tcp_fusion.c revision 93fcb0b9b3e0792a42d10584632c1c566f89d64a
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/strsubr.h>
#include <sys/debug.h>
#include <sys/sdt.h>
#include <sys/cmn_err.h>
#include <sys/tihdr.h>
#include <inet/common.h>
#include <inet/optcom.h>
#include <inet/ip.h>
#include <inet/ip_if.h>
#include <inet/ip_impl.h>
#include <inet/tcp.h>
#include <inet/tcp_impl.h>
#include <inet/ipsec_impl.h>
#include <inet/ipclassifier.h>
#include <inet/ipp_common.h>
#include <inet/ip_if.h>
/*
* This file implements TCP fusion - a protocol-less data path for TCP
* loopback connections. The fusion of two local TCP endpoints occurs
* at connection establishment time. Various conditions (see details
* in tcp_fuse()) need to be met for fusion to be successful. If it
* fails, we fall back to the regular TCP data path; if it succeeds,
* both endpoints proceed to use tcp_fuse_output() as the transmit path.
* tcp_fuse_output() enqueues application data directly onto the peer's
* receive queue; no protocol processing is involved.
*
* Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
* One of the requirements for fusion to succeed is that both endpoints
* need to be using the same squeue. This ensures that neither side
* can disappear while the other side is still sending data. Flow
* control information is manipulated outside the squeue, so the
* tcp_non_sq_lock must be held when touching tcp_flow_stopped.
*/
/*
* Setting this to false means we disable fusion altogether and
* loopback connections would go through the protocol paths.
*/
boolean_t do_tcp_fusion = B_TRUE;
/*
* This routine gets called by the eager tcp upon changing state from
* SYN_RCVD to ESTABLISHED. It fuses a direct path between itself
* and the active connect tcp such that the regular tcp processings
* may be bypassed under allowable circumstances. Because the fusion
* requires both endpoints to be in the same squeue, it does not work
* for simultaneous active connects because there is no easy way to
* switch from one squeue to another once the connection is created.
* This is different from the eager tcp case where we assign it the
* same squeue as the one given to the active connect tcp during open.
*/
void
tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha)
{
conn_t *peer_connp, *connp = tcp->tcp_connp;
tcp_t *peer_tcp;
tcp_stack_t *tcps = tcp->tcp_tcps;
netstack_t *ns;
ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
ASSERT(!tcp->tcp_fused);
ASSERT(tcp->tcp_loopback);
ASSERT(tcp->tcp_loopback_peer == NULL);
/*
* We need to inherit conn_rcvbuf of the listener tcp,
* but we can't really use tcp_listener since we get here after
* sending up T_CONN_IND and tcp_tli_accept() may be called
* independently, at which point tcp_listener is cleared;
* this is why we use tcp_saved_listener. The listener itself
* is guaranteed to be around until tcp_accept_finish() is called
* on this eager -- this won't happen until we're done since we're
* inside the eager's perimeter now.
*/
ASSERT(tcp->tcp_saved_listener != NULL);
/*
* Lookup peer endpoint; search for the remote endpoint having
* the reversed address-port quadruplet in ESTABLISHED state,
* which is guaranteed to be unique in the system. Zone check
* is applied accordingly for loopback address, but not for
* local address since we want fusion to happen across Zones.
*/
if (connp->conn_ipversion == IPV4_VERSION) {
peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
(ipha_t *)iphdr, tcpha, ipst);
} else {
peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
(ip6_t *)iphdr, tcpha, ipst);
}
/*
* We can only proceed if peer exists, resides in the same squeue
* as our conn and is not raw-socket. We also restrict fusion to
* endpoints of the same type (STREAMS or non-STREAMS). The squeue
* assignment of this eager tcp was done earlier at the time of SYN
* processing in ip_fanout_tcp{_v6}. Note that similar squeues by
* itself doesn't guarantee a safe condition to fuse, hence we perform
* additional tests below.
*/
ASSERT(peer_connp == NULL || peer_connp != connp);
if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
!IPCL_IS_TCP(peer_connp) ||
IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
if (peer_connp != NULL) {
TCP_STAT(tcps, tcp_fusion_unqualified);
CONN_DEC_REF(peer_connp);
}
return;
}
peer_tcp = peer_connp->conn_tcp; /* active connect tcp */
ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
ASSERT(peer_tcp->tcp_loopback_peer == NULL);
ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
/*
* Due to IRE changes the peer and us might not agree on tcp_loopback.
* We bail in that case.
*/
if (!peer_tcp->tcp_loopback) {
TCP_STAT(tcps, tcp_fusion_unqualified);
CONN_DEC_REF(peer_connp);
return;
}
/*
* Fuse the endpoints; we perform further checks against both
* tcp endpoints to ensure that a fusion is allowed to happen.
* In particular we bail out if kernel SSL exists.
*/
ns = tcps->tcps_netstack;
ipst = ns->netstack_ip;
if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
(tcp->tcp_kssl_ent == NULL) && (tcp->tcp_xmit_head == NULL) &&
(peer_tcp->tcp_xmit_head == NULL)) {
mblk_t *mp;
queue_t *peer_rq = peer_connp->conn_rq;
ASSERT(!TCP_IS_DETACHED(peer_tcp));
ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
ASSERT(tcp->tcp_kssl_ctx == NULL);
/*
* We need to drain data on both endpoints during unfuse.
* If we need to send up SIGURG at the time of draining,
* we want to be sure that an mblk is readily available.
* This is why we pre-allocate the M_PCSIG mblks for both
* endpoints which will only be used during/after unfuse.
* The mblk might already exist if we are doing a re-fuse.
*/
if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
if (tcp->tcp_fused_sigurg_mp == NULL) {
if ((mp = allocb(1, BPRI_HI)) == NULL)
goto failed;
tcp->tcp_fused_sigurg_mp = mp;
}
if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
if ((mp = allocb(1, BPRI_HI)) == NULL)
goto failed;
peer_tcp->tcp_fused_sigurg_mp = mp;
}
if ((mp = allocb(sizeof (struct stroptions),
BPRI_HI)) == NULL)
goto failed;
}
/* Fuse both endpoints */
peer_tcp->tcp_loopback_peer = tcp;
tcp->tcp_loopback_peer = peer_tcp;
peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
/*
* We never use regular tcp paths in fusion and should
* therefore clear tcp_unsent on both endpoints. Having
* them set to non-zero values means asking for trouble
* especially after unfuse, where we may end up sending
* through regular tcp paths which expect xmit_list and
* friends to be correctly setup.
*/
peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
tcp_timers_stop(tcp);
tcp_timers_stop(peer_tcp);
/*
* Set receive buffer and max packet size for the
* active open tcp.
* eager's values will be set in tcp_accept_finish.
*/
(void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf);
/*
* Set the write offset value to zero since we won't
* be needing any room for TCP/IP headers.
*/
if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
struct stroptions *stropt;
DB_TYPE(mp) = M_SETOPTS;
mp->b_wptr += sizeof (*stropt);
stropt = (struct stroptions *)mp->b_rptr;
stropt->so_flags = SO_WROFF;
stropt->so_wroff = 0;
/* Send the options up */
putnext(peer_rq, mp);
} else {
struct sock_proto_props sopp;
/* The peer is a non-STREAMS end point */
ASSERT(IPCL_IS_TCP(peer_connp));
sopp.sopp_flags = SOCKOPT_WROFF;
sopp.sopp_wroff = 0;
(*peer_connp->conn_upcalls->su_set_proto_props)
(peer_connp->conn_upper_handle, &sopp);
}
} else {
TCP_STAT(tcps, tcp_fusion_unqualified);
}
CONN_DEC_REF(peer_connp);
return;
failed:
if (tcp->tcp_fused_sigurg_mp != NULL) {
freeb(tcp->tcp_fused_sigurg_mp);
tcp->tcp_fused_sigurg_mp = NULL;
}
if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
freeb(peer_tcp->tcp_fused_sigurg_mp);
peer_tcp->tcp_fused_sigurg_mp = NULL;
}
CONN_DEC_REF(peer_connp);
}
/*
* Unfuse a previously-fused pair of tcp loopback endpoints.
*/
void
tcp_unfuse(tcp_t *tcp)
{
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
tcp_stack_t *tcps = tcp->tcp_tcps;
ASSERT(tcp->tcp_fused && peer_tcp != NULL);
ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
/*
* Cancel any pending push timers.
*/
if (tcp->tcp_push_tid != 0) {
(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
tcp->tcp_push_tid = 0;
}
if (peer_tcp->tcp_push_tid != 0) {
(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
peer_tcp->tcp_push_tid = 0;
}
/*
* Drain any pending data; Note that in case of a detached tcp, the
* draining will happen later after the tcp is unfused. For non-
* urgent data, this can be handled by the regular tcp_rcv_drain().
* If we have urgent data sitting in the receive list, we will
* need to send up a SIGURG signal first before draining the data.
* All of these will be handled by the code in tcp_fuse_rcv_drain()
* when called from tcp_rcv_drain().
*/
if (!TCP_IS_DETACHED(tcp)) {
(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp,
&tcp->tcp_fused_sigurg_mp);
}
if (!TCP_IS_DETACHED(peer_tcp)) {
(void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq,
peer_tcp, &peer_tcp->tcp_fused_sigurg_mp);
}
/* Lift up any flow-control conditions */
mutex_enter(&tcp->tcp_non_sq_lock);
if (tcp->tcp_flow_stopped) {
tcp_clrqfull(tcp);
TCP_STAT(tcps, tcp_fusion_backenabled);
}
mutex_exit(&tcp->tcp_non_sq_lock);
mutex_enter(&peer_tcp->tcp_non_sq_lock);
if (peer_tcp->tcp_flow_stopped) {
tcp_clrqfull(peer_tcp);
TCP_STAT(tcps, tcp_fusion_backenabled);
}
mutex_exit(&peer_tcp->tcp_non_sq_lock);
/*
* Update tha_seq and tha_ack in the header template
*/
tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt);
tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt);
peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt);
/* Unfuse the endpoints */
peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
}
/*
* Fusion output routine used to handle urgent data sent by STREAMS based
* endpoints. This routine is called by tcp_fuse_output() for handling
* non-M_DATA mblks.
*/
void
tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
{
mblk_t *mp1;
struct T_exdata_ind *tei;
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
mblk_t *head, *prev_head = NULL;
tcp_stack_t *tcps = tcp->tcp_tcps;
ASSERT(tcp->tcp_fused);
ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
/*
* Urgent data arrives in the form of T_EXDATA_REQ from above.
* Each occurence denotes a new urgent pointer. For each new
* urgent pointer we signal (SIGURG) the receiving app to indicate
* that it needs to go into urgent mode. This is similar to the
* urgent data handling in the regular tcp. We don't need to keep
* track of where the urgent pointer is, because each T_EXDATA_REQ
* "advances" the urgent pointer for us.
*
* The actual urgent data carried by T_EXDATA_REQ is then prepended
* by a T_EXDATA_IND before being enqueued behind any existing data
* destined for the receiving app. There is only a single urgent
* pointer (out-of-band mark) for a given tcp. If the new urgent
* data arrives before the receiving app reads some existing urgent
* data, the previous marker is lost. This behavior is emulated
* accordingly below, by removing any existing T_EXDATA_IND messages
* and essentially converting old urgent data into non-urgent.
*/
ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
/* Let sender get out of urgent mode */
tcp->tcp_valid_bits &= ~TCP_URG_VALID;
/*
* This flag indicates that a signal needs to be sent up.
* This flag will only get cleared once SIGURG is delivered and
* is not affected by the tcp_fused flag -- delivery will still
* happen even after an endpoint is unfused, to handle the case
* where the sending endpoint immediately closes/unfuses after
* sending urgent data and the accept is not yet finished.
*/
peer_tcp->tcp_fused_sigurg = B_TRUE;
/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
DB_TYPE(mp) = M_PROTO;
tei = (struct T_exdata_ind *)mp->b_rptr;
tei->PRIM_type = T_EXDATA_IND;
tei->MORE_flag = 0;
mp->b_wptr = (uchar_t *)&tei[1];
TCP_STAT(tcps, tcp_fusion_urg);
BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
head = peer_tcp->tcp_rcv_list;
while (head != NULL) {
/*
* Remove existing T_EXDATA_IND, keep the data which follows
* it and relink our list. Note that we don't modify the
* tcp_rcv_last_tail since it never points to T_EXDATA_IND.
*/
if (DB_TYPE(head) != M_DATA) {
mp1 = head;
ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
head = mp1->b_cont;
mp1->b_cont = NULL;
head->b_next = mp1->b_next;
mp1->b_next = NULL;
if (prev_head != NULL)
prev_head->b_next = head;
if (peer_tcp->tcp_rcv_list == mp1)
peer_tcp->tcp_rcv_list = head;
if (peer_tcp->tcp_rcv_last_head == mp1)
peer_tcp->tcp_rcv_last_head = head;
freeb(mp1);
}
prev_head = head;
head = head->b_next;
}
}
/*
* Fusion output routine, called by tcp_output() and tcp_wput_proto().
* If we are modifying any member that can be changed outside the squeue,
* like tcp_flow_stopped, we need to take tcp_non_sq_lock.
*/
boolean_t
tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
{
conn_t *connp = tcp->tcp_connp;
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
conn_t *peer_connp = peer_tcp->tcp_connp;
boolean_t flow_stopped, peer_data_queued = B_FALSE;
boolean_t urgent = (DB_TYPE(mp) != M_DATA);
boolean_t push = B_TRUE;
mblk_t *mp1 = mp;
uint_t ip_hdr_len;
uint32_t recv_size = send_size;
tcp_stack_t *tcps = tcp->tcp_tcps;
netstack_t *ns = tcps->tcps_netstack;
ip_stack_t *ipst = ns->netstack_ip;
ipsec_stack_t *ipss = ns->netstack_ipsec;
iaflags_t ixaflags = connp->conn_ixa->ixa_flags;
boolean_t do_ipsec, hooks_out, hooks_in, ipobs_enabled;
ASSERT(tcp->tcp_fused);
ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
ASSERT(connp->conn_sqp == peer_connp->conn_sqp);
ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
DB_TYPE(mp) == M_PCPROTO);
if (send_size == 0) {
freemsg(mp);
return (B_TRUE);
}
/*
* Handle urgent data; we either send up SIGURG to the peer now
* or do it later when we drain, in case the peer is detached
* or if we're short of memory for M_PCSIG mblk.
*/
if (urgent) {
tcp_fuse_output_urg(tcp, mp);
mp1 = mp->b_cont;
}
/*
* Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before
* further processes.
*/
if (!ip_output_verify_local(connp->conn_ixa))
goto unfuse;
/*
* Build IP and TCP header in case we have something that needs the
* headers. Those cases are:
* 1. IPsec
* 2. IPobs
* 3. FW_HOOKS
*
* If tcp_xmit_mp() fails to dupb() the message, unfuse the connection
* and back to regular path.
*/
if (ixaflags & IXAF_IS_IPV4) {
do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss);
hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst);
hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst);
ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0);
} else {
do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss);
hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst);
hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst);
ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0);
}
/* We do logical 'or' for efficiency */
if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) {
if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
/* If tcp_xmit_mp fails, use regular path */
goto unfuse;
/*
* Leave all IP relevant processes to ip_output_process_local(),
* which handles IPsec, IPobs, and FW_HOOKS.
*/
mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out,
hooks_in, do_ipsec ? peer_connp : NULL);
/* If the message is dropped for any reason. */
if (mp1 == NULL)
goto unfuse;
/*
* Data length might have been changed by FW_HOOKS.
* We assume that the first mblk contains the TCP/IP headers.
*/
if (hooks_in || hooks_out) {
tcpha_t *tcpha;
ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ?
IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) :
ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr);
tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len];
ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <=
mp1->b_wptr);
recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt;
}
/*
* The message duplicated by tcp_xmit_mp is freed.
* Note: the original message passed in remains unchanged.
*/
freemsg(mp1);
}
/*
* Enqueue data into the peer's receive list; we may or may not
* drain the contents depending on the conditions below.
*
* For non-STREAMS sockets we normally queue data directly in the
* socket by calling the su_recv upcall. However, if the peer is
* detached we use tcp_rcv_enqueue() instead. Queued data will be
* drained when the accept completes (in tcp_accept_finish()).
*/
if (IPCL_IS_NONSTR(peer_connp) &&
!TCP_IS_DETACHED(peer_tcp)) {
int error;
int flags = 0;
if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
(tcp->tcp_urg == tcp->tcp_snxt)) {
flags = MSG_OOB;
(*peer_connp->conn_upcalls->su_signal_oob)
(peer_connp->conn_upper_handle, 0);
tcp->tcp_valid_bits &= ~TCP_URG_VALID;
}
if ((*peer_connp->conn_upcalls->su_recv)(
peer_connp->conn_upper_handle, mp, recv_size,
flags, &error, &push) < 0) {
ASSERT(error != EOPNOTSUPP);
peer_data_queued = B_TRUE;
}
} else {
if (IPCL_IS_NONSTR(peer_connp) &&
(tcp->tcp_valid_bits & TCP_URG_VALID) &&
(tcp->tcp_urg == tcp->tcp_snxt)) {
/*
* Can not deal with urgent pointers
* that arrive before the connection has been
* accept()ed.
*/
tcp->tcp_valid_bits &= ~TCP_URG_VALID;
freemsg(mp);
return (B_TRUE);
}
tcp_rcv_enqueue(peer_tcp, mp, recv_size,
tcp->tcp_connp->conn_cred);
/* In case it wrapped around and also to keep it constant */
peer_tcp->tcp_rwnd += recv_size;
}
/*
* Exercise flow-control when needed; we will get back-enabled
* in either tcp_accept_finish(), tcp_unfuse(), or when data is
* consumed. If peer endpoint is detached, we emulate streams flow
* control by checking the peer's queue size and high water mark;
* otherwise we simply use canputnext() to decide if we need to stop
* our flow.
*
* Since we are accessing our tcp_flow_stopped and might modify it,
* we need to take tcp->tcp_non_sq_lock.
*/
mutex_enter(&tcp->tcp_non_sq_lock);
flow_stopped = tcp->tcp_flow_stopped;
if ((TCP_IS_DETACHED(peer_tcp) &&
(peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) ||
(!TCP_IS_DETACHED(peer_tcp) &&
!IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) {
peer_data_queued = B_TRUE;
}
if (!flow_stopped && (peer_data_queued ||
(TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) {
tcp_setqfull(tcp);
flow_stopped = B_TRUE;
TCP_STAT(tcps, tcp_fusion_flowctl);
DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
} else if (flow_stopped && !peer_data_queued &&
(TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) {
tcp_clrqfull(tcp);
TCP_STAT(tcps, tcp_fusion_backenabled);
flow_stopped = B_FALSE;
}
mutex_exit(&tcp->tcp_non_sq_lock);
ipst->ips_loopback_packets++;
tcp->tcp_last_sent_len = send_size;
/* Need to adjust the following SNMP MIB-related variables */
tcp->tcp_snxt += send_size;
tcp->tcp_suna = tcp->tcp_snxt;
peer_tcp->tcp_rnxt += recv_size;
peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
BUMP_LOCAL(tcp->tcp_obsegs);
BUMP_LOCAL(peer_tcp->tcp_ibsegs);
DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
!TCP_IS_DETACHED(peer_tcp)) {
/*
* Drain the peer's receive queue it has urgent data or if
* we're not flow-controlled.
*/
if (urgent || !flow_stopped) {
ASSERT(peer_tcp->tcp_rcv_list != NULL);
/*
* For TLI-based streams, a thread in tcp_accept_swap()
* can race with us. That thread will ensure that the
* correct peer_connp->conn_rq is globally visible
* before peer_tcp->tcp_detached is visible as clear,
* but we must also ensure that the load of conn_rq
* cannot be reordered to be before the tcp_detached
* check.
*/
membar_consumer();
(void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp,
NULL);
}
}
return (B_TRUE);
unfuse:
tcp_unfuse(tcp);
return (B_FALSE);
}
/*
* This routine gets called to deliver data upstream on a fused or
* previously fused tcp loopback endpoint; the latter happens only
* when there is a pending SIGURG signal plus urgent data that can't
* be sent upstream in the past.
*/
boolean_t
tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
{
mblk_t *mp;
conn_t *connp = tcp->tcp_connp;
#ifdef DEBUG
uint_t cnt = 0;
#endif
tcp_stack_t *tcps = tcp->tcp_tcps;
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
ASSERT(tcp->tcp_loopback);
ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
/* No need for the push timer now, in case it was scheduled */
if (tcp->tcp_push_tid != 0) {
(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
tcp->tcp_push_tid = 0;
}
/*
* If there's urgent data sitting in receive list and we didn't
* get a chance to send up a SIGURG signal, make sure we send
* it first before draining in order to ensure that SIOCATMARK
* works properly.
*/
if (tcp->tcp_fused_sigurg) {
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
tcp->tcp_fused_sigurg = B_FALSE;
/*
* sigurg_mpp is normally NULL, i.e. when we're still
* fused and didn't get here because of tcp_unfuse().
* In this case try hard to allocate the M_PCSIG mblk.
*/
if (sigurg_mpp == NULL &&
(mp = allocb(1, BPRI_HI)) == NULL &&
(mp = allocb_tryhard(1)) == NULL) {
/* Alloc failed; try again next time */
tcp->tcp_push_tid = TCP_TIMER(tcp,
tcp_push_timer,
MSEC_TO_TICK(
tcps->tcps_push_timer_interval));
return (B_TRUE);
} else if (sigurg_mpp != NULL) {
/*
* Use the supplied M_PCSIG mblk; it means we're
* either unfused or in the process of unfusing,
* and the drain must happen now.
*/
mp = *sigurg_mpp;
*sigurg_mpp = NULL;
}
ASSERT(mp != NULL);
/* Send up the signal */
DB_TYPE(mp) = M_PCSIG;
*mp->b_wptr++ = (uchar_t)SIGURG;
putnext(q, mp);
/*
* Let the regular tcp_rcv_drain() path handle
* draining the data if we're no longer fused.
*/
if (!tcp->tcp_fused)
return (B_FALSE);
}
/* Drain the data */
while ((mp = tcp->tcp_rcv_list) != NULL) {
tcp->tcp_rcv_list = mp->b_next;
mp->b_next = NULL;
#ifdef DEBUG
cnt += msgdsize(mp);
#endif
ASSERT(!IPCL_IS_NONSTR(connp));
putnext(q, mp);
TCP_STAT(tcps, tcp_fusion_putnext);
}
#ifdef DEBUG
ASSERT(cnt == tcp->tcp_rcv_cnt);
#endif
tcp->tcp_rcv_last_head = NULL;
tcp->tcp_rcv_last_tail = NULL;
tcp->tcp_rcv_cnt = 0;
tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf;
mutex_enter(&peer_tcp->tcp_non_sq_lock);
if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
peer_tcp->tcp_connp->conn_sndlowat)) {
tcp_clrqfull(peer_tcp);
TCP_STAT(tcps, tcp_fusion_backenabled);
}
mutex_exit(&peer_tcp->tcp_non_sq_lock);
return (B_TRUE);
}
/*
* Calculate the size of receive buffer for a fused tcp endpoint.
*/
size_t
tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
{
tcp_stack_t *tcps = tcp->tcp_tcps;
uint32_t max_win;
ASSERT(tcp->tcp_fused);
/* Ensure that value is within the maximum upper bound */
if (rwnd > tcps->tcps_max_buf)
rwnd = tcps->tcps_max_buf;
/*
* Round up to system page size in case SO_RCVBUF is modified
* after SO_SNDBUF; the latter is also similarly rounded up.
*/
rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
max_win = TCP_MAXWIN << tcp->tcp_rcv_ws;
if (rwnd > max_win) {
rwnd = max_win - (max_win % tcp->tcp_mss);
if (rwnd < tcp->tcp_mss)
rwnd = max_win;
}
/*
* Record high water mark, this is used for flow-control
* purposes in tcp_fuse_output().
*/
tcp->tcp_connp->conn_rcvbuf = rwnd;
tcp->tcp_rwnd = rwnd;
return (rwnd);
}
/*
* Calculate the maximum outstanding unread data block for a fused tcp endpoint.
*/
int
tcp_fuse_maxpsz(tcp_t *tcp)
{
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
conn_t *connp = tcp->tcp_connp;
uint_t sndbuf = connp->conn_sndbuf;
uint_t maxpsz = sndbuf;
ASSERT(tcp->tcp_fused);
ASSERT(peer_tcp != NULL);
ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0);
/*
* In the fused loopback case, we want the stream head to split
* up larger writes into smaller chunks for a more accurate flow-
* control accounting. Our maxpsz is half of the sender's send
* buffer or the receiver's receive buffer, whichever is smaller.
* We round up the buffer to system page size due to the lack of
* TCP MSS concept in Fusion.
*/
if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf)
maxpsz = peer_tcp->tcp_connp->conn_rcvbuf;
maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
return (maxpsz);
}
/*
* Called to release flow control.
*/
void
tcp_fuse_backenable(tcp_t *tcp)
{
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
ASSERT(tcp->tcp_fused);
ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
ASSERT(peer_tcp->tcp_loopback_peer == tcp);
ASSERT(!TCP_IS_DETACHED(tcp));
ASSERT(tcp->tcp_connp->conn_sqp ==
peer_tcp->tcp_connp->conn_sqp);
if (tcp->tcp_rcv_list != NULL)
(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL);
mutex_enter(&peer_tcp->tcp_non_sq_lock);
if (peer_tcp->tcp_flow_stopped &&
(TCP_UNSENT_BYTES(peer_tcp) <=
peer_tcp->tcp_connp->conn_sndlowat)) {
tcp_clrqfull(peer_tcp);
}
mutex_exit(&peer_tcp->tcp_non_sq_lock);
TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
}