sctp_addr.c revision f4b3ec61df05330d25f55a36b975b4d7519fdeb1
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/stream.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/kmem.h>
#include <sys/socket.h>
#include <sys/sysmacros.h>
#include <sys/list.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <netinet/sctp.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <inet/ip_if.h>
#include <inet/ipclassifier.h>
#include <inet/sctp_ip.h>
#include "sctp_impl.h"
#include "sctp_addr.h"
static void sctp_ipif_inactive(sctp_ipif_t *);
static sctp_ipif_t *sctp_lookup_ipif_addr(in6_addr_t *, boolean_t,
sctp_t *, uint_t);
static int sctp_get_all_ipifs(sctp_t *, int);
int sctp_valid_addr_list(sctp_t *, const void *, uint32_t,
uchar_t *, size_t);
sctp_saddr_ipif_t *sctp_ipif_lookup(sctp_t *, uint_t);
static int sctp_ipif_hash_insert(sctp_t *, sctp_ipif_t *, int,
boolean_t dontsrc);
static void sctp_ipif_hash_remove(sctp_t *, sctp_ipif_t *);
static int sctp_compare_ipif_list(sctp_ipif_hash_t *,
sctp_ipif_hash_t *);
int sctp_compare_saddrs(sctp_t *, sctp_t *);
static int sctp_copy_ipifs(sctp_ipif_hash_t *, sctp_t *, int);
int sctp_dup_saddrs(sctp_t *, sctp_t *, int);
void sctp_free_saddrs(sctp_t *);
void sctp_update_ill(ill_t *, int);
void sctp_update_ipif(ipif_t *, int);
void sctp_move_ipif(ipif_t *, ill_t *, ill_t *);
void sctp_del_saddr(sctp_t *, sctp_saddr_ipif_t *);
void sctp_del_saddr_list(sctp_t *, const void *, int,
boolean_t);
sctp_saddr_ipif_t *sctp_saddr_lookup(sctp_t *, in6_addr_t *, uint_t);
in6_addr_t sctp_get_valid_addr(sctp_t *, boolean_t);
int sctp_getmyaddrs(void *, void *, int *);
void sctp_saddr_init(sctp_stack_t *);
void sctp_saddr_fini(sctp_stack_t *);
#define SCTP_IPIF_USABLE(sctp_ipif_state) \
((sctp_ipif_state) == SCTP_IPIFS_UP || \
(sctp_ipif_state) == SCTP_IPIFS_DOWN)
#define SCTP_IPIF_DISCARD(sctp_ipif_flags) \
((sctp_ipif_flags) & (IPIF_PRIVATE | IPIF_DEPRECATED))
#define SCTP_IS_IPIF_LOOPBACK(ipif) \
((ipif)->sctp_ipif_ill->sctp_ill_flags & PHYI_LOOPBACK)
#define SCTP_IS_IPIF_LINKLOCAL(ipif) \
((ipif)->sctp_ipif_isv6 && \
IN6_IS_ADDR_LINKLOCAL(&(ipif)->sctp_ipif_saddr))
#define SCTP_UNSUPP_AF(ipif, supp_af) \
((!(ipif)->sctp_ipif_isv6 && !((supp_af) & PARM_SUPP_V4)) || \
((ipif)->sctp_ipif_isv6 && !((supp_af) & PARM_SUPP_V6)))
#define SCTP_IPIF_ZONE_MATCH(sctp, ipif) \
IPCL_ZONE_MATCH((sctp)->sctp_connp, (ipif)->sctp_ipif_zoneid)
#define SCTP_ILL_HASH_FN(index) ((index) % SCTP_ILL_HASH)
#define SCTP_IPIF_HASH_FN(seqid) ((seqid) % SCTP_IPIF_HASH)
#define SCTP_ILL_TO_PHYINDEX(ill) ((ill)->ill_phyint->phyint_ifindex)
/*
*
*
* SCTP Interface list manipulation functions, locking used.
*
*
*/
/*
* Delete an SCTP IPIF from the list if the refcount goes to 0 and it is
* marked as condemned. Also, check if the ILL needs to go away.
* Called with no locks held.
*/
static void
sctp_ipif_inactive(sctp_ipif_t *sctp_ipif)
{
sctp_ill_t *sctp_ill;
uint_t ipif_index;
uint_t ill_index;
sctp_stack_t *sctps = sctp_ipif->sctp_ipif_ill->
sctp_ill_netstack->netstack_sctp;
rw_enter(&sctps->sctps_g_ills_lock, RW_READER);
rw_enter(&sctps->sctps_g_ipifs_lock, RW_WRITER);
ipif_index = SCTP_IPIF_HASH_FN(sctp_ipif->sctp_ipif_id);
sctp_ill = sctp_ipif->sctp_ipif_ill;
ASSERT(sctp_ill != NULL);
ill_index = SCTP_ILL_HASH_FN(sctp_ill->sctp_ill_index);
if (sctp_ipif->sctp_ipif_state != SCTP_IPIFS_CONDEMNED ||
sctp_ipif->sctp_ipif_refcnt != 0) {
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
list_remove(&sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list,
sctp_ipif);
sctps->sctps_g_ipifs[ipif_index].ipif_count--;
sctps->sctps_g_ipifs_count--;
rw_destroy(&sctp_ipif->sctp_ipif_lock);
kmem_free(sctp_ipif, sizeof (sctp_ipif_t));
(void) atomic_add_32_nv(&sctp_ill->sctp_ill_ipifcnt, -1);
if (rw_tryupgrade(&sctps->sctps_g_ills_lock) != 0) {
rw_downgrade(&sctps->sctps_g_ipifs_lock);
if (sctp_ill->sctp_ill_ipifcnt == 0 &&
sctp_ill->sctp_ill_state == SCTP_ILLS_CONDEMNED) {
list_remove(&sctps->sctps_g_ills[ill_index].
sctp_ill_list, (void *)sctp_ill);
sctps->sctps_g_ills[ill_index].ill_count--;
sctps->sctps_ills_count--;
kmem_free(sctp_ill->sctp_ill_name,
sctp_ill->sctp_ill_name_length);
kmem_free(sctp_ill, sizeof (sctp_ill_t));
}
}
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
}
/*
* Lookup an SCTP IPIF given an IP address. Increments sctp_ipif refcnt.
* Called with no locks held.
*/
static sctp_ipif_t *
sctp_lookup_ipif_addr(in6_addr_t *addr, boolean_t refhold, sctp_t *sctp,
uint_t ifindex)
{
int i;
int j;
sctp_ipif_t *sctp_ipif;
sctp_stack_t *sctps = sctp->sctp_sctps;
ASSERT(sctp->sctp_zoneid != ALL_ZONES);
rw_enter(&sctps->sctps_g_ipifs_lock, RW_READER);
for (i = 0; i < SCTP_IPIF_HASH; i++) {
if (sctps->sctps_g_ipifs[i].ipif_count == 0)
continue;
sctp_ipif = list_head(&sctps->sctps_g_ipifs[i].sctp_ipif_list);
for (j = 0; j < sctps->sctps_g_ipifs[i].ipif_count; j++) {
rw_enter(&sctp_ipif->sctp_ipif_lock, RW_READER);
if (SCTP_IPIF_ZONE_MATCH(sctp, sctp_ipif) &&
SCTP_IPIF_USABLE(sctp_ipif->sctp_ipif_state) &&
(ifindex == 0 || ifindex ==
sctp_ipif->sctp_ipif_ill->sctp_ill_index) &&
IN6_ARE_ADDR_EQUAL(&sctp_ipif->sctp_ipif_saddr,
addr)) {
rw_exit(&sctp_ipif->sctp_ipif_lock);
if (refhold)
SCTP_IPIF_REFHOLD(sctp_ipif);
rw_exit(&sctps->sctps_g_ipifs_lock);
return (sctp_ipif);
}
rw_exit(&sctp_ipif->sctp_ipif_lock);
sctp_ipif = list_next(
&sctps->sctps_g_ipifs[i].sctp_ipif_list, sctp_ipif);
}
}
rw_exit(&sctps->sctps_g_ipifs_lock);
return (NULL);
}
/*
* Populate the list with all the SCTP ipifs for a given ipversion.
* Increments sctp_ipif refcnt.
* Called with no locks held.
*/
static int
sctp_get_all_ipifs(sctp_t *sctp, int sleep)
{
sctp_ipif_t *sctp_ipif;
int i;
int j;
int error = 0;
sctp_stack_t *sctps = sctp->sctp_sctps;
rw_enter(&sctps->sctps_g_ipifs_lock, RW_READER);
for (i = 0; i < SCTP_IPIF_HASH; i++) {
if (sctps->sctps_g_ipifs[i].ipif_count == 0)
continue;
sctp_ipif = list_head(&sctps->sctps_g_ipifs[i].sctp_ipif_list);
for (j = 0; j < sctps->sctps_g_ipifs[i].ipif_count; j++) {
rw_enter(&sctp_ipif->sctp_ipif_lock, RW_READER);
if (SCTP_IPIF_DISCARD(sctp_ipif->sctp_ipif_flags) ||
!SCTP_IPIF_USABLE(sctp_ipif->sctp_ipif_state) ||
!SCTP_IPIF_ZONE_MATCH(sctp, sctp_ipif) ||
(sctp->sctp_ipversion == IPV4_VERSION &&
sctp_ipif->sctp_ipif_isv6) ||
(sctp->sctp_connp->conn_ipv6_v6only &&
!sctp_ipif->sctp_ipif_isv6)) {
rw_exit(&sctp_ipif->sctp_ipif_lock);
sctp_ipif = list_next(
&sctps->sctps_g_ipifs[i].sctp_ipif_list,
sctp_ipif);
continue;
}
rw_exit(&sctp_ipif->sctp_ipif_lock);
SCTP_IPIF_REFHOLD(sctp_ipif);
error = sctp_ipif_hash_insert(sctp, sctp_ipif, sleep,
B_FALSE);
if (error != 0)
goto free_stuff;
sctp_ipif = list_next(
&sctps->sctps_g_ipifs[i].sctp_ipif_list,
sctp_ipif);
}
}
rw_exit(&sctps->sctps_g_ipifs_lock);
return (0);
free_stuff:
rw_exit(&sctps->sctps_g_ipifs_lock);
sctp_free_saddrs(sctp);
return (ENOMEM);
}
/*
* Given a list of address, fills in the list of SCTP ipifs if all the addresses
* are present in the SCTP interface list, return number of addresses filled
* or error. If the caller wants the list of addresses, it sends a pre-allocated
* buffer - list. Currently, this list is only used on a clustered node when
* the SCTP is in the listen state (from sctp_bind_add()). When called on a
* clustered node, the input is always a list of addresses (even if the
* original bind() was to INADDR_ANY).
* Called with no locks held.
*/
int
sctp_valid_addr_list(sctp_t *sctp, const void *addrs, uint32_t addrcnt,
uchar_t *list, size_t lsize)
{
struct sockaddr_in *sin4;
struct sockaddr_in6 *sin6;
struct in_addr *addr4;
in6_addr_t addr;
int cnt;
int err = 0;
int saddr_cnt = 0;
sctp_ipif_t *ipif;
boolean_t bind_to_all = B_FALSE;
boolean_t check_addrs = B_FALSE;
boolean_t check_lport = B_FALSE;
uchar_t *p = list;
/*
* Need to check for port and address depending on the state.
* After a socket is bound, we need to make sure that subsequent
* bindx() has correct port. After an association is established,
* we need to check for changing the bound address to invalid
* addresses.
*/
if (sctp->sctp_state >= SCTPS_BOUND) {
check_lport = B_TRUE;
if (sctp->sctp_state > SCTPS_LISTEN)
check_addrs = B_TRUE;
}
if (sctp->sctp_conn_tfp != NULL)
mutex_enter(&sctp->sctp_conn_tfp->tf_lock);
if (sctp->sctp_listen_tfp != NULL)
mutex_enter(&sctp->sctp_listen_tfp->tf_lock);
for (cnt = 0; cnt < addrcnt; cnt++) {
boolean_t lookup_saddr = B_TRUE;
uint_t ifindex = 0;
switch (sctp->sctp_family) {
case AF_INET:
sin4 = (struct sockaddr_in *)addrs + cnt;
if (sin4->sin_family != AF_INET || (check_lport &&
sin4->sin_port != sctp->sctp_lport)) {
err = EINVAL;
goto free_ret;
}
addr4 = &sin4->sin_addr;
if (check_addrs &&
(addr4->s_addr == INADDR_ANY ||
addr4->s_addr == INADDR_BROADCAST ||
IN_MULTICAST(addr4->s_addr))) {
err = EINVAL;
goto free_ret;
}
IN6_INADDR_TO_V4MAPPED(addr4, &addr);
if (!check_addrs && addr4->s_addr == INADDR_ANY) {
lookup_saddr = B_FALSE;
bind_to_all = B_TRUE;
}
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *)addrs + cnt;
if (sin6->sin6_family != AF_INET6 || (check_lport &&
sin6->sin6_port != sctp->sctp_lport)) {
err = EINVAL;
goto free_ret;
}
addr = sin6->sin6_addr;
/* Contains the interface index */
ifindex = sin6->sin6_scope_id;
if (sctp->sctp_connp->conn_ipv6_v6only &&
IN6_IS_ADDR_V4MAPPED(&addr)) {
err = EAFNOSUPPORT;
goto free_ret;
}
if (check_addrs &&
(IN6_IS_ADDR_LINKLOCAL(&addr) ||
IN6_IS_ADDR_MULTICAST(&addr) ||
IN6_IS_ADDR_UNSPECIFIED(&addr))) {
err = EINVAL;
goto free_ret;
}
if (!check_addrs && IN6_IS_ADDR_UNSPECIFIED(&addr)) {
lookup_saddr = B_FALSE;
bind_to_all = B_TRUE;
}
break;
default:
err = EAFNOSUPPORT;
goto free_ret;
}
if (lookup_saddr) {
ipif = sctp_lookup_ipif_addr(&addr, B_TRUE, sctp,
ifindex);
if (ipif == NULL) {
/* Address not in the list */
err = EINVAL;
goto free_ret;
} else if (check_addrs && SCTP_IS_IPIF_LOOPBACK(ipif) &&
cl_sctp_check_addrs == NULL) {
SCTP_IPIF_REFRELE(ipif);
err = EINVAL;
goto free_ret;
}
}
if (!bind_to_all) {
/*
* If an address is added after association setup,
* we need to wait for the peer to send us an ASCONF
* ACK before we can start using it.
* saddr_ipif_dontsrc will be reset (to 0) when we
* get the ASCONF ACK for this address.
*/
err = sctp_ipif_hash_insert(sctp, ipif, KM_SLEEP,
check_addrs ? B_TRUE : B_FALSE);
if (err != 0) {
SCTP_IPIF_REFRELE(ipif);
if (check_addrs && err == EALREADY)
err = EADDRINUSE;
goto free_ret;
}
saddr_cnt++;
if (lsize >= sizeof (addr)) {
bcopy(&addr, p, sizeof (addr));
p += sizeof (addr);
lsize -= sizeof (addr);
}
}
}
if (bind_to_all) {
/*
* Free whatever we might have added before encountering
* inaddr_any.
*/
if (sctp->sctp_nsaddrs > 0) {
sctp_free_saddrs(sctp);
ASSERT(sctp->sctp_nsaddrs == 0);
}
err = sctp_get_all_ipifs(sctp, KM_SLEEP);
if (err != 0)
return (err);
sctp->sctp_bound_to_all = 1;
}
if (sctp->sctp_listen_tfp != NULL)
mutex_exit(&sctp->sctp_listen_tfp->tf_lock);
if (sctp->sctp_conn_tfp != NULL)
mutex_exit(&sctp->sctp_conn_tfp->tf_lock);
return (0);
free_ret:
if (saddr_cnt != 0)
sctp_del_saddr_list(sctp, addrs, saddr_cnt, B_TRUE);
if (sctp->sctp_listen_tfp != NULL)
mutex_exit(&sctp->sctp_listen_tfp->tf_lock);
if (sctp->sctp_conn_tfp != NULL)
mutex_exit(&sctp->sctp_conn_tfp->tf_lock);
return (err);
}
sctp_saddr_ipif_t *
sctp_ipif_lookup(sctp_t *sctp, uint_t ipif_index)
{
int cnt;
int seqid = SCTP_IPIF_HASH_FN(ipif_index);
sctp_saddr_ipif_t *ipif_obj;
if (sctp->sctp_saddrs[seqid].ipif_count == 0)
return (NULL);
ipif_obj = list_head(&sctp->sctp_saddrs[seqid].sctp_ipif_list);
for (cnt = 0; cnt < sctp->sctp_saddrs[seqid].ipif_count; cnt++) {
if (ipif_obj->saddr_ipifp->sctp_ipif_id == ipif_index)
return (ipif_obj);
ipif_obj = list_next(&sctp->sctp_saddrs[seqid].sctp_ipif_list,
ipif_obj);
}
return (NULL);
}
static int
sctp_ipif_hash_insert(sctp_t *sctp, sctp_ipif_t *ipif, int sleep,
boolean_t dontsrc)
{
int cnt;
sctp_saddr_ipif_t *ipif_obj;
int seqid = SCTP_IPIF_HASH_FN(ipif->sctp_ipif_id);
ipif_obj = list_head(&sctp->sctp_saddrs[seqid].sctp_ipif_list);
for (cnt = 0; cnt < sctp->sctp_saddrs[seqid].ipif_count; cnt++) {
if (ipif_obj->saddr_ipifp->sctp_ipif_id == ipif->sctp_ipif_id)
return (EALREADY);
ipif_obj = list_next(&sctp->sctp_saddrs[seqid].sctp_ipif_list,
ipif_obj);
}
ipif_obj = kmem_zalloc(sizeof (sctp_saddr_ipif_t), sleep);
if (ipif_obj == NULL) {
/* Need to do something */
return (ENOMEM);
}
ipif_obj->saddr_ipifp = ipif;
ipif_obj->saddr_ipif_dontsrc = dontsrc ? 1 : 0;
list_insert_tail(&sctp->sctp_saddrs[seqid].sctp_ipif_list, ipif_obj);
sctp->sctp_saddrs[seqid].ipif_count++;
sctp->sctp_nsaddrs++;
return (0);
}
static void
sctp_ipif_hash_remove(sctp_t *sctp, sctp_ipif_t *ipif)
{
int cnt;
sctp_saddr_ipif_t *ipif_obj;
int seqid = SCTP_IPIF_HASH_FN(ipif->sctp_ipif_id);
ipif_obj = list_head(&sctp->sctp_saddrs[seqid].sctp_ipif_list);
for (cnt = 0; cnt < sctp->sctp_saddrs[seqid].ipif_count; cnt++) {
if (ipif_obj->saddr_ipifp->sctp_ipif_id == ipif->sctp_ipif_id) {
list_remove(&sctp->sctp_saddrs[seqid].sctp_ipif_list,
ipif_obj);
sctp->sctp_nsaddrs--;
sctp->sctp_saddrs[seqid].ipif_count--;
SCTP_IPIF_REFRELE(ipif_obj->saddr_ipifp);
kmem_free(ipif_obj, sizeof (sctp_saddr_ipif_t));
break;
}
ipif_obj = list_next(&sctp->sctp_saddrs[seqid].sctp_ipif_list,
ipif_obj);
}
}
static int
sctp_compare_ipif_list(sctp_ipif_hash_t *list1, sctp_ipif_hash_t *list2)
{
int i;
int j;
sctp_saddr_ipif_t *obj1;
sctp_saddr_ipif_t *obj2;
int overlap = 0;
obj1 = list_head(&list1->sctp_ipif_list);
for (i = 0; i < list1->ipif_count; i++) {
obj2 = list_head(&list2->sctp_ipif_list);
for (j = 0; j < list2->ipif_count; j++) {
if (obj1->saddr_ipifp->sctp_ipif_id ==
obj2->saddr_ipifp->sctp_ipif_id) {
overlap++;
break;
}
obj2 = list_next(&list2->sctp_ipif_list,
obj2);
}
obj1 = list_next(&list1->sctp_ipif_list, obj1);
}
return (overlap);
}
int
sctp_compare_saddrs(sctp_t *sctp1, sctp_t *sctp2)
{
int i;
int overlap = 0;
for (i = 0; i < SCTP_IPIF_HASH; i++) {
overlap += sctp_compare_ipif_list(&sctp1->sctp_saddrs[i],
&sctp2->sctp_saddrs[i]);
}
if (sctp1->sctp_nsaddrs == sctp2->sctp_nsaddrs &&
overlap == sctp1->sctp_nsaddrs) {
return (SCTP_ADDR_EQUAL);
}
if (overlap == sctp1->sctp_nsaddrs)
return (SCTP_ADDR_SUBSET);
if (overlap > 0)
return (SCTP_ADDR_OVERLAP);
return (SCTP_ADDR_DISJOINT);
}
static int
sctp_copy_ipifs(sctp_ipif_hash_t *list1, sctp_t *sctp2, int sleep)
{
int i;
sctp_saddr_ipif_t *obj;
int error = 0;
obj = list_head(&list1->sctp_ipif_list);
for (i = 0; i < list1->ipif_count; i++) {
SCTP_IPIF_REFHOLD(obj->saddr_ipifp);
error = sctp_ipif_hash_insert(sctp2, obj->saddr_ipifp, sleep,
B_FALSE);
if (error != 0)
return (error);
obj = list_next(&list1->sctp_ipif_list, obj);
}
return (error);
}
int
sctp_dup_saddrs(sctp_t *sctp1, sctp_t *sctp2, int sleep)
{
int error = 0;
int i;
if (sctp1 == NULL || sctp1->sctp_bound_to_all == 1)
return (sctp_get_all_ipifs(sctp2, sleep));
for (i = 0; i < SCTP_IPIF_HASH; i++) {
if (sctp1->sctp_saddrs[i].ipif_count == 0)
continue;
error = sctp_copy_ipifs(&sctp1->sctp_saddrs[i], sctp2, sleep);
if (error != 0) {
sctp_free_saddrs(sctp2);
return (error);
}
}
return (0);
}
void
sctp_free_saddrs(sctp_t *sctp)
{
int i;
int l;
sctp_saddr_ipif_t *obj;
if (sctp->sctp_nsaddrs == 0)
return;
for (i = 0; i < SCTP_IPIF_HASH; i++) {
if (sctp->sctp_saddrs[i].ipif_count == 0)
continue;
obj = list_tail(&sctp->sctp_saddrs[i].sctp_ipif_list);
for (l = 0; l < sctp->sctp_saddrs[i].ipif_count; l++) {
list_remove(&sctp->sctp_saddrs[i].sctp_ipif_list, obj);
SCTP_IPIF_REFRELE(obj->saddr_ipifp);
sctp->sctp_nsaddrs--;
kmem_free(obj, sizeof (sctp_saddr_ipif_t));
obj = list_tail(&sctp->sctp_saddrs[i].sctp_ipif_list);
}
sctp->sctp_saddrs[i].ipif_count = 0;
}
if (sctp->sctp_bound_to_all == 1)
sctp->sctp_bound_to_all = 0;
ASSERT(sctp->sctp_nsaddrs == 0);
}
/*
* Add/Delete the given ILL from the SCTP ILL list. Called with no locks
* held.
*/
void
sctp_update_ill(ill_t *ill, int op)
{
int i;
sctp_ill_t *sctp_ill = NULL;
uint_t index;
netstack_t *ns = ill->ill_ipst->ips_netstack;
sctp_stack_t *sctps = ns->netstack_sctp;
ip2dbg(("sctp_update_ill: %s\n", ill->ill_name));
rw_enter(&sctps->sctps_g_ills_lock, RW_WRITER);
index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(ill));
sctp_ill = list_head(&sctps->sctps_g_ills[index].sctp_ill_list);
for (i = 0; i < sctps->sctps_g_ills[index].ill_count; i++) {
if (sctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(ill))
break;
sctp_ill = list_next(&sctps->sctps_g_ills[index].sctp_ill_list,
sctp_ill);
}
switch (op) {
case SCTP_ILL_INSERT:
if (sctp_ill != NULL) {
/* Unmark it if it is condemned */
if (sctp_ill->sctp_ill_state == SCTP_ILLS_CONDEMNED)
sctp_ill->sctp_ill_state = 0;
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
sctp_ill = kmem_zalloc(sizeof (sctp_ill_t), KM_NOSLEEP);
/* Need to re-try? */
if (sctp_ill == NULL) {
ip1dbg(("sctp_ill_insert: mem error..\n"));
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
sctp_ill->sctp_ill_name =
kmem_zalloc(ill->ill_name_length, KM_NOSLEEP);
if (sctp_ill->sctp_ill_name == NULL) {
ip1dbg(("sctp_ill_insert: mem error..\n"));
kmem_free(sctp_ill, sizeof (sctp_ill_t));
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
bcopy(ill->ill_name, sctp_ill->sctp_ill_name,
ill->ill_name_length);
sctp_ill->sctp_ill_name_length = ill->ill_name_length;
sctp_ill->sctp_ill_index = SCTP_ILL_TO_PHYINDEX(ill);
sctp_ill->sctp_ill_flags = ill->ill_phyint->phyint_flags;
sctp_ill->sctp_ill_netstack = ns; /* No netstack_hold */
list_insert_tail(&sctps->sctps_g_ills[index].sctp_ill_list,
(void *)sctp_ill);
sctps->sctps_g_ills[index].ill_count++;
sctps->sctps_ills_count++;
break;
case SCTP_ILL_REMOVE:
if (sctp_ill == NULL) {
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
if (sctp_ill->sctp_ill_ipifcnt == 0) {
list_remove(&sctps->sctps_g_ills[index].sctp_ill_list,
(void *)sctp_ill);
sctps->sctps_g_ills[index].ill_count--;
sctps->sctps_ills_count--;
kmem_free(sctp_ill->sctp_ill_name,
ill->ill_name_length);
kmem_free(sctp_ill, sizeof (sctp_ill_t));
} else {
sctp_ill->sctp_ill_state = SCTP_ILLS_CONDEMNED;
}
break;
}
rw_exit(&sctps->sctps_g_ills_lock);
}
/* move ipif from f_ill to t_ill */
void
sctp_move_ipif(ipif_t *ipif, ill_t *f_ill, ill_t *t_ill)
{
sctp_ill_t *fsctp_ill = NULL;
sctp_ill_t *tsctp_ill = NULL;
sctp_ipif_t *sctp_ipif;
uint_t index;
int i;
netstack_t *ns = ipif->ipif_ill->ill_ipst->ips_netstack;
sctp_stack_t *sctps = ns->netstack_sctp;
rw_enter(&sctps->sctps_g_ills_lock, RW_READER);
rw_enter(&sctps->sctps_g_ipifs_lock, RW_READER);
index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(f_ill));
fsctp_ill = list_head(&sctps->sctps_g_ills[index].sctp_ill_list);
for (i = 0; i < sctps->sctps_g_ills[index].ill_count; i++) {
if (fsctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(f_ill))
break;
fsctp_ill = list_next(&sctps->sctps_g_ills[index].sctp_ill_list,
fsctp_ill);
}
index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(t_ill));
tsctp_ill = list_head(&sctps->sctps_g_ills[index].sctp_ill_list);
for (i = 0; i < sctps->sctps_g_ills[index].ill_count; i++) {
if (tsctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(t_ill))
break;
tsctp_ill = list_next(&sctps->sctps_g_ills[index].sctp_ill_list,
tsctp_ill);
}
index = SCTP_IPIF_HASH_FN(ipif->ipif_seqid);
sctp_ipif = list_head(&sctps->sctps_g_ipifs[index].sctp_ipif_list);
for (i = 0; i < sctps->sctps_g_ipifs[index].ipif_count; i++) {
if (sctp_ipif->sctp_ipif_id == ipif->ipif_seqid)
break;
sctp_ipif = list_next(
&sctps->sctps_g_ipifs[index].sctp_ipif_list, sctp_ipif);
}
/* Should be an ASSERT? */
if (fsctp_ill == NULL || tsctp_ill == NULL || sctp_ipif == NULL) {
ip1dbg(("sctp_move_ipif: error moving ipif %p from %p to %p\n",
(void *)ipif, (void *)f_ill, (void *)t_ill));
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER);
ASSERT(sctp_ipif->sctp_ipif_ill == fsctp_ill);
sctp_ipif->sctp_ipif_ill = tsctp_ill;
rw_exit(&sctp_ipif->sctp_ipif_lock);
(void) atomic_add_32_nv(&fsctp_ill->sctp_ill_ipifcnt, -1);
atomic_add_32(&tsctp_ill->sctp_ill_ipifcnt, 1);
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
}
/* Insert, Remove, Mark up or Mark down the ipif */
void
sctp_update_ipif(ipif_t *ipif, int op)
{
ill_t *ill = ipif->ipif_ill;
int i;
sctp_ill_t *sctp_ill;
sctp_ipif_t *sctp_ipif;
uint_t ill_index;
uint_t ipif_index;
netstack_t *ns = ipif->ipif_ill->ill_ipst->ips_netstack;
sctp_stack_t *sctps = ns->netstack_sctp;
ip2dbg(("sctp_update_ipif: %s %d\n", ill->ill_name, ipif->ipif_seqid));
rw_enter(&sctps->sctps_g_ills_lock, RW_READER);
rw_enter(&sctps->sctps_g_ipifs_lock, RW_WRITER);
ill_index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(ill));
sctp_ill = list_head(&sctps->sctps_g_ills[ill_index].sctp_ill_list);
for (i = 0; i < sctps->sctps_g_ills[ill_index].ill_count; i++) {
if (sctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(ill))
break;
sctp_ill = list_next(
&sctps->sctps_g_ills[ill_index].sctp_ill_list, sctp_ill);
}
if (sctp_ill == NULL) {
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
ipif_index = SCTP_IPIF_HASH_FN(ipif->ipif_seqid);
sctp_ipif = list_head(&sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list);
for (i = 0; i < sctps->sctps_g_ipifs[ipif_index].ipif_count; i++) {
if (sctp_ipif->sctp_ipif_id == ipif->ipif_seqid)
break;
sctp_ipif = list_next(
&sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list,
sctp_ipif);
}
if (op != SCTP_IPIF_INSERT && sctp_ipif == NULL) {
ip1dbg(("sctp_update_ipif: null sctp_ipif for %d\n", op));
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
#ifdef DEBUG
if (sctp_ipif != NULL)
ASSERT(sctp_ill == sctp_ipif->sctp_ipif_ill);
#endif
switch (op) {
case SCTP_IPIF_INSERT:
if (sctp_ipif != NULL) {
if (sctp_ipif->sctp_ipif_state == SCTP_IPIFS_CONDEMNED)
sctp_ipif->sctp_ipif_state = SCTP_IPIFS_INVALID;
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
sctp_ipif = kmem_zalloc(sizeof (sctp_ipif_t), KM_NOSLEEP);
/* Try again? */
if (sctp_ipif == NULL) {
ip1dbg(("sctp_ipif_insert: mem failure..\n"));
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
sctp_ipif->sctp_ipif_id = ipif->ipif_seqid;
sctp_ipif->sctp_ipif_ill = sctp_ill;
sctp_ipif->sctp_ipif_state = SCTP_IPIFS_INVALID;
sctp_ipif->sctp_ipif_mtu = ipif->ipif_mtu;
sctp_ipif->sctp_ipif_zoneid = ipif->ipif_zoneid;
sctp_ipif->sctp_ipif_isv6 = ill->ill_isv6;
sctp_ipif->sctp_ipif_flags = ipif->ipif_flags;
rw_init(&sctp_ipif->sctp_ipif_lock, NULL, RW_DEFAULT, NULL);
list_insert_tail(
&sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list,
(void *)sctp_ipif);
sctps->sctps_g_ipifs[ipif_index].ipif_count++;
sctps->sctps_g_ipifs_count++;
atomic_add_32(&sctp_ill->sctp_ill_ipifcnt, 1);
break;
case SCTP_IPIF_REMOVE:
{
list_t *ipif_list;
list_t *ill_list;
ill_list = &sctps->sctps_g_ills[ill_index].sctp_ill_list;
ipif_list = &sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list;
if (sctp_ipif->sctp_ipif_refcnt != 0) {
sctp_ipif->sctp_ipif_state = SCTP_IPIFS_CONDEMNED;
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
return;
}
list_remove(ipif_list, (void *)sctp_ipif);
sctps->sctps_g_ipifs[ipif_index].ipif_count--;
sctps->sctps_g_ipifs_count--;
rw_destroy(&sctp_ipif->sctp_ipif_lock);
kmem_free(sctp_ipif, sizeof (sctp_ipif_t));
(void) atomic_add_32_nv(&sctp_ill->sctp_ill_ipifcnt, -1);
if (rw_tryupgrade(&sctps->sctps_g_ills_lock) != 0) {
rw_downgrade(&sctps->sctps_g_ipifs_lock);
if (sctp_ill->sctp_ill_ipifcnt == 0 &&
sctp_ill->sctp_ill_state == SCTP_ILLS_CONDEMNED) {
list_remove(ill_list, (void *)sctp_ill);
sctps->sctps_ills_count--;
sctps->sctps_g_ills[ill_index].ill_count--;
kmem_free(sctp_ill->sctp_ill_name,
sctp_ill->sctp_ill_name_length);
kmem_free(sctp_ill, sizeof (sctp_ill_t));
}
}
break;
}
case SCTP_IPIF_UP:
rw_downgrade(&sctps->sctps_g_ipifs_lock);
rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER);
sctp_ipif->sctp_ipif_state = SCTP_IPIFS_UP;
sctp_ipif->sctp_ipif_saddr = ipif->ipif_v6lcl_addr;
sctp_ipif->sctp_ipif_flags = ipif->ipif_flags;
sctp_ipif->sctp_ipif_mtu = ipif->ipif_mtu;
rw_exit(&sctp_ipif->sctp_ipif_lock);
break;
case SCTP_IPIF_UPDATE:
rw_downgrade(&sctps->sctps_g_ipifs_lock);
rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER);
sctp_ipif->sctp_ipif_mtu = ipif->ipif_mtu;
sctp_ipif->sctp_ipif_saddr = ipif->ipif_v6lcl_addr;
sctp_ipif->sctp_ipif_zoneid = ipif->ipif_zoneid;
sctp_ipif->sctp_ipif_flags = ipif->ipif_flags;
rw_exit(&sctp_ipif->sctp_ipif_lock);
break;
case SCTP_IPIF_DOWN:
rw_downgrade(&sctps->sctps_g_ipifs_lock);
rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER);
sctp_ipif->sctp_ipif_state = SCTP_IPIFS_DOWN;
rw_exit(&sctp_ipif->sctp_ipif_lock);
break;
}
rw_exit(&sctps->sctps_g_ipifs_lock);
rw_exit(&sctps->sctps_g_ills_lock);
}
/*
*
*
* SCTP source address list manipulaton, locking not used (except for
* sctp locking by the caller.
*
*
*/
/* Remove a specific saddr from the list */
void
sctp_del_saddr(sctp_t *sctp, sctp_saddr_ipif_t *sp)
{
if (sctp->sctp_conn_tfp != NULL)
mutex_enter(&sctp->sctp_conn_tfp->tf_lock);
if (sctp->sctp_listen_tfp != NULL)
mutex_enter(&sctp->sctp_listen_tfp->tf_lock);
sctp_ipif_hash_remove(sctp, sp->saddr_ipifp);
if (sctp->sctp_bound_to_all == 1)
sctp->sctp_bound_to_all = 0;
if (sctp->sctp_conn_tfp != NULL)
mutex_exit(&sctp->sctp_conn_tfp->tf_lock);
if (sctp->sctp_listen_tfp != NULL)
mutex_exit(&sctp->sctp_listen_tfp->tf_lock);
}
/*
* Delete source address from the existing list. No error checking done here
* Called with no locks held.
*/
void
sctp_del_saddr_list(sctp_t *sctp, const void *addrs, int addcnt,
boolean_t fanout_locked)
{
struct sockaddr_in *sin4;
struct sockaddr_in6 *sin6;
int cnt;
in6_addr_t addr;
sctp_ipif_t *sctp_ipif;
int ifindex = 0;
ASSERT(sctp->sctp_nsaddrs >= addcnt);
if (!fanout_locked) {
if (sctp->sctp_conn_tfp != NULL)
mutex_enter(&sctp->sctp_conn_tfp->tf_lock);
if (sctp->sctp_listen_tfp != NULL)
mutex_enter(&sctp->sctp_listen_tfp->tf_lock);
}
for (cnt = 0; cnt < addcnt; cnt++) {
switch (sctp->sctp_family) {
case AF_INET:
sin4 = (struct sockaddr_in *)addrs + cnt;
IN6_INADDR_TO_V4MAPPED(&sin4->sin_addr, &addr);
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *)addrs + cnt;
addr = sin6->sin6_addr;
ifindex = sin6->sin6_scope_id;
break;
}
sctp_ipif = sctp_lookup_ipif_addr(&addr, B_FALSE, sctp,
ifindex);
ASSERT(sctp_ipif != NULL);
sctp_ipif_hash_remove(sctp, sctp_ipif);
}
if (sctp->sctp_bound_to_all == 1)
sctp->sctp_bound_to_all = 0;
if (!fanout_locked) {
if (sctp->sctp_conn_tfp != NULL)
mutex_exit(&sctp->sctp_conn_tfp->tf_lock);
if (sctp->sctp_listen_tfp != NULL)
mutex_exit(&sctp->sctp_listen_tfp->tf_lock);
}
}
/*
* Given an address get the corresponding entry from the list
* Called with no locks held.
*/
sctp_saddr_ipif_t *
sctp_saddr_lookup(sctp_t *sctp, in6_addr_t *addr, uint_t ifindex)
{
sctp_saddr_ipif_t *saddr_ipifs;
sctp_ipif_t *sctp_ipif;
sctp_ipif = sctp_lookup_ipif_addr(addr, B_FALSE, sctp, ifindex);
if (sctp_ipif == NULL)
return (NULL);
saddr_ipifs = sctp_ipif_lookup(sctp, sctp_ipif->sctp_ipif_id);
return (saddr_ipifs);
}
/* Given an address, add it to the source address list */
int
sctp_saddr_add_addr(sctp_t *sctp, in6_addr_t *addr, uint_t ifindex)
{
sctp_ipif_t *sctp_ipif;
sctp_ipif = sctp_lookup_ipif_addr(addr, B_TRUE, sctp, ifindex);
if (sctp_ipif == NULL)
return (EINVAL);
if (sctp_ipif_hash_insert(sctp, sctp_ipif, KM_NOSLEEP, B_FALSE) != 0) {
SCTP_IPIF_REFRELE(sctp_ipif);
return (EINVAL);
}
return (0);
}
/*
* Remove or mark as dontsrc addresses that are currently not part of the
* association. One would delete addresses when processing an INIT and
* mark as dontsrc when processing an INIT-ACK.
*/
void
sctp_check_saddr(sctp_t *sctp, int supp_af, boolean_t delete)
{
int i;
int l;
sctp_saddr_ipif_t *obj;
int scanned = 0;
int naddr;
int nsaddr;
ASSERT(!sctp->sctp_loopback && !sctp->sctp_linklocal && supp_af != 0);
/*
* Irregardless of the supported address in the INIT, v4
* must be supported.
*/
if (sctp->sctp_family == AF_INET)
supp_af = PARM_SUPP_V4;
nsaddr = sctp->sctp_nsaddrs;
for (i = 0; i < SCTP_IPIF_HASH; i++) {
if (sctp->sctp_saddrs[i].ipif_count == 0)
continue;
obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list);
naddr = sctp->sctp_saddrs[i].ipif_count;
for (l = 0; l < naddr; l++) {
sctp_ipif_t *ipif;
ipif = obj->saddr_ipifp;
scanned++;
/*
* Delete/mark dontsrc loopback/linklocal addresses and
* unsupported address.
* On a clustered node, we trust the clustering module
* to do the right thing w.r.t loopback addresses, so
* we ignore loopback addresses in this check.
*/
if ((SCTP_IS_IPIF_LOOPBACK(ipif) &&
cl_sctp_check_addrs == NULL) ||
SCTP_IS_IPIF_LINKLOCAL(ipif) ||
SCTP_UNSUPP_AF(ipif, supp_af)) {
if (!delete) {
obj->saddr_ipif_unconfirmed = 1;
goto next_obj;
}
if (sctp->sctp_bound_to_all == 1)
sctp->sctp_bound_to_all = 0;
if (scanned < nsaddr) {
obj = list_next(&sctp->sctp_saddrs[i].
sctp_ipif_list, obj);
sctp_ipif_hash_remove(sctp, ipif);
continue;
}
sctp_ipif_hash_remove(sctp, ipif);
}
next_obj:
if (scanned >= nsaddr)
return;
obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list,
obj);
}
}
}
/* Get the first valid address from the list. Called with no locks held */
in6_addr_t
sctp_get_valid_addr(sctp_t *sctp, boolean_t isv6)
{
int i;
int l;
sctp_saddr_ipif_t *obj;
int scanned = 0;
in6_addr_t addr;
for (i = 0; i < SCTP_IPIF_HASH; i++) {
if (sctp->sctp_saddrs[i].ipif_count == 0)
continue;
obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list);
for (l = 0; l < sctp->sctp_saddrs[i].ipif_count; l++) {
sctp_ipif_t *ipif;
ipif = obj->saddr_ipifp;
if (!SCTP_DONT_SRC(obj) &&
ipif->sctp_ipif_isv6 == isv6 &&
ipif->sctp_ipif_state == SCTP_IPIFS_UP) {
return (ipif->sctp_ipif_saddr);
}
scanned++;
if (scanned >= sctp->sctp_nsaddrs)
goto got_none;
obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list,
obj);
}
}
got_none:
/* Need to double check this */
if (isv6 == B_TRUE)
addr = ipv6_all_zeros;
else
IN6_IPADDR_TO_V4MAPPED(0, &addr);
return (addr);
}
/*
* Return the list of local addresses of an association. The parameter
* myaddrs is supposed to be either (struct sockaddr_in *) or (struct
* sockaddr_in6 *) depending on the address family.
*/
int
sctp_getmyaddrs(void *conn, void *myaddrs, int *addrcnt)
{
int i;
int l;
sctp_saddr_ipif_t *obj;
sctp_t *sctp = (sctp_t *)conn;
int family = sctp->sctp_family;
int max = *addrcnt;
size_t added = 0;
struct sockaddr_in6 *sin6;
struct sockaddr_in *sin4;
int scanned = 0;
boolean_t skip_lback = B_FALSE;
if (sctp->sctp_nsaddrs == 0)
return (EINVAL);
/*
* Skip loopback addresses for non-loopback assoc., ignore
* this on a clustered node.
*/
if (sctp->sctp_state >= SCTPS_ESTABLISHED && !sctp->sctp_loopback &&
(cl_sctp_check_addrs == NULL)) {
skip_lback = B_TRUE;
}
for (i = 0; i < SCTP_IPIF_HASH; i++) {
if (sctp->sctp_saddrs[i].ipif_count == 0)
continue;
obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list);
for (l = 0; l < sctp->sctp_saddrs[i].ipif_count; l++) {
sctp_ipif_t *ipif = obj->saddr_ipifp;
in6_addr_t addr = ipif->sctp_ipif_saddr;
scanned++;
if ((ipif->sctp_ipif_state == SCTP_IPIFS_CONDEMNED) ||
SCTP_DONT_SRC(obj) ||
(SCTP_IS_IPIF_LOOPBACK(ipif) && skip_lback)) {
if (scanned >= sctp->sctp_nsaddrs)
goto done;
obj = list_next(&sctp->sctp_saddrs[i].
sctp_ipif_list, obj);
continue;
}
switch (family) {
case AF_INET:
sin4 = (struct sockaddr_in *)myaddrs + added;
sin4->sin_family = AF_INET;
sin4->sin_port = sctp->sctp_lport;
IN6_V4MAPPED_TO_INADDR(&addr, &sin4->sin_addr);
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *)myaddrs + added;
sin6->sin6_family = AF_INET6;
sin6->sin6_port = sctp->sctp_lport;
sin6->sin6_addr = addr;
break;
}
added++;
if (added >= max || scanned >= sctp->sctp_nsaddrs)
goto done;
obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list,
obj);
}
}
done:
*addrcnt = added;
return (0);
}
/*
* Given the supported address family, walk through the source address list
* and return the total length of the available addresses. If 'p' is not
* null, construct the parameter list for the addresses in 'p'.
* 'modify' will only be set when we want the source address list to
* be modified. The source address list will be modified only when
* generating an INIT chunk. For generating an INIT-ACK 'modify' will
* be false since the 'sctp' will be that of the listener.
*/
size_t
sctp_saddr_info(sctp_t *sctp, int supp_af, uchar_t *p, boolean_t modify)
{
int i;
int l;
sctp_saddr_ipif_t *obj;
size_t paramlen = 0;
sctp_parm_hdr_t *hdr;
int scanned = 0;
int naddr;
int nsaddr;
boolean_t del_ll = B_FALSE;
boolean_t del_lb = B_FALSE;
/*
* On a clustered node don't bother changing anything
* on the loopback interface.
*/
if (modify && !sctp->sctp_loopback && (cl_sctp_check_addrs == NULL))
del_lb = B_TRUE;
if (modify && !sctp->sctp_linklocal)
del_ll = B_TRUE;
nsaddr = sctp->sctp_nsaddrs;
for (i = 0; i < SCTP_IPIF_HASH; i++) {
if (sctp->sctp_saddrs[i].ipif_count == 0)
continue;
obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list);
naddr = sctp->sctp_saddrs[i].ipif_count;
for (l = 0; l < naddr; l++) {
in6_addr_t addr;
sctp_ipif_t *ipif;
boolean_t ipif_lb;
boolean_t ipif_ll;
boolean_t unsupp_af;
ipif = obj->saddr_ipifp;
scanned++;
ipif_lb = SCTP_IS_IPIF_LOOPBACK(ipif);
ipif_ll = SCTP_IS_IPIF_LINKLOCAL(ipif);
unsupp_af = SCTP_UNSUPP_AF(ipif, supp_af);
/*
* We need to either delete or skip loopback/linklocal
* or unsupported addresses, if required.
*/
if ((ipif_ll && del_ll) || (ipif_lb && del_lb) ||
(unsupp_af && modify)) {
if (sctp->sctp_bound_to_all == 1)
sctp->sctp_bound_to_all = 0;
if (scanned < nsaddr) {
obj = list_next(&sctp->sctp_saddrs[i].
sctp_ipif_list, obj);
sctp_ipif_hash_remove(sctp, ipif);
continue;
}
sctp_ipif_hash_remove(sctp, ipif);
goto next_addr;
} else if (ipif_ll || unsupp_af ||
(ipif_lb && (cl_sctp_check_addrs == NULL))) {
goto next_addr;
}
if (!SCTP_IPIF_USABLE(ipif->sctp_ipif_state))
goto next_addr;
if (p != NULL)
hdr = (sctp_parm_hdr_t *)(p + paramlen);
addr = ipif->sctp_ipif_saddr;
if (!ipif->sctp_ipif_isv6) {
struct in_addr *v4;
if (p != NULL) {
hdr->sph_type = htons(PARM_ADDR4);
hdr->sph_len = htons(PARM_ADDR4_LEN);
v4 = (struct in_addr *)(hdr + 1);
IN6_V4MAPPED_TO_INADDR(&addr, v4);
}
paramlen += PARM_ADDR4_LEN;
} else {
if (p != NULL) {
hdr->sph_type = htons(PARM_ADDR6);
hdr->sph_len = htons(PARM_ADDR6_LEN);
bcopy(&addr, hdr + 1, sizeof (addr));
}
paramlen += PARM_ADDR6_LEN;
}
next_addr:
if (scanned >= nsaddr)
return (paramlen);
obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list,
obj);
}
}
return (paramlen);
}
/*
* This is used on a clustered node to obtain a list of addresses, the list
* consists of sockaddr_in structs for v4 and sockaddr_in6 for v6. The list
* is then passed onto the clustering module which sends back the correct
* list based on the port info. Regardless of the input, i.e INADDR_ANY
* or specific address(es), we create the list since it could be modified by
* the clustering module. When given a list of addresses, we simply
* create the list of sockaddr_in or sockaddr_in6 structs using those
* addresses. If there is an INADDR_ANY in the input list, or if the
* input is INADDR_ANY, we create a list of sockaddr_in or sockaddr_in6
* structs consisting all the addresses in the global interface list
* except those that are hosted on the loopback interface. We create
* a list of sockaddr_in[6] structs just so that it can be directly input
* to sctp_valid_addr_list() once the clustering module has processed it.
*/
int
sctp_get_addrlist(sctp_t *sctp, const void *addrs, uint32_t *addrcnt,
uchar_t **addrlist, int *uspec, size_t *size)
{
int cnt;
int icnt;
sctp_ipif_t *sctp_ipif;
struct sockaddr_in *s4;
struct sockaddr_in6 *s6;
uchar_t *p;
int err = 0;
sctp_stack_t *sctps = sctp->sctp_sctps;
*addrlist = NULL;
*size = 0;
/*
* Create a list of sockaddr_in[6] structs using the input list.
*/
if (sctp->sctp_family == AF_INET) {
*size = sizeof (struct sockaddr_in) * *addrcnt;
*addrlist = kmem_zalloc(*size, KM_SLEEP);
p = *addrlist;
for (cnt = 0; cnt < *addrcnt; cnt++) {
s4 = (struct sockaddr_in *)addrs + cnt;
/*
* We need to create a list of all the available
* addresses if there is an INADDR_ANY. However,
* if we are beyond LISTEN, then this is invalid
* (see sctp_valid_addr_list(). So, we just fail
* it here rather than wait till it fails in
* sctp_valid_addr_list().
*/
if (s4->sin_addr.s_addr == INADDR_ANY) {
kmem_free(*addrlist, *size);
*addrlist = NULL;
*size = 0;
if (sctp->sctp_state > SCTPS_LISTEN) {
*addrcnt = 0;
return (EINVAL);
}
if (uspec != NULL)
*uspec = 1;
goto get_all_addrs;
} else {
bcopy(s4, p, sizeof (*s4));
p += sizeof (*s4);
}
}
} else {
*size = sizeof (struct sockaddr_in6) * *addrcnt;
*addrlist = kmem_zalloc(*size, KM_SLEEP);
p = *addrlist;
for (cnt = 0; cnt < *addrcnt; cnt++) {
s6 = (struct sockaddr_in6 *)addrs + cnt;
/*
* Comments for INADDR_ANY, above, apply here too.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&s6->sin6_addr)) {
kmem_free(*addrlist, *size);
*size = 0;
*addrlist = NULL;
if (sctp->sctp_state > SCTPS_LISTEN) {
*addrcnt = 0;
return (EINVAL);
}
if (uspec != NULL)
*uspec = 1;
goto get_all_addrs;
} else {
bcopy(addrs, p, sizeof (*s6));
p += sizeof (*s6);
}
}
}
return (err);
get_all_addrs:
/*
* Allocate max possible size. We allocate the max. size here because
* the clustering module could end up adding addresses to the list.
* We allocate upfront so that the clustering module need to bother
* re-sizing the list.
*/
if (sctp->sctp_family == AF_INET) {
*size = sizeof (struct sockaddr_in) *
sctps->sctps_g_ipifs_count;
} else {
*size = sizeof (struct sockaddr_in6) *
sctps->sctps_g_ipifs_count;
}
*addrlist = kmem_zalloc(*size, KM_SLEEP);
*addrcnt = 0;
p = *addrlist;
rw_enter(&sctps->sctps_g_ipifs_lock, RW_READER);
/*
* Walk through the global interface list and add all addresses,
* except those that are hosted on loopback interfaces.
*/
for (cnt = 0; cnt < SCTP_IPIF_HASH; cnt++) {
if (sctps->sctps_g_ipifs[cnt].ipif_count == 0)
continue;
sctp_ipif = list_head(
&sctps->sctps_g_ipifs[cnt].sctp_ipif_list);
for (icnt = 0;
icnt < sctps->sctps_g_ipifs[cnt].ipif_count;
icnt++) {
in6_addr_t addr;
rw_enter(&sctp_ipif->sctp_ipif_lock, RW_READER);
addr = sctp_ipif->sctp_ipif_saddr;
if (SCTP_IPIF_DISCARD(sctp_ipif->sctp_ipif_flags) ||
!SCTP_IPIF_USABLE(sctp_ipif->sctp_ipif_state) ||
SCTP_IS_IPIF_LOOPBACK(sctp_ipif) ||
SCTP_IS_IPIF_LINKLOCAL(sctp_ipif) ||
!SCTP_IPIF_ZONE_MATCH(sctp, sctp_ipif) ||
(sctp->sctp_ipversion == IPV4_VERSION &&
sctp_ipif->sctp_ipif_isv6) ||
(sctp->sctp_connp->conn_ipv6_v6only &&
!sctp_ipif->sctp_ipif_isv6)) {
rw_exit(&sctp_ipif->sctp_ipif_lock);
sctp_ipif = list_next(
&sctps->sctps_g_ipifs[cnt].sctp_ipif_list,
sctp_ipif);
continue;
}
rw_exit(&sctp_ipif->sctp_ipif_lock);
if (sctp->sctp_family == AF_INET) {
s4 = (struct sockaddr_in *)p;
IN6_V4MAPPED_TO_INADDR(&addr, &s4->sin_addr);
s4->sin_family = AF_INET;
p += sizeof (*s4);
} else {
s6 = (struct sockaddr_in6 *)p;
s6->sin6_addr = addr;
s6->sin6_family = AF_INET6;
s6->sin6_scope_id =
sctp_ipif->sctp_ipif_ill->sctp_ill_index;
p += sizeof (*s6);
}
(*addrcnt)++;
sctp_ipif = list_next(
&sctps->sctps_g_ipifs[cnt].sctp_ipif_list,
sctp_ipif);
}
}
rw_exit(&sctps->sctps_g_ipifs_lock);
return (err);
}
/*
* Get a list of addresses from the source address list. The caller is
* responsible for allocating sufficient buffer for this.
*/
void
sctp_get_saddr_list(sctp_t *sctp, uchar_t *p, size_t psize)
{
int cnt;
int icnt;
sctp_saddr_ipif_t *obj;
int naddr;
int scanned = 0;
for (cnt = 0; cnt < SCTP_IPIF_HASH; cnt++) {
if (sctp->sctp_saddrs[cnt].ipif_count == 0)
continue;
obj = list_head(&sctp->sctp_saddrs[cnt].sctp_ipif_list);
naddr = sctp->sctp_saddrs[cnt].ipif_count;
for (icnt = 0; icnt < naddr; icnt++) {
sctp_ipif_t *ipif;
if (psize < sizeof (ipif->sctp_ipif_saddr))
return;
scanned++;
ipif = obj->saddr_ipifp;
bcopy(&ipif->sctp_ipif_saddr, p,
sizeof (ipif->sctp_ipif_saddr));
p += sizeof (ipif->sctp_ipif_saddr);
psize -= sizeof (ipif->sctp_ipif_saddr);
if (scanned >= sctp->sctp_nsaddrs)
return;
obj = list_next(
&sctp->sctp_saddrs[icnt].sctp_ipif_list,
obj);
}
}
}
/*
* Get a list of addresses from the remote address list. The caller is
* responsible for allocating sufficient buffer for this.
*/
void
sctp_get_faddr_list(sctp_t *sctp, uchar_t *p, size_t psize)
{
sctp_faddr_t *fp;
for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) {
if (psize < sizeof (fp->faddr))
return;
bcopy(&fp->faddr, p, sizeof (fp->faddr));
p += sizeof (fp->faddr);
psize -= sizeof (fp->faddr);
}
}
static void
sctp_free_ills(sctp_stack_t *sctps)
{
int i;
int l;
sctp_ill_t *sctp_ill;
if (sctps->sctps_ills_count == 0)
return;
for (i = 0; i < SCTP_ILL_HASH; i++) {
sctp_ill = list_tail(&sctps->sctps_g_ills[i].sctp_ill_list);
for (l = 0; l < sctps->sctps_g_ills[i].ill_count; l++) {
ASSERT(sctp_ill->sctp_ill_ipifcnt == 0);
list_remove(&sctps->sctps_g_ills[i].sctp_ill_list,
sctp_ill);
sctps->sctps_ills_count--;
kmem_free(sctp_ill->sctp_ill_name,
sctp_ill->sctp_ill_name_length);
kmem_free(sctp_ill, sizeof (sctp_ill_t));
sctp_ill =
list_tail(&sctps->sctps_g_ills[i].sctp_ill_list);
}
sctps->sctps_g_ills[i].ill_count = 0;
}
ASSERT(sctps->sctps_ills_count == 0);
}
static void
sctp_free_ipifs(sctp_stack_t *sctps)
{
int i;
int l;
sctp_ipif_t *sctp_ipif;
sctp_ill_t *sctp_ill;
if (sctps->sctps_g_ipifs_count == 0)
return;
for (i = 0; i < SCTP_IPIF_HASH; i++) {
sctp_ipif = list_tail(&sctps->sctps_g_ipifs[i].sctp_ipif_list);
for (l = 0; l < sctps->sctps_g_ipifs[i].ipif_count; l++) {
sctp_ill = sctp_ipif->sctp_ipif_ill;
list_remove(&sctps->sctps_g_ipifs[i].sctp_ipif_list,
sctp_ipif);
sctps->sctps_g_ipifs_count--;
(void) atomic_add_32_nv(&sctp_ill->sctp_ill_ipifcnt,
-1);
kmem_free(sctp_ipif, sizeof (sctp_ipif_t));
sctp_ipif =
list_tail(&sctps->sctps_g_ipifs[i].sctp_ipif_list);
}
sctps->sctps_g_ipifs[i].ipif_count = 0;
}
ASSERT(sctps->sctps_g_ipifs_count == 0);
}
/* Initialize the SCTP ILL list and lock */
void
sctp_saddr_init(sctp_stack_t *sctps)
{
int i;
sctps->sctps_g_ills = kmem_zalloc(sizeof (sctp_ill_hash_t) *
SCTP_ILL_HASH, KM_SLEEP);
sctps->sctps_g_ipifs = kmem_zalloc(sizeof (sctp_ipif_hash_t) *
SCTP_IPIF_HASH, KM_SLEEP);
rw_init(&sctps->sctps_g_ills_lock, NULL, RW_DEFAULT, NULL);
rw_init(&sctps->sctps_g_ipifs_lock, NULL, RW_DEFAULT, NULL);
for (i = 0; i < SCTP_ILL_HASH; i++) {
sctps->sctps_g_ills[i].ill_count = 0;
list_create(&sctps->sctps_g_ills[i].sctp_ill_list,
sizeof (sctp_ill_t),
offsetof(sctp_ill_t, sctp_ills));
}
for (i = 0; i < SCTP_IPIF_HASH; i++) {
sctps->sctps_g_ipifs[i].ipif_count = 0;
list_create(&sctps->sctps_g_ipifs[i].sctp_ipif_list,
sizeof (sctp_ipif_t), offsetof(sctp_ipif_t, sctp_ipifs));
}
}
void
sctp_saddr_fini(sctp_stack_t *sctps)
{
int i;
sctp_free_ipifs(sctps);
sctp_free_ills(sctps);
for (i = 0; i < SCTP_ILL_HASH; i++)
list_destroy(&sctps->sctps_g_ills[i].sctp_ill_list);
for (i = 0; i < SCTP_IPIF_HASH; i++)
list_destroy(&sctps->sctps_g_ipifs[i].sctp_ipif_list);
ASSERT(sctps->sctps_ills_count == 0 && sctps->sctps_g_ipifs_count == 0);
kmem_free(sctps->sctps_g_ills, sizeof (sctp_ill_hash_t) *
SCTP_ILL_HASH);
sctps->sctps_g_ills = NULL;
kmem_free(sctps->sctps_g_ipifs, sizeof (sctp_ipif_hash_t) *
SCTP_IPIF_HASH);
sctps->sctps_g_ipifs = NULL;
rw_destroy(&sctps->sctps_g_ills_lock);
rw_destroy(&sctps->sctps_g_ipifs_lock);
}