spdsock.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/strsun.h>
#include <sys/stropts.h>
#include <sys/vnode.h>
#include <sys/sysmacros.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/mkdev.h>
#include <sys/debug.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/proc.h>
#include <sys/suntpi.h>
#include <sys/policy.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <net/pfkeyv2.h>
#include <net/pfpolicy.h>
#include <inet/common.h>
#include <netinet/ip6.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <inet/mi.h>
#include <inet/nd.h>
#include <inet/optcom.h>
#include <inet/ipsec_info.h>
#include <inet/ipsec_impl.h>
#include <inet/spdsock.h>
#include <inet/sadb.h>
#include <sys/isa_defs.h>
/*
* This is a transport provider for the PF_POLICY IPsec policy
* management socket, which provides a management interface into the
* SPD, allowing policy rules to be added, deleted, and queried.
*
* This effectively replaces the old private SIOC*IPSECONFIG ioctls
* with an extensible interface which will hopefully be public some
* day.
*
* See <net/pfpolicy.h> for more details on the protocol.
*
* We link against drv/ip and call directly into it to manipulate the
* SPD; see ipsec_impl.h for the policy data structures and spd.c for
* the code which maintains them.
*
* The MT model of this is QPAIR with the addition of some explicit
* locking to protect system-wide policy data structures.
*/
static vmem_t *spdsock_vmem; /* for minor numbers. */
#define ALIGNED64(x) IS_P2ALIGNED((x), sizeof (uint64_t))
/* Default structure copied into T_INFO_ACK messages (from rts.c...) */
static struct T_info_ack spdsock_g_t_info_ack = {
T_INFO_ACK,
T_INFINITE, /* TSDU_size. Maximum size messages. */
T_INVALID, /* ETSDU_size. No expedited data. */
T_INVALID, /* CDATA_size. No connect data. */
T_INVALID, /* DDATA_size. No disconnect data. */
0, /* ADDR_size. */
0, /* OPT_size. No user-settable options */
64 * 1024, /* TIDU_size. spdsock allows maximum size messages. */
T_COTS, /* SERV_type. spdsock supports connection oriented. */
TS_UNBND, /* CURRENT_state. This is set from spdsock_state. */
(XPG4_1) /* Provider flags */
};
/* Named Dispatch Parameter Management Structure */
typedef struct spdsockpparam_s {
uint_t spdsock_param_min;
uint_t spdsock_param_max;
uint_t spdsock_param_value;
char *spdsock_param_name;
} spdsockparam_t;
/*
* Table of NDD variables supported by spdsock. These are loaded into
* spdsock_g_nd in spdsock_init_nd.
* All of these are alterable, within the min/max values given, at run time.
*/
static spdsockparam_t spdsock_param_arr[] = {
/* min max value name */
{ 4096, 65536, 8192, "spdsock_xmit_hiwat"},
{ 0, 65536, 1024, "spdsock_xmit_lowat"},
{ 4096, 65536, 8192, "spdsock_recv_hiwat"},
{ 65536, 1024*1024*1024, 256*1024, "spdsock_max_buf"},
{ 0, 3, 0, "spdsock_debug"},
};
#define spdsock_xmit_hiwat spdsock_param_arr[0].spdsock_param_value
#define spdsock_xmit_lowat spdsock_param_arr[1].spdsock_param_value
#define spdsock_recv_hiwat spdsock_param_arr[2].spdsock_param_value
#define spdsock_max_buf spdsock_param_arr[3].spdsock_param_value
#define spdsock_debug spdsock_param_arr[4].spdsock_param_value
kmutex_t spdsock_param_lock; /* Protects the NDD variables. */
/*
* To save algorithm update messages that are processed only after IPsec
* is loaded.
*/
static spd_ext_t *spdsock_extv_algs[SPD_EXT_MAX + 1];
static mblk_t *spdsock_mp_algs = NULL;
static boolean_t spdsock_algs_pending = B_FALSE;
static ipsec_alginfo_t *spdsock_algs[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
static ipsec_algs_exec_mode_t spdsock_algs_exec_mode[IPSEC_NALGTYPES];
static kmutex_t spdsock_alg_lock;
#define ss0dbg(a) printf a
/* NOTE: != 0 instead of > 0 so lint doesn't complain. */
#define ss1dbg(a) if (spdsock_debug != 0) printf a
#define ss2dbg(a) if (spdsock_debug > 1) printf a
#define ss3dbg(a) if (spdsock_debug > 2) printf a
static IDP spdsock_g_nd;
static int spdsock_close(queue_t *);
static int spdsock_open(queue_t *, dev_t *, int, int, cred_t *);
static void spdsock_wput(queue_t *, mblk_t *);
static void spdsock_wsrv(queue_t *);
static void spdsock_rsrv(queue_t *);
static void spdsock_loadcheck(void *);
static void spdsock_merge_algs(void);
static struct module_info info = {
5138, "spdsock", 1, INFPSZ, 512, 128
};
static struct qinit rinit = {
NULL, (pfi_t)spdsock_rsrv, spdsock_open, spdsock_close,
NULL, &info
};
static struct qinit winit = {
(pfi_t)spdsock_wput, (pfi_t)spdsock_wsrv, NULL, NULL, NULL, &info
};
struct streamtab spdsockinfo = {
&rinit, &winit
};
/* mapping from alg type to protocol number, as per RFC 2407 */
static const uint_t algproto[] = {
PROTO_IPSEC_AH,
PROTO_IPSEC_ESP,
};
#define NALGPROTOS (sizeof (algproto) / sizeof (algproto[0]))
/* mapping from kernel exec mode to spdsock exec mode */
static const uint_t execmodes[] = {
SPD_ALG_EXEC_MODE_SYNC,
SPD_ALG_EXEC_MODE_ASYNC
};
#define NEXECMODES (sizeof (execmodes) / sizeof (execmodes[0]))
/* ARGSUSED */
static int
spdsock_param_get(q, mp, cp, cr)
queue_t *q;
mblk_t *mp;
caddr_t cp;
cred_t *cr;
{
spdsockparam_t *spdsockpa = (spdsockparam_t *)cp;
uint_t value;
mutex_enter(&spdsock_param_lock);
value = spdsockpa->spdsock_param_value;
mutex_exit(&spdsock_param_lock);
(void) mi_mpprintf(mp, "%u", value);
return (0);
}
/* This routine sets an NDD variable in a spdsockparam_t structure. */
/* ARGSUSED */
static int
spdsock_param_set(q, mp, value, cp, cr)
queue_t *q;
mblk_t *mp;
char *value;
caddr_t cp;
cred_t *cr;
{
ulong_t new_value;
spdsockparam_t *spdsockpa = (spdsockparam_t *)cp;
/* Convert the value from a string into a long integer. */
if (ddi_strtoul(value, NULL, 10, &new_value) != 0)
return (EINVAL);
mutex_enter(&spdsock_param_lock);
/*
* Fail the request if the new value does not lie within the
* required bounds.
*/
if (new_value < spdsockpa->spdsock_param_min ||
new_value > spdsockpa->spdsock_param_max) {
mutex_exit(&spdsock_param_lock);
return (EINVAL);
}
/* Set the new value */
spdsockpa->spdsock_param_value = new_value;
mutex_exit(&spdsock_param_lock);
return (0);
}
boolean_t
spdsock_ddi_init(void)
{
spdsockparam_t *ssp = spdsock_param_arr;
int count = A_CNT(spdsock_param_arr);
if (!spdsock_g_nd) {
for (; count-- > 0; ssp++) {
if (ssp->spdsock_param_name != NULL &&
(ssp->spdsock_param_name[0] != '\0')) {
if (!nd_load(&spdsock_g_nd,
ssp->spdsock_param_name,
spdsock_param_get, spdsock_param_set,
(caddr_t)ssp)) {
nd_free(&spdsock_g_nd);
return (B_FALSE);
}
}
}
}
spdsock_max_optsize = optcom_max_optsize(
spdsock_opt_obj.odb_opt_des_arr, spdsock_opt_obj.odb_opt_arr_cnt);
spdsock_vmem = vmem_create("spdsock", (void *)1, MAXMIN, 1,
NULL, NULL, NULL, 1, VM_SLEEP | VMC_IDENTIFIER);
mutex_init(&spdsock_param_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&spdsock_alg_lock, NULL, MUTEX_DEFAULT, NULL);
return (B_TRUE);
}
void
spdsock_ddi_destroy(void)
{
vmem_destroy(spdsock_vmem);
mutex_destroy(&spdsock_param_lock);
mutex_destroy(&spdsock_alg_lock);
nd_free(&spdsock_g_nd);
}
/*
* NOTE: large quantities of this should be shared with keysock.
* Would be nice to combine some of this into a common module, but
* not possible given time pressures.
*/
/*
* High-level reality checking of extensions.
*/
/* ARGSUSED */ /* XXX */
static boolean_t
ext_check(spd_ext_t *ext)
{
return (B_TRUE); /* For now... */
}
/* Return values for spdsock_get_ext(). */
#define KGE_OK 0
#define KGE_DUP 1
#define KGE_UNK 2
#define KGE_LEN 3
#define KGE_CHK 4
/*
* Parse basic extension headers and return in the passed-in pointer vector.
* Return values include:
*
* KGE_OK Everything's nice and parsed out.
* If there are no extensions, place NULL in extv[0].
* KGE_DUP There is a duplicate extension.
* First instance in appropriate bin. First duplicate in
* extv[0].
* KGE_UNK Unknown extension type encountered. extv[0] contains
* unknown header.
* KGE_LEN Extension length error.
* KGE_CHK High-level reality check failed on specific extension.
*
* My apologies for some of the pointer arithmetic in here. I'm thinking
* like an assembly programmer, yet trying to make the compiler happy.
*/
static int
spdsock_get_ext(spd_ext_t *extv[], spd_msg_t *basehdr, uint_t msgsize)
{
bzero(extv, sizeof (spd_ext_t *) * (SPD_EXT_MAX + 1));
/* Use extv[0] as the "current working pointer". */
extv[0] = (spd_ext_t *)(basehdr + 1);
while (extv[0] < (spd_ext_t *)(((uint8_t *)basehdr) + msgsize)) {
/* Check for unknown headers. */
if (extv[0]->spd_ext_type == 0 ||
extv[0]->spd_ext_type > SPD_EXT_MAX)
return (KGE_UNK);
/*
* Check length. Use uint64_t because extlen is in units
* of 64-bit words. If length goes beyond the msgsize,
* return an error. (Zero length also qualifies here.)
*/
if (extv[0]->spd_ext_len == 0 ||
(void *)((uint64_t *)extv[0] + extv[0]->spd_ext_len) >
(void *)((uint8_t *)basehdr + msgsize))
return (KGE_LEN);
/* Check for redundant headers. */
if (extv[extv[0]->spd_ext_type] != NULL)
return (KGE_DUP);
/*
* Reality check the extension if possible at the spdsock
* level.
*/
if (!ext_check(extv[0]))
return (KGE_CHK);
/* If I make it here, assign the appropriate bin. */
extv[extv[0]->spd_ext_type] = extv[0];
/* Advance pointer (See above for uint64_t ptr reasoning.) */
extv[0] = (spd_ext_t *)
((uint64_t *)extv[0] + extv[0]->spd_ext_len);
}
/* Everything's cool. */
/*
* If extv[0] == NULL, then there are no extension headers in this
* message. Ensure that this is the case.
*/
if (extv[0] == (spd_ext_t *)(basehdr + 1))
extv[0] = NULL;
return (KGE_OK);
}
static const int bad_ext_diag[] = {
SPD_DIAGNOSTIC_MALFORMED_LCLPORT,
SPD_DIAGNOSTIC_MALFORMED_REMPORT,
SPD_DIAGNOSTIC_MALFORMED_PROTO,
SPD_DIAGNOSTIC_MALFORMED_LCLADDR,
SPD_DIAGNOSTIC_MALFORMED_REMADDR,
SPD_DIAGNOSTIC_MALFORMED_ACTION,
SPD_DIAGNOSTIC_MALFORMED_RULE,
SPD_DIAGNOSTIC_MALFORMED_RULESET,
SPD_DIAGNOSTIC_MALFORMED_ICMP_TYPECODE
};
static const int dup_ext_diag[] = {
SPD_DIAGNOSTIC_DUPLICATE_LCLPORT,
SPD_DIAGNOSTIC_DUPLICATE_REMPORT,
SPD_DIAGNOSTIC_DUPLICATE_PROTO,
SPD_DIAGNOSTIC_DUPLICATE_LCLADDR,
SPD_DIAGNOSTIC_DUPLICATE_REMADDR,
SPD_DIAGNOSTIC_DUPLICATE_ACTION,
SPD_DIAGNOSTIC_DUPLICATE_RULE,
SPD_DIAGNOSTIC_DUPLICATE_RULESET,
SPD_DIAGNOSTIC_DUPLICATE_ICMP_TYPECODE
};
/*
* Transmit a PF_POLICY error message to the instance either pointed to
* by ks, the instance with serial number serial, or more, depending.
*
* The faulty message (or a reasonable facsimile thereof) is in mp.
* This function will free mp or recycle it for delivery, thereby causing
* the stream head to free it.
*/
static void
spdsock_error(queue_t *q, mblk_t *mp, int error, int diagnostic)
{
spd_msg_t *spmsg = (spd_msg_t *)mp->b_rptr;
ASSERT(mp->b_datap->db_type == M_DATA);
if (spmsg->spd_msg_type < SPD_MIN ||
spmsg->spd_msg_type > SPD_MAX)
spmsg->spd_msg_type = SPD_RESERVED;
/*
* Strip out extension headers.
*/
ASSERT(mp->b_rptr + sizeof (*spmsg) <= mp->b_datap->db_lim);
mp->b_wptr = mp->b_rptr + sizeof (*spmsg);
spmsg->spd_msg_len = SPD_8TO64(sizeof (spd_msg_t));
spmsg->spd_msg_errno = (uint8_t)error;
spmsg->spd_msg_diagnostic = (uint16_t)diagnostic;
qreply(q, mp);
}
static void
spdsock_diag(queue_t *q, mblk_t *mp, int diagnostic)
{
spdsock_error(q, mp, EINVAL, diagnostic);
}
static void
spd_echo(queue_t *q, mblk_t *mp)
{
qreply(q, mp);
}
/* ARGSUSED */
static void
spdsock_flush(queue_t *q, ipsec_policy_head_t *iph,
mblk_t *mp, spd_ext_t **extv)
{
rw_enter(&iph->iph_lock, RW_WRITER);
ipsec_polhead_flush(iph);
rw_exit(&iph->iph_lock);
spd_echo(q, mp);
}
static boolean_t
spdsock_ext_to_sel(spd_ext_t **extv, ipsec_selkey_t *sel, int *diag)
{
bzero(sel, sizeof (*sel));
if (extv[SPD_EXT_PROTO] != NULL) {
struct spd_proto *pr =
(struct spd_proto *)extv[SPD_EXT_PROTO];
sel->ipsl_proto = pr->spd_proto_number;
sel->ipsl_valid |= IPSL_PROTOCOL;
}
if (extv[SPD_EXT_LCLPORT] != NULL) {
struct spd_portrange *pr =
(struct spd_portrange *)extv[SPD_EXT_LCLPORT];
sel->ipsl_lport = pr->spd_ports_minport;
sel->ipsl_valid |= IPSL_LOCAL_PORT;
}
if (extv[SPD_EXT_REMPORT] != NULL) {
struct spd_portrange *pr =
(struct spd_portrange *)extv[SPD_EXT_REMPORT];
sel->ipsl_rport = pr->spd_ports_minport;
sel->ipsl_valid |= IPSL_REMOTE_PORT;
}
if (extv[SPD_EXT_ICMP_TYPECODE] != NULL) {
struct spd_typecode *tc=
(struct spd_typecode *)extv[SPD_EXT_ICMP_TYPECODE];
sel->ipsl_valid |= IPSL_ICMP_TYPE;
sel->ipsl_icmp_type = tc->spd_typecode_type;
if (tc->spd_typecode_type_end < tc->spd_typecode_type)
sel->ipsl_icmp_type_end = tc->spd_typecode_type;
else
sel->ipsl_icmp_type_end = tc->spd_typecode_type_end;
if (tc->spd_typecode_code != 255) {
sel->ipsl_valid |= IPSL_ICMP_CODE;
sel->ipsl_icmp_code = tc->spd_typecode_code;
if (tc->spd_typecode_code_end < tc->spd_typecode_code)
sel->ipsl_icmp_code_end = tc->spd_typecode_code;
else
sel->ipsl_icmp_code_end =
tc->spd_typecode_code_end;
}
}
#define ADDR2SEL(sel, extv, field, pfield, extn, bit) \
if ((extv)[(extn)] != NULL) { \
uint_t addrlen; \
struct spd_address *ap = \
(struct spd_address *)((extv)[(extn)]); \
addrlen = (ap->spd_address_af == AF_INET6) ? \
IPV6_ADDR_LEN : IP_ADDR_LEN; \
if (SPD_64TO8(ap->spd_address_len) < \
(addrlen + sizeof (*ap))) { \
*diag = SPD_DIAGNOSTIC_BAD_ADDR_LEN; \
return (B_FALSE); \
} \
bcopy((ap+1), &((sel)->field), addrlen); \
(sel)->pfield = ap->spd_address_prefixlen; \
(sel)->ipsl_valid |= (bit); \
(sel)->ipsl_valid |= (ap->spd_address_af == AF_INET6) ? \
IPSL_IPV6 : IPSL_IPV4; \
}
ADDR2SEL(sel, extv, ipsl_local, ipsl_local_pfxlen,
SPD_EXT_LCLADDR, IPSL_LOCAL_ADDR);
ADDR2SEL(sel, extv, ipsl_remote, ipsl_remote_pfxlen,
SPD_EXT_REMADDR, IPSL_REMOTE_ADDR);
if ((sel->ipsl_valid & (IPSL_IPV6|IPSL_IPV4)) ==
(IPSL_IPV6|IPSL_IPV4)) {
*diag = SPD_DIAGNOSTIC_MIXED_AF;
return (B_FALSE);
}
#undef ADDR2SEL
return (B_TRUE);
}
static boolean_t
spd_convert_type(uint32_t type, ipsec_act_t *act)
{
switch (type) {
case SPD_ACTTYPE_DROP:
act->ipa_type = IPSEC_ACT_DISCARD;
return (B_TRUE);
case SPD_ACTTYPE_PASS:
act->ipa_type = IPSEC_ACT_CLEAR;
return (B_TRUE);
case SPD_ACTTYPE_IPSEC:
act->ipa_type = IPSEC_ACT_APPLY;
return (B_TRUE);
}
return (B_FALSE);
}
static boolean_t
spd_convert_flags(uint32_t flags, ipsec_act_t *act)
{
/*
* Note use of !! for boolean canonicalization.
*/
act->ipa_apply.ipp_use_ah = !!(flags & SPD_APPLY_AH);
act->ipa_apply.ipp_use_esp = !!(flags & SPD_APPLY_ESP);
act->ipa_apply.ipp_use_espa = !!(flags & SPD_APPLY_ESPA);
act->ipa_apply.ipp_use_se = !!(flags & SPD_APPLY_SE);
act->ipa_apply.ipp_use_unique = !!(flags & SPD_APPLY_UNIQUE);
return (B_TRUE);
}
static void
spdsock_reset_act(ipsec_act_t *act)
{
bzero(act, sizeof (*act));
act->ipa_apply.ipp_espe_maxbits = IPSEC_MAX_KEYBITS;
act->ipa_apply.ipp_espa_maxbits = IPSEC_MAX_KEYBITS;
act->ipa_apply.ipp_ah_maxbits = IPSEC_MAX_KEYBITS;
}
/*
* Sanity check action against reality, and shrink-wrap key sizes..
*/
static boolean_t
spdsock_check_action(ipsec_act_t *act, int *diag)
{
if ((act->ipa_type != IPSEC_ACT_APPLY) &&
(act->ipa_apply.ipp_use_ah ||
act->ipa_apply.ipp_use_esp ||
act->ipa_apply.ipp_use_espa ||
act->ipa_apply.ipp_use_se ||
act->ipa_apply.ipp_use_unique)) {
*diag = SPD_DIAGNOSTIC_ADD_INCON_FLAGS;
return (B_FALSE);
}
if ((act->ipa_type == IPSEC_ACT_APPLY) &&
!act->ipa_apply.ipp_use_ah &&
!act->ipa_apply.ipp_use_esp) {
*diag = SPD_DIAGNOSTIC_ADD_INCON_FLAGS;
return (B_FALSE);
}
return (ipsec_check_action(act, diag));
}
/*
* We may be short a few error checks here..
*/
static boolean_t
spdsock_ext_to_actvec(spd_ext_t **extv, ipsec_act_t **actpp, uint_t *nactp,
int *diag)
{
struct spd_ext_actions *sactp =
(struct spd_ext_actions *)extv[SPD_EXT_ACTION];
ipsec_act_t act, *actp, *endactp;
struct spd_attribute *attrp, *endattrp;
uint64_t *endp;
int nact;
*actpp = NULL;
*nactp = 0;
if (sactp == NULL) {
*diag = SPD_DIAGNOSTIC_NO_ACTION_EXT;
return (B_FALSE);
}
/*
* Parse the "action" extension and convert into an action chain.
*/
nact = sactp->spd_actions_count;
endp = (uint64_t *)sactp;
endp += sactp->spd_actions_len;
endattrp = (struct spd_attribute *)endp;
actp = kmem_alloc(sizeof (*actp) * nact, KM_NOSLEEP);
if (actp == NULL) {
*diag = SPD_DIAGNOSTIC_ADD_NO_MEM;
return (B_FALSE);
}
*actpp = actp;
*nactp = nact;
endactp = actp + nact;
spdsock_reset_act(&act);
attrp = (struct spd_attribute *)(&sactp[1]);
for (; attrp < endattrp; attrp++) {
switch (attrp->spd_attr_tag) {
case SPD_ATTR_NOP:
break;
case SPD_ATTR_EMPTY:
spdsock_reset_act(&act);
break;
case SPD_ATTR_END:
attrp = endattrp;
/* FALLTHRU */
case SPD_ATTR_NEXT:
if (actp >= endactp) {
*diag = SPD_DIAGNOSTIC_ADD_WRONG_ACT_COUNT;
goto fail;
}
if (!spdsock_check_action(&act, diag))
goto fail;
*actp++ = act;
break;
case SPD_ATTR_TYPE:
if (!spd_convert_type(attrp->spd_attr_value, &act)) {
*diag = SPD_DIAGNOSTIC_ADD_BAD_TYPE;
goto fail;
}
break;
case SPD_ATTR_FLAGS:
if (!spd_convert_flags(attrp->spd_attr_value, &act)) {
*diag = SPD_DIAGNOSTIC_ADD_BAD_FLAGS;
goto fail;
}
break;
case SPD_ATTR_AH_AUTH:
act.ipa_apply.ipp_auth_alg = attrp->spd_attr_value;
break;
case SPD_ATTR_ESP_ENCR:
act.ipa_apply.ipp_encr_alg = attrp->spd_attr_value;
break;
case SPD_ATTR_ESP_AUTH:
act.ipa_apply.ipp_esp_auth_alg = attrp->spd_attr_value;
break;
case SPD_ATTR_ENCR_MINBITS:
act.ipa_apply.ipp_espe_minbits = attrp->spd_attr_value;
break;
case SPD_ATTR_ENCR_MAXBITS:
act.ipa_apply.ipp_espe_maxbits = attrp->spd_attr_value;
break;
case SPD_ATTR_AH_MINBITS:
act.ipa_apply.ipp_ah_minbits = attrp->spd_attr_value;
break;
case SPD_ATTR_AH_MAXBITS:
act.ipa_apply.ipp_ah_maxbits = attrp->spd_attr_value;
break;
case SPD_ATTR_ESPA_MINBITS:
act.ipa_apply.ipp_espa_minbits = attrp->spd_attr_value;
break;
case SPD_ATTR_ESPA_MAXBITS:
act.ipa_apply.ipp_espa_maxbits = attrp->spd_attr_value;
break;
case SPD_ATTR_LIFE_SOFT_TIME:
case SPD_ATTR_LIFE_HARD_TIME:
case SPD_ATTR_LIFE_SOFT_BYTES:
case SPD_ATTR_LIFE_HARD_BYTES:
break;
case SPD_ATTR_KM_PROTO:
act.ipa_apply.ipp_km_proto = attrp->spd_attr_value;
break;
case SPD_ATTR_KM_COOKIE:
act.ipa_apply.ipp_km_cookie = attrp->spd_attr_value;
break;
case SPD_ATTR_REPLAY_DEPTH:
act.ipa_apply.ipp_replay_depth = attrp->spd_attr_value;
break;
}
}
if (actp != endactp) {
*diag = SPD_DIAGNOSTIC_ADD_WRONG_ACT_COUNT;
goto fail;
}
return (B_TRUE);
fail:
ipsec_actvec_free(*actpp, nact);
*actpp = NULL;
return (B_FALSE);
}
typedef struct
{
ipsec_policy_t *pol;
int dir;
} tmprule_t;
static int
mkrule(ipsec_policy_head_t *iph, struct spd_rule *rule,
ipsec_selkey_t *sel, ipsec_act_t *actp, int nact, uint_t dir, uint_t af,
tmprule_t **rp)
{
ipsec_policy_t *pol;
sel->ipsl_valid &= ~(IPSL_IPV6|IPSL_IPV4);
sel->ipsl_valid |= af;
pol = ipsec_policy_create(sel, actp, nact, rule->spd_rule_priority);
if (pol == NULL)
return (ENOMEM);
(*rp)->pol = pol;
(*rp)->dir = dir;
(*rp)++;
if (!ipsec_check_policy(iph, pol, dir))
return (EEXIST);
rule->spd_rule_index = pol->ipsp_index;
return (0);
}
static int
mkrulepair(ipsec_policy_head_t *iph, struct spd_rule *rule,
ipsec_selkey_t *sel, ipsec_act_t *actp, int nact, uint_t dir, uint_t afs,
tmprule_t **rp)
{
int error;
if (afs & IPSL_IPV4) {
error = mkrule(iph, rule, sel, actp, nact, dir, IPSL_IPV4, rp);
if (error != 0)
return (error);
}
if (afs & IPSL_IPV6) {
error = mkrule(iph, rule, sel, actp, nact, dir, IPSL_IPV6, rp);
if (error != 0)
return (error);
}
return (0);
}
static void
spdsock_addrule(queue_t *q, ipsec_policy_head_t *iph,
mblk_t *mp, spd_ext_t **extv)
{
ipsec_selkey_t sel;
ipsec_act_t *actp;
uint_t nact;
int diag, error, afs;
struct spd_rule *rule = (struct spd_rule *)extv[SPD_EXT_RULE];
tmprule_t rules[4], *rulep = &rules[0];
if (rule == NULL) {
spdsock_diag(q, mp, SPD_DIAGNOSTIC_NO_RULE_EXT);
return;
}
if (rule->spd_rule_index != 0) {
spdsock_diag(q, mp, SPD_DIAGNOSTIC_INVALID_RULE_INDEX);
return;
}
if (!spdsock_ext_to_sel(extv, &sel, &diag)) {
spdsock_diag(q, mp, diag);
return;
}
if (!spdsock_ext_to_actvec(extv, &actp, &nact, &diag)) {
spdsock_diag(q, mp, diag);
return;
}
/*
* If no addresses were specified, add both.
*/
afs = sel.ipsl_valid & (IPSL_IPV6|IPSL_IPV4);
if (afs == 0)
afs = (IPSL_IPV6|IPSL_IPV4);
rw_enter(&iph->iph_lock, RW_WRITER);
if (rule->spd_rule_flags & SPD_RULE_FLAG_OUTBOUND) {
error = mkrulepair(iph, rule, &sel, actp, nact,
IPSEC_TYPE_OUTBOUND, afs, &rulep);
if (error != 0)
goto fail;
}
if (rule->spd_rule_flags & SPD_RULE_FLAG_INBOUND) {
error = mkrulepair(iph, rule, &sel, actp, nact,
IPSEC_TYPE_INBOUND, afs, &rulep);
if (error != 0)
goto fail;
}
while ((--rulep) >= &rules[0])
ipsec_enter_policy(iph, rulep->pol, rulep->dir);
rw_exit(&iph->iph_lock);
ipsec_actvec_free(actp, nact);
spd_echo(q, mp);
return;
fail:
rw_exit(&iph->iph_lock);
while ((--rulep) >= &rules[0]) {
IPPOL_REFRELE(rulep->pol);
}
ipsec_actvec_free(actp, nact);
spdsock_error(q, mp, error, 0);
}
void
spdsock_deleterule(queue_t *q, ipsec_policy_head_t *iph,
mblk_t *mp, spd_ext_t **extv)
{
ipsec_selkey_t sel;
struct spd_rule *rule = (struct spd_rule *)extv[SPD_EXT_RULE];
int diag;
if (rule == NULL) {
spdsock_diag(q, mp, SPD_DIAGNOSTIC_NO_RULE_EXT);
return;
}
if (rule->spd_rule_index != 0) {
if (ipsec_policy_delete_index(iph, rule->spd_rule_index) != 0) {
spdsock_error(q, mp, ESRCH, 0);
return;
}
} else {
if (!spdsock_ext_to_sel(extv, &sel, &diag)) {
spdsock_diag(q, mp, diag);
return;
}
if (rule->spd_rule_flags & SPD_RULE_FLAG_INBOUND) {
if (!ipsec_policy_delete(iph, &sel,
IPSEC_TYPE_INBOUND))
goto fail;
}
if (rule->spd_rule_flags & SPD_RULE_FLAG_OUTBOUND) {
if (!ipsec_policy_delete(iph, &sel,
IPSEC_TYPE_OUTBOUND))
goto fail;
}
}
spd_echo(q, mp);
return;
fail:
spdsock_error(q, mp, ESRCH, 0);
}
void
spdsock_flip(queue_t *q, mblk_t *mp)
{
ipsec_swap_policy(); /* can't fail */
spd_echo(q, mp);
}
/*
* Unimplemented feature
*/
/* ARGSUSED */
static void
spdsock_lookup(queue_t *q, ipsec_policy_head_t *iph,
mblk_t *mp, spd_ext_t **extv)
{
spdsock_error(q, mp, EINVAL, 0);
}
static mblk_t *
spdsock_dump_ruleset(mblk_t *req, ipsec_policy_head_t *iph,
uint32_t count, uint16_t error)
{
size_t len = sizeof (spd_ruleset_ext_t) + sizeof (spd_msg_t);
spd_msg_t *msg;
spd_ruleset_ext_t *ruleset;
mblk_t *m = allocb(len, BPRI_HI);
ASSERT(RW_READ_HELD(&iph->iph_lock));
if (m == NULL) {
return (NULL);
}
msg = (spd_msg_t *)m->b_rptr;
ruleset = (spd_ruleset_ext_t *)(&msg[1]);
m->b_wptr = (uint8_t *)&ruleset[1];
*msg = *(spd_msg_t *)(req->b_rptr);
msg->spd_msg_len = SPD_8TO64(len);
msg->spd_msg_errno = error;
ruleset->spd_ruleset_len = SPD_8TO64(sizeof (*ruleset));
ruleset->spd_ruleset_type = SPD_EXT_RULESET;
ruleset->spd_ruleset_count = count;
ruleset->spd_ruleset_version = iph->iph_gen;
return (m);
}
static mblk_t *
spdsock_dump_finish(spdsock_t *ss, int error)
{
mblk_t *m;
ipsec_policy_head_t *iph = ss->spdsock_dump_head;
mblk_t *req = ss->spdsock_dump_req;
rw_enter(&iph->iph_lock, RW_READER);
m = spdsock_dump_ruleset(req, iph, ss->spdsock_dump_count, error);
rw_exit(&iph->iph_lock);
ss->spdsock_dump_req = NULL;
freemsg(req);
return (m);
}
/*
* Rule encoding functions.
* We do a two-pass encode.
* If base != NULL, fill in encoded rule part starting at base+offset.
* Always return "offset" plus length of to-be-encoded data.
*/
static uint_t
spdsock_encode_typecode(uint8_t *base, uint_t offset, uint8_t type,
uint8_t type_end, uint8_t code, uint8_t code_end)
{
struct spd_typecode *tcp;
ASSERT(ALIGNED64(offset));
if (base != NULL) {
tcp = (struct spd_typecode *)(base + offset);
tcp->spd_typecode_len = SPD_8TO64(sizeof (*tcp));
tcp->spd_typecode_exttype = SPD_EXT_ICMP_TYPECODE;
tcp->spd_typecode_code = code;
tcp->spd_typecode_type = type;
tcp->spd_typecode_type_end = type_end;
tcp->spd_typecode_code_end = code_end;
}
offset += sizeof (*tcp);
ASSERT(ALIGNED64(offset));
return (offset);
}
static uint_t
spdsock_encode_proto(uint8_t *base, uint_t offset, uint8_t proto)
{
struct spd_proto *spp;
ASSERT(ALIGNED64(offset));
if (base != NULL) {
spp = (struct spd_proto *)(base + offset);
spp->spd_proto_len = SPD_8TO64(sizeof (*spp));
spp->spd_proto_exttype = SPD_EXT_PROTO;
spp->spd_proto_number = proto;
spp->spd_proto_reserved1 = 0;
spp->spd_proto_reserved2 = 0;
}
offset += sizeof (*spp);
ASSERT(ALIGNED64(offset));
return (offset);
}
static uint_t
spdsock_encode_port(uint8_t *base, uint_t offset, uint16_t ext, uint16_t port)
{
struct spd_portrange *spp;
ASSERT(ALIGNED64(offset));
if (base != NULL) {
spp = (struct spd_portrange *)(base + offset);
spp->spd_ports_len = SPD_8TO64(sizeof (*spp));
spp->spd_ports_exttype = ext;
spp->spd_ports_minport = port;
spp->spd_ports_maxport = port;
}
offset += sizeof (*spp);
ASSERT(ALIGNED64(offset));
return (offset);
}
static uint_t
spdsock_encode_addr(uint8_t *base, uint_t offset, uint16_t ext,
const ipsec_selkey_t *sel, const ipsec_addr_t *addr, uint_t pfxlen)
{
struct spd_address *sae;
ipsec_addr_t *spdaddr;
uint_t start = offset;
uint_t addrlen;
uint_t af;
if (sel->ipsl_valid & IPSL_IPV4) {
af = AF_INET;
addrlen = IP_ADDR_LEN;
} else {
af = AF_INET6;
addrlen = IPV6_ADDR_LEN;
}
ASSERT(ALIGNED64(offset));
if (base != NULL) {
sae = (struct spd_address *)(base + offset);
sae->spd_address_exttype = ext;
sae->spd_address_af = af;
sae->spd_address_prefixlen = pfxlen;
sae->spd_address_reserved2 = 0;
spdaddr = (ipsec_addr_t *)(&sae[1]);
bcopy(addr, spdaddr, addrlen);
}
offset += sizeof (*sae);
addrlen = roundup(addrlen, sizeof (uint64_t));
offset += addrlen;
ASSERT(ALIGNED64(offset));
if (base != NULL)
sae->spd_address_len = SPD_8TO64(offset - start);
return (offset);
}
static uint_t
spdsock_encode_sel(uint8_t *base, uint_t offset, const ipsec_sel_t *sel)
{
const ipsec_selkey_t *selkey = &sel->ipsl_key;
if (selkey->ipsl_valid & IPSL_PROTOCOL)
offset = spdsock_encode_proto(base, offset, selkey->ipsl_proto);
if (selkey->ipsl_valid & IPSL_LOCAL_PORT)
offset = spdsock_encode_port(base, offset, SPD_EXT_LCLPORT,
selkey->ipsl_lport);
if (selkey->ipsl_valid & IPSL_REMOTE_PORT)
offset = spdsock_encode_port(base, offset, SPD_EXT_REMPORT,
selkey->ipsl_rport);
if (selkey->ipsl_valid & IPSL_REMOTE_ADDR)
offset = spdsock_encode_addr(base, offset, SPD_EXT_REMADDR,
selkey, &selkey->ipsl_remote, selkey->ipsl_remote_pfxlen);
if (selkey->ipsl_valid & IPSL_LOCAL_ADDR)
offset = spdsock_encode_addr(base, offset, SPD_EXT_LCLADDR,
selkey, &selkey->ipsl_local, selkey->ipsl_local_pfxlen);
if (selkey->ipsl_valid & IPSL_ICMP_TYPE) {
offset = spdsock_encode_typecode(base, offset,
selkey->ipsl_icmp_type, selkey->ipsl_icmp_type_end,
(selkey->ipsl_valid & IPSL_ICMP_CODE) ?
selkey->ipsl_icmp_code : 255,
(selkey->ipsl_valid & IPSL_ICMP_CODE) ?
selkey->ipsl_icmp_code_end : 255);
}
return (offset);
}
static uint_t
spdsock_encode_actattr(uint8_t *base, uint_t offset, uint32_t tag,
uint32_t value)
{
struct spd_attribute *attr;
ASSERT(ALIGNED64(offset));
if (base != NULL) {
attr = (struct spd_attribute *)(base + offset);
attr->spd_attr_tag = tag;
attr->spd_attr_value = value;
}
offset += sizeof (struct spd_attribute);
ASSERT(ALIGNED64(offset));
return (offset);
}
#define EMIT(t, v) offset = spdsock_encode_actattr(base, offset, (t), (v))
static uint_t
spdsock_encode_action(uint8_t *base, uint_t offset, const ipsec_action_t *ap)
{
const struct ipsec_act *act = &(ap->ipa_act);
uint_t flags;
EMIT(SPD_ATTR_EMPTY, 0);
switch (act->ipa_type) {
case IPSEC_ACT_DISCARD:
case IPSEC_ACT_REJECT:
EMIT(SPD_ATTR_TYPE, SPD_ACTTYPE_DROP);
break;
case IPSEC_ACT_BYPASS:
case IPSEC_ACT_CLEAR:
EMIT(SPD_ATTR_TYPE, SPD_ACTTYPE_PASS);
break;
case IPSEC_ACT_APPLY:
EMIT(SPD_ATTR_TYPE, SPD_ACTTYPE_IPSEC);
flags = 0;
if (act->ipa_apply.ipp_use_ah)
flags |= SPD_APPLY_AH;
if (act->ipa_apply.ipp_use_esp)
flags |= SPD_APPLY_ESP;
if (act->ipa_apply.ipp_use_espa)
flags |= SPD_APPLY_ESPA;
if (act->ipa_apply.ipp_use_se)
flags |= SPD_APPLY_SE;
if (act->ipa_apply.ipp_use_unique)
flags |= SPD_APPLY_UNIQUE;
EMIT(SPD_ATTR_FLAGS, flags);
if (flags & SPD_APPLY_AH) {
EMIT(SPD_ATTR_AH_AUTH, act->ipa_apply.ipp_auth_alg);
EMIT(SPD_ATTR_AH_MINBITS,
act->ipa_apply.ipp_ah_minbits);
EMIT(SPD_ATTR_AH_MAXBITS,
act->ipa_apply.ipp_ah_maxbits);
}
if (flags & SPD_APPLY_ESP) {
EMIT(SPD_ATTR_ESP_ENCR, act->ipa_apply.ipp_encr_alg);
EMIT(SPD_ATTR_ENCR_MINBITS,
act->ipa_apply.ipp_espe_minbits);
EMIT(SPD_ATTR_ENCR_MAXBITS,
act->ipa_apply.ipp_espe_maxbits);
if (flags & SPD_APPLY_ESPA) {
EMIT(SPD_ATTR_ESP_AUTH,
act->ipa_apply.ipp_esp_auth_alg);
EMIT(SPD_ATTR_ESPA_MINBITS,
act->ipa_apply.ipp_espa_minbits);
EMIT(SPD_ATTR_ESPA_MAXBITS,
act->ipa_apply.ipp_espa_maxbits);
}
}
if (act->ipa_apply.ipp_km_proto != 0)
EMIT(SPD_ATTR_KM_PROTO, act->ipa_apply.ipp_km_proto);
if (act->ipa_apply.ipp_km_cookie != 0)
EMIT(SPD_ATTR_KM_PROTO, act->ipa_apply.ipp_km_cookie);
if (act->ipa_apply.ipp_replay_depth != 0)
EMIT(SPD_ATTR_REPLAY_DEPTH,
act->ipa_apply.ipp_replay_depth);
/* Add more here */
break;
}
return (offset);
}
static uint_t
spdsock_encode_action_list(uint8_t *base, uint_t offset,
const ipsec_action_t *ap)
{
struct spd_ext_actions *act;
uint_t nact = 0;
uint_t start = offset;
ASSERT(ALIGNED64(offset));
if (base != NULL) {
act = (struct spd_ext_actions *)(base + offset);
act->spd_actions_len = 0;
act->spd_actions_exttype = SPD_EXT_ACTION;
act->spd_actions_count = 0;
act->spd_actions_reserved = 0;
}
offset += sizeof (*act);
ASSERT(ALIGNED64(offset));
while (ap != NULL) {
offset = spdsock_encode_action(base, offset, ap);
ap = ap->ipa_next;
nact++;
if (ap != NULL) {
EMIT(SPD_ATTR_NEXT, 0);
}
}
EMIT(SPD_ATTR_END, 0);
ASSERT(ALIGNED64(offset));
if (base != NULL) {
act->spd_actions_count = nact;
act->spd_actions_len = SPD_8TO64(offset - start);
}
return (offset);
}
#undef EMIT
/* ARGSUSED */
static uint_t
spdsock_rule_flags(uint_t dir, uint_t af)
{
uint_t flags = 0;
if (dir == IPSEC_TYPE_INBOUND)
flags |= SPD_RULE_FLAG_INBOUND;
if (dir == IPSEC_TYPE_OUTBOUND)
flags |= SPD_RULE_FLAG_OUTBOUND;
return (flags);
}
static uint_t
spdsock_encode_rule_head(uint8_t *base, uint_t offset,
spd_msg_t *req, const ipsec_policy_t *rule, uint_t dir, uint_t af)
{
struct spd_msg *spmsg;
struct spd_rule *spr;
uint_t start = offset;
ASSERT(ALIGNED64(offset));
if (base != NULL) {
spmsg = (struct spd_msg *)(base + offset);
bzero(spmsg, sizeof (*spmsg));
spmsg->spd_msg_version = PF_POLICY_V1;
spmsg->spd_msg_type = SPD_DUMP;
spmsg->spd_msg_seq = req->spd_msg_seq;
spmsg->spd_msg_pid = req->spd_msg_pid;
}
offset += sizeof (struct spd_msg);
ASSERT(ALIGNED64(offset));
if (base != NULL) {
spr = (struct spd_rule *)(base + offset);
spr->spd_rule_type = SPD_EXT_RULE;
spr->spd_rule_priority = rule->ipsp_prio;
spr->spd_rule_flags = spdsock_rule_flags(dir, af);
spr->spd_rule_unused = 0;
spr->spd_rule_len = SPD_8TO64(sizeof (*spr));
spr->spd_rule_index = rule->ipsp_index;
}
offset += sizeof (struct spd_rule);
offset = spdsock_encode_sel(base, offset, rule->ipsp_sel);
offset = spdsock_encode_action_list(base, offset, rule->ipsp_act);
ASSERT(ALIGNED64(offset));
if (base != NULL) {
spmsg->spd_msg_len = SPD_8TO64(offset - start);
}
return (offset);
}
/* ARGSUSED */
static mblk_t *
spdsock_encode_rule(mblk_t *req, const ipsec_policy_t *rule,
uint_t dir, uint_t af)
{
mblk_t *m;
uint_t len;
spd_msg_t *mreq = (spd_msg_t *)req->b_rptr;
/*
* Figure out how much space we'll need.
*/
len = spdsock_encode_rule_head(NULL, 0, mreq, rule, dir, af);
/*
* Allocate mblk.
*/
m = allocb(len, BPRI_HI);
if (m == NULL)
return (NULL);
/*
* Fill it in..
*/
m->b_wptr = m->b_rptr + len;
bzero(m->b_rptr, len);
(void) spdsock_encode_rule_head(m->b_rptr, 0, mreq, rule, dir, af);
return (m);
}
static ipsec_policy_t *
spdsock_dump_next_rule(spdsock_t *ss, ipsec_policy_head_t *iph)
{
ipsec_policy_t *cur;
ASSERT(RW_READ_HELD(&iph->iph_lock));
cur = ss->spdsock_dump_cur_rule;
if (cur == NULL) {
int af = ss->spdsock_dump_cur_af;
int type = ss->spdsock_dump_cur_type;
do {
af++;
if (af >= IPSEC_NAF) {
af = IPSEC_AF_V4;
type++;
if (type >= IPSEC_NTYPES)
return (NULL);
}
cur = iph->iph_root[type].ipr[af];
} while (cur == NULL);
ss->spdsock_dump_cur_af = af;
ss->spdsock_dump_cur_type = type;
}
ss->spdsock_dump_count++;
ss->spdsock_dump_cur_rule = cur->ipsp_links.itl_next;
return (cur);
}
static mblk_t *
spdsock_dump_next_record(spdsock_t *ss)
{
ipsec_policy_head_t *iph;
ipsec_policy_t *rule;
mblk_t *m;
mblk_t *req = ss->spdsock_dump_req;
iph = ss->spdsock_dump_head;
ASSERT(iph != NULL);
rw_enter(&iph->iph_lock, RW_READER);
if (iph->iph_gen != ss->spdsock_dump_gen) {
rw_exit(&iph->iph_lock);
return (spdsock_dump_finish(ss, EAGAIN));
}
rule = spdsock_dump_next_rule(ss, iph);
if (!rule) {
rw_exit(&iph->iph_lock);
return (spdsock_dump_finish(ss, 0));
}
m = spdsock_encode_rule(req, rule, ss->spdsock_dump_cur_type,
ss->spdsock_dump_cur_af);
rw_exit(&iph->iph_lock);
if (m == NULL)
return (spdsock_dump_finish(ss, ENOMEM));
return (m);
}
/*
* Dump records until we run into flow-control back-pressure.
*/
static void
spdsock_dump_some(queue_t *q, spdsock_t *ss)
{
mblk_t *m, *dataind;
while ((ss->spdsock_dump_req != NULL) && canputnext(q)) {
m = spdsock_dump_next_record(ss);
if (m == NULL)
return;
dataind = allocb(sizeof (struct T_data_req), BPRI_HI);
if (dataind == NULL) {
freemsg(m);
return;
}
dataind->b_cont = m;
dataind->b_wptr += sizeof (struct T_data_req);
((struct T_data_ind *)dataind->b_rptr)->PRIM_type = T_DATA_IND;
((struct T_data_ind *)dataind->b_rptr)->MORE_flag = 0;
dataind->b_datap->db_type = M_PROTO;
putnext(q, dataind);
}
}
/*
* Start dumping.
* Format a start-of-dump record, and set up the stream and kick the rsrv
* procedure to continue the job..
*/
/* ARGSUSED */
static void
spdsock_dump(queue_t *q, ipsec_policy_head_t *iph,
mblk_t *mp, spd_ext_t **extv)
{
spdsock_t *ss = (spdsock_t *)q->q_ptr;
mblk_t *mr;
rw_enter(&iph->iph_lock, RW_READER);
mr = spdsock_dump_ruleset(mp, iph, 0, 0);
if (!mr) {
rw_exit(&iph->iph_lock);
spdsock_error(q, mp, ENOMEM, 0);
return;
}
ss->spdsock_dump_req = mp;
ss->spdsock_dump_head = iph;
ss->spdsock_dump_gen = iph->iph_gen;
ss->spdsock_dump_cur_type = 0;
ss->spdsock_dump_cur_af = IPSEC_AF_V4;
ss->spdsock_dump_cur_rule = iph->iph_root[0].ipr[IPSEC_AF_V4];
ss->spdsock_dump_count = 0;
rw_exit(&iph->iph_lock);
qreply(q, mr);
qenable(OTHERQ(q));
}
void
spdsock_clone(queue_t *q, mblk_t *mp)
{
int error = ipsec_clone_system_policy();
if (error != 0)
spdsock_error(q, mp, error, 0);
else
spd_echo(q, mp);
}
/*
* Process a SPD_ALGLIST request. The caller expects separate alg entries
* for AH authentication, ESP authentication, and ESP encryption.
* The same distinction is then used when setting the min and max key
* sizes when defining policies.
*/
#define SPDSOCK_AH_AUTH 0
#define SPDSOCK_ESP_AUTH 1
#define SPDSOCK_ESP_ENCR 2
#define SPDSOCK_NTYPES 3
static const uint_t algattr[SPDSOCK_NTYPES] = {
SPD_ATTR_AH_AUTH,
SPD_ATTR_ESP_AUTH,
SPD_ATTR_ESP_ENCR
};
static const uint_t minbitsattr[SPDSOCK_NTYPES] = {
SPD_ATTR_AH_MINBITS,
SPD_ATTR_ESPA_MINBITS,
SPD_ATTR_ENCR_MINBITS
};
static const uint_t maxbitsattr[SPDSOCK_NTYPES] = {
SPD_ATTR_AH_MAXBITS,
SPD_ATTR_ESPA_MAXBITS,
SPD_ATTR_ENCR_MAXBITS
};
static const uint_t defbitsattr[SPDSOCK_NTYPES] = {
SPD_ATTR_AH_DEFBITS,
SPD_ATTR_ESPA_DEFBITS,
SPD_ATTR_ENCR_DEFBITS
};
static const uint_t incrbitsattr[SPDSOCK_NTYPES] = {
SPD_ATTR_AH_INCRBITS,
SPD_ATTR_ESPA_INCRBITS,
SPD_ATTR_ENCR_INCRBITS
};
#define ATTRPERALG 6 /* fixed attributes per algs */
void
spdsock_alglist(queue_t *q, mblk_t *mp)
{
uint_t algtype;
uint_t algidx;
uint_t algcount;
uint_t size;
mblk_t *m;
uint8_t *cur;
spd_msg_t *msg;
struct spd_ext_actions *act;
struct spd_attribute *attr;
mutex_enter(&alg_lock);
/*
* The SPD client expects to receive separate entries for
* AH authentication and ESP authentication supported algorithms.
*
* Don't return the "any" algorithms, if defined, as no
* kernel policies can be set for these algorithms.
*/
algcount = 2 * ipsec_nalgs[IPSEC_ALG_AUTH] +
ipsec_nalgs[IPSEC_ALG_ENCR];
if (ipsec_alglists[IPSEC_ALG_AUTH][SADB_AALG_NONE] != NULL)
algcount--;
if (ipsec_alglists[IPSEC_ALG_ENCR][SADB_EALG_NONE] != NULL)
algcount--;
/*
* For each algorithm, we encode:
* ALG / MINBITS / MAXBITS / DEFBITS / INCRBITS / {END, NEXT}
*/
size = sizeof (spd_msg_t) + sizeof (struct spd_ext_actions) +
ATTRPERALG * sizeof (struct spd_attribute) * algcount;
ASSERT(ALIGNED64(size));
m = allocb(size, BPRI_HI);
if (m == NULL) {
mutex_exit(&alg_lock);
spdsock_error(q, mp, ENOMEM, 0);
return;
}
m->b_wptr = m->b_rptr + size;
cur = m->b_rptr;
msg = (spd_msg_t *)cur;
bcopy(mp->b_rptr, cur, sizeof (*msg));
msg->spd_msg_len = SPD_8TO64(size);
msg->spd_msg_errno = 0;
msg->spd_msg_diagnostic = 0;
cur += sizeof (*msg);
act = (struct spd_ext_actions *)cur;
cur += sizeof (*act);
act->spd_actions_len = SPD_8TO64(size - sizeof (spd_msg_t));
act->spd_actions_exttype = SPD_EXT_ACTION;
act->spd_actions_count = algcount;
act->spd_actions_reserved = 0;
attr = (struct spd_attribute *)cur;
#define EMIT(tag, value) { \
attr->spd_attr_tag = (tag); \
attr->spd_attr_value = (value); \
attr++; \
}
/*
* If you change the number of EMIT's here, change
* ATTRPERALG above to match
*/
#define EMITALGATTRS(_type) { \
EMIT(algattr[_type], algid); /* 1 */ \
EMIT(minbitsattr[_type], minbits); /* 2 */ \
EMIT(maxbitsattr[_type], maxbits); /* 3 */ \
EMIT(defbitsattr[_type], defbits); /* 4 */ \
EMIT(incrbitsattr[_type], incr); /* 5 */ \
EMIT(SPD_ATTR_NEXT, 0); /* 6 */ \
}
for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) {
int algid = ipsec_sortlist[algtype][algidx];
ipsec_alginfo_t *alg = ipsec_alglists[algtype][algid];
uint_t minbits = alg->alg_minbits;
uint_t maxbits = alg->alg_maxbits;
uint_t defbits = alg->alg_default_bits;
uint_t incr = alg->alg_increment;
if (algtype == IPSEC_ALG_AUTH) {
if (algid == SADB_AALG_NONE)
continue;
EMITALGATTRS(SPDSOCK_AH_AUTH);
EMITALGATTRS(SPDSOCK_ESP_AUTH);
} else {
if (algid == SADB_EALG_NONE)
continue;
ASSERT(algtype == IPSEC_ALG_ENCR);
EMITALGATTRS(SPDSOCK_ESP_ENCR);
}
}
}
mutex_exit(&alg_lock);
#undef EMITALGATTRS
#undef EMIT
#undef ATTRPERALG
attr--;
attr->spd_attr_tag = SPD_ATTR_END;
freemsg(mp);
qreply(q, m);
}
/*
* Process a SPD_DUMPALGS request.
*/
#define ATTRPERALG 7 /* fixed attributes per algs */
void
spdsock_dumpalgs(queue_t *q, mblk_t *mp)
{
uint_t algtype;
uint_t algidx;
uint_t size;
mblk_t *m;
uint8_t *cur;
spd_msg_t *msg;
struct spd_ext_actions *act;
struct spd_attribute *attr;
ipsec_alginfo_t *alg;
uint_t algid;
uint_t i;
uint_t alg_size;
mutex_enter(&alg_lock);
/*
* For each algorithm, we encode:
* ALG / MINBITS / MAXBITS / DEFBITS / INCRBITS / {END, NEXT}
*
* ALG_ID / ALG_PROTO / ALG_INCRBITS / ALG_NKEYSIZES / ALG_KEYSIZE*
* ALG_NBLOCKSIZES / ALG_BLOCKSIZE* / ALG_MECHNAME / {END, NEXT}
*/
/*
* Compute the size of the SPD message.
*/
size = sizeof (spd_msg_t) + sizeof (struct spd_ext_actions);
for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) {
algid = ipsec_sortlist[algtype][algidx];
alg = ipsec_alglists[algtype][algid];
alg_size = sizeof (struct spd_attribute) *
(ATTRPERALG + alg->alg_nkey_sizes +
alg->alg_nblock_sizes) + CRYPTO_MAX_MECH_NAME;
size += alg_size;
}
}
ASSERT(ALIGNED64(size));
m = allocb(size, BPRI_HI);
if (m == NULL) {
mutex_exit(&alg_lock);
spdsock_error(q, mp, ENOMEM, 0);
return;
}
m->b_wptr = m->b_rptr + size;
cur = m->b_rptr;
msg = (spd_msg_t *)cur;
bcopy(mp->b_rptr, cur, sizeof (*msg));
msg->spd_msg_len = SPD_8TO64(size);
msg->spd_msg_errno = 0;
msg->spd_msg_diagnostic = 0;
cur += sizeof (*msg);
act = (struct spd_ext_actions *)cur;
cur += sizeof (*act);
act->spd_actions_len = SPD_8TO64(size - sizeof (spd_msg_t));
act->spd_actions_exttype = SPD_EXT_ACTION;
act->spd_actions_count = ipsec_nalgs[IPSEC_ALG_AUTH] +
ipsec_nalgs[IPSEC_ALG_ENCR];
act->spd_actions_reserved = 0;
attr = (struct spd_attribute *)cur;
#define EMIT(tag, value) { \
attr->spd_attr_tag = (tag); \
attr->spd_attr_value = (value); \
attr++; \
}
for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) {
algid = ipsec_sortlist[algtype][algidx];
alg = ipsec_alglists[algtype][algid];
/*
* If you change the number of EMIT's here, change
* ATTRPERALG above to match
*/
EMIT(SPD_ATTR_ALG_ID, algid);
EMIT(SPD_ATTR_ALG_PROTO, algproto[algtype]);
EMIT(SPD_ATTR_ALG_INCRBITS, alg->alg_increment);
EMIT(SPD_ATTR_ALG_NKEYSIZES, alg->alg_nkey_sizes);
for (i = 0; i < alg->alg_nkey_sizes; i++)
EMIT(SPD_ATTR_ALG_KEYSIZE,
alg->alg_key_sizes[i]);
EMIT(SPD_ATTR_ALG_NBLOCKSIZES, alg->alg_nblock_sizes);
for (i = 0; i < alg->alg_nblock_sizes; i++)
EMIT(SPD_ATTR_ALG_BLOCKSIZE,
alg->alg_block_sizes[i]);
EMIT(SPD_ATTR_ALG_MECHNAME, CRYPTO_MAX_MECH_NAME);
bcopy(alg->alg_mech_name, attr, CRYPTO_MAX_MECH_NAME);
attr = (struct spd_attribute *)((char *)attr +
CRYPTO_MAX_MECH_NAME);
EMIT(SPD_ATTR_NEXT, 0);
}
}
mutex_exit(&alg_lock);
#undef EMITALGATTRS
#undef EMIT
#undef ATTRPERALG
attr--;
attr->spd_attr_tag = SPD_ATTR_END;
freemsg(mp);
qreply(q, m);
}
/*
* Do the actual work of processing an SPD_UPDATEALGS request. Can
* be invoked either once IPsec is loaded on a cached request, or
* when a request is received while IPsec is loaded.
*/
static void
spdsock_do_updatealg(spd_ext_t *extv[], int *diag)
{
struct spd_ext_actions *actp;
struct spd_attribute *attr, *endattr;
uint64_t *start, *end;
ipsec_alginfo_t *alg = NULL;
ipsec_algtype_t alg_type = 0;
boolean_t skip_alg = B_TRUE, doing_proto = B_FALSE;
uint_t i, cur_key, cur_block, algid;
*diag = -1;
ASSERT(MUTEX_HELD(&spdsock_alg_lock));
/* parse the message, building the list of algorithms */
actp = (struct spd_ext_actions *)extv[SPD_EXT_ACTION];
if (actp == NULL) {
*diag = SPD_DIAGNOSTIC_NO_ACTION_EXT;
return;
}
start = (uint64_t *)actp;
end = (start + actp->spd_actions_len);
endattr = (struct spd_attribute *)end;
attr = (struct spd_attribute *)&actp[1];
bzero(spdsock_algs, IPSEC_NALGTYPES * IPSEC_MAX_ALGS *
sizeof (ipsec_alginfo_t *));
alg = kmem_zalloc(sizeof (*alg), KM_SLEEP);
#define ALG_KEY_SIZES(a) (((a)->alg_nkey_sizes + 1) * sizeof (uint16_t))
#define ALG_BLOCK_SIZES(a) (((a)->alg_nblock_sizes + 1) * sizeof (uint16_t))
while (attr < endattr) {
switch (attr->spd_attr_tag) {
case SPD_ATTR_NOP:
case SPD_ATTR_EMPTY:
break;
case SPD_ATTR_END:
attr = endattr;
/* FALLTHRU */
case SPD_ATTR_NEXT:
if (doing_proto) {
doing_proto = B_FALSE;
break;
}
if (skip_alg) {
ipsec_alg_free(alg);
} else {
ipsec_alg_free(
spdsock_algs[alg_type][alg->alg_id]);
spdsock_algs[alg_type][alg->alg_id] = alg;
}
alg = kmem_zalloc(sizeof (*alg), KM_SLEEP);
break;
case SPD_ATTR_ALG_ID:
if (attr->spd_attr_value >= IPSEC_MAX_ALGS) {
ss1dbg(("spdsock_do_updatealg: "
"invalid alg id %d\n",
attr->spd_attr_value));
*diag = SPD_DIAGNOSTIC_ALG_ID_RANGE;
goto bail;
}
alg->alg_id = attr->spd_attr_value;
break;
case SPD_ATTR_ALG_PROTO:
/* find the alg type */
for (i = 0; i < NALGPROTOS; i++)
if (algproto[i] == attr->spd_attr_value)
break;
skip_alg = (i == NALGPROTOS);
if (!skip_alg)
alg_type = i;
break;
case SPD_ATTR_ALG_INCRBITS:
alg->alg_increment = attr->spd_attr_value;
break;
case SPD_ATTR_ALG_NKEYSIZES:
if (alg->alg_key_sizes != NULL) {
kmem_free(alg->alg_key_sizes,
ALG_KEY_SIZES(alg));
}
alg->alg_nkey_sizes = attr->spd_attr_value;
/*
* Allocate room for the trailing zero key size
* value as well.
*/
alg->alg_key_sizes = kmem_zalloc(ALG_KEY_SIZES(alg),
KM_SLEEP);
cur_key = 0;
break;
case SPD_ATTR_ALG_KEYSIZE:
if (alg->alg_key_sizes == NULL ||
cur_key >= alg->alg_nkey_sizes) {
ss1dbg(("spdsock_do_updatealg: "
"too many key sizes\n"));
*diag = SPD_DIAGNOSTIC_ALG_NUM_KEY_SIZES;
goto bail;
}
alg->alg_key_sizes[cur_key++] = attr->spd_attr_value;
break;
case SPD_ATTR_ALG_NBLOCKSIZES:
if (alg->alg_block_sizes != NULL) {
kmem_free(alg->alg_block_sizes,
ALG_BLOCK_SIZES(alg));
}
alg->alg_nblock_sizes = attr->spd_attr_value;
/*
* Allocate room for the trailing zero block size
* value as well.
*/
alg->alg_block_sizes = kmem_zalloc(ALG_BLOCK_SIZES(alg),
KM_SLEEP);
cur_block = 0;
break;
case SPD_ATTR_ALG_BLOCKSIZE:
if (alg->alg_block_sizes == NULL ||
cur_block >= alg->alg_nblock_sizes) {
ss1dbg(("spdsock_do_updatealg: "
"too many block sizes\n"));
*diag = SPD_DIAGNOSTIC_ALG_NUM_BLOCK_SIZES;
goto bail;
}
alg->alg_block_sizes[cur_block++] =
attr->spd_attr_value;
break;
case SPD_ATTR_ALG_MECHNAME: {
char *mech_name;
if (attr->spd_attr_value > CRYPTO_MAX_MECH_NAME) {
ss1dbg(("spdsock_do_updatealg: "
"mech name too long\n"));
*diag = SPD_DIAGNOSTIC_ALG_MECH_NAME_LEN;
goto bail;
}
mech_name = (char *)(attr + 1);
bcopy(mech_name, alg->alg_mech_name,
attr->spd_attr_value);
alg->alg_mech_name[CRYPTO_MAX_MECH_NAME-1] = '\0';
attr = (struct spd_attribute *)((char *)attr +
attr->spd_attr_value);
break;
}
case SPD_ATTR_PROTO_ID:
doing_proto = B_TRUE;
for (i = 0; i < NALGPROTOS; i++) {
if (algproto[i] == attr->spd_attr_value) {
alg_type = i;
break;
}
}
break;
case SPD_ATTR_PROTO_EXEC_MODE:
if (!doing_proto)
break;
for (i = 0; i < NEXECMODES; i++) {
if (execmodes[i] == attr->spd_attr_value) {
spdsock_algs_exec_mode[alg_type] = i;
break;
}
}
break;
}
attr++;
}
#undef ALG_KEY_SIZES
#undef ALG_BLOCK_SIZES
/* update the algorithm tables */
spdsock_merge_algs();
bail:
/* cleanup */
ipsec_alg_free(alg);
for (alg_type = 0; alg_type < IPSEC_NALGTYPES; alg_type++)
for (algid = 0; algid < IPSEC_MAX_ALGS; algid++)
if (spdsock_algs[alg_type][algid] != NULL)
ipsec_alg_free(spdsock_algs[alg_type][algid]);
}
/*
* Process an SPD_UPDATEALGS request. If IPsec is not loaded, queue
* the request until IPsec loads. If IPsec is loaded, act on it
* immediately.
*/
static void
spdsock_updatealg(queue_t *q, mblk_t *mp, spd_ext_t *extv[])
{
if (!ipsec_loaded()) {
/*
* IPsec is not loaded, save request and return nicely,
* the message will be processed once IPsec loads.
*/
mblk_t *new_mp;
/* last update message wins */
if ((new_mp = copymsg(mp)) == NULL) {
spdsock_error(q, mp, ENOMEM, 0);
return;
}
mutex_enter(&spdsock_alg_lock);
bcopy(extv, spdsock_extv_algs,
sizeof (spd_ext_t *) * (SPD_EXT_MAX + 1));
if (spdsock_mp_algs != NULL)
freemsg(spdsock_mp_algs);
spdsock_mp_algs = mp;
spdsock_algs_pending = B_TRUE;
mutex_exit(&spdsock_alg_lock);
spd_echo(q, new_mp);
} else {
/*
* IPsec is loaded, act on the message immediately.
*/
int diag;
mutex_enter(&spdsock_alg_lock);
spdsock_do_updatealg(extv, &diag);
mutex_exit(&spdsock_alg_lock);
if (diag == -1)
spd_echo(q, mp);
else
spdsock_diag(q, mp, diag);
}
}
static void
spdsock_parse(queue_t *q, mblk_t *mp)
{
spd_msg_t *spmsg;
spd_ext_t *extv[SPD_EXT_MAX + 1];
uint_t msgsize;
ipsec_policy_head_t *iph;
/* Make sure nothing's below me. */
ASSERT(WR(q)->q_next == NULL);
spmsg = (spd_msg_t *)mp->b_rptr;
msgsize = SPD_64TO8(spmsg->spd_msg_len);
if (msgdsize(mp) != msgsize) {
/*
* Message len incorrect w.r.t. actual size. Send an error
* (EMSGSIZE). It may be necessary to massage things a
* bit. For example, if the spd_msg_type is hosed,
* I need to set it to SPD_RESERVED to get delivery to
* do the right thing. Then again, maybe just letting
* the error delivery do the right thing.
*/
ss2dbg(("mblk (%lu) and base (%d) message sizes don't jibe.\n",
msgdsize(mp), msgsize));
spdsock_error(q, mp, EMSGSIZE, SPD_DIAGNOSTIC_NONE);
return;
}
if (msgsize > (uint_t)(mp->b_wptr - mp->b_rptr)) {
/* Get all message into one mblk. */
if (pullupmsg(mp, -1) == 0) {
/*
* Something screwy happened.
*/
ss3dbg(("spdsock_parse: pullupmsg() failed.\n"));
return;
} else {
spmsg = (spd_msg_t *)mp->b_rptr;
}
}
switch (spdsock_get_ext(extv, spmsg, msgsize)) {
case KGE_DUP:
/* Handle duplicate extension. */
ss1dbg(("Got duplicate extension of type %d.\n",
extv[0]->spd_ext_type));
spdsock_diag(q, mp, dup_ext_diag[extv[0]->spd_ext_type]);
return;
case KGE_UNK:
/* Handle unknown extension. */
ss1dbg(("Got unknown extension of type %d.\n",
extv[0]->spd_ext_type));
spdsock_diag(q, mp, SPD_DIAGNOSTIC_UNKNOWN_EXT);
return;
case KGE_LEN:
/* Length error. */
ss1dbg(("Length %d on extension type %d overrun or 0.\n",
extv[0]->spd_ext_len, extv[0]->spd_ext_type));
spdsock_diag(q, mp, SPD_DIAGNOSTIC_BAD_EXTLEN);
return;
case KGE_CHK:
/* Reality check failed. */
ss1dbg(("Reality check failed on extension type %d.\n",
extv[0]->spd_ext_type));
spdsock_diag(q, mp, bad_ext_diag[extv[0]->spd_ext_type]);
return;
default:
/* Default case is no errors. */
break;
}
/*
* Which rule set are we operating on today?
*/
switch (spmsg->spd_msg_spdid) {
case SPD_ACTIVE:
iph = ipsec_system_policy();
break;
case SPD_STANDBY:
iph = ipsec_inactive_policy();
break;
default:
spdsock_diag(q, mp, SPD_DIAGNOSTIC_BAD_SPDID);
return;
}
/*
* Special-case SPD_UPDATEALGS so as not to load IPsec.
*/
if (!ipsec_loaded() && spmsg->spd_msg_type != SPD_UPDATEALGS) {
spdsock_t *ss = (spdsock_t *)q->q_ptr;
ASSERT(ss != NULL);
ipsec_loader_loadnow();
ss->spdsock_timeout_arg = mp;
ss->spdsock_timeout = qtimeout(q, spdsock_loadcheck,
q, LOADCHECK_INTERVAL);
return;
}
switch (spmsg->spd_msg_type) {
case SPD_UPDATEALGS:
spdsock_updatealg(q, mp, extv);
return;
case SPD_FLUSH:
spdsock_flush(q, iph, mp, extv);
return;
case SPD_ADDRULE:
spdsock_addrule(q, iph, mp, extv);
return;
case SPD_DELETERULE:
spdsock_deleterule(q, iph, mp, extv);
return;
case SPD_FLIP:
spdsock_flip(q, mp);
return;
case SPD_LOOKUP:
spdsock_lookup(q, iph, mp, extv);
return;
case SPD_DUMP:
spdsock_dump(q, iph, mp, extv);
return;
case SPD_CLONE:
spdsock_clone(q, mp);
return;
case SPD_ALGLIST:
spdsock_alglist(q, mp);
return;
case SPD_DUMPALGS:
spdsock_dumpalgs(q, mp);
return;
default:
spdsock_diag(q, mp, SPD_DIAGNOSTIC_BAD_MSG_TYPE);
return;
}
}
/*
* If an algorithm mapping was received before IPsec was loaded, process it.
* Called from the IPsec loader.
*/
void
spdsock_update_pending_algs(void)
{
mutex_enter(&spdsock_alg_lock);
if (spdsock_algs_pending) {
int diag;
spdsock_do_updatealg(spdsock_extv_algs, &diag);
spdsock_algs_pending = B_FALSE;
}
mutex_exit(&spdsock_alg_lock);
}
static void
spdsock_loadcheck(void *arg)
{
queue_t *q = (queue_t *)arg;
spdsock_t *ss = (spdsock_t *)q->q_ptr;
mblk_t *mp;
ASSERT(ss != NULL);
ss->spdsock_timeout = 0;
mp = ss->spdsock_timeout_arg;
ASSERT(mp != NULL);
ss->spdsock_timeout_arg = NULL;
if (ipsec_failed())
spdsock_error(q, mp, EPROTONOSUPPORT, 0);
else
spdsock_parse(q, mp);
}
/*
* Copy relevant state bits.
*/
static void
spdsock_copy_info(struct T_info_ack *tap, spdsock_t *ss)
{
*tap = spdsock_g_t_info_ack;
tap->CURRENT_state = ss->spdsock_state;
tap->OPT_size = spdsock_max_optsize;
}
/*
* This routine responds to T_CAPABILITY_REQ messages. It is called by
* spdsock_wput. Much of the T_CAPABILITY_ACK information is copied from
* spdsock_g_t_info_ack. The current state of the stream is copied from
* spdsock_state.
*/
static void
spdsock_capability_req(queue_t *q, mblk_t *mp)
{
spdsock_t *ss = (spdsock_t *)q->q_ptr;
t_uscalar_t cap_bits1;
struct T_capability_ack *tcap;
cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
mp->b_datap->db_type, T_CAPABILITY_ACK);
if (mp == NULL)
return;
tcap = (struct T_capability_ack *)mp->b_rptr;
tcap->CAP_bits1 = 0;
if (cap_bits1 & TC1_INFO) {
spdsock_copy_info(&tcap->INFO_ack, ss);
tcap->CAP_bits1 |= TC1_INFO;
}
qreply(q, mp);
}
/*
* This routine responds to T_INFO_REQ messages. It is called by
* spdsock_wput_other.
* Most of the T_INFO_ACK information is copied from spdsock_g_t_info_ack.
* The current state of the stream is copied from spdsock_state.
*/
static void
spdsock_info_req(q, mp)
queue_t *q;
mblk_t *mp;
{
mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
T_INFO_ACK);
if (mp == NULL)
return;
spdsock_copy_info((struct T_info_ack *)mp->b_rptr,
(spdsock_t *)q->q_ptr);
qreply(q, mp);
}
/*
* spdsock_err_ack. This routine creates a
* T_ERROR_ACK message and passes it
* upstream.
*/
static void
spdsock_err_ack(q, mp, t_error, sys_error)
queue_t *q;
mblk_t *mp;
int t_error;
int sys_error;
{
if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
qreply(q, mp);
}
/*
* This routine retrieves the current status of socket options.
* It returns the size of the option retrieved.
*/
/* ARGSUSED */
int
spdsock_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
{
int *i1 = (int *)ptr;
switch (level) {
case SOL_SOCKET:
switch (name) {
case SO_TYPE:
*i1 = SOCK_RAW;
break;
/*
* The following two items can be manipulated,
* but changing them should do nothing.
*/
case SO_SNDBUF:
*i1 = (int)q->q_hiwat;
break;
case SO_RCVBUF:
*i1 = (int)(RD(q)->q_hiwat);
break;
}
break;
default:
return (0);
}
return (sizeof (int));
}
/*
* This routine sets socket options.
*/
/* ARGSUSED */
int
spdsock_opt_set(queue_t *q, uint_t mgmt_flags, int level, int name,
uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
{
int *i1 = (int *)invalp;
switch (level) {
case SOL_SOCKET:
switch (name) {
case SO_SNDBUF:
if (*i1 > spdsock_max_buf)
return (ENOBUFS);
q->q_hiwat = *i1;
break;
case SO_RCVBUF:
if (*i1 > spdsock_max_buf)
return (ENOBUFS);
RD(q)->q_hiwat = *i1;
(void) mi_set_sth_hiwat(RD(q), *i1);
break;
}
break;
}
return (0);
}
/*
* Handle STREAMS messages.
*/
static void
spdsock_wput_other(queue_t *q, mblk_t *mp)
{
struct iocblk *iocp;
int error;
switch (mp->b_datap->db_type) {
case M_PROTO:
case M_PCPROTO:
if ((mp->b_wptr - mp->b_rptr) < sizeof (long)) {
ss3dbg((
"spdsock_wput_other: Not big enough M_PROTO\n"));
freemsg(mp);
return;
}
switch (((union T_primitives *)mp->b_rptr)->type) {
case T_CAPABILITY_REQ:
spdsock_capability_req(q, mp);
return;
case T_INFO_REQ:
spdsock_info_req(q, mp);
return;
case T_SVR4_OPTMGMT_REQ:
(void) svr4_optcom_req(q, mp, DB_CREDDEF(mp, kcred),
&spdsock_opt_obj);
return;
case T_OPTMGMT_REQ:
(void) tpi_optcom_req(q, mp, DB_CREDDEF(mp, kcred),
&spdsock_opt_obj);
return;
case T_DATA_REQ:
case T_EXDATA_REQ:
case T_ORDREL_REQ:
/* Illegal for spdsock. */
freemsg(mp);
(void) putnextctl1(RD(q), M_ERROR, EPROTO);
return;
default:
/* Not supported by spdsock. */
spdsock_err_ack(q, mp, TNOTSUPPORT, 0);
return;
}
case M_IOCTL:
iocp = (struct iocblk *)mp->b_rptr;
error = EINVAL;
switch (iocp->ioc_cmd) {
case ND_SET:
case ND_GET:
if (nd_getset(q, spdsock_g_nd, mp)) {
qreply(q, mp);
return;
} else
error = ENOENT;
/* FALLTHRU */
default:
miocnak(q, mp, 0, error);
return;
}
case M_FLUSH:
if (*mp->b_rptr & FLUSHW) {
flushq(q, FLUSHALL);
*mp->b_rptr &= ~FLUSHW;
}
if (*mp->b_rptr & FLUSHR) {
qreply(q, mp);
return;
}
/* Else FALLTHRU */
}
/* If fell through, just black-hole the message. */
freemsg(mp);
}
static void
spdsock_wput(queue_t *q, mblk_t *mp)
{
uint8_t *rptr = mp->b_rptr;
mblk_t *mp1;
spdsock_t *ss = (spdsock_t *)q->q_ptr;
/*
* If we're dumping, defer processing other messages until the
* dump completes.
*/
if (ss->spdsock_dump_req != NULL) {
if (!putq(q, mp))
freemsg(mp);
return;
}
switch (mp->b_datap->db_type) {
case M_DATA:
/*
* Silently discard.
*/
ss2dbg(("raw M_DATA in spdsock.\n"));
freemsg(mp);
return;
case M_PROTO:
case M_PCPROTO:
if ((mp->b_wptr - rptr) >= sizeof (struct T_data_req)) {
if (((union T_primitives *)rptr)->type == T_DATA_REQ) {
if ((mp1 = mp->b_cont) == NULL) {
/* No data after T_DATA_REQ. */
ss2dbg(("No data after DATA_REQ.\n"));
freemsg(mp);
return;
}
freeb(mp);
mp = mp1;
ss2dbg(("T_DATA_REQ\n"));
break; /* Out of switch. */
}
}
/* FALLTHRU */
default:
ss3dbg(("In default wput case (%d %d).\n",
mp->b_datap->db_type, ((union T_primitives *)rptr)->type));
spdsock_wput_other(q, mp);
return;
}
/* I now have a PF_POLICY message in an M_DATA block. */
spdsock_parse(q, mp);
}
/*
* Device open procedure, called when new queue pair created.
* We are passed the read-side queue.
*/
/* ARGSUSED */
static int
spdsock_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
spdsock_t *ss;
queue_t *oq = OTHERQ(q);
minor_t ssminor;
if (secpolicy_net_config(credp, B_FALSE) != 0)
return (EPERM);
if (q->q_ptr != NULL)
return (0); /* Re-open of an already open instance. */
if (sflag & MODOPEN)
return (EINVAL);
ss2dbg(("Made it into PF_POLICY socket open.\n"));
ssminor = (minor_t)(uintptr_t)vmem_alloc(spdsock_vmem, 1, VM_NOSLEEP);
if (ssminor == 0)
return (ENOMEM);
ss = kmem_zalloc(sizeof (spdsock_t), KM_NOSLEEP);
if (ss == NULL) {
vmem_free(spdsock_vmem, (void *)(uintptr_t)ssminor, 1);
return (ENOMEM);
}
ss->spdsock_minor = ssminor;
ss->spdsock_state = TS_UNBND;
ss->spdsock_dump_req = NULL;
q->q_ptr = ss;
oq->q_ptr = ss;
q->q_hiwat = spdsock_recv_hiwat;
oq->q_hiwat = spdsock_xmit_hiwat;
oq->q_lowat = spdsock_xmit_lowat;
qprocson(q);
(void) mi_set_sth_hiwat(q, spdsock_recv_hiwat);
*devp = makedevice(getmajor(*devp), ss->spdsock_minor);
return (0);
}
/*
* Read-side service procedure, invoked when we get back-enabled
* when buffer space becomes available.
*
* Dump another chunk if we were dumping before; when we finish, kick
* the write-side queue in case it's waiting for read queue space.
*/
void
spdsock_rsrv(queue_t *q)
{
spdsock_t *ss = q->q_ptr;
if (ss->spdsock_dump_req != NULL)
spdsock_dump_some(q, ss);
if (ss->spdsock_dump_req == NULL)
qenable(OTHERQ(q));
}
/*
* Write-side service procedure, invoked when we defer processing
* if another message is received while a dump is in progress.
*/
void
spdsock_wsrv(queue_t *q)
{
spdsock_t *ss = q->q_ptr;
mblk_t *mp;
if (ss->spdsock_dump_req != NULL) {
qenable(OTHERQ(q));
return;
}
while ((mp = getq(q)) != NULL) {
if (ipsec_loaded()) {
spdsock_wput(q, mp);
if (ss->spdsock_dump_req != NULL)
return;
} else if (!ipsec_failed()) {
(void) putq(q, mp);
} else {
spdsock_error(q, mp, EPFNOSUPPORT, 0);
}
}
}
static int
spdsock_close(queue_t *q)
{
spdsock_t *ss = q->q_ptr;
qprocsoff(q);
/* Safe assumption. */
ASSERT(ss != NULL);
if (ss->spdsock_timeout != 0)
(void) quntimeout(q, ss->spdsock_timeout);
ss3dbg(("Driver close, PF_POLICY socket is going away.\n"));
vmem_free(spdsock_vmem, (void *)(uintptr_t)ss->spdsock_minor, 1);
kmem_free(ss, sizeof (spdsock_t));
return (0);
}
/*
* Merge the IPsec algorithms tables with the received algorithm information.
*/
void
spdsock_merge_algs(void)
{
ipsec_alginfo_t *alg, *oalg;
ipsec_algtype_t algtype;
uint_t algidx, algid, nalgs;
crypto_mech_name_t *mechs;
uint_t mech_count, mech_idx;
ASSERT(MUTEX_HELD(&spdsock_alg_lock));
/*
* Get the list of supported mechanisms from the crypto framework.
* If a mechanism is supported by KCF, resolve its mechanism
* id and mark it as being valid. This operation must be done
* without holding alg_lock, since it can cause a provider
* module to be loaded and the provider notification callback to
* be invoked.
*/
mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
for (algid = 0; algid < IPSEC_MAX_ALGS; algid++) {
int algflags = 0;
crypto_mech_type_t mt = CRYPTO_MECHANISM_INVALID;
if ((alg = spdsock_algs[algtype][algid]) == NULL)
continue;
/*
* The NULL encryption algorithm is a special
* case because there are no mechanisms, yet
* the algorithm is still valid.
*/
if (alg->alg_id == SADB_EALG_NULL) {
alg->alg_mech_type = CRYPTO_MECHANISM_INVALID;
alg->alg_flags = ALG_FLAG_VALID;
continue;
}
for (mech_idx = 0; mech_idx < mech_count; mech_idx++) {
if (strncmp(alg->alg_mech_name, mechs[mech_idx],
CRYPTO_MAX_MECH_NAME) == 0) {
mt = crypto_mech2id(alg->alg_mech_name);
ASSERT(mt != CRYPTO_MECHANISM_INVALID);
algflags = ALG_FLAG_VALID;
break;
}
}
alg->alg_mech_type = mt;
alg->alg_flags = algflags;
}
}
mutex_enter(&alg_lock);
/*
* For each algorithm currently defined, check if it is
* present in the new tables created from the SPD_UPDATEALGS
* message received from user-space.
* Delete the algorithm entries that are currently defined
* but not part of the new tables.
*/
for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
nalgs = ipsec_nalgs[algtype];
for (algidx = 0; algidx < nalgs; algidx++) {
algid = ipsec_sortlist[algtype][algidx];
if (spdsock_algs[algtype][algid] == NULL)
ipsec_alg_unreg(algtype, algid);
}
}
/*
* For each algorithm we just received, check if it is
* present in the currently defined tables. If it is, swap
* the entry with the one we just allocated.
* If the new algorithm is not in the current tables,
* add it.
*/
for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
for (algid = 0; algid < IPSEC_MAX_ALGS; algid++) {
if ((alg = spdsock_algs[algtype][algid]) == NULL)
continue;
if ((oalg = ipsec_alglists[algtype][algid]) == NULL) {
/*
* New algorithm, add it to the algorithm
* table.
*/
ipsec_alg_reg(algtype, alg);
} else {
/*
* Algorithm is already in the table. Swap
* the existing entry with the new one.
*/
ipsec_alg_fix_min_max(alg, algtype);
ipsec_alglists[algtype][algid] = alg;
ipsec_alg_free(oalg);
}
spdsock_algs[algtype][algid] = NULL;
}
}
for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++)
ipsec_algs_exec_mode[algtype] = spdsock_algs_exec_mode[algtype];
mutex_exit(&alg_lock);
crypto_free_mech_list(mechs, mech_count);
ipsecah_algs_changed();
ipsecesp_algs_changed();
}