tcp.c revision 9cd928fe5e3ea4e05f64cfb380beb54b2623e7dc
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Copyright (c) 1990 Mentat Inc. */
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/strsubr.h>
#include <sys/stropts.h>
#include <sys/strlog.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/timod.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/suntpi.h>
#include <sys/xti_inet.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/sdt.h>
#include <sys/vtrace.h>
#include <sys/kmem.h>
#include <sys/ethernet.h>
#include <sys/cpuvar.h>
#include <sys/dlpi.h>
#include <sys/pattr.h>
#include <sys/policy.h>
#include <sys/priv.h>
#include <sys/zone.h>
#include <sys/sunldi.h>
#include <sys/errno.h>
#include <sys/signal.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/isa_defs.h>
#include <sys/md5.h>
#include <sys/random.h>
#include <sys/uio.h>
#include <sys/systm.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <net/if.h>
#include <net/route.h>
#include <inet/ipsec_impl.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip_impl.h>
#include <inet/ip6.h>
#include <inet/ip_ndp.h>
#include <inet/proto_set.h>
#include <inet/mib2.h>
#include <inet/optcom.h>
#include <inet/snmpcom.h>
#include <inet/kstatcom.h>
#include <inet/tcp.h>
#include <inet/tcp_impl.h>
#include <inet/tcp_cluster.h>
#include <inet/udp_impl.h>
#include <net/pfkeyv2.h>
#include <inet/ipdrop.h>
#include <inet/ipclassifier.h>
#include <inet/ip_ire.h>
#include <inet/ip_ftable.h>
#include <inet/ip_if.h>
#include <inet/ipp_common.h>
#include <inet/ip_rts.h>
#include <inet/ip_netinfo.h>
#include <sys/squeue_impl.h>
#include <sys/squeue.h>
#include <inet/kssl/ksslapi.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tnet.h>
#include <rpc/pmap_prot.h>
#include <sys/callo.h>
/*
* TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
*
* (Read the detailed design doc in PSARC case directory)
*
* The entire tcp state is contained in tcp_t and conn_t structure
* which are allocated in tandem using ipcl_conn_create() and passing
* IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
* the references on the tcp_t. The tcp_t structure is never compressed
* and packets always land on the correct TCP perimeter from the time
* eager is created till the time tcp_t dies (as such the old mentat
* TCP global queue is not used for detached state and no IPSEC checking
* is required). The global queue is still allocated to send out resets
* for connection which have no listeners and IP directly calls
* tcp_xmit_listeners_reset() which does any policy check.
*
* Protection and Synchronisation mechanism:
*
* The tcp data structure does not use any kind of lock for protecting
* its state but instead uses 'squeues' for mutual exclusion from various
* read and write side threads. To access a tcp member, the thread should
* always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
* or SQ_NODRAIN). Since the squeues allow a direct function call, caller
* can pass any tcp function having prototype of edesc_t as argument
* (different from traditional STREAMs model where packets come in only
* designated entry points). The list of functions that can be directly
* called via squeue are listed before the usual function prototype.
*
* Referencing:
*
* TCP is MT-Hot and we use a reference based scheme to make sure that the
* tcp structure doesn't disappear when its needed. When the application
* creates an outgoing connection or accepts an incoming connection, we
* start out with 2 references on 'conn_ref'. One for TCP and one for IP.
* The IP reference is just a symbolic reference since ip_tcpclose()
* looks at tcp structure after tcp_close_output() returns which could
* have dropped the last TCP reference. So as long as the connection is
* in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
* conn_t. The classifier puts its own reference when the connection is
* inserted in listen or connected hash. Anytime a thread needs to enter
* the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
* on write side or by doing a classify on read side and then puts a
* reference on the conn before doing squeue_enter/tryenter/fill. For
* read side, the classifier itself puts the reference under fanout lock
* to make sure that tcp can't disappear before it gets processed. The
* squeue will drop this reference automatically so the called function
* doesn't have to do a DEC_REF.
*
* Opening a new connection:
*
* The outgoing connection open is pretty simple. tcp_open() does the
* work in creating the conn/tcp structure and initializing it. The
* squeue assignment is done based on the CPU the application
* is running on. So for outbound connections, processing is always done
* on application CPU which might be different from the incoming CPU
* being interrupted by the NIC. An optimal way would be to figure out
* the NIC <-> CPU binding at listen time, and assign the outgoing
* connection to the squeue attached to the CPU that will be interrupted
* for incoming packets (we know the NIC based on the bind IP address).
* This might seem like a problem if more data is going out but the
* fact is that in most cases the transmit is ACK driven transmit where
* the outgoing data normally sits on TCP's xmit queue waiting to be
* transmitted.
*
* Accepting a connection:
*
* This is a more interesting case because of various races involved in
* establishing a eager in its own perimeter. Read the meta comment on
* top of tcp_input_listener(). But briefly, the squeue is picked by
* ip_fanout based on the ring or the sender (if loopback).
*
* Closing a connection:
*
* The close is fairly straight forward. tcp_close() calls tcp_close_output()
* via squeue to do the close and mark the tcp as detached if the connection
* was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
* reference but tcp_close() drop IP's reference always. So if tcp was
* not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
* and 1 because it is in classifier's connected hash. This is the condition
* we use to determine that its OK to clean up the tcp outside of squeue
* when time wait expires (check the ref under fanout and conn_lock and
* if it is 2, remove it from fanout hash and kill it).
*
* Although close just drops the necessary references and marks the
* tcp_detached state, tcp_close needs to know the tcp_detached has been
* set (under squeue) before letting the STREAM go away (because a
* inbound packet might attempt to go up the STREAM while the close
* has happened and tcp_detached is not set). So a special lock and
* flag is used along with a condition variable (tcp_closelock, tcp_closed,
* and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
* tcp_detached.
*
* Special provisions and fast paths:
*
* We make special provisions for sockfs by marking tcp_issocket
* whenever we have only sockfs on top of TCP. This allows us to skip
* putting the tcp in acceptor hash since a sockfs listener can never
* become acceptor and also avoid allocating a tcp_t for acceptor STREAM
* since eager has already been allocated and the accept now happens
* on acceptor STREAM. There is a big blob of comment on top of
* tcp_input_listener explaining the new accept. When socket is POP'd,
* sockfs sends us an ioctl to mark the fact and we go back to old
* behaviour. Once tcp_issocket is unset, its never set for the
* life of that connection.
*
* IPsec notes :
*
* Since a packet is always executed on the correct TCP perimeter
* all IPsec processing is defered to IP including checking new
* connections and setting IPSEC policies for new connection. The
* only exception is tcp_xmit_listeners_reset() which is called
* directly from IP and needs to policy check to see if TH_RST
* can be sent out.
*/
/*
* Values for squeue switch:
* 1: SQ_NODRAIN
* 2: SQ_PROCESS
* 3: SQ_FILL
*/
int tcp_squeue_wput = 2; /* /etc/systems */
int tcp_squeue_flag;
/*
* To prevent memory hog, limit the number of entries in tcp_free_list
* to 1% of available memory / number of cpus
*/
uint_t tcp_free_list_max_cnt = 0;
#define TCP_XMIT_LOWATER 4096
#define TCP_XMIT_HIWATER 49152
#define TCP_RECV_LOWATER 2048
#define TCP_RECV_HIWATER 128000
#define TIDUSZ 4096 /* transport interface data unit size */
/*
* Size of acceptor hash list. It has to be a power of 2 for hashing.
*/
#define TCP_ACCEPTOR_FANOUT_SIZE 256
#ifdef _ILP32
#define TCP_ACCEPTOR_HASH(accid) \
(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
#else
#define TCP_ACCEPTOR_HASH(accid) \
((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
#endif /* _ILP32 */
/* Minimum number of connections per listener. */
static uint32_t tcp_min_conn_listener = 2;
uint32_t tcp_early_abort = 30;
/* TCP Timer control structure */
typedef struct tcpt_s {
pfv_t tcpt_pfv; /* The routine we are to call */
tcp_t *tcpt_tcp; /* The parameter we are to pass in */
} tcpt_t;
/*
* Functions called directly via squeue having a prototype of edesc_t.
*/
void tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
ip_recv_attr_t *ira);
void tcp_input_data(void *arg, mblk_t *mp, void *arg2,
ip_recv_attr_t *ira);
static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
ip_recv_attr_t *dummy);
/* Prototype for TCP functions */
static void tcp_random_init(void);
int tcp_random(void);
static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
in_port_t dstport, uint_t srcid);
static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
in_port_t dstport, uint32_t flowinfo,
uint_t srcid, uint32_t scope_id);
static void tcp_iss_init(tcp_t *tcp);
static void tcp_reinit(tcp_t *tcp);
static void tcp_reinit_values(tcp_t *tcp);
static void tcp_wsrv(queue_t *q);
static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
static void tcp_update_zcopy(tcp_t *tcp);
static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
ixa_notify_arg_t);
static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns);
static void tcp_stack_fini(netstackid_t stackid, void *arg);
static int tcp_squeue_switch(int);
static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
static void tcp_squeue_add(squeue_t *);
struct module_info tcp_rinfo = {
TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
};
static struct module_info tcp_winfo = {
TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
};
/*
* Entry points for TCP as a device. The normal case which supports
* the TCP functionality.
* We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
*/
struct qinit tcp_rinitv4 = {
NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
};
struct qinit tcp_rinitv6 = {
NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
};
struct qinit tcp_winit = {
(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
};
/* Initial entry point for TCP in socket mode. */
struct qinit tcp_sock_winit = {
(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
};
/* TCP entry point during fallback */
struct qinit tcp_fallback_sock_winit = {
(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
};
/*
* Entry points for TCP as a acceptor STREAM opened by sockfs when doing
* an accept. Avoid allocating data structures since eager has already
* been created.
*/
struct qinit tcp_acceptor_rinit = {
NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
};
struct qinit tcp_acceptor_winit = {
(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
};
/* For AF_INET aka /dev/tcp */
struct streamtab tcpinfov4 = {
&tcp_rinitv4, &tcp_winit
};
/* For AF_INET6 aka /dev/tcp6 */
struct streamtab tcpinfov6 = {
&tcp_rinitv6, &tcp_winit
};
/*
* Following assumes TPI alignment requirements stay along 32 bit
* boundaries
*/
#define ROUNDUP32(x) \
(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
/* Template for response to info request. */
struct T_info_ack tcp_g_t_info_ack = {
T_INFO_ACK, /* PRIM_type */
0, /* TSDU_size */
T_INFINITE, /* ETSDU_size */
T_INVALID, /* CDATA_size */
T_INVALID, /* DDATA_size */
sizeof (sin_t), /* ADDR_size */
0, /* OPT_size - not initialized here */
TIDUSZ, /* TIDU_size */
T_COTS_ORD, /* SERV_type */
TCPS_IDLE, /* CURRENT_state */
(XPG4_1|EXPINLINE) /* PROVIDER_flag */
};
struct T_info_ack tcp_g_t_info_ack_v6 = {
T_INFO_ACK, /* PRIM_type */
0, /* TSDU_size */
T_INFINITE, /* ETSDU_size */
T_INVALID, /* CDATA_size */
T_INVALID, /* DDATA_size */
sizeof (sin6_t), /* ADDR_size */
0, /* OPT_size - not initialized here */
TIDUSZ, /* TIDU_size */
T_COTS_ORD, /* SERV_type */
TCPS_IDLE, /* CURRENT_state */
(XPG4_1|EXPINLINE) /* PROVIDER_flag */
};
/*
* TCP tunables related declarations. Definitions are in tcp_tunables.c
*/
extern mod_prop_info_t tcp_propinfo_tbl[];
extern int tcp_propinfo_count;
#define MB (1024 * 1024)
#define IS_VMLOANED_MBLK(mp) \
(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */
/*
* Forces all connections to obey the value of the tcps_maxpsz_multiplier
* tunable settable via NDD. Otherwise, the per-connection behavior is
* determined dynamically during tcp_set_destination(), which is the default.
*/
boolean_t tcp_static_maxpsz = B_FALSE;
/*
* If the receive buffer size is changed, this function is called to update
* the upper socket layer on the new delayed receive wake up threshold.
*/
static void
tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
{
uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
conn_t *connp = tcp->tcp_connp;
struct sock_proto_props sopp;
/*
* only increase rcvthresh upto default_threshold
*/
if (new_rcvthresh > default_threshold)
new_rcvthresh = default_threshold;
sopp.sopp_flags = SOCKOPT_RCVTHRESH;
sopp.sopp_rcvthresh = new_rcvthresh;
(*connp->conn_upcalls->su_set_proto_props)
(connp->conn_upper_handle, &sopp);
}
}
/*
* Figure out the value of window scale opton. Note that the rwnd is
* ASSUMED to be rounded up to the nearest MSS before the calculation.
* We cannot find the scale value and then do a round up of tcp_rwnd
* because the scale value may not be correct after that.
*
* Set the compiler flag to make this function inline.
*/
void
tcp_set_ws_value(tcp_t *tcp)
{
int i;
uint32_t rwnd = tcp->tcp_rwnd;
for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
i++, rwnd >>= 1)
;
tcp->tcp_rcv_ws = i;
}
/*
* Remove cached/latched IPsec references.
*/
void
tcp_ipsec_cleanup(tcp_t *tcp)
{
conn_t *connp = tcp->tcp_connp;
ASSERT(connp->conn_flags & IPCL_TCPCONN);
if (connp->conn_latch != NULL) {
IPLATCH_REFRELE(connp->conn_latch);
connp->conn_latch = NULL;
}
if (connp->conn_latch_in_policy != NULL) {
IPPOL_REFRELE(connp->conn_latch_in_policy);
connp->conn_latch_in_policy = NULL;
}
if (connp->conn_latch_in_action != NULL) {
IPACT_REFRELE(connp->conn_latch_in_action);
connp->conn_latch_in_action = NULL;
}
if (connp->conn_policy != NULL) {
IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
connp->conn_policy = NULL;
}
}
/*
* Cleaup before placing on free list.
* Disassociate from the netstack/tcp_stack_t since the freelist
* is per squeue and not per netstack.
*/
void
tcp_cleanup(tcp_t *tcp)
{
mblk_t *mp;
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
netstack_t *ns = tcps->tcps_netstack;
mblk_t *tcp_rsrv_mp;
tcp_bind_hash_remove(tcp);
/* Cleanup that which needs the netstack first */
tcp_ipsec_cleanup(tcp);
ixa_cleanup(connp->conn_ixa);
if (connp->conn_ht_iphc != NULL) {
kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
connp->conn_ht_iphc = NULL;
connp->conn_ht_iphc_allocated = 0;
connp->conn_ht_iphc_len = 0;
connp->conn_ht_ulp = NULL;
connp->conn_ht_ulp_len = 0;
tcp->tcp_ipha = NULL;
tcp->tcp_ip6h = NULL;
tcp->tcp_tcpha = NULL;
}
/* We clear any IP_OPTIONS and extension headers */
ip_pkt_free(&connp->conn_xmit_ipp);
tcp_free(tcp);
/* Release any SSL context */
if (tcp->tcp_kssl_ent != NULL) {
kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
tcp->tcp_kssl_ent = NULL;
}
if (tcp->tcp_kssl_ctx != NULL) {
kssl_release_ctx(tcp->tcp_kssl_ctx);
tcp->tcp_kssl_ctx = NULL;
}
tcp->tcp_kssl_pending = B_FALSE;
/*
* Since we will bzero the entire structure, we need to
* remove it and reinsert it in global hash list. We
* know the walkers can't get to this conn because we
* had set CONDEMNED flag earlier and checked reference
* under conn_lock so walker won't pick it and when we
* go the ipcl_globalhash_remove() below, no walker
* can get to it.
*/
ipcl_globalhash_remove(connp);
/* Save some state */
mp = tcp->tcp_timercache;
tcp_rsrv_mp = tcp->tcp_rsrv_mp;
if (connp->conn_cred != NULL) {
crfree(connp->conn_cred);
connp->conn_cred = NULL;
}
ipcl_conn_cleanup(connp);
connp->conn_flags = IPCL_TCPCONN;
/*
* Now it is safe to decrement the reference counts.
* This might be the last reference on the netstack
* in which case it will cause the freeing of the IP Instance.
*/
connp->conn_netstack = NULL;
connp->conn_ixa->ixa_ipst = NULL;
netstack_rele(ns);
ASSERT(tcps != NULL);
tcp->tcp_tcps = NULL;
bzero(tcp, sizeof (tcp_t));
/* restore the state */
tcp->tcp_timercache = mp;
tcp->tcp_rsrv_mp = tcp_rsrv_mp;
tcp->tcp_connp = connp;
ASSERT(connp->conn_tcp == tcp);
ASSERT(connp->conn_flags & IPCL_TCPCONN);
connp->conn_state_flags = CONN_INCIPIENT;
ASSERT(connp->conn_proto == IPPROTO_TCP);
ASSERT(connp->conn_ref == 1);
}
/*
* Adapt to the information, such as rtt and rtt_sd, provided from the
* DCE and IRE maintained by IP.
*
* Checks for multicast and broadcast destination address.
* Returns zero if ok; an errno on failure.
*
* Note that the MSS calculation here is based on the info given in
* the DCE and IRE. We do not do any calculation based on TCP options. They
* will be handled in tcp_input_data() when TCP knows which options to use.
*
* Note on how TCP gets its parameters for a connection.
*
* When a tcp_t structure is allocated, it gets all the default parameters.
* In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
* spipe, rpipe, ... from the route metrics. Route metric overrides the
* default.
*
* An incoming SYN with a multicast or broadcast destination address is dropped
* in ip_fanout_v4/v6.
*
* An incoming SYN with a multicast or broadcast source address is always
* dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
* conn_connect.
* The same logic in tcp_set_destination also serves to
* reject an attempt to connect to a broadcast or multicast (destination)
* address.
*/
int
tcp_set_destination(tcp_t *tcp)
{
uint32_t mss_max;
uint32_t mss;
boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
iulp_t uinfo;
int error;
uint32_t flags;
flags = IPDF_LSO | IPDF_ZCOPY;
/*
* Make sure we have a dce for the destination to avoid dce_ident
* contention for connected sockets.
*/
flags |= IPDF_UNIQUE_DCE;
if (!tcps->tcps_ignore_path_mtu)
connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
/* Use conn_lock to satify ASSERT; tcp is already serialized */
mutex_enter(&connp->conn_lock);
error = conn_connect(connp, &uinfo, flags);
mutex_exit(&connp->conn_lock);
if (error != 0)
return (error);
error = tcp_build_hdrs(tcp);
if (error != 0)
return (error);
tcp->tcp_localnet = uinfo.iulp_localnet;
if (uinfo.iulp_rtt != 0) {
clock_t rto;
tcp->tcp_rtt_sa = uinfo.iulp_rtt;
tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
tcps->tcps_rexmit_interval_extra +
(tcp->tcp_rtt_sa >> 5);
if (rto > tcps->tcps_rexmit_interval_max) {
tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
} else if (rto < tcps->tcps_rexmit_interval_min) {
tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
} else {
tcp->tcp_rto = rto;
}
}
if (uinfo.iulp_ssthresh != 0)
tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
else
tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
if (uinfo.iulp_spipe > 0) {
connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
tcps->tcps_max_buf);
if (tcps->tcps_snd_lowat_fraction != 0) {
connp->conn_sndlowat = connp->conn_sndbuf /
tcps->tcps_snd_lowat_fraction;
}
(void) tcp_maxpsz_set(tcp, B_TRUE);
}
/*
* Note that up till now, acceptor always inherits receive
* window from the listener. But if there is a metrics
* associated with a host, we should use that instead of
* inheriting it from listener. Thus we need to pass this
* info back to the caller.
*/
if (uinfo.iulp_rpipe > 0) {
tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
tcps->tcps_max_buf);
}
if (uinfo.iulp_rtomax > 0) {
tcp->tcp_second_timer_threshold =
uinfo.iulp_rtomax;
}
/*
* Use the metric option settings, iulp_tstamp_ok and
* iulp_wscale_ok, only for active open. What this means
* is that if the other side uses timestamp or window
* scale option, TCP will also use those options. That
* is for passive open. If the application sets a
* large window, window scale is enabled regardless of
* the value in iulp_wscale_ok. This is the behavior
* since 2.6. So we keep it.
* The only case left in passive open processing is the
* check for SACK.
* For ECN, it should probably be like SACK. But the
* current value is binary, so we treat it like the other
* cases. The metric only controls active open.For passive
* open, the ndd param, tcp_ecn_permitted, controls the
* behavior.
*/
if (!tcp_detached) {
/*
* The if check means that the following can only
* be turned on by the metrics only IRE, but not off.
*/
if (uinfo.iulp_tstamp_ok)
tcp->tcp_snd_ts_ok = B_TRUE;
if (uinfo.iulp_wscale_ok)
tcp->tcp_snd_ws_ok = B_TRUE;
if (uinfo.iulp_sack == 2)
tcp->tcp_snd_sack_ok = B_TRUE;
if (uinfo.iulp_ecn_ok)
tcp->tcp_ecn_ok = B_TRUE;
} else {
/*
* Passive open.
*
* As above, the if check means that SACK can only be
* turned on by the metric only IRE.
*/
if (uinfo.iulp_sack > 0) {
tcp->tcp_snd_sack_ok = B_TRUE;
}
}
/*
* XXX Note that currently, iulp_mtu can be as small as 68
* because of PMTUd. So tcp_mss may go to negative if combined
* length of all those options exceeds 28 bytes. But because
* of the tcp_mss_min check below, we may not have a problem if
* tcp_mss_min is of a reasonable value. The default is 1 so
* the negative problem still exists. And the check defeats PMTUd.
* In fact, if PMTUd finds that the MSS should be smaller than
* tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
* value.
*
* We do not deal with that now. All those problems related to
* PMTUd will be fixed later.
*/
ASSERT(uinfo.iulp_mtu != 0);
mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
/* Sanity check for MSS value. */
if (connp->conn_ipversion == IPV4_VERSION)
mss_max = tcps->tcps_mss_max_ipv4;
else
mss_max = tcps->tcps_mss_max_ipv6;
if (tcp->tcp_ipsec_overhead == 0)
tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
mss -= tcp->tcp_ipsec_overhead;
if (mss < tcps->tcps_mss_min)
mss = tcps->tcps_mss_min;
if (mss > mss_max)
mss = mss_max;
/* Note that this is the maximum MSS, excluding all options. */
tcp->tcp_mss = mss;
/*
* Update the tcp connection with LSO capability.
*/
tcp_update_lso(tcp, connp->conn_ixa);
/*
* Initialize the ISS here now that we have the full connection ID.
* The RFC 1948 method of initial sequence number generation requires
* knowledge of the full connection ID before setting the ISS.
*/
tcp_iss_init(tcp);
tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
/*
* Make sure that conn is not marked incipient
* for incoming connections. A blind
* removal of incipient flag is cheaper than
* check and removal.
*/
mutex_enter(&connp->conn_lock);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
return (0);
}
/*
* tcp_clean_death / tcp_close_detached must not be called more than once
* on a tcp. Thus every function that potentially calls tcp_clean_death
* must check for the tcp state before calling tcp_clean_death.
* Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
* tcp_timer_handler, all check for the tcp state.
*/
/* ARGSUSED */
void
tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
ip_recv_attr_t *dummy)
{
tcp_t *tcp = ((conn_t *)arg)->conn_tcp;
freemsg(mp);
if (tcp->tcp_state > TCPS_BOUND)
(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
}
/*
* We are dying for some reason. Try to do it gracefully. (May be called
* as writer.)
*
* Return -1 if the structure was not cleaned up (if the cleanup had to be
* done by a service procedure).
* TBD - Should the return value distinguish between the tcp_t being
* freed and it being reinitialized?
*/
int
tcp_clean_death(tcp_t *tcp, int err)
{
mblk_t *mp;
queue_t *q;
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
if (tcp->tcp_fused)
tcp_unfuse(tcp);
if (tcp->tcp_linger_tid != 0 &&
TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
tcp_stop_lingering(tcp);
}
ASSERT(tcp != NULL);
ASSERT((connp->conn_family == AF_INET &&
connp->conn_ipversion == IPV4_VERSION) ||
(connp->conn_family == AF_INET6 &&
(connp->conn_ipversion == IPV4_VERSION ||
connp->conn_ipversion == IPV6_VERSION)));
if (TCP_IS_DETACHED(tcp)) {
if (tcp->tcp_hard_binding) {
/*
* Its an eager that we are dealing with. We close the
* eager but in case a conn_ind has already gone to the
* listener, let tcp_accept_finish() send a discon_ind
* to the listener and drop the last reference. If the
* listener doesn't even know about the eager i.e. the
* conn_ind hasn't gone up, blow away the eager and drop
* the last reference as well. If the conn_ind has gone
* up, state should be BOUND. tcp_accept_finish
* will figure out that the connection has received a
* RST and will send a DISCON_IND to the application.
*/
tcp_closei_local(tcp);
if (!tcp->tcp_tconnind_started) {
CONN_DEC_REF(connp);
} else {
int32_t oldstate = tcp->tcp_state;
tcp->tcp_state = TCPS_BOUND;
DTRACE_TCP6(state__change, void, NULL,
ip_xmit_attr_t *, connp->conn_ixa,
void, NULL, tcp_t *, tcp, void, NULL,
int32_t, oldstate);
}
} else {
tcp_close_detached(tcp);
}
return (0);
}
TCP_STAT(tcps, tcp_clean_death_nondetached);
/*
* The connection is dead. Decrement listener connection counter if
* necessary.
*/
if (tcp->tcp_listen_cnt != NULL)
TCP_DECR_LISTEN_CNT(tcp);
/*
* When a connection is moved to TIME_WAIT state, the connection
* counter is already decremented. So no need to decrement here
* again. See SET_TIME_WAIT() macro.
*/
if (tcp->tcp_state >= TCPS_ESTABLISHED &&
tcp->tcp_state < TCPS_TIME_WAIT) {
TCPS_CONN_DEC(tcps);
}
q = connp->conn_rq;
/* Trash all inbound data */
if (!IPCL_IS_NONSTR(connp)) {
ASSERT(q != NULL);
flushq(q, FLUSHALL);
}
/*
* If we are at least part way open and there is error
* (err==0 implies no error)
* notify our client by a T_DISCON_IND.
*/
if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
if (tcp->tcp_state >= TCPS_ESTABLISHED &&
!TCP_IS_SOCKET(tcp)) {
/*
* Send M_FLUSH according to TPI. Because sockets will
* (and must) ignore FLUSHR we do that only for TPI
* endpoints and sockets in STREAMS mode.
*/
(void) putnextctl1(q, M_FLUSH, FLUSHR);
}
if (connp->conn_debug) {
(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
"tcp_clean_death: discon err %d", err);
}
if (IPCL_IS_NONSTR(connp)) {
/* Direct socket, use upcall */
(*connp->conn_upcalls->su_disconnected)(
connp->conn_upper_handle, tcp->tcp_connid, err);
} else {
mp = mi_tpi_discon_ind(NULL, err, 0);
if (mp != NULL) {
putnext(q, mp);
} else {
if (connp->conn_debug) {
(void) strlog(TCP_MOD_ID, 0, 1,
SL_ERROR|SL_TRACE,
"tcp_clean_death, sending M_ERROR");
}
(void) putnextctl1(q, M_ERROR, EPROTO);
}
}
if (tcp->tcp_state <= TCPS_SYN_RCVD) {
/* SYN_SENT or SYN_RCVD */
TCPS_BUMP_MIB(tcps, tcpAttemptFails);
} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
/* ESTABLISHED or CLOSE_WAIT */
TCPS_BUMP_MIB(tcps, tcpEstabResets);
}
}
tcp_reinit(tcp);
if (IPCL_IS_NONSTR(connp))
(void) tcp_do_unbind(connp);
return (-1);
}
/*
* In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
* to expire, stop the wait and finish the close.
*/
void
tcp_stop_lingering(tcp_t *tcp)
{
clock_t delta = 0;
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
tcp->tcp_linger_tid = 0;
if (tcp->tcp_state > TCPS_LISTEN) {
tcp_acceptor_hash_remove(tcp);
mutex_enter(&tcp->tcp_non_sq_lock);
if (tcp->tcp_flow_stopped) {
tcp_clrqfull(tcp);
}
mutex_exit(&tcp->tcp_non_sq_lock);
if (tcp->tcp_timer_tid != 0) {
delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
tcp->tcp_timer_tid = 0;
}
/*
* Need to cancel those timers which will not be used when
* TCP is detached. This has to be done before the conn_wq
* is cleared.
*/
tcp_timers_stop(tcp);
tcp->tcp_detached = B_TRUE;
connp->conn_rq = NULL;
connp->conn_wq = NULL;
if (tcp->tcp_state == TCPS_TIME_WAIT) {
tcp_time_wait_append(tcp);
TCP_DBGSTAT(tcps, tcp_detach_time_wait);
goto finish;
}
/*
* If delta is zero the timer event wasn't executed and was
* successfully canceled. In this case we need to restart it
* with the minimal delta possible.
*/
if (delta >= 0) {
tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
delta ? delta : 1);
}
} else {
tcp_closei_local(tcp);
CONN_DEC_REF(connp);
}
finish:
/* Signal closing thread that it can complete close */
mutex_enter(&tcp->tcp_closelock);
tcp->tcp_detached = B_TRUE;
connp->conn_rq = NULL;
connp->conn_wq = NULL;
tcp->tcp_closed = 1;
cv_signal(&tcp->tcp_closecv);
mutex_exit(&tcp->tcp_closelock);
}
void
tcp_close_common(conn_t *connp, int flags)
{
tcp_t *tcp = connp->conn_tcp;
mblk_t *mp = &tcp->tcp_closemp;
boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
mblk_t *bp;
ASSERT(connp->conn_ref >= 2);
/*
* Mark the conn as closing. ipsq_pending_mp_add will not
* add any mp to the pending mp list, after this conn has
* started closing.
*/
mutex_enter(&connp->conn_lock);
connp->conn_state_flags |= CONN_CLOSING;
if (connp->conn_oper_pending_ill != NULL)
conn_ioctl_cleanup_reqd = B_TRUE;
CONN_INC_REF_LOCKED(connp);
mutex_exit(&connp->conn_lock);
tcp->tcp_closeflags = (uint8_t)flags;
ASSERT(connp->conn_ref >= 3);
/*
* tcp_closemp_used is used below without any protection of a lock
* as we don't expect any one else to use it concurrently at this
* point otherwise it would be a major defect.
*/
if (mp->b_prev == NULL)
tcp->tcp_closemp_used = B_TRUE;
else
cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
"connp %p tcp %p\n", (void *)connp, (void *)tcp);
TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
/*
* Cleanup any queued ioctls here. This must be done before the wq/rq
* are re-written by tcp_close_output().
*/
if (conn_ioctl_cleanup_reqd)
conn_ioctl_cleanup(connp);
/*
* As CONN_CLOSING is set, no further ioctls should be passed down to
* IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
* tcp_wput_iocdata). If the ioctl was queued on an ipsq,
* conn_ioctl_cleanup should have found it and removed it. If the ioctl
* was still in flight at the time, we wait for it here. See comments
* for CONN_INC_IOCTLREF in ip.h for details.
*/
mutex_enter(&connp->conn_lock);
while (connp->conn_ioctlref > 0)
cv_wait(&connp->conn_cv, &connp->conn_lock);
ASSERT(connp->conn_ioctlref == 0);
ASSERT(connp->conn_oper_pending_ill == NULL);
mutex_exit(&connp->conn_lock);
SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
mutex_enter(&tcp->tcp_closelock);
while (!tcp->tcp_closed) {
if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
/*
* The cv_wait_sig() was interrupted. We now do the
* following:
*
* 1) If the endpoint was lingering, we allow this
* to be interrupted by cancelling the linger timeout
* and closing normally.
*
* 2) Revert to calling cv_wait()
*
* We revert to using cv_wait() to avoid an
* infinite loop which can occur if the calling
* thread is higher priority than the squeue worker
* thread and is bound to the same cpu.
*/
if (connp->conn_linger && connp->conn_lingertime > 0) {
mutex_exit(&tcp->tcp_closelock);
/* Entering squeue, bump ref count. */
CONN_INC_REF(connp);
bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
tcp_linger_interrupted, connp, NULL,
tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
mutex_enter(&tcp->tcp_closelock);
}
break;
}
}
while (!tcp->tcp_closed)
cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
mutex_exit(&tcp->tcp_closelock);
/*
* In the case of listener streams that have eagers in the q or q0
* we wait for the eagers to drop their reference to us. conn_rq and
* conn_wq of the eagers point to our queues. By waiting for the
* refcnt to drop to 1, we are sure that the eagers have cleaned
* up their queue pointers and also dropped their references to us.
*/
if (tcp->tcp_wait_for_eagers) {
mutex_enter(&connp->conn_lock);
while (connp->conn_ref != 1) {
cv_wait(&connp->conn_cv, &connp->conn_lock);
}
mutex_exit(&connp->conn_lock);
}
connp->conn_cpid = NOPID;
}
/*
* Called by tcp_close() routine via squeue when lingering is
* interrupted by a signal.
*/
/* ARGSUSED */
static void
tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
{
conn_t *connp = (conn_t *)arg;
tcp_t *tcp = connp->conn_tcp;
freeb(mp);
if (tcp->tcp_linger_tid != 0 &&
TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
tcp_stop_lingering(tcp);
tcp->tcp_client_errno = EINTR;
}
}
/*
* Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
* Some stream heads get upset if they see these later on as anything but NULL.
*/
void
tcp_close_mpp(mblk_t **mpp)
{
mblk_t *mp;
if ((mp = *mpp) != NULL) {
do {
mp->b_next = NULL;
mp->b_prev = NULL;
} while ((mp = mp->b_cont) != NULL);
mp = *mpp;
*mpp = NULL;
freemsg(mp);
}
}
/* Do detached close. */
void
tcp_close_detached(tcp_t *tcp)
{
if (tcp->tcp_fused)
tcp_unfuse(tcp);
/*
* Clustering code serializes TCP disconnect callbacks and
* cluster tcp list walks by blocking a TCP disconnect callback
* if a cluster tcp list walk is in progress. This ensures
* accurate accounting of TCPs in the cluster code even though
* the TCP list walk itself is not atomic.
*/
tcp_closei_local(tcp);
CONN_DEC_REF(tcp->tcp_connp);
}
/*
* The tcp_t is going away. Remove it from all lists and set it
* to TCPS_CLOSED. The freeing up of memory is deferred until
* tcp_inactive. This is needed since a thread in tcp_rput might have
* done a CONN_INC_REF on this structure before it was removed from the
* hashes.
*/
void
tcp_closei_local(tcp_t *tcp)
{
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
int32_t oldstate;
if (!TCP_IS_SOCKET(tcp))
tcp_acceptor_hash_remove(tcp);
TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
tcp->tcp_ibsegs = 0;
TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
tcp->tcp_obsegs = 0;
/*
* This can be called via tcp_time_wait_processing() if TCP gets a
* SYN with sequence number outside the TIME-WAIT connection's
* window. So we need to check for TIME-WAIT state here as the
* connection counter is already decremented. See SET_TIME_WAIT()
* macro
*/
if (tcp->tcp_state >= TCPS_ESTABLISHED &&
tcp->tcp_state < TCPS_TIME_WAIT) {
TCPS_CONN_DEC(tcps);
}
/*
* If we are an eager connection hanging off a listener that
* hasn't formally accepted the connection yet, get off his
* list and blow off any data that we have accumulated.
*/
if (tcp->tcp_listener != NULL) {
tcp_t *listener = tcp->tcp_listener;
mutex_enter(&listener->tcp_eager_lock);
/*
* tcp_tconnind_started == B_TRUE means that the
* conn_ind has already gone to listener. At
* this point, eager will be closed but we
* leave it in listeners eager list so that
* if listener decides to close without doing
* accept, we can clean this up. In tcp_tli_accept
* we take care of the case of accept on closed
* eager.
*/
if (!tcp->tcp_tconnind_started) {
tcp_eager_unlink(tcp);
mutex_exit(&listener->tcp_eager_lock);
/*
* We don't want to have any pointers to the
* listener queue, after we have released our
* reference on the listener
*/
ASSERT(tcp->tcp_detached);
connp->conn_rq = NULL;
connp->conn_wq = NULL;
CONN_DEC_REF(listener->tcp_connp);
} else {
mutex_exit(&listener->tcp_eager_lock);
}
}
/* Stop all the timers */
tcp_timers_stop(tcp);
if (tcp->tcp_state == TCPS_LISTEN) {
if (tcp->tcp_ip_addr_cache) {
kmem_free((void *)tcp->tcp_ip_addr_cache,
IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
tcp->tcp_ip_addr_cache = NULL;
}
}
/* Decrement listerner connection counter if necessary. */
if (tcp->tcp_listen_cnt != NULL)
TCP_DECR_LISTEN_CNT(tcp);
mutex_enter(&tcp->tcp_non_sq_lock);
if (tcp->tcp_flow_stopped)
tcp_clrqfull(tcp);
mutex_exit(&tcp->tcp_non_sq_lock);
tcp_bind_hash_remove(tcp);
/*
* If the tcp_time_wait_collector (which runs outside the squeue)
* is trying to remove this tcp from the time wait list, we will
* block in tcp_time_wait_remove while trying to acquire the
* tcp_time_wait_lock. The logic in tcp_time_wait_collector also
* requires the ipcl_hash_remove to be ordered after the
* tcp_time_wait_remove for the refcnt checks to work correctly.
*/
if (tcp->tcp_state == TCPS_TIME_WAIT)
(void) tcp_time_wait_remove(tcp, NULL);
CL_INET_DISCONNECT(connp);
ipcl_hash_remove(connp);
oldstate = tcp->tcp_state;
tcp->tcp_state = TCPS_CLOSED;
/* Need to probe before ixa_cleanup() is called */
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
int32_t, oldstate);
ixa_cleanup(connp->conn_ixa);
/*
* Mark the conn as CONDEMNED
*/
mutex_enter(&connp->conn_lock);
connp->conn_state_flags |= CONN_CONDEMNED;
mutex_exit(&connp->conn_lock);
ASSERT(tcp->tcp_time_wait_next == NULL);
ASSERT(tcp->tcp_time_wait_prev == NULL);
ASSERT(tcp->tcp_time_wait_expire == 0);
/* Release any SSL context */
if (tcp->tcp_kssl_ent != NULL) {
kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
tcp->tcp_kssl_ent = NULL;
}
if (tcp->tcp_kssl_ctx != NULL) {
kssl_release_ctx(tcp->tcp_kssl_ctx);
tcp->tcp_kssl_ctx = NULL;
}
tcp->tcp_kssl_pending = B_FALSE;
tcp_ipsec_cleanup(tcp);
}
/*
* tcp is dying (called from ipcl_conn_destroy and error cases).
* Free the tcp_t in either case.
*/
void
tcp_free(tcp_t *tcp)
{
mblk_t *mp;
conn_t *connp = tcp->tcp_connp;
ASSERT(tcp != NULL);
ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
connp->conn_rq = NULL;
connp->conn_wq = NULL;
tcp_close_mpp(&tcp->tcp_xmit_head);
tcp_close_mpp(&tcp->tcp_reass_head);
if (tcp->tcp_rcv_list != NULL) {
/* Free b_next chain */
tcp_close_mpp(&tcp->tcp_rcv_list);
}
if ((mp = tcp->tcp_urp_mp) != NULL) {
freemsg(mp);
}
if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
freemsg(mp);
}
if (tcp->tcp_fused_sigurg_mp != NULL) {
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
freeb(tcp->tcp_fused_sigurg_mp);
tcp->tcp_fused_sigurg_mp = NULL;
}
if (tcp->tcp_ordrel_mp != NULL) {
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
freeb(tcp->tcp_ordrel_mp);
tcp->tcp_ordrel_mp = NULL;
}
TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
if (tcp->tcp_hopopts != NULL) {
mi_free(tcp->tcp_hopopts);
tcp->tcp_hopopts = NULL;
tcp->tcp_hopoptslen = 0;
}
ASSERT(tcp->tcp_hopoptslen == 0);
if (tcp->tcp_dstopts != NULL) {
mi_free(tcp->tcp_dstopts);
tcp->tcp_dstopts = NULL;
tcp->tcp_dstoptslen = 0;
}
ASSERT(tcp->tcp_dstoptslen == 0);
if (tcp->tcp_rthdrdstopts != NULL) {
mi_free(tcp->tcp_rthdrdstopts);
tcp->tcp_rthdrdstopts = NULL;
tcp->tcp_rthdrdstoptslen = 0;
}
ASSERT(tcp->tcp_rthdrdstoptslen == 0);
if (tcp->tcp_rthdr != NULL) {
mi_free(tcp->tcp_rthdr);
tcp->tcp_rthdr = NULL;
tcp->tcp_rthdrlen = 0;
}
ASSERT(tcp->tcp_rthdrlen == 0);
/*
* Following is really a blowing away a union.
* It happens to have exactly two members of identical size
* the following code is enough.
*/
tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
}
/*
* tcp_get_conn/tcp_free_conn
*
* tcp_get_conn is used to get a clean tcp connection structure.
* It tries to reuse the connections put on the freelist by the
* time_wait_collector failing which it goes to kmem_cache. This
* way has two benefits compared to just allocating from and
* freeing to kmem_cache.
* 1) The time_wait_collector can free (which includes the cleanup)
* outside the squeue. So when the interrupt comes, we have a clean
* connection sitting in the freelist. Obviously, this buys us
* performance.
*
* 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
* has multiple disadvantages - tying up the squeue during alloc.
* But allocating the conn/tcp in IP land is also not the best since
* we can't check the 'q' and 'q0' which are protected by squeue and
* blindly allocate memory which might have to be freed here if we are
* not allowed to accept the connection. By using the freelist and
* putting the conn/tcp back in freelist, we don't pay a penalty for
* allocating memory without checking 'q/q0' and freeing it if we can't
* accept the connection.
*
* Care should be taken to put the conn back in the same squeue's freelist
* from which it was allocated. Best results are obtained if conn is
* allocated from listener's squeue and freed to the same. Time wait
* collector will free up the freelist is the connection ends up sitting
* there for too long.
*/
void *
tcp_get_conn(void *arg, tcp_stack_t *tcps)
{
tcp_t *tcp = NULL;
conn_t *connp = NULL;
squeue_t *sqp = (squeue_t *)arg;
tcp_squeue_priv_t *tcp_time_wait;
netstack_t *ns;
mblk_t *tcp_rsrv_mp = NULL;
tcp_time_wait =
*((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
tcp = tcp_time_wait->tcp_free_list;
ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
if (tcp != NULL) {
tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
tcp_time_wait->tcp_free_list_cnt--;
mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
tcp->tcp_time_wait_next = NULL;
connp = tcp->tcp_connp;
connp->conn_flags |= IPCL_REUSED;
ASSERT(tcp->tcp_tcps == NULL);
ASSERT(connp->conn_netstack == NULL);
ASSERT(tcp->tcp_rsrv_mp != NULL);
ns = tcps->tcps_netstack;
netstack_hold(ns);
connp->conn_netstack = ns;
connp->conn_ixa->ixa_ipst = ns->netstack_ip;
tcp->tcp_tcps = tcps;
ipcl_globalhash_insert(connp);
connp->conn_ixa->ixa_notify_cookie = tcp;
ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
connp->conn_recv = tcp_input_data;
ASSERT(connp->conn_recvicmp == tcp_icmp_input);
ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
return ((void *)connp);
}
mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
/*
* Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
* this conn_t/tcp_t is freed at ipcl_conn_destroy().
*/
tcp_rsrv_mp = allocb(0, BPRI_HI);
if (tcp_rsrv_mp == NULL)
return (NULL);
if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
tcps->tcps_netstack)) == NULL) {
freeb(tcp_rsrv_mp);
return (NULL);
}
tcp = connp->conn_tcp;
tcp->tcp_rsrv_mp = tcp_rsrv_mp;
mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
tcp->tcp_tcps = tcps;
connp->conn_recv = tcp_input_data;
connp->conn_recvicmp = tcp_icmp_input;
connp->conn_verifyicmp = tcp_verifyicmp;
/*
* Register tcp_notify to listen to capability changes detected by IP.
* This upcall is made in the context of the call to conn_ip_output
* thus it is inside the squeue.
*/
connp->conn_ixa->ixa_notify = tcp_notify;
connp->conn_ixa->ixa_notify_cookie = tcp;
return ((void *)connp);
}
/*
* Handle connect to IPv4 destinations, including connections for AF_INET6
* sockets connecting to IPv4 mapped IPv6 destinations.
* Returns zero if OK, a positive errno, or a negative TLI error.
*/
static int
tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
uint_t srcid)
{
ipaddr_t dstaddr = *dstaddrp;
uint16_t lport;
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
int error;
ASSERT(connp->conn_ipversion == IPV4_VERSION);
/* Check for attempt to connect to INADDR_ANY */
if (dstaddr == INADDR_ANY) {
/*
* SunOS 4.x and 4.3 BSD allow an application
* to connect a TCP socket to INADDR_ANY.
* When they do this, the kernel picks the
* address of one interface and uses it
* instead. The kernel usually ends up
* picking the address of the loopback
* interface. This is an undocumented feature.
* However, we provide the same thing here
* in order to have source and binary
* compatibility with SunOS 4.x.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
dstaddr = htonl(INADDR_LOOPBACK);
*dstaddrp = dstaddr;
}
/* Handle __sin6_src_id if socket not bound to an IP address */
if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
IPCL_ZONEID(connp), tcps->tcps_netstack);
connp->conn_saddr_v6 = connp->conn_laddr_v6;
}
IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
connp->conn_fport = dstport;
/*
* At this point the remote destination address and remote port fields
* in the tcp-four-tuple have been filled in the tcp structure. Now we
* have to see which state tcp was in so we can take appropriate action.
*/
if (tcp->tcp_state == TCPS_IDLE) {
/*
* We support a quick connect capability here, allowing
* clients to transition directly from IDLE to SYN_SENT
* tcp_bindi will pick an unused port, insert the connection
* in the bind hash and transition to BOUND state.
*/
lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
tcp, B_TRUE);
lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
B_FALSE, B_FALSE);
if (lport == 0)
return (-TNOADDR);
}
/*
* Lookup the route to determine a source address and the uinfo.
* Setup TCP parameters based on the metrics/DCE.
*/
error = tcp_set_destination(tcp);
if (error != 0)
return (error);
/*
* Don't let an endpoint connect to itself.
*/
if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
connp->conn_fport == connp->conn_lport)
return (-TBADADDR);
tcp->tcp_state = TCPS_SYN_SENT;
return (ipcl_conn_insert_v4(connp));
}
/*
* Handle connect to IPv6 destinations.
* Returns zero if OK, a positive errno, or a negative TLI error.
*/
static int
tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
{
uint16_t lport;
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
int error;
ASSERT(connp->conn_family == AF_INET6);
/*
* If we're here, it means that the destination address is a native
* IPv6 address. Return an error if conn_ipversion is not IPv6. A
* reason why it might not be IPv6 is if the socket was bound to an
* IPv4-mapped IPv6 address.
*/
if (connp->conn_ipversion != IPV6_VERSION)
return (-TBADADDR);
/*
* Interpret a zero destination to mean loopback.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
*dstaddrp = ipv6_loopback;
/* Handle __sin6_src_id if socket not bound to an IP address */
if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
IPCL_ZONEID(connp), tcps->tcps_netstack);
connp->conn_saddr_v6 = connp->conn_laddr_v6;
}
/*
* Take care of the scope_id now.
*/
if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
connp->conn_ixa->ixa_scopeid = scope_id;
} else {
connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
}
connp->conn_flowinfo = flowinfo;
connp->conn_faddr_v6 = *dstaddrp;
connp->conn_fport = dstport;
/*
* At this point the remote destination address and remote port fields
* in the tcp-four-tuple have been filled in the tcp structure. Now we
* have to see which state tcp was in so we can take appropriate action.
*/
if (tcp->tcp_state == TCPS_IDLE) {
/*
* We support a quick connect capability here, allowing
* clients to transition directly from IDLE to SYN_SENT
* tcp_bindi will pick an unused port, insert the connection
* in the bind hash and transition to BOUND state.
*/
lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
tcp, B_TRUE);
lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
B_FALSE, B_FALSE);
if (lport == 0)
return (-TNOADDR);
}
/*
* Lookup the route to determine a source address and the uinfo.
* Setup TCP parameters based on the metrics/DCE.
*/
error = tcp_set_destination(tcp);
if (error != 0)
return (error);
/*
* Don't let an endpoint connect to itself.
*/
if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
connp->conn_fport == connp->conn_lport)
return (-TBADADDR);
tcp->tcp_state = TCPS_SYN_SENT;
return (ipcl_conn_insert_v6(connp));
}
/*
* Disconnect
* Note that unlike other functions this returns a positive tli error
* when it fails; it never returns an errno.
*/
static int
tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
{
conn_t *lconnp;
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
/*
* Right now, upper modules pass down a T_DISCON_REQ to TCP,
* when the stream is in BOUND state. Do not send a reset,
* since the destination IP address is not valid, and it can
* be the initialized value of all zeros (broadcast address).
*/
if (tcp->tcp_state <= TCPS_BOUND) {
if (connp->conn_debug) {
(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
"tcp_disconnect: bad state, %d", tcp->tcp_state);
}
return (TOUTSTATE);
} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
TCPS_CONN_DEC(tcps);
}
if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
/*
* According to TPI, for non-listeners, ignore seqnum
* and disconnect.
* Following interpretation of -1 seqnum is historical
* and implied TPI ? (TPI only states that for T_CONN_IND,
* a valid seqnum should not be -1).
*
* -1 means disconnect everything
* regardless even on a listener.
*/
int old_state = tcp->tcp_state;
ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
/*
* The connection can't be on the tcp_time_wait_head list
* since it is not detached.
*/
ASSERT(tcp->tcp_time_wait_next == NULL);
ASSERT(tcp->tcp_time_wait_prev == NULL);
ASSERT(tcp->tcp_time_wait_expire == 0);
/*
* If it used to be a listener, check to make sure no one else
* has taken the port before switching back to LISTEN state.
*/
if (connp->conn_ipversion == IPV4_VERSION) {
lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
} else {
uint_t ifindex = 0;
if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
ifindex = connp->conn_ixa->ixa_scopeid;
/* Allow conn_bound_if listeners? */
lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
&connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
ipst);
}
if (tcp->tcp_conn_req_max && lconnp == NULL) {
tcp->tcp_state = TCPS_LISTEN;
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
NULL, int32_t, old_state);
} else if (old_state > TCPS_BOUND) {
tcp->tcp_conn_req_max = 0;
tcp->tcp_state = TCPS_BOUND;
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
NULL, int32_t, old_state);
/*
* If this end point is not going to become a listener,
* decrement the listener connection count if
* necessary. Note that we do not do this if it is
* going to be a listner (the above if case) since
* then it may remove the counter struct.
*/
if (tcp->tcp_listen_cnt != NULL)
TCP_DECR_LISTEN_CNT(tcp);
}
if (lconnp != NULL)
CONN_DEC_REF(lconnp);
switch (old_state) {
case TCPS_SYN_SENT:
case TCPS_SYN_RCVD:
TCPS_BUMP_MIB(tcps, tcpAttemptFails);
break;
case TCPS_ESTABLISHED:
case TCPS_CLOSE_WAIT:
TCPS_BUMP_MIB(tcps, tcpEstabResets);
break;
}
if (tcp->tcp_fused)
tcp_unfuse(tcp);
mutex_enter(&tcp->tcp_eager_lock);
if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
(tcp->tcp_conn_req_cnt_q != 0)) {
tcp_eager_cleanup(tcp, 0);
}
mutex_exit(&tcp->tcp_eager_lock);
tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
tcp->tcp_rnxt, TH_RST | TH_ACK);
tcp_reinit(tcp);
return (0);
} else if (!tcp_eager_blowoff(tcp, seqnum)) {
return (TBADSEQ);
}
return (0);
}
/*
* Our client hereby directs us to reject the connection request
* that tcp_input_listener() marked with 'seqnum'. Rejection consists
* of sending the appropriate RST, not an ICMP error.
*/
void
tcp_disconnect(tcp_t *tcp, mblk_t *mp)
{
t_scalar_t seqnum;
int error;
conn_t *connp = tcp->tcp_connp;
ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
tcp_err_ack(tcp, mp, TPROTO, 0);
return;
}
seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
error = tcp_disconnect_common(tcp, seqnum);
if (error != 0)
tcp_err_ack(tcp, mp, error, 0);
else {
if (tcp->tcp_state >= TCPS_ESTABLISHED) {
/* Send M_FLUSH according to TPI */
(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
}
mp = mi_tpi_ok_ack_alloc(mp);
if (mp != NULL)
putnext(connp->conn_rq, mp);
}
}
/*
* Handle reinitialization of a tcp structure.
* Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
*/
static void
tcp_reinit(tcp_t *tcp)
{
mblk_t *mp;
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
int32_t oldstate;
/* tcp_reinit should never be called for detached tcp_t's */
ASSERT(tcp->tcp_listener == NULL);
ASSERT((connp->conn_family == AF_INET &&
connp->conn_ipversion == IPV4_VERSION) ||
(connp->conn_family == AF_INET6 &&
(connp->conn_ipversion == IPV4_VERSION ||
connp->conn_ipversion == IPV6_VERSION)));
/* Cancel outstanding timers */
tcp_timers_stop(tcp);
/*
* Reset everything in the state vector, after updating global
* MIB data from instance counters.
*/
TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
tcp->tcp_ibsegs = 0;
TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
tcp->tcp_obsegs = 0;
tcp_close_mpp(&tcp->tcp_xmit_head);
if (tcp->tcp_snd_zcopy_aware)
tcp_zcopy_notify(tcp);
tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
mutex_enter(&tcp->tcp_non_sq_lock);
if (tcp->tcp_flow_stopped &&
TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
tcp_clrqfull(tcp);
}
mutex_exit(&tcp->tcp_non_sq_lock);
tcp_close_mpp(&tcp->tcp_reass_head);
tcp->tcp_reass_tail = NULL;
if (tcp->tcp_rcv_list != NULL) {
/* Free b_next chain */
tcp_close_mpp(&tcp->tcp_rcv_list);
tcp->tcp_rcv_last_head = NULL;
tcp->tcp_rcv_last_tail = NULL;
tcp->tcp_rcv_cnt = 0;
}
tcp->tcp_rcv_last_tail = NULL;
if ((mp = tcp->tcp_urp_mp) != NULL) {
freemsg(mp);
tcp->tcp_urp_mp = NULL;
}
if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
freemsg(mp);
tcp->tcp_urp_mark_mp = NULL;
}
if (tcp->tcp_fused_sigurg_mp != NULL) {
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
freeb(tcp->tcp_fused_sigurg_mp);
tcp->tcp_fused_sigurg_mp = NULL;
}
if (tcp->tcp_ordrel_mp != NULL) {
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
freeb(tcp->tcp_ordrel_mp);
tcp->tcp_ordrel_mp = NULL;
}
/*
* Following is a union with two members which are
* identical types and size so the following cleanup
* is enough.
*/
tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
CL_INET_DISCONNECT(connp);
/*
* The connection can't be on the tcp_time_wait_head list
* since it is not detached.
*/
ASSERT(tcp->tcp_time_wait_next == NULL);
ASSERT(tcp->tcp_time_wait_prev == NULL);
ASSERT(tcp->tcp_time_wait_expire == 0);
if (tcp->tcp_kssl_pending) {
tcp->tcp_kssl_pending = B_FALSE;
/* Don't reset if the initialized by bind. */
if (tcp->tcp_kssl_ent != NULL) {
kssl_release_ent(tcp->tcp_kssl_ent, NULL,
KSSL_NO_PROXY);
}
}
if (tcp->tcp_kssl_ctx != NULL) {
kssl_release_ctx(tcp->tcp_kssl_ctx);
tcp->tcp_kssl_ctx = NULL;
}
/*
* Reset/preserve other values
*/
tcp_reinit_values(tcp);
ipcl_hash_remove(connp);
/* Note that ixa_cred gets cleared in ixa_cleanup */
ixa_cleanup(connp->conn_ixa);
tcp_ipsec_cleanup(tcp);
connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
oldstate = tcp->tcp_state;
if (tcp->tcp_conn_req_max != 0) {
/*
* This is the case when a TLI program uses the same
* transport end point to accept a connection. This
* makes the TCP both a listener and acceptor. When
* this connection is closed, we need to set the state
* back to TCPS_LISTEN. Make sure that the eager list
* is reinitialized.
*
* Note that this stream is still bound to the four
* tuples of the previous connection in IP. If a new
* SYN with different foreign address comes in, IP will
* not find it and will send it to the global queue. In
* the global queue, TCP will do a tcp_lookup_listener()
* to find this stream. This works because this stream
* is only removed from connected hash.
*
*/
tcp->tcp_state = TCPS_LISTEN;
tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
tcp->tcp_eager_next_drop_q0 = tcp;
tcp->tcp_eager_prev_drop_q0 = tcp;
/*
* Initially set conn_recv to tcp_input_listener_unbound to try
* to pick a good squeue for the listener when the first SYN
* arrives. tcp_input_listener_unbound sets it to
* tcp_input_listener on that first SYN.
*/
connp->conn_recv = tcp_input_listener_unbound;
connp->conn_proto = IPPROTO_TCP;
connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = 0;
(void) ipcl_bind_insert(connp);
} else {
tcp->tcp_state = TCPS_BOUND;
}
/*
* Initialize to default values
*/
tcp_init_values(tcp);
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
int32_t, oldstate);
ASSERT(tcp->tcp_ptpbhn != NULL);
tcp->tcp_rwnd = connp->conn_rcvbuf;
tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
}
/*
* Force values to zero that need be zero.
* Do not touch values asociated with the BOUND or LISTEN state
* since the connection will end up in that state after the reinit.
* NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
* structure!
*/
static void
tcp_reinit_values(tcp)
tcp_t *tcp;
{
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
#ifndef lint
#define DONTCARE(x)
#define PRESERVE(x)
#else
#define DONTCARE(x) ((x) = (x))
#define PRESERVE(x) ((x) = (x))
#endif /* lint */
PRESERVE(tcp->tcp_bind_hash_port);
PRESERVE(tcp->tcp_bind_hash);
PRESERVE(tcp->tcp_ptpbhn);
PRESERVE(tcp->tcp_acceptor_hash);
PRESERVE(tcp->tcp_ptpahn);
/* Should be ASSERT NULL on these with new code! */
ASSERT(tcp->tcp_time_wait_next == NULL);
ASSERT(tcp->tcp_time_wait_prev == NULL);
ASSERT(tcp->tcp_time_wait_expire == 0);
PRESERVE(tcp->tcp_state);
PRESERVE(connp->conn_rq);
PRESERVE(connp->conn_wq);
ASSERT(tcp->tcp_xmit_head == NULL);
ASSERT(tcp->tcp_xmit_last == NULL);
ASSERT(tcp->tcp_unsent == 0);
ASSERT(tcp->tcp_xmit_tail == NULL);
ASSERT(tcp->tcp_xmit_tail_unsent == 0);
tcp->tcp_snxt = 0; /* Displayed in mib */
tcp->tcp_suna = 0; /* Displayed in mib */
tcp->tcp_swnd = 0;
DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */
ASSERT(tcp->tcp_ibsegs == 0);
ASSERT(tcp->tcp_obsegs == 0);
if (connp->conn_ht_iphc != NULL) {
kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
connp->conn_ht_iphc = NULL;
connp->conn_ht_iphc_allocated = 0;
connp->conn_ht_iphc_len = 0;
connp->conn_ht_ulp = NULL;
connp->conn_ht_ulp_len = 0;
tcp->tcp_ipha = NULL;
tcp->tcp_ip6h = NULL;
tcp->tcp_tcpha = NULL;
}
/* We clear any IP_OPTIONS and extension headers */
ip_pkt_free(&connp->conn_xmit_ipp);
DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_ipha);
DONTCARE(tcp->tcp_ip6h);
DONTCARE(tcp->tcp_tcpha);
tcp->tcp_valid_bits = 0;
DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */
tcp->tcp_last_rcv_lbolt = 0;
tcp->tcp_init_cwnd = 0;
tcp->tcp_urp_last_valid = 0;
tcp->tcp_hard_binding = 0;
tcp->tcp_fin_acked = 0;
tcp->tcp_fin_rcvd = 0;
tcp->tcp_fin_sent = 0;
tcp->tcp_ordrel_done = 0;
tcp->tcp_detached = 0;
tcp->tcp_snd_ws_ok = B_FALSE;
tcp->tcp_snd_ts_ok = B_FALSE;
tcp->tcp_zero_win_probe = 0;
tcp->tcp_loopback = 0;
tcp->tcp_localnet = 0;
tcp->tcp_syn_defense = 0;
tcp->tcp_set_timer = 0;
tcp->tcp_active_open = 0;
tcp->tcp_rexmit = B_FALSE;
tcp->tcp_xmit_zc_clean = B_FALSE;
tcp->tcp_snd_sack_ok = B_FALSE;
tcp->tcp_hwcksum = B_FALSE;
DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */
tcp->tcp_conn_def_q0 = 0;
tcp->tcp_ip_forward_progress = B_FALSE;
tcp->tcp_ecn_ok = B_FALSE;
tcp->tcp_cwr = B_FALSE;
tcp->tcp_ecn_echo_on = B_FALSE;
tcp->tcp_is_wnd_shrnk = B_FALSE;
TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
tcp->tcp_rcv_ws = 0;
tcp->tcp_snd_ws = 0;
tcp->tcp_ts_recent = 0;
tcp->tcp_rnxt = 0; /* Displayed in mib */
DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */
tcp->tcp_initial_pmtu = 0;
ASSERT(tcp->tcp_reass_head == NULL);
ASSERT(tcp->tcp_reass_tail == NULL);
tcp->tcp_cwnd_cnt = 0;
ASSERT(tcp->tcp_rcv_list == NULL);
ASSERT(tcp->tcp_rcv_last_head == NULL);
ASSERT(tcp->tcp_rcv_last_tail == NULL);
ASSERT(tcp->tcp_rcv_cnt == 0);
DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */
tcp->tcp_csuna = 0;
tcp->tcp_rto = 0; /* Displayed in MIB */
DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */
tcp->tcp_rtt_update = 0;
DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
tcp->tcp_rack = 0; /* Displayed in mib */
tcp->tcp_rack_cnt = 0;
tcp->tcp_rack_cur_max = 0;
tcp->tcp_rack_abs_max = 0;
tcp->tcp_max_swnd = 0;
ASSERT(tcp->tcp_listener == NULL);
DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */
DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */
DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */
DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */
ASSERT(tcp->tcp_conn_req_cnt_q == 0);
ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
PRESERVE(tcp->tcp_conn_req_max);
PRESERVE(tcp->tcp_conn_req_seqnum);
DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */
ASSERT(tcp->tcp_urp_mp == NULL);
ASSERT(tcp->tcp_urp_mark_mp == NULL);
ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
ASSERT(tcp->tcp_eager_next_q == NULL);
ASSERT(tcp->tcp_eager_last_q == NULL);
ASSERT((tcp->tcp_eager_next_q0 == NULL &&
tcp->tcp_eager_prev_q0 == NULL) ||
tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
tcp->tcp_eager_prev_drop_q0 == NULL) ||
tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
tcp->tcp_client_errno = 0;
DONTCARE(connp->conn_sum); /* Init in tcp_init_values */
connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */
PRESERVE(connp->conn_bound_addr_v6);
tcp->tcp_last_sent_len = 0;
tcp->tcp_dupack_cnt = 0;
connp->conn_fport = 0; /* Displayed in MIB */
PRESERVE(connp->conn_lport);
PRESERVE(tcp->tcp_acceptor_lockp);
ASSERT(tcp->tcp_ordrel_mp == NULL);
PRESERVE(tcp->tcp_acceptor_id);
DONTCARE(tcp->tcp_ipsec_overhead);
PRESERVE(connp->conn_family);
/* Remove any remnants of mapped address binding */
if (connp->conn_family == AF_INET6) {
connp->conn_ipversion = IPV6_VERSION;
tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
} else {
connp->conn_ipversion = IPV4_VERSION;
tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
}
connp->conn_bound_if = 0;
connp->conn_recv_ancillary.crb_all = 0;
tcp->tcp_recvifindex = 0;
tcp->tcp_recvhops = 0;
tcp->tcp_closed = 0;
if (tcp->tcp_hopopts != NULL) {
mi_free(tcp->tcp_hopopts);
tcp->tcp_hopopts = NULL;
tcp->tcp_hopoptslen = 0;
}
ASSERT(tcp->tcp_hopoptslen == 0);
if (tcp->tcp_dstopts != NULL) {
mi_free(tcp->tcp_dstopts);
tcp->tcp_dstopts = NULL;
tcp->tcp_dstoptslen = 0;
}
ASSERT(tcp->tcp_dstoptslen == 0);
if (tcp->tcp_rthdrdstopts != NULL) {
mi_free(tcp->tcp_rthdrdstopts);
tcp->tcp_rthdrdstopts = NULL;
tcp->tcp_rthdrdstoptslen = 0;
}
ASSERT(tcp->tcp_rthdrdstoptslen == 0);
if (tcp->tcp_rthdr != NULL) {
mi_free(tcp->tcp_rthdr);
tcp->tcp_rthdr = NULL;
tcp->tcp_rthdrlen = 0;
}
ASSERT(tcp->tcp_rthdrlen == 0);
/* Reset fusion-related fields */
tcp->tcp_fused = B_FALSE;
tcp->tcp_unfusable = B_FALSE;
tcp->tcp_fused_sigurg = B_FALSE;
tcp->tcp_loopback_peer = NULL;
tcp->tcp_lso = B_FALSE;
tcp->tcp_in_ack_unsent = 0;
tcp->tcp_cork = B_FALSE;
tcp->tcp_tconnind_started = B_FALSE;
PRESERVE(tcp->tcp_squeue_bytes);
ASSERT(tcp->tcp_kssl_ctx == NULL);
ASSERT(!tcp->tcp_kssl_pending);
PRESERVE(tcp->tcp_kssl_ent);
tcp->tcp_closemp_used = B_FALSE;
PRESERVE(tcp->tcp_rsrv_mp);
PRESERVE(tcp->tcp_rsrv_mp_lock);
#ifdef DEBUG
DONTCARE(tcp->tcmp_stk[0]);
#endif
PRESERVE(tcp->tcp_connid);
ASSERT(tcp->tcp_listen_cnt == NULL);
ASSERT(tcp->tcp_reass_tid == 0);
#undef DONTCARE
#undef PRESERVE
}
void
tcp_init_values(tcp_t *tcp)
{
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
ASSERT((connp->conn_family == AF_INET &&
connp->conn_ipversion == IPV4_VERSION) ||
(connp->conn_family == AF_INET6 &&
(connp->conn_ipversion == IPV4_VERSION ||
connp->conn_ipversion == IPV6_VERSION)));
/*
* Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
* will be close to tcp_rexmit_interval_initial. By doing this, we
* allow the algorithm to adjust slowly to large fluctuations of RTT
* during first few transmissions of a connection as seen in slow
* links.
*/
tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
tcps->tcps_conn_grace_period;
if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
tcp->tcp_timer_backoff = 0;
tcp->tcp_ms_we_have_waited = 0;
tcp->tcp_last_recv_time = ddi_get_lbolt();
tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
tcp->tcp_snd_burst = TCP_CWND_INFINITE;
tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
/*
* Fix it to tcp_ip_abort_linterval later if it turns out to be a
* passive open.
*/
tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
tcp->tcp_naglim = tcps->tcps_naglim_def;
/* NOTE: ISS is now set in tcp_set_destination(). */
/* Reset fusion-related fields */
tcp->tcp_fused = B_FALSE;
tcp->tcp_unfusable = B_FALSE;
tcp->tcp_fused_sigurg = B_FALSE;
tcp->tcp_loopback_peer = NULL;
/* We rebuild the header template on the next connect/conn_request */
connp->conn_mlp_type = mlptSingle;
/*
* Init the window scale to the max so tcp_rwnd_set() won't pare
* down tcp_rwnd. tcp_set_destination() will set the right value later.
*/
tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
tcp->tcp_rwnd = connp->conn_rcvbuf;
tcp->tcp_cork = B_FALSE;
/*
* Init the tcp_debug option if it wasn't already set. This value
* determines whether TCP
* calls strlog() to print out debug messages. Doing this
* initialization here means that this value is not inherited thru
* tcp_reinit().
*/
if (!connp->conn_debug)
connp->conn_debug = tcps->tcps_dbg;
tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
}
/*
* Update the TCP connection according to change of PMTU.
*
* Path MTU might have changed by either increase or decrease, so need to
* adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
* or negative MSS, since tcp_mss_set() will do it.
*/
void
tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
{
uint32_t pmtu;
int32_t mss;
conn_t *connp = tcp->tcp_connp;
ip_xmit_attr_t *ixa = connp->conn_ixa;
iaflags_t ixaflags;
if (tcp->tcp_tcps->tcps_ignore_path_mtu)
return;
if (tcp->tcp_state < TCPS_ESTABLISHED)
return;
/*
* Always call ip_get_pmtu() to make sure that IP has updated
* ixa_flags properly.
*/
pmtu = ip_get_pmtu(ixa);
ixaflags = ixa->ixa_flags;
/*
* Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
* IPsec overhead if applied. Make sure to use the most recent
* IPsec information.
*/
mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
/*
* Nothing to change, so just return.
*/
if (mss == tcp->tcp_mss)
return;
/*
* Currently, for ICMP errors, only PMTU decrease is handled.
*/
if (mss > tcp->tcp_mss && decrease_only)
return;
DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
/*
* Update ixa_fragsize and ixa_pmtu.
*/
ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
/*
* Adjust MSS and all relevant variables.
*/
tcp_mss_set(tcp, mss);
/*
* If the PMTU is below the min size maintained by IP, then ip_get_pmtu
* has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
* has a (potentially different) min size we do the same. Make sure to
* clear IXAF_DONTFRAG, which is used by IP to decide whether to
* fragment the packet.
*
* LSO over IPv6 can not be fragmented. So need to disable LSO
* when IPv6 fragmentation is needed.
*/
if (mss < tcp->tcp_tcps->tcps_mss_min)
ixaflags |= IXAF_PMTU_TOO_SMALL;
if (ixaflags & IXAF_PMTU_TOO_SMALL)
ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
if ((connp->conn_ipversion == IPV4_VERSION) &&
!(ixaflags & IXAF_PMTU_IPV4_DF)) {
tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
}
ixa->ixa_flags = ixaflags;
}
int
tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
{
conn_t *connp = tcp->tcp_connp;
queue_t *q = connp->conn_rq;
int32_t mss = tcp->tcp_mss;
int maxpsz;
if (TCP_IS_DETACHED(tcp))
return (mss);
if (tcp->tcp_fused) {
maxpsz = tcp_fuse_maxpsz(tcp);
mss = INFPSZ;
} else if (tcp->tcp_maxpsz_multiplier == 0) {
/*
* Set the sd_qn_maxpsz according to the socket send buffer
* size, and sd_maxblk to INFPSZ (-1). This will essentially
* instruct the stream head to copyin user data into contiguous
* kernel-allocated buffers without breaking it up into smaller
* chunks. We round up the buffer size to the nearest SMSS.
*/
maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
if (tcp->tcp_kssl_ctx == NULL)
mss = INFPSZ;
else
mss = SSL3_MAX_RECORD_LEN;
} else {
/*
* Set sd_qn_maxpsz to approx half the (receivers) buffer
* (and a multiple of the mss). This instructs the stream
* head to break down larger than SMSS writes into SMSS-
* size mblks, up to tcp_maxpsz_multiplier mblks at a time.
*/
maxpsz = tcp->tcp_maxpsz_multiplier * mss;
if (maxpsz > connp->conn_sndbuf / 2) {
maxpsz = connp->conn_sndbuf / 2;
/* Round up to nearest mss */
maxpsz = MSS_ROUNDUP(maxpsz, mss);
}
}
(void) proto_set_maxpsz(q, connp, maxpsz);
if (!(IPCL_IS_NONSTR(connp)))
connp->conn_wq->q_maxpsz = maxpsz;
if (set_maxblk)
(void) proto_set_tx_maxblk(q, connp, mss);
return (mss);
}
/* For /dev/tcp aka AF_INET open */
static int
tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
}
/* For /dev/tcp6 aka AF_INET6 open */
static int
tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
}
conn_t *
tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
int *errorp)
{
tcp_t *tcp = NULL;
conn_t *connp;
zoneid_t zoneid;
tcp_stack_t *tcps;
squeue_t *sqp;
ASSERT(errorp != NULL);
/*
* Find the proper zoneid and netstack.
*/
/*
* Special case for install: miniroot needs to be able to
* access files via NFS as though it were always in the
* global zone.
*/
if (credp == kcred && nfs_global_client_only != 0) {
zoneid = GLOBAL_ZONEID;
tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
netstack_tcp;
ASSERT(tcps != NULL);
} else {
netstack_t *ns;
int err;
if ((err = secpolicy_basic_net_access(credp)) != 0) {
*errorp = err;
return (NULL);
}
ns = netstack_find_by_cred(credp);
ASSERT(ns != NULL);
tcps = ns->netstack_tcp;
ASSERT(tcps != NULL);
/*
* For exclusive stacks we set the zoneid to zero
* to make TCP operate as if in the global zone.
*/
if (tcps->tcps_netstack->netstack_stackid !=
GLOBAL_NETSTACKID)
zoneid = GLOBAL_ZONEID;
else
zoneid = crgetzoneid(credp);
}
sqp = IP_SQUEUE_GET((uint_t)gethrtime());
connp = (conn_t *)tcp_get_conn(sqp, tcps);
/*
* Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
* so we drop it by one.
*/
netstack_rele(tcps->tcps_netstack);
if (connp == NULL) {
*errorp = ENOSR;
return (NULL);
}
ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
connp->conn_sqp = sqp;
connp->conn_initial_sqp = connp->conn_sqp;
connp->conn_ixa->ixa_sqp = connp->conn_sqp;
tcp = connp->conn_tcp;
/*
* Besides asking IP to set the checksum for us, have conn_ip_output
* to do the following checks when necessary:
*
* IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
* IXAF_VERIFY_PMTU: verify PMTU changes
* IXAF_VERIFY_LSO: verify LSO capability changes
*/
connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
if (!tcps->tcps_dev_flow_ctl)
connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
if (isv6) {
connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
connp->conn_ipversion = IPV6_VERSION;
connp->conn_family = AF_INET6;
tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
} else {
connp->conn_ipversion = IPV4_VERSION;
connp->conn_family = AF_INET;
tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
}
connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
crhold(credp);
connp->conn_cred = credp;
connp->conn_cpid = curproc->p_pid;
connp->conn_open_time = ddi_get_lbolt64();
/* Cache things in the ixa without any refhold */
ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
connp->conn_ixa->ixa_cred = credp;
connp->conn_ixa->ixa_cpid = connp->conn_cpid;
connp->conn_zoneid = zoneid;
/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
connp->conn_ixa->ixa_zoneid = zoneid;
connp->conn_mlp_type = mlptSingle;
ASSERT(connp->conn_netstack == tcps->tcps_netstack);
ASSERT(tcp->tcp_tcps == tcps);
/*
* If the caller has the process-wide flag set, then default to MAC
* exempt mode. This allows read-down to unlabeled hosts.
*/
if (getpflags(NET_MAC_AWARE, credp) != 0)
connp->conn_mac_mode = CONN_MAC_AWARE;
connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
if (issocket) {
tcp->tcp_issocket = 1;
}
connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
connp->conn_sndlowat = tcps->tcps_xmit_lowat;
connp->conn_so_type = SOCK_STREAM;
connp->conn_wroff = connp->conn_ht_iphc_allocated +
tcps->tcps_wroff_xtra;
SOCK_CONNID_INIT(tcp->tcp_connid);
/* DTrace ignores this - it isn't a tcp:::state-change */
tcp->tcp_state = TCPS_IDLE;
tcp_init_values(tcp);
return (connp);
}
static int
tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
boolean_t isv6)
{
tcp_t *tcp = NULL;
conn_t *connp = NULL;
int err;
vmem_t *minor_arena = NULL;
dev_t conn_dev;
boolean_t issocket;
if (q->q_ptr != NULL)
return (0);
if (sflag == MODOPEN)
return (EINVAL);
if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
minor_arena = ip_minor_arena_la;
} else {
/*
* Either minor numbers in the large arena were exhausted
* or a non socket application is doing the open.
* Try to allocate from the small arena.
*/
if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
return (EBUSY);
}
minor_arena = ip_minor_arena_sa;
}
ASSERT(minor_arena != NULL);
*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
if (flag & SO_FALLBACK) {
/*
* Non streams socket needs a stream to fallback to
*/
RD(q)->q_ptr = (void *)conn_dev;
WR(q)->q_qinfo = &tcp_fallback_sock_winit;
WR(q)->q_ptr = (void *)minor_arena;
qprocson(q);
return (0);
} else if (flag & SO_ACCEPTOR) {
q->q_qinfo = &tcp_acceptor_rinit;
/*
* the conn_dev and minor_arena will be subsequently used by
* tcp_tli_accept() and tcp_tpi_close_accept() to figure out
* the minor device number for this connection from the q_ptr.
*/
RD(q)->q_ptr = (void *)conn_dev;
WR(q)->q_qinfo = &tcp_acceptor_winit;
WR(q)->q_ptr = (void *)minor_arena;
qprocson(q);
return (0);
}
issocket = flag & SO_SOCKSTR;
connp = tcp_create_common(credp, isv6, issocket, &err);
if (connp == NULL) {
inet_minor_free(minor_arena, conn_dev);
q->q_ptr = WR(q)->q_ptr = NULL;
return (err);
}
connp->conn_rq = q;
connp->conn_wq = WR(q);
q->q_ptr = WR(q)->q_ptr = connp;
connp->conn_dev = conn_dev;
connp->conn_minor_arena = minor_arena;
ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
ASSERT(WR(q)->q_qinfo == &tcp_winit);
tcp = connp->conn_tcp;
if (issocket) {
WR(q)->q_qinfo = &tcp_sock_winit;
} else {
#ifdef _ILP32
tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
#else
tcp->tcp_acceptor_id = conn_dev;
#endif /* _ILP32 */
tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
}
/*
* Put the ref for TCP. Ref for IP was already put
* by ipcl_conn_create. Also Make the conn_t globally
* visible to walkers
*/
mutex_enter(&connp->conn_lock);
CONN_INC_REF_LOCKED(connp);
ASSERT(connp->conn_ref == 2);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
qprocson(q);
return (0);
}
/*
* Build/update the tcp header template (in conn_ht_iphc) based on
* conn_xmit_ipp. The headers include ip6_t, any extension
* headers, and the maximum size tcp header (to avoid reallocation
* on the fly for additional tcp options).
*
* Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
* Returns failure if can't allocate memory.
*/
int
tcp_build_hdrs(tcp_t *tcp)
{
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
char buf[TCP_MAX_HDR_LENGTH];
uint_t buflen;
uint_t ulplen = TCP_MIN_HEADER_LENGTH;
uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
tcpha_t *tcpha;
uint32_t cksum;
int error;
/*
* We might be called after the connection is set up, and we might
* have TS options already in the TCP header. Thus we save any
* existing tcp header.
*/
buflen = connp->conn_ht_ulp_len;
if (buflen != 0) {
bcopy(connp->conn_ht_ulp, buf, buflen);
extralen -= buflen - ulplen;
ulplen = buflen;
}
/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
mutex_enter(&connp->conn_lock);
error = conn_build_hdr_template(connp, ulplen, extralen,
&connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
mutex_exit(&connp->conn_lock);
if (error != 0)
return (error);
/*
* Any routing header/option has been massaged. The checksum difference
* is stored in conn_sum for later use.
*/
tcpha = (tcpha_t *)connp->conn_ht_ulp;
tcp->tcp_tcpha = tcpha;
/* restore any old tcp header */
if (buflen != 0) {
bcopy(buf, connp->conn_ht_ulp, buflen);
} else {
tcpha->tha_sum = 0;
tcpha->tha_urp = 0;
tcpha->tha_ack = 0;
tcpha->tha_offset_and_reserved = (5 << 4);
tcpha->tha_lport = connp->conn_lport;
tcpha->tha_fport = connp->conn_fport;
}
/*
* IP wants our header length in the checksum field to
* allow it to perform a single pseudo-header+checksum
* calculation on behalf of TCP.
* Include the adjustment for a source route once IP_OPTIONS is set.
*/
cksum = sizeof (tcpha_t) + connp->conn_sum;
cksum = (cksum >> 16) + (cksum & 0xFFFF);
ASSERT(cksum < 0x10000);
tcpha->tha_sum = htons(cksum);
if (connp->conn_ipversion == IPV4_VERSION)
tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
else
tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
connp->conn_wroff) {
connp->conn_wroff = connp->conn_ht_iphc_allocated +
tcps->tcps_wroff_xtra;
(void) proto_set_tx_wroff(connp->conn_rq, connp,
connp->conn_wroff);
}
return (0);
}
/*
* tcp_rwnd_set() is called to adjust the receive window to a desired value.
* We do not allow the receive window to shrink. After setting rwnd,
* set the flow control hiwat of the stream.
*
* This function is called in 2 cases:
*
* 1) Before data transfer begins, in tcp_input_listener() for accepting a
* connection (passive open) and in tcp_input_data() for active connect.
* This is called after tcp_mss_set() when the desired MSS value is known.
* This makes sure that our window size is a mutiple of the other side's
* MSS.
* 2) Handling SO_RCVBUF option.
*
* It is ASSUMED that the requested size is a multiple of the current MSS.
*
* XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
* user requests so.
*/
int
tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
{
uint32_t mss = tcp->tcp_mss;
uint32_t old_max_rwnd;
uint32_t max_transmittable_rwnd;
boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
/*
* Insist on a receive window that is at least
* tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
* funny TCP interactions of Nagle algorithm, SWS avoidance
* and delayed acknowledgement.
*/
rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
if (tcp->tcp_fused) {
size_t sth_hiwat;
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
ASSERT(peer_tcp != NULL);
sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
if (!tcp_detached) {
(void) proto_set_rx_hiwat(connp->conn_rq, connp,
sth_hiwat);
tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
}
/* Caller could have changed tcp_rwnd; update tha_win */
if (tcp->tcp_tcpha != NULL) {
tcp->tcp_tcpha->tha_win =
htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
}
if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
tcp->tcp_cwnd_max = rwnd;
/*
* In the fusion case, the maxpsz stream head value of
* our peer is set according to its send buffer size
* and our receive buffer size; since the latter may
* have changed we need to update the peer's maxpsz.
*/
(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
return (sth_hiwat);
}
if (tcp_detached)
old_max_rwnd = tcp->tcp_rwnd;
else
old_max_rwnd = connp->conn_rcvbuf;
/*
* If window size info has already been exchanged, TCP should not
* shrink the window. Shrinking window is doable if done carefully.
* We may add that support later. But so far there is not a real
* need to do that.
*/
if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
/* MSS may have changed, do a round up again. */
rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
}
/*
* tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
* can be applied even before the window scale option is decided.
*/
max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
if (rwnd > max_transmittable_rwnd) {
rwnd = max_transmittable_rwnd -
(max_transmittable_rwnd % mss);
if (rwnd < mss)
rwnd = max_transmittable_rwnd;
/*
* If we're over the limit we may have to back down tcp_rwnd.
* The increment below won't work for us. So we set all three
* here and the increment below will have no effect.
*/
tcp->tcp_rwnd = old_max_rwnd = rwnd;
}
if (tcp->tcp_localnet) {
tcp->tcp_rack_abs_max =
MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
} else {
/*
* For a remote host on a different subnet (through a router),
* we ack every other packet to be conforming to RFC1122.
* tcp_deferred_acks_max is default to 2.
*/
tcp->tcp_rack_abs_max =
MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
}
if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
else
tcp->tcp_rack_cur_max = 0;
/*
* Increment the current rwnd by the amount the maximum grew (we
* can not overwrite it since we might be in the middle of a
* connection.)
*/
tcp->tcp_rwnd += rwnd - old_max_rwnd;
connp->conn_rcvbuf = rwnd;
/* Are we already connected? */
if (tcp->tcp_tcpha != NULL) {
tcp->tcp_tcpha->tha_win =
htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
}
if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
tcp->tcp_cwnd_max = rwnd;
if (tcp_detached)
return (rwnd);
tcp_set_recv_threshold(tcp, rwnd >> 3);
(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
return (rwnd);
}
int
tcp_do_unbind(conn_t *connp)
{
tcp_t *tcp = connp->conn_tcp;
int32_t oldstate;
switch (tcp->tcp_state) {
case TCPS_BOUND:
case TCPS_LISTEN:
break;
default:
return (-TOUTSTATE);
}
/*
* Need to clean up all the eagers since after the unbind, segments
* will no longer be delivered to this listener stream.
*/
mutex_enter(&tcp->tcp_eager_lock);
if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
tcp_eager_cleanup(tcp, 0);
}
mutex_exit(&tcp->tcp_eager_lock);
/* Clean up the listener connection counter if necessary. */
if (tcp->tcp_listen_cnt != NULL)
TCP_DECR_LISTEN_CNT(tcp);
connp->conn_laddr_v6 = ipv6_all_zeros;
connp->conn_saddr_v6 = ipv6_all_zeros;
tcp_bind_hash_remove(tcp);
oldstate = tcp->tcp_state;
tcp->tcp_state = TCPS_IDLE;
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
int32_t, oldstate);
ip_unbind(connp);
bzero(&connp->conn_ports, sizeof (connp->conn_ports));
return (0);
}
/*
* This runs at the tail end of accept processing on the squeue of the
* new connection.
*/
/* ARGSUSED */
void
tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
{
conn_t *connp = (conn_t *)arg;
tcp_t *tcp = connp->conn_tcp;
queue_t *q = connp->conn_rq;
tcp_stack_t *tcps = tcp->tcp_tcps;
/* socket options */
struct sock_proto_props sopp;
/* We should just receive a single mblk that fits a T_discon_ind */
ASSERT(mp->b_cont == NULL);
/*
* Drop the eager's ref on the listener, that was placed when
* this eager began life in tcp_input_listener.
*/
CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
if (IPCL_IS_NONSTR(connp)) {
/* Safe to free conn_ind message */
freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
tcp->tcp_conn.tcp_eager_conn_ind = NULL;
}
tcp->tcp_detached = B_FALSE;
if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
/*
* Someone blewoff the eager before we could finish
* the accept.
*
* The only reason eager exists it because we put in
* a ref on it when conn ind went up. We need to send
* a disconnect indication up while the last reference
* on the eager will be dropped by the squeue when we
* return.
*/
ASSERT(tcp->tcp_listener == NULL);
if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
if (IPCL_IS_NONSTR(connp)) {
ASSERT(tcp->tcp_issocket);
(*connp->conn_upcalls->su_disconnected)(
connp->conn_upper_handle, tcp->tcp_connid,
ECONNREFUSED);
freemsg(mp);
} else {
struct T_discon_ind *tdi;
(void) putnextctl1(q, M_FLUSH, FLUSHRW);
/*
* Let us reuse the incoming mblk to avoid
* memory allocation failure problems. We know
* that the size of the incoming mblk i.e.
* stroptions is greater than sizeof
* T_discon_ind.
*/
ASSERT(DB_REF(mp) == 1);
ASSERT(MBLKSIZE(mp) >=
sizeof (struct T_discon_ind));
DB_TYPE(mp) = M_PROTO;
((union T_primitives *)mp->b_rptr)->type =
T_DISCON_IND;
tdi = (struct T_discon_ind *)mp->b_rptr;
if (tcp->tcp_issocket) {
tdi->DISCON_reason = ECONNREFUSED;
tdi->SEQ_number = 0;
} else {
tdi->DISCON_reason = ENOPROTOOPT;
tdi->SEQ_number =
tcp->tcp_conn_req_seqnum;
}
mp->b_wptr = mp->b_rptr +
sizeof (struct T_discon_ind);
putnext(q, mp);
}
}
tcp->tcp_hard_binding = B_FALSE;
return;
}
/*
* This is the first time we run on the correct
* queue after tcp_accept. So fix all the q parameters
* here.
*/
sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
sopp.sopp_rxhiwat = tcp->tcp_fused ?
tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
connp->conn_rcvbuf;
/*
* Determine what write offset value to use depending on SACK and
* whether the endpoint is fused or not.
*/
if (tcp->tcp_fused) {
ASSERT(tcp->tcp_loopback);
ASSERT(tcp->tcp_loopback_peer != NULL);
/*
* For fused tcp loopback, set the stream head's write
* offset value to zero since we won't be needing any room
* for TCP/IP headers. This would also improve performance
* since it would reduce the amount of work done by kmem.
* Non-fused tcp loopback case is handled separately below.
*/
sopp.sopp_wroff = 0;
/*
* Update the peer's transmit parameters according to
* our recently calculated high water mark value.
*/
(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
} else if (tcp->tcp_snd_sack_ok) {
sopp.sopp_wroff = connp->conn_ht_iphc_allocated +
(tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
} else {
sopp.sopp_wroff = connp->conn_ht_iphc_len +
(tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
}
/*
* If this is endpoint is handling SSL, then reserve extra
* offset and space at the end.
* Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
* overriding the previous setting. The extra cost of signing and
* encrypting multiple MSS-size records (12 of them with Ethernet),
* instead of a single contiguous one by the stream head
* largely outweighs the statistical reduction of ACKs, when
* applicable. The peer will also save on decryption and verification
* costs.
*/
if (tcp->tcp_kssl_ctx != NULL) {
sopp.sopp_wroff += SSL3_WROFFSET;
sopp.sopp_flags |= SOCKOPT_TAIL;
sopp.sopp_tail = SSL3_MAX_TAIL_LEN;
sopp.sopp_flags |= SOCKOPT_ZCOPY;
sopp.sopp_zcopyflag = ZCVMUNSAFE;
sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN;
}
/* Send the options up */
if (IPCL_IS_NONSTR(connp)) {
if (sopp.sopp_flags & SOCKOPT_TAIL) {
ASSERT(tcp->tcp_kssl_ctx != NULL);
ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY);
}
if (tcp->tcp_loopback) {
sopp.sopp_flags |= SOCKOPT_LOOPBACK;
sopp.sopp_loopback = B_TRUE;
}
(*connp->conn_upcalls->su_set_proto_props)
(connp->conn_upper_handle, &sopp);
freemsg(mp);
} else {
/*
* Let us reuse the incoming mblk to avoid
* memory allocation failure problems. We know
* that the size of the incoming mblk is at least
* stroptions
*/
struct stroptions *stropt;
ASSERT(DB_REF(mp) == 1);
ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions));
DB_TYPE(mp) = M_SETOPTS;
stropt = (struct stroptions *)mp->b_rptr;
mp->b_wptr = mp->b_rptr + sizeof (struct stroptions);
stropt = (struct stroptions *)mp->b_rptr;
stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
stropt->so_hiwat = sopp.sopp_rxhiwat;
stropt->so_wroff = sopp.sopp_wroff;
stropt->so_maxblk = sopp.sopp_maxblk;
if (sopp.sopp_flags & SOCKOPT_TAIL) {
ASSERT(tcp->tcp_kssl_ctx != NULL);
stropt->so_flags |= SO_TAIL | SO_COPYOPT;
stropt->so_tail = sopp.sopp_tail;
stropt->so_copyopt = sopp.sopp_zcopyflag;
}
/* Send the options up */
putnext(q, mp);
}
/*
* Pass up any data and/or a fin that has been received.
*
* Adjust receive window in case it had decreased
* (because there is data <=> tcp_rcv_list != NULL)
* while the connection was detached. Note that
* in case the eager was flow-controlled, w/o this
* code, the rwnd may never open up again!
*/
if (tcp->tcp_rcv_list != NULL) {
if (IPCL_IS_NONSTR(connp)) {
mblk_t *mp;
int space_left;
int error;
boolean_t push = B_TRUE;
if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
(connp->conn_upper_handle, NULL, 0, 0, &error,
&push) >= 0) {
tcp->tcp_rwnd = connp->conn_rcvbuf;
if (tcp->tcp_state >= TCPS_ESTABLISHED &&
tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
tcp_xmit_ctl(NULL,
tcp, (tcp->tcp_swnd == 0) ?
tcp->tcp_suna : tcp->tcp_snxt,
tcp->tcp_rnxt, TH_ACK);
}
}
while ((mp = tcp->tcp_rcv_list) != NULL) {
push = B_TRUE;
tcp->tcp_rcv_list = mp->b_next;
mp->b_next = NULL;
space_left = (*connp->conn_upcalls->su_recv)
(connp->conn_upper_handle, mp, msgdsize(mp),
0, &error, &push);
if (space_left < 0) {
/*
* We should never be in middle of a
* fallback, the squeue guarantees that.
*/
ASSERT(error != EOPNOTSUPP);
}
}
tcp->tcp_rcv_last_head = NULL;
tcp->tcp_rcv_last_tail = NULL;
tcp->tcp_rcv_cnt = 0;
} else {
/* We drain directly in case of fused tcp loopback */
if (!tcp->tcp_fused && canputnext(q)) {
tcp->tcp_rwnd = connp->conn_rcvbuf;
if (tcp->tcp_state >= TCPS_ESTABLISHED &&
tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
tcp_xmit_ctl(NULL,
tcp, (tcp->tcp_swnd == 0) ?
tcp->tcp_suna : tcp->tcp_snxt,
tcp->tcp_rnxt, TH_ACK);
}
}
(void) tcp_rcv_drain(tcp);
}
/*
* For fused tcp loopback, back-enable peer endpoint
* if it's currently flow-controlled.
*/
if (tcp->tcp_fused) {
tcp_t *peer_tcp = tcp->tcp_loopback_peer;
ASSERT(peer_tcp != NULL);
ASSERT(peer_tcp->tcp_fused);
mutex_enter(&peer_tcp->tcp_non_sq_lock);
if (peer_tcp->tcp_flow_stopped) {
tcp_clrqfull(peer_tcp);
TCP_STAT(tcps, tcp_fusion_backenabled);
}
mutex_exit(&peer_tcp->tcp_non_sq_lock);
}
}
ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
tcp->tcp_ordrel_done = B_TRUE;
if (IPCL_IS_NONSTR(connp)) {
ASSERT(tcp->tcp_ordrel_mp == NULL);
(*connp->conn_upcalls->su_opctl)(
connp->conn_upper_handle,
SOCK_OPCTL_SHUT_RECV, 0);
} else {
mp = tcp->tcp_ordrel_mp;
tcp->tcp_ordrel_mp = NULL;
putnext(q, mp);
}
}
tcp->tcp_hard_binding = B_FALSE;
if (connp->conn_keepalive) {
tcp->tcp_ka_last_intrvl = 0;
tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer,
tcp->tcp_ka_interval);
}
/*
* At this point, eager is fully established and will
* have the following references -
*
* 2 references for connection to exist (1 for TCP and 1 for IP).
* 1 reference for the squeue which will be dropped by the squeue as
* soon as this function returns.
* There will be 1 additonal reference for being in classifier
* hash list provided something bad hasn't happened.
*/
ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
(connp->conn_fanout == NULL && connp->conn_ref >= 3));
}
/*
* Common to TPI and sockfs accept code.
*/
/* ARGSUSED2 */
int
tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
{
tcp_t *listener, *eager;
mblk_t *discon_mp;
listener = lconnp->conn_tcp;
ASSERT(listener->tcp_state == TCPS_LISTEN);
eager = econnp->conn_tcp;
ASSERT(eager->tcp_listener != NULL);
/*
* Pre allocate the discon_ind mblk also. tcp_accept_finish will
* use it if something failed.
*/
discon_mp = allocb(MAX(sizeof (struct T_discon_ind),
sizeof (struct stroptions)), BPRI_HI);
if (discon_mp == NULL) {
return (-TPROTO);
}
eager->tcp_issocket = B_TRUE;
econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
econnp->conn_allzones = listener->tcp_connp->conn_allzones;
ASSERT(econnp->conn_netstack ==
listener->tcp_connp->conn_netstack);
ASSERT(eager->tcp_tcps == listener->tcp_tcps);
/* Put the ref for IP */
CONN_INC_REF(econnp);
/*
* We should have minimum of 3 references on the conn
* at this point. One each for TCP and IP and one for
* the T_conn_ind that was sent up when the 3-way handshake
* completed. In the normal case we would also have another
* reference (making a total of 4) for the conn being in the
* classifier hash list. However the eager could have received
* an RST subsequently and tcp_closei_local could have removed
* the eager from the classifier hash list, hence we can't
* assert that reference.
*/
ASSERT(econnp->conn_ref >= 3);
mutex_enter(&listener->tcp_eager_lock);
if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
tcp_t *tail;
tcp_t *tcp;
mblk_t *mp1;
tcp = listener->tcp_eager_prev_q0;
/*
* listener->tcp_eager_prev_q0 points to the TAIL of the
* deferred T_conn_ind queue. We need to get to the head
* of the queue in order to send up T_conn_ind the same
* order as how the 3WHS is completed.
*/
while (tcp != listener) {
if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
!tcp->tcp_kssl_pending)
break;
else
tcp = tcp->tcp_eager_prev_q0;
}
/* None of the pending eagers can be sent up now */
if (tcp == listener)
goto no_more_eagers;
mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
tcp->tcp_conn.tcp_eager_conn_ind = NULL;
/* Move from q0 to q */
ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
listener->tcp_conn_req_cnt_q0--;
listener->tcp_conn_req_cnt_q++;
tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
tcp->tcp_eager_prev_q0;
tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
tcp->tcp_eager_next_q0;
tcp->tcp_eager_prev_q0 = NULL;
tcp->tcp_eager_next_q0 = NULL;
tcp->tcp_conn_def_q0 = B_FALSE;
/* Make sure the tcp isn't in the list of droppables */
ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
tcp->tcp_eager_prev_drop_q0 == NULL);
/*
* Insert at end of the queue because sockfs sends
* down T_CONN_RES in chronological order. Leaving
* the older conn indications at front of the queue
* helps reducing search time.
*/
tail = listener->tcp_eager_last_q;
if (tail != NULL) {
tail->tcp_eager_next_q = tcp;
} else {
listener->tcp_eager_next_q = tcp;
}
listener->tcp_eager_last_q = tcp;
tcp->tcp_eager_next_q = NULL;
/* Need to get inside the listener perimeter */
CONN_INC_REF(listener->tcp_connp);
SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL,
SQTAG_TCP_SEND_PENDING);
}
no_more_eagers:
tcp_eager_unlink(eager);
mutex_exit(&listener->tcp_eager_lock);
/*
* At this point, the eager is detached from the listener
* but we still have an extra refs on eager (apart from the
* usual tcp references). The ref was placed in tcp_input_data
* before sending the conn_ind in tcp_send_conn_ind.
* The ref will be dropped in tcp_accept_finish().
*/
SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish,
econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
return (0);
}
/*
* Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
*/
boolean_t
tcp_zcopy_check(tcp_t *tcp)
{
conn_t *connp = tcp->tcp_connp;
ip_xmit_attr_t *ixa = connp->conn_ixa;
boolean_t zc_enabled = B_FALSE;
tcp_stack_t *tcps = tcp->tcp_tcps;
if (do_tcpzcopy == 2)
zc_enabled = B_TRUE;
else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
zc_enabled = B_TRUE;
tcp->tcp_snd_zcopy_on = zc_enabled;
if (!TCP_IS_DETACHED(tcp)) {
if (zc_enabled) {
ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
(void) proto_set_tx_copyopt(connp->conn_rq, connp,
ZCVMSAFE);
TCP_STAT(tcps, tcp_zcopy_on);
} else {
ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
(void) proto_set_tx_copyopt(connp->conn_rq, connp,
ZCVMUNSAFE);
TCP_STAT(tcps, tcp_zcopy_off);
}
}
return (zc_enabled);
}
/*
* Backoff from a zero-copy message by copying data to a new allocated
* message and freeing the original desballoca'ed segmapped message.
*
* This function is called by following two callers:
* 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
* the origial desballoca'ed message and notify sockfs. This is in re-
* transmit state.
* 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
* to be copied to new message.
*/
mblk_t *
tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
{
mblk_t *nbp;
mblk_t *head = NULL;
mblk_t *tail = NULL;
tcp_stack_t *tcps = tcp->tcp_tcps;
ASSERT(bp != NULL);
while (bp != NULL) {
if (IS_VMLOANED_MBLK(bp)) {
TCP_STAT(tcps, tcp_zcopy_backoff);
if ((nbp = copyb(bp)) == NULL) {
tcp->tcp_xmit_zc_clean = B_FALSE;
if (tail != NULL)
tail->b_cont = bp;
return ((head == NULL) ? bp : head);
}
if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
if (fix_xmitlist)
tcp_zcopy_notify(tcp);
else
nbp->b_datap->db_struioflag |=
STRUIO_ZCNOTIFY;
}
nbp->b_cont = bp->b_cont;
/*
* Copy saved information and adjust tcp_xmit_tail
* if needed.
*/
if (fix_xmitlist) {
nbp->b_prev = bp->b_prev;
nbp->b_next = bp->b_next;
if (tcp->tcp_xmit_tail == bp)
tcp->tcp_xmit_tail = nbp;
}
/* Free the original message. */
bp->b_prev = NULL;
bp->b_next = NULL;
freeb(bp);
bp = nbp;
}
if (head == NULL) {
head = bp;
}
if (tail == NULL) {
tail = bp;
} else {
tail->b_cont = bp;
tail = bp;
}
/* Move forward. */
bp = bp->b_cont;
}
if (fix_xmitlist) {
tcp->tcp_xmit_last = tail;
tcp->tcp_xmit_zc_clean = B_TRUE;
}
return (head);
}
void
tcp_zcopy_notify(tcp_t *tcp)
{
struct stdata *stp;
conn_t *connp;
if (tcp->tcp_detached)
return;
connp = tcp->tcp_connp;
if (IPCL_IS_NONSTR(connp)) {
(*connp->conn_upcalls->su_zcopy_notify)
(connp->conn_upper_handle);
return;
}
stp = STREAM(connp->conn_rq);
mutex_enter(&stp->sd_lock);
stp->sd_flag |= STZCNOTIFY;
cv_broadcast(&stp->sd_zcopy_wait);
mutex_exit(&stp->sd_lock);
}
/*
* Update the TCP connection according to change of LSO capability.
*/
static void
tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
{
/*
* We check against IPv4 header length to preserve the old behavior
* of only enabling LSO when there are no IP options.
* But this restriction might not be necessary at all. Before removing
* it, need to verify how LSO is handled for source routing case, with
* which IP does software checksum.
*
* For IPv6, whenever any extension header is needed, LSO is supressed.
*/
if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
return;
/*
* Either the LSO capability newly became usable, or it has changed.
*/
if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab;
ASSERT(lsoc->ill_lso_max > 0);
tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
/*
* If LSO to be enabled, notify the STREAM header with larger
* data block.
*/
if (!tcp->tcp_lso)
tcp->tcp_maxpsz_multiplier = 0;
tcp->tcp_lso = B_TRUE;
TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
} else { /* LSO capability is not usable any more. */
DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
/*
* If LSO to be disabled, notify the STREAM header with smaller
* data block. And need to restore fragsize to PMTU.
*/
if (tcp->tcp_lso) {
tcp->tcp_maxpsz_multiplier =
tcp->tcp_tcps->tcps_maxpsz_multiplier;
ixa->ixa_fragsize = ixa->ixa_pmtu;
tcp->tcp_lso = B_FALSE;
TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
}
}
(void) tcp_maxpsz_set(tcp, B_TRUE);
}
/*
* Update the TCP connection according to change of ZEROCOPY capability.
*/
static void
tcp_update_zcopy(tcp_t *tcp)
{
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
if (tcp->tcp_snd_zcopy_on) {
tcp->tcp_snd_zcopy_on = B_FALSE;
if (!TCP_IS_DETACHED(tcp)) {
(void) proto_set_tx_copyopt(connp->conn_rq, connp,
ZCVMUNSAFE);
TCP_STAT(tcps, tcp_zcopy_off);
}
} else {
tcp->tcp_snd_zcopy_on = B_TRUE;
if (!TCP_IS_DETACHED(tcp)) {
(void) proto_set_tx_copyopt(connp->conn_rq, connp,
ZCVMSAFE);
TCP_STAT(tcps, tcp_zcopy_on);
}
}
}
/*
* Notify function registered with ip_xmit_attr_t. It's called in the squeue
* so it's safe to update the TCP connection.
*/
/* ARGSUSED1 */
static void
tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
ixa_notify_arg_t narg)
{
tcp_t *tcp = (tcp_t *)arg;
conn_t *connp = tcp->tcp_connp;
switch (ntype) {
case IXAN_LSO:
tcp_update_lso(tcp, connp->conn_ixa);
break;
case IXAN_PMTU:
tcp_update_pmtu(tcp, B_FALSE);
break;
case IXAN_ZCOPY:
tcp_update_zcopy(tcp);
break;
default:
break;
}
}
/*
* The TCP write service routine should never be called...
*/
/* ARGSUSED */
static void
tcp_wsrv(queue_t *q)
{
tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps;
TCP_STAT(tcps, tcp_wsrv_called);
}
/*
* Hash list lookup routine for tcp_t structures.
* Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
*/
tcp_t *
tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
{
tf_t *tf;
tcp_t *tcp;
tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
mutex_enter(&tf->tf_lock);
for (tcp = tf->tf_tcp; tcp != NULL;
tcp = tcp->tcp_acceptor_hash) {
if (tcp->tcp_acceptor_id == id) {
CONN_INC_REF(tcp->tcp_connp);
mutex_exit(&tf->tf_lock);
return (tcp);
}
}
mutex_exit(&tf->tf_lock);
return (NULL);
}
/*
* Hash list insertion routine for tcp_t structures.
*/
void
tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
{
tf_t *tf;
tcp_t **tcpp;
tcp_t *tcpnext;
tcp_stack_t *tcps = tcp->tcp_tcps;
tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
if (tcp->tcp_ptpahn != NULL)
tcp_acceptor_hash_remove(tcp);
tcpp = &tf->tf_tcp;
mutex_enter(&tf->tf_lock);
tcpnext = tcpp[0];
if (tcpnext)
tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
tcp->tcp_acceptor_hash = tcpnext;
tcp->tcp_ptpahn = tcpp;
tcpp[0] = tcp;
tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */
mutex_exit(&tf->tf_lock);
}
/*
* Hash list removal routine for tcp_t structures.
*/
void
tcp_acceptor_hash_remove(tcp_t *tcp)
{
tcp_t *tcpnext;
kmutex_t *lockp;
/*
* Extract the lock pointer in case there are concurrent
* hash_remove's for this instance.
*/
lockp = tcp->tcp_acceptor_lockp;
if (tcp->tcp_ptpahn == NULL)
return;
ASSERT(lockp != NULL);
mutex_enter(lockp);
if (tcp->tcp_ptpahn) {
tcpnext = tcp->tcp_acceptor_hash;
if (tcpnext) {
tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
tcp->tcp_acceptor_hash = NULL;
}
*tcp->tcp_ptpahn = tcpnext;
tcp->tcp_ptpahn = NULL;
}
mutex_exit(lockp);
tcp->tcp_acceptor_lockp = NULL;
}
/*
* Type three generator adapted from the random() function in 4.4 BSD:
*/
/*
* Copyright (c) 1983, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Type 3 -- x**31 + x**3 + 1 */
#define DEG_3 31
#define SEP_3 3
/* Protected by tcp_random_lock */
static int tcp_randtbl[DEG_3 + 1];
static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
static int *tcp_random_rptr = &tcp_randtbl[1];
static int *tcp_random_state = &tcp_randtbl[1];
static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
kmutex_t tcp_random_lock;
void
tcp_random_init(void)
{
int i;
hrtime_t hrt;
time_t wallclock;
uint64_t result;
/*
* Use high-res timer and current time for seed. Gethrtime() returns
* a longlong, which may contain resolution down to nanoseconds.
* The current time will either be a 32-bit or a 64-bit quantity.
* XOR the two together in a 64-bit result variable.
* Convert the result to a 32-bit value by multiplying the high-order
* 32-bits by the low-order 32-bits.
*/
hrt = gethrtime();
(void) drv_getparm(TIME, &wallclock);
result = (uint64_t)wallclock ^ (uint64_t)hrt;
mutex_enter(&tcp_random_lock);
tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
(result & 0xffffffff);
for (i = 1; i < DEG_3; i++)
tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
+ 12345;
tcp_random_fptr = &tcp_random_state[SEP_3];
tcp_random_rptr = &tcp_random_state[0];
mutex_exit(&tcp_random_lock);
for (i = 0; i < 10 * DEG_3; i++)
(void) tcp_random();
}
/*
* tcp_random: Return a random number in the range [1 - (128K + 1)].
* This range is selected to be approximately centered on TCP_ISS / 2,
* and easy to compute. We get this value by generating a 32-bit random
* number, selecting out the high-order 17 bits, and then adding one so
* that we never return zero.
*/
int
tcp_random(void)
{
int i;
mutex_enter(&tcp_random_lock);
*tcp_random_fptr += *tcp_random_rptr;
/*
* The high-order bits are more random than the low-order bits,
* so we select out the high-order 17 bits and add one so that
* we never return zero.
*/
i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
if (++tcp_random_fptr >= tcp_random_end_ptr) {
tcp_random_fptr = tcp_random_state;
++tcp_random_rptr;
} else if (++tcp_random_rptr >= tcp_random_end_ptr)
tcp_random_rptr = tcp_random_state;
mutex_exit(&tcp_random_lock);
return (i);
}
/*
* Split this function out so that if the secret changes, I'm okay.
*
* Initialize the tcp_iss_cookie and tcp_iss_key.
*/
#define PASSWD_SIZE 16 /* MUST be multiple of 4 */
void
tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
{
struct {
int32_t current_time;
uint32_t randnum;
uint16_t pad;
uint8_t ether[6];
uint8_t passwd[PASSWD_SIZE];
} tcp_iss_cookie;
time_t t;
/*
* Start with the current absolute time.
*/
(void) drv_getparm(TIME, &t);
tcp_iss_cookie.current_time = t;
/*
* XXX - Need a more random number per RFC 1750, not this crap.
* OTOH, if what follows is pretty random, then I'm in better shape.
*/
tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */
/*
* The cpu_type_info is pretty non-random. Ugggh. It does serve
* as a good template.
*/
bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
/*
* The pass-phrase. Normally this is supplied by user-called NDD.
*/
bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
/*
* See 4010593 if this section becomes a problem again,
* but the local ethernet address is useful here.
*/
(void) localetheraddr(NULL,
(struct ether_addr *)&tcp_iss_cookie.ether);
/*
* Hash 'em all together. The MD5Final is called per-connection.
*/
mutex_enter(&tcps->tcps_iss_key_lock);
MD5Init(&tcps->tcps_iss_key);
MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
sizeof (tcp_iss_cookie));
mutex_exit(&tcps->tcps_iss_key_lock);
}
/*
* Called by IP when IP is loaded into the kernel
*/
void
tcp_ddi_g_init(void)
{
tcp_timercache = kmem_cache_create("tcp_timercache",
sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
NULL, NULL, NULL, NULL, NULL, 0);
tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
/* Initialize the random number generator */
tcp_random_init();
/* A single callback independently of how many netstacks we have */
ip_squeue_init(tcp_squeue_add);
tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
/*
* We want to be informed each time a stack is created or
* destroyed in the kernel, so we can maintain the
* set of tcp_stack_t's.
*/
netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
mutex_enter(&cpu_lock);
register_cpu_setup_func(tcp_cpu_update, NULL);
mutex_exit(&cpu_lock);
}
#define INET_NAME "ip"
/*
* Initialize the TCP stack instance.
*/
static void *
tcp_stack_init(netstackid_t stackid, netstack_t *ns)
{
tcp_stack_t *tcps;
int i;
int error = 0;
major_t major;
size_t arrsz;
tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
tcps->tcps_netstack = ns;
/* Initialize locks */
mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
tcps->tcps_min_anonpriv_port = 512;
tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
TCP_BIND_FANOUT_SIZE, KM_SLEEP);
tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
MUTEX_DEFAULT, NULL);
}
for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
MUTEX_DEFAULT, NULL);
}
/* TCP's IPsec code calls the packet dropper. */
ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
KM_SLEEP);
bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
/*
* Note: To really walk the device tree you need the devinfo
* pointer to your device which is only available after probe/attach.
* The following is safe only because it uses ddi_root_node()
*/
tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
tcp_opt_obj.odb_opt_arr_cnt);
/*
* Initialize RFC 1948 secret values. This will probably be reset once
* by the boot scripts.
*
* Use NULL name, as the name is caught by the new lockstats.
*
* Initialize with some random, non-guessable string, like the global
* T_INFO_ACK.
*/
tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
sizeof (tcp_g_t_info_ack), tcps);
tcps->tcps_kstat = tcp_kstat2_init(stackid);
tcps->tcps_mibkp = tcp_kstat_init(stackid);
major = mod_name_to_major(INET_NAME);
error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
ASSERT(error == 0);
tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
tcps->tcps_reclaim = B_FALSE;
tcps->tcps_reclaim_tid = 0;
tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
/*
* ncpus is the current number of CPUs, which can be bigger than
* boot_ncpus. But we don't want to use ncpus to allocate all the
* tcp_stats_cpu_t at system boot up time since it will be 1. While
* we handle adding CPU in tcp_cpu_update(), it will be slow if
* there are many CPUs as we will be adding them 1 by 1.
*
* Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
* are not freed until the stack is going away. So there is no need
* to grab a lock to access the per CPU tcps_sc[x] pointer.
*/
tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *),
KM_SLEEP);
for (i = 0; i < tcps->tcps_sc_cnt; i++) {
tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
KM_SLEEP);
}
mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
offsetof(tcp_listener_t, tl_link));
return (tcps);
}
/*
* Called when the IP module is about to be unloaded.
*/
void
tcp_ddi_g_destroy(void)
{
mutex_enter(&cpu_lock);
unregister_cpu_setup_func(tcp_cpu_update, NULL);
mutex_exit(&cpu_lock);
tcp_g_kstat_fini(tcp_g_kstat);
tcp_g_kstat = NULL;
bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
mutex_destroy(&tcp_random_lock);
kmem_cache_destroy(tcp_timercache);
kmem_cache_destroy(tcp_notsack_blk_cache);
netstack_unregister(NS_TCP);
}
/*
* Free the TCP stack instance.
*/
static void
tcp_stack_fini(netstackid_t stackid, void *arg)
{
tcp_stack_t *tcps = (tcp_stack_t *)arg;
int i;
freeb(tcps->tcps_ixa_cleanup_mp);
tcps->tcps_ixa_cleanup_mp = NULL;
cv_destroy(&tcps->tcps_ixa_cleanup_cv);
mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
/*
* Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
* the timer.
*/
mutex_enter(&tcps->tcps_reclaim_lock);
tcps->tcps_reclaim = B_FALSE;
mutex_exit(&tcps->tcps_reclaim_lock);
if (tcps->tcps_reclaim_tid != 0)
(void) untimeout(tcps->tcps_reclaim_tid);
mutex_destroy(&tcps->tcps_reclaim_lock);
tcp_listener_conf_cleanup(tcps);
for (i = 0; i < tcps->tcps_sc_cnt; i++)
kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
kmem_free(tcps->tcps_propinfo_tbl,
tcp_propinfo_count * sizeof (mod_prop_info_t));
tcps->tcps_propinfo_tbl = NULL;
for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
}
for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
}
kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
tcps->tcps_bind_fanout = NULL;
kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
TCP_ACCEPTOR_FANOUT_SIZE);
tcps->tcps_acceptor_fanout = NULL;
mutex_destroy(&tcps->tcps_iss_key_lock);
mutex_destroy(&tcps->tcps_epriv_port_lock);
ip_drop_unregister(&tcps->tcps_dropper);
tcp_kstat2_fini(stackid, tcps->tcps_kstat);
tcps->tcps_kstat = NULL;
tcp_kstat_fini(stackid, tcps->tcps_mibkp);
tcps->tcps_mibkp = NULL;
ldi_ident_release(tcps->tcps_ldi_ident);
kmem_free(tcps, sizeof (*tcps));
}
/*
* Generate ISS, taking into account NDD changes may happen halfway through.
* (If the iss is not zero, set it.)
*/
static void
tcp_iss_init(tcp_t *tcp)
{
MD5_CTX context;
struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
uint32_t answer[4];
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
tcp->tcp_iss = tcps->tcps_iss_incr_extra;
switch (tcps->tcps_strong_iss) {
case 2:
mutex_enter(&tcps->tcps_iss_key_lock);
context = tcps->tcps_iss_key;
mutex_exit(&tcps->tcps_iss_key_lock);
arg.ports = connp->conn_ports;
arg.src = connp->conn_laddr_v6;
arg.dst = connp->conn_faddr_v6;
MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
MD5Final((uchar_t *)answer, &context);
tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
/*
* Now that we've hashed into a unique per-connection sequence
* space, add a random increment per strong_iss == 1. So I
* guess we'll have to...
*/
/* FALLTHRU */
case 1:
tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
break;
default:
tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
break;
}
tcp->tcp_valid_bits = TCP_ISS_VALID;
tcp->tcp_fss = tcp->tcp_iss - 1;
tcp->tcp_suna = tcp->tcp_iss;
tcp->tcp_snxt = tcp->tcp_iss + 1;
tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
tcp->tcp_csuna = tcp->tcp_snxt;
}
/*
* tcp_{set,clr}qfull() functions are used to either set or clear QFULL
* on the specified backing STREAMS q. Note, the caller may make the
* decision to call based on the tcp_t.tcp_flow_stopped value which
* when check outside the q's lock is only an advisory check ...
*/
void
tcp_setqfull(tcp_t *tcp)
{
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
if (tcp->tcp_closed)
return;
conn_setqfull(connp, &tcp->tcp_flow_stopped);
if (tcp->tcp_flow_stopped)
TCP_STAT(tcps, tcp_flwctl_on);
}
void
tcp_clrqfull(tcp_t *tcp)
{
conn_t *connp = tcp->tcp_connp;
if (tcp->tcp_closed)
return;
conn_clrqfull(connp, &tcp->tcp_flow_stopped);
}
static int
tcp_squeue_switch(int val)
{
int rval = SQ_FILL;
switch (val) {
case 1:
rval = SQ_NODRAIN;
break;
case 2:
rval = SQ_PROCESS;
break;
default:
break;
}
return (rval);
}
/*
* This is called once for each squeue - globally for all stack
* instances.
*/
static void
tcp_squeue_add(squeue_t *sqp)
{
tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
sizeof (tcp_squeue_priv_t), KM_SLEEP);
*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
if (tcp_free_list_max_cnt == 0) {
int tcp_ncpus = ((boot_max_ncpus == -1) ?
max_ncpus : boot_max_ncpus);
/*
* Limit number of entries to 1% of availble memory / tcp_ncpus
*/
tcp_free_list_max_cnt = (freemem * PAGESIZE) /
(tcp_ncpus * sizeof (tcp_t) * 100);
}
tcp_time_wait->tcp_free_list_cnt = 0;
}
/*
* Return unix error is tli error is TSYSERR, otherwise return a negative
* tli error.
*/
int
tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
boolean_t bind_to_req_port_only)
{
int error;
tcp_t *tcp = connp->conn_tcp;
if (tcp->tcp_state >= TCPS_BOUND) {
if (connp->conn_debug) {
(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
"tcp_bind: bad state, %d", tcp->tcp_state);
}
return (-TOUTSTATE);
}
error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
if (error != 0)
return (error);
ASSERT(tcp->tcp_state == TCPS_BOUND);
tcp->tcp_conn_req_max = 0;
return (0);
}
/*
* If the return value from this function is positive, it's a UNIX error.
* Otherwise, if it's negative, then the absolute value is a TLI error.
* the TPI routine tcp_tpi_connect() is a wrapper function for this.
*/
int
tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
cred_t *cr, pid_t pid)
{
tcp_t *tcp = connp->conn_tcp;
sin_t *sin = (sin_t *)sa;
sin6_t *sin6 = (sin6_t *)sa;
ipaddr_t *dstaddrp;
in_port_t dstport;
uint_t srcid;
int error;
uint32_t mss;
mblk_t *syn_mp;
tcp_stack_t *tcps = tcp->tcp_tcps;
int32_t oldstate;
ip_xmit_attr_t *ixa = connp->conn_ixa;
oldstate = tcp->tcp_state;
switch (len) {
default:
/*
* Should never happen
*/
return (EINVAL);
case sizeof (sin_t):
sin = (sin_t *)sa;
if (sin->sin_port == 0) {
return (-TBADADDR);
}
if (connp->conn_ipv6_v6only) {
return (EAFNOSUPPORT);
}
break;
case sizeof (sin6_t):
sin6 = (sin6_t *)sa;
if (sin6->sin6_port == 0) {
return (-TBADADDR);
}
break;
}
/*
* If we're connecting to an IPv4-mapped IPv6 address, we need to
* make sure that the conn_ipversion is IPV4_VERSION. We
* need to this before we call tcp_bindi() so that the port lookup
* code will look for ports in the correct port space (IPv4 and
* IPv6 have separate port spaces).
*/
if (connp->conn_family == AF_INET6 &&
connp->conn_ipversion == IPV6_VERSION &&
IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
if (connp->conn_ipv6_v6only)
return (EADDRNOTAVAIL);
connp->conn_ipversion = IPV4_VERSION;
}
switch (tcp->tcp_state) {
case TCPS_LISTEN:
/*
* Listening sockets are not allowed to issue connect().
*/
if (IPCL_IS_NONSTR(connp))
return (EOPNOTSUPP);
/* FALLTHRU */
case TCPS_IDLE:
/*
* We support quick connect, refer to comments in
* tcp_connect_*()
*/
/* FALLTHRU */
case TCPS_BOUND:
break;
default:
return (-TOUTSTATE);
}
/*
* We update our cred/cpid based on the caller of connect
*/
if (connp->conn_cred != cr) {
crhold(cr);
crfree(connp->conn_cred);
connp->conn_cred = cr;
}
connp->conn_cpid = pid;
/* Cache things in the ixa without any refhold */
ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
ixa->ixa_cred = cr;
ixa->ixa_cpid = pid;
if (is_system_labeled()) {
/* We need to restart with a label based on the cred */
ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
}
if (connp->conn_family == AF_INET6) {
if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
sin6->sin6_port, sin6->sin6_flowinfo,
sin6->__sin6_src_id, sin6->sin6_scope_id);
} else {
/*
* Destination adress is mapped IPv6 address.
* Source bound address should be unspecified or
* IPv6 mapped address as well.
*/
if (!IN6_IS_ADDR_UNSPECIFIED(
&connp->conn_bound_addr_v6) &&
!IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
return (EADDRNOTAVAIL);
}
dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
dstport = sin6->sin6_port;
srcid = sin6->__sin6_src_id;
error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
srcid);
}
} else {
dstaddrp = &sin->sin_addr.s_addr;
dstport = sin->sin_port;
srcid = 0;
error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
}
if (error != 0)
goto connect_failed;
CL_INET_CONNECT(connp, B_TRUE, error);
if (error != 0)
goto connect_failed;
/* connect succeeded */
TCPS_BUMP_MIB(tcps, tcpActiveOpens);
tcp->tcp_active_open = 1;
/*
* tcp_set_destination() does not adjust for TCP/IP header length.
*/
mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
/*
* Just make sure our rwnd is at least rcvbuf * MSS large, and round up
* to the nearest MSS.
*
* We do the round up here because we need to get the interface MTU
* first before we can do the round up.
*/
tcp->tcp_rwnd = connp->conn_rcvbuf;
tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
tcps->tcps_recv_hiwat_minmss * mss);
connp->conn_rcvbuf = tcp->tcp_rwnd;
tcp_set_ws_value(tcp);
tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
tcp->tcp_snd_ws_ok = B_TRUE;
/*
* Set tcp_snd_ts_ok to true
* so that tcp_xmit_mp will
* include the timestamp
* option in the SYN segment.
*/
if (tcps->tcps_tstamp_always ||
(tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
tcp->tcp_snd_ts_ok = B_TRUE;
}
/*
* Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
* the SACK metric is set. So here we just check the per stack SACK
* permitted param.
*/
if (tcps->tcps_sack_permitted == 2) {
ASSERT(tcp->tcp_num_sack_blk == 0);
ASSERT(tcp->tcp_notsack_list == NULL);
tcp->tcp_snd_sack_ok = B_TRUE;
}
/*
* Should we use ECN? Note that the current
* default value (SunOS 5.9) of tcp_ecn_permitted
* is 1. The reason for doing this is that there
* are equipments out there that will drop ECN
* enabled IP packets. Setting it to 1 avoids
* compatibility problems.
*/
if (tcps->tcps_ecn_permitted == 2)
tcp->tcp_ecn_ok = B_TRUE;
/* Trace change from BOUND -> SYN_SENT here */
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
int32_t, TCPS_BOUND);
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
if (syn_mp != NULL) {
/*
* We must bump the generation before sending the syn
* to ensure that we use the right generation in case
* this thread issues a "connected" up call.
*/
SOCK_CONNID_BUMP(tcp->tcp_connid);
/*
* DTrace sending the first SYN as a
* tcp:::connect-request event.
*/
DTRACE_TCP5(connect__request, mblk_t *, NULL,
ip_xmit_attr_t *, connp->conn_ixa,
void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
tcph_t *,
&syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
tcp_send_data(tcp, syn_mp);
}
if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
return (0);
connect_failed:
connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = 0;
tcp->tcp_state = oldstate;
if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
return (error);
}
int
tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
{
tcp_t *tcp = connp->conn_tcp;
int error = 0;
tcp_stack_t *tcps = tcp->tcp_tcps;
int32_t oldstate;
/* All Solaris components should pass a cred for this operation. */
ASSERT(cr != NULL);
if (tcp->tcp_state >= TCPS_BOUND) {
if ((tcp->tcp_state == TCPS_BOUND ||
tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
/*
* Handle listen() increasing backlog.
* This is more "liberal" then what the TPI spec
* requires but is needed to avoid a t_unbind
* when handling listen() since the port number
* might be "stolen" between the unbind and bind.
*/
goto do_listen;
}
if (connp->conn_debug) {
(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
"tcp_listen: bad state, %d", tcp->tcp_state);
}
return (-TOUTSTATE);
} else {
if (sa == NULL) {
sin6_t addr;
sin_t *sin;
sin6_t *sin6;
ASSERT(IPCL_IS_NONSTR(connp));
/* Do an implicit bind: Request for a generic port. */
if (connp->conn_family == AF_INET) {
len = sizeof (sin_t);
sin = (sin_t *)&addr;
*sin = sin_null;
sin->sin_family = AF_INET;
} else {
ASSERT(connp->conn_family == AF_INET6);
len = sizeof (sin6_t);
sin6 = (sin6_t *)&addr;
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
}
sa = (struct sockaddr *)&addr;
}
error = tcp_bind_check(connp, sa, len, cr,
bind_to_req_port_only);
if (error)
return (error);
/* Fall through and do the fanout insertion */
}
do_listen:
ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
tcp->tcp_conn_req_max = backlog;
if (tcp->tcp_conn_req_max) {
if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
/*
* If this is a listener, do not reset the eager list
* and other stuffs. Note that we don't check if the
* existing eager list meets the new tcp_conn_req_max
* requirement.
*/
if (tcp->tcp_state != TCPS_LISTEN) {
tcp->tcp_state = TCPS_LISTEN;
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp,
void, NULL, int32_t, TCPS_BOUND);
/* Initialize the chain. Don't need the eager_lock */
tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
tcp->tcp_eager_next_drop_q0 = tcp;
tcp->tcp_eager_prev_drop_q0 = tcp;
tcp->tcp_second_ctimer_threshold =
tcps->tcps_ip_abort_linterval;
}
}
/*
* We need to make sure that the conn_recv is set to a non-null
* value before we insert the conn into the classifier table.
* This is to avoid a race with an incoming packet which does an
* ipcl_classify().
* We initially set it to tcp_input_listener_unbound to try to
* pick a good squeue for the listener when the first SYN arrives.
* tcp_input_listener_unbound sets it to tcp_input_listener on that
* first SYN.
*/
connp->conn_recv = tcp_input_listener_unbound;
/* Insert the listener in the classifier table */
error = ip_laddr_fanout_insert(connp);
if (error != 0) {
/* Undo the bind - release the port number */
oldstate = tcp->tcp_state;
tcp->tcp_state = TCPS_IDLE;
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
int32_t, oldstate);
connp->conn_bound_addr_v6 = ipv6_all_zeros;
connp->conn_laddr_v6 = ipv6_all_zeros;
connp->conn_saddr_v6 = ipv6_all_zeros;
connp->conn_ports = 0;
if (connp->conn_anon_port) {
zone_t *zone;
zone = crgetzone(cr);
connp->conn_anon_port = B_FALSE;
(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
connp->conn_proto, connp->conn_lport, B_FALSE);
}
connp->conn_mlp_type = mlptSingle;
tcp_bind_hash_remove(tcp);
return (error);
} else {
/*
* If there is a connection limit, allocate and initialize
* the counter struct. Note that since listen can be called
* multiple times, the struct may have been allready allocated.
*/
if (!list_is_empty(&tcps->tcps_listener_conf) &&
tcp->tcp_listen_cnt == NULL) {
tcp_listen_cnt_t *tlc;
uint32_t ratio;
ratio = tcp_find_listener_conf(tcps,
ntohs(connp->conn_lport));
if (ratio != 0) {
uint32_t mem_ratio, tot_buf;
tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
KM_SLEEP);
/*
* Calculate the connection limit based on
* the configured ratio and maxusers. Maxusers
* are calculated based on memory size,
* ~ 1 user per MB. Note that the conn_rcvbuf
* and conn_sndbuf may change after a
* connection is accepted. So what we have
* is only an approximation.
*/
if ((tot_buf = connp->conn_rcvbuf +
connp->conn_sndbuf) < MB) {
mem_ratio = MB / tot_buf;
tlc->tlc_max = maxusers / ratio *
mem_ratio;
} else {
mem_ratio = tot_buf / MB;
tlc->tlc_max = maxusers / ratio /
mem_ratio;
}
/* At least we should allow two connections! */
if (tlc->tlc_max <= tcp_min_conn_listener)
tlc->tlc_max = tcp_min_conn_listener;
tlc->tlc_cnt = 1;
tlc->tlc_drop = 0;
tcp->tcp_listen_cnt = tlc;
}
}
}
return (error);
}