tcp_fusion.c revision f4b3ec61df05330d25f55a36b975b4d7519fdeb1
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/strsubr.h>
#include <sys/debug.h>
#include <sys/sdt.h>
#include <sys/cmn_err.h>
#include <sys/tihdr.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip_impl.h>
#include <inet/tcp.h>
#include <inet/tcp_impl.h>
#include <inet/ipsec_impl.h>
#include <inet/ipclassifier.h>
#include <inet/ipp_common.h>
/*
* This file implements TCP fusion - a protocol-less data path for TCP
* loopback connections. The fusion of two local TCP endpoints occurs
* at connection establishment time. Various conditions (see details
* in tcp_fuse()) need to be met for fusion to be successful. If it
* fails, we fall back to the regular TCP data path; if it succeeds,
* both endpoints proceed to use tcp_fuse_output() as the transmit path.
* tcp_fuse_output() enqueues application data directly onto the peer's
* receive queue; no protocol processing is involved. After enqueueing
* the data, the sender can either push (putnext) data up the receiver's
* read queue; or the sender can simply return and let the receiver
* retrieve the enqueued data via the synchronous streams entry point
* tcp_fuse_rrw(). The latter path is taken if synchronous streams is
* enabled (the default). It is disabled if sockfs no longer resides
* directly on top of tcp module due to a module insertion or removal.
* It also needs to be temporarily disabled when sending urgent data
* because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
* by strsock_proto() hook.
*
* Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
* One of the requirements for fusion to succeed is that both endpoints
* need to be using the same squeue. This ensures that neither side
* can disappear while the other side is still sending data. By itself,
* squeue is not sufficient for guaranteeing safety when synchronous
* streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter
* the squeue and its access to tcp_rcv_list and other fusion-related
* fields needs to be sychronized with the sender. tcp_non_sq_lock is
* used for this purpose. When there is urgent data, the sender needs
* to push the data up the receiver's streams read queue. In order to
* avoid holding the tcp_non_sq_lock across putnext(), the sender sets
* the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock
* (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()). If tcp_fuse_rrw() enters
* after this point, it will see that synchronous streams is plugged and
* will wait on tcp_fuse_plugcv. After the sender has finished pushing up
* all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using
* TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(). This will cause any threads waiting
* on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call
* getq_noenab() to dequeue data from the stream head instead. Once the
* data on the stream head has been consumed, tcp_fuse_rrw() may again
* be used to process tcp_rcv_list. However, if TCP_FUSE_SYNCSTR_STOP()
* has been called, all future calls to tcp_fuse_rrw() will return EBUSY,
* effectively disabling synchronous streams.
*
* The following note applies only to the synchronous streams mode.
*
* Flow control is done by checking the size of receive buffer and
* the number of data blocks, both set to different limits. This is
* different than regular streams flow control where cumulative size
* check dominates block count check -- streams queue high water mark
* typically represents bytes. Each enqueue triggers notifications
* to the receiving process; a build up of data blocks indicates a
* slow receiver and the sender should be blocked or informed at the
* earliest moment instead of further wasting system resources. In
* effect, this is equivalent to limiting the number of outstanding
* segments in flight.
*/
/*
* Setting this to false means we disable fusion altogether and
* loopback connections would go through the protocol paths.
*/
boolean_t do_tcp_fusion = B_TRUE;
/*
* Enabling this flag allows sockfs to retrieve data directly
* from a fused tcp endpoint using synchronous streams interface.
*/
boolean_t do_tcp_direct_sockfs = B_TRUE;
/*
* This is the minimum amount of outstanding writes allowed on
* a synchronous streams-enabled receiving endpoint before the
* sender gets flow-controlled. Setting this value to 0 means
* that the data block limit is equivalent to the byte count
* limit, which essentially disables the check.
*/
#define TCP_FUSION_RCV_UNREAD_MIN 8
uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
static void tcp_fuse_syncstr_enable(tcp_t *);
static void tcp_fuse_syncstr_disable(tcp_t *);
static void strrput_sig(queue_t *, boolean_t);
/*
* Return true if this connection needs some IP functionality
*/
static boolean_t
tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
if (tcp->tcp_ipversion == IPV4_VERSION) {
if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
return (B_TRUE);
if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
return (B_TRUE);
if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
return (B_TRUE);
} else {
if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
return (B_TRUE);
if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
return (B_TRUE);
if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
return (B_TRUE);
}
if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
return (B_TRUE);
return (B_FALSE);
}
/*
* This routine gets called by the eager tcp upon changing state from
* SYN_RCVD to ESTABLISHED. It fuses a direct path between itself
* and the active connect tcp such that the regular tcp processings
* may be bypassed under allowable circumstances. Because the fusion
* requires both endpoints to be in the same squeue, it does not work
* for simultaneous active connects because there is no easy way to
* switch from one squeue to another once the connection is created.
* This is different from the eager tcp case where we assign it the
* same squeue as the one given to the active connect tcp during open.
*/
void
tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
{
conn_t *peer_connp, *connp = tcp->tcp_connp;
tcp_t *peer_tcp;
tcp_stack_t *tcps = tcp->tcp_tcps;
netstack_t *ns;
ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
ASSERT(!tcp->tcp_fused);
ASSERT(tcp->tcp_loopback);
ASSERT(tcp->tcp_loopback_peer == NULL);
/*
* We need to inherit q_hiwat of the listener tcp, but we can't
* really use tcp_listener since we get here after sending up
* T_CONN_IND and tcp_wput_accept() may be called independently,
* at which point tcp_listener is cleared; this is why we use
* tcp_saved_listener. The listener itself is guaranteed to be
* around until tcp_accept_finish() is called on this eager --
* this won't happen until we're done since we're inside the
* eager's perimeter now.
*/
ASSERT(tcp->tcp_saved_listener != NULL);
/*
* Lookup peer endpoint; search for the remote endpoint having
* the reversed address-port quadruplet in ESTABLISHED state,
* which is guaranteed to be unique in the system. Zone check
* is applied accordingly for loopback address, but not for
* local address since we want fusion to happen across Zones.
*/
if (tcp->tcp_ipversion == IPV4_VERSION) {
peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
(ipha_t *)iphdr, tcph, ipst);
} else {
peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
(ip6_t *)iphdr, tcph, ipst);
}
/*
* We can only proceed if peer exists, resides in the same squeue
* as our conn and is not raw-socket. The squeue assignment of
* this eager tcp was done earlier at the time of SYN processing
* in ip_fanout_tcp{_v6}. Note that similar squeues by itself
* doesn't guarantee a safe condition to fuse, hence we perform
* additional tests below.
*/
ASSERT(peer_connp == NULL || peer_connp != connp);
if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
!IPCL_IS_TCP(peer_connp)) {
if (peer_connp != NULL) {
TCP_STAT(tcps, tcp_fusion_unqualified);
CONN_DEC_REF(peer_connp);
}
return;
}
peer_tcp = peer_connp->conn_tcp; /* active connect tcp */
ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
/*
* Fuse the endpoints; we perform further checks against both
* tcp endpoints to ensure that a fusion is allowed to happen.
* In particular we bail out for non-simple TCP/IP or if IPsec/
* IPQoS policy/kernel SSL exists.
*/
ns = tcps->tcps_netstack;
ipst = ns->netstack_ip;
if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
!tcp_loopback_needs_ip(tcp, ns) &&
!tcp_loopback_needs_ip(peer_tcp, ns) &&
tcp->tcp_kssl_ent == NULL &&
!IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
mblk_t *mp;
struct stroptions *stropt;
queue_t *peer_rq = peer_tcp->tcp_rq;
ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
ASSERT(tcp->tcp_kssl_ctx == NULL);
/*
* We need to drain data on both endpoints during unfuse.
* If we need to send up SIGURG at the time of draining,
* we want to be sure that an mblk is readily available.
* This is why we pre-allocate the M_PCSIG mblks for both
* endpoints which will only be used during/after unfuse.
*/
if ((mp = allocb(1, BPRI_HI)) == NULL)
goto failed;
tcp->tcp_fused_sigurg_mp = mp;
if ((mp = allocb(1, BPRI_HI)) == NULL)
goto failed;
peer_tcp->tcp_fused_sigurg_mp = mp;
/* Allocate M_SETOPTS mblk */
if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
goto failed;
/* Fuse both endpoints */
peer_tcp->tcp_loopback_peer = tcp;
tcp->tcp_loopback_peer = peer_tcp;
peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
/*
* We never use regular tcp paths in fusion and should
* therefore clear tcp_unsent on both endpoints. Having
* them set to non-zero values means asking for trouble
* especially after unfuse, where we may end up sending
* through regular tcp paths which expect xmit_list and
* friends to be correctly setup.
*/
peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
tcp_timers_stop(tcp);
tcp_timers_stop(peer_tcp);
/*
* At this point we are a detached eager tcp and therefore
* don't have a queue assigned to us until accept happens.
* In the mean time the peer endpoint may immediately send
* us data as soon as fusion is finished, and we need to be
* able to flow control it in case it sends down huge amount
* of data while we're still detached. To prevent that we
* inherit the listener's q_hiwat value; this is temporary
* since we'll repeat the process in tcp_accept_finish().
*/
(void) tcp_fuse_set_rcv_hiwat(tcp,
tcp->tcp_saved_listener->tcp_rq->q_hiwat);
/*
* Set the stream head's write offset value to zero since we
* won't be needing any room for TCP/IP headers; tell it to
* not break up the writes (this would reduce the amount of
* work done by kmem); and configure our receive buffer.
* Note that we can only do this for the active connect tcp
* since our eager is still detached; it will be dealt with
* later in tcp_accept_finish().
*/
DB_TYPE(mp) = M_SETOPTS;
mp->b_wptr += sizeof (*stropt);
stropt = (struct stroptions *)mp->b_rptr;
stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
stropt->so_wroff = 0;
/*
* Record the stream head's high water mark for
* peer endpoint; this is used for flow-control
* purposes in tcp_fuse_output().
*/
stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
peer_rq->q_hiwat);
/* Send the options up */
putnext(peer_rq, mp);
} else {
TCP_STAT(tcps, tcp_fusion_unqualified);
}
CONN_DEC_REF(peer_connp);
return;
failed:
if (tcp->tcp_fused_sigurg_mp != NULL) {
freeb(tcp->tcp_fused_sigurg_mp);
tcp->tcp_fused_sigurg_mp = NULL;
}
if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
freeb(peer_tcp->tcp_fused_sigurg_mp);
peer_tcp->tcp_fused_sigurg_mp = NULL;
}
CONN_DEC_REF(peer_connp);
}
/*
* Unfuse a previously-fused pair of tcp loopback endpoints.
*/
void
tcp_unfuse(tcp_t *tcp)
{
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
ASSERT(tcp->tcp_fused && peer_tcp != NULL);
ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
/*
* We disable synchronous streams, drain any queued data and
* clear tcp_direct_sockfs. The synchronous streams entry
* points will become no-ops after this point.
*/
tcp_fuse_disable_pair(tcp, B_TRUE);
/*
* Update th_seq and th_ack in the header template
*/
U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
/* Unfuse the endpoints */
peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
}
/*
* Fusion output routine for urgent data. This routine is called by
* tcp_fuse_output() for handling non-M_DATA mblks.
*/
void
tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
{
mblk_t *mp1;
struct T_exdata_ind *tei;
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
mblk_t *head, *prev_head = NULL;
tcp_stack_t *tcps = tcp->tcp_tcps;
ASSERT(tcp->tcp_fused);
ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
/*
* Urgent data arrives in the form of T_EXDATA_REQ from above.
* Each occurence denotes a new urgent pointer. For each new
* urgent pointer we signal (SIGURG) the receiving app to indicate
* that it needs to go into urgent mode. This is similar to the
* urgent data handling in the regular tcp. We don't need to keep
* track of where the urgent pointer is, because each T_EXDATA_REQ
* "advances" the urgent pointer for us.
*
* The actual urgent data carried by T_EXDATA_REQ is then prepended
* by a T_EXDATA_IND before being enqueued behind any existing data
* destined for the receiving app. There is only a single urgent
* pointer (out-of-band mark) for a given tcp. If the new urgent
* data arrives before the receiving app reads some existing urgent
* data, the previous marker is lost. This behavior is emulated
* accordingly below, by removing any existing T_EXDATA_IND messages
* and essentially converting old urgent data into non-urgent.
*/
ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
/* Let sender get out of urgent mode */
tcp->tcp_valid_bits &= ~TCP_URG_VALID;
/*
* This flag indicates that a signal needs to be sent up.
* This flag will only get cleared once SIGURG is delivered and
* is not affected by the tcp_fused flag -- delivery will still
* happen even after an endpoint is unfused, to handle the case
* where the sending endpoint immediately closes/unfuses after
* sending urgent data and the accept is not yet finished.
*/
peer_tcp->tcp_fused_sigurg = B_TRUE;
/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
DB_TYPE(mp) = M_PROTO;
tei = (struct T_exdata_ind *)mp->b_rptr;
tei->PRIM_type = T_EXDATA_IND;
tei->MORE_flag = 0;
mp->b_wptr = (uchar_t *)&tei[1];
TCP_STAT(tcps, tcp_fusion_urg);
BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
head = peer_tcp->tcp_rcv_list;
while (head != NULL) {
/*
* Remove existing T_EXDATA_IND, keep the data which follows
* it and relink our list. Note that we don't modify the
* tcp_rcv_last_tail since it never points to T_EXDATA_IND.
*/
if (DB_TYPE(head) != M_DATA) {
mp1 = head;
ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
head = mp1->b_cont;
mp1->b_cont = NULL;
head->b_next = mp1->b_next;
mp1->b_next = NULL;
if (prev_head != NULL)
prev_head->b_next = head;
if (peer_tcp->tcp_rcv_list == mp1)
peer_tcp->tcp_rcv_list = head;
if (peer_tcp->tcp_rcv_last_head == mp1)
peer_tcp->tcp_rcv_last_head = head;
freeb(mp1);
}
prev_head = head;
head = head->b_next;
}
}
/*
* Fusion output routine, called by tcp_output() and tcp_wput_proto().
* If we are modifying any member that can be changed outside the squeue,
* like tcp_flow_stopped, we need to take tcp_non_sq_lock.
*/
boolean_t
tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
{
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
uint_t max_unread;
boolean_t flow_stopped;
boolean_t urgent = (DB_TYPE(mp) != M_DATA);
mblk_t *mp1 = mp;
ill_t *ilp, *olp;
ipha_t *ipha;
ip6_t *ip6h;
tcph_t *tcph;
uint_t ip_hdr_len;
uint32_t seq;
uint32_t recv_size = send_size;
tcp_stack_t *tcps = tcp->tcp_tcps;
netstack_t *ns = tcps->tcps_netstack;
ip_stack_t *ipst = ns->netstack_ip;
ASSERT(tcp->tcp_fused);
ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
DB_TYPE(mp) == M_PCPROTO);
max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
/* If this connection requires IP, unfuse and use regular path */
if (tcp_loopback_needs_ip(tcp, ns) ||
tcp_loopback_needs_ip(peer_tcp, ns) ||
IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
TCP_STAT(tcps, tcp_fusion_aborted);
goto unfuse;
}
if (send_size == 0) {
freemsg(mp);
return (B_TRUE);
}
/*
* Handle urgent data; we either send up SIGURG to the peer now
* or do it later when we drain, in case the peer is detached
* or if we're short of memory for M_PCSIG mblk.
*/
if (urgent) {
/*
* We stop synchronous streams when we have urgent data
* queued to prevent tcp_fuse_rrw() from pulling it. If
* for some reasons the urgent data can't be delivered
* below, synchronous streams will remain stopped until
* someone drains the tcp_rcv_list.
*/
TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
tcp_fuse_output_urg(tcp, mp);
mp1 = mp->b_cont;
}
if (tcp->tcp_ipversion == IPV4_VERSION &&
(HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
tcp->tcp_ipversion == IPV6_VERSION &&
(HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
/*
* Build ip and tcp header to satisfy FW_HOOKS.
* We only build it when any hook is present.
*/
if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
/* If tcp_xmit_mp fails, use regular path */
goto unfuse;
ASSERT(peer_tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
olp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
/* PFHooks: LOOPBACK_OUT */
if (tcp->tcp_ipversion == IPV4_VERSION) {
ipha = (ipha_t *)mp1->b_rptr;
DTRACE_PROBE4(ip4__loopback__out__start,
ill_t *, NULL, ill_t *, olp,
ipha_t *, ipha, mblk_t *, mp1);
FW_HOOKS(ipst->ips_ip4_loopback_out_event,
ipst->ips_ipv4firewall_loopback_out,
NULL, olp, ipha, mp1, mp1, ipst);
DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
} else {
ip6h = (ip6_t *)mp1->b_rptr;
DTRACE_PROBE4(ip6__loopback__out__start,
ill_t *, NULL, ill_t *, olp,
ip6_t *, ip6h, mblk_t *, mp1);
FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
ipst->ips_ipv6firewall_loopback_out,
NULL, olp, ip6h, mp1, mp1, ipst);
DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
}
if (mp1 == NULL)
goto unfuse;
/* PFHooks: LOOPBACK_IN */
ASSERT(tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
ilp = tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
if (tcp->tcp_ipversion == IPV4_VERSION) {
DTRACE_PROBE4(ip4__loopback__in__start,
ill_t *, ilp, ill_t *, NULL,
ipha_t *, ipha, mblk_t *, mp1);
FW_HOOKS(ipst->ips_ip4_loopback_in_event,
ipst->ips_ipv4firewall_loopback_in,
ilp, NULL, ipha, mp1, mp1, ipst);
DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
if (mp1 == NULL)
goto unfuse;
ip_hdr_len = IPH_HDR_LENGTH(ipha);
} else {
DTRACE_PROBE4(ip6__loopback__in__start,
ill_t *, ilp, ill_t *, NULL,
ip6_t *, ip6h, mblk_t *, mp1);
FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
ipst->ips_ipv6firewall_loopback_in,
ilp, NULL, ip6h, mp1, mp1, ipst);
DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
if (mp1 == NULL)
goto unfuse;
ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
}
/* Data length might be changed by FW_HOOKS */
tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
seq = ABE32_TO_U32(tcph->th_seq);
recv_size += seq - tcp->tcp_snxt;
/*
* The message duplicated by tcp_xmit_mp is freed.
* Note: the original message passed in remains unchanged.
*/
freemsg(mp1);
}
mutex_enter(&peer_tcp->tcp_non_sq_lock);
/*
* Wake up and signal the peer; it is okay to do this before
* enqueueing because we are holding the lock. One of the
* advantages of synchronous streams is the ability for us to
* find out when the application performs a read on the socket,
* by way of tcp_fuse_rrw() entry point being called. Every
* data that gets enqueued onto the receiver is treated as if
* it has arrived at the receiving endpoint, thus generating
* SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
* case. However, we only wake up the application when necessary,
* i.e. during the first enqueue. When tcp_fuse_rrw() is called
* it will send everything upstream.
*/
if (peer_tcp->tcp_direct_sockfs && !urgent &&
!TCP_IS_DETACHED(peer_tcp)) {
if (peer_tcp->tcp_rcv_list == NULL)
STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq));
/* Update poll events and send SIGPOLL/SIGIO if necessary */
STR_SENDSIG(STREAM(peer_tcp->tcp_rq));
}
/*
* Enqueue data into the peer's receive list; we may or may not
* drain the contents depending on the conditions below.
*/
tcp_rcv_enqueue(peer_tcp, mp, recv_size);
/* In case it wrapped around and also to keep it constant */
peer_tcp->tcp_rwnd += recv_size;
/*
* Exercise flow-control when needed; we will get back-enabled
* in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
* If tcp_direct_sockfs is on or if the peer endpoint is detached,
* we emulate streams flow control by checking the peer's queue
* size and high water mark; otherwise we simply use canputnext()
* to decide if we need to stop our flow.
*
* The outstanding unread data block check does not apply for a
* detached receiver; this is to avoid unnecessary blocking of the
* sender while the accept is currently in progress and is quite
* similar to the regular tcp.
*/
if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
max_unread = UINT_MAX;
/*
* Since we are accessing our tcp_flow_stopped and might modify it,
* we need to take tcp->tcp_non_sq_lock. The lock for the highest
* address is held first. Dropping peer_tcp->tcp_non_sq_lock should
* not be an issue here since we are within the squeue and the peer
* won't disappear.
*/
if (tcp > peer_tcp) {
mutex_exit(&peer_tcp->tcp_non_sq_lock);
mutex_enter(&tcp->tcp_non_sq_lock);
mutex_enter(&peer_tcp->tcp_non_sq_lock);
} else {
mutex_enter(&tcp->tcp_non_sq_lock);
}
flow_stopped = tcp->tcp_flow_stopped;
if (!flow_stopped &&
(((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
(peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
(!peer_tcp->tcp_direct_sockfs &&
!TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq)))) {
tcp_setqfull(tcp);
flow_stopped = B_TRUE;
TCP_STAT(tcps, tcp_fusion_flowctl);
DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
} else if (flow_stopped &&
TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
tcp_clrqfull(tcp);
flow_stopped = B_FALSE;
}
mutex_exit(&tcp->tcp_non_sq_lock);
ipst->ips_loopback_packets++;
tcp->tcp_last_sent_len = send_size;
/* Need to adjust the following SNMP MIB-related variables */
tcp->tcp_snxt += send_size;
tcp->tcp_suna = tcp->tcp_snxt;
peer_tcp->tcp_rnxt += recv_size;
peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
BUMP_LOCAL(tcp->tcp_obsegs);
BUMP_LOCAL(peer_tcp->tcp_ibsegs);
mutex_exit(&peer_tcp->tcp_non_sq_lock);
DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
if (!TCP_IS_DETACHED(peer_tcp)) {
/*
* Drain the peer's receive queue it has urgent data or if
* we're not flow-controlled. There is no need for draining
* normal data when tcp_direct_sockfs is on because the peer
* will pull the data via tcp_fuse_rrw().
*/
if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
ASSERT(peer_tcp->tcp_rcv_list != NULL);
/*
* For TLI-based streams, a thread in tcp_accept_swap()
* can race with us. That thread will ensure that the
* correct peer_tcp->tcp_rq is globally visible before
* peer_tcp->tcp_detached is visible as clear, but we
* must also ensure that the load of tcp_rq cannot be
* reordered to be before the tcp_detached check.
*/
membar_consumer();
(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
NULL);
/*
* If synchronous streams was stopped above due
* to the presence of urgent data, re-enable it.
*/
if (urgent)
TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
}
}
return (B_TRUE);
unfuse:
tcp_unfuse(tcp);
return (B_FALSE);
}
/*
* This routine gets called to deliver data upstream on a fused or
* previously fused tcp loopback endpoint; the latter happens only
* when there is a pending SIGURG signal plus urgent data that can't
* be sent upstream in the past.
*/
boolean_t
tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
{
mblk_t *mp;
#ifdef DEBUG
uint_t cnt = 0;
#endif
tcp_stack_t *tcps = tcp->tcp_tcps;
ASSERT(tcp->tcp_loopback);
ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
/* No need for the push timer now, in case it was scheduled */
if (tcp->tcp_push_tid != 0) {
(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
tcp->tcp_push_tid = 0;
}
/*
* If there's urgent data sitting in receive list and we didn't
* get a chance to send up a SIGURG signal, make sure we send
* it first before draining in order to ensure that SIOCATMARK
* works properly.
*/
if (tcp->tcp_fused_sigurg) {
/*
* sigurg_mpp is normally NULL, i.e. when we're still
* fused and didn't get here because of tcp_unfuse().
* In this case try hard to allocate the M_PCSIG mblk.
*/
if (sigurg_mpp == NULL &&
(mp = allocb(1, BPRI_HI)) == NULL &&
(mp = allocb_tryhard(1)) == NULL) {
/* Alloc failed; try again next time */
tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
MSEC_TO_TICK(tcps->tcps_push_timer_interval));
return (B_TRUE);
} else if (sigurg_mpp != NULL) {
/*
* Use the supplied M_PCSIG mblk; it means we're
* either unfused or in the process of unfusing,
* and the drain must happen now.
*/
mp = *sigurg_mpp;
*sigurg_mpp = NULL;
}
ASSERT(mp != NULL);
tcp->tcp_fused_sigurg = B_FALSE;
/* Send up the signal */
DB_TYPE(mp) = M_PCSIG;
*mp->b_wptr++ = (uchar_t)SIGURG;
putnext(q, mp);
/*
* Let the regular tcp_rcv_drain() path handle
* draining the data if we're no longer fused.
*/
if (!tcp->tcp_fused)
return (B_FALSE);
}
/*
* In the synchronous streams case, we generate SIGPOLL/SIGIO for
* each M_DATA that gets enqueued onto the receiver. At this point
* we are about to drain any queued data via putnext(). In order
* to avoid extraneous signal generation from strrput(), we set
* STRGETINPROG flag at the stream head prior to the draining and
* restore it afterwards. This masks out signal generation only
* for M_DATA messages and does not affect urgent data.
*/
if (tcp->tcp_direct_sockfs)
strrput_sig(q, B_FALSE);
/* Drain the data */
while ((mp = tcp->tcp_rcv_list) != NULL) {
tcp->tcp_rcv_list = mp->b_next;
mp->b_next = NULL;
#ifdef DEBUG
cnt += msgdsize(mp);
#endif
putnext(q, mp);
TCP_STAT(tcps, tcp_fusion_putnext);
}
if (tcp->tcp_direct_sockfs)
strrput_sig(q, B_TRUE);
ASSERT(cnt == tcp->tcp_rcv_cnt);
tcp->tcp_rcv_last_head = NULL;
tcp->tcp_rcv_last_tail = NULL;
tcp->tcp_rcv_cnt = 0;
tcp->tcp_fuse_rcv_unread_cnt = 0;
tcp->tcp_rwnd = q->q_hiwat;
return (B_TRUE);
}
/*
* Synchronous stream entry point for sockfs to retrieve
* data directly from tcp_rcv_list.
* tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped,
* for which it must take the tcp_non_sq_lock of the peer as well
* making any change. The order of taking the locks is based on
* the TCP pointer itself. Before we get the peer we need to take
* our tcp_non_sq_lock so that the peer doesn't disappear. However,
* we cannot drop the lock if we have to grab the peer's lock (because
* of ordering), since the peer might disappear in the interim. So,
* we take our tcp_non_sq_lock, get the peer, increment the ref on the
* peer's conn, drop all the locks and then take the tcp_non_sq_lock in the
* desired order. Incrementing the conn ref on the peer means that the
* peer won't disappear when we drop our tcp_non_sq_lock.
*/
int
tcp_fuse_rrw(queue_t *q, struiod_t *dp)
{
tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
mblk_t *mp;
tcp_t *peer_tcp;
tcp_stack_t *tcps = tcp->tcp_tcps;
mutex_enter(&tcp->tcp_non_sq_lock);
/*
* If tcp_fuse_syncstr_plugged is set, then another thread is moving
* the underlying data to the stream head. We need to wait until it's
* done, then return EBUSY so that strget() will dequeue data from the
* stream head to ensure data is drained in-order.
*/
plugged:
if (tcp->tcp_fuse_syncstr_plugged) {
do {
cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock);
} while (tcp->tcp_fuse_syncstr_plugged);
mutex_exit(&tcp->tcp_non_sq_lock);
TCP_STAT(tcps, tcp_fusion_rrw_plugged);
TCP_STAT(tcps, tcp_fusion_rrw_busy);
return (EBUSY);
}
peer_tcp = tcp->tcp_loopback_peer;
/*
* If someone had turned off tcp_direct_sockfs or if synchronous
* streams is stopped, we return EBUSY. This causes strget() to
* dequeue data from the stream head instead.
*/
if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
mutex_exit(&tcp->tcp_non_sq_lock);
TCP_STAT(tcps, tcp_fusion_rrw_busy);
return (EBUSY);
}
/*
* Grab lock in order. The highest addressed tcp is locked first.
* We don't do this within the tcp_rcv_list check since if we
* have to drop the lock, for ordering, then the tcp_rcv_list
* could change.
*/
if (peer_tcp > tcp) {
CONN_INC_REF(peer_tcp->tcp_connp);
mutex_exit(&tcp->tcp_non_sq_lock);
mutex_enter(&peer_tcp->tcp_non_sq_lock);
mutex_enter(&tcp->tcp_non_sq_lock);
CONN_DEC_REF(peer_tcp->tcp_connp);
/* This might have changed in the interim */
if (tcp->tcp_fuse_syncstr_plugged) {
mutex_exit(&peer_tcp->tcp_non_sq_lock);
goto plugged;
}
} else {
mutex_enter(&peer_tcp->tcp_non_sq_lock);
}
if ((mp = tcp->tcp_rcv_list) != NULL) {
DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
tcp->tcp_rcv_list = NULL;
TCP_STAT(tcps, tcp_fusion_rrw_msgcnt);
/*
* At this point nothing should be left in tcp_rcv_list.
* The only possible case where we would have a chain of
* b_next-linked messages is urgent data, but we wouldn't
* be here if that's true since urgent data is delivered
* via putnext() and synchronous streams is stopped until
* tcp_fuse_rcv_drain() is finished.
*/
ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
tcp->tcp_rcv_last_head = NULL;
tcp->tcp_rcv_last_tail = NULL;
tcp->tcp_rcv_cnt = 0;
tcp->tcp_fuse_rcv_unread_cnt = 0;
if (peer_tcp->tcp_flow_stopped) {
tcp_clrqfull(peer_tcp);
TCP_STAT(tcps, tcp_fusion_backenabled);
}
}
mutex_exit(&peer_tcp->tcp_non_sq_lock);
/*
* Either we just dequeued everything or we get here from sockfs
* and have nothing to return; in this case clear RSLEEP.
*/
ASSERT(tcp->tcp_rcv_last_head == NULL);
ASSERT(tcp->tcp_rcv_last_tail == NULL);
ASSERT(tcp->tcp_rcv_cnt == 0);
ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
STR_WAKEUP_CLEAR(STREAM(q));
mutex_exit(&tcp->tcp_non_sq_lock);
dp->d_mp = mp;
return (0);
}
/*
* Synchronous stream entry point used by certain ioctls to retrieve
* information about or peek into the tcp_rcv_list.
*/
int
tcp_fuse_rinfop(queue_t *q, infod_t *dp)
{
tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
mblk_t *mp;
uint_t cmd = dp->d_cmd;
int res = 0;
int error = 0;
struct stdata *stp = STREAM(q);
mutex_enter(&tcp->tcp_non_sq_lock);
/* If shutdown on read has happened, return nothing */
mutex_enter(&stp->sd_lock);
if (stp->sd_flag & STREOF) {
mutex_exit(&stp->sd_lock);
goto done;
}
mutex_exit(&stp->sd_lock);
/*
* It is OK not to return an answer if tcp_rcv_list is
* currently not accessible.
*/
if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL)
goto done;
if (cmd & INFOD_COUNT) {
/*
* We have at least one message and
* could return only one at a time.
*/
dp->d_count++;
res |= INFOD_COUNT;
}
if (cmd & INFOD_BYTES) {
/*
* Return size of all data messages.
*/
dp->d_bytes += tcp->tcp_rcv_cnt;
res |= INFOD_BYTES;
}
if (cmd & INFOD_FIRSTBYTES) {
/*
* Return size of first data message.
*/
dp->d_bytes = msgdsize(mp);
res |= INFOD_FIRSTBYTES;
dp->d_cmd &= ~INFOD_FIRSTBYTES;
}
if (cmd & INFOD_COPYOUT) {
mblk_t *mp1;
int n;
if (DB_TYPE(mp) == M_DATA) {
mp1 = mp;
} else {
mp1 = mp->b_cont;
ASSERT(mp1 != NULL);
}
/*
* Return data contents of first message.
*/
ASSERT(DB_TYPE(mp1) == M_DATA);
while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
UIO_READ, dp->d_uiop)) != 0) {
goto done;
}
mp1 = mp1->b_cont;
}
res |= INFOD_COPYOUT;
dp->d_cmd &= ~INFOD_COPYOUT;
}
done:
mutex_exit(&tcp->tcp_non_sq_lock);
dp->d_res |= res;
return (error);
}
/*
* Enable synchronous streams on a fused tcp loopback endpoint.
*/
static void
tcp_fuse_syncstr_enable(tcp_t *tcp)
{
queue_t *rq = tcp->tcp_rq;
struct stdata *stp = STREAM(rq);
/* We can only enable synchronous streams for sockfs mode */
tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
if (!tcp->tcp_direct_sockfs)
return;
mutex_enter(&stp->sd_lock);
mutex_enter(QLOCK(rq));
/*
* We replace our q_qinfo with one that has the qi_rwp entry point.
* Clear SR_SIGALLDATA because we generate the equivalent signal(s)
* for every enqueued data in tcp_fuse_output().
*/
rq->q_qinfo = &tcp_loopback_rinit;
rq->q_struiot = tcp_loopback_rinit.qi_struiot;
stp->sd_struiordq = rq;
stp->sd_rput_opt &= ~SR_SIGALLDATA;
mutex_exit(QLOCK(rq));
mutex_exit(&stp->sd_lock);
}
/*
* Disable synchronous streams on a fused tcp loopback endpoint.
*/
static void
tcp_fuse_syncstr_disable(tcp_t *tcp)
{
queue_t *rq = tcp->tcp_rq;
struct stdata *stp = STREAM(rq);
if (!tcp->tcp_direct_sockfs)
return;
mutex_enter(&stp->sd_lock);
mutex_enter(QLOCK(rq));
/*
* Reset q_qinfo to point to the default tcp entry points.
* Also restore SR_SIGALLDATA so that strrput() can generate
* the signals again for future M_DATA messages.
*/
rq->q_qinfo = &tcp_rinit;
rq->q_struiot = tcp_rinit.qi_struiot;
stp->sd_struiordq = NULL;
stp->sd_rput_opt |= SR_SIGALLDATA;
tcp->tcp_direct_sockfs = B_FALSE;
mutex_exit(QLOCK(rq));
mutex_exit(&stp->sd_lock);
}
/*
* Enable synchronous streams on a pair of fused tcp endpoints.
*/
void
tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
{
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
ASSERT(tcp->tcp_fused);
ASSERT(peer_tcp != NULL);
tcp_fuse_syncstr_enable(tcp);
tcp_fuse_syncstr_enable(peer_tcp);
}
/*
* Allow or disallow signals to be generated by strrput().
*/
static void
strrput_sig(queue_t *q, boolean_t on)
{
struct stdata *stp = STREAM(q);
mutex_enter(&stp->sd_lock);
if (on)
stp->sd_flag &= ~STRGETINPROG;
else
stp->sd_flag |= STRGETINPROG;
mutex_exit(&stp->sd_lock);
}
/*
* Disable synchronous streams on a pair of fused tcp endpoints and drain
* any queued data; called either during unfuse or upon transitioning from
* a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
*/
void
tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
{
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
tcp_stack_t *tcps = tcp->tcp_tcps;
ASSERT(tcp->tcp_fused);
ASSERT(peer_tcp != NULL);
/*
* Force any tcp_fuse_rrw() calls to block until we've moved the data
* onto the stream head.
*/
TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
/*
* Drain any pending data; the detached check is needed because
* we may be called as a result of a tcp_unfuse() triggered by
* tcp_fuse_output(). Note that in case of a detached tcp, the
* draining will happen later after the tcp is unfused. For non-
* urgent data, this can be handled by the regular tcp_rcv_drain().
* If we have urgent data sitting in the receive list, we will
* need to send up a SIGURG signal first before draining the data.
* All of these will be handled by the code in tcp_fuse_rcv_drain()
* when called from tcp_rcv_drain().
*/
if (!TCP_IS_DETACHED(tcp)) {
(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
(unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
}
if (!TCP_IS_DETACHED(peer_tcp)) {
(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
(unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
}
/*
* Make all current and future tcp_fuse_rrw() calls fail with EBUSY.
* To ensure threads don't sneak past the checks in tcp_fuse_rrw(),
* a given stream must be stopped prior to being unplugged (but the
* ordering of operations between the streams is unimportant).
*/
TCP_FUSE_SYNCSTR_STOP(tcp);
TCP_FUSE_SYNCSTR_STOP(peer_tcp);
TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
/* Lift up any flow-control conditions */
if (tcp->tcp_flow_stopped) {
tcp_clrqfull(tcp);
TCP_STAT(tcps, tcp_fusion_backenabled);
}
if (peer_tcp->tcp_flow_stopped) {
tcp_clrqfull(peer_tcp);
TCP_STAT(tcps, tcp_fusion_backenabled);
}
/* Disable synchronous streams */
tcp_fuse_syncstr_disable(tcp);
tcp_fuse_syncstr_disable(peer_tcp);
}
/*
* Calculate the size of receive buffer for a fused tcp endpoint.
*/
size_t
tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
{
tcp_stack_t *tcps = tcp->tcp_tcps;
ASSERT(tcp->tcp_fused);
/* Ensure that value is within the maximum upper bound */
if (rwnd > tcps->tcps_max_buf)
rwnd = tcps->tcps_max_buf;
/* Obey the absolute minimum tcp receive high water mark */
if (rwnd < tcps->tcps_sth_rcv_hiwat)
rwnd = tcps->tcps_sth_rcv_hiwat;
/*
* Round up to system page size in case SO_RCVBUF is modified
* after SO_SNDBUF; the latter is also similarly rounded up.
*/
rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
tcp->tcp_fuse_rcv_hiwater = rwnd;
return (rwnd);
}
/*
* Calculate the maximum outstanding unread data block for a fused tcp endpoint.
*/
int
tcp_fuse_maxpsz_set(tcp_t *tcp)
{
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
uint_t sndbuf = tcp->tcp_xmit_hiwater;
uint_t maxpsz = sndbuf;
ASSERT(tcp->tcp_fused);
ASSERT(peer_tcp != NULL);
ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
/*
* In the fused loopback case, we want the stream head to split
* up larger writes into smaller chunks for a more accurate flow-
* control accounting. Our maxpsz is half of the sender's send
* buffer or the receiver's receive buffer, whichever is smaller.
* We round up the buffer to system page size due to the lack of
* TCP MSS concept in Fusion.
*/
if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
/*
* Calculate the peer's limit for the number of outstanding unread
* data block. This is the amount of data blocks that are allowed
* to reside in the receiver's queue before the sender gets flow
* controlled. It is used only in the synchronous streams mode as
* a way to throttle the sender when it performs consecutive writes
* faster than can be read. The value is derived from SO_SNDBUF in
* order to give the sender some control; we divide it with a large
* value (16KB) to produce a fairly low initial limit.
*/
if (tcp_fusion_rcv_unread_min == 0) {
/* A value of 0 means that we disable the check */
peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
} else {
peer_tcp->tcp_fuse_rcv_unread_hiwater =
MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
}
return (maxpsz);
}