solaris.c revision 94bdecd9e84ae1042607002db3e64a6849da5874
/*
* Copyright (C) 1993-2001, 2003 by Darren Reed.
*
* See the IPFILTER.LICENCE file for details on licencing.
*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
*/
/*
* ipfilter kernel module mutexes and locking:
*
* Enabling ipfilter creates a per-netstack ipf_stack_t object that is
* stored in the ipf_stacks list, which is protected by ipf_stack_lock.
* ipf_stack_t objects are accessed in three contexts:
*
* 1) administering that filter (eg: ioctls handled with iplioctl())
* 2) reading log data (eg: iplread() / iplwrite())
* 3) filtering packets (eg: ipf_hook4_* and ipf_hook6_* pfhooks
* functions)
*
* Each ipf_stack_t has a RW lock, ifs_ipf_global, protecting access to the
* whole structure. The structure also has locks protecting the various
* data structures used for filtering. The following guidelines should be
* followed for ipf_stack_t locks:
*
* - ipf_stack_lock must be held when accessing the ipf_stacks list
* - ipf_stack_lock should be held before acquiring ifs_ipf_global for
* a stack (the exception to this is ipf_stack_destroy(), which removes
* the ipf_stack_t from the list, then drops ipf_stack_lock before
* acquiring ifs_ipf_global)
* - ifs_ipf_global must be held when accessing an ipf_stack_t in that list:
* - The write lock is held only during stack creation / destruction
* - The read lock should be held for all other accesses
* - To alter the filtering data in the administrative context, one must:
* - acquire the read lock for ifs_ipf_global
* - then acquire the write lock for the data in question
* - In the filtering path, the read lock needs to be held for each type of
* filtering data used
* - ifs_ipf_global does not need to be held in the filtering path:
* - The filtering hooks don't need to modify the stack itself
* - The ipf_stack_t will not be destroyed until the hooks are unregistered.
* This requires a write lock on the hook, ensuring that no active hooks
* (eg: the filtering path) are running, and that the hooks won't be run
* afterward.
*
* Note that there is a deadlock possible when calling net_hook_register()
* or net_hook_unregister() with ifs_ipf_global held: see the comments in
* iplattach() and ipldetach() for details.
*/
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/buf.h>
#include <sys/modctl.h>
#include <sys/open.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/cred.h>
#include <sys/dditypes.h>
#include <sys/poll.h>
#include <sys/autoconf.h>
#include <sys/byteorder.h>
#include <sys/socket.h>
#include <sys/dlpi.h>
#include <sys/stropts.h>
#include <sys/kstat.h>
#include <sys/sockio.h>
#include <sys/neti.h>
#include <sys/hook.h>
#include <net/if.h>
#if SOLARIS2 >= 6
#include <net/if_types.h>
#endif
#include <net/af.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/tcpip.h>
#include <netinet/ip_icmp.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include "netinet/ip_compat.h"
#include "netinet/ipl.h"
#include "netinet/ip_fil.h"
#include "netinet/ip_nat.h"
#include "netinet/ip_frag.h"
#include "netinet/ip_auth.h"
#include "netinet/ip_state.h"
#include "netinet/ipf_stack.h"
extern int iplwrite __P((dev_t, struct uio *, cred_t *));
static int ipf_getinfo __P((dev_info_t *, ddi_info_cmd_t,
void *, void **));
#if SOLARIS2 < 10
static int ipf_identify __P((dev_info_t *));
#endif
static int ipf_attach __P((dev_info_t *, ddi_attach_cmd_t));
static int ipf_detach __P((dev_info_t *, ddi_detach_cmd_t));
static void *ipf_stack_create __P((const netid_t));
static void ipf_stack_destroy __P((const netid_t, void *));
static void ipf_stack_shutdown __P((const netid_t, void *));
static int ipf_property_g_update __P((dev_info_t *));
static char *ipf_devfiles[] = { IPL_NAME, IPNAT_NAME, IPSTATE_NAME,
IPAUTH_NAME, IPSYNC_NAME, IPSCAN_NAME,
IPLOOKUP_NAME, NULL };
extern void *ipf_state; /* DDI state */
extern vmem_t *ipf_minor; /* minor number arena */
static struct cb_ops ipf_cb_ops = {
iplopen,
iplclose,
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
iplread,
iplwrite, /* write */
iplioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op,
NULL,
D_MTSAFE,
#if SOLARIS2 > 4
CB_REV,
nodev, /* aread */
nodev, /* awrite */
#endif
};
static struct dev_ops ipf_ops = {
DEVO_REV,
0,
ipf_getinfo,
#if SOLARIS2 >= 10
nulldev,
#else
ipf_identify,
#endif
nulldev,
ipf_attach,
ipf_detach,
nodev, /* reset */
&ipf_cb_ops,
(struct bus_ops *)0,
NULL,
ddi_quiesce_not_needed, /* quiesce */
};
static net_instance_t *ipfncb = NULL;
static ipf_stack_t *ipf_stacks = NULL;
static kmutex_t ipf_stack_lock;
extern struct mod_ops mod_driverops;
static struct modldrv iplmod = {
&mod_driverops, IPL_VERSION, &ipf_ops };
static struct modlinkage modlink1 = { MODREV_1, &iplmod, NULL };
#if SOLARIS2 >= 6
static size_t hdrsizes[57][2] = {
{ 0, 0 },
{ IFT_OTHER, 0 },
{ IFT_1822, 0 },
{ IFT_HDH1822, 0 },
{ IFT_X25DDN, 0 },
{ IFT_X25, 0 },
{ IFT_ETHER, 14 },
{ IFT_ISO88023, 0 },
{ IFT_ISO88024, 0 },
{ IFT_ISO88025, 0 },
{ IFT_ISO88026, 0 },
{ IFT_STARLAN, 0 },
{ IFT_P10, 0 },
{ IFT_P80, 0 },
{ IFT_HY, 0 },
{ IFT_FDDI, 24 },
{ IFT_LAPB, 0 },
{ IFT_SDLC, 0 },
{ IFT_T1, 0 },
{ IFT_CEPT, 0 },
{ IFT_ISDNBASIC, 0 },
{ IFT_ISDNPRIMARY, 0 },
{ IFT_PTPSERIAL, 0 },
{ IFT_PPP, 0 },
{ IFT_LOOP, 0 },
{ IFT_EON, 0 },
{ IFT_XETHER, 0 },
{ IFT_NSIP, 0 },
{ IFT_SLIP, 0 },
{ IFT_ULTRA, 0 },
{ IFT_DS3, 0 },
{ IFT_SIP, 0 },
{ IFT_FRELAY, 0 },
{ IFT_RS232, 0 },
{ IFT_PARA, 0 },
{ IFT_ARCNET, 0 },
{ IFT_ARCNETPLUS, 0 },
{ IFT_ATM, 0 },
{ IFT_MIOX25, 0 },
{ IFT_SONET, 0 },
{ IFT_X25PLE, 0 },
{ IFT_ISO88022LLC, 0 },
{ IFT_LOCALTALK, 0 },
{ IFT_SMDSDXI, 0 },
{ IFT_FRELAYDCE, 0 },
{ IFT_V35, 0 },
{ IFT_HSSI, 0 },
{ IFT_HIPPI, 0 },
{ IFT_MODEM, 0 },
{ IFT_AAL5, 0 },
{ IFT_SONETPATH, 0 },
{ IFT_SONETVT, 0 },
{ IFT_SMDSICIP, 0 },
{ IFT_PROPVIRTUAL, 0 },
{ IFT_PROPMUX, 0 },
};
#endif /* SOLARIS2 >= 6 */
dev_info_t *ipf_dev_info = NULL;
static const filter_kstats_t ipf_kstat_tmp = {
{ "pass", KSTAT_DATA_ULONG },
{ "block", KSTAT_DATA_ULONG },
{ "nomatch", KSTAT_DATA_ULONG },
{ "short", KSTAT_DATA_ULONG },
{ "pass, logged", KSTAT_DATA_ULONG },
{ "block, logged", KSTAT_DATA_ULONG },
{ "nomatch, logged", KSTAT_DATA_ULONG },
{ "logged", KSTAT_DATA_ULONG },
{ "skip", KSTAT_DATA_ULONG },
{ "return sent", KSTAT_DATA_ULONG },
{ "acct", KSTAT_DATA_ULONG },
{ "bad frag state alloc", KSTAT_DATA_ULONG },
{ "new frag state kept", KSTAT_DATA_ULONG },
{ "new frag state compl. pkt", KSTAT_DATA_ULONG },
{ "bad pkt state alloc", KSTAT_DATA_ULONG },
{ "new pkt kept state", KSTAT_DATA_ULONG },
{ "cachehit", KSTAT_DATA_ULONG },
{ "tcp cksum bad", KSTAT_DATA_ULONG },
{{ "pullup ok", KSTAT_DATA_ULONG },
{ "pullup nok", KSTAT_DATA_ULONG }},
{ "src != route", KSTAT_DATA_ULONG },
{ "ttl invalid", KSTAT_DATA_ULONG },
{ "bad ip pkt", KSTAT_DATA_ULONG },
{ "ipv6 pkt", KSTAT_DATA_ULONG },
{ "dropped:pps ceiling", KSTAT_DATA_ULONG },
{ "ip upd. fail", KSTAT_DATA_ULONG }
};
static int ipf_kstat_update(kstat_t *ksp, int rwflag);
static void
ipf_kstat_init(ipf_stack_t *ifs, boolean_t from_gz)
{
ifs->ifs_kstatp[0] = net_kstat_create(ifs->ifs_netid,
(from_gz ? "ipf_gz" : "ipf"),
0, "inbound", "net", KSTAT_TYPE_NAMED,
sizeof (filter_kstats_t) / sizeof (kstat_named_t), 0);
if (ifs->ifs_kstatp[0] != NULL) {
bcopy(&ipf_kstat_tmp, ifs->ifs_kstatp[0]->ks_data,
sizeof (filter_kstats_t));
ifs->ifs_kstatp[0]->ks_update = ipf_kstat_update;
ifs->ifs_kstatp[0]->ks_private = &ifs->ifs_frstats[0];
kstat_install(ifs->ifs_kstatp[0]);
}
ifs->ifs_kstatp[1] = net_kstat_create(ifs->ifs_netid,
(from_gz ? "ipf_gz" : "ipf"),
0, "outbound", "net", KSTAT_TYPE_NAMED,
sizeof (filter_kstats_t) / sizeof (kstat_named_t), 0);
if (ifs->ifs_kstatp[1] != NULL) {
bcopy(&ipf_kstat_tmp, ifs->ifs_kstatp[1]->ks_data,
sizeof (filter_kstats_t));
ifs->ifs_kstatp[1]->ks_update = ipf_kstat_update;
ifs->ifs_kstatp[1]->ks_private = &ifs->ifs_frstats[1];
kstat_install(ifs->ifs_kstatp[1]);
}
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "IP Filter: ipf_kstat_init(%p) installed %p, %p",
ifs, ifs->ifs_kstatp[0], ifs->ifs_kstatp[1]);
#endif
}
static void
ipf_kstat_fini(ipf_stack_t *ifs)
{
int i;
for (i = 0; i < 2; i++) {
if (ifs->ifs_kstatp[i] != NULL) {
net_kstat_delete(ifs->ifs_netid, ifs->ifs_kstatp[i]);
ifs->ifs_kstatp[i] = NULL;
}
}
}
static int
ipf_kstat_update(kstat_t *ksp, int rwflag)
{
filter_kstats_t *fkp;
filterstats_t *fsp;
if (ksp == NULL || ksp->ks_data == NULL)
return (EIO);
if (rwflag == KSTAT_WRITE)
return (EACCES);
fkp = ksp->ks_data;
fsp = ksp->ks_private;
fkp->fks_pass.value.ul = fsp->fr_pass;
fkp->fks_block.value.ul = fsp->fr_block;
fkp->fks_nom.value.ul = fsp->fr_nom;
fkp->fks_short.value.ul = fsp->fr_short;
fkp->fks_ppkl.value.ul = fsp->fr_ppkl;
fkp->fks_bpkl.value.ul = fsp->fr_bpkl;
fkp->fks_npkl.value.ul = fsp->fr_npkl;
fkp->fks_pkl.value.ul = fsp->fr_pkl;
fkp->fks_skip.value.ul = fsp->fr_skip;
fkp->fks_ret.value.ul = fsp->fr_ret;
fkp->fks_acct.value.ul = fsp->fr_acct;
fkp->fks_bnfr.value.ul = fsp->fr_bnfr;
fkp->fks_nfr.value.ul = fsp->fr_nfr;
fkp->fks_cfr.value.ul = fsp->fr_cfr;
fkp->fks_bads.value.ul = fsp->fr_bads;
fkp->fks_ads.value.ul = fsp->fr_ads;
fkp->fks_chit.value.ul = fsp->fr_chit;
fkp->fks_tcpbad.value.ul = fsp->fr_tcpbad;
fkp->fks_pull[0].value.ul = fsp->fr_pull[0];
fkp->fks_pull[1].value.ul = fsp->fr_pull[1];
fkp->fks_badsrc.value.ul = fsp->fr_badsrc;
fkp->fks_badttl.value.ul = fsp->fr_badttl;
fkp->fks_bad.value.ul = fsp->fr_bad;
fkp->fks_ipv6.value.ul = fsp->fr_ipv6;
fkp->fks_ppshit.value.ul = fsp->fr_ppshit;
fkp->fks_ipud.value.ul = fsp->fr_ipud;
return (0);
}
int
_init()
{
int ipfinst;
ipfinst = mod_install(&modlink1);
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "IP Filter: _init() = %d", ipfinst);
#endif
mutex_init(&ipf_stack_lock, NULL, MUTEX_DRIVER, NULL);
return (ipfinst);
}
int
_fini(void)
{
int ipfinst;
ipfinst = mod_remove(&modlink1);
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "IP Filter: _fini() = %d", ipfinst);
#endif
return (ipfinst);
}
int
_info(modinfop)
struct modinfo *modinfop;
{
int ipfinst;
ipfinst = mod_info(&modlink1, modinfop);
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "IP Filter: _info(%p) = %d", modinfop, ipfinst);
#endif
return (ipfinst);
}
#if SOLARIS2 < 10
static int ipf_identify(dip)
dev_info_t *dip;
{
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "IP Filter: ipf_identify(%p)", dip);
#endif
if (strcmp(ddi_get_name(dip), "ipf") == 0)
return (DDI_IDENTIFIED);
return (DDI_NOT_IDENTIFIED);
}
#endif
/*
* Initialize things for IPF for each stack instance
*/
static void *
ipf_stack_create_one(const netid_t id, const zoneid_t zid, boolean_t from_gz,
ipf_stack_t *ifs_gz)
{
ipf_stack_t *ifs;
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "IP Filter:stack_create_one id=%d global=%d", id,
global);
#endif
ifs = (ipf_stack_t *)kmem_alloc(sizeof (*ifs), KM_SLEEP);
bzero(ifs, sizeof (*ifs));
ifs->ifs_hook4_physical_in = B_FALSE;
ifs->ifs_hook4_physical_out = B_FALSE;
ifs->ifs_hook4_nic_events = B_FALSE;
ifs->ifs_hook4_loopback_in = B_FALSE;
ifs->ifs_hook4_loopback_out = B_FALSE;
ifs->ifs_hook6_physical_in = B_FALSE;
ifs->ifs_hook6_physical_out = B_FALSE;
ifs->ifs_hook6_nic_events = B_FALSE;
ifs->ifs_hook6_loopback_in = B_FALSE;
ifs->ifs_hook6_loopback_out = B_FALSE;
/*
* Initialize mutex's
*/
RWLOCK_INIT(&ifs->ifs_ipf_global, "ipf filter load/unload mutex");
RWLOCK_INIT(&ifs->ifs_ipf_mutex, "ipf filter rwlock");
RWLOCK_INIT(&ifs->ifs_ipf_frcache, "ipf cache rwlock");
ifs->ifs_netid = id;
ifs->ifs_zone = zid;
ifs->ifs_gz_controlled = from_gz;
ifs->ifs_gz_cont_ifs = ifs_gz;
ipf_kstat_init(ifs, from_gz);
#ifdef IPFDEBUG
cmn_err(CE_CONT, "IP Filter:stack_create zone=%d", ifs->ifs_zone);
#endif
/*
* Lock people out while we set things up.
*/
WRITE_ENTER(&ifs->ifs_ipf_global);
ipftuneable_alloc(ifs);
RWLOCK_EXIT(&ifs->ifs_ipf_global);
/* Limit to global stack */
if (ifs->ifs_zone == GLOBAL_ZONEID)
cmn_err(CE_CONT, "!%s, running.\n", ipfilter_version);
mutex_enter(&ipf_stack_lock);
if (ipf_stacks != NULL)
ipf_stacks->ifs_pnext = &ifs->ifs_next;
ifs->ifs_next = ipf_stacks;
ifs->ifs_pnext = &ipf_stacks;
ipf_stacks = ifs;
mutex_exit(&ipf_stack_lock);
return (ifs);
}
static void *
ipf_stack_create(const netid_t id)
{
ipf_stack_t *ifs = NULL;
zoneid_t zid = net_getzoneidbynetid(id);
/*
* Create two ipfilter stacks for a zone - the first can only be
* controlled from the global zone, and the second is owned by
* the zone itself. There is no need to create a GZ-controlled
* stack for the global zone, since we're already in the global
* zone. See the "GZ-controlled and per-zone stacks" comment block in
* ip_fil_solaris.c for details.
*/
if (zid != GLOBAL_ZONEID)
ifs = ipf_stack_create_one(id, zid, B_TRUE, NULL);
return (ipf_stack_create_one(id, zid, B_FALSE, ifs));
}
/*
* Find an ipfilter stack for the given zone. Return the GZ-controlled or
* per-zone stack if set by an earlier SIOCIPFZONESET ioctl call. See the
* "GZ-controlled and per-zone stacks" comment block in ip_fil_solaris.c for
* details.
*
* This function returns with the ipf_stack_t's ifs_ipf_global
* read lock held (if the stack is found). See the "ipfilter kernel module
* mutexes and locking" comment block at the top of this file.
*/
ipf_stack_t *
ipf_find_stack(const zoneid_t orig_zone, ipf_devstate_t *isp)
{
ipf_stack_t *ifs;
boolean_t gz_stack;
zoneid_t zone;
/*
* If we're in the GZ, determine if we're acting on a zone's stack,
* and whether or not that stack is the GZ-controlled or in-zone
* one. See the "GZ and per-zone stacks" note at the top of this
* file.
*/
if (orig_zone == GLOBAL_ZONEID &&
(isp->ipfs_zoneid != IPFS_ZONE_UNSET)) {
/* Global zone, and we've set the zoneid for this fd already */
if (orig_zone == isp->ipfs_zoneid) {
/* There's only a per-zone stack for the GZ */
gz_stack = B_FALSE;
} else {
gz_stack = isp->ipfs_gz;
}
zone = isp->ipfs_zoneid;
} else {
/*
* Non-global zone or GZ without having set a zoneid: act on
* the per-zone stack of the zone that this ioctl originated
* from.
*/
gz_stack = B_FALSE;
zone = orig_zone;
}
mutex_enter(&ipf_stack_lock);
for (ifs = ipf_stacks; ifs != NULL; ifs = ifs->ifs_next) {
if (ifs->ifs_zone == zone && ifs->ifs_gz_controlled == gz_stack)
break;
}
if (ifs != NULL) {
READ_ENTER(&ifs->ifs_ipf_global);
}
mutex_exit(&ipf_stack_lock);
return (ifs);
}
static int ipf_detach_check_zone(ipf_stack_t *ifs)
{
/*
* Make sure we're the only one's modifying things. With
* this lock others should just fall out of the loop.
*/
READ_ENTER(&ifs->ifs_ipf_global);
if (ifs->ifs_fr_running == 1) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return (-1);
}
/*
* Make sure there is no active filter rule.
*/
if (ifs->ifs_ipfilter[0][ifs->ifs_fr_active] ||
ifs->ifs_ipfilter[1][ifs->ifs_fr_active] ||
ifs->ifs_ipfilter6[0][ifs->ifs_fr_active] ||
ifs->ifs_ipfilter6[1][ifs->ifs_fr_active]) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return (-1);
}
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return (0);
}
static int ipf_detach_check_all()
{
ipf_stack_t *ifs;
mutex_enter(&ipf_stack_lock);
for (ifs = ipf_stacks; ifs != NULL; ifs = ifs->ifs_next)
if (ipf_detach_check_zone(ifs) != 0)
break;
mutex_exit(&ipf_stack_lock);
return ((ifs == NULL) ? 0 : -1);
}
/*
* Remove ipf kstats for both the per-zone ipf stack and the
* GZ-controlled stack for the same zone, if it exists.
*/
/* ARGSUSED */
static void
ipf_stack_shutdown(const netid_t id, void *arg)
{
ipf_stack_t *ifs = (ipf_stack_t *)arg;
/*
* The GZ-controlled stack
*/
if (ifs->ifs_gz_cont_ifs != NULL)
ipf_kstat_fini(ifs->ifs_gz_cont_ifs);
/*
* The per-zone stack
*/
ipf_kstat_fini(ifs);
}
/*
* Destroy things for ipf for one stack.
*/
/* ARGSUSED */
static void
ipf_stack_destroy_one(const netid_t id, ipf_stack_t *ifs)
{
timeout_id_t tid;
#ifdef IPFDEBUG
(void) printf("ipf_stack_destroy_one(%p)\n", (void *)ifs);
#endif
/*
* Make sure we're the only one's modifying things. With
* this lock others should just fall out of the loop.
*/
WRITE_ENTER(&ifs->ifs_ipf_global);
if (ifs->ifs_fr_running == -2) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return;
}
ifs->ifs_fr_running = -2;
tid = ifs->ifs_fr_timer_id;
ifs->ifs_fr_timer_id = NULL;
RWLOCK_EXIT(&ifs->ifs_ipf_global);
mutex_enter(&ipf_stack_lock);
if (ifs->ifs_next != NULL)
ifs->ifs_next->ifs_pnext = ifs->ifs_pnext;
*ifs->ifs_pnext = ifs->ifs_next;
mutex_exit(&ipf_stack_lock);
if (tid != NULL)
(void) untimeout(tid);
WRITE_ENTER(&ifs->ifs_ipf_global);
if (ipldetach(ifs) != 0) {
printf("ipf_stack_destroy_one: ipldetach failed\n");
}
ipftuneable_free(ifs);
RWLOCK_EXIT(&ifs->ifs_ipf_global);
RW_DESTROY(&ifs->ifs_ipf_mutex);
RW_DESTROY(&ifs->ifs_ipf_frcache);
RW_DESTROY(&ifs->ifs_ipf_global);
KFREE(ifs);
}
/*
* Destroy things for ipf for both the per-zone ipf stack and the
* GZ-controlled stack for the same zone, if it exists. See the "GZ-controlled
* and per-zone stacks" comment block in ip_fil_solaris.c for details.
*/
/* ARGSUSED */
static void
ipf_stack_destroy(const netid_t id, void *arg)
{
ipf_stack_t *ifs = (ipf_stack_t *)arg;
/*
* The GZ-controlled stack
*/
if (ifs->ifs_gz_cont_ifs != NULL)
ipf_stack_destroy_one(id, ifs->ifs_gz_cont_ifs);
/*
* The per-zone stack
*/
ipf_stack_destroy_one(id, ifs);
}
static int ipf_attach(dip, cmd)
dev_info_t *dip;
ddi_attach_cmd_t cmd;
{
char *s;
int i;
int instance;
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "IP Filter: ipf_attach(%p,%x)", dip, cmd);
#endif
switch (cmd)
{
case DDI_ATTACH:
instance = ddi_get_instance(dip);
/* Only one instance of ipf (instance 0) can be attached. */
if (instance > 0)
return (DDI_FAILURE);
#ifdef IPFDEBUG
cmn_err(CE_CONT, "IP Filter: attach ipf instance %d", instance);
#endif
(void) ipf_property_g_update(dip);
if (ddi_soft_state_init(&ipf_state, sizeof (ipf_devstate_t), 1)
!= 0) {
ddi_prop_remove_all(dip);
return (DDI_FAILURE);
}
for (i = 0; ((s = ipf_devfiles[i]) != NULL); i++) {
s = strrchr(s, '/');
if (s == NULL)
continue;
s++;
if (ddi_create_minor_node(dip, s, S_IFCHR, i,
DDI_PSEUDO, 0) == DDI_FAILURE)
goto attach_failed;
}
ipf_dev_info = dip;
ipfncb = net_instance_alloc(NETINFO_VERSION);
if (ipfncb == NULL)
goto attach_failed;
ipfncb->nin_name = "ipf";
ipfncb->nin_create = ipf_stack_create;
ipfncb->nin_destroy = ipf_stack_destroy;
ipfncb->nin_shutdown = ipf_stack_shutdown;
if (net_instance_register(ipfncb) == DDI_FAILURE) {
net_instance_free(ipfncb);
goto attach_failed;
}
ipf_minor = vmem_create("ipf_minor", (void *)1, UINT32_MAX - 1,
1, NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
#ifdef IPFDEBUG
cmn_err(CE_CONT, "IP Filter:stack_create callback_reg=%d", i);
#endif
return (DDI_SUCCESS);
/* NOTREACHED */
default:
break;
}
attach_failed:
ddi_remove_minor_node(dip, NULL);
ddi_prop_remove_all(dip);
ddi_soft_state_fini(&ipf_state);
return (DDI_FAILURE);
}
static int ipf_detach(dip, cmd)
dev_info_t *dip;
ddi_detach_cmd_t cmd;
{
int i;
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "IP Filter: ipf_detach(%p,%x)", dip, cmd);
#endif
switch (cmd) {
case DDI_DETACH:
if (ipf_detach_check_all() != 0)
return (DDI_FAILURE);
/*
* Undo what we did in ipf_attach, freeing resources
* and removing things we installed. The system
* framework guarantees we are not active with this devinfo
* node in any other entry points at this time.
*/
ddi_prop_remove_all(dip);
i = ddi_get_instance(dip);
ddi_remove_minor_node(dip, NULL);
if (i > 0) {
cmn_err(CE_CONT, "IP Filter: still attached (%d)\n", i);
return (DDI_FAILURE);
}
vmem_destroy(ipf_minor);
ddi_soft_state_fini(&ipf_state);
(void) net_instance_unregister(ipfncb);
net_instance_free(ipfncb);
return (DDI_SUCCESS);
/* NOTREACHED */
default:
break;
}
cmn_err(CE_NOTE, "IP Filter: failed to detach\n");
return (DDI_FAILURE);
}
/*ARGSUSED*/
static int ipf_getinfo(dip, infocmd, arg, result)
dev_info_t *dip;
ddi_info_cmd_t infocmd;
void *arg, **result;
{
int error;
error = DDI_FAILURE;
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "IP Filter: ipf_getinfo(%p,%x,%p)", dip, infocmd, arg);
#endif
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
*result = ipf_dev_info;
error = DDI_SUCCESS;
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)0;
error = DDI_SUCCESS;
break;
default:
break;
}
return (error);
}
/*
* Fetch configuration file values that have been entered into the ipf.conf
* driver file.
*/
static int ipf_property_g_update(dip)
dev_info_t *dip;
{
#ifdef DDI_NO_AUTODETACH
if (ddi_prop_update_int(DDI_DEV_T_NONE, dip,
DDI_NO_AUTODETACH, 1) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "!updating DDI_NO_AUTODETACH failed");
return (DDI_FAILURE);
}
#else
if (ddi_prop_update_int(DDI_DEV_T_NONE, dip,
"ddi-no-autodetach", 1) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "!updating ddi-no-autodetach failed");
return (DDI_FAILURE);
}
#endif
return (DDI_SUCCESS);
}
int
ipf_property_update(dip, ifs)
dev_info_t *dip;
ipf_stack_t *ifs;
{
ipftuneable_t *ipft;
char *name;
uint_t one;
int *i32p;
int err, rv = 0;
for (ipft = ifs->ifs_ipf_tuneables;
(name = ipft->ipft_name) != NULL; ipft++) {
one = 1;
i32p = NULL;
err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
0, name, &i32p, &one);
if (err == DDI_PROP_NOT_FOUND)
continue;
#ifdef IPFDEBUG
cmn_err(CE_CONT, "IP Filter: lookup_int(%s) = %d\n",
name, err);
#endif
if (err != DDI_PROP_SUCCESS) {
rv = err;
continue;
}
if (*i32p >= ipft->ipft_min &&
*i32p <= ipft->ipft_max) {
if (ipft->ipft_sz == sizeof (uint32_t)) {
*ipft->ipft_pint = *i32p;
} else if (ipft->ipft_sz == sizeof (uint64_t)) {
*ipft->ipft_plong = *i32p;
}
}
ddi_prop_free(i32p);
}
return (rv);
}