sadb.h revision 1a5e258f5471356ca102c7176637cdce45bac147
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _INET_SADB_H
#define _INET_SADB_H
#ifdef __cplusplus
extern "C" {
#endif
#include <inet/ipsec_info.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <sys/note.h>
#define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */
#define MAXSALTSIZE 8
/*
* For combined mode ciphers, store the crypto_mechanism_t in the
* per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS
* and nonce values change for each packet. For non-combined mode
* ciphers, these values are constant for the life of the SA.
*/
typedef struct ipsa_cm_mech_s {
crypto_mechanism_t combined_mech;
union {
CK_AES_CCM_PARAMS paramu_ccm;
CK_AES_GCM_PARAMS paramu_gcm;
} paramu;
uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)];
#define param_ulMACSize paramu.paramu_ccm.ulMACSize
#define param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize
#define param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize
#define param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize
#define param_nonce paramu.paramu_ccm.nonce
#define param_authData paramu.paramu_ccm.authData
#define param_pIv paramu.paramu_gcm.ipsa_pIv
#define param_ulIvLen paramu.paramu_gcm.ulIvLen
#define param_ulIvBits paramu.paramu_gcm.ulIvBits
#define param_pAAD paramu.paramu_gcm.pAAD
#define param_ulAADLen paramu.paramu_gcm.ulAADLen
#define param_ulTagBits paramu.paramu_gcm.ulTagBits
} ipsa_cm_mech_t;
/*
* The Initialization Vector (also known as IV or Nonce) used to
* initialize the Block Cipher, is made up of a Counter and a Salt.
* The Counter is fixed at 64 bits and is incremented for each packet.
* The Salt value can be any whole byte value upto 64 bits. This is
* algorithm mode specific and can be configured with ipsecalgs(1m).
*
* We only support whole byte salt lengths, this is because the salt is
* stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
* which configures the salt length as a number of bytes. Checks are
* made to ensure the salt length defined in ipsecalgs(1m) fits in
* the ipsec_nonce_t.
*
* The Salt value remains constant for the life of the SA, the Salt is
* know to both peers, but NOT transmitted on the network. The Counter
* portion of the nonce is transmitted over the network with each packet
* and is confusingly described as the Initialization Vector by RFCs
* 4309/4106.
*
* The maximum Initialization Vector length is 128 bits, if the actual
* size is less, its padded internally by the algorithm.
*
* The nonce structure is defined like this in the SA (ipsa_t)to ensure
* the Initilization Vector (counter) is 64 bit aligned, because it will
* be incremented as an uint64_t. The nonce as used by the algorithms is
* a straight uint8_t array.
*
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | | | | |x|x|x|x| |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* salt_offset <------>
* ipsa_saltlen <------->
* ipsa_nonce_buf------^
* ipsa_salt-------------~~~~~~^
* ipsa_nonce------------~~~~~~^
* ipsa_iv-----------------------------^
*/
typedef struct ipsec_nonce_s {
uint8_t salt[MAXSALTSIZE];
uint64_t iv;
} ipsec_nonce_t;
/*
* IP security association. Synchronization assumes 32-bit loads, so
* the 64-bit quantities can't even be be read w/o locking it down!
*/
/* keying info */
typedef struct ipsa_key_s {
uint8_t *sak_key; /* Algorithm key. */
uint_t sak_keylen; /* Algorithm key length (in bytes). */
uint_t sak_keybits; /* Algorithm key length (in bits) */
uint_t sak_algid; /* Algorithm ID number. */
} ipsa_key_t;
typedef struct ipsa_s {
struct ipsa_s *ipsa_next; /* Next in hash bucket */
struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */
kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */
void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
/*
* NOTE: I may need more pointers, depending on future SA
* requirements.
*/
ipsa_key_t ipsa_authkeydata;
#define ipsa_authkey ipsa_authkeydata.sak_key
#define ipsa_authkeylen ipsa_authkeydata.sak_keylen
#define ipsa_authkeybits ipsa_authkeydata.sak_keybits
#define ipsa_auth_alg ipsa_authkeydata.sak_algid
ipsa_key_t ipsa_encrkeydata;
#define ipsa_encrkey ipsa_encrkeydata.sak_key
#define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
#define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
#define ipsa_encr_alg ipsa_encrkeydata.sak_algid
struct ipsid_s *ipsa_src_cid; /* Source certificate identity */
struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */
mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */
mblk_t *ipsa_bpkt_head; /* Packets received while idle */
mblk_t *ipsa_bpkt_tail;
#define SADB_MAX_IDLEPKTS 100
uint8_t ipsa_mblkcnt; /* Number of packets received while idle */
/*
* PF_KEYv2 supports a replay window size of 255. Hence there is a
* need a bit vector to support a replay window of 255. 256 is a nice
* round number, so I support that.
*
* Use an array of uint64_t for best performance on 64-bit
* processors. (And hope that 32-bit compilers can handle things
* okay.) The " >> 6 " is to get the appropriate number of 64-bit
* ints.
*/
#define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */
uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
uint64_t ipsa_unique_id; /* Non-zero for unique SAs */
uint64_t ipsa_unique_mask; /* mask value for unique_id */
/*
* Reference count semantics:
*
* An SA has a reference count of 1 if something's pointing
* to it. This includes being in a hash table. So if an
* SA is in a hash table, it has a reference count of at least 1.
*
* When a ptr. to an IPSA is assigned, you MUST REFHOLD after
* said assignment. When a ptr. to an IPSA is released
* you MUST REFRELE. When the refcount hits 0, REFRELE
* will free the IPSA.
*/
kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */
/* Q: Since I may be doing refcnts differently, will I need cv? */
uint_t ipsa_refcnt; /* Reference count. */
/*
* The following four time fields are the ones monitored by ah_ager()
* and esp_ager() respectively. They are all absolute wall-clock
* times. The times of creation (i.e. add time) and first use are
* pretty straightforward. The soft and hard expire times are
* derived from the times of first use and creation, plus the minimum
* expiration times in the fields that follow this.
*
* For example, if I had a hard add time of 30 seconds, and a hard
* use time of 15, the ipsa_hardexpiretime would be time of add, plus
* 30 seconds. If I USE the SA such that time of first use plus 15
* seconds would be earlier than the add time plus 30 seconds, then
* ipsa_hardexpiretime would become this earlier time.
*/
time_t ipsa_addtime; /* Time I was added. */
time_t ipsa_usetime; /* Time of my first use. */
time_t ipsa_lastuse; /* Time of my last use. */
time_t ipsa_idletime; /* Seconds of idle time */
time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */
time_t ipsa_softexpiretime; /* Time of my first soft expire. */
time_t ipsa_hardexpiretime; /* Time of my first hard expire. */
time_t ipsa_idleexpiretime; /* Time of my next idle expire time */
struct ipsec_nonce_s *ipsa_nonce_buf;
uint8_t *ipsa_nonce;
uint_t ipsa_nonce_len;
uint8_t *ipsa_salt;
uint_t ipsa_saltbits;
uint_t ipsa_saltlen;
uint64_t *ipsa_iv;
uint64_t ipsa_iv_hardexpire;
uint64_t ipsa_iv_softexpire;
/*
* The following fields are directly reflected in PF_KEYv2 LIFETIME
* extensions. The time_ts are in number-of-seconds, and the bytes
* are in... bytes.
*/
time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */
time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */
time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */
time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */
time_t ipsa_idleaddlt; /* Seconds of idle time after add */
time_t ipsa_idleuselt; /* Seconds of idle time after first use */
uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */
uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */
uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */
/*
* "Allocations" are a concept mentioned in PF_KEYv2. We do not
* support them, except to record them per the PF_KEYv2 spec.
*/
uint_t ipsa_softalloc; /* Allocations allowed (soft). */
uint_t ipsa_hardalloc; /* Allocations allowed (hard). */
uint_t ipsa_alloc; /* Allocations made. */
uint_t ipsa_type; /* Type of security association. (AH/etc.) */
uint_t ipsa_state; /* State of my association. */
uint_t ipsa_replay_wsize; /* Size of replay window */
uint32_t ipsa_flags; /* Flags for security association. */
uint32_t ipsa_spi; /* Security parameters index. */
uint32_t ipsa_replay; /* Highest seen replay value for this SA. */
uint32_t ipsa_kmp; /* key management proto */
uint32_t ipsa_kmc; /* key management cookie */
boolean_t ipsa_haspeer; /* Has peer in another table. */
/*
* Address storage.
* The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
*
* Address families (per sys/socket.h) guide us. We could have just
* used sockaddr_storage
*/
sa_family_t ipsa_addrfam;
sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */
uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
uint8_t ipsa_innersrcpfx;
uint8_t ipsa_innerdstpfx;
uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */
uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
/* these can only be v4 */
uint32_t ipsa_natt_addr_loc;
uint32_t ipsa_natt_addr_rem;
/*
* icmp type and code. *_end are to specify ranges. if only
* a single value, * and *_end are the same value.
*/
uint8_t ipsa_icmp_type;
uint8_t ipsa_icmp_type_end;
uint8_t ipsa_icmp_code;
uint8_t ipsa_icmp_code_end;
/*
* For the kernel crypto framework.
*/
crypto_key_t ipsa_kcfauthkey; /* authentication key */
crypto_key_t ipsa_kcfencrkey; /* encryption key */
crypto_ctx_template_t ipsa_authtmpl; /* auth context template */
crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */
crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */
crypto_mechanism_t ipsa_emech; /* encr mech type */
size_t ipsa_mac_len; /* auth MAC/ICV length */
size_t ipsa_iv_len; /* encr IV length */
size_t ipsa_datalen; /* block length in bytes. */
/*
* Input and output processing functions called from IP.
* The mblk_t is the data; the IPsec information is in the attributes
* Returns NULL if the mblk is consumed which it is if there was
* a failure or if pending. If failure then
* the ipIfInDiscards/OutDiscards counters are increased.
*/
mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *);
mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *);
/*
* Soft reference to paired SA
*/
uint32_t ipsa_otherspi;
netstack_t *ipsa_netstack; /* Does not have a netstack_hold */
ts_label_t *ipsa_tsl; /* MLS: label attributes */
ts_label_t *ipsa_otsl; /* MLS: outer label */
uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */
uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH];
} ipsa_t;
/*
* ipsa_t address handling macros. We want these to be inlined, and deal
* with 32-bit words to avoid bcmp/bcopy calls.
*
* Assume we only have AF_INET and AF_INET6 addresses for now. Also assume
* that we have 32-bit alignment on everything.
*/
#define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
(((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
#define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
(((fam) == AF_INET) || \
(((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
#define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
if ((fam) == AF_INET6) {\
((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
/*
* ipsa_t reference hold/release macros.
*
* If you have a pointer, you REFHOLD. If you are releasing a pointer, you
* REFRELE. An ipsa_t that is newly inserted into the table should have
* a reference count of 1 (for the table's pointer), plus 1 more for every
* pointer that is referencing the ipsa_t.
*/
#define IPSA_REFHOLD(ipsa) { \
atomic_inc_32(&(ipsa)->ipsa_refcnt); \
ASSERT((ipsa)->ipsa_refcnt != 0); \
}
/*
* Decrement the reference count on the SA.
* In architectures e.g sun4u, where atomic_add_32_nv is just
* a cas, we need to maintain the right memory barrier semantics
* as that of mutex_exit i.e all the loads and stores should complete
* before the cas is executed. membar_exit() does that here.
*/
#define IPSA_REFRELE(ipsa) { \
ASSERT((ipsa)->ipsa_refcnt != 0); \
membar_exit(); \
if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0) \
((ipsa)->ipsa_freefunc)(ipsa); \
}
/*
* Security association hash macros and definitions. For now, assume the
* IPsec model, and hash outbounds on destination address, and inbounds on
* SPI.
*/
#define IPSEC_DEFAULT_HASH_SIZE 256
#define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
#define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
#define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
(*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
(*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
/*
* Syntactic sugar to find the appropriate hash bucket directly.
*/
#define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
#define OUTBOUND_BUCKET_V4(sadb, v4addr) \
&(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
#define OUTBOUND_BUCKET_V6(sadb, v6addr) \
&(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
#define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */
#define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */
/* backward compat. */
#define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */
#define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */
#define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */
#define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */
#define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */
#define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */
#define IPSA_F_ASYNC 0x200000 /* Call KCF asynchronously? */
#define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC
#define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM
#define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
#define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
SADB_X_SAFLAGS_NATTED)
#define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */
#define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */
#define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */
#define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */
#define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL
/*
* These flags are only defined here to prevent a flag value collision.
*/
#define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */
#define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */
/*
* Sets of flags that are allowed to by set or modified by PF_KEY apps.
*/
#define AH_UPDATE_SETTABLE_FLAGS \
(SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
/* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
#define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
#define AH_ADD_SETTABLE_FLAGS \
(AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
SADB_SAFLAGS_NOREPLAY)
/* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
#define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
/* SA states are important for handling UPDATE PF_KEY messages. */
#define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL
#define IPSA_STATE_MATURE SADB_SASTATE_MATURE
#define IPSA_STATE_DYING SADB_SASTATE_DYING
#define IPSA_STATE_DEAD SADB_SASTATE_DEAD
#define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE
#define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE
/*
* NOTE: If the document authors do things right in defining algorithms, we'll
* probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
* etc.
*/
#define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */
#define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */
#define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */
#define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */
#define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */
#define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */
#define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */
#define IPSA_EALG_DES_CBC SADB_EALG_DESCBC
#define IPSA_EALG_3DES SADB_EALG_3DESCBC
/*
* Protect each ipsa_t bucket (and linkage) with a lock.
*/
typedef struct isaf_s {
ipsa_t *isaf_ipsa;
kmutex_t isaf_lock;
uint64_t isaf_gen;
} isaf_t;
/*
* ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound
* traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
*/
#define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */
/* waiting for an ACQUIRE to finish. */
typedef struct ipsacq_s {
struct ipsacq_s *ipsacq_next;
struct ipsacq_s **ipsacq_ptpn;
kmutex_t *ipsacq_linklock;
struct ipsec_policy_s *ipsacq_policy;
struct ipsec_action_s *ipsacq_act;
sa_family_t ipsacq_addrfam; /* Address family. */
sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
int ipsacq_numpackets; /* How many packets queued up so far. */
uint32_t ipsacq_seq; /* PF_KEY sequence number. */
uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */
kmutex_t ipsacq_lock; /* Protects non-linkage fields. */
time_t ipsacq_expire; /* Wall-clock time when this record expires. */
mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */
/* These two point inside the last mblk inserted. */
uint32_t *ipsacq_srcaddr;
uint32_t *ipsacq_dstaddr;
/* Cache these instead of point so we can mask off accordingly */
uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
/* These may change per-acquire. */
uint16_t ipsacq_srcport;
uint16_t ipsacq_dstport;
uint8_t ipsacq_proto;
uint8_t ipsacq_inner_proto;
uint8_t ipsacq_innersrcpfx;
uint8_t ipsacq_innerdstpfx;
/* icmp type and code of triggering packet (if applicable) */
uint8_t ipsacq_icmp_type;
uint8_t ipsacq_icmp_code;
/* label associated with triggering packet */
ts_label_t *ipsacq_tsl;
} ipsacq_t;
/*
* Kernel-generated sequence numbers will be no less than 0x80000000 to
* forestall any cretinous problems with manual keying accidentally updating
* an ACQUIRE entry.
*/
#define IACQF_LOWEST_SEQ 0x80000000
#define SADB_AGE_INTERVAL_DEFAULT 8000
/*
* ACQUIRE fanout. Protect each linkage with a lock.
*/
typedef struct iacqf_s {
ipsacq_t *iacqf_ipsacq;
kmutex_t iacqf_lock;
} iacqf_t;
/*
* A (network protocol, ipsec protocol) specific SADB.
* (i.e., one each for {ah, esp} and {v4, v6}.
*
* Keep outbound assocs in a simple hash table for now.
* One danger point, multiple SAs for a single dest will clog a bucket.
* For the future, consider two-level hashing (2nd hash on IPC?), then probe.
*/
typedef struct sadb_s
{
isaf_t *sdb_of;
isaf_t *sdb_if;
iacqf_t *sdb_acq;
int sdb_hashsize;
} sadb_t;
/*
* A pair of SADB's (one for v4, one for v6), and related state (including
* acquire callbacks).
*/
typedef struct sadbp_s
{
uint32_t s_satype;
uint32_t *s_acquire_timeout;
void (*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *);
sadb_t s_v4;
sadb_t s_v6;
uint32_t s_addflags;
uint32_t s_updateflags;
} sadbp_t;
/*
* A pair of SA's for a single connection, the structure contains a
* pointer to a SA and the SA its paired with (opposite direction) as well
* as the SA's respective hash buckets.
*/
typedef struct ipsap_s
{
boolean_t in_inbound_table;
isaf_t *ipsap_bucket;
ipsa_t *ipsap_sa_ptr;
isaf_t *ipsap_pbucket;
ipsa_t *ipsap_psa_ptr;
} ipsap_t;
typedef struct templist_s
{
ipsa_t *ipsa;
struct templist_s *next;
} templist_t;
/* Pointer to an all-zeroes IPv6 address. */
#define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros)
/*
* Form unique id from ip_xmit_attr_t.
*/
#define SA_FORM_UNIQUE_ID(ixa) \
SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \
(((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
((ixa)->ixa_ipsec_inaf == AF_INET6 ? \
IPPROTO_IPV6 : IPPROTO_ENCAP) : \
(ixa)->ixa_ipsec_proto), \
(((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
(ixa)->ixa_ipsec_proto : 0))
/*
* This macro is used to generate unique ids (along with the addresses, both
* inner and outer) for outbound datagrams that require unique SAs.
*
* N.B. casts and unsigned shift amounts discourage unwarranted
* sign extension of dstport, proto, and iproto.
*
* Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
*
* 6 4 43 33 11
* 3 7 09 21 65 0
* +---------------*-------+-------+--------------+---------------+
* | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> |
* +---------------*-------+-------+--------------+---------------+
*
* If there are inner addresses (tunnel mode) the ports come from the
* inner addresses. If there are no inner addresses, the ports come from
* the outer addresses (transport mode). Tunnel mode MUST have <proto>
* set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
*/
#define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \
((srcport) | ((uint64_t)(dstport) << 16U) | \
((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
/*
* SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
* from a packet to an SA.
*/
#define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \
SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \
(dstport != 0) ? 0xffff : 0, \
(proto != 0) ? 0xff : 0, \
(iproto != 0) ? 0xff : 0)
/*
* Decompose unique id back into its original fields.
*/
#define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
#define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
#define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
#define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
typedef struct ipsa_query_s ipsa_query_t;
typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
#define IPSA_NMATCH 10
/*
* SADB query structure.
*
* Provide a generalized mechanism for matching entries in the SADB;
* one of these structures is initialized using sadb_form_query(),
* and then can be used as a parameter to sadb_match_query() which returns
* B_TRUE if the SA matches the query.
*
* Under the covers, sadb_form_query populates the matchers[] array with
* functions which are called one at a time until one fails to match.
*/
struct ipsa_query_s {
uint32_t req, match;
sadb_address_t *srcext, *dstext;
sadb_ident_t *srcid, *dstid;
sadb_x_kmc_t *kmcext;
sadb_sa_t *assoc;
uint32_t spi;
struct sockaddr_in *src;
struct sockaddr_in6 *src6;
struct sockaddr_in *dst;
struct sockaddr_in6 *dst6;
sa_family_t af;
uint32_t *srcaddr, *dstaddr;
uint32_t ifindex;
uint32_t kmc, kmp;
char *didstr, *sidstr;
uint16_t didtype, sidtype;
sadbp_t *spp;
sadb_t *sp;
isaf_t *inbound, *outbound;
uint32_t outhash;
uint32_t inhash;
ipsa_match_fn_t matchers[IPSA_NMATCH];
};
#define IPSA_Q_SA 0x00000001
#define IPSA_Q_DST 0x00000002
#define IPSA_Q_SRC 0x00000004
#define IPSA_Q_DSTID 0x00000008
#define IPSA_Q_SRCID 0x00000010
#define IPSA_Q_KMC 0x00000020
#define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */
#define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */
int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
/*
* All functions that return an ipsa_t will return it with IPSA_REFHOLD()
* already called.
*/
/* SA retrieval (inbound and outbound) */
ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
sa_family_t);
ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *,
sa_family_t, uint8_t, ts_label_t *);
/* SA insertion. */
int sadb_insertassoc(ipsa_t *, isaf_t *);
/* SA table construction and destruction. */
void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
void sadbp_flush(sadbp_t *, netstack_t *);
void sadbp_destroy(sadbp_t *, netstack_t *);
/* SA insertion and deletion. */
int sadb_insertassoc(ipsa_t *, isaf_t *);
void sadb_unlinkassoc(ipsa_t *);
/* Support routines to interface a keysock consumer to PF_KEY. */
mblk_t *sadb_keysock_out(minor_t);
int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
int sadb_labelchk(struct keysock_in_s *);
void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
ipsa_t *);
void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
void *, timeout_id_t *, int);
int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
int sadb_addrset(ire_t *);
int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
uint8_t);
int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *);
int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *,
keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
netstack_t *, sadbp_t *);
void sadb_set_usetime(ipsa_t *);
boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
netstack_t *, uint8_t);
void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t);
void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
crypto_data_t *);
void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
crypto_data_t *);
void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
crypto_data_t *);
void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
struct ipsec_stack;
mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *);
ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t);
void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
boolean_t sadb_replay_check(ipsa_t *, uint32_t);
boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
void sadb_replay_delete(ipsa_t *);
void sadb_ager(sadb_t *, queue_t *, int, netstack_t *);
timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
uint_t *, uint_t, short);
void sadb_sa_refrele(void *target);
mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
mblk_t *sadb_clear_lpkt(ipsa_t *);
void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
void sadb_clear_buf_pkt(void *ipkt);
/* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */
#define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \
{ \
if (buf_pkt != NULL) { \
if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \
(void *) buf_pkt, TQ_NOSLEEP) == 0) { \
/* Dispatch was unsuccessful drop the packets. */ \
mblk_t *tmp; \
while (buf_pkt != NULL) { \
tmp = buf_pkt->b_next; \
buf_pkt->b_next = NULL; \
buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \
ip_drop_packet(buf_pkt, B_TRUE, NULL, \
DROPPER(stack, \
ipds_sadb_inidle_timeout), \
&dropper); \
buf_pkt = tmp; \
} \
} \
} \
} \
/*
* Two IPsec rate-limiting routines.
*/
/*PRINTFLIKE6*/
extern void ipsec_rl_strlog(netstack_t *, short, short, char,
ushort_t, char *, ...)
__KPRINTFLIKE(6);
extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
void *, int, netstack_t *);
/*
* Algorithm types.
*/
#define IPSEC_NALGTYPES 2
typedef enum ipsec_algtype {
IPSEC_ALG_AUTH = 0,
IPSEC_ALG_ENCR = 1,
IPSEC_ALG_ALL = 2
} ipsec_algtype_t;
/*
* Definitions as per IPsec/ISAKMP DOI.
*/
#define IPSEC_MAX_ALGS 256
#define PROTO_IPSEC_AH 2
#define PROTO_IPSEC_ESP 3
/*
* Common algorithm info.
*/
typedef struct ipsec_alginfo
{
uint8_t alg_id;
uint8_t alg_flags;
uint16_t *alg_key_sizes;
uint16_t *alg_block_sizes;
uint16_t *alg_params;
uint16_t alg_nkey_sizes;
uint16_t alg_ivlen;
uint16_t alg_icvlen;
uint8_t alg_saltlen;
uint16_t alg_nblock_sizes;
uint16_t alg_nparams;
uint16_t alg_minbits;
uint16_t alg_maxbits;
uint16_t alg_datalen;
/*
* increment: number of bits from keysize to keysize
* default: # of increments from min to default key len
*/
uint16_t alg_increment;
uint16_t alg_default;
uint16_t alg_default_bits;
/*
* Min, max, and default key sizes effectively supported
* by the encryption framework.
*/
uint16_t alg_ef_minbits;
uint16_t alg_ef_maxbits;
uint16_t alg_ef_default;
uint16_t alg_ef_default_bits;
crypto_mech_type_t alg_mech_type; /* KCF mechanism type */
crypto_mech_name_t alg_mech_name; /* KCF mechanism name */
} ipsec_alginfo_t;
#define alg_datalen alg_block_sizes[0]
#define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID)
/*
* Software crypto execution mode.
*/
typedef enum {
IPSEC_ALGS_EXEC_SYNC = 0,
IPSEC_ALGS_EXEC_ASYNC = 1
} ipsec_algs_exec_mode_t;
extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
netstack_t *ns);
extern void alg_flag_check(ipsec_alginfo_t *);
extern void ipsec_alg_free(ipsec_alginfo_t *);
extern void ipsec_register_prov_update(void);
extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *);
extern int sadb_sens_len_from_label(ts_label_t *);
extern void sadb_sens_from_label(sadb_sens_t *, int, ts_label_t *, int);
/*
* Context templates management.
*/
#define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
#define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \
if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \
mutex_enter(&assoc->ipsa_lock); \
if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \
ipsec_stack_t *ipss; \
\
ipss = assoc->ipsa_netstack->netstack_ipsec; \
mutex_enter(&ipss->ipsec_alg_lock); \
(void) ipsec_create_ctx_tmpl(_sa, _type); \
mutex_exit(&ipss->ipsec_alg_lock); \
} \
mutex_exit(&assoc->ipsa_lock); \
if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \
_tmpl = NULL; \
} \
}
extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
/* key checking */
extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
typedef struct ipsec_kstats_s {
kstat_named_t esp_stat_in_requests;
kstat_named_t esp_stat_in_discards;
kstat_named_t esp_stat_lookup_failure;
kstat_named_t ah_stat_in_requests;
kstat_named_t ah_stat_in_discards;
kstat_named_t ah_stat_lookup_failure;
kstat_named_t sadb_acquire_maxpackets;
kstat_named_t sadb_acquire_qhiwater;
} ipsec_kstats_t;
/*
* (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
* kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
* fails, it will be NULL. Note this is done for all stack instances,
* so it *could* fail. hence a non-NULL checking is done for
* IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
*/
#define IP_ESP_BUMP_STAT(ipss, x) \
do { \
if ((ipss)->ipsec_kstats != NULL) \
((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \
_NOTE(CONSTCOND) \
} while (0)
#define IP_AH_BUMP_STAT(ipss, x) \
do { \
if ((ipss)->ipsec_kstats != NULL) \
((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \
_NOTE(CONSTCOND) \
} while (0)
#define IP_ACQUIRE_STAT(ipss, val, new) \
do { \
if ((ipss)->ipsec_kstats != NULL && \
((uint64_t)(new)) > \
((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \
((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
((uint64_t)(new)); \
_NOTE(CONSTCOND) \
} while (0)
#ifdef __cplusplus
}
#endif
#endif /* _INET_SADB_H */