sadb.h revision 38d95a786e32a3f7e21450bff371f0778db4c181
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner/*
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * CDDL HEADER START
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner *
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * The contents of this file are subject to the terms of the
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * Common Development and Distribution License (the "License").
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * You may not use this file except in compliance with the License.
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner *
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * or http://www.opensolaris.org/os/licensing.
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * See the License for the specific language governing permissions
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * and limitations under the License.
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner *
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * When distributing Covered Code, include this CDDL HEADER in each
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * If applicable, add the following below this CDDL HEADER, with the
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * fields enclosed by brackets "[]" replaced with your own identifying
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * information: Portions Copyright [yyyy] [name of copyright owner]
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner *
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * CDDL HEADER END
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner */
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner/*
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * Use is subject to license terms.
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner */
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#ifndef _INET_SADB_H
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#define _INET_SADB_H
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#pragma ident "%Z%%M% %I% %E% SMI"
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#ifdef __cplusplus
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulknerextern "C" {
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#endif
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#include <inet/ipsec_info.h>
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#include <sys/crypto/common.h>
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#include <sys/crypto/api.h>
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#include <sys/note.h>
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner#define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner/*
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner * Return codes of IPsec processing functions.
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner */
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulknertypedef enum {
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner IPSEC_STATUS_SUCCESS = 1,
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner IPSEC_STATUS_FAILED = 2,
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner IPSEC_STATUS_PENDING = 3
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner} ipsec_status_t;
23a1ccea6aac035f084a7a4cdc968687d1b02dafRoger A. Faulkner
/*
* IP security association. Synchronization assumes 32-bit loads, so
* the 64-bit quantities can't even be be read w/o locking it down!
*/
/* keying info */
typedef struct ipsa_key_s {
void *sak_key; /* Algorithm key. */
uint_t sak_keylen; /* Algorithm key length (in bytes). */
uint_t sak_keybits; /* Algorithm key length (in bits) */
uint_t sak_algid; /* Algorithm ID number. */
} ipsa_key_t;
/* the security association */
typedef struct ipsa_s {
struct ipsa_s *ipsa_next; /* Next in hash bucket */
struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */
kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */
void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
/*
* NOTE: I may need more pointers, depending on future SA
* requirements.
*/
ipsa_key_t ipsa_authkeydata;
#define ipsa_authkey ipsa_authkeydata.sak_key
#define ipsa_authkeylen ipsa_authkeydata.sak_keylen
#define ipsa_authkeybits ipsa_authkeydata.sak_keybits
#define ipsa_auth_alg ipsa_authkeydata.sak_algid
ipsa_key_t ipsa_encrkeydata;
#define ipsa_encrkey ipsa_encrkeydata.sak_key
#define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
#define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
#define ipsa_encr_alg ipsa_encrkeydata.sak_algid
struct ipsid_s *ipsa_src_cid; /* Source certificate identity */
struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */
uint64_t *ipsa_integ; /* Integrity bitmap */
uint64_t *ipsa_sens; /* Sensitivity bitmap */
mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */
/*
* PF_KEYv2 supports a replay window size of 255. Hence there is a
* need a bit vector to support a replay window of 255. 256 is a nice
* round number, so I support that.
*
* Use an array of uint64_t for best performance on 64-bit
* processors. (And hope that 32-bit compilers can handle things
* okay.) The " >> 6 " is to get the appropriate number of 64-bit
* ints.
*/
#define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */
uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
uint64_t ipsa_unique_id; /* Non-zero for unique SAs */
uint64_t ipsa_unique_mask; /* mask value for unique_id */
/*
* Reference count semantics:
*
* An SA has a reference count of 1 if something's pointing
* to it. This includes being in a hash table. So if an
* SA is in a hash table, it has a reference count of at least 1.
*
* When a ptr. to an IPSA is assigned, you MUST REFHOLD after
* said assignment. When a ptr. to an IPSA is released
* you MUST REFRELE. When the refcount hits 0, REFRELE
* will free the IPSA.
*/
kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */
/* Q: Since I may be doing refcnts differently, will I need cv? */
uint_t ipsa_refcnt; /* Reference count. */
/*
* The following four time fields are the ones monitored by ah_ager()
* and esp_ager() respectively. They are all absolute wall-clock
* times. The times of creation (i.e. add time) and first use are
* pretty straightforward. The soft and hard expire times are
* derived from the times of first use and creation, plus the minimum
* expiration times in the fields that follow this.
*
* For example, if I had a hard add time of 30 seconds, and a hard
* use time of 15, the ipsa_hardexpiretime would be time of add, plus
* 30 seconds. If I USE the SA such that time of first use plus 15
* seconds would be earlier than the add time plus 30 seconds, then
* ipsa_hardexpiretime would become this earlier time.
*/
time_t ipsa_addtime; /* Time I was added. */
time_t ipsa_usetime; /* Time of my first use. */
time_t ipsa_lastuse; /* Time of my last use. */
time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */
time_t ipsa_softexpiretime; /* Time of my first soft expire. */
time_t ipsa_hardexpiretime; /* Time of my first hard expire. */
/*
* The following fields are directly reflected in PF_KEYv2 LIFETIME
* extensions. The time_ts are in number-of-seconds, and the bytes
* are in... bytes.
*/
time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */
time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */
time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */
time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */
uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */
uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */
uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */
/*
* "Allocations" are a concept mentioned in PF_KEYv2. We do not
* support them, except to record them per the PF_KEYv2 spec.
*/
uint_t ipsa_softalloc; /* Allocations allowed (soft). */
uint_t ipsa_hardalloc; /* Allocations allowed (hard). */
uint_t ipsa_alloc; /* Allocations made. */
uint_t ipsa_integlen; /* Length of the integrity bitmap (bytes). */
uint_t ipsa_senslen; /* Length of the sensitivity bitmap (bytes). */
uint_t ipsa_type; /* Type of security association. (AH/etc.) */
uint_t ipsa_dpd; /* Domain for sensitivity bit vectors. */
uint_t ipsa_senslevel; /* Sensitivity level. */
uint_t ipsa_integlevel; /* Integrity level. */
uint_t ipsa_state; /* State of my association. */
uint_t ipsa_replay_wsize; /* Size of replay window */
uint32_t ipsa_flags; /* Flags for security association. */
uint32_t ipsa_spi; /* Security parameters index. */
uint32_t ipsa_replay; /* Highest seen replay value for this SA. */
uint32_t ipsa_kmp; /* key management proto */
uint32_t ipsa_kmc; /* key management cookie */
boolean_t ipsa_haspeer; /* Has peer in another table. */
/*
* Address storage.
* The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
*
* Address families (per sys/socket.h) guide us. We could have just
* used sockaddr_storage
*/
sa_family_t ipsa_addrfam;
sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */
uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
uint8_t ipsa_innersrcpfx;
uint8_t ipsa_innerdstpfx;
uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */
uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
/* these can only be v4 */
uint32_t ipsa_natt_addr_loc;
uint32_t ipsa_natt_addr_rem;
/*
* icmp type and code. *_end are to specify ranges. if only
* a single value, * and *_end are the same value.
*/
uint8_t ipsa_icmp_type;
uint8_t ipsa_icmp_type_end;
uint8_t ipsa_icmp_code;
uint8_t ipsa_icmp_code_end;
/*
* For the kernel crypto framework.
*/
crypto_key_t ipsa_kcfauthkey; /* authentication key */
crypto_key_t ipsa_kcfencrkey; /* encryption key */
crypto_ctx_template_t ipsa_authtmpl; /* auth context template */
crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */
crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */
crypto_mechanism_t ipsa_emech; /* encr mech type */
size_t ipsa_mac_len; /* auth MAC length */
size_t ipsa_iv_len; /* encr IV length */
/*
* Input and output processing functions called from IP.
*/
ipsec_status_t (*ipsa_output_func)(mblk_t *);
ipsec_status_t (*ipsa_input_func)(mblk_t *, void *);
/*
* Soft reference to paired SA
*/
uint32_t ipsa_otherspi;
/* MLS boxen will probably need more fields in here. */
netstack_t *ipsa_netstack; /* Does not have a netstack_hold */
} ipsa_t;
/*
* ipsa_t address handling macros. We want these to be inlined, and deal
* with 32-bit words to avoid bcmp/bcopy calls.
*
* Assume we only have AF_INET and AF_INET6 addresses for now. Also assume
* that we have 32-bit alignment on everything.
*/
#define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
(((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
#define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
(((fam) == AF_INET) || \
(((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
#define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
if ((fam) == AF_INET6) {\
((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
/*
* ipsa_t reference hold/release macros.
*
* If you have a pointer, you REFHOLD. If you are releasing a pointer, you
* REFRELE. An ipsa_t that is newly inserted into the table should have
* a reference count of 1 (for the table's pointer), plus 1 more for every
* pointer that is referencing the ipsa_t.
*/
#define IPSA_REFHOLD(ipsa) { \
atomic_add_32(&(ipsa)->ipsa_refcnt, 1); \
ASSERT((ipsa)->ipsa_refcnt != 0); \
}
/*
* Decrement the reference count on the SA.
* In architectures e.g sun4u, where atomic_add_32_nv is just
* a cas, we need to maintain the right memory barrier semantics
* as that of mutex_exit i.e all the loads and stores should complete
* before the cas is executed. membar_exit() does that here.
*/
#define IPSA_REFRELE(ipsa) { \
ASSERT((ipsa)->ipsa_refcnt != 0); \
membar_exit(); \
if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0) \
((ipsa)->ipsa_freefunc)(ipsa); \
}
/*
* Security association hash macros and definitions. For now, assume the
* IPsec model, and hash outbounds on destination address, and inbounds on
* SPI.
*/
#define IPSEC_DEFAULT_HASH_SIZE 256
#define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
#define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
#define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
(*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
(*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
/*
* Syntactic sugar to find the appropriate hash bucket directly.
*/
#define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
#define OUTBOUND_BUCKET_V4(sadb, v4addr) \
&(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
#define OUTBOUND_BUCKET_V6(sadb, v6addr) \
&(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
#define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */
#define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */
/* backward compat. */
#define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */
#define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */
#define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */
#define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */
#define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */
#define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */
#define IPSA_F_HW 0x200000 /* hwaccel capable SA */
#define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC
#define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM
#define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM)
#define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */
#define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */
#define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */
#define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */
#define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL
/* SA states are important for handling UPDATE PF_KEY messages. */
#define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL
#define IPSA_STATE_MATURE SADB_SASTATE_MATURE
#define IPSA_STATE_DYING SADB_SASTATE_DYING
#define IPSA_STATE_DEAD SADB_SASTATE_DEAD
/*
* NOTE: If the document authors do things right in defining algorithms, we'll
* probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
* etc.
*/
#define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */
#define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */
#define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */
#define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */
#define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */
#define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */
#define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */
#define IPSA_EALG_DES_CBC SADB_EALG_DESCBC
#define IPSA_EALG_3DES SADB_EALG_3DESCBC
/*
* Protect each ipsa_t bucket (and linkage) with a lock.
*/
typedef struct isaf_s {
ipsa_t *isaf_ipsa;
kmutex_t isaf_lock;
uint64_t isaf_gen;
} isaf_t;
/*
* ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound
* traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
*/
#define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */
/* waiting for an ACQUIRE to finish. */
typedef struct ipsacq_s {
struct ipsacq_s *ipsacq_next;
struct ipsacq_s **ipsacq_ptpn;
kmutex_t *ipsacq_linklock;
struct ipsec_policy_s *ipsacq_policy;
struct ipsec_action_s *ipsacq_act;
sa_family_t ipsacq_addrfam; /* Address family. */
sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
int ipsacq_numpackets; /* How many packets queued up so far. */
uint32_t ipsacq_seq; /* PF_KEY sequence number. */
uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */
kmutex_t ipsacq_lock; /* Protects non-linkage fields. */
time_t ipsacq_expire; /* Wall-clock time when this record expires. */
mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */
/* These two point inside the last mblk inserted. */
uint32_t *ipsacq_srcaddr;
uint32_t *ipsacq_dstaddr;
/* Cache these instead of point so we can mask off accordingly */
uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
/* These may change per-acquire. */
uint16_t ipsacq_srcport;
uint16_t ipsacq_dstport;
uint8_t ipsacq_proto;
uint8_t ipsacq_inner_proto;
uint8_t ipsacq_innersrcpfx;
uint8_t ipsacq_innerdstpfx;
/* icmp type and code of triggering packet (if applicable) */
uint8_t ipsacq_icmp_type;
uint8_t ipsacq_icmp_code;
} ipsacq_t;
/*
* Kernel-generated sequence numbers will be no less than 0x80000000 to
* forestall any cretinous problems with manual keying accidentally updating
* an ACQUIRE entry.
*/
#define IACQF_LOWEST_SEQ 0x80000000
#define SADB_AGE_INTERVAL_DEFAULT 1000
/*
* ACQUIRE fanout. Protect each linkage with a lock.
*/
typedef struct iacqf_s {
ipsacq_t *iacqf_ipsacq;
kmutex_t iacqf_lock;
} iacqf_t;
/*
* A (network protocol, ipsec protocol) specific SADB.
* (i.e., one each for {ah, esp} and {v4, v6}.
*
* Keep outbound assocs about the same as ire_cache entries for now.
* One danger point, multiple SAs for a single dest will clog a bucket.
* For the future, consider two-level hashing (2nd hash on IPC?), then probe.
*/
typedef struct sadb_s
{
isaf_t *sdb_of;
isaf_t *sdb_if;
iacqf_t *sdb_acq;
int sdb_hashsize;
} sadb_t;
/*
* A pair of SADB's (one for v4, one for v6), and related state (including
* acquire callbacks).
*/
typedef struct sadbp_s
{
uint32_t s_satype;
queue_t *s_ip_q;
uint32_t *s_acquire_timeout;
void (*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *);
sadb_t s_v4;
sadb_t s_v6;
} sadbp_t;
/*
* A pair of SA's for a single connection, the structure contains a
* pointer to a SA and the SA its paired with (opposite direction) as well
* as the SA's respective hash buckets.
*/
typedef struct ipsap_s
{
isaf_t *ipsap_bucket;
ipsa_t *ipsap_sa_ptr;
isaf_t *ipsap_pbucket;
ipsa_t *ipsap_psa_ptr;
} ipsap_t;
typedef struct templist_s
{
ipsa_t *ipsa;
struct templist_s *next;
} templist_t;
/* Pointer to an all-zeroes IPv6 address. */
#define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros)
/*
* Form unique id from ipsec_out_t
*/
#define SA_FORM_UNIQUE_ID(io) \
SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \
((io)->ipsec_out_tunnel ? ((io)->ipsec_out_inaf == AF_INET6 ? \
IPPROTO_IPV6 : IPPROTO_ENCAP) : (io)->ipsec_out_proto), \
((io)->ipsec_out_tunnel ? (io)->ipsec_out_proto : 0))
/*
* This macro is used to generate unique ids (along with the addresses, both
* inner and outer) for outbound datagrams that require unique SAs.
*
* N.B. casts and unsigned shift amounts discourage unwarranted
* sign extension of dstport, proto, and iproto.
*
* Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
*
* 6 4 43 33 11
* 3 7 09 21 65 0
* +---------------*-------+-------+--------------+---------------+
* | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> |
* +---------------*-------+-------+--------------+---------------+
*
* If there are inner addresses (tunnel mode) the ports come from the
* inner addresses. If there are no inner addresses, the ports come from
* the outer addresses (transport mode). Tunnel mode MUST have <proto>
* set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
*/
#define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \
((srcport) | ((uint64_t)(dstport) << 16U) | \
((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
/*
* SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
* from a packet to an SA.
*/
#define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \
SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \
(dstport != 0) ? 0xffff : 0, \
(proto != 0) ? 0xff : 0, \
(iproto != 0) ? 0xff : 0)
/*
* Decompose unique id back into its original fields.
*/
#define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
#define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
#define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
#define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
/*
* All functions that return an ipsa_t will return it with IPSA_REFHOLD()
* already called.
*/
/* SA retrieval (inbound and outbound) */
ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
sa_family_t);
ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *,
sa_family_t, uint8_t);
ipsap_t *get_ipsa_pair(sadb_sa_t *, sadb_address_t *, sadb_address_t *,
sadbp_t *);
void destroy_ipsa_pair(ipsap_t *);
int update_pairing(ipsap_t *, keysock_in_t *, int *, sadbp_t *);
/* SA insertion. */
int sadb_insertassoc(ipsa_t *, isaf_t *);
/* SA table construction and destruction. */
void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
void sadbp_flush(sadbp_t *, netstack_t *);
void sadbp_destroy(sadbp_t *, netstack_t *);
/* SA insertion and deletion. */
int sadb_insertassoc(ipsa_t *, isaf_t *);
void sadb_unlinkassoc(ipsa_t *);
/* Support routines to interface a keysock consumer to PF_KEY. */
mblk_t *sadb_keysock_out(minor_t);
int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *);
void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
ipsa_t *);
void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
void *, timeout_id_t *, int);
int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
int sadb_addrset(ire_t *);
int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
uint8_t);
int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, queue_t *, queue_t *);
int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *,
keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
netstack_t *, sadbp_t *);
void sadb_set_usetime(ipsa_t *);
boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
int sadb_update_sa(mblk_t *, keysock_in_t *, sadbp_t *,
int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
netstack_t *, uint8_t);
void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t);
void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
struct ipsec_stack;
mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *);
ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *);
void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
boolean_t sadb_replay_check(ipsa_t *, uint32_t);
boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
int sadb_dump(queue_t *, mblk_t *, minor_t, sadb_t *);
void sadb_replay_delete(ipsa_t *);
void sadb_ager(sadb_t *, queue_t *, queue_t *, int, netstack_t *);
timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
uint_t *, uint_t, short);
void sadb_sa_refrele(void *target);
void sadb_set_lpkt(ipsa_t *, mblk_t *, netstack_t *);
mblk_t *sadb_clear_lpkt(ipsa_t *);
/*
* Hw accel-related calls (downloading sadb to driver)
*/
void sadb_ill_download(ill_t *, uint_t);
mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t);
/*
* Sub-set of the IPsec hardware acceleration capabilities functions
* implemented by ip_if.c
*/
extern boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *,
netstack_t *);
extern void ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *,
netstack_t *);
/*
* One IPsec -> IP linking routine, and two IPsec rate-limiting routines.
*/
extern boolean_t sadb_t_bind_req(queue_t *, int);
/*PRINTFLIKE6*/
extern void ipsec_rl_strlog(netstack_t *, short, short, char,
ushort_t, char *, ...)
__KPRINTFLIKE(6);
extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
void *, int, netstack_t *);
/*
* Algorithm types.
*/
#define IPSEC_NALGTYPES 2
typedef enum ipsec_algtype {
IPSEC_ALG_AUTH = 0,
IPSEC_ALG_ENCR = 1
} ipsec_algtype_t;
/*
* Definitions as per IPsec/ISAKMP DOI.
*/
#define IPSEC_MAX_ALGS 256
#define PROTO_IPSEC_AH 2
#define PROTO_IPSEC_ESP 3
/*
* Common algorithm info.
*/
typedef struct ipsec_alginfo
{
uint8_t alg_id;
uint8_t alg_flags;
uint16_t *alg_key_sizes;
uint16_t *alg_block_sizes;
uint16_t alg_nkey_sizes;
uint16_t alg_nblock_sizes;
uint16_t alg_minbits;
uint16_t alg_maxbits;
uint16_t alg_datalen;
/*
* increment: number of bits from keysize to keysize
* default: # of increments from min to default key len
*/
uint16_t alg_increment;
uint16_t alg_default;
uint16_t alg_default_bits;
/*
* Min, max, and default key sizes effectively supported
* by the encryption framework.
*/
uint16_t alg_ef_minbits;
uint16_t alg_ef_maxbits;
uint16_t alg_ef_default;
uint16_t alg_ef_default_bits;
crypto_mech_type_t alg_mech_type; /* KCF mechanism type */
crypto_mech_name_t alg_mech_name; /* KCF mechanism name */
} ipsec_alginfo_t;
#define alg_datalen alg_block_sizes[0]
#define ALG_FLAG_VALID 0x01
#define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID)
/*
* Software crypto execution mode.
*/
typedef enum {
IPSEC_ALGS_EXEC_SYNC = 0,
IPSEC_ALGS_EXEC_ASYNC = 1
} ipsec_algs_exec_mode_t;
extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
netstack_t *ns);
extern void ipsec_alg_free(ipsec_alginfo_t *);
extern void ipsec_register_prov_update(void);
extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t,
netstack_t *);
/*
* Context templates management.
*/
#define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
#define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \
if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \
mutex_enter(&assoc->ipsa_lock); \
if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \
ipsec_stack_t *ipss; \
\
ipss = assoc->ipsa_netstack->netstack_ipsec; \
mutex_enter(&ipss->ipsec_alg_lock); \
(void) ipsec_create_ctx_tmpl(_sa, _type); \
mutex_exit(&ipss->ipsec_alg_lock); \
} \
mutex_exit(&assoc->ipsa_lock); \
if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \
_tmpl = NULL; \
} \
}
extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
/* key checking */
extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
typedef struct ipsec_kstats_s {
kstat_named_t esp_stat_in_requests;
kstat_named_t esp_stat_in_discards;
kstat_named_t esp_stat_lookup_failure;
kstat_named_t ah_stat_in_requests;
kstat_named_t ah_stat_in_discards;
kstat_named_t ah_stat_lookup_failure;
kstat_named_t sadb_acquire_maxpackets;
kstat_named_t sadb_acquire_qhiwater;
} ipsec_kstats_t;
/*
* (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
* kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
* fails, it will be NULL. Note this is done for all stack instances,
* so it *could* fail. hence a non-NULL checking is done for
* IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
*/
#define IP_ESP_BUMP_STAT(ipss, x) \
do { \
if ((ipss)->ipsec_kstats != NULL) \
((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \
_NOTE(CONSTCOND) \
} while (0)
#define IP_AH_BUMP_STAT(ipss, x) \
do { \
if ((ipss)->ipsec_kstats != NULL) \
((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \
_NOTE(CONSTCOND) \
} while (0)
#define IP_ACQUIRE_STAT(ipss, val, new) \
do { \
if ((ipss)->ipsec_kstats != NULL && \
((uint64_t)(new)) > \
((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \
((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
((uint64_t)(new)); \
_NOTE(CONSTCOND) \
} while (0)
#ifdef __cplusplus
}
#endif
#endif /* _INET_SADB_H */