ipsec_impl.h revision 1a5e258f5471356ca102c7176637cdce45bac147
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _INET_IPSEC_IMPL_H
#define _INET_IPSEC_IMPL_H
#include <inet/ip.h>
#include <inet/ipdrop.h>
#ifdef __cplusplus
extern "C" {
#endif
#define IPSEC_CONF_SRC_ADDRESS 0 /* Source Address */
#define IPSEC_CONF_SRC_PORT 1 /* Source Port */
#define IPSEC_CONF_DST_ADDRESS 2 /* Dest Address */
#define IPSEC_CONF_DST_PORT 3 /* Dest Port */
#define IPSEC_CONF_SRC_MASK 4 /* Source Address Mask */
#define IPSEC_CONF_DST_MASK 5 /* Destination Address Mask */
#define IPSEC_CONF_ULP 6 /* Upper layer Port */
#define IPSEC_CONF_IPSEC_PROT 7 /* AH or ESP or AH_ESP */
#define IPSEC_CONF_IPSEC_AALGS 8 /* Auth Algorithms - MD5 etc. */
#define IPSEC_CONF_IPSEC_EALGS 9 /* Encr Algorithms - DES etc. */
#define IPSEC_CONF_IPSEC_EAALGS 10 /* Encr Algorithms - MD5 etc. */
#define IPSEC_CONF_IPSEC_SA 11 /* Shared or unique SA */
#define IPSEC_CONF_IPSEC_DIR 12 /* Direction of traffic */
#define IPSEC_CONF_ICMP_TYPE 13 /* ICMP type */
#define IPSEC_CONF_ICMP_CODE 14 /* ICMP code */
#define IPSEC_CONF_NEGOTIATE 15 /* Negotiation */
#define IPSEC_CONF_TUNNEL 16 /* Tunnel */
/* Type of an entry */
#define IPSEC_NTYPES 0x02
#define IPSEC_TYPE_OUTBOUND 0x00
#define IPSEC_TYPE_INBOUND 0x01
/* Policy */
#define IPSEC_POLICY_APPLY 0x01
#define IPSEC_POLICY_DISCARD 0x02
#define IPSEC_POLICY_BYPASS 0x03
/* Shared or unique SA */
#define IPSEC_SHARED_SA 0x01
#define IPSEC_UNIQUE_SA 0x02
/* IPsec protocols and combinations */
#define IPSEC_AH_ONLY 0x01
#define IPSEC_ESP_ONLY 0x02
#define IPSEC_AH_ESP 0x03
/*
* Internally defined "any" algorithm.
* Move to PF_KEY v3 when that RFC is released.
*/
#define SADB_AALG_ANY 255
#ifdef _KERNEL
#include <inet/common.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <net/pfkeyv2.h>
#include <inet/ip.h>
#include <inet/sadb.h>
#include <inet/ipsecah.h>
#include <inet/ipsecesp.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <sys/avl.h>
/*
* Maximum number of authentication algorithms (can be indexed by one byte
* per PF_KEY and the IKE IPsec DOI.
*/
#define MAX_AALGS 256
/*
* IPsec task queue constants.
*/
#define IPSEC_TASKQ_MIN 10
#define IPSEC_TASKQ_MAX 20
/*
* So we can access IPsec global variables that live in keysock.c.
*/
extern boolean_t keysock_extended_reg(netstack_t *);
extern uint32_t keysock_next_seq(netstack_t *);
/*
* Locking for ipsec policy rules:
*
* policy heads: system policy is static; per-conn polheads are dynamic,
* and refcounted (and inherited); use atomic refcounts and "don't let
* go with both hands".
*
* policy: refcounted; references from polhead, ipsec_out
*
* actions: refcounted; referenced from: action hash table, policy, ipsec_out
* selectors: refcounted; referenced from: selector hash table, policy.
*/
/*
* the following are inspired by, but not directly based on,
* some of the sys/queue.h type-safe pseudo-polymorphic macros
* found in BSD.
*
* XXX If we use these more generally, we'll have to make the names
* less generic (HASH_* will probably clobber other namespaces).
*/
#define HASH_LOCK(table, hash) \
mutex_enter(&(table)[hash].hash_lock)
#define HASH_UNLOCK(table, hash) \
mutex_exit(&(table)[hash].hash_lock)
#define HASH_LOCKED(table, hash) \
MUTEX_HELD(&(table)[hash].hash_lock)
#define HASH_ITERATE(var, field, table, hash) \
var = table[hash].hash_head; var != NULL; var = var->field.hash_next
#define HASH_NEXT(var, field) \
(var)->field.hash_next
#define HASH_INSERT(var, field, table, hash) \
{ \
ASSERT(HASH_LOCKED(table, hash)); \
(var)->field.hash_next = (table)[hash].hash_head; \
(var)->field.hash_pp = &(table)[hash].hash_head; \
(table)[hash].hash_head = var; \
if ((var)->field.hash_next != NULL) \
(var)->field.hash_next->field.hash_pp = \
&((var)->field.hash_next); \
}
#define HASH_UNCHAIN(var, field, table, hash) \
{ \
ASSERT(MUTEX_HELD(&(table)[hash].hash_lock)); \
HASHLIST_UNCHAIN(var, field); \
}
#define HASHLIST_INSERT(var, field, head) \
{ \
(var)->field.hash_next = head; \
(var)->field.hash_pp = &(head); \
head = var; \
if ((var)->field.hash_next != NULL) \
(var)->field.hash_next->field.hash_pp = \
&((var)->field.hash_next); \
}
#define HASHLIST_UNCHAIN(var, field) \
{ \
*var->field.hash_pp = var->field.hash_next; \
if (var->field.hash_next) \
var->field.hash_next->field.hash_pp = \
var->field.hash_pp; \
HASH_NULL(var, field); \
}
#define HASH_NULL(var, field) \
{ \
var->field.hash_next = NULL; \
var->field.hash_pp = NULL; \
}
#define HASH_LINK(fieldname, type) \
struct { \
type *hash_next; \
type **hash_pp; \
} fieldname
#define HASH_HEAD(tag) \
struct { \
struct tag *hash_head; \
kmutex_t hash_lock; \
}
typedef struct ipsec_policy_s ipsec_policy_t;
typedef HASH_HEAD(ipsec_policy_s) ipsec_policy_hash_t;
/*
* When adding new fields to ipsec_prot_t, make sure to update
* ipsec_in_to_out_action() as well as other code in spd.c
*/
typedef struct ipsec_prot
{
unsigned int
ipp_use_ah : 1,
ipp_use_esp : 1,
ipp_use_se : 1,
ipp_use_unique : 1,
ipp_use_espa : 1,
ipp_pad : 27;
uint8_t ipp_auth_alg; /* DOI number */
uint8_t ipp_encr_alg; /* DOI number */
uint8_t ipp_esp_auth_alg; /* DOI number */
uint16_t ipp_ah_minbits; /* AH: min keylen */
uint16_t ipp_ah_maxbits; /* AH: max keylen */
uint16_t ipp_espe_minbits; /* ESP encr: min keylen */
uint16_t ipp_espe_maxbits; /* ESP encr: max keylen */
uint16_t ipp_espa_minbits; /* ESP auth: min keylen */
uint16_t ipp_espa_maxbits; /* ESP auth: max keylen */
uint32_t ipp_km_proto; /* key mgmt protocol */
uint32_t ipp_km_cookie; /* key mgmt cookie */
uint32_t ipp_replay_depth; /* replay window */
/* XXX add lifetimes */
} ipsec_prot_t;
#define IPSEC_MAX_KEYBITS (0xffff)
/*
* An individual policy action, possibly a member of a chain.
*
* Action chains may be shared between multiple policy rules.
*
* With one exception (IPSEC_POLICY_LOG), a chain consists of an
* ordered list of alternative ways to handle a packet.
*
* All actions are also "interned" into a hash table (to allow
* multiple rules with the same action chain to share one copy in
* memory).
*/
typedef struct ipsec_act
{
uint8_t ipa_type;
uint8_t ipa_log;
union
{
ipsec_prot_t ipau_apply;
uint8_t ipau_reject_type;
uint32_t ipau_resolve_id; /* magic cookie */
uint8_t ipau_log_type;
} ipa_u;
#define ipa_apply ipa_u.ipau_apply
#define ipa_reject_type ipa_u.ipau_reject_type
#define ipa_log_type ipa_u.ipau_log_type
#define ipa_resolve_type ipa_u.ipau_resolve_type
} ipsec_act_t;
#define IPSEC_ACT_APPLY 0x01 /* match IPSEC_POLICY_APPLY */
#define IPSEC_ACT_DISCARD 0x02 /* match IPSEC_POLICY_DISCARD */
#define IPSEC_ACT_BYPASS 0x03 /* match IPSEC_POLICY_BYPASS */
#define IPSEC_ACT_REJECT 0x04
#define IPSEC_ACT_CLEAR 0x05
typedef struct ipsec_action_s
{
HASH_LINK(ipa_hash, struct ipsec_action_s);
struct ipsec_action_s *ipa_next; /* next alternative */
uint32_t ipa_refs; /* refcount */
ipsec_act_t ipa_act;
/*
* The following bits are equivalent to an OR of bits included in the
* ipau_apply fields of this and subsequent actions in an
* action chain; this is an optimization for the sake of
* ipsec_out_process() in ip.c and a few other places.
*/
unsigned int
ipa_hval: 8,
ipa_allow_clear:1, /* rule allows cleartext? */
ipa_want_ah:1, /* an action wants ah */
ipa_want_esp:1, /* an action wants esp */
ipa_want_se:1, /* an action wants se */
ipa_want_unique:1, /* want unique sa's */
ipa_pad:19;
uint32_t ipa_ovhd; /* per-packet encap ovhd */
} ipsec_action_t;
#define IPACT_REFHOLD(ipa) { \
atomic_inc_32(&(ipa)->ipa_refs); \
ASSERT((ipa)->ipa_refs != 0); \
}
#define IPACT_REFRELE(ipa) { \
ASSERT((ipa)->ipa_refs != 0); \
membar_exit(); \
if (atomic_dec_32_nv(&(ipa)->ipa_refs) == 0) \
ipsec_action_free(ipa); \
(ipa) = 0; \
}
/*
* For now, use a trivially sized hash table for actions.
* In the future we can add the structure canonicalization necessary
* to get the hash function to behave correctly..
*/
#define IPSEC_ACTION_HASH_SIZE 1
/*
* Merged address structure, for cheezy address-family independent
* matches in policy code.
*/
typedef union ipsec_addr
{
in6_addr_t ipsad_v6;
in_addr_t ipsad_v4;
} ipsec_addr_t;
/*
* ipsec selector set, as used by the kernel policy structures.
* Note that that we specify "local" and "remote"
* rather than "source" and "destination", which allows the selectors
* for symmetric policy rules to be shared between inbound and
* outbound rules.
*
* "local" means "destination" on inbound, and "source" on outbound.
* "remote" means "source" on inbound, and "destination" on outbound.
* XXX if we add a fifth policy enforcement point for forwarded packets,
* what do we do?
*
* The ipsl_valid mask is not done as a bitfield; this is so we
* can use "ffs()" to find the "most interesting" valid tag.
*
* XXX should we have multiple types for space-conservation reasons?
* (v4 vs v6? prefix vs. range)?
*/
typedef struct ipsec_selkey
{
uint32_t ipsl_valid; /* bitmask of valid entries */
#define IPSL_REMOTE_ADDR 0x00000001
#define IPSL_LOCAL_ADDR 0x00000002
#define IPSL_REMOTE_PORT 0x00000004
#define IPSL_LOCAL_PORT 0x00000008
#define IPSL_PROTOCOL 0x00000010
#define IPSL_ICMP_TYPE 0x00000020
#define IPSL_ICMP_CODE 0x00000040
#define IPSL_IPV6 0x00000080
#define IPSL_IPV4 0x00000100
#define IPSL_WILDCARD 0x0000007f
ipsec_addr_t ipsl_local;
ipsec_addr_t ipsl_remote;
uint16_t ipsl_lport;
uint16_t ipsl_rport;
/*
* ICMP type and code selectors. Both have an end value to
* specify ranges, or * and *_end are equal for a single
* value
*/
uint8_t ipsl_icmp_type;
uint8_t ipsl_icmp_type_end;
uint8_t ipsl_icmp_code;
uint8_t ipsl_icmp_code_end;
uint8_t ipsl_proto; /* ip payload type */
uint8_t ipsl_local_pfxlen; /* #bits of prefix */
uint8_t ipsl_remote_pfxlen; /* #bits of prefix */
uint8_t ipsl_mbz;
/* Insert new elements above this line */
uint32_t ipsl_pol_hval;
uint32_t ipsl_sel_hval;
} ipsec_selkey_t;
typedef struct ipsec_sel
{
HASH_LINK(ipsl_hash, struct ipsec_sel);
uint32_t ipsl_refs; /* # refs to this sel */
ipsec_selkey_t ipsl_key; /* actual selector guts */
} ipsec_sel_t;
/*
* One policy rule. This will be linked into a single hash chain bucket in
* the parent rule structure. If the selector is simple enough to
* allow hashing, it gets filed under ipsec_policy_root_t->ipr_hash.
* Otherwise it goes onto a linked list in ipsec_policy_root_t->ipr_nonhash[af]
*
* In addition, we file the rule into an avl tree keyed by the rule index.
* (Duplicate rules are permitted; the comparison function breaks ties).
*/
struct ipsec_policy_s
{
HASH_LINK(ipsp_hash, struct ipsec_policy_s);
avl_node_t ipsp_byid;
uint64_t ipsp_index; /* unique id */
uint32_t ipsp_prio; /* rule priority */
uint32_t ipsp_refs;
ipsec_sel_t *ipsp_sel; /* selector set (shared) */
ipsec_action_t *ipsp_act; /* action (may be shared) */
netstack_t *ipsp_netstack; /* No netstack_hold */
};
#define IPPOL_REFHOLD(ipp) { \
atomic_inc_32(&(ipp)->ipsp_refs); \
ASSERT((ipp)->ipsp_refs != 0); \
}
#define IPPOL_REFRELE(ipp) { \
ASSERT((ipp)->ipsp_refs != 0); \
membar_exit(); \
if (atomic_dec_32_nv(&(ipp)->ipsp_refs) == 0) \
ipsec_policy_free(ipp); \
(ipp) = 0; \
}
#define IPPOL_UNCHAIN(php, ip) \
HASHLIST_UNCHAIN((ip), ipsp_hash); \
avl_remove(&(php)->iph_rulebyid, (ip)); \
IPPOL_REFRELE(ip);
/*
* Policy ruleset. One per (protocol * direction) for system policy.
*/
#define IPSEC_AF_V4 0
#define IPSEC_AF_V6 1
#define IPSEC_NAF 2
typedef struct ipsec_policy_root_s
{
ipsec_policy_t *ipr_nonhash[IPSEC_NAF];
int ipr_nchains;
ipsec_policy_hash_t *ipr_hash;
} ipsec_policy_root_t;
/*
* Policy head. One for system policy; there may also be one present
* on ill_t's with interface-specific policy, as well as one present
* for sockets with per-socket policy allocated.
*/
typedef struct ipsec_policy_head_s
{
uint32_t iph_refs;
krwlock_t iph_lock;
uint64_t iph_gen; /* generation number */
ipsec_policy_root_t iph_root[IPSEC_NTYPES];
avl_tree_t iph_rulebyid;
} ipsec_policy_head_t;
#define IPPH_REFHOLD(iph) { \
atomic_inc_32(&(iph)->iph_refs); \
ASSERT((iph)->iph_refs != 0); \
}
#define IPPH_REFRELE(iph, ns) { \
ASSERT((iph)->iph_refs != 0); \
membar_exit(); \
if (atomic_dec_32_nv(&(iph)->iph_refs) == 0) \
ipsec_polhead_free(iph, ns); \
(iph) = 0; \
}
/*
* IPsec fragment related structures
*/
typedef struct ipsec_fragcache_entry {
struct ipsec_fragcache_entry *itpfe_next; /* hash list chain */
mblk_t *itpfe_fraglist; /* list of fragments */
time_t itpfe_exp; /* time when entry is stale */
int itpfe_depth; /* # of fragments in list */
ipsec_addr_t itpfe_frag_src;
ipsec_addr_t itpfe_frag_dst;
#define itpfe_src itpfe_frag_src.ipsad_v4
#define itpfe_src6 itpfe_frag_src.ipsad_v6
#define itpfe_dst itpfe_frag_dst.ipsad_v4
#define itpfe_dst6 itpfe_frag_dst.ipsad_v6
uint32_t itpfe_id; /* IP datagram ID */
uint8_t itpfe_proto; /* IP Protocol */
uint8_t itpfe_last; /* Last packet */
} ipsec_fragcache_entry_t;
typedef struct ipsec_fragcache {
kmutex_t itpf_lock;
struct ipsec_fragcache_entry **itpf_ptr;
struct ipsec_fragcache_entry *itpf_freelist;
time_t itpf_expire_hint; /* time when oldest entry is stale */
} ipsec_fragcache_t;
/*
* Tunnel policies. We keep a minature of the transport-mode/global policy
* per each tunnel instance.
*
* People who need both an itp held down AND one of its polheads need to
* first lock the itp, THEN the polhead, otherwise deadlock WILL occur.
*/
typedef struct ipsec_tun_pol_s {
avl_node_t itp_node;
kmutex_t itp_lock;
uint64_t itp_next_policy_index;
ipsec_policy_head_t *itp_policy;
ipsec_policy_head_t *itp_inactive;
uint32_t itp_flags;
uint32_t itp_refcnt;
char itp_name[LIFNAMSIZ];
ipsec_fragcache_t itp_fragcache;
} ipsec_tun_pol_t;
/* NOTE - Callers (tun code) synchronize their own instances for these flags. */
#define ITPF_P_ACTIVE 0x1 /* Are we using IPsec right now? */
#define ITPF_P_TUNNEL 0x2 /* Negotiate tunnel-mode */
/* Optimization -> Do we have per-port security entries in this polhead? */
#define ITPF_P_PER_PORT_SECURITY 0x4
#define ITPF_PFLAGS 0x7
#define ITPF_SHIFT 3
#define ITPF_I_ACTIVE 0x8 /* Is the inactive using IPsec right now? */
#define ITPF_I_TUNNEL 0x10 /* Negotiate tunnel-mode (on inactive) */
/* Optimization -> Do we have per-port security entries in this polhead? */
#define ITPF_I_PER_PORT_SECURITY 0x20
#define ITPF_IFLAGS 0x38
/* NOTE: f cannot be an expression. */
#define ITPF_CLONE(f) (f) = (((f) & ITPF_PFLAGS) | \
(((f) & ITPF_PFLAGS) << ITPF_SHIFT));
#define ITPF_SWAP(f) (f) = ((((f) & ITPF_PFLAGS) << ITPF_SHIFT) | \
(((f) & ITPF_IFLAGS) >> ITPF_SHIFT))
#define ITP_P_ISACTIVE(itp, iph) ((itp)->itp_flags & \
(((itp)->itp_policy == (iph)) ? ITPF_P_ACTIVE : ITPF_I_ACTIVE))
#define ITP_P_ISTUNNEL(itp, iph) ((itp)->itp_flags & \
(((itp)->itp_policy == (iph)) ? ITPF_P_TUNNEL : ITPF_I_TUNNEL))
#define ITP_P_ISPERPORT(itp, iph) ((itp)->itp_flags & \
(((itp)->itp_policy == (iph)) ? ITPF_P_PER_PORT_SECURITY : \
ITPF_I_PER_PORT_SECURITY))
#define ITP_REFHOLD(itp) { \
atomic_inc_32(&((itp)->itp_refcnt)); \
ASSERT((itp)->itp_refcnt != 0); \
}
#define ITP_REFRELE(itp, ns) { \
ASSERT((itp)->itp_refcnt != 0); \
membar_exit(); \
if (atomic_dec_32_nv(&((itp)->itp_refcnt)) == 0) \
itp_free(itp, ns); \
}
/*
* Certificate identity.
*/
typedef struct ipsid_s
{
struct ipsid_s *ipsid_next;
struct ipsid_s **ipsid_ptpn;
uint32_t ipsid_refcnt;
int ipsid_type; /* id type */
char *ipsid_cid; /* certificate id string */
} ipsid_t;
/*
* ipsid_t reference hold/release macros, just like ipsa versions.
*/
#define IPSID_REFHOLD(ipsid) { \
atomic_inc_32(&(ipsid)->ipsid_refcnt); \
ASSERT((ipsid)->ipsid_refcnt != 0); \
}
/*
* Decrement the reference count on the ID. Someone else will clean up
* after us later.
*/
#define IPSID_REFRELE(ipsid) { \
membar_exit(); \
atomic_dec_32(&(ipsid)->ipsid_refcnt); \
}
/*
* Following are the estimates of what the maximum AH and ESP header size
* would be. This is used to tell the upper layer the right value of MSS
* it should use without consulting AH/ESP. If the size is something
* different from this, ULP will learn the right one through
* ICMP_FRAGMENTATION_NEEDED messages generated locally.
*
* AH : 12 bytes of constant header + 32 bytes of ICV checksum (SHA-512).
*/
#define IPSEC_MAX_AH_HDR_SIZE (44)
/*
* ESP : Is a bit more complex...
*
* A system of one inequality and one equation MUST be solved for proper ESP
* overhead. The inequality is:
*
* MTU - sizeof (IP header + options) >=
* sizeof (esph_t) + sizeof (IV or ctr) + data-size + 2 + ICV
*
* IV or counter is almost always the cipher's block size. The equation is:
*
* data-size % block-size = (block-size - 2)
*
* so we can put as much data into the datagram as possible. If we are
* pessimistic and include our largest overhead cipher (AES) and hash
* (SHA-512), and assume 1500-byte MTU minus IPv4 overhead of 20 bytes, we get:
*
* 1480 >= 8 + 16 + data-size + 2 + 32
* 1480 >= 58 + data-size
* 1422 >= data-size, 1422 % 16 = 14, so 58 is the overhead!
*
* But, let's re-run the numbers with the same algorithms, but with an IPv6
* header:
*
* 1460 >= 58 + data-size
* 1402 >= data-size, 1402 % 16 = 10, meaning shrink to 1390 to get 14,
*
* which means the overhead is now 70.
*
* Hmmm... IPv4 headers can never be anything other than multiples of 4-bytes,
* and IPv6 ones can never be anything other than multiples of 8-bytes. We've
* seen overheads of 58 and 70. 58 % 16 == 10, and 70 % 16 == 6. IPv4 could
* force us to have 62 ( % 16 == 14) or 66 ( % 16 == 2), or IPv6 could force us
* to have 78 ( % 16 = 14). Let's compute IPv6 + 8-bytes of options:
*
* 1452 >= 58 + data-size
* 1394 >= data-size, 1394 % 16 = 2, meaning shrink to 1390 to get 14,
*
* Aha! The "ESP overhead" shrinks to 62 (70 - 8). This is good. Let's try
* IPv4 + 8 bytes of IPv4 options:
*
* 1472 >= 58 + data-size
* 1414 >= data-size, 1414 % 16 = 6, meaning shrink to 1406,
*
* meaning 66 is the overhead. Let's try 12 bytes:
*
* 1468 >= 58 + data-size
* 1410 >= data-size, 1410 % 16 = 2, meaning also shrink to 1406,
*
* meaning 62 is the overhead. How about 16 bytes?
*
* 1464 >= 58 + data-size
* 1406 >= data-size, 1402 % 16 = 14, which is great!
*
* this means 58 is the overhead. If I wrap and add 20 bytes, it looks just
* like IPv6's 70 bytes. If I add 24, we go back to 66 bytes.
*
* So picking 70 is a sensible, conservative default. Optimal calculations
* will depend on knowing pre-ESP header length (called "divpoint" in the ESP
* code), which could be cached in the conn_t for connected endpoints, or
* which must be computed on every datagram otherwise.
*/
#define IPSEC_MAX_ESP_HDR_SIZE (70)
/*
* Alternate, when we know the crypto block size via the SA. Assume an ICV on
* the SA. Use:
*
* sizeof (esph_t) + 2 * (sizeof (IV/counter)) - 2 + sizeof (ICV). The "-2"
* discounts the overhead of the pad + padlen that gets swallowed up by the
* second (theoretically all-pad) cipher-block. If you use our examples of
* AES and SHA512, you get:
*
* 8 + 32 - 2 + 32 == 70.
*
* Which is our pre-computed maximum above.
*/
#include <inet/ipsecesp.h>
#define IPSEC_BASE_ESP_HDR_SIZE(sa) \
(sizeof (esph_t) + ((sa)->ipsa_iv_len << 1) - 2 + (sa)->ipsa_mac_len)
/*
* Identity hash table.
*
* Identities are refcounted and "interned" into the hash table.
* Only references coming from other objects (SA's, latching state)
* are counted in ipsid_refcnt.
*
* Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket
* is locked, (b) we know that the refcount must be > 0.
*
* The ipsid_next and ipsid_ptpn fields are only to be referenced or
* modified when the bucket lock is held; in particular, we only
* delete objects while holding the bucket lock, and we only increase
* the refcount from 0 to 1 while the bucket lock is held.
*/
#define IPSID_HASHSIZE 64
typedef struct ipsif_s
{
ipsid_t *ipsif_head;
kmutex_t ipsif_lock;
} ipsif_t;
/*
* For call to the kernel crypto framework. State needed during
* the execution of a crypto request.
*/
typedef struct ipsec_crypto_s {
size_t ic_skip_len; /* len to skip for AH auth */
crypto_data_t ic_crypto_data; /* single op crypto data */
crypto_dual_data_t ic_crypto_dual_data; /* for dual ops */
crypto_data_t ic_crypto_mac; /* to store the MAC */
ipsa_cm_mech_t ic_cmm;
} ipsec_crypto_t;
/*
* IPsec stack instances
*/
struct ipsec_stack {
netstack_t *ipsec_netstack; /* Common netstack */
/* Packet dropper for IP IPsec processing failures */
ipdropper_t ipsec_dropper;
/* From spd.c */
/*
* Policy rule index generator. We assume this won't wrap in the
* lifetime of a system. If we make 2^20 policy changes per second,
* this will last 2^44 seconds, or roughly 500,000 years, so we don't
* have to worry about reusing policy index values.
*/
uint64_t ipsec_next_policy_index;
HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE];
HASH_HEAD(ipsec_sel) *ipsec_sel_hash;
uint32_t ipsec_spd_hashsize;
ipsif_t ipsec_ipsid_buckets[IPSID_HASHSIZE];
/*
* Active & Inactive system policy roots
*/
ipsec_policy_head_t ipsec_system_policy;
ipsec_policy_head_t ipsec_inactive_policy;
/* Packet dropper for generic SPD drops. */
ipdropper_t ipsec_spd_dropper;
/* ipdrop.c */
kstat_t *ipsec_ip_drop_kstat;
struct ip_dropstats *ipsec_ip_drop_types;
/* spd.c */
/*
* Have a counter for every possible policy message in
* ipsec_policy_failure_msgs
*/
uint32_t ipsec_policy_failure_count[IPSEC_POLICY_MAX];
/* Time since last ipsec policy failure that printed a message. */
hrtime_t ipsec_policy_failure_last;
/* ip_spd.c */
/* stats */
kstat_t *ipsec_ksp;
struct ipsec_kstats_s *ipsec_kstats;
/* sadb.c */
/* Packet dropper for generic SADB drops. */
ipdropper_t ipsec_sadb_dropper;
/* spd.c */
boolean_t ipsec_inbound_v4_policy_present;
boolean_t ipsec_outbound_v4_policy_present;
boolean_t ipsec_inbound_v6_policy_present;
boolean_t ipsec_outbound_v6_policy_present;
/* spd.c */
/*
* Because policy needs to know what algorithms are supported, keep the
* lists of algorithms here.
*/
kmutex_t ipsec_alg_lock;
uint8_t ipsec_nalgs[IPSEC_NALGTYPES];
ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
int ipsec_algs_exec_mode[IPSEC_NALGTYPES];
uint32_t ipsec_tun_spd_hashsize;
/*
* Tunnel policies - AVL tree indexed by tunnel name.
*/
krwlock_t ipsec_tunnel_policy_lock;
uint64_t ipsec_tunnel_policy_gen;
avl_tree_t ipsec_tunnel_policies;
/* ipsec_loader.c */
kmutex_t ipsec_loader_lock;
int ipsec_loader_state;
int ipsec_loader_sig;
kt_did_t ipsec_loader_tid;
kcondvar_t ipsec_loader_sig_cv; /* For loader_sig conditions. */
};
typedef struct ipsec_stack ipsec_stack_t;
/* Handle the kstat_create in ip_drop_init() failing */
#define DROPPER(_ipss, _dropper) \
(((_ipss)->ipsec_ip_drop_types == NULL) ? NULL : \
&((_ipss)->ipsec_ip_drop_types->_dropper))
/*
* Loader states..
*/
#define IPSEC_LOADER_WAIT 0
#define IPSEC_LOADER_FAILED -1
#define IPSEC_LOADER_SUCCEEDED 1
/*
* ipsec_loader entrypoints.
*/
extern void ipsec_loader_init(ipsec_stack_t *);
extern void ipsec_loader_start(ipsec_stack_t *);
extern void ipsec_loader_destroy(ipsec_stack_t *);
extern void ipsec_loader_loadnow(ipsec_stack_t *);
extern boolean_t ipsec_loader_wait(queue_t *q, ipsec_stack_t *);
extern boolean_t ipsec_loaded(ipsec_stack_t *);
extern boolean_t ipsec_failed(ipsec_stack_t *);
/*
* ipsec policy entrypoints (spd.c)
*/
extern void ipsec_policy_g_destroy(void);
extern void ipsec_policy_g_init(void);
extern mblk_t *ipsec_add_crypto_data(mblk_t *, ipsec_crypto_t **);
extern mblk_t *ipsec_remove_crypto_data(mblk_t *, ipsec_crypto_t **);
extern mblk_t *ipsec_free_crypto_data(mblk_t *);
extern int ipsec_alloc_table(ipsec_policy_head_t *, int, int, boolean_t,
netstack_t *);
extern void ipsec_polhead_init(ipsec_policy_head_t *, int);
extern void ipsec_polhead_destroy(ipsec_policy_head_t *);
extern void ipsec_polhead_free_table(ipsec_policy_head_t *);
extern mblk_t *ipsec_check_global_policy(mblk_t *, conn_t *, ipha_t *,
ip6_t *, ip_recv_attr_t *, netstack_t *ns);
extern mblk_t *ipsec_check_inbound_policy(mblk_t *, conn_t *, ipha_t *, ip6_t *,
ip_recv_attr_t *);
extern boolean_t ipsec_in_to_out(ip_recv_attr_t *, ip_xmit_attr_t *,
mblk_t *, ipha_t *, ip6_t *);
extern void ipsec_in_release_refs(ip_recv_attr_t *);
extern void ipsec_out_release_refs(ip_xmit_attr_t *);
extern void ipsec_log_policy_failure(int, char *, ipha_t *, ip6_t *, boolean_t,
netstack_t *);
extern boolean_t ipsec_inbound_accept_clear(mblk_t *, ipha_t *, ip6_t *);
extern int ipsec_conn_cache_policy(conn_t *, boolean_t);
extern void ipsec_cache_outbound_policy(const conn_t *, const in6_addr_t *,
const in6_addr_t *, in_port_t, ip_xmit_attr_t *);
extern boolean_t ipsec_outbound_policy_current(ip_xmit_attr_t *);
extern ipsec_action_t *ipsec_in_to_out_action(ip_recv_attr_t *);
extern void ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira);
extern void ipsec_policy_free(ipsec_policy_t *);
extern void ipsec_action_free(ipsec_action_t *);
extern void ipsec_polhead_free(ipsec_policy_head_t *, netstack_t *);
extern ipsec_policy_head_t *ipsec_polhead_split(ipsec_policy_head_t *,
netstack_t *);
extern ipsec_policy_head_t *ipsec_polhead_create(void);
extern ipsec_policy_head_t *ipsec_system_policy(netstack_t *);
extern ipsec_policy_head_t *ipsec_inactive_policy(netstack_t *);
extern void ipsec_swap_policy(ipsec_policy_head_t *, ipsec_policy_head_t *,
netstack_t *);
extern void ipsec_swap_global_policy(netstack_t *);
extern int ipsec_clone_system_policy(netstack_t *);
extern ipsec_policy_t *ipsec_policy_create(ipsec_selkey_t *,
const ipsec_act_t *, int, int, uint64_t *, netstack_t *);
extern boolean_t ipsec_policy_delete(ipsec_policy_head_t *,
ipsec_selkey_t *, int, netstack_t *);
extern int ipsec_policy_delete_index(ipsec_policy_head_t *, uint64_t,
netstack_t *);
extern boolean_t ipsec_polhead_insert(ipsec_policy_head_t *, ipsec_act_t *,
uint_t, int, int, netstack_t *);
extern void ipsec_polhead_flush(ipsec_policy_head_t *, netstack_t *);
extern int ipsec_copy_polhead(ipsec_policy_head_t *, ipsec_policy_head_t *,
netstack_t *);
extern void ipsec_actvec_from_req(const ipsec_req_t *, ipsec_act_t **, uint_t *,
netstack_t *);
extern void ipsec_actvec_free(ipsec_act_t *, uint_t);
extern int ipsec_req_from_head(ipsec_policy_head_t *, ipsec_req_t *, int);
extern mblk_t *ipsec_construct_inverse_acquire(sadb_msg_t *, sadb_ext_t **,
netstack_t *);
extern ipsec_policy_t *ipsec_find_policy(int, const conn_t *,
ipsec_selector_t *, netstack_t *);
extern ipsid_t *ipsid_lookup(int, char *, netstack_t *);
extern boolean_t ipsid_equal(ipsid_t *, ipsid_t *);
extern void ipsid_gc(netstack_t *);
extern void ipsec_latch_ids(ipsec_latch_t *, ipsid_t *, ipsid_t *);
extern void ipsec_config_flush(netstack_t *);
extern boolean_t ipsec_check_policy(ipsec_policy_head_t *, ipsec_policy_t *,
int);
extern void ipsec_enter_policy(ipsec_policy_head_t *, ipsec_policy_t *, int,
netstack_t *);
extern boolean_t ipsec_check_action(ipsec_act_t *, int *, netstack_t *);
extern void iplatch_free(ipsec_latch_t *);
extern ipsec_latch_t *iplatch_create(void);
extern int ipsec_set_req(cred_t *, conn_t *, ipsec_req_t *);
extern void ipsec_insert_always(avl_tree_t *tree, void *new_node);
extern int32_t ipsec_act_ovhd(const ipsec_act_t *act);
extern mblk_t *sadb_whack_label(mblk_t *, ipsa_t *, ip_xmit_attr_t *,
kstat_named_t *, ipdropper_t *);
extern mblk_t *sadb_whack_label_v4(mblk_t *, ipsa_t *, kstat_named_t *,
ipdropper_t *);
extern mblk_t *sadb_whack_label_v6(mblk_t *, ipsa_t *, kstat_named_t *,
ipdropper_t *);
extern boolean_t update_iv(uint8_t *, queue_t *, ipsa_t *, ipsecesp_stack_t *);
/*
* Tunnel-support SPD functions and variables.
*/
struct iptun_s; /* Defined in inet/iptun/iptun_impl.h. */
extern mblk_t *ipsec_tun_inbound(ip_recv_attr_t *, mblk_t *, ipsec_tun_pol_t *,
ipha_t *, ip6_t *, ipha_t *, ip6_t *, int, netstack_t *);
extern mblk_t *ipsec_tun_outbound(mblk_t *, struct iptun_s *, ipha_t *,
ip6_t *, ipha_t *, ip6_t *, int, ip_xmit_attr_t *);
extern void itp_free(ipsec_tun_pol_t *, netstack_t *);
extern ipsec_tun_pol_t *create_tunnel_policy(char *, int *, uint64_t *,
netstack_t *);
extern ipsec_tun_pol_t *get_tunnel_policy(char *, netstack_t *);
extern void itp_unlink(ipsec_tun_pol_t *, netstack_t *);
extern void itp_walk(void (*)(ipsec_tun_pol_t *, void *, netstack_t *),
void *, netstack_t *);
extern ipsec_tun_pol_t *itp_get_byaddr(uint32_t *, uint32_t *, int,
ip_stack_t *);
/*
* IPsec AH/ESP functions called from IP or the common SADB code in AH.
*/
extern void ipsecah_in_assocfailure(mblk_t *, char, ushort_t, char *,
uint32_t, void *, int, ip_recv_attr_t *ira);
extern void ipsecesp_in_assocfailure(mblk_t *, char, ushort_t, char *,
uint32_t, void *, int, ip_recv_attr_t *ira);
extern void ipsecesp_send_keepalive(ipsa_t *);
/*
* Algorithm management helper functions.
*/
extern boolean_t ipsec_valid_key_size(uint16_t, ipsec_alginfo_t *);
/*
* Per-socket policy, for now, takes precedence... this priority value
* insures it.
*/
#define IPSEC_PRIO_SOCKET 0x1000000
/* DDI initialization functions. */
extern boolean_t ipsecesp_ddi_init(void);
extern boolean_t ipsecah_ddi_init(void);
extern boolean_t keysock_ddi_init(void);
extern boolean_t spdsock_ddi_init(void);
extern void ipsecesp_ddi_destroy(void);
extern void ipsecah_ddi_destroy(void);
extern void keysock_ddi_destroy(void);
extern void spdsock_ddi_destroy(void);
/*
* AH- and ESP-specific functions that are called directly by other modules.
*/
extern void ipsecah_fill_defs(struct sadb_x_ecomb *, netstack_t *);
extern void ipsecesp_fill_defs(struct sadb_x_ecomb *, netstack_t *);
extern void ipsecah_algs_changed(netstack_t *);
extern void ipsecesp_algs_changed(netstack_t *);
extern void ipsecesp_init_funcs(ipsa_t *);
extern void ipsecah_init_funcs(ipsa_t *);
extern mblk_t *ipsecah_icmp_error(mblk_t *, ip_recv_attr_t *);
extern mblk_t *ipsecesp_icmp_error(mblk_t *, ip_recv_attr_t *);
/*
* spdsock functions that are called directly by IP.
*/
extern void spdsock_update_pending_algs(netstack_t *);
/*
* IP functions that are called from AH and ESP.
*/
extern boolean_t ipsec_outbound_sa(mblk_t *, ip_xmit_attr_t *, uint_t);
extern mblk_t *ipsec_inbound_esp_sa(mblk_t *, ip_recv_attr_t *, esph_t **);
extern mblk_t *ipsec_inbound_ah_sa(mblk_t *, ip_recv_attr_t *, ah_t **);
extern ipsec_policy_t *ipsec_find_policy_head(ipsec_policy_t *,
ipsec_policy_head_t *, int, ipsec_selector_t *);
/*
* IP dropper init/destroy.
*/
void ip_drop_init(ipsec_stack_t *);
void ip_drop_destroy(ipsec_stack_t *);
/*
* Common functions
*/
extern boolean_t ip_addr_match(uint8_t *, int, in6_addr_t *);
extern boolean_t ipsec_label_match(ts_label_t *, ts_label_t *);
/*
* AH and ESP counters types.
*/
typedef uint32_t ah_counter;
typedef uint32_t esp_counter;
#endif /* _KERNEL */
#ifdef __cplusplus
}
#endif
#endif /* _INET_IPSEC_IMPL_H */