spd.c revision 1a5e258f5471356ca102c7176637cdce45bac147
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* IPsec Security Policy Database.
*
* This module maintains the SPD and provides routines used by ip and ip6
* to apply IPsec policy to inbound and outbound datagrams.
*/
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/sysmacros.h>
#include <sys/strsubr.h>
#include <sys/strsun.h>
#include <sys/strlog.h>
#include <sys/strsun.h>
#include <sys/cmn_err.h>
#include <sys/zone.h>
#include <sys/systm.h>
#include <sys/param.h>
#include <sys/kmem.h>
#include <sys/ddi.h>
#include <sys/crypto/api.h>
#include <inet/common.h>
#include <inet/mi.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet/udp.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <net/pfkeyv2.h>
#include <net/pfpolicy.h>
#include <inet/sadb.h>
#include <inet/ipsec_impl.h>
#include <inet/ip_impl.h> /* For IP_MOD_ID */
#include <inet/ipsecah.h>
#include <inet/ipsecesp.h>
#include <inet/ipdrop.h>
#include <inet/ipclassifier.h>
#include <inet/iptun.h>
#include <inet/iptun/iptun_impl.h>
static void ipsec_update_present_flags(ipsec_stack_t *);
static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
netstack_t *);
static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
ipha_t *, ip6_t *, uint64_t, ip_recv_attr_t *, netstack_t *);
static void ipsec_action_free_table(ipsec_action_t *);
static void ipsec_action_reclaim(void *);
static void ipsec_action_reclaim_stack(ipsec_stack_t *);
static void ipsid_init(netstack_t *);
static void ipsid_fini(netstack_t *);
/* sel_flags values for ipsec_init_inbound_sel(). */
#define SEL_NONE 0x0000
#define SEL_PORT_POLICY 0x0001
#define SEL_IS_ICMP 0x0002
#define SEL_TUNNEL_MODE 0x0004
#define SEL_POST_FRAG 0x0008
/* Return values for ipsec_init_inbound_sel(). */
typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
selret_t;
static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
ipha_t *, ip6_t *, uint8_t);
static boolean_t ipsec_check_ipsecin_action(ip_recv_attr_t *, mblk_t *,
struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
kstat_named_t **, netstack_t *);
static void ipsec_unregister_prov_update(void);
static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
static boolean_t ipsec_kstat_init(ipsec_stack_t *);
static void ipsec_kstat_destroy(ipsec_stack_t *);
static int ipsec_free_tables(ipsec_stack_t *);
static int tunnel_compare(const void *, const void *);
static void ipsec_freemsg_chain(mblk_t *);
static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *,
struct kstat_named *, ipdropper_t *);
static boolean_t ipsec_kstat_init(ipsec_stack_t *);
static void ipsec_kstat_destroy(ipsec_stack_t *);
static int ipsec_free_tables(ipsec_stack_t *);
static int tunnel_compare(const void *, const void *);
static void ipsec_freemsg_chain(mblk_t *);
/*
* Selector hash table is statically sized at module load time.
* we default to 251 buckets, which is the largest prime number under 255
*/
#define IPSEC_SPDHASH_DEFAULT 251
/* SPD hash-size tunable per tunnel. */
#define TUN_SPDHASH_DEFAULT 5
uint32_t ipsec_spd_hashsize;
uint32_t tun_spd_hashsize;
#define IPSEC_SEL_NOHASH ((uint32_t)(~0))
/*
* Handle global across all stack instances
*/
static crypto_notify_handle_t prov_update_handle = NULL;
static kmem_cache_t *ipsec_action_cache;
static kmem_cache_t *ipsec_sel_cache;
static kmem_cache_t *ipsec_pol_cache;
/* Frag cache prototypes */
static void ipsec_fragcache_clean(ipsec_fragcache_t *, ipsec_stack_t *);
static ipsec_fragcache_entry_t *fragcache_delentry(int,
ipsec_fragcache_entry_t *, ipsec_fragcache_t *, ipsec_stack_t *);
boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
void ipsec_fragcache_uninit(ipsec_fragcache_t *, ipsec_stack_t *ipss);
mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *,
int, ipsec_stack_t *);
int ipsec_hdr_pullup_needed = 0;
int ipsec_weird_null_inbound_policy = 0;
#define ALGBITS_ROUND_DOWN(x, align) (((x)/(align))*(align))
#define ALGBITS_ROUND_UP(x, align) ALGBITS_ROUND_DOWN((x)+(align)-1, align)
/*
* Inbound traffic should have matching identities for both SA's.
*/
#define SA_IDS_MATCH(sa1, sa2) \
(((sa1) == NULL) || ((sa2) == NULL) || \
(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) && \
(((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
/*
* IPv6 Fragments
*/
#define IS_V6_FRAGMENT(ipp) (ipp.ipp_fields & IPPF_FRAGHDR)
/*
* Policy failure messages.
*/
static char *ipsec_policy_failure_msgs[] = {
/* IPSEC_POLICY_NOT_NEEDED */
"%s: Dropping the datagram because the incoming packet "
"is %s, but the recipient expects clear; Source %s, "
"Destination %s.\n",
/* IPSEC_POLICY_MISMATCH */
"%s: Policy Failure for the incoming packet (%s); Source %s, "
"Destination %s.\n",
/* IPSEC_POLICY_AUTH_NOT_NEEDED */
"%s: Authentication present while not expected in the "
"incoming %s packet; Source %s, Destination %s.\n",
/* IPSEC_POLICY_ENCR_NOT_NEEDED */
"%s: Encryption present while not expected in the "
"incoming %s packet; Source %s, Destination %s.\n",
/* IPSEC_POLICY_SE_NOT_NEEDED */
"%s: Self-Encapsulation present while not expected in the "
"incoming %s packet; Source %s, Destination %s.\n",
};
/*
* General overviews:
*
* Locking:
*
* All of the system policy structures are protected by a single
* rwlock. These structures are threaded in a
* fairly complex fashion and are not expected to change on a
* regular basis, so this should not cause scaling/contention
* problems. As a result, policy checks should (hopefully) be MT-hot.
*
* Allocation policy:
*
* We use custom kmem cache types for the various
* bits & pieces of the policy data structures. All allocations
* use KM_NOSLEEP instead of KM_SLEEP for policy allocation. The
* policy table is of potentially unbounded size, so we don't
* want to provide a way to hog all system memory with policy
* entries..
*/
/* Convenient functions for freeing or dropping a b_next linked mblk chain */
/* Free all messages in an mblk chain */
static void
ipsec_freemsg_chain(mblk_t *mp)
{
mblk_t *mpnext;
while (mp != NULL) {
ASSERT(mp->b_prev == NULL);
mpnext = mp->b_next;
mp->b_next = NULL;
freemsg(mp);
mp = mpnext;
}
}
/*
* ip_drop all messages in an mblk chain
* Can handle a b_next chain of ip_recv_attr_t mblks, or just a b_next chain
* of data.
*/
static void
ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *ill,
struct kstat_named *counter, ipdropper_t *who_called)
{
mblk_t *mpnext;
while (mp != NULL) {
ASSERT(mp->b_prev == NULL);
mpnext = mp->b_next;
mp->b_next = NULL;
if (ip_recv_attr_is_mblk(mp))
mp = ip_recv_attr_free_mblk(mp);
ip_drop_packet(mp, inbound, ill, counter, who_called);
mp = mpnext;
}
}
/*
* AVL tree comparison function.
* the in-kernel avl assumes unique keys for all objects.
* Since sometimes policy will duplicate rules, we may insert
* multiple rules with the same rule id, so we need a tie-breaker.
*/
static int
ipsec_policy_cmpbyid(const void *a, const void *b)
{
const ipsec_policy_t *ipa, *ipb;
uint64_t idxa, idxb;
ipa = (const ipsec_policy_t *)a;
ipb = (const ipsec_policy_t *)b;
idxa = ipa->ipsp_index;
idxb = ipb->ipsp_index;
if (idxa < idxb)
return (-1);
if (idxa > idxb)
return (1);
/*
* Tie-breaker #1: All installed policy rules have a non-NULL
* ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
* actually in-tree but rather a template node being used in
* an avl_find query; see ipsec_policy_delete(). This gives us
* a placeholder in the ordering just before the first entry with
* a key >= the one we're looking for, so we can walk forward from
* that point to get the remaining entries with the same id.
*/
if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
return (-1);
if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
return (1);
/*
* At most one of the arguments to the comparison should have a
* NULL selector pointer; if not, the tree is broken.
*/
ASSERT(ipa->ipsp_sel != NULL);
ASSERT(ipb->ipsp_sel != NULL);
/*
* Tie-breaker #2: use the virtual address of the policy node
* to arbitrarily break ties. Since we use the new tree node in
* the avl_find() in ipsec_insert_always, the new node will be
* inserted into the tree in the right place in the sequence.
*/
if (ipa < ipb)
return (-1);
if (ipa > ipb)
return (1);
return (0);
}
/*
* Free what ipsec_alloc_table allocated.
*/
void
ipsec_polhead_free_table(ipsec_policy_head_t *iph)
{
int dir;
int i;
for (dir = 0; dir < IPSEC_NTYPES; dir++) {
ipsec_policy_root_t *ipr = &iph->iph_root[dir];
if (ipr->ipr_hash == NULL)
continue;
for (i = 0; i < ipr->ipr_nchains; i++) {
ASSERT(ipr->ipr_hash[i].hash_head == NULL);
}
kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
sizeof (ipsec_policy_hash_t));
ipr->ipr_hash = NULL;
}
}
void
ipsec_polhead_destroy(ipsec_policy_head_t *iph)
{
int dir;
avl_destroy(&iph->iph_rulebyid);
rw_destroy(&iph->iph_lock);
for (dir = 0; dir < IPSEC_NTYPES; dir++) {
ipsec_policy_root_t *ipr = &iph->iph_root[dir];
int chain;
for (chain = 0; chain < ipr->ipr_nchains; chain++)
mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
}
ipsec_polhead_free_table(iph);
}
/*
* Free the IPsec stack instance.
*/
/* ARGSUSED */
static void
ipsec_stack_fini(netstackid_t stackid, void *arg)
{
ipsec_stack_t *ipss = (ipsec_stack_t *)arg;
void *cookie;
ipsec_tun_pol_t *node;
netstack_t *ns = ipss->ipsec_netstack;
int i;
ipsec_algtype_t algtype;
ipsec_loader_destroy(ipss);
rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
/*
* It's possible we can just ASSERT() the tree is empty. After all,
* we aren't called until IP is ready to unload (and presumably all
* tunnels have been unplumbed). But we'll play it safe for now, the
* loop will just exit immediately if it's empty.
*/
cookie = NULL;
while ((node = (ipsec_tun_pol_t *)
avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
&cookie)) != NULL) {
ITP_REFRELE(node, ns);
}
avl_destroy(&ipss->ipsec_tunnel_policies);
rw_exit(&ipss->ipsec_tunnel_policy_lock);
rw_destroy(&ipss->ipsec_tunnel_policy_lock);
ipsec_config_flush(ns);
ipsec_kstat_destroy(ipss);
ip_drop_unregister(&ipss->ipsec_dropper);
ip_drop_unregister(&ipss->ipsec_spd_dropper);
ip_drop_destroy(ipss);
/*
* Globals start with ref == 1 to prevent IPPH_REFRELE() from
* attempting to free them, hence they should have 1 now.
*/
ipsec_polhead_destroy(&ipss->ipsec_system_policy);
ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
ipss->ipsec_action_hash[i].hash_head = NULL;
mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
}
for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
}
mutex_enter(&ipss->ipsec_alg_lock);
for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
int nalgs = ipss->ipsec_nalgs[algtype];
for (i = 0; i < nalgs; i++) {
if (ipss->ipsec_alglists[algtype][i] != NULL)
ipsec_alg_unreg(algtype, i, ns);
}
}
mutex_exit(&ipss->ipsec_alg_lock);
mutex_destroy(&ipss->ipsec_alg_lock);
ipsid_gc(ns);
ipsid_fini(ns);
(void) ipsec_free_tables(ipss);
kmem_free(ipss, sizeof (*ipss));
}
void
ipsec_policy_g_destroy(void)
{
kmem_cache_destroy(ipsec_action_cache);
kmem_cache_destroy(ipsec_sel_cache);
kmem_cache_destroy(ipsec_pol_cache);
ipsec_unregister_prov_update();
netstack_unregister(NS_IPSEC);
}
/*
* Free what ipsec_alloc_tables allocated.
* Called when table allocation fails to free the table.
*/
static int
ipsec_free_tables(ipsec_stack_t *ipss)
{
int i;
if (ipss->ipsec_sel_hash != NULL) {
for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
}
kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
sizeof (*ipss->ipsec_sel_hash));
ipss->ipsec_sel_hash = NULL;
ipss->ipsec_spd_hashsize = 0;
}
ipsec_polhead_free_table(&ipss->ipsec_system_policy);
ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
return (ENOMEM);
}
/*
* Attempt to allocate the tables in a single policy head.
* Return nonzero on failure after cleaning up any work in progress.
*/
int
ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
boolean_t global_cleanup, netstack_t *ns)
{
int dir;
for (dir = 0; dir < IPSEC_NTYPES; dir++) {
ipsec_policy_root_t *ipr = &iph->iph_root[dir];
ipr->ipr_nchains = nchains;
ipr->ipr_hash = kmem_zalloc(nchains *
sizeof (ipsec_policy_hash_t), kmflag);
if (ipr->ipr_hash == NULL)
return (global_cleanup ?
ipsec_free_tables(ns->netstack_ipsec) :
ENOMEM);
}
return (0);
}
/*
* Attempt to allocate the various tables. Return nonzero on failure
* after cleaning up any work in progress.
*/
static int
ipsec_alloc_tables(int kmflag, netstack_t *ns)
{
int error;
ipsec_stack_t *ipss = ns->netstack_ipsec;
error = ipsec_alloc_table(&ipss->ipsec_system_policy,
ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
if (error != 0)
return (error);
error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
if (error != 0)
return (error);
ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
sizeof (*ipss->ipsec_sel_hash), kmflag);
if (ipss->ipsec_sel_hash == NULL)
return (ipsec_free_tables(ipss));
return (0);
}
/*
* After table allocation, initialize a policy head.
*/
void
ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
{
int dir, chain;
rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
for (dir = 0; dir < IPSEC_NTYPES; dir++) {
ipsec_policy_root_t *ipr = &iph->iph_root[dir];
ipr->ipr_nchains = nchains;
for (chain = 0; chain < nchains; chain++) {
mutex_init(&(ipr->ipr_hash[chain].hash_lock),
NULL, MUTEX_DEFAULT, NULL);
}
}
}
static boolean_t
ipsec_kstat_init(ipsec_stack_t *ipss)
{
ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
return (B_FALSE);
ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
#define KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
KI(esp_stat_in_requests);
KI(esp_stat_in_discards);
KI(esp_stat_lookup_failure);
KI(ah_stat_in_requests);
KI(ah_stat_in_discards);
KI(ah_stat_lookup_failure);
KI(sadb_acquire_maxpackets);
KI(sadb_acquire_qhiwater);
#undef KI
kstat_install(ipss->ipsec_ksp);
return (B_TRUE);
}
static void
ipsec_kstat_destroy(ipsec_stack_t *ipss)
{
kstat_delete_netstack(ipss->ipsec_ksp,
ipss->ipsec_netstack->netstack_stackid);
ipss->ipsec_kstats = NULL;
}
/*
* Initialize the IPsec stack instance.
*/
/* ARGSUSED */
static void *
ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
{
ipsec_stack_t *ipss;
int i;
ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
ipss->ipsec_netstack = ns;
/*
* FIXME: netstack_ipsec is used by some of the routines we call
* below, but it isn't set until this routine returns.
* Either we introduce optional xxx_stack_alloc() functions
* that will be called by the netstack framework before xxx_stack_init,
* or we switch spd.c and sadb.c to operate on ipsec_stack_t
* (latter has some include file order issues for sadb.h, but makes
* sense if we merge some of the ipsec related stack_t's together.
*/
ns->netstack_ipsec = ipss;
/*
* Make two attempts to allocate policy hash tables; try it at
* the "preferred" size (may be set in /etc/system) first,
* then fall back to the default size.
*/
ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
cmn_err(CE_WARN,
"Unable to allocate %d entry IPsec policy hash table",
ipss->ipsec_spd_hashsize);
ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
cmn_err(CE_WARN, "Falling back to %d entries",
ipss->ipsec_spd_hashsize);
(void) ipsec_alloc_tables(KM_SLEEP, ns);
}
/* Just set a default for tunnels. */
ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
ipsid_init(ns);
/*
* Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
* to free them.
*/
ipss->ipsec_system_policy.iph_refs = 1;
ipss->ipsec_inactive_policy.iph_refs = 1;
ipsec_polhead_init(&ipss->ipsec_system_policy,
ipss->ipsec_spd_hashsize);
ipsec_polhead_init(&ipss->ipsec_inactive_policy,
ipss->ipsec_spd_hashsize);
rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
sizeof (ipsec_tun_pol_t), 0);
ipss->ipsec_next_policy_index = 1;
rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
NULL, MUTEX_DEFAULT, NULL);
for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL);
for (i = 0; i < IPSEC_NALGTYPES; i++) {
ipss->ipsec_nalgs[i] = 0;
}
ip_drop_init(ipss);
ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
/* IP's IPsec code calls the packet dropper */
ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
(void) ipsec_kstat_init(ipss);
ipsec_loader_init(ipss);
ipsec_loader_start(ipss);
return (ipss);
}
/* Global across all stack instances */
void
ipsec_policy_g_init(void)
{
ipsec_action_cache = kmem_cache_create("ipsec_actions",
sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
ipsec_action_reclaim, NULL, NULL, 0);
ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
NULL, NULL, NULL, 0);
ipsec_pol_cache = kmem_cache_create("ipsec_policy",
sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
NULL, NULL, NULL, 0);
/*
* We want to be informed each time a stack is created or
* destroyed in the kernel, so we can maintain the
* set of ipsec_stack_t's.
*/
netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
}
/*
* Sort algorithm lists.
*
* I may need to split this based on
* authentication/encryption, and I may wish to have an administrator
* configure this list. Hold on to some NDD variables...
*
* XXX For now, sort on minimum key size (GAG!). While minimum key size is
* not the ideal metric, it's the only quantifiable measure available.
* We need a better metric for sorting algorithms by preference.
*/
static void
alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
uint8_t holder, swap;
uint_t i;
uint_t count = ipss->ipsec_nalgs[at];
ASSERT(ai != NULL);
ASSERT(algid == ai->alg_id);
ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
holder = algid;
for (i = 0; i < count - 1; i++) {
ipsec_alginfo_t *alt;
alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
/*
* If you want to give precedence to newly added algs,
* add the = in the > comparison.
*/
if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
/* Swap sortlist[i] and holder. */
swap = ipss->ipsec_sortlist[at][i];
ipss->ipsec_sortlist[at][i] = holder;
holder = swap;
ai = alt;
} /* Else just continue. */
}
/* Store holder in last slot. */
ipss->ipsec_sortlist[at][i] = holder;
}
/*
* Remove an algorithm from a sorted algorithm list.
* This should be considerably easier, even with complex sorting.
*/
static void
alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
{
boolean_t copyback = B_FALSE;
int i;
ipsec_stack_t *ipss = ns->netstack_ipsec;
int newcount = ipss->ipsec_nalgs[at];
ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
for (i = 0; i <= newcount; i++) {
if (copyback) {
ipss->ipsec_sortlist[at][i-1] =
ipss->ipsec_sortlist[at][i];
} else if (ipss->ipsec_sortlist[at][i] == algid) {
copyback = B_TRUE;
}
}
}
/*
* Add the specified algorithm to the algorithm tables.
* Must be called while holding the algorithm table writer lock.
*/
void
ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
ipsec_alg_fix_min_max(alg, algtype, ns);
ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
ipss->ipsec_nalgs[algtype]++;
alg_insert_sortlist(algtype, alg->alg_id, ns);
}
/*
* Remove the specified algorithm from the algorithm tables.
* Must be called while holding the algorithm table writer lock.
*/
void
ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
ipss->ipsec_alglists[algtype][algid] = NULL;
ipss->ipsec_nalgs[algtype]--;
alg_remove_sortlist(algtype, algid, ns);
}
/*
* Hooks for spdsock to get a grip on system policy.
*/
ipsec_policy_head_t *
ipsec_system_policy(netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
IPPH_REFHOLD(h);
return (h);
}
ipsec_policy_head_t *
ipsec_inactive_policy(netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
IPPH_REFHOLD(h);
return (h);
}
/*
* Lock inactive policy, then active policy, then exchange policy root
* pointers.
*/
void
ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
netstack_t *ns)
{
int af, dir;
avl_tree_t r1, r2;
rw_enter(&inactive->iph_lock, RW_WRITER);
rw_enter(&active->iph_lock, RW_WRITER);
r1 = active->iph_rulebyid;
r2 = inactive->iph_rulebyid;
active->iph_rulebyid = r2;
inactive->iph_rulebyid = r1;
for (dir = 0; dir < IPSEC_NTYPES; dir++) {
ipsec_policy_hash_t *h1, *h2;
h1 = active->iph_root[dir].ipr_hash;
h2 = inactive->iph_root[dir].ipr_hash;
active->iph_root[dir].ipr_hash = h2;
inactive->iph_root[dir].ipr_hash = h1;
for (af = 0; af < IPSEC_NAF; af++) {
ipsec_policy_t *t1, *t2;
t1 = active->iph_root[dir].ipr_nonhash[af];
t2 = inactive->iph_root[dir].ipr_nonhash[af];
active->iph_root[dir].ipr_nonhash[af] = t2;
inactive->iph_root[dir].ipr_nonhash[af] = t1;
if (t1 != NULL) {
t1->ipsp_hash.hash_pp =
&(inactive->iph_root[dir].ipr_nonhash[af]);
}
if (t2 != NULL) {
t2->ipsp_hash.hash_pp =
&(active->iph_root[dir].ipr_nonhash[af]);
}
}
}
active->iph_gen++;
inactive->iph_gen++;
ipsec_update_present_flags(ns->netstack_ipsec);
rw_exit(&active->iph_lock);
rw_exit(&inactive->iph_lock);
}
/*
* Swap global policy primary/secondary.
*/
void
ipsec_swap_global_policy(netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
ipsec_swap_policy(&ipss->ipsec_system_policy,
&ipss->ipsec_inactive_policy, ns);
}
/*
* Clone one policy rule..
*/
static ipsec_policy_t *
ipsec_copy_policy(const ipsec_policy_t *src)
{
ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
if (dst == NULL)
return (NULL);
/*
* Adjust refcounts of cloned state.
*/
IPACT_REFHOLD(src->ipsp_act);
src->ipsp_sel->ipsl_refs++;
HASH_NULL(dst, ipsp_hash);
dst->ipsp_netstack = src->ipsp_netstack;
dst->ipsp_refs = 1;
dst->ipsp_sel = src->ipsp_sel;
dst->ipsp_act = src->ipsp_act;
dst->ipsp_prio = src->ipsp_prio;
dst->ipsp_index = src->ipsp_index;
return (dst);
}
void
ipsec_insert_always(avl_tree_t *tree, void *new_node)
{
void *node;
avl_index_t where;
node = avl_find(tree, new_node, &where);
ASSERT(node == NULL);
avl_insert(tree, new_node, where);
}
static int
ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
ipsec_policy_t **dstp)
{
for (; src != NULL; src = src->ipsp_hash.hash_next) {
ipsec_policy_t *dst = ipsec_copy_policy(src);
if (dst == NULL)
return (ENOMEM);
HASHLIST_INSERT(dst, ipsp_hash, *dstp);
ipsec_insert_always(&dph->iph_rulebyid, dst);
}
return (0);
}
/*
* Make one policy head look exactly like another.
*
* As with ipsec_swap_policy, we lock the destination policy head first, then
* the source policy head. Note that we only need to read-lock the source
* policy head as we are not changing it.
*/
int
ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
netstack_t *ns)
{
int af, dir, chain, nchains;
rw_enter(&dph->iph_lock, RW_WRITER);
ipsec_polhead_flush(dph, ns);
rw_enter(&sph->iph_lock, RW_READER);
for (dir = 0; dir < IPSEC_NTYPES; dir++) {
ipsec_policy_root_t *dpr = &dph->iph_root[dir];
ipsec_policy_root_t *spr = &sph->iph_root[dir];
nchains = dpr->ipr_nchains;
ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
for (af = 0; af < IPSEC_NAF; af++) {
if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
&dpr->ipr_nonhash[af]))
goto abort_copy;
}
for (chain = 0; chain < nchains; chain++) {
if (ipsec_copy_chain(dph,
spr->ipr_hash[chain].hash_head,
&dpr->ipr_hash[chain].hash_head))
goto abort_copy;
}
}
dph->iph_gen++;
rw_exit(&sph->iph_lock);
rw_exit(&dph->iph_lock);
return (0);
abort_copy:
ipsec_polhead_flush(dph, ns);
rw_exit(&sph->iph_lock);
rw_exit(&dph->iph_lock);
return (ENOMEM);
}
/*
* Clone currently active policy to the inactive policy list.
*/
int
ipsec_clone_system_policy(netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
&ipss->ipsec_inactive_policy, ns));
}
/*
* Extract the string from ipsec_policy_failure_msgs[type] and
* log it.
*
*/
void
ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
boolean_t secure, netstack_t *ns)
{
char sbuf[INET6_ADDRSTRLEN];
char dbuf[INET6_ADDRSTRLEN];
char *s;
char *d;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT((ipha == NULL && ip6h != NULL) ||
(ip6h == NULL && ipha != NULL));
if (ipha != NULL) {
s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
} else {
s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
}
/* Always bump the policy failure counter. */
ipss->ipsec_policy_failure_count[type]++;
ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
ipsec_policy_failure_msgs[type], func_name,
(secure ? "secure" : "not secure"), s, d);
}
/*
* Rate-limiting front-end to strlog() for AH and ESP. Uses the ndd variables
* in /dev/ip and the same rate-limiting clock so that there's a single
* knob to turn to throttle the rate of messages.
*/
void
ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
char *fmt, ...)
{
va_list adx;
hrtime_t current = gethrtime();
ip_stack_t *ipst = ns->netstack_ip;
ipsec_stack_t *ipss = ns->netstack_ipsec;
sl |= SL_CONSOLE;
/*
* Throttle logging to stop syslog from being swamped. If variable
* 'ipsec_policy_log_interval' is zero, don't log any messages at
* all, otherwise log only one message every 'ipsec_policy_log_interval'
* msec. Convert interval (in msec) to hrtime (in nsec).
*/
if (ipst->ips_ipsec_policy_log_interval) {
if (ipss->ipsec_policy_failure_last +
MSEC2NSEC(ipst->ips_ipsec_policy_log_interval) <= current) {
va_start(adx, fmt);
(void) vstrlog(mid, sid, level, sl, fmt, adx);
va_end(adx);
ipss->ipsec_policy_failure_last = current;
}
}
}
void
ipsec_config_flush(netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
ipss->ipsec_next_policy_index = 1;
rw_exit(&ipss->ipsec_system_policy.iph_lock);
ipsec_action_reclaim_stack(ipss);
}
/*
* Clip a policy's min/max keybits vs. the capabilities of the
* algorithm.
*/
static void
act_alg_adjust(uint_t algtype, uint_t algid,
uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
if (algp != NULL) {
/*
* If passed-in minbits is zero, we assume the caller trusts
* us with setting the minimum key size. We pick the
* algorithms DEFAULT key size for the minimum in this case.
*/
if (*minbits == 0) {
*minbits = algp->alg_default_bits;
ASSERT(*minbits >= algp->alg_minbits);
} else {
*minbits = MAX(MIN(*minbits, algp->alg_maxbits),
algp->alg_minbits);
}
if (*maxbits == 0)
*maxbits = algp->alg_maxbits;
else
*maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
algp->alg_maxbits);
ASSERT(*minbits <= *maxbits);
} else {
*minbits = 0;
*maxbits = 0;
}
}
/*
* Check an action's requested algorithms against the algorithms currently
* loaded in the system.
*/
boolean_t
ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
{
ipsec_prot_t *ipp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ipp = &act->ipa_apply;
if (ipp->ipp_use_ah &&
ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
return (B_FALSE);
}
if (ipp->ipp_use_espa &&
ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
NULL) {
*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
return (B_FALSE);
}
if (ipp->ipp_use_esp &&
ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
return (B_FALSE);
}
act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
&ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
&ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
&ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
return (B_FALSE);
}
if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
return (B_FALSE);
}
if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
return (B_FALSE);
}
/* TODO: sanity check lifetimes */
return (B_TRUE);
}
/*
* Set up a single action during wildcard expansion..
*/
static void
ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
{
ipsec_prot_t *ipp;
*outact = *act;
ipp = &outact->ipa_apply;
ipp->ipp_auth_alg = (uint8_t)auth_alg;
ipp->ipp_encr_alg = (uint8_t)encr_alg;
ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
&ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
&ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
&ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
}
/*
* combinatoric expansion time: expand a wildcarded action into an
* array of wildcarded actions; we return the exploded action list,
* and return a count in *nact (output only).
*/
static ipsec_act_t *
ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
{
boolean_t use_ah, use_esp, use_espa;
boolean_t wild_auth, wild_encr, wild_eauth;
uint_t auth_alg, auth_idx, auth_min, auth_max;
uint_t eauth_alg, eauth_idx, eauth_min, eauth_max;
uint_t encr_alg, encr_idx, encr_min, encr_max;
uint_t action_count, ai;
ipsec_act_t *outact;
ipsec_stack_t *ipss = ns->netstack_ipsec;
if (act->ipa_type != IPSEC_ACT_APPLY) {
outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
*nact = 1;
if (outact != NULL)
bcopy(act, outact, sizeof (*act));
return (outact);
}
/*
* compute the combinatoric explosion..
*
* we assume a request for encr if esp_req is PREF_REQUIRED
* we assume a request for ah auth if ah_req is PREF_REQUIRED.
* we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
*/
use_ah = act->ipa_apply.ipp_use_ah;
use_esp = act->ipa_apply.ipp_use_esp;
use_espa = act->ipa_apply.ipp_use_espa;
auth_alg = act->ipa_apply.ipp_auth_alg;
eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
encr_alg = act->ipa_apply.ipp_encr_alg;
wild_auth = use_ah && (auth_alg == 0);
wild_eauth = use_espa && (eauth_alg == 0);
wild_encr = use_esp && (encr_alg == 0);
action_count = 1;
auth_min = auth_max = auth_alg;
eauth_min = eauth_max = eauth_alg;
encr_min = encr_max = encr_alg;
/*
* set up for explosion.. for each dimension, expand output
* size by the explosion factor.
*
* Don't include the "any" algorithms, if defined, as no
* kernel policies should be set for these algorithms.
*/
#define SET_EXP_MINMAX(type, wild, alg, min, max, ipss) \
if (wild) { \
int nalgs = ipss->ipsec_nalgs[type]; \
if (ipss->ipsec_alglists[type][alg] != NULL) \
nalgs--; \
action_count *= nalgs; \
min = 0; \
max = ipss->ipsec_nalgs[type] - 1; \
}
SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
auth_min, auth_max, ipss);
SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
eauth_min, eauth_max, ipss);
SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
encr_min, encr_max, ipss);
#undef SET_EXP_MINMAX
/*
* ok, allocate the whole mess..
*/
outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
if (outact == NULL)
return (NULL);
/*
* Now compute all combinations. Note that non-wildcarded
* dimensions just get a single value from auth_min, while
* wildcarded dimensions indirect through the sortlist.
*
* We do encryption outermost since, at this time, there's
* greater difference in security and performance between
* encryption algorithms vs. authentication algorithms.
*/
ai = 0;
#define WHICH_ALG(type, wild, idx, ipss) \
((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
if (wild_encr && encr_alg == SADB_EALG_NONE)
continue;
for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
auth_idx, ipss);
if (wild_auth && auth_alg == SADB_AALG_NONE)
continue;
for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
eauth_idx++) {
eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
wild_eauth, eauth_idx, ipss);
if (wild_eauth && eauth_alg == SADB_AALG_NONE)
continue;
ipsec_setup_act(&outact[ai], act,
auth_alg, encr_alg, eauth_alg, ns);
ai++;
}
}
}
#undef WHICH_ALG
ASSERT(ai == action_count);
*nact = action_count;
return (outact);
}
/*
* Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
*/
static void
ipsec_prot_from_req(const ipsec_req_t *req, ipsec_prot_t *ipp)
{
bzero(ipp, sizeof (*ipp));
/*
* ipp_use_* are bitfields. Look at "!!" in the following as a
* "boolean canonicalization" operator.
*/
ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg);
ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
IPSEC_PREF_UNIQUE);
ipp->ipp_encr_alg = req->ipsr_esp_alg;
/*
* SADB_AALG_ANY is a placeholder to distinguish "any" from
* "none" above. If auth is required, as determined above,
* SADB_AALG_ANY becomes 0, which is the representation
* of "any" and "none" in PF_KEY v2.
*/
ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ?
req->ipsr_auth_alg : 0;
ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ?
req->ipsr_esp_auth_alg : 0;
}
/*
* Extract a new-style action from a request.
*/
void
ipsec_actvec_from_req(const ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
netstack_t *ns)
{
struct ipsec_act act;
bzero(&act, sizeof (act));
if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
(req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
act.ipa_type = IPSEC_ACT_BYPASS;
} else {
act.ipa_type = IPSEC_ACT_APPLY;
ipsec_prot_from_req(req, &act.ipa_apply);
}
*actp = ipsec_act_wildcard_expand(&act, nactp, ns);
}
/*
* Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
* We assume caller has already zero'ed *req for us.
*/
static int
ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
{
req->ipsr_esp_alg = ipp->ipp_encr_alg;
req->ipsr_auth_alg = ipp->ipp_auth_alg;
req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
if (ipp->ipp_use_unique) {
req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
}
if (ipp->ipp_use_se)
req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
if (ipp->ipp_use_ah)
req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
if (ipp->ipp_use_esp)
req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
return (sizeof (*req));
}
/*
* Convert a new-style action back to an ipsec_req_t (more backwards compat).
* We assume caller has already zero'ed *req for us.
*/
static int
ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
{
switch (ap->ipa_act.ipa_type) {
case IPSEC_ACT_BYPASS:
req->ipsr_ah_req = IPSEC_PREF_NEVER;
req->ipsr_esp_req = IPSEC_PREF_NEVER;
return (sizeof (*req));
case IPSEC_ACT_APPLY:
return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
}
return (sizeof (*req));
}
/*
* Convert a new-style action back to an ipsec_req_t (more backwards compat).
* We assume caller has already zero'ed *req for us.
*/
int
ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
{
ipsec_policy_t *p;
/*
* FULL-PERSOCK: consult hash table, too?
*/
for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
p != NULL;
p = p->ipsp_hash.hash_next) {
if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
return (ipsec_req_from_act(p->ipsp_act, req));
}
return (sizeof (*req));
}
/*
* Based on per-socket or latched policy, convert to an appropriate
* IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
* be tail-called from ip.
*/
int
ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
{
ipsec_latch_t *ipl;
int rv = sizeof (ipsec_req_t);
bzero(req, sizeof (*req));
ASSERT(MUTEX_HELD(&connp->conn_lock));
ipl = connp->conn_latch;
/*
* Find appropriate policy. First choice is latched action;
* failing that, see latched policy; failing that,
* look at configured policy.
*/
if (ipl != NULL) {
if (connp->conn_latch_in_action != NULL) {
rv = ipsec_req_from_act(connp->conn_latch_in_action,
req);
goto done;
}
if (connp->conn_latch_in_policy != NULL) {
rv = ipsec_req_from_act(
connp->conn_latch_in_policy->ipsp_act, req);
goto done;
}
}
if (connp->conn_policy != NULL)
rv = ipsec_req_from_head(connp->conn_policy, req, af);
done:
return (rv);
}
void
ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
{
kmem_free(act, nact * sizeof (*act));
}
/*
* Consumes a reference to ipsp.
*/
static mblk_t *
ipsec_check_loopback_policy(mblk_t *data_mp, ip_recv_attr_t *ira,
ipsec_policy_t *ipsp)
{
if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
return (data_mp);
ASSERT(ira->ira_flags & IRAF_LOOPBACK);
IPPOL_REFRELE(ipsp);
/*
* We should do an actual policy check here. Revisit this
* when we revisit the IPsec API. (And pass a conn_t in when we
* get there.)
*/
return (data_mp);
}
/*
* Check that packet's inbound ports & proto match the selectors
* expected by the SAs it traversed on the way in.
*/
static boolean_t
ipsec_check_ipsecin_unique(ip_recv_attr_t *ira, const char **reason,
kstat_named_t **counter, uint64_t pkt_unique, netstack_t *ns)
{
uint64_t ah_mask, esp_mask;
ipsa_t *ah_assoc;
ipsa_t *esp_assoc;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
ASSERT(!(ira->ira_flags & IRAF_LOOPBACK));
ah_assoc = ira->ira_ipsec_ah_sa;
esp_assoc = ira->ira_ipsec_esp_sa;
ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
if ((ah_mask == 0) && (esp_mask == 0))
return (B_TRUE);
/*
* The pkt_unique check will also check for tunnel mode on the SA
* vs. the tunneled_packet boolean. "Be liberal in what you receive"
* should not apply in this case. ;)
*/
if (ah_mask != 0 &&
ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
*reason = "AH inner header mismatch";
*counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
return (B_FALSE);
}
if (esp_mask != 0 &&
esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
*reason = "ESP inner header mismatch";
*counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
return (B_FALSE);
}
return (B_TRUE);
}
static boolean_t
ipsec_check_ipsecin_action(ip_recv_attr_t *ira, mblk_t *mp, ipsec_action_t *ap,
ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
netstack_t *ns)
{
boolean_t ret = B_TRUE;
ipsec_prot_t *ipp;
ipsa_t *ah_assoc;
ipsa_t *esp_assoc;
boolean_t decaps;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT((ipha == NULL && ip6h != NULL) ||
(ip6h == NULL && ipha != NULL));
if (ira->ira_flags & IRAF_LOOPBACK) {
/*
* Besides accepting pointer-equivalent actions, we also
* accept any ICMP errors we generated for ourselves,
* regardless of policy. If we do not wish to make this
* assumption in the future, check here, and where
* IXAF_TRUSTED_ICMP is initialized in ip.c and ip6.c.
*/
if (ap == ira->ira_ipsec_action ||
(ira->ira_flags & IRAF_TRUSTED_ICMP))
return (B_TRUE);
/* Deep compare necessary here?? */
*counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
*reason = "loopback policy mismatch";
return (B_FALSE);
}
ASSERT(!(ira->ira_flags & IRAF_TRUSTED_ICMP));
ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
ah_assoc = ira->ira_ipsec_ah_sa;
esp_assoc = ira->ira_ipsec_esp_sa;
decaps = (ira->ira_flags & IRAF_IPSEC_DECAPS);
switch (ap->ipa_act.ipa_type) {
case IPSEC_ACT_DISCARD:
case IPSEC_ACT_REJECT:
/* Should "fail hard" */
*counter = DROPPER(ipss, ipds_spd_explicit);
*reason = "blocked by policy";
return (B_FALSE);
case IPSEC_ACT_BYPASS:
case IPSEC_ACT_CLEAR:
*counter = DROPPER(ipss, ipds_spd_got_secure);
*reason = "expected clear, got protected";
return (B_FALSE);
case IPSEC_ACT_APPLY:
ipp = &ap->ipa_act.ipa_apply;
/*
* As of now we do the simple checks of whether
* the datagram has gone through the required IPSEC
* protocol constraints or not. We might have more
* in the future like sensitive levels, key bits, etc.
* If it fails the constraints, check whether we would
* have accepted this if it had come in clear.
*/
if (ipp->ipp_use_ah) {
if (ah_assoc == NULL) {
ret = ipsec_inbound_accept_clear(mp, ipha,
ip6h);
*counter = DROPPER(ipss, ipds_spd_got_clear);
*reason = "unprotected not accepted";
break;
}
ASSERT(ah_assoc != NULL);
ASSERT(ipp->ipp_auth_alg != 0);
if (ah_assoc->ipsa_auth_alg !=
ipp->ipp_auth_alg) {
*counter = DROPPER(ipss, ipds_spd_bad_ahalg);
*reason = "unacceptable ah alg";
ret = B_FALSE;
break;
}
} else if (ah_assoc != NULL) {
/*
* Don't allow this. Check IPSEC NOTE above
* ip_fanout_proto().
*/
*counter = DROPPER(ipss, ipds_spd_got_ah);
*reason = "unexpected AH";
ret = B_FALSE;
break;
}
if (ipp->ipp_use_esp) {
if (esp_assoc == NULL) {
ret = ipsec_inbound_accept_clear(mp, ipha,
ip6h);
*counter = DROPPER(ipss, ipds_spd_got_clear);
*reason = "unprotected not accepted";
break;
}
ASSERT(esp_assoc != NULL);
ASSERT(ipp->ipp_encr_alg != 0);
if (esp_assoc->ipsa_encr_alg !=
ipp->ipp_encr_alg) {
*counter = DROPPER(ipss, ipds_spd_bad_espealg);
*reason = "unacceptable esp alg";
ret = B_FALSE;
break;
}
/*
* If the client does not need authentication,
* we don't verify the alogrithm.
*/
if (ipp->ipp_use_espa) {
if (esp_assoc->ipsa_auth_alg !=
ipp->ipp_esp_auth_alg) {
*counter = DROPPER(ipss,
ipds_spd_bad_espaalg);
*reason = "unacceptable esp auth alg";
ret = B_FALSE;
break;
}
}
} else if (esp_assoc != NULL) {
/*
* Don't allow this. Check IPSEC NOTE above
* ip_fanout_proto().
*/
*counter = DROPPER(ipss, ipds_spd_got_esp);
*reason = "unexpected ESP";
ret = B_FALSE;
break;
}
if (ipp->ipp_use_se) {
if (!decaps) {
ret = ipsec_inbound_accept_clear(mp, ipha,
ip6h);
if (!ret) {
/* XXX mutant? */
*counter = DROPPER(ipss,
ipds_spd_bad_selfencap);
*reason = "self encap not found";
break;
}
}
} else if (decaps) {
/*
* XXX If the packet comes in tunneled and the
* recipient does not expect it to be tunneled, it
* is okay. But we drop to be consistent with the
* other cases.
*/
*counter = DROPPER(ipss, ipds_spd_got_selfencap);
*reason = "unexpected self encap";
ret = B_FALSE;
break;
}
if (ira->ira_ipsec_action != NULL) {
/*
* This can happen if we do a double policy-check on
* a packet
* XXX XXX should fix this case!
*/
IPACT_REFRELE(ira->ira_ipsec_action);
}
ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
ASSERT(ira->ira_ipsec_action == NULL);
IPACT_REFHOLD(ap);
ira->ira_ipsec_action = ap;
break; /* from switch */
}
return (ret);
}
static boolean_t
spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
{
ASSERT(ipl->ipl_ids_latched == B_TRUE);
return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
}
/*
* Takes a latched conn and an inbound packet and returns a unique_id suitable
* for SA comparisons. Most of the time we will copy from the conn_t, but
* there are cases when the conn_t is latched but it has wildcard selectors,
* and then we need to fallback to scooping them out of the packet.
*
* Assume we'll never have 0 with a conn_t present, so use 0 as a failure. We
* can get away with this because we only have non-zero ports/proto for
* latched conn_ts.
*
* Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
* to not be a nice macro.
*/
static uint64_t
conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
{
ipsec_selector_t sel;
uint8_t ulp = connp->conn_proto;
ASSERT(connp->conn_latch_in_policy != NULL);
if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
(connp->conn_fport == 0 || connp->conn_lport == 0)) {
/* Slow path - we gotta grab from the packet. */
if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
SEL_NONE) != SELRET_SUCCESS) {
/* Failure -> have caller free packet with ENOMEM. */
return (0);
}
return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
sel.ips_protocol, 0));
}
#ifdef DEBUG_NOT_UNTIL_6478464
if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
SELRET_SUCCESS) {
ASSERT(sel.ips_local_port == connp->conn_lport);
ASSERT(sel.ips_remote_port == connp->conn_fport);
ASSERT(sel.ips_protocol == connp->conn_proto);
}
ASSERT(connp->conn_proto != 0);
#endif
return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
}
/*
* Called to check policy on a latched connection.
* Note that we don't dereference conn_latch or conn_ihere since the conn might
* be closing. The caller passes a held ipsec_latch_t instead.
*/
static boolean_t
ipsec_check_ipsecin_latch(ip_recv_attr_t *ira, mblk_t *mp, ipsec_latch_t *ipl,
ipsec_action_t *ap, ipha_t *ipha, ip6_t *ip6h, const char **reason,
kstat_named_t **counter, conn_t *connp, netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT(ipl->ipl_ids_latched == B_TRUE);
ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
if (!(ira->ira_flags & IRAF_LOOPBACK)) {
/*
* Over loopback, there aren't real security associations,
* so there are neither identities nor "unique" values
* for us to check the packet against.
*/
if (ira->ira_ipsec_ah_sa != NULL) {
if (!spd_match_inbound_ids(ipl,
ira->ira_ipsec_ah_sa)) {
*counter = DROPPER(ipss, ipds_spd_ah_badid);
*reason = "AH identity mismatch";
return (B_FALSE);
}
}
if (ira->ira_ipsec_esp_sa != NULL) {
if (!spd_match_inbound_ids(ipl,
ira->ira_ipsec_esp_sa)) {
*counter = DROPPER(ipss, ipds_spd_esp_badid);
*reason = "ESP identity mismatch";
return (B_FALSE);
}
}
/*
* Can fudge pkt_unique from connp because we're latched.
* In DEBUG kernels (see conn_to_unique()'s implementation),
* verify this even if it REALLY slows things down.
*/
if (!ipsec_check_ipsecin_unique(ira, reason, counter,
conn_to_unique(connp, mp, ipha, ip6h), ns)) {
return (B_FALSE);
}
}
return (ipsec_check_ipsecin_action(ira, mp, ap, ipha, ip6h, reason,
counter, ns));
}
/*
* Check to see whether this secured datagram meets the policy
* constraints specified in ipsp.
*
* Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
*
* Consumes a reference to ipsp.
* Returns the mblk if ok.
*/
static mblk_t *
ipsec_check_ipsecin_policy(mblk_t *data_mp, ipsec_policy_t *ipsp,
ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, ip_recv_attr_t *ira,
netstack_t *ns)
{
ipsec_action_t *ap;
const char *reason = "no policy actions found";
ip_stack_t *ipst = ns->netstack_ip;
ipsec_stack_t *ipss = ns->netstack_ipsec;
kstat_named_t *counter;
counter = DROPPER(ipss, ipds_spd_got_secure);
ASSERT(ipsp != NULL);
ASSERT((ipha == NULL && ip6h != NULL) ||
(ip6h == NULL && ipha != NULL));
if (ira->ira_flags & IRAF_LOOPBACK)
return (ipsec_check_loopback_policy(data_mp, ira, ipsp));
ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
if (ira->ira_ipsec_action != NULL) {
/*
* this can happen if we do a double policy-check on a packet
* Would be nice to be able to delete this test..
*/
IPACT_REFRELE(ira->ira_ipsec_action);
}
ASSERT(ira->ira_ipsec_action == NULL);
if (!SA_IDS_MATCH(ira->ira_ipsec_ah_sa, ira->ira_ipsec_esp_sa)) {
reason = "inbound AH and ESP identities differ";
counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
goto drop;
}
if (!ipsec_check_ipsecin_unique(ira, &reason, &counter, pkt_unique,
ns))
goto drop;
/*
* Ok, now loop through the possible actions and see if any
* of them work for us.
*/
for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
if (ipsec_check_ipsecin_action(ira, data_mp, ap,
ipha, ip6h, &reason, &counter, ns)) {
BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
IPPOL_REFRELE(ipsp);
return (data_mp);
}
}
drop:
ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
"ipsec inbound policy mismatch: %s, packet dropped\n",
reason);
IPPOL_REFRELE(ipsp);
ASSERT(ira->ira_ipsec_action == NULL);
BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
ip_drop_packet(data_mp, B_TRUE, NULL, counter,
&ipss->ipsec_spd_dropper);
return (NULL);
}
/*
* sleazy prefix-length-based compare.
* another inlining candidate..
*/
boolean_t
ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
{
int offset = pfxlen>>3;
int bitsleft = pfxlen & 7;
uint8_t *addr2 = (uint8_t *)addr2p;
/*
* and there was much evil..
* XXX should inline-expand the bcmp here and do this 32 bits
* or 64 bits at a time..
*/
return ((bcmp(addr1, addr2, offset) == 0) &&
((bitsleft == 0) ||
(((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
}
static ipsec_policy_t *
ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
{
ipsec_selkey_t *isel;
ipsec_policy_t *p;
int bpri = best ? best->ipsp_prio : 0;
for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
uint32_t valid;
if (p->ipsp_prio <= bpri)
continue;
isel = &p->ipsp_sel->ipsl_key;
valid = isel->ipsl_valid;
if ((valid & IPSL_PROTOCOL) &&
(isel->ipsl_proto != sel->ips_protocol))
continue;
if ((valid & IPSL_REMOTE_ADDR) &&
!ip_addr_match((uint8_t *)&isel->ipsl_remote,
isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
continue;
if ((valid & IPSL_LOCAL_ADDR) &&
!ip_addr_match((uint8_t *)&isel->ipsl_local,
isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
continue;
if ((valid & IPSL_REMOTE_PORT) &&
isel->ipsl_rport != sel->ips_remote_port)
continue;
if ((valid & IPSL_LOCAL_PORT) &&
isel->ipsl_lport != sel->ips_local_port)
continue;
if (!is_icmp_inv_acq) {
if ((valid & IPSL_ICMP_TYPE) &&
(isel->ipsl_icmp_type > sel->ips_icmp_type ||
isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
continue;
}
if ((valid & IPSL_ICMP_CODE) &&
(isel->ipsl_icmp_code > sel->ips_icmp_code ||
isel->ipsl_icmp_code_end <
sel->ips_icmp_code)) {
continue;
}
} else {
/*
* special case for icmp inverse acquire
* we only want policies that aren't drop/pass
*/
if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
continue;
}
/* we matched all the packet-port-field selectors! */
best = p;
bpri = p->ipsp_prio;
}
return (best);
}
/*
* Try to find and return the best policy entry under a given policy
* root for a given set of selectors; the first parameter "best" is
* the current best policy so far. If "best" is non-null, we have a
* reference to it. We return a reference to a policy; if that policy
* is not the original "best", we need to release that reference
* before returning.
*/
ipsec_policy_t *
ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
int direction, ipsec_selector_t *sel)
{
ipsec_policy_t *curbest;
ipsec_policy_root_t *root;
uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
curbest = best;
root = &head->iph_root[direction];
#ifdef DEBUG
if (is_icmp_inv_acq) {
if (sel->ips_isv4) {
if (sel->ips_protocol != IPPROTO_ICMP) {
cmn_err(CE_WARN, "ipsec_find_policy_head:"
" expecting icmp, got %d",
sel->ips_protocol);
}
} else {
if (sel->ips_protocol != IPPROTO_ICMPV6) {
cmn_err(CE_WARN, "ipsec_find_policy_head:"
" expecting icmpv6, got %d",
sel->ips_protocol);
}
}
}
#endif
rw_enter(&head->iph_lock, RW_READER);
if (root->ipr_nchains > 0) {
curbest = ipsec_find_policy_chain(curbest,
root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
is_icmp_inv_acq);
}
curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
is_icmp_inv_acq);
/*
* Adjust reference counts if we found anything new.
*/
if (curbest != best) {
ASSERT(curbest != NULL);
IPPOL_REFHOLD(curbest);
if (best != NULL) {
IPPOL_REFRELE(best);
}
}
rw_exit(&head->iph_lock);
return (curbest);
}
/*
* Find the best system policy (either global or per-interface) which
* applies to the given selector; look in all the relevant policy roots
* to figure out which policy wins.
*
* Returns a reference to a policy; caller must release this
* reference when done.
*/
ipsec_policy_t *
ipsec_find_policy(int direction, const conn_t *connp, ipsec_selector_t *sel,
netstack_t *ns)
{
ipsec_policy_t *p;
ipsec_stack_t *ipss = ns->netstack_ipsec;
p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
direction, sel);
if ((connp != NULL) && (connp->conn_policy != NULL)) {
p = ipsec_find_policy_head(p, connp->conn_policy,
direction, sel);
}
return (p);
}
/*
* Check with global policy and see whether this inbound
* packet meets the policy constraints.
*
* Locate appropriate policy from global policy, supplemented by the
* conn's configured and/or cached policy if the conn is supplied.
*
* Dispatch to ipsec_check_ipsecin_policy if we have policy and an
* encrypted packet to see if they match.
*
* Otherwise, see if the policy allows cleartext; if not, drop it on the
* floor.
*/
mblk_t *
ipsec_check_global_policy(mblk_t *data_mp, conn_t *connp,
ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, netstack_t *ns)
{
ipsec_policy_t *p;
ipsec_selector_t sel;
boolean_t policy_present;
kstat_named_t *counter;
uint64_t pkt_unique;
ip_stack_t *ipst = ns->netstack_ip;
ipsec_stack_t *ipss = ns->netstack_ipsec;
sel.ips_is_icmp_inv_acq = 0;
ASSERT((ipha == NULL && ip6h != NULL) ||
(ip6h == NULL && ipha != NULL));
if (ipha != NULL)
policy_present = ipss->ipsec_inbound_v4_policy_present;
else
policy_present = ipss->ipsec_inbound_v6_policy_present;
if (!policy_present && connp == NULL) {
/*
* No global policy and no per-socket policy;
* just pass it back (but we shouldn't get here in that case)
*/
return (data_mp);
}
/*
* If we have cached policy, use it.
* Otherwise consult system policy.
*/
if ((connp != NULL) && (connp->conn_latch != NULL)) {
p = connp->conn_latch_in_policy;
if (p != NULL) {
IPPOL_REFHOLD(p);
}
/*
* Fudge sel for UNIQUE_ID setting below.
*/
pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
} else {
/* Initialize the ports in the selector */
if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
SEL_NONE) == SELRET_NOMEM) {
/*
* Technically not a policy mismatch, but it is
* an internal failure.
*/
ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
"ipsec_init_inbound_sel", ipha, ip6h, B_TRUE, ns);
counter = DROPPER(ipss, ipds_spd_nomem);
goto fail;
}
/*
* Find the policy which best applies.
*
* If we find global policy, we should look at both
* local policy and global policy and see which is
* stronger and match accordingly.
*
* If we don't find a global policy, check with
* local policy alone.
*/
p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
sel.ips_local_port, sel.ips_protocol, 0);
}
if (p == NULL) {
if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
/*
* We have no policy; default to succeeding.
* XXX paranoid system design doesn't do this.
*/
BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
return (data_mp);
} else {
counter = DROPPER(ipss, ipds_spd_got_secure);
ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
"ipsec_check_global_policy", ipha, ip6h, B_TRUE,
ns);
goto fail;
}
}
if (ira->ira_flags & IRAF_IPSEC_SECURE) {
return (ipsec_check_ipsecin_policy(data_mp, p, ipha, ip6h,
pkt_unique, ira, ns));
}
if (p->ipsp_act->ipa_allow_clear) {
BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
IPPOL_REFRELE(p);
return (data_mp);
}
IPPOL_REFRELE(p);
/*
* If we reach here, we will drop the packet because it failed the
* global policy check because the packet was cleartext, and it
* should not have been.
*/
ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
"ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
counter = DROPPER(ipss, ipds_spd_got_clear);
fail:
ip_drop_packet(data_mp, B_TRUE, NULL, counter,
&ipss->ipsec_spd_dropper);
BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
return (NULL);
}
/*
* We check whether an inbound datagram is a valid one
* to accept in clear. If it is secure, it is the job
* of IPSEC to log information appropriately if it
* suspects that it may not be the real one.
*
* It is called only while fanning out to the ULP
* where ULP accepts only secure data and the incoming
* is clear. Usually we never accept clear datagrams in
* such cases. ICMP is the only exception.
*
* NOTE : We don't call this function if the client (ULP)
* is willing to accept things in clear.
*/
boolean_t
ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
{
ushort_t iph_hdr_length;
icmph_t *icmph;
icmp6_t *icmp6;
uint8_t *nexthdrp;
ASSERT((ipha != NULL && ip6h == NULL) ||
(ipha == NULL && ip6h != NULL));
if (ip6h != NULL) {
iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
&nexthdrp)) {
return (B_FALSE);
}
if (*nexthdrp != IPPROTO_ICMPV6)
return (B_FALSE);
icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
switch (icmp6->icmp6_type) {
case ICMP6_PARAM_PROB:
/* Corresponds to port/proto unreach in IPv4. */
case ICMP6_ECHO_REQUEST:
/* Just like IPv4. */
return (B_FALSE);
case MLD_LISTENER_QUERY:
case MLD_LISTENER_REPORT:
case MLD_LISTENER_REDUCTION:
/*
* XXX Seperate NDD in IPv4 what about here?
* Plus, mcast is important to ND.
*/
case ICMP6_DST_UNREACH:
/* Corresponds to HOST/NET unreachable in IPv4. */
case ICMP6_PACKET_TOO_BIG:
case ICMP6_ECHO_REPLY:
/* These are trusted in IPv4. */
case ND_ROUTER_SOLICIT:
case ND_ROUTER_ADVERT:
case ND_NEIGHBOR_SOLICIT:
case ND_NEIGHBOR_ADVERT:
case ND_REDIRECT:
/* Trust ND messages for now. */
case ICMP6_TIME_EXCEEDED:
default:
return (B_TRUE);
}
} else {
/*
* If it is not ICMP, fail this request.
*/
if (ipha->ipha_protocol != IPPROTO_ICMP) {
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
ipha->ipha_protocol);
#endif
return (B_FALSE);
}
iph_hdr_length = IPH_HDR_LENGTH(ipha);
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
/*
* It is an insecure icmp message. Check to see whether we are
* willing to accept this one.
*/
switch (icmph->icmph_type) {
case ICMP_ECHO_REPLY:
case ICMP_TIME_STAMP_REPLY:
case ICMP_INFO_REPLY:
case ICMP_ROUTER_ADVERTISEMENT:
/*
* We should not encourage clear replies if this
* client expects secure. If somebody is replying
* in clear some mailicious user watching both the
* request and reply, can do chosen-plain-text attacks.
* With global policy we might be just expecting secure
* but sending out clear. We don't know what the right
* thing is. We can't do much here as we can't control
* the sender here. Till we are sure of what to do,
* accept them.
*/
return (B_TRUE);
case ICMP_ECHO_REQUEST:
case ICMP_TIME_STAMP_REQUEST:
case ICMP_INFO_REQUEST:
case ICMP_ADDRESS_MASK_REQUEST:
case ICMP_ROUTER_SOLICITATION:
case ICMP_ADDRESS_MASK_REPLY:
/*
* Don't accept this as somebody could be sending
* us plain text to get encrypted data. If we reply,
* it will lead to chosen plain text attack.
*/
return (B_FALSE);
case ICMP_DEST_UNREACHABLE:
switch (icmph->icmph_code) {
case ICMP_FRAGMENTATION_NEEDED:
/*
* Be in sync with icmp_inbound, where we have
* already set dce_pmtu
*/
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "ICMP frag needed\n");
#endif
return (B_TRUE);
case ICMP_HOST_UNREACHABLE:
case ICMP_NET_UNREACHABLE:
/*
* By accepting, we could reset a connection.
* How do we solve the problem of some
* intermediate router sending in-secure ICMP
* messages ?
*/
return (B_TRUE);
case ICMP_PORT_UNREACHABLE:
case ICMP_PROTOCOL_UNREACHABLE:
default :
return (B_FALSE);
}
case ICMP_SOURCE_QUENCH:
/*
* If this is an attack, TCP will slow start
* because of this. Is it very harmful ?
*/
return (B_TRUE);
case ICMP_PARAM_PROBLEM:
return (B_FALSE);
case ICMP_TIME_EXCEEDED:
return (B_TRUE);
case ICMP_REDIRECT:
return (B_FALSE);
default :
return (B_FALSE);
}
}
}
void
ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
{
mutex_enter(&ipl->ipl_lock);
if (ipl->ipl_ids_latched) {
/* I lost, someone else got here before me */
mutex_exit(&ipl->ipl_lock);
return;
}
if (local != NULL)
IPSID_REFHOLD(local);
if (remote != NULL)
IPSID_REFHOLD(remote);
ipl->ipl_local_cid = local;
ipl->ipl_remote_cid = remote;
ipl->ipl_ids_latched = B_TRUE;
mutex_exit(&ipl->ipl_lock);
}
void
ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira)
{
ipsa_t *sa;
ipsec_latch_t *ipl = connp->conn_latch;
if (!ipl->ipl_ids_latched) {
ipsid_t *local = NULL;
ipsid_t *remote = NULL;
if (!(ira->ira_flags & IRAF_LOOPBACK)) {
ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
if (ira->ira_ipsec_esp_sa != NULL)
sa = ira->ira_ipsec_esp_sa;
else
sa = ira->ira_ipsec_ah_sa;
ASSERT(sa != NULL);
local = sa->ipsa_dst_cid;
remote = sa->ipsa_src_cid;
}
ipsec_latch_ids(ipl, local, remote);
}
if (ira->ira_flags & IRAF_IPSEC_SECURE) {
if (connp->conn_latch_in_action != NULL) {
/*
* Previously cached action. This is probably
* harmless, but in DEBUG kernels, check for
* action equality.
*
* Preserve the existing action to preserve latch
* invariance.
*/
ASSERT(connp->conn_latch_in_action ==
ira->ira_ipsec_action);
return;
}
connp->conn_latch_in_action = ira->ira_ipsec_action;
IPACT_REFHOLD(connp->conn_latch_in_action);
}
}
/*
* Check whether the policy constraints are met either for an
* inbound datagram; called from IP in numerous places.
*
* Note that this is not a chokepoint for inbound policy checks;
* see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
*/
mblk_t *
ipsec_check_inbound_policy(mblk_t *mp, conn_t *connp,
ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira)
{
boolean_t ret;
ipsec_latch_t *ipl;
ipsec_action_t *ap;
uint64_t unique_id;
ipsec_stack_t *ipss;
ip_stack_t *ipst;
netstack_t *ns;
ipsec_policy_head_t *policy_head;
ipsec_policy_t *p = NULL;
ASSERT(connp != NULL);
ns = connp->conn_netstack;
ipss = ns->netstack_ipsec;
ipst = ns->netstack_ip;
if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
/*
* This is the case where the incoming datagram is
* cleartext and we need to see whether this client
* would like to receive such untrustworthy things from
* the wire.
*/
ASSERT(mp != NULL);
mutex_enter(&connp->conn_lock);
if (connp->conn_state_flags & CONN_CONDEMNED) {
mutex_exit(&connp->conn_lock);
ip_drop_packet(mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_got_clear),
&ipss->ipsec_spd_dropper);
BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
return (NULL);
}
if (connp->conn_latch != NULL) {
/* Hold a reference in case the conn is closing */
p = connp->conn_latch_in_policy;
if (p != NULL)
IPPOL_REFHOLD(p);
mutex_exit(&connp->conn_lock);
/*
* Policy is cached in the conn.
*/
if (p != NULL && !p->ipsp_act->ipa_allow_clear) {
ret = ipsec_inbound_accept_clear(mp,
ipha, ip6h);
if (ret) {
BUMP_MIB(&ipst->ips_ip_mib,
ipsecInSucceeded);
IPPOL_REFRELE(p);
return (mp);
} else {
ipsec_log_policy_failure(
IPSEC_POLICY_MISMATCH,
"ipsec_check_inbound_policy", ipha,
ip6h, B_FALSE, ns);
ip_drop_packet(mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_got_clear),
&ipss->ipsec_spd_dropper);
BUMP_MIB(&ipst->ips_ip_mib,
ipsecInFailed);
IPPOL_REFRELE(p);
return (NULL);
}
} else {
BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
if (p != NULL)
IPPOL_REFRELE(p);
return (mp);
}
} else {
policy_head = connp->conn_policy;
/* Hold a reference in case the conn is closing */
if (policy_head != NULL)
IPPH_REFHOLD(policy_head);
mutex_exit(&connp->conn_lock);
/*
* As this is a non-hardbound connection we need
* to look at both per-socket policy and global
* policy.
*/
mp = ipsec_check_global_policy(mp, connp,
ipha, ip6h, ira, ns);
if (policy_head != NULL)
IPPH_REFRELE(policy_head, ns);
return (mp);
}
}
mutex_enter(&connp->conn_lock);
/* Connection is closing */
if (connp->conn_state_flags & CONN_CONDEMNED) {
mutex_exit(&connp->conn_lock);
ip_drop_packet(mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_got_clear),
&ipss->ipsec_spd_dropper);
BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
return (NULL);
}
/*
* Once a connection is latched it remains so for life, the conn_latch
* pointer on the conn has not changed, simply initializing ipl here
* as the earlier initialization was done only in the cleartext case.
*/
if ((ipl = connp->conn_latch) == NULL) {
mblk_t *retmp;
policy_head = connp->conn_policy;
/* Hold a reference in case the conn is closing */
if (policy_head != NULL)
IPPH_REFHOLD(policy_head);
mutex_exit(&connp->conn_lock);
/*
* We don't have policies cached in the conn
* for this stream. So, look at the global
* policy. It will check against conn or global
* depending on whichever is stronger.
*/
retmp = ipsec_check_global_policy(mp, connp,
ipha, ip6h, ira, ns);
if (policy_head != NULL)
IPPH_REFRELE(policy_head, ns);
return (retmp);
}
IPLATCH_REFHOLD(ipl);
/* Hold reference on conn_latch_in_action in case conn is closing */
ap = connp->conn_latch_in_action;
if (ap != NULL)
IPACT_REFHOLD(ap);
mutex_exit(&connp->conn_lock);
if (ap != NULL) {
/* Policy is cached & latched; fast(er) path */
const char *reason;
kstat_named_t *counter;
if (ipsec_check_ipsecin_latch(ira, mp, ipl, ap,
ipha, ip6h, &reason, &counter, connp, ns)) {
BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
IPLATCH_REFRELE(ipl);
IPACT_REFRELE(ap);
return (mp);
}
ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
SL_ERROR|SL_WARN|SL_CONSOLE,
"ipsec inbound policy mismatch: %s, packet dropped\n",
reason);
ip_drop_packet(mp, B_TRUE, NULL, counter,
&ipss->ipsec_spd_dropper);
BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
IPLATCH_REFRELE(ipl);
IPACT_REFRELE(ap);
return (NULL);
}
if ((p = connp->conn_latch_in_policy) == NULL) {
ipsec_weird_null_inbound_policy++;
IPLATCH_REFRELE(ipl);
return (mp);
}
unique_id = conn_to_unique(connp, mp, ipha, ip6h);
IPPOL_REFHOLD(p);
mp = ipsec_check_ipsecin_policy(mp, p, ipha, ip6h, unique_id, ira, ns);
/*
* NOTE: ipsecIn{Failed,Succeeeded} bumped by
* ipsec_check_ipsecin_policy().
*/
if (mp != NULL)
ipsec_latch_inbound(connp, ira);
IPLATCH_REFRELE(ipl);
return (mp);
}
/*
* Handle all sorts of cases like tunnel-mode and ICMP.
*/
static int
prepended_length(mblk_t *mp, uintptr_t hptr)
{
int rc = 0;
while (mp != NULL) {
if (hptr >= (uintptr_t)mp->b_rptr && hptr <
(uintptr_t)mp->b_wptr) {
rc += (int)(hptr - (uintptr_t)mp->b_rptr);
break; /* out of while loop */
}
rc += (int)MBLKL(mp);
mp = mp->b_cont;
}
if (mp == NULL) {
/*
* IF (big IF) we make it here by naturally exiting the loop,
* then ip6h isn't in the mblk chain "mp" at all.
*
* The only case where this happens is with a reversed IP
* header that gets passed up by inbound ICMP processing.
* This unfortunately triggers longstanding bug 6478464. For
* now, just pass up 0 for the answer.
*/
#ifdef DEBUG_NOT_UNTIL_6478464
ASSERT(mp != NULL);
#endif
rc = 0;
}
return (rc);
}
/*
* Returns:
*
* SELRET_NOMEM --> msgpullup() needed to gather things failed.
* SELRET_BADPKT --> If we're being called after tunnel-mode fragment
* gathering, the initial fragment is too short for
* useful data. Only returned if SEL_TUNNEL_FIRSTFRAG is
* set.
* SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
* SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet. Caller
* should put this packet in a fragment-gathering queue.
* Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
* is set.
*
* Note that ipha/ip6h can be in a different mblk (mp->b_cont) in the case
* of tunneled packets.
* Also, mp->b_rptr can be an ICMP error where ipha/ip6h is the packet in
* error past the ICMP error.
*/
static selret_t
ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
ip6_t *ip6h, uint8_t sel_flags)
{
uint16_t *ports;
int outer_hdr_len = 0; /* For ICMP or tunnel-mode cases... */
ushort_t hdr_len;
mblk_t *spare_mp = NULL;
uint8_t *nexthdrp, *transportp;
uint8_t nexthdr;
uint8_t icmp_proto;
ip_pkt_t ipp;
boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
boolean_t post_frag = (sel_flags & SEL_POST_FRAG);
ASSERT((ipha == NULL && ip6h != NULL) ||
(ipha != NULL && ip6h == NULL));
if (ip6h != NULL) {
outer_hdr_len = prepended_length(mp, (uintptr_t)ip6h);
nexthdr = ip6h->ip6_nxt;
icmp_proto = IPPROTO_ICMPV6;
sel->ips_isv4 = B_FALSE;
sel->ips_local_addr_v6 = ip6h->ip6_dst;
sel->ips_remote_addr_v6 = ip6h->ip6_src;
bzero(&ipp, sizeof (ipp));
switch (nexthdr) {
case IPPROTO_HOPOPTS:
case IPPROTO_ROUTING:
case IPPROTO_DSTOPTS:
case IPPROTO_FRAGMENT:
/*
* Use ip_hdr_length_nexthdr_v6(). And have a spare
* mblk that's contiguous to feed it
*/
if ((spare_mp = msgpullup(mp, -1)) == NULL)
return (SELRET_NOMEM);
if (!ip_hdr_length_nexthdr_v6(spare_mp,
(ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
&hdr_len, &nexthdrp)) {
/* Malformed packet - caller frees. */
ipsec_freemsg_chain(spare_mp);
return (SELRET_BADPKT);
}
/* Repopulate now that we have the whole packet */
ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
(void) ip_find_hdr_v6(spare_mp, ip6h, B_FALSE, &ipp,
NULL);
nexthdr = *nexthdrp;
/* We can just extract based on hdr_len now. */
break;
default:
(void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
hdr_len = IPV6_HDR_LEN;
break;
}
if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
/* IPv6 Fragment */
ipsec_freemsg_chain(spare_mp);
return (SELRET_TUNFRAG);
}
transportp = (uint8_t *)ip6h + hdr_len;
} else {
outer_hdr_len = prepended_length(mp, (uintptr_t)ipha);
icmp_proto = IPPROTO_ICMP;
sel->ips_isv4 = B_TRUE;
sel->ips_local_addr_v4 = ipha->ipha_dst;
sel->ips_remote_addr_v4 = ipha->ipha_src;
nexthdr = ipha->ipha_protocol;
hdr_len = IPH_HDR_LENGTH(ipha);
if (port_policy_present &&
IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
!is_icmp) {
/* IPv4 Fragment */
ipsec_freemsg_chain(spare_mp);
return (SELRET_TUNFRAG);
}
transportp = (uint8_t *)ipha + hdr_len;
}
sel->ips_protocol = nexthdr;
if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
nexthdr != IPPROTO_SCTP && nexthdr != icmp_proto) ||
(!port_policy_present && !post_frag && tunnel_mode)) {
sel->ips_remote_port = sel->ips_local_port = 0;
ipsec_freemsg_chain(spare_mp);
return (SELRET_SUCCESS);
}
if (transportp + 4 > mp->b_wptr) {
/* If we didn't pullup a copy already, do so now. */
/*
* XXX performance, will upper-layers frequently split TCP/UDP
* apart from IP or options? If so, perhaps we should revisit
* the spare_mp strategy.
*/
ipsec_hdr_pullup_needed++;
if (spare_mp == NULL &&
(spare_mp = msgpullup(mp, -1)) == NULL) {
return (SELRET_NOMEM);
}
transportp = &spare_mp->b_rptr[hdr_len + outer_hdr_len];
}
if (nexthdr == icmp_proto) {
sel->ips_icmp_type = *transportp++;
sel->ips_icmp_code = *transportp;
sel->ips_remote_port = sel->ips_local_port = 0;
} else {
ports = (uint16_t *)transportp;
sel->ips_remote_port = *ports++;
sel->ips_local_port = *ports;
}
ipsec_freemsg_chain(spare_mp);
return (SELRET_SUCCESS);
}
/*
* This is called with a b_next chain of messages from the fragcache code,
* hence it needs to discard a chain on error.
*/
static boolean_t
ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
{
/*
* XXX cut&paste shared with ipsec_init_inbound_sel
*/
uint16_t *ports;
ushort_t hdr_len;
mblk_t *spare_mp = NULL;
uint8_t *nexthdrp;
uint8_t nexthdr;
uint8_t *typecode;
uint8_t check_proto;
ASSERT((ipha == NULL && ip6h != NULL) ||
(ipha != NULL && ip6h == NULL));
if (ip6h != NULL) {
check_proto = IPPROTO_ICMPV6;
nexthdr = ip6h->ip6_nxt;
switch (nexthdr) {
case IPPROTO_HOPOPTS:
case IPPROTO_ROUTING:
case IPPROTO_DSTOPTS:
case IPPROTO_FRAGMENT:
/*
* Use ip_hdr_length_nexthdr_v6(). And have a spare
* mblk that's contiguous to feed it
*/
spare_mp = msgpullup(mp, -1);
if (spare_mp == NULL ||
!ip_hdr_length_nexthdr_v6(spare_mp,
(ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
&hdr_len, &nexthdrp)) {
/* Always works, even if NULL. */
ipsec_freemsg_chain(spare_mp);
ip_drop_packet_chain(mp, B_FALSE, NULL,
DROPPER(ipss, ipds_spd_nomem),
&ipss->ipsec_spd_dropper);
return (B_FALSE);
} else {
nexthdr = *nexthdrp;
/* We can just extract based on hdr_len now. */
}
break;
default:
hdr_len = IPV6_HDR_LEN;
break;
}
} else {
check_proto = IPPROTO_ICMP;
hdr_len = IPH_HDR_LENGTH(ipha);
nexthdr = ipha->ipha_protocol;
}
sel->ips_protocol = nexthdr;
if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
sel->ips_local_port = sel->ips_remote_port = 0;
ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
return (B_TRUE);
}
if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
/* If we didn't pullup a copy already, do so now. */
/*
* XXX performance, will upper-layers frequently split TCP/UDP
* apart from IP or options? If so, perhaps we should revisit
* the spare_mp strategy.
*
* XXX should this be msgpullup(mp, hdr_len+4) ???
*/
if (spare_mp == NULL &&
(spare_mp = msgpullup(mp, -1)) == NULL) {
ip_drop_packet_chain(mp, B_FALSE, NULL,
DROPPER(ipss, ipds_spd_nomem),
&ipss->ipsec_spd_dropper);
return (B_FALSE);
}
ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
} else {
ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
}
if (nexthdr == check_proto) {
typecode = (uint8_t *)ports;
sel->ips_icmp_type = *typecode++;
sel->ips_icmp_code = *typecode;
sel->ips_remote_port = sel->ips_local_port = 0;
} else {
sel->ips_local_port = *ports++;
sel->ips_remote_port = *ports;
}
ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
return (B_TRUE);
}
/*
* Prepend an mblk with a ipsec_crypto_t to the message chain.
* Frees the argument and returns NULL should the allocation fail.
* Returns the pointer to the crypto data part.
*/
mblk_t *
ipsec_add_crypto_data(mblk_t *data_mp, ipsec_crypto_t **icp)
{
mblk_t *mp;
mp = allocb(sizeof (ipsec_crypto_t), BPRI_MED);
if (mp == NULL) {
freemsg(data_mp);
return (NULL);
}
bzero(mp->b_rptr, sizeof (ipsec_crypto_t));
mp->b_wptr += sizeof (ipsec_crypto_t);
mp->b_cont = data_mp;
mp->b_datap->db_type = M_EVENT; /* For ASSERT */
*icp = (ipsec_crypto_t *)mp->b_rptr;
return (mp);
}
/*
* Remove what was prepended above. Return b_cont and a pointer to the
* crypto data.
* The caller must call ipsec_free_crypto_data for mblk once it is done
* with the crypto data.
*/
mblk_t *
ipsec_remove_crypto_data(mblk_t *crypto_mp, ipsec_crypto_t **icp)
{
ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
*icp = (ipsec_crypto_t *)crypto_mp->b_rptr;
return (crypto_mp->b_cont);
}
/*
* Free what was prepended above. Return b_cont.
*/
mblk_t *
ipsec_free_crypto_data(mblk_t *crypto_mp)
{
mblk_t *mp;
ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
mp = crypto_mp->b_cont;
freeb(crypto_mp);
return (mp);
}
/*
* Create an ipsec_action_t based on the way an inbound packet was protected.
* Used to reflect traffic back to a sender.
*
* We don't bother interning the action into the hash table.
*/
ipsec_action_t *
ipsec_in_to_out_action(ip_recv_attr_t *ira)
{
ipsa_t *ah_assoc, *esp_assoc;
uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
ipsec_action_t *ap;
boolean_t unique;
ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
if (ap == NULL)
return (NULL);
bzero(ap, sizeof (*ap));
HASH_NULL(ap, ipa_hash);
ap->ipa_next = NULL;
ap->ipa_refs = 1;
/*
* Get the algorithms that were used for this packet.
*/
ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
ap->ipa_act.ipa_log = 0;
ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
ah_assoc = ira->ira_ipsec_ah_sa;
ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
esp_assoc = ira->ira_ipsec_esp_sa;
ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
if (esp_assoc != NULL) {
encr_alg = esp_assoc->ipsa_encr_alg;
espa_alg = esp_assoc->ipsa_auth_alg;
ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
}
if (ah_assoc != NULL)
auth_alg = ah_assoc->ipsa_auth_alg;
ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
ap->ipa_act.ipa_apply.ipp_use_se =
!!(ira->ira_flags & IRAF_IPSEC_DECAPS);
unique = B_FALSE;
if (esp_assoc != NULL) {
ap->ipa_act.ipa_apply.ipp_espa_minbits =
esp_assoc->ipsa_authkeybits;
ap->ipa_act.ipa_apply.ipp_espa_maxbits =
esp_assoc->ipsa_authkeybits;
ap->ipa_act.ipa_apply.ipp_espe_minbits =
esp_assoc->ipsa_encrkeybits;
ap->ipa_act.ipa_apply.ipp_espe_maxbits =
esp_assoc->ipsa_encrkeybits;
ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
unique = B_TRUE;
}
if (ah_assoc != NULL) {
ap->ipa_act.ipa_apply.ipp_ah_minbits =
ah_assoc->ipsa_authkeybits;
ap->ipa_act.ipa_apply.ipp_ah_maxbits =
ah_assoc->ipsa_authkeybits;
ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
unique = B_TRUE;
}
ap->ipa_act.ipa_apply.ipp_use_unique = unique;
ap->ipa_want_unique = unique;
ap->ipa_allow_clear = B_FALSE;
ap->ipa_want_se = !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
ap->ipa_want_ah = (ah_assoc != NULL);
ap->ipa_want_esp = (esp_assoc != NULL);
ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
return (ap);
}
/*
* Compute the worst-case amount of extra space required by an action.
* Note that, because of the ESP considerations listed below, this is
* actually not the same as the best-case reduction in the MTU; in the
* future, we should pass additional information to this function to
* allow the actual MTU impact to be computed.
*
* AH: Revisit this if we implement algorithms with
* a verifier size of more than 12 bytes.
*
* ESP: A more exact but more messy computation would take into
* account the interaction between the cipher block size and the
* effective MTU, yielding the inner payload size which reflects a
* packet with *minimum* ESP padding..
*/
int32_t
ipsec_act_ovhd(const ipsec_act_t *act)
{
int32_t overhead = 0;
if (act->ipa_type == IPSEC_ACT_APPLY) {
const ipsec_prot_t *ipp = &act->ipa_apply;
if (ipp->ipp_use_ah)
overhead += IPSEC_MAX_AH_HDR_SIZE;
if (ipp->ipp_use_esp) {
overhead += IPSEC_MAX_ESP_HDR_SIZE;
overhead += sizeof (struct udphdr);
}
if (ipp->ipp_use_se)
overhead += IP_SIMPLE_HDR_LENGTH;
}
return (overhead);
}
/*
* This hash function is used only when creating policies and thus is not
* performance-critical for packet flows.
*
* Future work: canonicalize the structures hashed with this (i.e.,
* zeroize padding) so the hash works correctly.
*/
/* ARGSUSED */
static uint32_t
policy_hash(int size, const void *start, const void *end)
{
return (0);
}
/*
* Hash function macros for each address type.
*
* The IPV6 hash function assumes that the low order 32-bits of the
* address (typically containing the low order 24 bits of the mac
* address) are reasonably well-distributed. Revisit this if we run
* into trouble from lots of collisions on ::1 addresses and the like
* (seems unlikely).
*/
#define IPSEC_IPV4_HASH(a, n) ((a) % (n))
#define IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
/*
* These two hash functions should produce coordinated values
* but have slightly different roles.
*/
static uint32_t
selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
{
uint32_t valid = selkey->ipsl_valid;
ipsec_stack_t *ipss = ns->netstack_ipsec;
if (!(valid & IPSL_REMOTE_ADDR))
return (IPSEC_SEL_NOHASH);
if (valid & IPSL_IPV4) {
if (selkey->ipsl_remote_pfxlen == 32) {
return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
ipss->ipsec_spd_hashsize));
}
}
if (valid & IPSL_IPV6) {
if (selkey->ipsl_remote_pfxlen == 128) {
return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
ipss->ipsec_spd_hashsize));
}
}
return (IPSEC_SEL_NOHASH);
}
static uint32_t
selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
{
if (sel->ips_isv4) {
return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
root->ipr_nchains));
}
return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
}
/*
* Intern actions into the action hash table.
*/
ipsec_action_t *
ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
{
int i;
uint32_t hval;
ipsec_action_t *ap;
ipsec_action_t *prev = NULL;
int32_t overhead, maxovhd = 0;
boolean_t allow_clear = B_FALSE;
boolean_t want_ah = B_FALSE;
boolean_t want_esp = B_FALSE;
boolean_t want_se = B_FALSE;
boolean_t want_unique = B_FALSE;
ipsec_stack_t *ipss = ns->netstack_ipsec;
/*
* TODO: should canonicalize a[] (i.e., zeroize any padding)
* so we can use a non-trivial policy_hash function.
*/
for (i = n-1; i >= 0; i--) {
hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
HASH_LOCK(ipss->ipsec_action_hash, hval);
for (HASH_ITERATE(ap, ipa_hash,
ipss->ipsec_action_hash, hval)) {
if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
continue;
if (ap->ipa_next != prev)
continue;
break;
}
if (ap != NULL) {
HASH_UNLOCK(ipss->ipsec_action_hash, hval);
prev = ap;
continue;
}
/*
* need to allocate a new one..
*/
ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
if (ap == NULL) {
HASH_UNLOCK(ipss->ipsec_action_hash, hval);
if (prev != NULL)
ipsec_action_free(prev);
return (NULL);
}
HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
ap->ipa_next = prev;
ap->ipa_act = a[i];
overhead = ipsec_act_ovhd(&a[i]);
if (maxovhd < overhead)
maxovhd = overhead;
if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
(a[i].ipa_type == IPSEC_ACT_CLEAR))
allow_clear = B_TRUE;
if (a[i].ipa_type == IPSEC_ACT_APPLY) {
const ipsec_prot_t *ipp = &a[i].ipa_apply;
ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
want_ah |= ipp->ipp_use_ah;
want_esp |= ipp->ipp_use_esp;
want_se |= ipp->ipp_use_se;
want_unique |= ipp->ipp_use_unique;
}
ap->ipa_allow_clear = allow_clear;
ap->ipa_want_ah = want_ah;
ap->ipa_want_esp = want_esp;
ap->ipa_want_se = want_se;
ap->ipa_want_unique = want_unique;
ap->ipa_refs = 1; /* from the hash table */
ap->ipa_ovhd = maxovhd;
if (prev)
prev->ipa_refs++;
prev = ap;
HASH_UNLOCK(ipss->ipsec_action_hash, hval);
}
ap->ipa_refs++; /* caller's reference */
return (ap);
}
/*
* Called when refcount goes to 0, indicating that all references to this
* node are gone.
*
* This does not unchain the action from the hash table.
*/
void
ipsec_action_free(ipsec_action_t *ap)
{
for (;;) {
ipsec_action_t *np = ap->ipa_next;
ASSERT(ap->ipa_refs == 0);
ASSERT(ap->ipa_hash.hash_pp == NULL);
kmem_cache_free(ipsec_action_cache, ap);
ap = np;
/* Inlined IPACT_REFRELE -- avoid recursion */
if (ap == NULL)
break;
membar_exit();
if (atomic_dec_32_nv(&(ap)->ipa_refs) != 0)
break;
/* End inlined IPACT_REFRELE */
}
}
/*
* Called when the action hash table goes away.
*
* The actions can be queued on an mblk with ipsec_in or
* ipsec_out, hence the actions might still be around.
* But we decrement ipa_refs here since we no longer have
* a reference to the action from the hash table.
*/
static void
ipsec_action_free_table(ipsec_action_t *ap)
{
while (ap != NULL) {
ipsec_action_t *np = ap->ipa_next;
/* FIXME: remove? */
(void) printf("ipsec_action_free_table(%p) ref %d\n",
(void *)ap, ap->ipa_refs);
ASSERT(ap->ipa_refs > 0);
IPACT_REFRELE(ap);
ap = np;
}
}
/*
* Need to walk all stack instances since the reclaim function
* is global for all instances
*/
/* ARGSUSED */
static void
ipsec_action_reclaim(void *arg)
{
netstack_handle_t nh;
netstack_t *ns;
ipsec_stack_t *ipss;
netstack_next_init(&nh);
while ((ns = netstack_next(&nh)) != NULL) {
/*
* netstack_next() can return a netstack_t with a NULL
* netstack_ipsec at boot time.
*/
if ((ipss = ns->netstack_ipsec) == NULL) {
netstack_rele(ns);
continue;
}
ipsec_action_reclaim_stack(ipss);
netstack_rele(ns);
}
netstack_next_fini(&nh);
}
/*
* Periodically sweep action hash table for actions with refcount==1, and
* nuke them. We cannot do this "on demand" (i.e., from IPACT_REFRELE)
* because we can't close the race between another thread finding the action
* in the hash table without holding the bucket lock during IPACT_REFRELE.
* Instead, we run this function sporadically to clean up after ourselves;
* we also set it as the "reclaim" function for the action kmem_cache.
*
* Note that it may take several passes of ipsec_action_gc() to free all
* "stale" actions.
*/
static void
ipsec_action_reclaim_stack(ipsec_stack_t *ipss)
{
int i;
for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
ipsec_action_t *ap, *np;
/* skip the lock if nobody home */
if (ipss->ipsec_action_hash[i].hash_head == NULL)
continue;
HASH_LOCK(ipss->ipsec_action_hash, i);
for (ap = ipss->ipsec_action_hash[i].hash_head;
ap != NULL; ap = np) {
ASSERT(ap->ipa_refs > 0);
np = ap->ipa_hash.hash_next;
if (ap->ipa_refs > 1)
continue;
HASH_UNCHAIN(ap, ipa_hash,
ipss->ipsec_action_hash, i);
IPACT_REFRELE(ap);
}
HASH_UNLOCK(ipss->ipsec_action_hash, i);
}
}
/*
* Intern a selector set into the selector set hash table.
* This is simpler than the actions case..
*/
static ipsec_sel_t *
ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
{
ipsec_sel_t *sp;
uint32_t hval, bucket;
ipsec_stack_t *ipss = ns->netstack_ipsec;
/*
* Exactly one AF bit should be set in selkey.
*/
ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
!(selkey->ipsl_valid & IPSL_IPV6));
hval = selkey_hash(selkey, ns);
/* Set pol_hval to uninitialized until we put it in a polhead. */
selkey->ipsl_sel_hval = hval;
bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
HASH_LOCK(ipss->ipsec_sel_hash, bucket);
for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
if (bcmp(&sp->ipsl_key, selkey,
offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
break;
}
if (sp != NULL) {
sp->ipsl_refs++;
HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
return (sp);
}
sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
if (sp == NULL) {
HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
return (NULL);
}
HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
sp->ipsl_refs = 2; /* one for hash table, one for caller */
sp->ipsl_key = *selkey;
/* Set to uninitalized and have insertion into polhead fix things. */
if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
sp->ipsl_key.ipsl_pol_hval = 0;
else
sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
return (sp);
}
static void
ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
{
ipsec_sel_t *sp = *spp;
int hval = sp->ipsl_key.ipsl_sel_hval;
ipsec_stack_t *ipss = ns->netstack_ipsec;
*spp = NULL;
if (hval == IPSEC_SEL_NOHASH)
hval = 0;
ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
HASH_LOCK(ipss->ipsec_sel_hash, hval);
if (--sp->ipsl_refs == 1) {
HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
sp->ipsl_refs--;
HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
ASSERT(sp->ipsl_refs == 0);
kmem_cache_free(ipsec_sel_cache, sp);
/* Caller unlocks */
return;
}
HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
}
/*
* Free a policy rule which we know is no longer being referenced.
*/
void
ipsec_policy_free(ipsec_policy_t *ipp)
{
ASSERT(ipp->ipsp_refs == 0);
ASSERT(ipp->ipsp_sel != NULL);
ASSERT(ipp->ipsp_act != NULL);
ASSERT(ipp->ipsp_netstack != NULL);
ipsec_sel_rel(&ipp->ipsp_sel, ipp->ipsp_netstack);
IPACT_REFRELE(ipp->ipsp_act);
kmem_cache_free(ipsec_pol_cache, ipp);
}
/*
* Construction of new policy rules; construct a policy, and add it to
* the appropriate tables.
*/
ipsec_policy_t *
ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
{
ipsec_action_t *ap;
ipsec_sel_t *sp;
ipsec_policy_t *ipp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
if (index_ptr == NULL)
index_ptr = &ipss->ipsec_next_policy_index;
ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
ap = ipsec_act_find(a, nacts, ns);
sp = ipsec_find_sel(keys, ns);
if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
if (ap != NULL) {
IPACT_REFRELE(ap);
}
if (sp != NULL)
ipsec_sel_rel(&sp, ns);
if (ipp != NULL)
kmem_cache_free(ipsec_pol_cache, ipp);
return (NULL);
}
HASH_NULL(ipp, ipsp_hash);
ipp->ipsp_netstack = ns; /* Needed for ipsec_policy_free */
ipp->ipsp_refs = 1; /* caller's reference */
ipp->ipsp_sel = sp;
ipp->ipsp_act = ap;
ipp->ipsp_prio = prio; /* rule priority */
ipp->ipsp_index = *index_ptr;
(*index_ptr)++;
return (ipp);
}
static void
ipsec_update_present_flags(ipsec_stack_t *ipss)
{
boolean_t hashpol;
hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
if (hashpol) {
ipss->ipsec_outbound_v4_policy_present = B_TRUE;
ipss->ipsec_outbound_v6_policy_present = B_TRUE;
ipss->ipsec_inbound_v4_policy_present = B_TRUE;
ipss->ipsec_inbound_v6_policy_present = B_TRUE;
return;
}
ipss->ipsec_outbound_v4_policy_present = (NULL !=
ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
ipr_nonhash[IPSEC_AF_V4]);
ipss->ipsec_outbound_v6_policy_present = (NULL !=
ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
ipr_nonhash[IPSEC_AF_V6]);
ipss->ipsec_inbound_v4_policy_present = (NULL !=
ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
ipr_nonhash[IPSEC_AF_V4]);
ipss->ipsec_inbound_v6_policy_present = (NULL !=
ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
ipr_nonhash[IPSEC_AF_V6]);
}
boolean_t
ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
netstack_t *ns)
{
ipsec_sel_t *sp;
ipsec_policy_t *ip, *nip, *head;
int af;
ipsec_policy_root_t *pr = &php->iph_root[dir];
sp = ipsec_find_sel(keys, ns);
if (sp == NULL)
return (B_FALSE);
af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
rw_enter(&php->iph_lock, RW_WRITER);
if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
head = pr->ipr_nonhash[af];
} else {
head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
}
for (ip = head; ip != NULL; ip = nip) {
nip = ip->ipsp_hash.hash_next;
if (ip->ipsp_sel != sp) {
continue;
}
IPPOL_UNCHAIN(php, ip);
php->iph_gen++;
ipsec_update_present_flags(ns->netstack_ipsec);
rw_exit(&php->iph_lock);
ipsec_sel_rel(&sp, ns);
return (B_TRUE);
}
rw_exit(&php->iph_lock);
ipsec_sel_rel(&sp, ns);
return (B_FALSE);
}
int
ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
netstack_t *ns)
{
boolean_t found = B_FALSE;
ipsec_policy_t ipkey;
ipsec_policy_t *ip;
avl_index_t where;
bzero(&ipkey, sizeof (ipkey));
ipkey.ipsp_index = policy_index;
rw_enter(&php->iph_lock, RW_WRITER);
/*
* We could be cleverer here about the walk.
* but well, (k+1)*log(N) will do for now (k==number of matches,
* N==number of table entries
*/
for (;;) {
ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
(void *)&ipkey, &where);
ASSERT(ip == NULL);
ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
if (ip == NULL)
break;
if (ip->ipsp_index != policy_index) {
ASSERT(ip->ipsp_index > policy_index);
break;
}
IPPOL_UNCHAIN(php, ip);
found = B_TRUE;
}
if (found) {
php->iph_gen++;
ipsec_update_present_flags(ns->netstack_ipsec);
}
rw_exit(&php->iph_lock);
return (found ? 0 : ENOENT);
}
/*
* Given a constructed ipsec_policy_t policy rule, see if it can be entered
* into the correct policy ruleset. As a side-effect, it sets the hash
* entries on "ipp"'s ipsp_pol_hval.
*
* Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
* duplicate policy exists with exactly the same selectors), or an icmp
* rule exists with a different encryption/authentication action.
*/
boolean_t
ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
{
ipsec_policy_root_t *pr = &php->iph_root[direction];
int af = -1;
ipsec_policy_t *p2, *head;
uint8_t check_proto;
ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
uint32_t valid = selkey->ipsl_valid;
if (valid & IPSL_IPV6) {
ASSERT(!(valid & IPSL_IPV4));
af = IPSEC_AF_V6;
check_proto = IPPROTO_ICMPV6;
} else {
ASSERT(valid & IPSL_IPV4);
af = IPSEC_AF_V4;
check_proto = IPPROTO_ICMP;
}
ASSERT(RW_WRITE_HELD(&php->iph_lock));
/*
* Double-check that we don't have any duplicate selectors here.
* Because selectors are interned below, we need only compare pointers
* for equality.
*/
if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
head = pr->ipr_nonhash[af];
} else {
selkey->ipsl_pol_hval =
(selkey->ipsl_valid & IPSL_IPV4) ?
IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
pr->ipr_nchains) :
IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
pr->ipr_nchains);
head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
}
for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
if (p2->ipsp_sel == ipp->ipsp_sel)
return (B_FALSE);
}
/*
* If it's ICMP and not a drop or pass rule, run through the ICMP
* rules and make sure the action is either new or the same as any
* other actions. We don't have to check the full chain because
* discard and bypass will override all other actions
*/
if (valid & IPSL_PROTOCOL &&
selkey->ipsl_proto == check_proto &&
(ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
(p2->ipsp_act->ipa_act.ipa_type ==
IPSEC_ACT_APPLY)) {
return (ipsec_compare_action(p2, ipp));
}
}
}
return (B_TRUE);
}
/*
* compare the action chains of two policies for equality
* B_TRUE -> effective equality
*/
static boolean_t
ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
{
ipsec_action_t *act1, *act2;
/* We have a valid rule. Let's compare the actions */
if (p1->ipsp_act == p2->ipsp_act) {
/* same action. We are good */
return (B_TRUE);
}
/* we have to walk the chain */
act1 = p1->ipsp_act;
act2 = p2->ipsp_act;
while (act1 != NULL && act2 != NULL) {
/* otherwise, Are we close enough? */
if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
act1->ipa_want_ah != act2->ipa_want_ah ||
act1->ipa_want_esp != act2->ipa_want_esp ||
act1->ipa_want_se != act2->ipa_want_se) {
/* Nope, we aren't */
return (B_FALSE);
}
if (act1->ipa_want_ah) {
if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
act2->ipa_act.ipa_apply.ipp_auth_alg) {
return (B_FALSE);
}
if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
act2->ipa_act.ipa_apply.ipp_ah_minbits ||
act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
return (B_FALSE);
}
}
if (act1->ipa_want_esp) {
if (act1->ipa_act.ipa_apply.ipp_use_esp !=
act2->ipa_act.ipa_apply.ipp_use_esp ||
act1->ipa_act.ipa_apply.ipp_use_espa !=
act2->ipa_act.ipa_apply.ipp_use_espa) {
return (B_FALSE);
}
if (act1->ipa_act.ipa_apply.ipp_use_esp) {
if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
act2->ipa_act.ipa_apply.ipp_encr_alg) {
return (B_FALSE);
}
if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
act2->ipa_act.ipa_apply.ipp_espe_minbits ||
act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
return (B_FALSE);
}
}
if (act1->ipa_act.ipa_apply.ipp_use_espa) {
if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
return (B_FALSE);
}
if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
act2->ipa_act.ipa_apply.ipp_espa_minbits ||
act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
return (B_FALSE);
}
}
}
act1 = act1->ipa_next;
act2 = act2->ipa_next;
}
if (act1 != NULL || act2 != NULL) {
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Given a constructed ipsec_policy_t policy rule, enter it into
* the correct policy ruleset.
*
* ipsec_check_policy() is assumed to have succeeded first (to check for
* duplicates).
*/
void
ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
netstack_t *ns)
{
ipsec_policy_root_t *pr = &php->iph_root[direction];
ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
uint32_t valid = selkey->ipsl_valid;
uint32_t hval = selkey->ipsl_pol_hval;
int af = -1;
ASSERT(RW_WRITE_HELD(&php->iph_lock));
if (valid & IPSL_IPV6) {
ASSERT(!(valid & IPSL_IPV4));
af = IPSEC_AF_V6;
} else {
ASSERT(valid & IPSL_IPV4);
af = IPSEC_AF_V4;
}
php->iph_gen++;
if (hval == IPSEC_SEL_NOHASH) {
HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
} else {
HASH_LOCK(pr->ipr_hash, hval);
HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
HASH_UNLOCK(pr->ipr_hash, hval);
}
ipsec_insert_always(&php->iph_rulebyid, ipp);
ipsec_update_present_flags(ns->netstack_ipsec);
}
static void
ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
{
ipsec_policy_t *ip, *nip;
int af, chain, nchain;
for (af = 0; af < IPSEC_NAF; af++) {
for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
nip = ip->ipsp_hash.hash_next;
IPPOL_UNCHAIN(php, ip);
}
ipr->ipr_nonhash[af] = NULL;
}
nchain = ipr->ipr_nchains;
for (chain = 0; chain < nchain; chain++) {
for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
ip = nip) {
nip = ip->ipsp_hash.hash_next;
IPPOL_UNCHAIN(php, ip);
}
ipr->ipr_hash[chain].hash_head = NULL;
}
}
/*
* Create and insert inbound or outbound policy associated with actp for the
* address family fam into the policy head ph. Returns B_TRUE if policy was
* inserted, and B_FALSE otherwise.
*/
boolean_t
ipsec_polhead_insert(ipsec_policy_head_t *ph, ipsec_act_t *actp, uint_t nact,
int fam, int ptype, netstack_t *ns)
{
ipsec_selkey_t sel;
ipsec_policy_t *pol;
ipsec_policy_root_t *pr;
bzero(&sel, sizeof (sel));
sel.ipsl_valid = (fam == IPSEC_AF_V4 ? IPSL_IPV4 : IPSL_IPV6);
if ((pol = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET,
NULL, ns)) != NULL) {
pr = &ph->iph_root[ptype];
HASHLIST_INSERT(pol, ipsp_hash, pr->ipr_nonhash[fam]);
ipsec_insert_always(&ph->iph_rulebyid, pol);
}
return (pol != NULL);
}
void
ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
{
int dir;
ASSERT(RW_WRITE_HELD(&php->iph_lock));
for (dir = 0; dir < IPSEC_NTYPES; dir++)
ipsec_ipr_flush(php, &php->iph_root[dir]);
php->iph_gen++;
ipsec_update_present_flags(ns->netstack_ipsec);
}
void
ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
{
int dir;
ASSERT(php->iph_refs == 0);
rw_enter(&php->iph_lock, RW_WRITER);
ipsec_polhead_flush(php, ns);
rw_exit(&php->iph_lock);
rw_destroy(&php->iph_lock);
for (dir = 0; dir < IPSEC_NTYPES; dir++) {
ipsec_policy_root_t *ipr = &php->iph_root[dir];
int chain;
for (chain = 0; chain < ipr->ipr_nchains; chain++)
mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
}
ipsec_polhead_free_table(php);
kmem_free(php, sizeof (*php));
}
static void
ipsec_ipr_init(ipsec_policy_root_t *ipr)
{
int af;
ipr->ipr_nchains = 0;
ipr->ipr_hash = NULL;
for (af = 0; af < IPSEC_NAF; af++) {
ipr->ipr_nonhash[af] = NULL;
}
}
ipsec_policy_head_t *
ipsec_polhead_create(void)
{
ipsec_policy_head_t *php;
php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
if (php == NULL)
return (php);
rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
php->iph_refs = 1;
php->iph_gen = 0;
ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
return (php);
}
/*
* Clone the policy head into a new polhead; release one reference to the
* old one and return the only reference to the new one.
* If the old one had a refcount of 1, just return it.
*/
ipsec_policy_head_t *
ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
{
ipsec_policy_head_t *nphp;
if (php == NULL)
return (ipsec_polhead_create());
else if (php->iph_refs == 1)
return (php);
nphp = ipsec_polhead_create();
if (nphp == NULL)
return (NULL);
if (ipsec_copy_polhead(php, nphp, ns) != 0) {
ipsec_polhead_free(nphp, ns);
return (NULL);
}
IPPH_REFRELE(php, ns);
return (nphp);
}
/*
* When sending a response to a ICMP request or generating a RST
* in the TCP case, the outbound packets need to go at the same level
* of protection as the incoming ones i.e we associate our outbound
* policy with how the packet came in. We call this after we have
* accepted the incoming packet which may or may not have been in
* clear and hence we are sending the reply back with the policy
* matching the incoming datagram's policy.
*
* NOTE : This technology serves two purposes :
*
* 1) If we have multiple outbound policies, we send out a reply
* matching with how it came in rather than matching the outbound
* policy.
*
* 2) For assymetric policies, we want to make sure that incoming
* and outgoing has the same level of protection. Assymetric
* policies exist only with global policy where we may not have
* both outbound and inbound at the same time.
*
* NOTE2: This function is called by cleartext cases, so it needs to be
* in IP proper.
*
* Note: the caller has moved other parts of ira into ixa already.
*/
boolean_t
ipsec_in_to_out(ip_recv_attr_t *ira, ip_xmit_attr_t *ixa, mblk_t *data_mp,
ipha_t *ipha, ip6_t *ip6h)
{
ipsec_selector_t sel;
ipsec_action_t *reflect_action = NULL;
netstack_t *ns = ixa->ixa_ipst->ips_netstack;
bzero((void*)&sel, sizeof (sel));
if (ira->ira_ipsec_action != NULL) {
/* transfer reference.. */
reflect_action = ira->ira_ipsec_action;
ira->ira_ipsec_action = NULL;
} else if (!(ira->ira_flags & IRAF_LOOPBACK))
reflect_action = ipsec_in_to_out_action(ira);
/*
* The caller is going to send the datagram out which might
* go on the wire or delivered locally through ire_send_local.
*
* 1) If it goes out on the wire, new associations will be
* obtained.
* 2) If it is delivered locally, ire_send_local will convert
* this ip_xmit_attr_t back to a ip_recv_attr_t looking at the
* requests.
*/
ixa->ixa_ipsec_action = reflect_action;
if (!ipsec_init_outbound_ports(&sel, data_mp, ipha, ip6h, 0,
ns->netstack_ipsec)) {
/* Note: data_mp already consumed and ip_drop_packet done */
return (B_FALSE);
}
ixa->ixa_ipsec_src_port = sel.ips_local_port;
ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
ixa->ixa_ipsec_proto = sel.ips_protocol;
ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
/*
* Don't use global policy for this, as we want
* to use the same protection that was applied to the inbound packet.
* Thus we set IXAF_NO_IPSEC is it arrived in the clear to make
* it be sent in the clear.
*/
if (ira->ira_flags & IRAF_IPSEC_SECURE)
ixa->ixa_flags |= IXAF_IPSEC_SECURE;
else
ixa->ixa_flags |= IXAF_NO_IPSEC;
return (B_TRUE);
}
void
ipsec_out_release_refs(ip_xmit_attr_t *ixa)
{
if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
return;
if (ixa->ixa_ipsec_ah_sa != NULL) {
IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
ixa->ixa_ipsec_ah_sa = NULL;
}
if (ixa->ixa_ipsec_esp_sa != NULL) {
IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
ixa->ixa_ipsec_esp_sa = NULL;
}
if (ixa->ixa_ipsec_policy != NULL) {
IPPOL_REFRELE(ixa->ixa_ipsec_policy);
ixa->ixa_ipsec_policy = NULL;
}
if (ixa->ixa_ipsec_action != NULL) {
IPACT_REFRELE(ixa->ixa_ipsec_action);
ixa->ixa_ipsec_action = NULL;
}
if (ixa->ixa_ipsec_latch) {
IPLATCH_REFRELE(ixa->ixa_ipsec_latch);
ixa->ixa_ipsec_latch = NULL;
}
/* Clear the soft references to the SAs */
ixa->ixa_ipsec_ref[0].ipsr_sa = NULL;
ixa->ixa_ipsec_ref[0].ipsr_bucket = NULL;
ixa->ixa_ipsec_ref[0].ipsr_gen = 0;
ixa->ixa_ipsec_ref[1].ipsr_sa = NULL;
ixa->ixa_ipsec_ref[1].ipsr_bucket = NULL;
ixa->ixa_ipsec_ref[1].ipsr_gen = 0;
ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
}
void
ipsec_in_release_refs(ip_recv_attr_t *ira)
{
if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
return;
if (ira->ira_ipsec_ah_sa != NULL) {
IPSA_REFRELE(ira->ira_ipsec_ah_sa);
ira->ira_ipsec_ah_sa = NULL;
}
if (ira->ira_ipsec_esp_sa != NULL) {
IPSA_REFRELE(ira->ira_ipsec_esp_sa);
ira->ira_ipsec_esp_sa = NULL;
}
ira->ira_flags &= ~IRAF_IPSEC_SECURE;
}
/*
* This is called from ire_send_local when a packet
* is looped back. We setup the ip_recv_attr_t "borrowing" the references
* held by the callers.
* Note that we don't do any IPsec but we carry the actions and IPSEC flags
* across so that the fanout policy checks see that IPsec was applied.
*
* The caller should do ipsec_in_release_refs() on the ira by calling
* ira_cleanup().
*/
void
ipsec_out_to_in(ip_xmit_attr_t *ixa, ill_t *ill, ip_recv_attr_t *ira)
{
ipsec_policy_t *pol;
ipsec_action_t *act;
/* Non-IPsec operations */
ira->ira_free_flags = 0;
ira->ira_zoneid = ixa->ixa_zoneid;
ira->ira_cred = ixa->ixa_cred;
ira->ira_cpid = ixa->ixa_cpid;
ira->ira_tsl = ixa->ixa_tsl;
ira->ira_ill = ira->ira_rill = ill;
ira->ira_flags = ixa->ixa_flags & IAF_MASK;
ira->ira_no_loop_zoneid = ixa->ixa_no_loop_zoneid;
ira->ira_pktlen = ixa->ixa_pktlen;
ira->ira_ip_hdr_length = ixa->ixa_ip_hdr_length;
ira->ira_protocol = ixa->ixa_protocol;
ira->ira_mhip = NULL;
ira->ira_flags |= IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK;
ira->ira_sqp = ixa->ixa_sqp;
ira->ira_ring = NULL;
ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
ira->ira_rifindex = ira->ira_ruifindex;
if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
return;
ira->ira_flags |= IRAF_IPSEC_SECURE;
ira->ira_ipsec_ah_sa = NULL;
ira->ira_ipsec_esp_sa = NULL;
act = ixa->ixa_ipsec_action;
if (act == NULL) {
pol = ixa->ixa_ipsec_policy;
if (pol != NULL) {
act = pol->ipsp_act;
IPACT_REFHOLD(act);
}
}
ixa->ixa_ipsec_action = NULL;
ira->ira_ipsec_action = act;
}
/*
* Consults global policy and per-socket policy to see whether this datagram
* should go out secure. If so it updates the ip_xmit_attr_t
* Should not be used when connecting, since then we want to latch the policy.
*
* If connp is NULL we just look at the global policy.
*
* Returns NULL if the packet was dropped, in which case the MIB has
* been incremented and ip_drop_packet done.
*/
mblk_t *
ip_output_attach_policy(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
const conn_t *connp, ip_xmit_attr_t *ixa)
{
ipsec_selector_t sel;
boolean_t policy_present;
ip_stack_t *ipst = ixa->ixa_ipst;
netstack_t *ns = ipst->ips_netstack;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ipsec_policy_t *p;
ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
ASSERT((ipha != NULL && ip6h == NULL) ||
(ip6h != NULL && ipha == NULL));
if (ipha != NULL)
policy_present = ipss->ipsec_outbound_v4_policy_present;
else
policy_present = ipss->ipsec_outbound_v6_policy_present;
if (!policy_present && (connp == NULL || connp->conn_policy == NULL))
return (mp);
bzero((void*)&sel, sizeof (sel));
if (ipha != NULL) {
sel.ips_local_addr_v4 = ipha->ipha_src;
sel.ips_remote_addr_v4 = ip_get_dst(ipha);
sel.ips_isv4 = B_TRUE;
} else {
sel.ips_isv4 = B_FALSE;
sel.ips_local_addr_v6 = ip6h->ip6_src;
sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, NULL);
}
sel.ips_protocol = ixa->ixa_protocol;
if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
if (ipha != NULL) {
BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
} else {
BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
}
/* Note: mp already consumed and ip_drop_packet done */
return (NULL);
}
ASSERT(ixa->ixa_ipsec_policy == NULL);
p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
ixa->ixa_ipsec_policy = p;
if (p != NULL) {
ixa->ixa_flags |= IXAF_IPSEC_SECURE;
if (connp == NULL || connp->conn_policy == NULL)
ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
} else {
ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
}
/*
* Copy the right port information.
*/
ixa->ixa_ipsec_src_port = sel.ips_local_port;
ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
ixa->ixa_ipsec_proto = sel.ips_protocol;
return (mp);
}
/*
* When appropriate, this function caches inbound and outbound policy
* for this connection. The outbound policy is stored in conn_ixa.
* Note that it can not be used for SCTP since conn_faddr isn't set for SCTP.
*
* XXX need to work out more details about per-interface policy and
* caching here!
*
* XXX may want to split inbound and outbound caching for ill..
*/
int
ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
{
boolean_t global_policy_present;
netstack_t *ns = connp->conn_netstack;
ipsec_stack_t *ipss = ns->netstack_ipsec;
connp->conn_ixa->ixa_ipsec_policy_gen =
ipss->ipsec_system_policy.iph_gen;
/*
* There is no policy latching for ICMP sockets because we can't
* decide on which policy to use until we see the packet and get
* type/code selectors.
*/
if (connp->conn_proto == IPPROTO_ICMP ||
connp->conn_proto == IPPROTO_ICMPV6) {
connp->conn_in_enforce_policy =
connp->conn_out_enforce_policy = B_TRUE;
if (connp->conn_latch != NULL) {
IPLATCH_REFRELE(connp->conn_latch);
connp->conn_latch = NULL;
}
if (connp->conn_latch_in_policy != NULL) {
IPPOL_REFRELE(connp->conn_latch_in_policy);
connp->conn_latch_in_policy = NULL;
}
if (connp->conn_latch_in_action != NULL) {
IPACT_REFRELE(connp->conn_latch_in_action);
connp->conn_latch_in_action = NULL;
}
if (connp->conn_ixa->ixa_ipsec_policy != NULL) {
IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
connp->conn_ixa->ixa_ipsec_policy = NULL;
}
if (connp->conn_ixa->ixa_ipsec_action != NULL) {
IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
connp->conn_ixa->ixa_ipsec_action = NULL;
}
connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
return (0);
}
global_policy_present = isv4 ?
(ipss->ipsec_outbound_v4_policy_present ||
ipss->ipsec_inbound_v4_policy_present) :
(ipss->ipsec_outbound_v6_policy_present ||
ipss->ipsec_inbound_v6_policy_present);
if ((connp->conn_policy != NULL) || global_policy_present) {
ipsec_selector_t sel;
ipsec_policy_t *p;
if (connp->conn_latch == NULL &&
(connp->conn_latch = iplatch_create()) == NULL) {
return (ENOMEM);
}
bzero((void*)&sel, sizeof (sel));
sel.ips_protocol = connp->conn_proto;
sel.ips_local_port = connp->conn_lport;
sel.ips_remote_port = connp->conn_fport;
sel.ips_is_icmp_inv_acq = 0;
sel.ips_isv4 = isv4;
if (isv4) {
sel.ips_local_addr_v4 = connp->conn_laddr_v4;
sel.ips_remote_addr_v4 = connp->conn_faddr_v4;
} else {
sel.ips_local_addr_v6 = connp->conn_laddr_v6;
sel.ips_remote_addr_v6 = connp->conn_faddr_v6;
}
p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
if (connp->conn_latch_in_policy != NULL)
IPPOL_REFRELE(connp->conn_latch_in_policy);
connp->conn_latch_in_policy = p;
connp->conn_in_enforce_policy = (p != NULL);
p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
if (connp->conn_ixa->ixa_ipsec_policy != NULL)
IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
connp->conn_ixa->ixa_ipsec_policy = p;
connp->conn_out_enforce_policy = (p != NULL);
if (p != NULL) {
connp->conn_ixa->ixa_flags |= IXAF_IPSEC_SECURE;
if (connp->conn_policy == NULL) {
connp->conn_ixa->ixa_flags |=
IXAF_IPSEC_GLOBAL_POLICY;
}
} else {
connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
}
/* Clear the latched actions too, in case we're recaching. */
if (connp->conn_ixa->ixa_ipsec_action != NULL) {
IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
connp->conn_ixa->ixa_ipsec_action = NULL;
}
if (connp->conn_latch_in_action != NULL) {
IPACT_REFRELE(connp->conn_latch_in_action);
connp->conn_latch_in_action = NULL;
}
connp->conn_ixa->ixa_ipsec_src_port = sel.ips_local_port;
connp->conn_ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
connp->conn_ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
connp->conn_ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
connp->conn_ixa->ixa_ipsec_proto = sel.ips_protocol;
} else {
connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
}
/*
* We may or may not have policy for this endpoint. We still set
* conn_policy_cached so that inbound datagrams don't have to look
* at global policy as policy is considered latched for these
* endpoints. We should not set conn_policy_cached until the conn
* reflects the actual policy. If we *set* this before inheriting
* the policy there is a window where the check
* CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
* on the conn (because we have not yet copied the policy on to
* conn and hence not set conn_in_enforce_policy) nor with the
* global policy (because conn_policy_cached is already set).
*/
connp->conn_policy_cached = B_TRUE;
return (0);
}
/*
* When appropriate, this function caches outbound policy for faddr/fport.
* It is used when we are not connected i.e., when we can not latch the
* policy.
*/
void
ipsec_cache_outbound_policy(const conn_t *connp, const in6_addr_t *v6src,
const in6_addr_t *v6dst, in_port_t dstport, ip_xmit_attr_t *ixa)
{
boolean_t isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0;
boolean_t global_policy_present;
netstack_t *ns = connp->conn_netstack;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
/*
* There is no policy caching for ICMP sockets because we can't
* decide on which policy to use until we see the packet and get
* type/code selectors.
*/
if (connp->conn_proto == IPPROTO_ICMP ||
connp->conn_proto == IPPROTO_ICMPV6) {
ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
if (ixa->ixa_ipsec_policy != NULL) {
IPPOL_REFRELE(ixa->ixa_ipsec_policy);
ixa->ixa_ipsec_policy = NULL;
}
if (ixa->ixa_ipsec_action != NULL) {
IPACT_REFRELE(ixa->ixa_ipsec_action);
ixa->ixa_ipsec_action = NULL;
}
return;
}
global_policy_present = isv4 ?
(ipss->ipsec_outbound_v4_policy_present ||
ipss->ipsec_inbound_v4_policy_present) :
(ipss->ipsec_outbound_v6_policy_present ||
ipss->ipsec_inbound_v6_policy_present);
if ((connp->conn_policy != NULL) || global_policy_present) {
ipsec_selector_t sel;
ipsec_policy_t *p;
bzero((void*)&sel, sizeof (sel));
sel.ips_protocol = connp->conn_proto;
sel.ips_local_port = connp->conn_lport;
sel.ips_remote_port = dstport;
sel.ips_is_icmp_inv_acq = 0;
sel.ips_isv4 = isv4;
if (isv4) {
IN6_V4MAPPED_TO_IPADDR(v6src, sel.ips_local_addr_v4);
IN6_V4MAPPED_TO_IPADDR(v6dst, sel.ips_remote_addr_v4);
} else {
sel.ips_local_addr_v6 = *v6src;
sel.ips_remote_addr_v6 = *v6dst;
}
p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
if (ixa->ixa_ipsec_policy != NULL)
IPPOL_REFRELE(ixa->ixa_ipsec_policy);
ixa->ixa_ipsec_policy = p;
if (p != NULL) {
ixa->ixa_flags |= IXAF_IPSEC_SECURE;
if (connp->conn_policy == NULL)
ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
} else {
ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
}
/* Clear the latched actions too, in case we're recaching. */
if (ixa->ixa_ipsec_action != NULL) {
IPACT_REFRELE(ixa->ixa_ipsec_action);
ixa->ixa_ipsec_action = NULL;
}
ixa->ixa_ipsec_src_port = sel.ips_local_port;
ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
ixa->ixa_ipsec_proto = sel.ips_protocol;
} else {
ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
if (ixa->ixa_ipsec_policy != NULL) {
IPPOL_REFRELE(ixa->ixa_ipsec_policy);
ixa->ixa_ipsec_policy = NULL;
}
if (ixa->ixa_ipsec_action != NULL) {
IPACT_REFRELE(ixa->ixa_ipsec_action);
ixa->ixa_ipsec_action = NULL;
}
}
}
/*
* Returns B_FALSE if the policy has gone stale.
*/
boolean_t
ipsec_outbound_policy_current(ip_xmit_attr_t *ixa)
{
ipsec_stack_t *ipss = ixa->ixa_ipst->ips_netstack->netstack_ipsec;
if (!(ixa->ixa_flags & IXAF_IPSEC_GLOBAL_POLICY))
return (B_TRUE);
return (ixa->ixa_ipsec_policy_gen == ipss->ipsec_system_policy.iph_gen);
}
void
iplatch_free(ipsec_latch_t *ipl)
{
if (ipl->ipl_local_cid != NULL)
IPSID_REFRELE(ipl->ipl_local_cid);
if (ipl->ipl_remote_cid != NULL)
IPSID_REFRELE(ipl->ipl_remote_cid);
mutex_destroy(&ipl->ipl_lock);
kmem_free(ipl, sizeof (*ipl));
}
ipsec_latch_t *
iplatch_create()
{
ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
if (ipl == NULL)
return (ipl);
bzero(ipl, sizeof (*ipl));
mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
ipl->ipl_refcnt = 1;
return (ipl);
}
/*
* Hash function for ID hash table.
*/
static uint32_t
ipsid_hash(int idtype, char *idstring)
{
uint32_t hval = idtype;
unsigned char c;
while ((c = *idstring++) != 0) {
hval = (hval << 4) | (hval >> 28);
hval ^= c;
}
hval = hval ^ (hval >> 16);
return (hval & (IPSID_HASHSIZE-1));
}
/*
* Look up identity string in hash table. Return identity object
* corresponding to the name -- either preexisting, or newly allocated.
*
* Return NULL if we need to allocate a new one and can't get memory.
*/
ipsid_t *
ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
{
ipsid_t *retval;
char *nstr;
int idlen = strlen(idstring) + 1;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ipsif_t *bucket;
bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
mutex_enter(&bucket->ipsif_lock);
for (retval = bucket->ipsif_head; retval != NULL;
retval = retval->ipsid_next) {
if (idtype != retval->ipsid_type)
continue;
if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
continue;
IPSID_REFHOLD(retval);
mutex_exit(&bucket->ipsif_lock);
return (retval);
}
retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
if (!retval) {
mutex_exit(&bucket->ipsif_lock);
return (NULL);
}
nstr = kmem_alloc(idlen, KM_NOSLEEP);
if (!nstr) {
mutex_exit(&bucket->ipsif_lock);
kmem_free(retval, sizeof (*retval));
return (NULL);
}
retval->ipsid_refcnt = 1;
retval->ipsid_next = bucket->ipsif_head;
if (retval->ipsid_next != NULL)
retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
retval->ipsid_ptpn = &bucket->ipsif_head;
retval->ipsid_type = idtype;
retval->ipsid_cid = nstr;
bucket->ipsif_head = retval;
bcopy(idstring, nstr, idlen);
mutex_exit(&bucket->ipsif_lock);
return (retval);
}
/*
* Garbage collect the identity hash table.
*/
void
ipsid_gc(netstack_t *ns)
{
int i, len;
ipsid_t *id, *nid;
ipsif_t *bucket;
ipsec_stack_t *ipss = ns->netstack_ipsec;
for (i = 0; i < IPSID_HASHSIZE; i++) {
bucket = &ipss->ipsec_ipsid_buckets[i];
mutex_enter(&bucket->ipsif_lock);
for (id = bucket->ipsif_head; id != NULL; id = nid) {
nid = id->ipsid_next;
if (id->ipsid_refcnt == 0) {
*id->ipsid_ptpn = nid;
if (nid != NULL)
nid->ipsid_ptpn = id->ipsid_ptpn;
len = strlen(id->ipsid_cid) + 1;
kmem_free(id->ipsid_cid, len);
kmem_free(id, sizeof (*id));
}
}
mutex_exit(&bucket->ipsif_lock);
}
}
/*
* Return true if two identities are the same.
*/
boolean_t
ipsid_equal(ipsid_t *id1, ipsid_t *id2)
{
if (id1 == id2)
return (B_TRUE);
#ifdef DEBUG
if ((id1 == NULL) || (id2 == NULL))
return (B_FALSE);
/*
* test that we're interning id's correctly..
*/
ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
(id1->ipsid_type != id2->ipsid_type));
#endif
return (B_FALSE);
}
/*
* Initialize identity table; called during module initialization.
*/
static void
ipsid_init(netstack_t *ns)
{
ipsif_t *bucket;
int i;
ipsec_stack_t *ipss = ns->netstack_ipsec;
for (i = 0; i < IPSID_HASHSIZE; i++) {
bucket = &ipss->ipsec_ipsid_buckets[i];
mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
}
}
/*
* Free identity table (preparatory to module unload)
*/
static void
ipsid_fini(netstack_t *ns)
{
ipsif_t *bucket;
int i;
ipsec_stack_t *ipss = ns->netstack_ipsec;
for (i = 0; i < IPSID_HASHSIZE; i++) {
bucket = &ipss->ipsec_ipsid_buckets[i];
ASSERT(bucket->ipsif_head == NULL);
mutex_destroy(&bucket->ipsif_lock);
}
}
/*
* Update the minimum and maximum supported key sizes for the
* specified algorithm. Must be called while holding the algorithms lock.
*/
void
ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
netstack_t *ns)
{
size_t crypto_min = (size_t)-1, crypto_max = 0;
size_t cur_crypto_min, cur_crypto_max;
boolean_t is_valid;
crypto_mechanism_info_t *mech_infos;
uint_t nmech_infos;
int crypto_rc, i;
crypto_mech_usage_t mask;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
/*
* Compute the min, max, and default key sizes (in number of
* increments to the default key size in bits) as defined
* by the algorithm mappings. This range of key sizes is used
* for policy related operations. The effective key sizes
* supported by the framework could be more limited than
* those defined for an algorithm.
*/
alg->alg_default_bits = alg->alg_key_sizes[0];
alg->alg_default = 0;
if (alg->alg_increment != 0) {
/* key sizes are defined by range & increment */
alg->alg_minbits = alg->alg_key_sizes[1];
alg->alg_maxbits = alg->alg_key_sizes[2];
} else if (alg->alg_nkey_sizes == 0) {
/* no specified key size for algorithm */
alg->alg_minbits = alg->alg_maxbits = 0;
} else {
/* key sizes are defined by enumeration */
alg->alg_minbits = (uint16_t)-1;
alg->alg_maxbits = 0;
for (i = 0; i < alg->alg_nkey_sizes; i++) {
if (alg->alg_key_sizes[i] < alg->alg_minbits)
alg->alg_minbits = alg->alg_key_sizes[i];
if (alg->alg_key_sizes[i] > alg->alg_maxbits)
alg->alg_maxbits = alg->alg_key_sizes[i];
}
}
if (!(alg->alg_flags & ALG_FLAG_VALID))
return;
/*
* Mechanisms do not apply to the NULL encryption
* algorithm, so simply return for this case.
*/
if (alg->alg_id == SADB_EALG_NULL)
return;
/*
* Find the min and max key sizes supported by the cryptographic
* framework providers.
*/
/* get the key sizes supported by the framework */
crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
&mech_infos, &nmech_infos, KM_SLEEP);
if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
alg->alg_flags &= ~ALG_FLAG_VALID;
return;
}
/* min and max key sizes supported by framework */
for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
int unit_bits;
/*
* Ignore entries that do not support the operations
* needed for the algorithm type.
*/
if (alg_type == IPSEC_ALG_AUTH) {
mask = CRYPTO_MECH_USAGE_MAC;
} else {
mask = CRYPTO_MECH_USAGE_ENCRYPT |
CRYPTO_MECH_USAGE_DECRYPT;
}
if ((mech_infos[i].mi_usage & mask) != mask)
continue;
unit_bits = (mech_infos[i].mi_keysize_unit ==
CRYPTO_KEYSIZE_UNIT_IN_BYTES) ? 8 : 1;
/* adjust min/max supported by framework */
cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
if (cur_crypto_min < crypto_min)
crypto_min = cur_crypto_min;
/*
* CRYPTO_EFFECTIVELY_INFINITE is a special value of
* the crypto framework which means "no upper limit".
*/
if (mech_infos[i].mi_max_key_size ==
CRYPTO_EFFECTIVELY_INFINITE) {
crypto_max = (size_t)-1;
} else if (cur_crypto_max > crypto_max) {
crypto_max = cur_crypto_max;
}
is_valid = B_TRUE;
}
kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
nmech_infos);
if (!is_valid) {
/* no key sizes supported by framework */
alg->alg_flags &= ~ALG_FLAG_VALID;
return;
}
/*
* Determine min and max key sizes from alg_key_sizes[].
* defined for the algorithm entry. Adjust key sizes based on
* those supported by the framework.
*/
alg->alg_ef_default_bits = alg->alg_key_sizes[0];
/*
* For backwards compatability, assume that the IV length
* is the same as the data length.
*/
alg->alg_ivlen = alg->alg_datalen;
/*
* Copy any algorithm parameters (if provided) into dedicated
* elements in the ipsec_alginfo_t structure.
* There may be a better place to put this code.
*/
for (i = 0; i < alg->alg_nparams; i++) {
switch (i) {
case 0:
/* Initialisation Vector length (bytes) */
alg->alg_ivlen = alg->alg_params[0];
break;
case 1:
/* Integrity Check Vector length (bytes) */
alg->alg_icvlen = alg->alg_params[1];
break;
case 2:
/* Salt length (bytes) */
alg->alg_saltlen = (uint8_t)alg->alg_params[2];
break;
default:
break;
}
}
/* Default if the IV length is not specified. */
if (alg_type == IPSEC_ALG_ENCR && alg->alg_ivlen == 0)
alg->alg_ivlen = alg->alg_datalen;
alg_flag_check(alg);
if (alg->alg_increment != 0) {
/* supported key sizes are defined by range & increment */
crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
alg->alg_ef_minbits = MAX(alg->alg_minbits,
(uint16_t)crypto_min);
alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
(uint16_t)crypto_max);
/*
* If the sizes supported by the framework are outside
* the range of sizes defined by the algorithm mappings,
* the algorithm cannot be used. Check for this
* condition here.
*/
if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
alg->alg_flags &= ~ALG_FLAG_VALID;
return;
}
if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
alg->alg_ef_default_bits = alg->alg_ef_minbits;
if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
alg->alg_ef_default_bits = alg->alg_ef_maxbits;
} else if (alg->alg_nkey_sizes == 0) {
/* no specified key size for algorithm */
alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
} else {
/* supported key sizes are defined by enumeration */
alg->alg_ef_minbits = (uint16_t)-1;
alg->alg_ef_maxbits = 0;
for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
/*
* Ignore the current key size if it is not in the
* range of sizes supported by the framework.
*/
if (alg->alg_key_sizes[i] < crypto_min ||
alg->alg_key_sizes[i] > crypto_max)
continue;
if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
alg->alg_ef_minbits = alg->alg_key_sizes[i];
if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
alg->alg_ef_maxbits = alg->alg_key_sizes[i];
is_valid = B_TRUE;
}
if (!is_valid) {
alg->alg_flags &= ~ALG_FLAG_VALID;
return;
}
alg->alg_ef_default = 0;
}
}
/*
* Sanity check parameters provided by ipsecalgs(1m). Assume that
* the algoritm is marked as valid, there is a check at the top
* of this function. If any of the checks below fail, the algorithm
* entry is invalid.
*/
void
alg_flag_check(ipsec_alginfo_t *alg)
{
alg->alg_flags &= ~ALG_FLAG_VALID;
/*
* Can't have the algorithm marked as CCM and GCM.
* Check the ALG_FLAG_COMBINED and ALG_FLAG_COUNTERMODE
* flags are set for CCM & GCM.
*/
if ((alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) ==
(ALG_FLAG_CCM|ALG_FLAG_GCM))
return;
if (alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) {
if (!(alg->alg_flags & ALG_FLAG_COUNTERMODE))
return;
if (!(alg->alg_flags & ALG_FLAG_COMBINED))
return;
}
/*
* For ALG_FLAG_COUNTERMODE, check the parameters
* fit in the ipsec_nonce_t structure.
*/
if (alg->alg_flags & ALG_FLAG_COUNTERMODE) {
if (alg->alg_ivlen != sizeof (((ipsec_nonce_t *)NULL)->iv))
return;
if (alg->alg_saltlen > sizeof (((ipsec_nonce_t *)NULL)->salt))
return;
}
if ((alg->alg_flags & ALG_FLAG_COMBINED) &&
(alg->alg_icvlen == 0))
return;
/* all is well. */
alg->alg_flags |= ALG_FLAG_VALID;
}
/*
* Free the memory used by the specified algorithm.
*/
void
ipsec_alg_free(ipsec_alginfo_t *alg)
{
if (alg == NULL)
return;
if (alg->alg_key_sizes != NULL) {
kmem_free(alg->alg_key_sizes,
(alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
alg->alg_key_sizes = NULL;
}
if (alg->alg_block_sizes != NULL) {
kmem_free(alg->alg_block_sizes,
(alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
alg->alg_block_sizes = NULL;
}
if (alg->alg_params != NULL) {
kmem_free(alg->alg_params,
(alg->alg_nparams + 1) * sizeof (uint16_t));
alg->alg_params = NULL;
}
kmem_free(alg, sizeof (*alg));
}
/*
* Check the validity of the specified key size for an algorithm.
* Returns B_TRUE if key size is valid, B_FALSE otherwise.
*/
boolean_t
ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
{
if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
return (B_FALSE);
if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
/*
* If the key sizes are defined by enumeration, the new
* key size must be equal to one of the supported values.
*/
int i;
for (i = 0; i < alg->alg_nkey_sizes; i++)
if (key_size == alg->alg_key_sizes[i])
break;
if (i == alg->alg_nkey_sizes)
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Callback function invoked by the crypto framework when a provider
* registers or unregisters. This callback updates the algorithms
* tables when a crypto algorithm is no longer available or becomes
* available, and triggers the freeing/creation of context templates
* associated with existing SAs, if needed.
*
* Need to walk all stack instances since the callback is global
* for all instances
*/
void
ipsec_prov_update_callback(uint32_t event, void *event_arg)
{
netstack_handle_t nh;
netstack_t *ns;
netstack_next_init(&nh);
while ((ns = netstack_next(&nh)) != NULL) {
ipsec_prov_update_callback_stack(event, event_arg, ns);
netstack_rele(ns);
}
netstack_next_fini(&nh);
}
static void
ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
netstack_t *ns)
{
crypto_notify_event_change_t *prov_change =
(crypto_notify_event_change_t *)event_arg;
uint_t algidx, algid, algtype, mech_count, mech_idx;
ipsec_alginfo_t *alg;
ipsec_alginfo_t oalg;
crypto_mech_name_t *mechs;
boolean_t alg_changed = B_FALSE;
ipsec_stack_t *ipss = ns->netstack_ipsec;
/* ignore events for which we didn't register */
if (event != CRYPTO_EVENT_MECHS_CHANGED) {
ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
" received from crypto framework\n", event));
return;
}
mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
if (mechs == NULL)
return;
/*
* Walk the list of currently defined IPsec algorithm. Update
* the algorithm valid flag and trigger an update of the
* SAs that depend on that algorithm.
*/
mutex_enter(&ipss->ipsec_alg_lock);
for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
algidx++) {
algid = ipss->ipsec_sortlist[algtype][algidx];
alg = ipss->ipsec_alglists[algtype][algid];
ASSERT(alg != NULL);
/*
* Skip the algorithms which do not map to the
* crypto framework provider being added or removed.
*/
if (strncmp(alg->alg_mech_name,
prov_change->ec_mech_name,
CRYPTO_MAX_MECH_NAME) != 0)
continue;
/*
* Determine if the mechanism is valid. If it
* is not, mark the algorithm as being invalid. If
* it is, mark the algorithm as being valid.
*/
for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
if (strncmp(alg->alg_mech_name,
mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
break;
if (mech_idx == mech_count &&
alg->alg_flags & ALG_FLAG_VALID) {
alg->alg_flags &= ~ALG_FLAG_VALID;
alg_changed = B_TRUE;
} else if (mech_idx < mech_count &&
!(alg->alg_flags & ALG_FLAG_VALID)) {
alg->alg_flags |= ALG_FLAG_VALID;
alg_changed = B_TRUE;
}
/*
* Update the supported key sizes, regardless
* of whether a crypto provider was added or
* removed.
*/
oalg = *alg;
ipsec_alg_fix_min_max(alg, algtype, ns);
if (!alg_changed &&
alg->alg_ef_minbits != oalg.alg_ef_minbits ||
alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
alg->alg_ef_default != oalg.alg_ef_default ||
alg->alg_ef_default_bits !=
oalg.alg_ef_default_bits)
alg_changed = B_TRUE;
/*
* Update the affected SAs if a software provider is
* being added or removed.
*/
if (prov_change->ec_provider_type ==
CRYPTO_SW_PROVIDER)
sadb_alg_update(algtype, alg->alg_id,
prov_change->ec_change ==
CRYPTO_MECH_ADDED, ns);
}
}
mutex_exit(&ipss->ipsec_alg_lock);
crypto_free_mech_list(mechs, mech_count);
if (alg_changed) {
/*
* An algorithm has changed, i.e. it became valid or
* invalid, or its support key sizes have changed.
* Notify ipsecah and ipsecesp of this change so
* that they can send a SADB_REGISTER to their consumers.
*/
ipsecah_algs_changed(ns);
ipsecesp_algs_changed(ns);
}
}
/*
* Registers with the crypto framework to be notified of crypto
* providers changes. Used to update the algorithm tables and
* to free or create context templates if needed. Invoked after IPsec
* is loaded successfully.
*
* This is called separately for each IP instance, so we ensure we only
* register once.
*/
void
ipsec_register_prov_update(void)
{
if (prov_update_handle != NULL)
return;
prov_update_handle = crypto_notify_events(
ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
}
/*
* Unregisters from the framework to be notified of crypto providers
* changes. Called from ipsec_policy_g_destroy().
*/
static void
ipsec_unregister_prov_update(void)
{
if (prov_update_handle != NULL)
crypto_unnotify_events(prov_update_handle);
}
/*
* Tunnel-mode support routines.
*/
/*
* Returns an mblk chain suitable for putnext() if policies match and IPsec
* SAs are available. If there's no per-tunnel policy, or a match comes back
* with no match, then still return the packet and have global policy take
* a crack at it in IP.
* This updates the ip_xmit_attr with the IPsec policy.
*
* Remember -> we can be forwarding packets. Keep that in mind w.r.t.
* inner-packet contents.
*/
mblk_t *
ipsec_tun_outbound(mblk_t *mp, iptun_t *iptun, ipha_t *inner_ipv4,
ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
ip_xmit_attr_t *ixa)
{
ipsec_policy_head_t *polhead;
ipsec_selector_t sel;
mblk_t *nmp;
boolean_t is_fragment;
ipsec_policy_t *pol;
ipsec_tun_pol_t *itp = iptun->iptun_itp;
netstack_t *ns = iptun->iptun_ns;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
outer_ipv4 != NULL && outer_ipv6 == NULL);
/* We take care of inners in a bit. */
/* Are the IPsec fields initialized at all? */
if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) {
ASSERT(ixa->ixa_ipsec_policy == NULL);
ASSERT(ixa->ixa_ipsec_latch == NULL);
ASSERT(ixa->ixa_ipsec_action == NULL);
ASSERT(ixa->ixa_ipsec_ah_sa == NULL);
ASSERT(ixa->ixa_ipsec_esp_sa == NULL);
}
ASSERT(itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE));
polhead = itp->itp_policy;
bzero(&sel, sizeof (sel));
if (inner_ipv4 != NULL) {
ASSERT(inner_ipv6 == NULL);
sel.ips_isv4 = B_TRUE;
sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
} else {
ASSERT(inner_ipv6 != NULL);
sel.ips_isv4 = B_FALSE;
sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
/*
* We don't care about routing-header dests in the
* forwarding/tunnel path, so just grab ip6_dst.
*/
sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
}
if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
/*
* Caller can prepend the outer header, which means
* inner_ipv[46] may be stuck in the middle. Pullup the whole
* mess now if need-be, for easier processing later. Don't
* forget to rewire the outer header too.
*/
if (mp->b_cont != NULL) {
nmp = msgpullup(mp, -1);
if (nmp == NULL) {
ip_drop_packet(mp, B_FALSE, NULL,
DROPPER(ipss, ipds_spd_nomem),
&ipss->ipsec_spd_dropper);
return (NULL);
}
freemsg(mp);
mp = nmp;
if (outer_ipv4 != NULL)
outer_ipv4 = (ipha_t *)mp->b_rptr;
else
outer_ipv6 = (ip6_t *)mp->b_rptr;
if (inner_ipv4 != NULL) {
inner_ipv4 =
(ipha_t *)(mp->b_rptr + outer_hdr_len);
} else {
inner_ipv6 =
(ip6_t *)(mp->b_rptr + outer_hdr_len);
}
}
if (inner_ipv4 != NULL) {
is_fragment = IS_V4_FRAGMENT(
inner_ipv4->ipha_fragment_offset_and_flags);
} else {
sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp,
&is_fragment);
}
if (is_fragment) {
ipha_t *oiph;
ipha_t *iph = NULL;
ip6_t *ip6h = NULL;
int hdr_len;
uint16_t ip6_hdr_length;
uint8_t v6_proto;
uint8_t *v6_proto_p;
/*
* We have a fragment we need to track!
*/
mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
outer_hdr_len, ipss);
if (mp == NULL)
return (NULL);
ASSERT(mp->b_cont == NULL);
/*
* If we get here, we have a full fragment chain
*/
oiph = (ipha_t *)mp->b_rptr;
if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
hdr_len = ((outer_hdr_len != 0) ?
IPH_HDR_LENGTH(oiph) : 0);
iph = (ipha_t *)(mp->b_rptr + hdr_len);
} else {
ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
ip6h = (ip6_t *)mp->b_rptr;
if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
&ip6_hdr_length, &v6_proto_p)) {
ip_drop_packet_chain(mp, B_FALSE, NULL,
DROPPER(ipss,
ipds_spd_malformed_packet),
&ipss->ipsec_spd_dropper);
return (NULL);
}
hdr_len = ip6_hdr_length;
}
outer_hdr_len = hdr_len;
if (sel.ips_isv4) {
if (iph == NULL) {
/* Was v6 outer */
iph = (ipha_t *)(mp->b_rptr + hdr_len);
}
inner_ipv4 = iph;
sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
sel.ips_protocol =
(uint8_t)inner_ipv4->ipha_protocol;
} else {
inner_ipv6 = (ip6_t *)(mp->b_rptr +
hdr_len);
sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
if (!ip_hdr_length_nexthdr_v6(mp,
inner_ipv6, &ip6_hdr_length, &v6_proto_p)) {
ip_drop_packet_chain(mp, B_FALSE, NULL,
DROPPER(ipss,
ipds_spd_malformed_frag),
&ipss->ipsec_spd_dropper);
return (NULL);
}
v6_proto = *v6_proto_p;
sel.ips_protocol = v6_proto;
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
sel.ips_protocol);
#endif
}
/* Ports are extracted below */
}
/* Get ports... */
if (!ipsec_init_outbound_ports(&sel, mp,
inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
/* callee did ip_drop_packet_chain() on mp. */
return (NULL);
}
#ifdef FRAGCACHE_DEBUG
if (inner_ipv4 != NULL)
cmn_err(CE_WARN,
"(v4) sel.ips_protocol = %d, "
"sel.ips_local_port = %d, "
"sel.ips_remote_port = %d\n",
sel.ips_protocol, ntohs(sel.ips_local_port),
ntohs(sel.ips_remote_port));
if (inner_ipv6 != NULL)
cmn_err(CE_WARN,
"(v6) sel.ips_protocol = %d, "
"sel.ips_local_port = %d, "
"sel.ips_remote_port = %d\n",
sel.ips_protocol, ntohs(sel.ips_local_port),
ntohs(sel.ips_remote_port));
#endif
/* Success so far! */
}
rw_enter(&polhead->iph_lock, RW_READER);
pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel);
rw_exit(&polhead->iph_lock);
if (pol == NULL) {
/*
* No matching policy on this tunnel, drop the packet.
*
* NOTE: Tunnel-mode tunnels are different from the
* IP global transport mode policy head. For a tunnel-mode
* tunnel, we drop the packet in lieu of passing it
* along accepted the way a global-policy miss would.
*
* NOTE2: "negotiate transport" tunnels should match ALL
* inbound packets, but we do not uncomment the ASSERT()
* below because if/when we open PF_POLICY, a user can
* shoot him/her-self in the foot with a 0 priority.
*/
/* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
"per-port policy\n");
#endif
ip_drop_packet_chain(mp, B_FALSE, NULL,
DROPPER(ipss, ipds_spd_explicit),
&ipss->ipsec_spd_dropper);
return (NULL);
}
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
#endif
/*
* NOTE: ixa_cleanup() function will release pol references.
*/
ixa->ixa_ipsec_policy = pol;
/*
* NOTE: There is a subtle difference between iptun_zoneid and
* iptun_connp->conn_zoneid explained in iptun_conn_create(). When
* interacting with the ip module, we must use conn_zoneid.
*/
ixa->ixa_zoneid = iptun->iptun_connp->conn_zoneid;
ASSERT((outer_ipv4 != NULL) ? (ixa->ixa_flags & IXAF_IS_IPV4) :
!(ixa->ixa_flags & IXAF_IS_IPV4));
ASSERT(ixa->ixa_ipsec_policy != NULL);
ixa->ixa_flags |= IXAF_IPSEC_SECURE;
if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
/* Set up transport mode for tunnelled packets. */
ixa->ixa_ipsec_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
IPPROTO_IPV6;
return (mp);
}
/* Fill in tunnel-mode goodies here. */
ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
/* XXX Do I need to fill in all of the goodies here? */
if (inner_ipv4) {
ixa->ixa_ipsec_inaf = AF_INET;
ixa->ixa_ipsec_insrc[0] =
pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
ixa->ixa_ipsec_indst[0] =
pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
} else {
ixa->ixa_ipsec_inaf = AF_INET6;
ixa->ixa_ipsec_insrc[0] =
pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
ixa->ixa_ipsec_insrc[1] =
pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
ixa->ixa_ipsec_insrc[2] =
pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
ixa->ixa_ipsec_insrc[3] =
pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
ixa->ixa_ipsec_indst[0] =
pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
ixa->ixa_ipsec_indst[1] =
pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
ixa->ixa_ipsec_indst[2] =
pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
ixa->ixa_ipsec_indst[3] =
pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
}
ixa->ixa_ipsec_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
ixa->ixa_ipsec_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
/* NOTE: These are used for transport mode too. */
ixa->ixa_ipsec_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
ixa->ixa_ipsec_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
ixa->ixa_ipsec_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
return (mp);
}
/*
* NOTE: The following releases pol's reference and
* calls ip_drop_packet() for me on NULL returns.
*/
mblk_t *
ipsec_check_ipsecin_policy_reasm(mblk_t *attr_mp, ipsec_policy_t *pol,
ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
{
/* Assume attr_mp is a chain of b_next-linked ip_recv_attr mblk. */
mblk_t *data_chain = NULL, *data_tail = NULL;
mblk_t *next;
mblk_t *data_mp;
ip_recv_attr_t iras;
while (attr_mp != NULL) {
ASSERT(ip_recv_attr_is_mblk(attr_mp));
next = attr_mp->b_next;
attr_mp->b_next = NULL; /* No tripping asserts. */
data_mp = attr_mp->b_cont;
attr_mp->b_cont = NULL;
if (!ip_recv_attr_from_mblk(attr_mp, &iras)) {
/* The ill or ip_stack_t disappeared on us */
freemsg(data_mp); /* ip_drop_packet?? */
ira_cleanup(&iras, B_TRUE);
goto fail;
}
/*
* Need IPPOL_REFHOLD(pol) for extras because
* ipsecin_policy does the refrele.
*/
IPPOL_REFHOLD(pol);
data_mp = ipsec_check_ipsecin_policy(data_mp, pol, inner_ipv4,
inner_ipv6, pkt_unique, &iras, ns);
ira_cleanup(&iras, B_TRUE);
if (data_mp == NULL)
goto fail;
if (data_tail == NULL) {
/* First one */
data_chain = data_tail = data_mp;
} else {
data_tail->b_next = data_mp;
data_tail = data_mp;
}
attr_mp = next;
}
/*
* One last release because either the loop bumped it up, or we never
* called ipsec_check_ipsecin_policy().
*/
IPPOL_REFRELE(pol);
/* data_chain is ready for return to tun module. */
return (data_chain);
fail:
/*
* Need to get rid of any extra pol
* references, and any remaining bits as well.
*/
IPPOL_REFRELE(pol);
ipsec_freemsg_chain(data_chain);
ipsec_freemsg_chain(next); /* ipdrop stats? */
return (NULL);
}
/*
* Return a message if the inbound packet passed an IPsec policy check. Returns
* NULL if it failed or if it is a fragment needing its friends before a
* policy check can be performed.
*
* Expects a non-NULL data_mp, and a non-NULL polhead.
* The returned mblk may be a b_next chain of packets if fragments
* neeeded to be collected for a proper policy check.
*
* This function calls ip_drop_packet() on data_mp if need be.
*
* NOTE: outer_hdr_len is signed. If it's a negative value, the caller
* is inspecting an ICMP packet.
*/
mblk_t *
ipsec_tun_inbound(ip_recv_attr_t *ira, mblk_t *data_mp, ipsec_tun_pol_t *itp,
ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
{
ipsec_policy_head_t *polhead;
ipsec_selector_t sel;
ipsec_policy_t *pol;
uint16_t tmpport;
selret_t rc;
boolean_t port_policy_present, is_icmp, global_present;
in6_addr_t tmpaddr;
ipaddr_t tmp4;
uint8_t flags, *inner_hdr;
ipsec_stack_t *ipss = ns->netstack_ipsec;
sel.ips_is_icmp_inv_acq = 0;
if (outer_ipv4 != NULL) {
ASSERT(outer_ipv6 == NULL);
global_present = ipss->ipsec_inbound_v4_policy_present;
} else {
ASSERT(outer_ipv6 != NULL);
global_present = ipss->ipsec_inbound_v6_policy_present;
}
ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
inner_ipv4 == NULL && inner_ipv6 != NULL);
if (outer_hdr_len < 0) {
outer_hdr_len = (-outer_hdr_len);
is_icmp = B_TRUE;
} else {
is_icmp = B_FALSE;
}
if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
mblk_t *mp = data_mp;
polhead = itp->itp_policy;
/*
* We need to perform full Tunnel-Mode enforcement,
* and we need to have inner-header data for such enforcement.
*
* See ipsec_init_inbound_sel() for the 0x80000000 on inbound
* and on return.
*/
port_policy_present = ((itp->itp_flags &
ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
/*
* NOTE: Even if our policy is transport mode, set the
* SEL_TUNNEL_MODE flag so ipsec_init_inbound_sel() can
* do the right thing w.r.t. outer headers.
*/
flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
(is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
rc = ipsec_init_inbound_sel(&sel, data_mp, inner_ipv4,
inner_ipv6, flags);
switch (rc) {
case SELRET_NOMEM:
ip_drop_packet(data_mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_nomem),
&ipss->ipsec_spd_dropper);
return (NULL);
case SELRET_TUNFRAG:
/*
* At this point, if we're cleartext, we don't want
* to go there.
*/
if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
ip_drop_packet(data_mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_got_clear),
&ipss->ipsec_spd_dropper);
return (NULL);
}
/*
* Inner and outer headers may not be contiguous.
* Pullup the data_mp now to satisfy assumptions of
* ipsec_fragcache_add()
*/
if (data_mp->b_cont != NULL) {
mblk_t *nmp;
nmp = msgpullup(data_mp, -1);
if (nmp == NULL) {
ip_drop_packet(data_mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_nomem),
&ipss->ipsec_spd_dropper);
return (NULL);
}
freemsg(data_mp);
data_mp = nmp;
if (outer_ipv4 != NULL)
outer_ipv4 =
(ipha_t *)data_mp->b_rptr;
else
outer_ipv6 =
(ip6_t *)data_mp->b_rptr;
if (inner_ipv4 != NULL) {
inner_ipv4 =
(ipha_t *)(data_mp->b_rptr +
outer_hdr_len);
} else {
inner_ipv6 =
(ip6_t *)(data_mp->b_rptr +
outer_hdr_len);
}
}
/*
* If we need to queue the packet. First we
* get an mblk with the attributes. ipsec_fragcache_add
* will prepend that to the queued data and return
* a list of b_next messages each of which starts with
* the attribute mblk.
*/
mp = ip_recv_attr_to_mblk(ira);
if (mp == NULL) {
ip_drop_packet(data_mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_nomem),
&ipss->ipsec_spd_dropper);
return (NULL);
}
mp = ipsec_fragcache_add(&itp->itp_fragcache,
mp, data_mp, outer_hdr_len, ipss);
if (mp == NULL) {
/*
* Data is cached, fragment chain is not
* complete.
*/
return (NULL);
}
/*
* If we get here, we have a full fragment chain.
* Reacquire headers and selectors from first fragment.
*/
ASSERT(ip_recv_attr_is_mblk(mp));
data_mp = mp->b_cont;
inner_hdr = data_mp->b_rptr;
if (outer_ipv4 != NULL) {
inner_hdr += IPH_HDR_LENGTH(
(ipha_t *)data_mp->b_rptr);
} else {
inner_hdr += ip_hdr_length_v6(data_mp,
(ip6_t *)data_mp->b_rptr);
}
ASSERT(inner_hdr <= data_mp->b_wptr);
if (inner_ipv4 != NULL) {
inner_ipv4 = (ipha_t *)inner_hdr;
inner_ipv6 = NULL;
} else {
inner_ipv6 = (ip6_t *)inner_hdr;
inner_ipv4 = NULL;
}
/*
* Use SEL_TUNNEL_MODE to take into account the outer
* header. Use SEL_POST_FRAG so we always get ports.
*/
rc = ipsec_init_inbound_sel(&sel, data_mp,
inner_ipv4, inner_ipv6,
SEL_TUNNEL_MODE | SEL_POST_FRAG);
switch (rc) {
case SELRET_SUCCESS:
/*
* Get to same place as first caller's
* SELRET_SUCCESS case.
*/
break;
case SELRET_NOMEM:
ip_drop_packet_chain(mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_nomem),
&ipss->ipsec_spd_dropper);
return (NULL);
case SELRET_BADPKT:
ip_drop_packet_chain(mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_malformed_frag),
&ipss->ipsec_spd_dropper);
return (NULL);
case SELRET_TUNFRAG:
cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
/* FALLTHRU */
default:
cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
" returns bizarro 0x%x", rc);
/* Guaranteed panic! */
ASSERT(rc == SELRET_NOMEM);
return (NULL);
}
/* FALLTHRU */
case SELRET_SUCCESS:
/*
* Common case:
* No per-port policy or a non-fragment. Keep going.
*/
break;
case SELRET_BADPKT:
/*
* We may receive ICMP (with IPv6 inner) packets that
* trigger this return value. Send 'em in for
* enforcement checking.
*/
cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
"sending 'bad packet' in for enforcement");
break;
default:
cmn_err(CE_WARN,
"ipsec_init_inbound_sel() returns bizarro 0x%x",
rc);
ASSERT(rc == SELRET_NOMEM); /* Guaranteed panic! */
return (NULL);
}
if (is_icmp) {
/*
* Swap local/remote because this is an ICMP packet.
*/
tmpaddr = sel.ips_local_addr_v6;
sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
sel.ips_remote_addr_v6 = tmpaddr;
tmpport = sel.ips_local_port;
sel.ips_local_port = sel.ips_remote_port;
sel.ips_remote_port = tmpport;
}
/* find_policy_head() */
rw_enter(&polhead->iph_lock, RW_READER);
pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
&sel);
rw_exit(&polhead->iph_lock);
if (pol != NULL) {
uint64_t pkt_unique;
if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
if (!pol->ipsp_act->ipa_allow_clear) {
/*
* XXX should never get here with
* tunnel reassembled fragments?
*/
ASSERT(mp == data_mp);
ip_drop_packet(data_mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_got_clear),
&ipss->ipsec_spd_dropper);
IPPOL_REFRELE(pol);
return (NULL);
} else {
IPPOL_REFRELE(pol);
return (mp);
}
}
pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
sel.ips_local_port,
(inner_ipv4 == NULL) ? IPPROTO_IPV6 :
IPPROTO_ENCAP, sel.ips_protocol);
/*
* NOTE: The following releases pol's reference and
* calls ip_drop_packet() for me on NULL returns.
*
* "sel" is still good here, so let's use it!
*/
if (data_mp == mp) {
/* A single packet without attributes */
data_mp = ipsec_check_ipsecin_policy(data_mp,
pol, inner_ipv4, inner_ipv6, pkt_unique,
ira, ns);
} else {
/*
* We pass in the b_next chain of attr_mp's
* and get back a b_next chain of data_mp's.
*/
data_mp = ipsec_check_ipsecin_policy_reasm(mp,
pol, inner_ipv4, inner_ipv6, pkt_unique,
ns);
}
return (data_mp);
}
/*
* Else fallthru and check the global policy on the outer
* header(s) if this tunnel is an old-style transport-mode
* one. Drop the packet explicitly (no policy entry) for
* a new-style tunnel-mode tunnel.
*/
if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
ip_drop_packet_chain(data_mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_explicit),
&ipss->ipsec_spd_dropper);
return (NULL);
}
}
/*
* NOTE: If we reach here, we will not have packet chains from
* fragcache_add(), because the only way I get chains is on a
* tunnel-mode tunnel, which either returns with a pass, or gets
* hit by the ip_drop_packet_chain() call right above here.
*/
ASSERT(data_mp->b_next == NULL);
/* If no per-tunnel security, check global policy now. */
if ((ira->ira_flags & IRAF_IPSEC_SECURE) && !global_present) {
if (ira->ira_flags & IRAF_TRUSTED_ICMP) {
/*
* This is an ICMP message that was geenrated locally.
* We should accept it.
*/
return (data_mp);
}
ip_drop_packet(data_mp, B_TRUE, NULL,
DROPPER(ipss, ipds_spd_got_secure),
&ipss->ipsec_spd_dropper);
return (NULL);
}
if (is_icmp) {
/*
* For ICMP packets, "outer_ipvN" is set to the outer header
* that is *INSIDE* the ICMP payload. For global policy
* checking, we need to reverse src/dst on the payload in
* order to construct selectors appropriately. See "ripha"
* constructions in ip.c. To avoid a bug like 6478464 (see
* earlier in this file), we will actually exchange src/dst
* in the packet, and reverse if after the call to
* ipsec_check_global_policy().
*/
if (outer_ipv4 != NULL) {
tmp4 = outer_ipv4->ipha_src;
outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
outer_ipv4->ipha_dst = tmp4;
} else {
ASSERT(outer_ipv6 != NULL);
tmpaddr = outer_ipv6->ip6_src;
outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
outer_ipv6->ip6_dst = tmpaddr;
}
}
data_mp = ipsec_check_global_policy(data_mp, NULL, outer_ipv4,
outer_ipv6, ira, ns);
if (data_mp == NULL)
return (NULL);
if (is_icmp) {
/* Set things back to normal. */
if (outer_ipv4 != NULL) {
tmp4 = outer_ipv4->ipha_src;
outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
outer_ipv4->ipha_dst = tmp4;
} else {
/* No need for ASSERT()s now. */
tmpaddr = outer_ipv6->ip6_src;
outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
outer_ipv6->ip6_dst = tmpaddr;
}
}
/*
* At this point, we pretend it's a cleartext accepted
* packet.
*/
return (data_mp);
}
/*
* AVL comparison routine for our list of tunnel polheads.
*/
static int
tunnel_compare(const void *arg1, const void *arg2)
{
ipsec_tun_pol_t *left, *right;
int rc;
left = (ipsec_tun_pol_t *)arg1;
right = (ipsec_tun_pol_t *)arg2;
rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
}
/*
* Free a tunnel policy node.
*/
void
itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
{
if (node->itp_policy != NULL) {
IPPH_REFRELE(node->itp_policy, ns);
node->itp_policy = NULL;
}
if (node->itp_inactive != NULL) {
IPPH_REFRELE(node->itp_inactive, ns);
node->itp_inactive = NULL;
}
mutex_destroy(&node->itp_lock);
kmem_free(node, sizeof (*node));
}
void
itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
ipss->ipsec_tunnel_policy_gen++;
ipsec_fragcache_uninit(&node->itp_fragcache, ipss);
avl_remove(&ipss->ipsec_tunnel_policies, node);
rw_exit(&ipss->ipsec_tunnel_policy_lock);
ITP_REFRELE(node, ns);
}
/*
* Public interface to look up a tunnel security policy by name. Used by
* spdsock mostly. Returns "node" with a bumped refcnt.
*/
ipsec_tun_pol_t *
get_tunnel_policy(char *name, netstack_t *ns)
{
ipsec_tun_pol_t *node, lookup;
ipsec_stack_t *ipss = ns->netstack_ipsec;
(void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
&lookup, NULL);
if (node != NULL) {
ITP_REFHOLD(node);
}
rw_exit(&ipss->ipsec_tunnel_policy_lock);
return (node);
}
/*
* Public interface to walk all tunnel security polcies. Useful for spdsock
* DUMP operations. iterator() will not consume a reference.
*/
void
itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
void *arg, netstack_t *ns)
{
ipsec_tun_pol_t *node;
ipsec_stack_t *ipss = ns->netstack_ipsec;
rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
iterator(node, arg, ns);
}
rw_exit(&ipss->ipsec_tunnel_policy_lock);
}
/*
* Initialize policy head. This can only fail if there's a memory problem.
*/
static boolean_t
tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
{
ipsec_stack_t *ipss = ns->netstack_ipsec;
rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
iph->iph_refs = 1;
iph->iph_gen = 0;
if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
KM_SLEEP, B_FALSE, ns) != 0) {
ipsec_polhead_free_table(iph);
return (B_FALSE);
}
ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
return (B_TRUE);
}
/*
* Create a tunnel policy node with "name". Set errno with
* ENOMEM if there's a memory problem, and EEXIST if there's an existing
* node.
*/
ipsec_tun_pol_t *
create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
{
ipsec_tun_pol_t *newbie, *existing;
avl_index_t where;
ipsec_stack_t *ipss = ns->netstack_ipsec;
newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
if (newbie == NULL) {
*errno = ENOMEM;
return (NULL);
}
if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
kmem_free(newbie, sizeof (*newbie));
*errno = ENOMEM;
return (NULL);
}
(void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
newbie, &where);
if (existing != NULL) {
itp_free(newbie, ns);
*errno = EEXIST;
rw_exit(&ipss->ipsec_tunnel_policy_lock);
return (NULL);
}
ipss->ipsec_tunnel_policy_gen++;
*gen = ipss->ipsec_tunnel_policy_gen;
newbie->itp_refcnt = 2; /* One for the caller, one for the tree. */
newbie->itp_next_policy_index = 1;
avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
KM_NOSLEEP);
if (newbie->itp_policy == NULL)
goto nomem;
newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
KM_NOSLEEP);
if (newbie->itp_inactive == NULL) {
kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
goto nomem;
}
if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
goto nomem;
} else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
IPPH_REFRELE(newbie->itp_policy, ns);
kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
goto nomem;
}
rw_exit(&ipss->ipsec_tunnel_policy_lock);
return (newbie);
nomem:
*errno = ENOMEM;
kmem_free(newbie, sizeof (*newbie));
return (NULL);
}
/*
* Given two addresses, find a tunnel instance's IPsec policy heads.
* Returns NULL on failure.
*/
ipsec_tun_pol_t *
itp_get_byaddr(uint32_t *laddr, uint32_t *faddr, int af, ip_stack_t *ipst)
{
conn_t *connp;
iptun_t *iptun;
ipsec_tun_pol_t *itp = NULL;
/* Classifiers are used to "src" being foreign. */
if (af == AF_INET) {
connp = ipcl_iptun_classify_v4((ipaddr_t *)faddr,
(ipaddr_t *)laddr, ipst);
} else {
ASSERT(af == AF_INET6);
ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)laddr));
ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)faddr));
connp = ipcl_iptun_classify_v6((in6_addr_t *)faddr,
(in6_addr_t *)laddr, ipst);
}
if (connp == NULL)
return (NULL);
if (IPCL_IS_IPTUN(connp)) {
iptun = connp->conn_iptun;
if (iptun != NULL) {
itp = iptun->iptun_itp;
if (itp != NULL) {
/* Braces due to the macro's nature... */
ITP_REFHOLD(itp);
}
} /* Else itp is already NULL. */
}
CONN_DEC_REF(connp);
return (itp);
}
/*
* Frag cache code, based on SunScreen 3.2 source
* screen/kernel/common/screen_fragcache.c
*/
#define IPSEC_FRAG_TTL_MAX 5
/*
* Note that the following parameters create 256 hash buckets
* with 1024 free entries to be distributed. Things are cleaned
* periodically and are attempted to be cleaned when there is no
* free space, but this system errs on the side of dropping packets
* over creating memory exhaustion. We may decide to make hash
* factor a tunable if this proves to be a bad decision.
*/
#define IPSEC_FRAG_HASH_SLOTS (1<<8)
#define IPSEC_FRAG_HASH_FACTOR 4
#define IPSEC_FRAG_HASH_SIZE (IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
#define IPSEC_FRAG_HASH_MASK (IPSEC_FRAG_HASH_SLOTS - 1)
#define IPSEC_FRAG_HASH_FUNC(id) (((id) & IPSEC_FRAG_HASH_MASK) ^ \
(((id) / \
(ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
IPSEC_FRAG_HASH_MASK))
/* Maximum fragments per packet. 48 bytes payload x 1366 packets > 64KB */
#define IPSEC_MAX_FRAGS 1366
#define V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
IPH_OFFSET) << 3)
#define V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
IPH_MF)
/*
* Initialize an ipsec fragcache instance.
* Returns B_FALSE if memory allocation fails.
*/
boolean_t
ipsec_fragcache_init(ipsec_fragcache_t *frag)
{
ipsec_fragcache_entry_t *ftemp;
int i;
mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
frag->itpf_ptr = (ipsec_fragcache_entry_t **)
kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
if (frag->itpf_ptr == NULL)
return (B_FALSE);
ftemp = (ipsec_fragcache_entry_t *)
kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
if (ftemp == NULL) {
kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
IPSEC_FRAG_HASH_SLOTS);
return (B_FALSE);
}
frag->itpf_freelist = NULL;
for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
ftemp->itpfe_next = frag->itpf_freelist;
frag->itpf_freelist = ftemp;
ftemp++;
}
frag->itpf_expire_hint = 0;
return (B_TRUE);
}
void
ipsec_fragcache_uninit(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
{
ipsec_fragcache_entry_t *fep;
int i;
mutex_enter(&frag->itpf_lock);
if (frag->itpf_ptr) {
/* Delete any existing fragcache entry chains */
for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
fep = (frag->itpf_ptr)[i];
while (fep != NULL) {
/* Returned fep is next in chain or NULL */
fep = fragcache_delentry(i, fep, frag, ipss);
}
}
/*
* Chase the pointers back to the beginning
* of the memory allocation and then
* get rid of the allocated freelist
*/
while (frag->itpf_freelist->itpfe_next != NULL)
frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
/*
* XXX - If we ever dynamically grow the freelist
* then we'll have to free entries individually
* or determine how many entries or chunks we have
* grown since the initial allocation.
*/
kmem_free(frag->itpf_freelist,
sizeof (ipsec_fragcache_entry_t) *
IPSEC_FRAG_HASH_SIZE);
/* Free the fragcache structure */
kmem_free(frag->itpf_ptr,
sizeof (ipsec_fragcache_entry_t *) *
IPSEC_FRAG_HASH_SLOTS);
}
mutex_exit(&frag->itpf_lock);
mutex_destroy(&frag->itpf_lock);
}
/*
* Add a fragment to the fragment cache. Consumes mp if NULL is returned.
* Returns mp if a whole fragment has been assembled, NULL otherwise
* The returned mp could be a b_next chain of fragments.
*
* The iramp argument is set on inbound; NULL if outbound.
*/
mblk_t *
ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *iramp, mblk_t *mp,
int outer_hdr_len, ipsec_stack_t *ipss)
{
boolean_t is_v4;
time_t itpf_time;
ipha_t *iph;
ipha_t *oiph;
ip6_t *ip6h = NULL;
uint8_t v6_proto;
uint8_t *v6_proto_p;
uint16_t ip6_hdr_length;
ip_pkt_t ipp;
ip6_frag_t *fraghdr;
ipsec_fragcache_entry_t *fep;
int i;
mblk_t *nmp, *prevmp;
int firstbyte, lastbyte;
int offset;
int last;
boolean_t inbound = (iramp != NULL);
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "Fragcache: %s\n", inbound ? "INBOUND" : "OUTBOUND");
#endif
/*
* You're on the slow path, so insure that every packet in the
* cache is a single-mblk one.
*/
if (mp->b_cont != NULL) {
nmp = msgpullup(mp, -1);
if (nmp == NULL) {
ip_drop_packet(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_nomem),
&ipss->ipsec_spd_dropper);
if (inbound)
(void) ip_recv_attr_free_mblk(iramp);
return (NULL);
}
freemsg(mp);
mp = nmp;
}
mutex_enter(&frag->itpf_lock);
oiph = (ipha_t *)mp->b_rptr;
iph = (ipha_t *)(mp->b_rptr + outer_hdr_len);
if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
is_v4 = B_TRUE;
} else {
ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len);
if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length,
&v6_proto_p)) {
/*
* Find upper layer protocol.
* If it fails we have a malformed packet
*/
mutex_exit(&frag->itpf_lock);
ip_drop_packet(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_malformed_packet),
&ipss->ipsec_spd_dropper);
if (inbound)
(void) ip_recv_attr_free_mblk(iramp);
return (NULL);
} else {
v6_proto = *v6_proto_p;
}
bzero(&ipp, sizeof (ipp));
(void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
/*
* We think this is a fragment, but didn't find
* a fragment header. Something is wrong.
*/
mutex_exit(&frag->itpf_lock);
ip_drop_packet(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_malformed_frag),
&ipss->ipsec_spd_dropper);
if (inbound)
(void) ip_recv_attr_free_mblk(iramp);
return (NULL);
}
fraghdr = ipp.ipp_fraghdr;
is_v4 = B_FALSE;
}
/* Anything to cleanup? */
/*
* This cleanup call could be put in a timer loop
* but it may actually be just as reasonable a decision to
* leave it here. The disadvantage is this only gets called when
* frags are added. The advantage is that it is not
* susceptible to race conditions like a time-based cleanup
* may be.
*/
itpf_time = gethrestime_sec();
if (itpf_time >= frag->itpf_expire_hint)
ipsec_fragcache_clean(frag, ipss);
/* Lookup to see if there is an existing entry */
if (is_v4)
i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
else
i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
if (is_v4) {
ASSERT(iph != NULL);
if ((fep->itpfe_id == iph->ipha_ident) &&
(fep->itpfe_src == iph->ipha_src) &&
(fep->itpfe_dst == iph->ipha_dst) &&
(fep->itpfe_proto == iph->ipha_protocol))
break;
} else {
ASSERT(fraghdr != NULL);
ASSERT(fep != NULL);
if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
&ip6h->ip6_src) &&
IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
&ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
break;
}
}
if (is_v4) {
firstbyte = V4_FRAG_OFFSET(iph);
lastbyte = firstbyte + ntohs(iph->ipha_length) -
IPH_HDR_LENGTH(iph);
last = (V4_MORE_FRAGS(iph) == 0);
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
"is_last_frag = %d, id = %d, mp = %p\n", firstbyte,
lastbyte, last, iph->ipha_ident, mp);
#endif
} else {
firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
lastbyte = firstbyte + ntohs(ip6h->ip6_plen) +
sizeof (ip6_t) - ip6_hdr_length;
last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
"is_last_frag = %d, id = %d, fraghdr = %p, mp = %p\n",
firstbyte, lastbyte, last, fraghdr->ip6f_ident, fraghdr,
mp);
#endif
}
/* check for bogus fragments and delete the entry */
if (firstbyte > 0 && firstbyte <= 8) {
if (fep != NULL)
(void) fragcache_delentry(i, fep, frag, ipss);
mutex_exit(&frag->itpf_lock);
ip_drop_packet(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_malformed_frag),
&ipss->ipsec_spd_dropper);
if (inbound)
(void) ip_recv_attr_free_mblk(iramp);
return (NULL);
}
/* Not found, allocate a new entry */
if (fep == NULL) {
if (frag->itpf_freelist == NULL) {
/* see if there is some space */
ipsec_fragcache_clean(frag, ipss);
if (frag->itpf_freelist == NULL) {
mutex_exit(&frag->itpf_lock);
ip_drop_packet(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_nomem),
&ipss->ipsec_spd_dropper);
if (inbound)
(void) ip_recv_attr_free_mblk(iramp);
return (NULL);
}
}
fep = frag->itpf_freelist;
frag->itpf_freelist = fep->itpfe_next;
if (is_v4) {
bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
sizeof (struct in_addr));
bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
sizeof (struct in_addr));
fep->itpfe_id = iph->ipha_ident;
fep->itpfe_proto = iph->ipha_protocol;
i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
} else {
bcopy((in6_addr_t *)&ip6h->ip6_src,
(in6_addr_t *)&fep->itpfe_src6,
sizeof (struct in6_addr));
bcopy((in6_addr_t *)&ip6h->ip6_dst,
(in6_addr_t *)&fep->itpfe_dst6,
sizeof (struct in6_addr));
fep->itpfe_id = fraghdr->ip6f_ident;
fep->itpfe_proto = v6_proto;
i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
}
itpf_time = gethrestime_sec();
fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
fep->itpfe_last = 0;
fep->itpfe_fraglist = NULL;
fep->itpfe_depth = 0;
fep->itpfe_next = (frag->itpf_ptr)[i];
(frag->itpf_ptr)[i] = fep;
if (frag->itpf_expire_hint > fep->itpfe_exp)
frag->itpf_expire_hint = fep->itpfe_exp;
}
/* Insert it in the frag list */
/* List is in order by starting offset of fragments */
prevmp = NULL;
for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
ipha_t *niph;
ipha_t *oniph;
ip6_t *nip6h;
ip_pkt_t nipp;
ip6_frag_t *nfraghdr;
uint16_t nip6_hdr_length;
uint8_t *nv6_proto_p;
int nfirstbyte, nlastbyte;
char *data, *ndata;
mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
int hdr_len;
oniph = (ipha_t *)mp->b_rptr;
nip6h = NULL;
niph = NULL;
/*
* Determine outer header type and length and set
* pointers appropriately
*/
if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
hdr_len = ((outer_hdr_len != 0) ?
IPH_HDR_LENGTH(oiph) : 0);
niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
} else {
ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
ASSERT(ndata_mp->b_cont == NULL);
nip6h = (ip6_t *)ndata_mp->b_rptr;
(void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
&nip6_hdr_length, &v6_proto_p);
hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
}
/*
* Determine inner header type and length and set
* pointers appropriately
*/
if (is_v4) {
if (niph == NULL) {
/* Was v6 outer */
niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
}
nfirstbyte = V4_FRAG_OFFSET(niph);
nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
IPH_HDR_LENGTH(niph);
} else {
ASSERT(ndata_mp->b_cont == NULL);
nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len);
if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
&nip6_hdr_length, &nv6_proto_p)) {
mutex_exit(&frag->itpf_lock);
ip_drop_packet_chain(nmp, inbound, NULL,
DROPPER(ipss, ipds_spd_malformed_frag),
&ipss->ipsec_spd_dropper);
ipsec_freemsg_chain(ndata_mp);
if (inbound)
(void) ip_recv_attr_free_mblk(iramp);
return (NULL);
}
bzero(&nipp, sizeof (nipp));
(void) ip_find_hdr_v6(ndata_mp, nip6h, B_FALSE, &nipp,
NULL);
nfraghdr = nipp.ipp_fraghdr;
nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
IP6F_OFF_MASK);
nlastbyte = nfirstbyte + ntohs(nip6h->ip6_plen) +
sizeof (ip6_t) - nip6_hdr_length;
}
/* Check for overlapping fragments */
if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
/*
* Overlap Check:
* ~~~~--------- # Check if the newly
* ~ ndata_mp| # received fragment
* ~~~~--------- # overlaps with the
* ---------~~~~~~ # current fragment.
* | mp ~
* ---------~~~~~~
*/
if (is_v4) {
data = (char *)iph + IPH_HDR_LENGTH(iph) +
firstbyte - nfirstbyte;
ndata = (char *)niph + IPH_HDR_LENGTH(niph);
} else {
data = (char *)ip6h +
nip6_hdr_length + firstbyte -
nfirstbyte;
ndata = (char *)nip6h + nip6_hdr_length;
}
if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
firstbyte)) {
/* Overlapping data does not match */
(void) fragcache_delentry(i, fep, frag, ipss);
mutex_exit(&frag->itpf_lock);
ip_drop_packet(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_overlap_frag),
&ipss->ipsec_spd_dropper);
if (inbound)
(void) ip_recv_attr_free_mblk(iramp);
return (NULL);
}
/* Part of defense for jolt2.c fragmentation attack */
if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
/*
* Check for identical or subset fragments:
* ---------- ~~~~--------~~~~~
* | nmp | or ~ nmp ~
* ---------- ~~~~--------~~~~~
* ---------- ------
* | mp | | mp |
* ---------- ------
*/
mutex_exit(&frag->itpf_lock);
ip_drop_packet(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_evil_frag),
&ipss->ipsec_spd_dropper);
if (inbound)
(void) ip_recv_attr_free_mblk(iramp);
return (NULL);
}
}
/* Correct location for this fragment? */
if (firstbyte <= nfirstbyte) {
/*
* Check if the tail end of the new fragment overlaps
* with the head of the current fragment.
* --------~~~~~~~
* | nmp ~
* --------~~~~~~~
* ~~~~~--------
* ~ mp |
* ~~~~~--------
*/
if (lastbyte > nfirstbyte) {
/* Fragments overlap */
data = (char *)iph + IPH_HDR_LENGTH(iph) +
firstbyte - nfirstbyte;
ndata = (char *)niph + IPH_HDR_LENGTH(niph);
if (is_v4) {
data = (char *)iph +
IPH_HDR_LENGTH(iph) + firstbyte -
nfirstbyte;
ndata = (char *)niph +
IPH_HDR_LENGTH(niph);
} else {
data = (char *)ip6h +
nip6_hdr_length + firstbyte -
nfirstbyte;
ndata = (char *)nip6h + nip6_hdr_length;
}
if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
- nfirstbyte)) {
/* Overlap mismatch */
(void) fragcache_delentry(i, fep, frag,
ipss);
mutex_exit(&frag->itpf_lock);
ip_drop_packet(mp, inbound, NULL,
DROPPER(ipss,
ipds_spd_overlap_frag),
&ipss->ipsec_spd_dropper);
if (inbound) {
(void) ip_recv_attr_free_mblk(
iramp);
}
return (NULL);
}
}
/*
* Fragment does not illegally overlap and can now
* be inserted into the chain
*/
break;
}
prevmp = nmp;
}
/* Prepend the attributes before we link it in */
if (iramp != NULL) {
ASSERT(iramp->b_cont == NULL);
iramp->b_cont = mp;
mp = iramp;
iramp = NULL;
}
mp->b_next = nmp;
if (prevmp == NULL) {
fep->itpfe_fraglist = mp;
} else {
prevmp->b_next = mp;
}
if (last)
fep->itpfe_last = 1;
/* Part of defense for jolt2.c fragmentation attack */
if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
(void) fragcache_delentry(i, fep, frag, ipss);
mutex_exit(&frag->itpf_lock);
if (inbound)
mp = ip_recv_attr_free_mblk(mp);
ip_drop_packet(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_max_frags),
&ipss->ipsec_spd_dropper);
return (NULL);
}
/* Check for complete packet */
if (!fep->itpfe_last) {
mutex_exit(&frag->itpf_lock);
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "Fragment cached, last not yet seen.\n");
#endif
return (NULL);
}
offset = 0;
for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
mblk_t *data_mp = (inbound ? mp->b_cont : mp);
int hdr_len;
oiph = (ipha_t *)data_mp->b_rptr;
ip6h = NULL;
iph = NULL;
if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
hdr_len = ((outer_hdr_len != 0) ?
IPH_HDR_LENGTH(oiph) : 0);
iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
} else {
ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
ASSERT(data_mp->b_cont == NULL);
ip6h = (ip6_t *)data_mp->b_rptr;
(void) ip_hdr_length_nexthdr_v6(data_mp, ip6h,
&ip6_hdr_length, &v6_proto_p);
hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
}
/* Calculate current fragment start/end */
if (is_v4) {
if (iph == NULL) {
/* Was v6 outer */
iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
}
firstbyte = V4_FRAG_OFFSET(iph);
lastbyte = firstbyte + ntohs(iph->ipha_length) -
IPH_HDR_LENGTH(iph);
} else {
ASSERT(data_mp->b_cont == NULL);
ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len);
if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h,
&ip6_hdr_length, &v6_proto_p)) {
mutex_exit(&frag->itpf_lock);
ip_drop_packet_chain(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_malformed_frag),
&ipss->ipsec_spd_dropper);
return (NULL);
}
v6_proto = *v6_proto_p;
bzero(&ipp, sizeof (ipp));
(void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
NULL);
fraghdr = ipp.ipp_fraghdr;
firstbyte = ntohs(fraghdr->ip6f_offlg &
IP6F_OFF_MASK);
lastbyte = firstbyte + ntohs(ip6h->ip6_plen) +
sizeof (ip6_t) - ip6_hdr_length;
}
/*
* If this fragment is greater than current offset,
* we have a missing fragment so return NULL
*/
if (firstbyte > offset) {
mutex_exit(&frag->itpf_lock);
#ifdef FRAGCACHE_DEBUG
/*
* Note, this can happen when the last frag
* gets sent through because it is smaller
* than the MTU. It is not necessarily an
* error condition.
*/
cmn_err(CE_WARN, "Frag greater than offset! : "
"missing fragment: firstbyte = %d, offset = %d, "
"mp = %p\n", firstbyte, offset, mp);
#endif
return (NULL);
}
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "Frag offsets : "
"firstbyte = %d, offset = %d, mp = %p\n",
firstbyte, offset, mp);
#endif
/*
* If we are at the last fragment, we have the complete
* packet, so rechain things and return it to caller
* for processing
*/
if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
(!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
mp = fep->itpfe_fraglist;
fep->itpfe_fraglist = NULL;
(void) fragcache_delentry(i, fep, frag, ipss);
mutex_exit(&frag->itpf_lock);
if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
65535)) || (!is_v4 && (firstbyte +
ntohs(ip6h->ip6_plen) > 65535))) {
/* It is an invalid "ping-o-death" packet */
/* Discard it */
ip_drop_packet_chain(mp, inbound, NULL,
DROPPER(ipss, ipds_spd_evil_frag),
&ipss->ipsec_spd_dropper);
return (NULL);
}
#ifdef FRAGCACHE_DEBUG
cmn_err(CE_WARN, "Fragcache returning mp = %p, "
"mp->b_next = %p", mp, mp->b_next);
#endif
/*
* For inbound case, mp has attrmp b_next'd chain
* For outbound case, it is just data mp chain
*/
return (mp);
}
/*
* Update new ending offset if this
* fragment extends the packet
*/
if (offset < lastbyte)
offset = lastbyte;
}
mutex_exit(&frag->itpf_lock);
/* Didn't find last fragment, so return NULL */
return (NULL);
}
static void
ipsec_fragcache_clean(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
{
ipsec_fragcache_entry_t *fep;
int i;
ipsec_fragcache_entry_t *earlyfep = NULL;
time_t itpf_time;
int earlyexp;
int earlyi = 0;
ASSERT(MUTEX_HELD(&frag->itpf_lock));
itpf_time = gethrestime_sec();
earlyexp = itpf_time + 10000;
for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
fep = (frag->itpf_ptr)[i];
while (fep) {
if (fep->itpfe_exp < itpf_time) {
/* found */
fep = fragcache_delentry(i, fep, frag, ipss);
} else {
if (fep->itpfe_exp < earlyexp) {
earlyfep = fep;
earlyexp = fep->itpfe_exp;
earlyi = i;
}
fep = fep->itpfe_next;
}
}
}
frag->itpf_expire_hint = earlyexp;
/* if (!found) */
if (frag->itpf_freelist == NULL)
(void) fragcache_delentry(earlyi, earlyfep, frag, ipss);
}
static ipsec_fragcache_entry_t *
fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
{
ipsec_fragcache_entry_t *targp;
ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
ASSERT(MUTEX_HELD(&frag->itpf_lock));
/* Free up any fragment list still in cache entry */
if (fep->itpfe_fraglist != NULL) {
ip_drop_packet_chain(fep->itpfe_fraglist,
ip_recv_attr_is_mblk(fep->itpfe_fraglist), NULL,
DROPPER(ipss, ipds_spd_expired_frags),
&ipss->ipsec_spd_dropper);
}
fep->itpfe_fraglist = NULL;
targp = (frag->itpf_ptr)[slot];
ASSERT(targp != 0);
if (targp == fep) {
/* unlink from head of hash chain */
(frag->itpf_ptr)[slot] = nextp;
/* link into free list */
fep->itpfe_next = frag->itpf_freelist;
frag->itpf_freelist = fep;
return (nextp);
}
/* maybe should use double linked list to make update faster */
/* must be past front of chain */
while (targp) {
if (targp->itpfe_next == fep) {
/* unlink from hash chain */
targp->itpfe_next = nextp;
/* link into free list */
fep->itpfe_next = frag->itpf_freelist;
frag->itpf_freelist = fep;
return (nextp);
}
targp = targp->itpfe_next;
ASSERT(targp != 0);
}
/* NOTREACHED */
return (NULL);
}