't know the peer's name.
*/
iocp->ioc_error = ENOTCONN;
iocp->ioc_count = 0;
mp->b_datap->db_type = M_IOCACK;
putnext(UDP_RD(q), mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "getpeername");
return;
}
/* FALLTHRU */
case TI_GETMYNAME: {
/*
* For TI_GETPEERNAME and TI_GETMYNAME, we first
* need to copyin the user's strbuf structure.
* Processing will continue in the M_IOCDATA case
* below.
*/
mi_copyin(q, mp, NULL,
SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "getmyname");
return;
}
case ND_SET:
/* nd_getset performs the necessary checking */
case ND_GET:
if (nd_getset(q, udp_g_nd, mp)) {
putnext(UDP_RD(q), mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)",
q, "get");
return;
}
break;
case _SIOCSOCKFALLBACK:
/*
* Either sockmod is about to be popped and the
* socket would now be treated as a plain stream,
* or a module is about to be pushed so we could
* no longer use read-side synchronous stream.
* Drain any queued data and disable direct sockfs
* interface from now on.
*/
if (!udp->udp_issocket) {
DB_TYPE(mp) = M_IOCNAK;
iocp->ioc_error = EINVAL;
} else {
udp->udp_issocket = B_FALSE;
if (udp->udp_direct_sockfs) {
/*
* Disable read-side synchronous
* stream interface and drain any
* queued data.
*/
udp_rcv_drain(UDP_RD(q), udp,
B_FALSE);
ASSERT(!udp->udp_direct_sockfs);
UDP_STAT(udp_sock_fallback);
}
DB_TYPE(mp) = M_IOCACK;
iocp->ioc_error = 0;
}
iocp->ioc_count = 0;
iocp->ioc_rval = 0;
putnext(UDP_RD(q), mp);
return;
default:
break;
}
break;
case M_IOCDATA:
udp_wput_iocdata(q, mp);
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "iocdata");
return;
default:
/* Unrecognized messages are passed through without change. */
break;
}
TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
"udp_wput_other_end: q %p (%S)", q, "end");
ip_output(connp, mp, q, IP_WPUT);
}
/* ARGSUSED */
static void
udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
{
udp_wput_other(((conn_t *)arg)->conn_wq, mp);
udp_exit((conn_t *)arg);
}
/*
* udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
* messages.
*/
static void
udp_wput_iocdata(queue_t *q, mblk_t *mp)
{
mblk_t *mp1;
STRUCT_HANDLE(strbuf, sb);
uint16_t port;
in6_addr_t v6addr;
ipaddr_t v4addr;
uint32_t flowinfo = 0;
int addrlen;
udp_t *udp = Q_TO_UDP(q);
/* Make sure it is one of ours. */
switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
case TI_GETMYNAME:
case TI_GETPEERNAME:
break;
default:
ip_output(Q_TO_CONN(q), mp, q, IP_WPUT);
return;
}
q = WR(UDP_RD(q));
switch (mi_copy_state(q, mp, &mp1)) {
case -1:
return;
case MI_COPY_CASE(MI_COPY_IN, 1):
break;
case MI_COPY_CASE(MI_COPY_OUT, 1):
/*
* The address has been copied out, so now
* copyout the strbuf.
*/
mi_copyout(q, mp);
return;
case MI_COPY_CASE(MI_COPY_OUT, 2):
/*
* The address and strbuf have been copied out.
* We're done, so just acknowledge the original
* M_IOCTL.
*/
mi_copy_done(q, mp, 0);
return;
default:
/*
* Something strange has happened, so acknowledge
* the original M_IOCTL with an EPROTO error.
*/
mi_copy_done(q, mp, EPROTO);
return;
}
/*
* Now we have the strbuf structure for TI_GETMYNAME
* and TI_GETPEERNAME. Next we copyout the requested
* address and then we'll copyout the strbuf.
*/
STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
(void *)mp1->b_rptr);
if (udp->udp_family == AF_INET)
addrlen = sizeof (sin_t);
else
addrlen = sizeof (sin6_t);
if (STRUCT_FGET(sb, maxlen) < addrlen) {
mi_copy_done(q, mp, EINVAL);
return;
}
switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
case TI_GETMYNAME:
if (udp->udp_family == AF_INET) {
ASSERT(udp->udp_ipversion == IPV4_VERSION);
if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
v4addr = V4_PART_OF_V6(udp->udp_v6src);
} else {
/*
* INADDR_ANY
* udp_v6src is not set, we might be bound to
* broadcast/multicast. Use udp_bound_v6src as
* local address instead (that could
* also still be INADDR_ANY)
*/
v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
}
} else {
/* udp->udp_family == AF_INET6 */
if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
v6addr = udp->udp_v6src;
} else {
/*
* UNSPECIFIED
* udp_v6src is not set, we might be bound to
* broadcast/multicast. Use udp_bound_v6src as
* local address instead (that could
* also still be UNSPECIFIED)
*/
v6addr = udp->udp_bound_v6src;
}
}
port = udp->udp_port;
break;
case TI_GETPEERNAME:
if (udp->udp_state != TS_DATA_XFER) {
mi_copy_done(q, mp, ENOTCONN);
return;
}
if (udp->udp_family == AF_INET) {
ASSERT(udp->udp_ipversion == IPV4_VERSION);
v4addr = V4_PART_OF_V6(udp->udp_v6dst);
} else {
/* udp->udp_family == AF_INET6) */
v6addr = udp->udp_v6dst;
flowinfo = udp->udp_flowinfo;
}
port = udp->udp_dstport;
break;
default:
mi_copy_done(q, mp, EPROTO);
return;
}
mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
if (!mp1)
return;
if (udp->udp_family == AF_INET) {
sin_t *sin;
STRUCT_FSET(sb, len, (int)sizeof (sin_t));
sin = (sin_t *)mp1->b_rptr;
mp1->b_wptr = (uchar_t *)&sin[1];
*sin = sin_null;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = v4addr;
sin->sin_port = port;
} else {
/* udp->udp_family == AF_INET6 */
sin6_t *sin6;
STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
sin6 = (sin6_t *)mp1->b_rptr;
mp1->b_wptr = (uchar_t *)&sin6[1];
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
sin6->sin6_flowinfo = flowinfo;
sin6->sin6_addr = v6addr;
sin6->sin6_port = port;
}
/* Copy out the address */
mi_copyout(q, mp);
}
static int
udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
udpattrs_t *udpattrs)
{
struct T_unitdata_req *udreqp;
int is_absreq_failure;
cred_t *cr;
conn_t *connp = Q_TO_CONN(q);
ASSERT(((t_primp_t)mp->b_rptr)->type);
cr = DB_CREDDEF(mp, connp->conn_cred);
udreqp = (struct T_unitdata_req *)mp->b_rptr;
/*
* Use upper queue for option processing since the callback
* routines expect to be called in UDP instance instead of IP.
*/
*errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length,
udreqp->OPT_offset, cr, &udp_opt_obj,
udpattrs, &is_absreq_failure);
if (*errorp != 0) {
/*
* Note: No special action needed in this
* module for "is_absreq_failure"
*/
return (-1); /* failure */
}
ASSERT(is_absreq_failure == 0);
return (0); /* success */
}
void
udp_ddi_init(void)
{
int i;
UDP6_MAJ = ddi_name_to_major(UDP6);
udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
udp_opt_obj.odb_opt_arr_cnt);
if (udp_bind_fanout_size & (udp_bind_fanout_size - 1)) {
/* Not a power of two. Round up to nearest power of two */
for (i = 0; i < 31; i++) {
if (udp_bind_fanout_size < (1 << i))
break;
}
udp_bind_fanout_size = 1 << i;
}
udp_bind_fanout = kmem_zalloc(udp_bind_fanout_size *
sizeof (udp_fanout_t), KM_SLEEP);
for (i = 0; i < udp_bind_fanout_size; i++) {
mutex_init(&udp_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
NULL);
}
(void) udp_param_register(udp_param_arr, A_CNT(udp_param_arr));
udp_kstat_init();
udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t),
CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0);
}
void
udp_ddi_destroy(void)
{
int i;
nd_free(&udp_g_nd);
for (i = 0; i < udp_bind_fanout_size; i++) {
mutex_destroy(&udp_bind_fanout[i].uf_lock);
}
kmem_free(udp_bind_fanout, udp_bind_fanout_size *
sizeof (udp_fanout_t));
udp_kstat_fini();
kmem_cache_destroy(udp_cache);
}
static void
udp_kstat_init(void)
{
udp_named_kstat_t template = {
{ "inDatagrams", KSTAT_DATA_UINT32, 0 },
{ "inErrors", KSTAT_DATA_UINT32, 0 },
{ "outDatagrams", KSTAT_DATA_UINT32, 0 },
{ "entrySize", KSTAT_DATA_INT32, 0 },
{ "entry6Size", KSTAT_DATA_INT32, 0 },
{ "outErrors", KSTAT_DATA_UINT32, 0 },
};
udp_mibkp = kstat_create(UDP_MOD_NAME, 0, UDP_MOD_NAME,
"mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0);
if (udp_mibkp == NULL)
return;
template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
bcopy(&template, udp_mibkp->ks_data, sizeof (template));
udp_mibkp->ks_update = udp_kstat_update;
kstat_install(udp_mibkp);
if ((udp_ksp = kstat_create(UDP_MOD_NAME, 0, "udpstat",
"net", KSTAT_TYPE_NAMED,
sizeof (udp_statistics) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL)) != NULL) {
udp_ksp->ks_data = &udp_statistics;
kstat_install(udp_ksp);
}
}
static void
udp_kstat_fini(void)
{
if (udp_ksp != NULL) {
kstat_delete(udp_ksp);
udp_ksp = NULL;
}
if (udp_mibkp != NULL) {
kstat_delete(udp_mibkp);
udp_mibkp = NULL;
}
}
static int
udp_kstat_update(kstat_t *kp, int rw)
{
udp_named_kstat_t *udpkp;
if ((kp == NULL) || (kp->ks_data == NULL))
return (EIO);
if (rw == KSTAT_WRITE)
return (EACCES);
udpkp = (udp_named_kstat_t *)kp->ks_data;
udpkp->inDatagrams.value.ui32 = udp_mib.udpInDatagrams;
udpkp->inErrors.value.ui32 = udp_mib.udpInErrors;
udpkp->outDatagrams.value.ui32 = udp_mib.udpOutDatagrams;
udpkp->outErrors.value.ui32 = udp_mib.udpOutErrors;
return (0);
}
/* ARGSUSED */
static void
udp_rput(queue_t *q, mblk_t *mp)
{
/*
* We get here whenever we do qreply() from IP,
* i.e as part of handlings ioctls, etc.
*/
putnext(q, mp);
}
/*
* Read-side synchronous stream info entry point, called as a
* result of handling certain STREAMS ioctl operations.
*/
static int
udp_rinfop(queue_t *q, infod_t *dp)
{
mblk_t *mp;
uint_t cmd = dp->d_cmd;
int res = 0;
int error = 0;
udp_t *udp = Q_TO_UDP(RD(UDP_WR(q)));
struct stdata *stp = STREAM(q);
mutex_enter(&udp->udp_drain_lock);
/* If shutdown on read has happened, return nothing */
mutex_enter(&stp->sd_lock);
if (stp->sd_flag & STREOF) {
mutex_exit(&stp->sd_lock);
goto done;
}
mutex_exit(&stp->sd_lock);
if ((mp = udp->udp_rcv_list_head) == NULL)
goto done;
ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
if (cmd & INFOD_COUNT) {
/*
* Return the number of messages.
*/
dp->d_count += udp->udp_rcv_msgcnt;
res |= INFOD_COUNT;
}
if (cmd & INFOD_BYTES) {
/*
* Return size of all data messages.
*/
dp->d_bytes += udp->udp_rcv_cnt;
res |= INFOD_BYTES;
}
if (cmd & INFOD_FIRSTBYTES) {
/*
* Return size of first data message.
*/
dp->d_bytes = msgdsize(mp);
res |= INFOD_FIRSTBYTES;
dp->d_cmd &= ~INFOD_FIRSTBYTES;
}
if (cmd & INFOD_COPYOUT) {
mblk_t *mp1 = mp->b_cont;
int n;
/*
* Return data contents of first message.
*/
ASSERT(DB_TYPE(mp1) == M_DATA);
while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
UIO_READ, dp->d_uiop)) != 0) {
goto done;
}
mp1 = mp1->b_cont;
}
res |= INFOD_COPYOUT;
dp->d_cmd &= ~INFOD_COPYOUT;
}
done:
mutex_exit(&udp->udp_drain_lock);
dp->d_res |= res;
return (error);
}
/*
* Read-side synchronous stream entry point. This is called as a result
* of recv/read operation done at sockfs, and is guaranteed to execute
* outside of the interrupt thread context. It returns a single datagram
* (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
*/
static int
udp_rrw(queue_t *q, struiod_t *dp)
{
mblk_t *mp;
udp_t *udp = Q_TO_UDP(_RD(UDP_WR(q)));
/* We should never get here when we're in SNMP mode */
ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD));
/*
* Dequeue datagram from the head of the list and return
* it to caller; also ensure that RSLEEP sd_wakeq flag is
* set/cleared depending on whether or not there's data
* remaining in the list.
*/
mutex_enter(&udp->udp_drain_lock);
if (!udp->udp_direct_sockfs) {
mutex_exit(&udp->udp_drain_lock);
UDP_STAT(udp_rrw_busy);
return (EBUSY);
}
if ((mp = udp->udp_rcv_list_head) != NULL) {
uint_t size = msgdsize(mp);
/* Last datagram in the list? */
if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
udp->udp_rcv_list_tail = NULL;
mp->b_next = NULL;
udp->udp_rcv_cnt -= size;
udp->udp_rcv_msgcnt--;
UDP_STAT(udp_rrw_msgcnt);
/* No longer flow-controlling? */
if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
udp->udp_drain_qfull = B_FALSE;
}
if (udp->udp_rcv_list_head == NULL) {
/*
* Either we just dequeued the last datagram or
* we get here from sockfs and have nothing to
* return; in this case clear RSLEEP.
*/
ASSERT(udp->udp_rcv_cnt == 0);
ASSERT(udp->udp_rcv_msgcnt == 0);
ASSERT(udp->udp_rcv_list_tail == NULL);
STR_WAKEUP_CLEAR(STREAM(q));
} else {
/*
* More data follows; we need udp_rrw() to be
* called in future to pick up the rest.
*/
STR_WAKEUP_SET(STREAM(q));
}
mutex_exit(&udp->udp_drain_lock);
dp->d_mp = mp;
return (0);
}
/*
* Enqueue a completely-built T_UNITDATA_IND message into the receive
* list; this is typically executed within the interrupt thread context
* and so we do things as quickly as possible.
*/
static void
udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
{
ASSERT(q == RD(q));
ASSERT(pkt_len == msgdsize(mp));
ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
mutex_enter(&udp->udp_drain_lock);
/*
* Wake up and signal the receiving app; it is okay to do this
* before enqueueing the mp because we are holding the drain lock.
* One of the advantages of synchronous stream is the ability for
* us to find out when the application performs a read on the
* socket by way of udp_rrw() entry point being called. We need
* to generate SIGPOLL/SIGIO for each received data in the case
* of asynchronous socket just as in the strrput() case. However,
* we only wake the application up when necessary, i.e. during the
* first enqueue. When udp_rrw() is called, we send up a single
* datagram upstream and call STR_WAKEUP_SET() again when there
* are still data remaining in our receive queue.
*/
if (udp->udp_rcv_list_head == NULL) {
STR_WAKEUP_SET(STREAM(q));
udp->udp_rcv_list_head = mp;
} else {
udp->udp_rcv_list_tail->b_next = mp;
}
udp->udp_rcv_list_tail = mp;
udp->udp_rcv_cnt += pkt_len;
udp->udp_rcv_msgcnt++;
/* Need to flow-control? */
if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
udp->udp_drain_qfull = B_TRUE;
/* Update poll events and send SIGPOLL/SIGIO if necessary */
STR_SENDSIG(STREAM(q));
mutex_exit(&udp->udp_drain_lock);
}
/*
* Drain the contents of receive list to the module upstream; we do
* this during close or when we fallback to the slow mode due to
* sockmod being popped or a module being pushed on top of us.
*/
static void
udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
{
mblk_t *mp;
ASSERT(q == RD(q));
mutex_enter(&udp->udp_drain_lock);
/*
* There is no race with a concurrent udp_input() sending
* up packets using putnext() after we have cleared the
* udp_direct_sockfs flag but before we have completed
* sending up the packets in udp_rcv_list, since we are
* either a writer or we have quiesced the conn.
*/
udp->udp_direct_sockfs = B_FALSE;
mutex_exit(&udp->udp_drain_lock);
if (udp->udp_rcv_list_head != NULL)
UDP_STAT(udp_drain);
/*
* Send up everything via putnext(); note here that we
* don't need the udp_drain_lock to protect us since
* nothing can enter udp_rrw() and that we currently
* have exclusive access to this udp.
*/
while ((mp = udp->udp_rcv_list_head) != NULL) {
udp->udp_rcv_list_head = mp->b_next;
mp->b_next = NULL;
udp->udp_rcv_cnt -= msgdsize(mp);
udp->udp_rcv_msgcnt--;
if (closing) {
freemsg(mp);
} else {
putnext(q, mp);
}
}
ASSERT(udp->udp_rcv_cnt == 0);
ASSERT(udp->udp_rcv_msgcnt == 0);
ASSERT(udp->udp_rcv_list_head == NULL);
udp->udp_rcv_list_tail = NULL;
udp->udp_drain_qfull = B_FALSE;
}
static size_t
udp_set_rcv_hiwat(udp_t *udp, size_t size)
{
/* We add a bit of extra buffering */
size += size >> 1;
if (size > udp_max_buf)
size = udp_max_buf;
udp->udp_rcv_hiwat = size;
return (size);
}
/*
* Little helper for IPsec's NAT-T processing.
*/
boolean_t
udp_compute_checksum(void)
{
return (udp_do_checksum);
}