sadb.c revision e35d2278fa5447def80bb5a191ce0f1c6b6836de
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/kmem.h>
#include <sys/sunddi.h>
#include <sys/tihdr.h>
#include <sys/atomic.h>
#include <sys/socket.h>
#include <sys/sysmacros.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <sys/zone.h>
#include <netinet/in.h>
#include <net/if.h>
#include <net/pfkeyv2.h>
#include <inet/common.h>
#include <netinet/ip6.h>
#include <inet/ip.h>
#include <inet/ip_ire.h>
#include <inet/ip6.h>
#include <inet/ipsec_info.h>
#include <inet/tcp.h>
#include <inet/sadb.h>
#include <inet/ipsec_impl.h>
#include <inet/ipsecah.h>
#include <inet/ipsecesp.h>
#include <sys/random.h>
#include <sys/dlpi.h>
#include <sys/iphada.h>
#include <inet/ip_if.h>
#include <inet/ipdrop.h>
#include <inet/ipclassifier.h>
#include <inet/sctp_ip.h>
#include <inet/tun.h>
/*
* This source file contains Security Association Database (SADB) common
* routines. They are linked in with the AH module. Since AH has no chance
* of falling under export control, it was safe to link it in there.
*/
static mblk_t *sadb_extended_acquire(ipsec_selector_t *, ipsec_policy_t *,
ipsec_action_t *, boolean_t, uint32_t, uint32_t, netstack_t *);
static void sadb_ill_df(ill_t *, mblk_t *, isaf_t *, int, boolean_t);
static ipsa_t *sadb_torch_assoc(isaf_t *, ipsa_t *, boolean_t, mblk_t **);
static void sadb_drain_torchq(queue_t *, mblk_t *);
static void sadb_destroy_acqlist(iacqf_t **, uint_t, boolean_t,
netstack_t *);
static void sadb_destroy(sadb_t *, netstack_t *);
static mblk_t *sadb_sa2msg(ipsa_t *, sadb_msg_t *);
static time_t sadb_add_time(time_t, uint64_t);
/*
* ipsacq_maxpackets is defined here to make it tunable
* from /etc/system.
*/
extern uint64_t ipsacq_maxpackets;
#define SET_EXPIRE(sa, delta, exp) { \
if (((sa)->ipsa_ ## delta) != 0) { \
(sa)->ipsa_ ## exp = sadb_add_time((sa)->ipsa_addtime, \
(sa)->ipsa_ ## delta); \
} \
}
#define UPDATE_EXPIRE(sa, delta, exp) { \
if (((sa)->ipsa_ ## delta) != 0) { \
time_t tmp = sadb_add_time((sa)->ipsa_usetime, \
(sa)->ipsa_ ## delta); \
if (((sa)->ipsa_ ## exp) == 0) \
(sa)->ipsa_ ## exp = tmp; \
else \
(sa)->ipsa_ ## exp = \
MIN((sa)->ipsa_ ## exp, tmp); \
} \
}
/* wrap the macro so we can pass it as a function pointer */
void
sadb_sa_refrele(void *target)
{
IPSA_REFRELE(((ipsa_t *)target));
}
/*
* We presume that sizeof (long) == sizeof (time_t) and that time_t is
* a signed type.
*/
#define TIME_MAX LONG_MAX
/*
* PF_KEY gives us lifetimes in uint64_t seconds. We presume that
* time_t is defined to be a signed type with the same range as
* "long". On ILP32 systems, we thus run the risk of wrapping around
* at end of time, as well as "overwrapping" the clock back around
* into a seemingly valid but incorrect future date earlier than the
* desired expiration.
*
* In order to avoid odd behavior (either negative lifetimes or loss
* of high order bits) when someone asks for bizarrely long SA
* lifetimes, we do a saturating add for expire times.
*
* We presume that ILP32 systems will be past end of support life when
* the 32-bit time_t overflows (a dangerous assumption, mind you..).
*
* On LP64, 2^64 seconds are about 5.8e11 years, at which point we
* will hopefully have figured out clever ways to avoid the use of
* fixed-sized integers in computation.
*/
static time_t
sadb_add_time(time_t base, uint64_t delta)
{
time_t sum;
/*
* Clip delta to the maximum possible time_t value to
* prevent "overwrapping" back into a shorter-than-desired
* future time.
*/
if (delta > TIME_MAX)
delta = TIME_MAX;
/*
* This sum may still overflow.
*/
sum = base + delta;
/*
* .. so if the result is less than the base, we overflowed.
*/
if (sum < base)
sum = TIME_MAX;
return (sum);
}
/*
* Callers of this function have already created a working security
* association, and have found the appropriate table & hash chain. All this
* function does is check duplicates, and insert the SA. The caller needs to
* hold the hash bucket lock and increment the refcnt before insertion.
*
* Return 0 if success, EEXIST if collision.
*/
int
sadb_insertassoc(ipsa_t *ipsa, isaf_t *bucket)
{
ipsa_t **ptpn = NULL;
ipsa_t *walker;
boolean_t unspecsrc;
ASSERT(MUTEX_HELD(&bucket->isaf_lock));
unspecsrc = IPSA_IS_ADDR_UNSPEC(ipsa->ipsa_srcaddr, ipsa->ipsa_addrfam);
walker = bucket->isaf_ipsa;
ASSERT(walker == NULL || ipsa->ipsa_addrfam == walker->ipsa_addrfam);
/*
* Find insertion point (pointed to with **ptpn). Insert at the head
* of the list unless there's an unspecified source address, then
* insert it after the last SA with a specified source address.
*
* BTW, you'll have to walk the whole chain, matching on {DST, SPI}
* checking for collisions.
*/
while (walker != NULL) {
if (IPSA_ARE_ADDR_EQUAL(walker->ipsa_dstaddr,
ipsa->ipsa_dstaddr, ipsa->ipsa_addrfam)) {
if (walker->ipsa_spi == ipsa->ipsa_spi)
return (EEXIST);
mutex_enter(&walker->ipsa_lock);
if (ipsa->ipsa_state == IPSA_STATE_MATURE &&
(walker->ipsa_flags & IPSA_F_USED) &&
((walker->ipsa_unique_id &
walker->ipsa_unique_mask) ==
(ipsa->ipsa_unique_id &
ipsa->ipsa_unique_mask))) {
walker->ipsa_flags |= IPSA_F_CINVALID;
}
mutex_exit(&walker->ipsa_lock);
}
if (ptpn == NULL && unspecsrc) {
if (IPSA_IS_ADDR_UNSPEC(walker->ipsa_srcaddr,
walker->ipsa_addrfam))
ptpn = walker->ipsa_ptpn;
else if (walker->ipsa_next == NULL)
ptpn = &walker->ipsa_next;
}
walker = walker->ipsa_next;
}
if (ptpn == NULL)
ptpn = &bucket->isaf_ipsa;
ipsa->ipsa_next = *ptpn;
ipsa->ipsa_ptpn = ptpn;
if (ipsa->ipsa_next != NULL)
ipsa->ipsa_next->ipsa_ptpn = &ipsa->ipsa_next;
*ptpn = ipsa;
ipsa->ipsa_linklock = &bucket->isaf_lock;
return (0);
}
/*
* Free a security association. Its reference count is 0, which means
* I must free it. The SA must be unlocked and must not be linked into
* any fanout list.
*/
static void
sadb_freeassoc(ipsa_t *ipsa)
{
ipsec_stack_t *ipss = ipsa->ipsa_netstack->netstack_ipsec;
ASSERT(ipss != NULL);
ASSERT(!MUTEX_HELD(&ipsa->ipsa_lock));
ASSERT(ipsa->ipsa_refcnt == 0);
ASSERT(ipsa->ipsa_next == NULL);
ASSERT(ipsa->ipsa_ptpn == NULL);
ip_drop_packet(sadb_clear_lpkt(ipsa), B_TRUE, NULL, NULL,
DROPPER(ipss, ipds_sadb_inlarval_timeout),
&ipss->ipsec_sadb_dropper);
mutex_enter(&ipsa->ipsa_lock);
if (ipsa->ipsa_natt_ka_timer != 0)
(void) quntimeout(ipsa->ipsa_natt_q, ipsa->ipsa_natt_ka_timer);
ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_AUTH);
ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_ENCR);
mutex_exit(&ipsa->ipsa_lock);
/* bzero() these fields for paranoia's sake. */
if (ipsa->ipsa_authkey != NULL) {
bzero(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen);
kmem_free(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen);
}
if (ipsa->ipsa_encrkey != NULL) {
bzero(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen);
kmem_free(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen);
}
if (ipsa->ipsa_src_cid != NULL) {
IPSID_REFRELE(ipsa->ipsa_src_cid);
}
if (ipsa->ipsa_dst_cid != NULL) {
IPSID_REFRELE(ipsa->ipsa_dst_cid);
}
if (ipsa->ipsa_integ != NULL)
kmem_free(ipsa->ipsa_integ, ipsa->ipsa_integlen);
if (ipsa->ipsa_sens != NULL)
kmem_free(ipsa->ipsa_sens, ipsa->ipsa_senslen);
mutex_destroy(&ipsa->ipsa_lock);
kmem_free(ipsa, sizeof (*ipsa));
}
/*
* Unlink a security association from a hash bucket. Assume the hash bucket
* lock is held, but the association's lock is not.
*
* Note that we do not bump the bucket's generation number here because
* we might not be making a visible change to the set of visible SA's.
* All callers MUST bump the bucket's generation number before they unlock
* the bucket if they use sadb_unlinkassoc to permanetly remove an SA which
* was present in the bucket at the time it was locked.
*/
void
sadb_unlinkassoc(ipsa_t *ipsa)
{
ASSERT(ipsa->ipsa_linklock != NULL);
ASSERT(MUTEX_HELD(ipsa->ipsa_linklock));
/* These fields are protected by the link lock. */
*(ipsa->ipsa_ptpn) = ipsa->ipsa_next;
if (ipsa->ipsa_next != NULL) {
ipsa->ipsa_next->ipsa_ptpn = ipsa->ipsa_ptpn;
ipsa->ipsa_next = NULL;
}
ipsa->ipsa_ptpn = NULL;
/* This may destroy the SA. */
IPSA_REFRELE(ipsa);
}
/*
* Create a larval security association with the specified SPI. All other
* fields are zeroed.
*/
static ipsa_t *
sadb_makelarvalassoc(uint32_t spi, uint32_t *src, uint32_t *dst, int addrfam,
netstack_t *ns)
{
ipsa_t *newbie;
/*
* Allocate...
*/
newbie = (ipsa_t *)kmem_zalloc(sizeof (ipsa_t), KM_NOSLEEP);
if (newbie == NULL) {
/* Can't make new larval SA. */
return (NULL);
}
/* Assigned requested SPI, assume caller does SPI allocation magic. */
newbie->ipsa_spi = spi;
newbie->ipsa_netstack = ns; /* No netstack_hold */
/*
* Copy addresses...
*/
IPSA_COPY_ADDR(newbie->ipsa_srcaddr, src, addrfam);
IPSA_COPY_ADDR(newbie->ipsa_dstaddr, dst, addrfam);
newbie->ipsa_addrfam = addrfam;
/*
* Set common initialization values, including refcnt.
*/
mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL);
newbie->ipsa_state = IPSA_STATE_LARVAL;
newbie->ipsa_refcnt = 1;
newbie->ipsa_freefunc = sadb_freeassoc;
/*
* There aren't a lot of other common initialization values, as
* they are copied in from the PF_KEY message.
*/
return (newbie);
}
/*
* Call me to initialize a security association fanout.
*/
static int
sadb_init_fanout(isaf_t **tablep, uint_t size, int kmflag)
{
isaf_t *table;
int i;
table = (isaf_t *)kmem_alloc(size * sizeof (*table), kmflag);
*tablep = table;
if (table == NULL)
return (ENOMEM);
for (i = 0; i < size; i++) {
mutex_init(&(table[i].isaf_lock), NULL, MUTEX_DEFAULT, NULL);
table[i].isaf_ipsa = NULL;
table[i].isaf_gen = 0;
}
return (0);
}
/*
* Call me to initialize an acquire fanout
*/
static int
sadb_init_acfanout(iacqf_t **tablep, uint_t size, int kmflag)
{
iacqf_t *table;
int i;
table = (iacqf_t *)kmem_alloc(size * sizeof (*table), kmflag);
*tablep = table;
if (table == NULL)
return (ENOMEM);
for (i = 0; i < size; i++) {
mutex_init(&(table[i].iacqf_lock), NULL, MUTEX_DEFAULT, NULL);
table[i].iacqf_ipsacq = NULL;
}
return (0);
}
/*
* Attempt to initialize an SADB instance. On failure, return ENOMEM;
* caller must clean up partial allocations.
*/
static int
sadb_init_trial(sadb_t *sp, uint_t size, int kmflag)
{
ASSERT(sp->sdb_of == NULL);
ASSERT(sp->sdb_if == NULL);
ASSERT(sp->sdb_acq == NULL);
sp->sdb_hashsize = size;
if (sadb_init_fanout(&sp->sdb_of, size, kmflag) != 0)
return (ENOMEM);
if (sadb_init_fanout(&sp->sdb_if, size, kmflag) != 0)
return (ENOMEM);
if (sadb_init_acfanout(&sp->sdb_acq, size, kmflag) != 0)
return (ENOMEM);
return (0);
}
/*
* Call me to initialize an SADB instance; fall back to default size on failure.
*/
static void
sadb_init(const char *name, sadb_t *sp, uint_t size, uint_t ver,
netstack_t *ns)
{
ASSERT(sp->sdb_of == NULL);
ASSERT(sp->sdb_if == NULL);
ASSERT(sp->sdb_acq == NULL);
if (size < IPSEC_DEFAULT_HASH_SIZE)
size = IPSEC_DEFAULT_HASH_SIZE;
if (sadb_init_trial(sp, size, KM_NOSLEEP) != 0) {
cmn_err(CE_WARN,
"Unable to allocate %u entry IPv%u %s SADB hash table",
size, ver, name);
sadb_destroy(sp, ns);
size = IPSEC_DEFAULT_HASH_SIZE;
cmn_err(CE_WARN, "Falling back to %d entries", size);
(void) sadb_init_trial(sp, size, KM_SLEEP);
}
}
/*
* Initialize an SADB-pair.
*/
void
sadbp_init(const char *name, sadbp_t *sp, int type, int size, netstack_t *ns)
{
sadb_init(name, &sp->s_v4, size, 4, ns);
sadb_init(name, &sp->s_v6, size, 6, ns);
sp->s_satype = type;
ASSERT((type == SADB_SATYPE_AH) || (type == SADB_SATYPE_ESP));
if (type == SADB_SATYPE_AH) {
ipsec_stack_t *ipss = ns->netstack_ipsec;
ip_drop_register(&ipss->ipsec_sadb_dropper, "IPsec SADB");
}
}
/*
* Deliver a single SADB_DUMP message representing a single SA. This is
* called many times by sadb_dump().
*
* If the return value of this is ENOBUFS (not the same as ENOMEM), then
* the caller should take that as a hint that dupb() on the "original answer"
* failed, and that perhaps the caller should try again with a copyb()ed
* "original answer".
*/
static int
sadb_dump_deliver(queue_t *pfkey_q, mblk_t *original_answer, ipsa_t *ipsa,
sadb_msg_t *samsg)
{
mblk_t *answer;
answer = dupb(original_answer);
if (answer == NULL)
return (ENOBUFS);
answer->b_cont = sadb_sa2msg(ipsa, samsg);
if (answer->b_cont == NULL) {
freeb(answer);
return (ENOMEM);
}
/* Just do a putnext, and let keysock deal with flow control. */
putnext(pfkey_q, answer);
return (0);
}
/*
* Common function to allocate and prepare a keysock_out_t M_CTL message.
*/
mblk_t *
sadb_keysock_out(minor_t serial)
{
mblk_t *mp;
keysock_out_t *kso;
mp = allocb(sizeof (ipsec_info_t), BPRI_HI);
if (mp != NULL) {
mp->b_datap->db_type = M_CTL;
mp->b_wptr += sizeof (ipsec_info_t);
kso = (keysock_out_t *)mp->b_rptr;
kso->ks_out_type = KEYSOCK_OUT;
kso->ks_out_len = sizeof (*kso);
kso->ks_out_serial = serial;
}
return (mp);
}
/*
* Perform an SADB_DUMP, spewing out every SA in an array of SA fanouts
* to keysock.
*/
static int
sadb_dump_fanout(queue_t *pfkey_q, mblk_t *mp, minor_t serial, isaf_t *fanout,
int num_entries, boolean_t do_peers)
{
int i, error = 0;
mblk_t *original_answer;
ipsa_t *walker;
sadb_msg_t *samsg;
/*
* For each IPSA hash bucket do:
* - Hold the mutex
* - Walk each entry, doing an sadb_dump_deliver() on it.
*/
ASSERT(mp->b_cont != NULL);
samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
original_answer = sadb_keysock_out(serial);
if (original_answer == NULL)
return (ENOMEM);
for (i = 0; i < num_entries; i++) {
mutex_enter(&fanout[i].isaf_lock);
for (walker = fanout[i].isaf_ipsa; walker != NULL;
walker = walker->ipsa_next) {
if (!do_peers && walker->ipsa_haspeer)
continue;
error = sadb_dump_deliver(pfkey_q, original_answer,
walker, samsg);
if (error == ENOBUFS) {
mblk_t *new_original_answer;
/* Ran out of dupb's. Try a copyb. */
new_original_answer = copyb(original_answer);
if (new_original_answer == NULL) {
error = ENOMEM;
} else {
freeb(original_answer);
original_answer = new_original_answer;
error = sadb_dump_deliver(pfkey_q,
original_answer, walker, samsg);
}
}
if (error != 0)
break; /* out of for loop. */
}
mutex_exit(&fanout[i].isaf_lock);
if (error != 0)
break; /* out of for loop. */
}
freeb(original_answer);
return (error);
}
/*
* Dump an entire SADB; outbound first, then inbound.
*/
int
sadb_dump(queue_t *pfkey_q, mblk_t *mp, minor_t serial, sadb_t *sp)
{
int error;
/* Dump outbound */
error = sadb_dump_fanout(pfkey_q, mp, serial, sp->sdb_of,
sp->sdb_hashsize, B_TRUE);
if (error)
return (error);
/* Dump inbound */
return sadb_dump_fanout(pfkey_q, mp, serial, sp->sdb_if,
sp->sdb_hashsize, B_FALSE);
}
/*
* Generic sadb table walker.
*
* Call "walkfn" for each SA in each bucket in "table"; pass the
* bucket, the entry and "cookie" to the callback function.
* Take care to ensure that walkfn can delete the SA without screwing
* up our traverse.
*
* The bucket is locked for the duration of the callback, both so that the
* callback can just call sadb_unlinkassoc() when it wants to delete something,
* and so that no new entries are added while we're walking the list.
*/
static void
sadb_walker(isaf_t *table, uint_t numentries,
void (*walkfn)(isaf_t *head, ipsa_t *entry, void *cookie),
void *cookie)
{
int i;
for (i = 0; i < numentries; i++) {
ipsa_t *entry, *next;
mutex_enter(&table[i].isaf_lock);
for (entry = table[i].isaf_ipsa; entry != NULL;
entry = next) {
next = entry->ipsa_next;
(*walkfn)(&table[i], entry, cookie);
}
mutex_exit(&table[i].isaf_lock);
}
}
/*
* From the given SA, construct a dl_ct_ipsec_key and
* a dl_ct_ipsec structures to be sent to the adapter as part
* of a DL_CONTROL_REQ.
*
* ct_sa must point to the storage allocated for the key
* structure and must be followed by storage allocated
* for the SA information that must be sent to the driver
* as part of the DL_CONTROL_REQ request.
*
* The is_inbound boolean indicates whether the specified
* SA is part of an inbound SA table.
*
* Returns B_TRUE if the corresponding SA must be passed to
* a provider, B_FALSE otherwise; frees *mp if it returns B_FALSE.
*/
static boolean_t
sadb_req_from_sa(ipsa_t *sa, mblk_t *mp, boolean_t is_inbound)
{
dl_ct_ipsec_key_t *keyp;
dl_ct_ipsec_t *sap;
void *ct_sa = mp->b_wptr;
ASSERT(MUTEX_HELD(&sa->ipsa_lock));
keyp = (dl_ct_ipsec_key_t *)(ct_sa);
sap = (dl_ct_ipsec_t *)(keyp + 1);
IPSECHW_DEBUG(IPSECHW_CAPAB, ("sadb_req_from_sa: "
"is_inbound = %d\n", is_inbound));
/* initialize flag */
sap->sadb_sa_flags = 0;
if (is_inbound) {
sap->sadb_sa_flags |= DL_CT_IPSEC_INBOUND;
/*
* If an inbound SA has a peer, then mark it has being
* an outbound SA as well.
*/
if (sa->ipsa_haspeer)
sap->sadb_sa_flags |= DL_CT_IPSEC_OUTBOUND;
} else {
/*
* If an outbound SA has a peer, then don't send it,
* since we will send the copy from the inbound table.
*/
if (sa->ipsa_haspeer) {
freemsg(mp);
return (B_FALSE);
}
sap->sadb_sa_flags |= DL_CT_IPSEC_OUTBOUND;
}
keyp->dl_key_spi = sa->ipsa_spi;
bcopy(sa->ipsa_dstaddr, keyp->dl_key_dest_addr,
DL_CTL_IPSEC_ADDR_LEN);
keyp->dl_key_addr_family = sa->ipsa_addrfam;
sap->sadb_sa_auth = sa->ipsa_auth_alg;
sap->sadb_sa_encrypt = sa->ipsa_encr_alg;
sap->sadb_key_len_a = sa->ipsa_authkeylen;
sap->sadb_key_bits_a = sa->ipsa_authkeybits;
bcopy(sa->ipsa_authkey,
sap->sadb_key_data_a, sap->sadb_key_len_a);
sap->sadb_key_len_e = sa->ipsa_encrkeylen;
sap->sadb_key_bits_e = sa->ipsa_encrkeybits;
bcopy(sa->ipsa_encrkey,
sap->sadb_key_data_e, sap->sadb_key_len_e);
mp->b_wptr += sizeof (dl_ct_ipsec_t) + sizeof (dl_ct_ipsec_key_t);
return (B_TRUE);
}
/*
* Called from AH or ESP to format a message which will be used to inform
* IPsec-acceleration-capable ills of a SADB change.
* (It is not possible to send the message to IP directly from this function
* since the SA, if any, is locked during the call).
*
* dl_operation: DL_CONTROL_REQ operation (add, delete, update, etc)
* sa_type: identifies whether the operation applies to AH or ESP
* (must be one of SADB_SATYPE_AH or SADB_SATYPE_ESP)
* sa: Pointer to an SA. Must be non-NULL and locked
* for ADD, DELETE, GET, and UPDATE operations.
* This function returns an mblk chain that must be passed to IP
* for forwarding to the IPsec capable providers.
*/
mblk_t *
sadb_fmt_sa_req(uint_t dl_operation, uint_t sa_type, ipsa_t *sa,
boolean_t is_inbound)
{
mblk_t *mp;
dl_control_req_t *ctrl;
boolean_t need_key = B_FALSE;
mblk_t *ctl_mp = NULL;
ipsec_ctl_t *ctl;
/*
* 1 allocate and initialize DL_CONTROL_REQ M_PROTO
* 2 if a key is needed for the operation
* 2.1 initialize key
* 2.2 if a full SA is needed for the operation
* 2.2.1 initialize full SA info
* 3 return message; caller will call ill_ipsec_capab_send_all()
* to send the resulting message to IPsec capable ills.
*/
ASSERT(sa_type == SADB_SATYPE_AH || sa_type == SADB_SATYPE_ESP);
/*
* Allocate DL_CONTROL_REQ M_PROTO
* We allocate room for the SA even if it's not needed
* by some of the operations (for example flush)
*/
mp = allocb(sizeof (dl_control_req_t) +
sizeof (dl_ct_ipsec_key_t) + sizeof (dl_ct_ipsec_t), BPRI_HI);
if (mp == NULL)
return (NULL);
mp->b_datap->db_type = M_PROTO;
/* initialize dl_control_req_t */
ctrl = (dl_control_req_t *)mp->b_wptr;
ctrl->dl_primitive = DL_CONTROL_REQ;
ctrl->dl_operation = dl_operation;
ctrl->dl_type = sa_type == SADB_SATYPE_AH ? DL_CT_IPSEC_AH :
DL_CT_IPSEC_ESP;
ctrl->dl_key_offset = sizeof (dl_control_req_t);
ctrl->dl_key_length = sizeof (dl_ct_ipsec_key_t);
ctrl->dl_data_offset = sizeof (dl_control_req_t) +
sizeof (dl_ct_ipsec_key_t);
ctrl->dl_data_length = sizeof (dl_ct_ipsec_t);
mp->b_wptr += sizeof (dl_control_req_t);
if ((dl_operation == DL_CO_SET) || (dl_operation == DL_CO_DELETE)) {
ASSERT(sa != NULL);
ASSERT(MUTEX_HELD(&sa->ipsa_lock));
need_key = B_TRUE;
/*
* Initialize key and SA data. Note that for some
* operations the SA data is ignored by the provider
* (delete, etc.)
*/
if (!sadb_req_from_sa(sa, mp, is_inbound))
return (NULL);
}
/* construct control message */
ctl_mp = allocb(sizeof (ipsec_ctl_t), BPRI_HI);
if (ctl_mp == NULL) {
cmn_err(CE_WARN, "sadb_fmt_sa_req: allocb failed\n");
freemsg(mp);
return (NULL);
}
ctl_mp->b_datap->db_type = M_CTL;
ctl_mp->b_wptr += sizeof (ipsec_ctl_t);
ctl_mp->b_cont = mp;
ctl = (ipsec_ctl_t *)ctl_mp->b_rptr;
ctl->ipsec_ctl_type = IPSEC_CTL;
ctl->ipsec_ctl_len = sizeof (ipsec_ctl_t);
ctl->ipsec_ctl_sa_type = sa_type;
if (need_key) {
/*
* Keep an additional reference on SA, since it will be
* needed by IP to send control messages corresponding
* to that SA from its perimeter. IP will do a
* IPSA_REFRELE when done with the request.
*/
ASSERT(MUTEX_HELD(&sa->ipsa_lock));
IPSA_REFHOLD(sa);
ctl->ipsec_ctl_sa = sa;
} else
ctl->ipsec_ctl_sa = NULL;
return (ctl_mp);
}
/*
* Called by sadb_ill_download() to dump the entries for a specific
* fanout table. For each SA entry in the table passed as argument,
* use mp as a template and constructs a full DL_CONTROL message, and
* call ill_dlpi_send(), provided by IP, to send the resulting
* messages to the ill.
*/
static void
sadb_ill_df(ill_t *ill, mblk_t *mp, isaf_t *fanout, int num_entries,
boolean_t is_inbound)
{
ipsa_t *walker;
mblk_t *nmp, *salist;
int i, error = 0;
ip_stack_t *ipst = ill->ill_ipst;
netstack_t *ns = ipst->ips_netstack;
IPSECHW_DEBUG(IPSECHW_SADB, ("sadb_ill_df: fanout at 0x%p ne=%d\n",
(void *)fanout, num_entries));
/*
* For each IPSA hash bucket do:
* - Hold the mutex
* - Walk each entry, sending a corresponding request to IP
* for it.
*/
ASSERT(mp->b_datap->db_type == M_PROTO);
for (i = 0; i < num_entries; i++) {
mutex_enter(&fanout[i].isaf_lock);
salist = NULL;
for (walker = fanout[i].isaf_ipsa; walker != NULL;
walker = walker->ipsa_next) {
IPSECHW_DEBUG(IPSECHW_SADB,
("sadb_ill_df: sending SA to ill via IP \n"));
/*
* Duplicate the template mp passed and
* complete DL_CONTROL_REQ data.
* To be more memory efficient, we could use
* dupb() for the M_CTL and copyb() for the M_PROTO
* as the M_CTL, since the M_CTL is the same for
* every SA entry passed down to IP for the same ill.
*
* Note that copymsg/copyb ensure that the new mblk
* is at least as large as the source mblk even if it's
* not using all its storage -- therefore, nmp
* has trailing space for sadb_req_from_sa to add
* the SA-specific bits.
*/
mutex_enter(&walker->ipsa_lock);
if (ipsec_capab_match(ill,
ill->ill_phyint->phyint_ifindex, ill->ill_isv6,
walker, ns)) {
nmp = copymsg(mp);
if (nmp == NULL) {
IPSECHW_DEBUG(IPSECHW_SADB,
("sadb_ill_df: alloc error\n"));
error = ENOMEM;
mutex_exit(&walker->ipsa_lock);
break;
}
if (sadb_req_from_sa(walker, nmp, is_inbound)) {
nmp->b_next = salist;
salist = nmp;
}
}
mutex_exit(&walker->ipsa_lock);
}
mutex_exit(&fanout[i].isaf_lock);
while (salist != NULL) {
nmp = salist;
salist = nmp->b_next;
nmp->b_next = NULL;
ill_dlpi_send(ill, nmp);
}
if (error != 0)
break; /* out of for loop. */
}
}
/*
* Called by ill_ipsec_capab_add(). Sends a copy of the SADB of
* the type specified by sa_type to the specified ill.
*
* We call for each fanout table defined by the SADB (one per
* protocol). sadb_ill_df() finally calls ill_dlpi_send() for
* each SADB entry in order to send a corresponding DL_CONTROL_REQ
* message to the ill.
*/
void
sadb_ill_download(ill_t *ill, uint_t sa_type)
{
mblk_t *protomp; /* prototype message */
dl_control_req_t *ctrl;
sadbp_t *spp;
sadb_t *sp;
int dlt;
ip_stack_t *ipst = ill->ill_ipst;
netstack_t *ns = ipst->ips_netstack;
ASSERT(sa_type == SADB_SATYPE_AH || sa_type == SADB_SATYPE_ESP);
/*
* Allocate and initialize prototype answer. A duplicate for
* each SA is sent down to the interface.
*/
/* DL_CONTROL_REQ M_PROTO mblk_t */
protomp = allocb(sizeof (dl_control_req_t) +
sizeof (dl_ct_ipsec_key_t) + sizeof (dl_ct_ipsec_t), BPRI_HI);
if (protomp == NULL)
return;
protomp->b_datap->db_type = M_PROTO;
dlt = (sa_type == SADB_SATYPE_AH) ? DL_CT_IPSEC_AH : DL_CT_IPSEC_ESP;
if (sa_type == SADB_SATYPE_ESP) {
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
spp = &espstack->esp_sadb;
} else {
ipsecah_stack_t *ahstack = ns->netstack_ipsecah;
spp = &ahstack->ah_sadb;
}
ctrl = (dl_control_req_t *)protomp->b_wptr;
ctrl->dl_primitive = DL_CONTROL_REQ;
ctrl->dl_operation = DL_CO_SET;
ctrl->dl_type = dlt;
ctrl->dl_key_offset = sizeof (dl_control_req_t);
ctrl->dl_key_length = sizeof (dl_ct_ipsec_key_t);
ctrl->dl_data_offset = sizeof (dl_control_req_t) +
sizeof (dl_ct_ipsec_key_t);
ctrl->dl_data_length = sizeof (dl_ct_ipsec_t);
protomp->b_wptr += sizeof (dl_control_req_t);
/*
* then for each SADB entry, we fill out the dl_ct_ipsec_key_t
* and dl_ct_ipsec_t
*/
sp = ill->ill_isv6 ? &(spp->s_v6) : &(spp->s_v4);
sadb_ill_df(ill, protomp, sp->sdb_of, sp->sdb_hashsize, B_FALSE);
sadb_ill_df(ill, protomp, sp->sdb_if, sp->sdb_hashsize, B_TRUE);
freemsg(protomp);
}
/*
* Call me to free up a security association fanout. Use the forever
* variable to indicate freeing up the SAs (forever == B_FALSE, e.g.
* an SADB_FLUSH message), or destroying everything (forever == B_TRUE,
* when a module is unloaded).
*/
static void
sadb_destroyer(isaf_t **tablep, uint_t numentries, boolean_t forever)
{
int i;
isaf_t *table = *tablep;
if (table == NULL)
return;
for (i = 0; i < numentries; i++) {
mutex_enter(&table[i].isaf_lock);
while (table[i].isaf_ipsa != NULL)
sadb_unlinkassoc(table[i].isaf_ipsa);
table[i].isaf_gen++;
mutex_exit(&table[i].isaf_lock);
if (forever)
mutex_destroy(&(table[i].isaf_lock));
}
if (forever) {
*tablep = NULL;
kmem_free(table, numentries * sizeof (*table));
}
}
/*
* Entry points to sadb_destroyer().
*/
static void
sadb_flush(sadb_t *sp, netstack_t *ns)
{
/*
* Flush out each bucket, one at a time. Were it not for keysock's
* enforcement, there would be a subtlety where I could add on the
* heels of a flush. With keysock's enforcement, however, this
* makes ESP's job easy.
*/
sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_FALSE);
sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_FALSE);
/* For each acquire, destroy it; leave the bucket mutex alone. */
sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_FALSE, ns);
}
static void
sadb_destroy(sadb_t *sp, netstack_t *ns)
{
sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_TRUE);
sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_TRUE);
/* For each acquire, destroy it, including the bucket mutex. */
sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_TRUE, ns);
ASSERT(sp->sdb_of == NULL);
ASSERT(sp->sdb_if == NULL);
ASSERT(sp->sdb_acq == NULL);
}
static void
sadb_send_flush_req(sadbp_t *spp)
{
mblk_t *ctl_mp;
/*
* we've been unplumbed, or never were plumbed; don't go there.
*/
if (spp->s_ip_q == NULL)
return;
/* have IP send a flush msg to the IPsec accelerators */
ctl_mp = sadb_fmt_sa_req(DL_CO_FLUSH, spp->s_satype, NULL, B_TRUE);
if (ctl_mp != NULL)
putnext(spp->s_ip_q, ctl_mp);
}
void
sadbp_flush(sadbp_t *spp, netstack_t *ns)
{
sadb_flush(&spp->s_v4, ns);
sadb_flush(&spp->s_v6, ns);
sadb_send_flush_req(spp);
}
void
sadbp_destroy(sadbp_t *spp, netstack_t *ns)
{
sadb_destroy(&spp->s_v4, ns);
sadb_destroy(&spp->s_v6, ns);
sadb_send_flush_req(spp);
if (spp->s_satype == SADB_SATYPE_AH) {
ipsec_stack_t *ipss = ns->netstack_ipsec;
ip_drop_unregister(&ipss->ipsec_sadb_dropper);
}
}
/*
* Check hard vs. soft lifetimes. If there's a reality mismatch (e.g.
* soft lifetimes > hard lifetimes) return an appropriate diagnostic for
* EINVAL.
*/
int
sadb_hardsoftchk(sadb_lifetime_t *hard, sadb_lifetime_t *soft)
{
if (hard == NULL || soft == NULL)
return (0);
if (hard->sadb_lifetime_allocations != 0 &&
soft->sadb_lifetime_allocations != 0 &&
hard->sadb_lifetime_allocations < soft->sadb_lifetime_allocations)
return (SADB_X_DIAGNOSTIC_ALLOC_HSERR);
if (hard->sadb_lifetime_bytes != 0 &&
soft->sadb_lifetime_bytes != 0 &&
hard->sadb_lifetime_bytes < soft->sadb_lifetime_bytes)
return (SADB_X_DIAGNOSTIC_BYTES_HSERR);
if (hard->sadb_lifetime_addtime != 0 &&
soft->sadb_lifetime_addtime != 0 &&
hard->sadb_lifetime_addtime < soft->sadb_lifetime_addtime)
return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR);
if (hard->sadb_lifetime_usetime != 0 &&
soft->sadb_lifetime_usetime != 0 &&
hard->sadb_lifetime_usetime < soft->sadb_lifetime_usetime)
return (SADB_X_DIAGNOSTIC_USETIME_HSERR);
return (0);
}
/*
* Clone a security association for the purposes of inserting a single SA
* into inbound and outbound tables respectively.
*/
static ipsa_t *
sadb_cloneassoc(ipsa_t *ipsa)
{
ipsa_t *newbie;
boolean_t error = B_FALSE;
ASSERT(!MUTEX_HELD(&(ipsa->ipsa_lock)));
newbie = kmem_alloc(sizeof (ipsa_t), KM_NOSLEEP);
if (newbie == NULL)
return (NULL);
/* Copy over what we can. */
*newbie = *ipsa;
/* bzero and initialize locks, in case *_init() allocates... */
mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL);
/*
* While somewhat dain-bramaged, the most graceful way to
* recover from errors is to keep plowing through the
* allocations, and getting what I can. It's easier to call
* sadb_freeassoc() on the stillborn clone when all the
* pointers aren't pointing to the parent's data.
*/
if (ipsa->ipsa_authkey != NULL) {
newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen,
KM_NOSLEEP);
if (newbie->ipsa_authkey == NULL) {
error = B_TRUE;
} else {
bcopy(ipsa->ipsa_authkey, newbie->ipsa_authkey,
newbie->ipsa_authkeylen);
newbie->ipsa_kcfauthkey.ck_data =
newbie->ipsa_authkey;
}
if (newbie->ipsa_amech.cm_param != NULL) {
newbie->ipsa_amech.cm_param =
(char *)&newbie->ipsa_mac_len;
}
}
if (ipsa->ipsa_encrkey != NULL) {
newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen,
KM_NOSLEEP);
if (newbie->ipsa_encrkey == NULL) {
error = B_TRUE;
} else {
bcopy(ipsa->ipsa_encrkey, newbie->ipsa_encrkey,
newbie->ipsa_encrkeylen);
newbie->ipsa_kcfencrkey.ck_data =
newbie->ipsa_encrkey;
}
}
newbie->ipsa_authtmpl = NULL;
newbie->ipsa_encrtmpl = NULL;
if (ipsa->ipsa_integ != NULL) {
newbie->ipsa_integ = kmem_alloc(newbie->ipsa_integlen,
KM_NOSLEEP);
if (newbie->ipsa_integ == NULL) {
error = B_TRUE;
} else {
bcopy(ipsa->ipsa_integ, newbie->ipsa_integ,
newbie->ipsa_integlen);
}
}
if (ipsa->ipsa_sens != NULL) {
newbie->ipsa_sens = kmem_alloc(newbie->ipsa_senslen,
KM_NOSLEEP);
if (newbie->ipsa_sens == NULL) {
error = B_TRUE;
} else {
bcopy(ipsa->ipsa_sens, newbie->ipsa_sens,
newbie->ipsa_senslen);
}
}
if (ipsa->ipsa_src_cid != NULL) {
newbie->ipsa_src_cid = ipsa->ipsa_src_cid;
IPSID_REFHOLD(ipsa->ipsa_src_cid);
}
if (ipsa->ipsa_dst_cid != NULL) {
newbie->ipsa_dst_cid = ipsa->ipsa_dst_cid;
IPSID_REFHOLD(ipsa->ipsa_dst_cid);
}
if (error) {
sadb_freeassoc(newbie);
return (NULL);
}
return (newbie);
}
/*
* Initialize a SADB address extension at the address specified by addrext.
* Return a pointer to the end of the new address extension.
*/
static uint8_t *
sadb_make_addr_ext(uint8_t *start, uint8_t *end, uint16_t exttype,
sa_family_t af, uint32_t *addr, uint16_t port, uint8_t proto, int prefix)
{
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
uint8_t *cur = start;
int addrext_len;
int sin_len;
sadb_address_t *addrext = (sadb_address_t *)cur;
if (cur == NULL)
return (NULL);
cur += sizeof (*addrext);
if (cur > end)
return (NULL);
addrext->sadb_address_proto = proto;
addrext->sadb_address_prefixlen = prefix;
addrext->sadb_address_reserved = 0;
addrext->sadb_address_exttype = exttype;
switch (af) {
case AF_INET:
sin = (struct sockaddr_in *)cur;
sin_len = sizeof (*sin);
cur += sin_len;
if (cur > end)
return (NULL);
sin->sin_family = af;
bzero(sin->sin_zero, sizeof (sin->sin_zero));
sin->sin_port = port;
IPSA_COPY_ADDR(&sin->sin_addr, addr, af);
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *)cur;
sin_len = sizeof (*sin6);
cur += sin_len;
if (cur > end)
return (NULL);
bzero(sin6, sizeof (*sin6));
sin6->sin6_family = af;
sin6->sin6_port = port;
IPSA_COPY_ADDR(&sin6->sin6_addr, addr, af);
break;
}
addrext_len = roundup(cur - start, sizeof (uint64_t));
addrext->sadb_address_len = SADB_8TO64(addrext_len);
cur = start + addrext_len;
if (cur > end)
cur = NULL;
return (cur);
}
/*
* Construct a key management cookie extension.
*/
static uint8_t *
sadb_make_kmc_ext(uint8_t *cur, uint8_t *end, uint32_t kmp, uint32_t kmc)
{
sadb_x_kmc_t *kmcext = (sadb_x_kmc_t *)cur;
if (cur == NULL)
return (NULL);
cur += sizeof (*kmcext);
if (cur > end)
return (NULL);
kmcext->sadb_x_kmc_len = SADB_8TO64(sizeof (*kmcext));
kmcext->sadb_x_kmc_exttype = SADB_X_EXT_KM_COOKIE;
kmcext->sadb_x_kmc_proto = kmp;
kmcext->sadb_x_kmc_cookie = kmc;
kmcext->sadb_x_kmc_reserved = 0;
return (cur);
}
/*
* Given an original message header with sufficient space following it, and an
* SA, construct a full PF_KEY message with all of the relevant extensions.
* This is mostly used for SADB_GET, and SADB_DUMP.
*/
static mblk_t *
sadb_sa2msg(ipsa_t *ipsa, sadb_msg_t *samsg)
{
int alloclen, addrsize, paddrsize, authsize, encrsize;
int srcidsize, dstidsize;
sa_family_t fam, pfam; /* Address family for SADB_EXT_ADDRESS */
/* src/dst and proxy sockaddrs. */
/*
* The following are pointers into the PF_KEY message this PF_KEY
* message creates.
*/
sadb_msg_t *newsamsg;
sadb_sa_t *assoc;
sadb_lifetime_t *lt;
sadb_key_t *key;
sadb_ident_t *ident;
sadb_sens_t *sens;
sadb_ext_t *walker; /* For when we need a generic ext. pointer. */
mblk_t *mp;
uint64_t *bitmap;
uint8_t *cur, *end;
/* These indicate the presence of the above extension fields. */
boolean_t soft, hard, isrc, idst, auth, encr, sensinteg, srcid, dstid;
/* First off, figure out the allocation length for this message. */
/*
* Constant stuff. This includes base, SA, address (src, dst),
* and lifetime (current).
*/
alloclen = sizeof (sadb_msg_t) + sizeof (sadb_sa_t) +
sizeof (sadb_lifetime_t);
fam = ipsa->ipsa_addrfam;
switch (fam) {
case AF_INET:
addrsize = roundup(sizeof (struct sockaddr_in) +
sizeof (sadb_address_t), sizeof (uint64_t));
break;
case AF_INET6:
addrsize = roundup(sizeof (struct sockaddr_in6) +
sizeof (sadb_address_t), sizeof (uint64_t));
break;
default:
return (NULL);
}
/*
* Allocate TWO address extensions, for source and destination.
* (Thus, the * 2.)
*/
alloclen += addrsize * 2;
if (ipsa->ipsa_flags & IPSA_F_NATT_REM)
alloclen += addrsize;
if (ipsa->ipsa_flags & IPSA_F_NATT_LOC)
alloclen += addrsize;
/* How 'bout other lifetimes? */
if (ipsa->ipsa_softaddlt != 0 || ipsa->ipsa_softuselt != 0 ||
ipsa->ipsa_softbyteslt != 0 || ipsa->ipsa_softalloc != 0) {
alloclen += sizeof (sadb_lifetime_t);
soft = B_TRUE;
} else {
soft = B_FALSE;
}
if (ipsa->ipsa_hardaddlt != 0 || ipsa->ipsa_harduselt != 0 ||
ipsa->ipsa_hardbyteslt != 0 || ipsa->ipsa_hardalloc != 0) {
alloclen += sizeof (sadb_lifetime_t);
hard = B_TRUE;
} else {
hard = B_FALSE;
}
/* Inner addresses. */
if (ipsa->ipsa_innerfam == 0) {
isrc = B_FALSE;
idst = B_FALSE;
} else {
pfam = ipsa->ipsa_innerfam;
switch (pfam) {
case AF_INET6:
paddrsize = roundup(sizeof (struct sockaddr_in6) +
sizeof (sadb_address_t), sizeof (uint64_t));
break;
case AF_INET:
paddrsize = roundup(sizeof (struct sockaddr_in) +
sizeof (sadb_address_t), sizeof (uint64_t));
break;
default:
cmn_err(CE_PANIC,
"IPsec SADB: Proxy length failure.\n");
break;
}
isrc = B_TRUE;
idst = B_TRUE;
alloclen += 2 * paddrsize;
}
/* For the following fields, assume that length != 0 ==> stuff */
if (ipsa->ipsa_authkeylen != 0) {
authsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_authkeylen,
sizeof (uint64_t));
alloclen += authsize;
auth = B_TRUE;
} else {
auth = B_FALSE;
}
if (ipsa->ipsa_encrkeylen != 0) {
encrsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_encrkeylen,
sizeof (uint64_t));
alloclen += encrsize;
encr = B_TRUE;
} else {
encr = B_FALSE;
}
/* No need for roundup on sens and integ. */
if (ipsa->ipsa_integlen != 0 || ipsa->ipsa_senslen != 0) {
alloclen += sizeof (sadb_key_t) + ipsa->ipsa_integlen +
ipsa->ipsa_senslen;
sensinteg = B_TRUE;
} else {
sensinteg = B_FALSE;
}
/*
* Must use strlen() here for lengths. Identities use NULL
* pointers to indicate their nonexistence.
*/
if (ipsa->ipsa_src_cid != NULL) {
srcidsize = roundup(sizeof (sadb_ident_t) +
strlen(ipsa->ipsa_src_cid->ipsid_cid) + 1,
sizeof (uint64_t));
alloclen += srcidsize;
srcid = B_TRUE;
} else {
srcid = B_FALSE;
}
if (ipsa->ipsa_dst_cid != NULL) {
dstidsize = roundup(sizeof (sadb_ident_t) +
strlen(ipsa->ipsa_dst_cid->ipsid_cid) + 1,
sizeof (uint64_t));
alloclen += dstidsize;
dstid = B_TRUE;
} else {
dstid = B_FALSE;
}
if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0))
alloclen += sizeof (sadb_x_kmc_t);
/* Make sure the allocation length is a multiple of 8 bytes. */
ASSERT((alloclen & 0x7) == 0);
/* XXX Possibly make it esballoc, with a bzero-ing free_ftn. */
mp = allocb(alloclen, BPRI_HI);
if (mp == NULL)
return (NULL);
mp->b_wptr += alloclen;
end = mp->b_wptr;
newsamsg = (sadb_msg_t *)mp->b_rptr;
*newsamsg = *samsg;
newsamsg->sadb_msg_len = (uint16_t)SADB_8TO64(alloclen);
mutex_enter(&ipsa->ipsa_lock); /* Since I'm grabbing SA fields... */
newsamsg->sadb_msg_satype = ipsa->ipsa_type;
assoc = (sadb_sa_t *)(newsamsg + 1);
assoc->sadb_sa_len = SADB_8TO64(sizeof (*assoc));
assoc->sadb_sa_exttype = SADB_EXT_SA;
assoc->sadb_sa_spi = ipsa->ipsa_spi;
assoc->sadb_sa_replay = ipsa->ipsa_replay_wsize;
assoc->sadb_sa_state = ipsa->ipsa_state;
assoc->sadb_sa_auth = ipsa->ipsa_auth_alg;
assoc->sadb_sa_encrypt = ipsa->ipsa_encr_alg;
assoc->sadb_sa_flags = ipsa->ipsa_flags;
lt = (sadb_lifetime_t *)(assoc + 1);
lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
lt->sadb_lifetime_allocations = ipsa->ipsa_alloc;
lt->sadb_lifetime_bytes = ipsa->ipsa_bytes;
lt->sadb_lifetime_addtime = ipsa->ipsa_addtime;
lt->sadb_lifetime_usetime = ipsa->ipsa_usetime;
if (hard) {
lt++;
lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lt->sadb_lifetime_allocations = ipsa->ipsa_hardalloc;
lt->sadb_lifetime_bytes = ipsa->ipsa_hardbyteslt;
lt->sadb_lifetime_addtime = ipsa->ipsa_hardaddlt;
lt->sadb_lifetime_usetime = ipsa->ipsa_harduselt;
}
if (soft) {
lt++;
lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
lt->sadb_lifetime_allocations = ipsa->ipsa_softalloc;
lt->sadb_lifetime_bytes = ipsa->ipsa_softbyteslt;
lt->sadb_lifetime_addtime = ipsa->ipsa_softaddlt;
lt->sadb_lifetime_usetime = ipsa->ipsa_softuselt;
}
cur = (uint8_t *)(lt + 1);
/* NOTE: Don't fill in ports here if we are a tunnel-mode SA. */
cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, fam,
ipsa->ipsa_srcaddr, (!isrc && !idst) ? SA_SRCPORT(ipsa) : 0,
SA_PROTO(ipsa), 0);
if (cur == NULL) {
freemsg(mp);
mp = NULL;
goto bail;
}
cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, fam,
ipsa->ipsa_dstaddr, (!isrc && !idst) ? SA_DSTPORT(ipsa) : 0,
SA_PROTO(ipsa), 0);
if (cur == NULL) {
freemsg(mp);
mp = NULL;
goto bail;
}
if (ipsa->ipsa_flags & IPSA_F_NATT_LOC) {
cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_LOC,
fam, ipsa->ipsa_natt_addr_loc, 0, 0, 0);
if (cur == NULL) {
freemsg(mp);
mp = NULL;
goto bail;
}
}
if (ipsa->ipsa_flags & IPSA_F_NATT_REM) {
cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_REM,
fam, ipsa->ipsa_natt_addr_rem, ipsa->ipsa_remote_port,
IPPROTO_UDP, 0);
if (cur == NULL) {
freemsg(mp);
mp = NULL;
goto bail;
}
}
/* If we are a tunnel-mode SA, fill in the inner-selectors. */
if (isrc) {
cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC,
pfam, ipsa->ipsa_innersrc, SA_SRCPORT(ipsa),
SA_IPROTO(ipsa), ipsa->ipsa_innersrcpfx);
if (cur == NULL) {
freemsg(mp);
mp = NULL;
goto bail;
}
}
if (idst) {
cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST,
pfam, ipsa->ipsa_innerdst, SA_DSTPORT(ipsa),
SA_IPROTO(ipsa), ipsa->ipsa_innerdstpfx);
if (cur == NULL) {
freemsg(mp);
mp = NULL;
goto bail;
}
}
if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0)) {
cur = sadb_make_kmc_ext(cur, end,
ipsa->ipsa_kmp, ipsa->ipsa_kmc);
if (cur == NULL) {
freemsg(mp);
mp = NULL;
goto bail;
}
}
walker = (sadb_ext_t *)cur;
if (auth) {
key = (sadb_key_t *)walker;
key->sadb_key_len = SADB_8TO64(authsize);
key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
key->sadb_key_bits = ipsa->ipsa_authkeybits;
key->sadb_key_reserved = 0;
bcopy(ipsa->ipsa_authkey, key + 1, ipsa->ipsa_authkeylen);
walker = (sadb_ext_t *)((uint64_t *)walker +
walker->sadb_ext_len);
}
if (encr) {
key = (sadb_key_t *)walker;
key->sadb_key_len = SADB_8TO64(encrsize);
key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
key->sadb_key_bits = ipsa->ipsa_encrkeybits;
key->sadb_key_reserved = 0;
bcopy(ipsa->ipsa_encrkey, key + 1, ipsa->ipsa_encrkeylen);
walker = (sadb_ext_t *)((uint64_t *)walker +
walker->sadb_ext_len);
}
if (srcid) {
ident = (sadb_ident_t *)walker;
ident->sadb_ident_len = SADB_8TO64(srcidsize);
ident->sadb_ident_exttype = SADB_EXT_IDENTITY_SRC;
ident->sadb_ident_type = ipsa->ipsa_src_cid->ipsid_type;
ident->sadb_ident_id = 0;
ident->sadb_ident_reserved = 0;
(void) strcpy((char *)(ident + 1),
ipsa->ipsa_src_cid->ipsid_cid);
walker = (sadb_ext_t *)((uint64_t *)walker +
walker->sadb_ext_len);
}
if (dstid) {
ident = (sadb_ident_t *)walker;
ident->sadb_ident_len = SADB_8TO64(dstidsize);
ident->sadb_ident_exttype = SADB_EXT_IDENTITY_DST;
ident->sadb_ident_type = ipsa->ipsa_dst_cid->ipsid_type;
ident->sadb_ident_id = 0;
ident->sadb_ident_reserved = 0;
(void) strcpy((char *)(ident + 1),
ipsa->ipsa_dst_cid->ipsid_cid);
walker = (sadb_ext_t *)((uint64_t *)walker +
walker->sadb_ext_len);
}
if (sensinteg) {
sens = (sadb_sens_t *)walker;
sens->sadb_sens_len = SADB_8TO64(sizeof (sadb_sens_t *) +
ipsa->ipsa_senslen + ipsa->ipsa_integlen);
sens->sadb_sens_dpd = ipsa->ipsa_dpd;
sens->sadb_sens_sens_level = ipsa->ipsa_senslevel;
sens->sadb_sens_integ_level = ipsa->ipsa_integlevel;
sens->sadb_sens_sens_len = SADB_8TO64(ipsa->ipsa_senslen);
sens->sadb_sens_integ_len = SADB_8TO64(ipsa->ipsa_integlen);
sens->sadb_sens_reserved = 0;
bitmap = (uint64_t *)(sens + 1);
if (ipsa->ipsa_sens != NULL) {
bcopy(ipsa->ipsa_sens, bitmap, ipsa->ipsa_senslen);
bitmap += sens->sadb_sens_sens_len;
}
if (ipsa->ipsa_integ != NULL)
bcopy(ipsa->ipsa_integ, bitmap, ipsa->ipsa_integlen);
walker = (sadb_ext_t *)((uint64_t *)walker +
walker->sadb_ext_len);
}
bail:
/* Pardon any delays... */
mutex_exit(&ipsa->ipsa_lock);
return (mp);
}
/*
* Strip out key headers or unmarked headers (SADB_EXT_KEY_*, SADB_EXT_UNKNOWN)
* and adjust base message accordingly.
*
* Assume message is pulled up in one piece of contiguous memory.
*
* Say if we start off with:
*
* +------+----+-------------+-----------+---------------+---------------+
* | base | SA | source addr | dest addr | rsrvd. or key | soft lifetime |
* +------+----+-------------+-----------+---------------+---------------+
*
* we will end up with
*
* +------+----+-------------+-----------+---------------+
* | base | SA | source addr | dest addr | soft lifetime |
* +------+----+-------------+-----------+---------------+
*/
static void
sadb_strip(sadb_msg_t *samsg)
{
sadb_ext_t *ext;
uint8_t *target = NULL;
uint8_t *msgend;
int sofar = SADB_8TO64(sizeof (*samsg));
int copylen;
ext = (sadb_ext_t *)(samsg + 1);
msgend = (uint8_t *)samsg;
msgend += SADB_64TO8(samsg->sadb_msg_len);
while ((uint8_t *)ext < msgend) {
if (ext->sadb_ext_type == SADB_EXT_RESERVED ||
ext->sadb_ext_type == SADB_EXT_KEY_AUTH ||
ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) {
/*
* Aha! I found a header to be erased.
*/
if (target != NULL) {
/*
* If I had a previous header to be erased,
* copy over it. I can get away with just
* copying backwards because the target will
* always be 8 bytes behind the source.
*/
copylen = ((uint8_t *)ext) - (target +
SADB_64TO8(
((sadb_ext_t *)target)->sadb_ext_len));
ovbcopy(((uint8_t *)ext - copylen), target,
copylen);
target += copylen;
((sadb_ext_t *)target)->sadb_ext_len =
SADB_8TO64(((uint8_t *)ext) - target +
SADB_64TO8(ext->sadb_ext_len));
} else {
target = (uint8_t *)ext;
}
} else {
sofar += ext->sadb_ext_len;
}
ext = (sadb_ext_t *)(((uint64_t *)ext) + ext->sadb_ext_len);
}
ASSERT((uint8_t *)ext == msgend);
if (target != NULL) {
copylen = ((uint8_t *)ext) - (target +
SADB_64TO8(((sadb_ext_t *)target)->sadb_ext_len));
if (copylen != 0)
ovbcopy(((uint8_t *)ext - copylen), target, copylen);
}
/* Adjust samsg. */
samsg->sadb_msg_len = (uint16_t)sofar;
/* Assume all of the rest is cleared by caller in sadb_pfkey_echo(). */
}
/*
* AH needs to send an error to PF_KEY. Assume mp points to an M_CTL
* followed by an M_DATA with a PF_KEY message in it. The serial of
* the sending keysock instance is included.
*/
void
sadb_pfkey_error(queue_t *pfkey_q, mblk_t *mp, int error, int diagnostic,
uint_t serial)
{
mblk_t *msg = mp->b_cont;
sadb_msg_t *samsg;
keysock_out_t *kso;
/*
* Enough functions call this to merit a NULL queue check.
*/
if (pfkey_q == NULL) {
freemsg(mp);
return;
}
ASSERT(msg != NULL);
ASSERT((mp->b_wptr - mp->b_rptr) == sizeof (ipsec_info_t));
ASSERT((msg->b_wptr - msg->b_rptr) >= sizeof (sadb_msg_t));
samsg = (sadb_msg_t *)msg->b_rptr;
kso = (keysock_out_t *)mp->b_rptr;
kso->ks_out_type = KEYSOCK_OUT;
kso->ks_out_len = sizeof (*kso);
kso->ks_out_serial = serial;
/*
* Only send the base message up in the event of an error.
* Don't worry about bzero()-ing, because it was probably bogus
* anyway.
*/
msg->b_wptr = msg->b_rptr + sizeof (*samsg);
samsg = (sadb_msg_t *)msg->b_rptr;
samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
samsg->sadb_msg_errno = (uint8_t)error;
if (diagnostic != SADB_X_DIAGNOSTIC_PRESET)
samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic;
putnext(pfkey_q, mp);
}
/*
* Send a successful return packet back to keysock via the queue in pfkey_q.
*
* Often, an SA is associated with the reply message, it's passed in if needed,
* and NULL if not. BTW, that ipsa will have its refcnt appropriately held,
* and the caller will release said refcnt.
*/
void
sadb_pfkey_echo(queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg,
keysock_in_t *ksi, ipsa_t *ipsa)
{
keysock_out_t *kso;
mblk_t *mp1;
sadb_msg_t *newsamsg;
uint8_t *oldend;
ASSERT((mp->b_cont != NULL) &&
((void *)samsg == (void *)mp->b_cont->b_rptr) &&
((void *)mp->b_rptr == (void *)ksi));
switch (samsg->sadb_msg_type) {
case SADB_ADD:
case SADB_UPDATE:
case SADB_FLUSH:
case SADB_DUMP:
/*
* I have all of the message already. I just need to strip
* out the keying material and echo the message back.
*
* NOTE: for SADB_DUMP, the function sadb_dump() did the
* work. When DUMP reaches here, it should only be a base
* message.
*/
justecho:
ASSERT(samsg->sadb_msg_type != SADB_DUMP ||
samsg->sadb_msg_len == SADB_8TO64(sizeof (sadb_msg_t)));
if (ksi->ks_in_extv[SADB_EXT_KEY_AUTH] != NULL ||
ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL) {
sadb_strip(samsg);
/* Assume PF_KEY message is contiguous. */
ASSERT(mp->b_cont->b_cont == NULL);
oldend = mp->b_cont->b_wptr;
mp->b_cont->b_wptr = mp->b_cont->b_rptr +
SADB_64TO8(samsg->sadb_msg_len);
bzero(mp->b_cont->b_wptr, oldend - mp->b_cont->b_wptr);
}
break;
case SADB_GET:
/*
* Do a lot of work here, because of the ipsa I just found.
* First construct the new PF_KEY message, then abandon
* the old one.
*/
mp1 = sadb_sa2msg(ipsa, samsg);
if (mp1 == NULL) {
sadb_pfkey_error(pfkey_q, mp, ENOMEM,
SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
return;
}
freemsg(mp->b_cont);
mp->b_cont = mp1;
break;
case SADB_DELETE:
if (ipsa == NULL)
goto justecho;
/*
* Because listening KMds may require more info, treat
* DELETE like a special case of GET.
*/
mp1 = sadb_sa2msg(ipsa, samsg);
if (mp1 == NULL) {
sadb_pfkey_error(pfkey_q, mp, ENOMEM,
SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
return;
}
newsamsg = (sadb_msg_t *)mp1->b_rptr;
sadb_strip(newsamsg);
oldend = mp1->b_wptr;
mp1->b_wptr = mp1->b_rptr + SADB_64TO8(newsamsg->sadb_msg_len);
bzero(mp1->b_wptr, oldend - mp1->b_wptr);
freemsg(mp->b_cont);
mp->b_cont = mp1;
break;
default:
if (mp != NULL)
freemsg(mp);
return;
}
/* ksi is now null and void. */
kso = (keysock_out_t *)ksi;
kso->ks_out_type = KEYSOCK_OUT;
kso->ks_out_len = sizeof (*kso);
kso->ks_out_serial = ksi->ks_in_serial;
/* We're ready to send... */
putnext(pfkey_q, mp);
}
/*
* Set up a global pfkey_q instance for AH, ESP, or some other consumer.
*/
void
sadb_keysock_hello(queue_t **pfkey_qp, queue_t *q, mblk_t *mp,
void (*ager)(void *), void *agerarg, timeout_id_t *top, int satype)
{
keysock_hello_ack_t *kha;
queue_t *oldq;
ASSERT(OTHERQ(q) != NULL);
/*
* First, check atomically that I'm the first and only keysock
* instance.
*
* Use OTHERQ(q), because qreply(q, mp) == putnext(OTHERQ(q), mp),
* and I want this module to say putnext(*_pfkey_q, mp) for PF_KEY
* messages.
*/
oldq = casptr((void **)pfkey_qp, NULL, OTHERQ(q));
if (oldq != NULL) {
ASSERT(oldq != q);
cmn_err(CE_WARN, "Danger! Multiple keysocks on top of %s.\n",
(satype == SADB_SATYPE_ESP)? "ESP" : "AH or other");
freemsg(mp);
return;
}
kha = (keysock_hello_ack_t *)mp->b_rptr;
kha->ks_hello_len = sizeof (keysock_hello_ack_t);
kha->ks_hello_type = KEYSOCK_HELLO_ACK;
kha->ks_hello_satype = (uint8_t)satype;
/*
* If we made it past the casptr, then we have "exclusive" access
* to the timeout handle. Fire it off in 4 seconds, because it
* just seems like a good interval.
*/
*top = qtimeout(*pfkey_qp, ager, agerarg, drv_usectohz(4000000));
putnext(*pfkey_qp, mp);
}
/*
* Normalize IPv4-mapped IPv6 addresses (and prefixes) as appropriate.
*
* Check addresses themselves for wildcard or multicast.
* Check ire table for local/non-local/broadcast.
*/
int
sadb_addrcheck(queue_t *pfkey_q, mblk_t *mp, sadb_ext_t *ext, uint_t serial,
netstack_t *ns)
{
sadb_address_t *addr = (sadb_address_t *)ext;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
ire_t *ire;
int diagnostic, type;
boolean_t normalized = B_FALSE;
ASSERT(ext != NULL);
ASSERT((ext->sadb_ext_type == SADB_EXT_ADDRESS_SRC) ||
(ext->sadb_ext_type == SADB_EXT_ADDRESS_DST) ||
(ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) ||
(ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) ||
(ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_LOC) ||
(ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_REM));
/* Assign both sockaddrs, the compiler will do the right thing. */
sin = (struct sockaddr_in *)(addr + 1);
sin6 = (struct sockaddr_in6 *)(addr + 1);
if (sin6->sin6_family == AF_INET6) {
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
/*
* Convert to an AF_INET sockaddr. This means the
* return messages will have the extra space, but have
* AF_INET sockaddrs instead of AF_INET6.
*
* Yes, RFC 2367 isn't clear on what to do here w.r.t.
* mapped addresses, but since AF_INET6 ::ffff:<v4> is
* equal to AF_INET <v4>, it shouldnt be a huge
* problem.
*/
sin->sin_family = AF_INET;
IN6_V4MAPPED_TO_INADDR(&sin6->sin6_addr,
&sin->sin_addr);
bzero(&sin->sin_zero, sizeof (sin->sin_zero));
normalized = B_TRUE;
}
} else if (sin->sin_family != AF_INET) {
switch (ext->sadb_ext_type) {
case SADB_EXT_ADDRESS_SRC:
diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC_AF;
break;
case SADB_EXT_ADDRESS_DST:
diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF;
break;
case SADB_X_EXT_ADDRESS_INNER_SRC:
diagnostic = SADB_X_DIAGNOSTIC_BAD_PROXY_AF;
break;
case SADB_X_EXT_ADDRESS_INNER_DST:
diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_DST_AF;
break;
case SADB_X_EXT_ADDRESS_NATT_LOC:
diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF;
break;
case SADB_X_EXT_ADDRESS_NATT_REM:
diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF;
break;
/* There is no default, see above ASSERT. */
}
bail:
if (pfkey_q != NULL) {
sadb_pfkey_error(pfkey_q, mp, EINVAL, diagnostic,
serial);
} else {
/*
* Scribble in sadb_msg that we got passed in.
* Overload "mp" to be an sadb_msg pointer.
*/
sadb_msg_t *samsg = (sadb_msg_t *)mp;
samsg->sadb_msg_errno = EINVAL;
samsg->sadb_x_msg_diagnostic = diagnostic;
}
return (KS_IN_ADDR_UNKNOWN);
}
if (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC ||
ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) {
/*
* We need only check for prefix issues.
*/
/* Set diagnostic now, in case we need it later. */
diagnostic =
(ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) ?
SADB_X_DIAGNOSTIC_PREFIX_INNER_SRC :
SADB_X_DIAGNOSTIC_PREFIX_INNER_DST;
if (normalized)
addr->sadb_address_prefixlen -= 96;
/*
* Verify and mask out inner-addresses based on prefix length.
*/
if (sin->sin_family == AF_INET) {
if (addr->sadb_address_prefixlen > 32)
goto bail;
sin->sin_addr.s_addr &=
ip_plen_to_mask(addr->sadb_address_prefixlen);
} else {
in6_addr_t mask;
ASSERT(sin->sin_family == AF_INET6);
/*
* ip_plen_to_mask_v6() returns NULL if the value in
* question is out of range.
*/
if (ip_plen_to_mask_v6(addr->sadb_address_prefixlen,
&mask) == NULL)
goto bail;
sin6->sin6_addr.s6_addr32[0] &= mask.s6_addr32[0];
sin6->sin6_addr.s6_addr32[1] &= mask.s6_addr32[1];
sin6->sin6_addr.s6_addr32[2] &= mask.s6_addr32[2];
sin6->sin6_addr.s6_addr32[3] &= mask.s6_addr32[3];
}
/* We don't care in these cases. */
return (KS_IN_ADDR_DONTCARE);
}
if (sin->sin_family == AF_INET6) {
/* Check the easy ones now. */
if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
return (KS_IN_ADDR_MBCAST);
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
return (KS_IN_ADDR_UNSPEC);
/*
* At this point, we're a unicast IPv6 address.
*
* A ctable lookup for local is sufficient here. If we're
* local, return KS_IN_ADDR_ME, otherwise KS_IN_ADDR_NOTME.
*
* XXX Zones alert -> me/notme decision needs to be tempered
* by what zone we're in when we go to zone-aware IPsec.
*/
ire = ire_ctable_lookup_v6(&sin6->sin6_addr, NULL,
IRE_LOCAL, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE,
ns->netstack_ip);
if (ire != NULL) {
/* Hey hey, it's local. */
IRE_REFRELE(ire);
return (KS_IN_ADDR_ME);
}
} else {
ASSERT(sin->sin_family == AF_INET);
if (sin->sin_addr.s_addr == INADDR_ANY)
return (KS_IN_ADDR_UNSPEC);
if (CLASSD(sin->sin_addr.s_addr))
return (KS_IN_ADDR_MBCAST);
/*
* At this point we're a unicast or broadcast IPv4 address.
*
* Lookup on the ctable for IRE_BROADCAST or IRE_LOCAL.
* A NULL return value is NOTME, otherwise, look at the
* returned ire for broadcast or not and return accordingly.
*
* XXX Zones alert -> me/notme decision needs to be tempered
* by what zone we're in when we go to zone-aware IPsec.
*/
ire = ire_ctable_lookup(sin->sin_addr.s_addr, 0,
IRE_LOCAL | IRE_BROADCAST, NULL, ALL_ZONES, NULL,
MATCH_IRE_TYPE, ns->netstack_ip);
if (ire != NULL) {
/* Check for local or broadcast */
type = ire->ire_type;
IRE_REFRELE(ire);
ASSERT(type == IRE_LOCAL || type == IRE_BROADCAST);
return ((type == IRE_LOCAL) ? KS_IN_ADDR_ME :
KS_IN_ADDR_MBCAST);
}
}
return (KS_IN_ADDR_NOTME);
}
/*
* Address normalizations and reality checks for inbound PF_KEY messages.
*
* For the case of src == unspecified AF_INET6, and dst == AF_INET, convert
* the source to AF_INET. Do the same for the inner sources.
*/
boolean_t
sadb_addrfix(keysock_in_t *ksi, queue_t *pfkey_q, mblk_t *mp, netstack_t *ns)
{
struct sockaddr_in *src, *isrc;
struct sockaddr_in6 *dst, *idst;
sadb_address_t *srcext, *dstext;
uint16_t sport;
sadb_ext_t **extv = ksi->ks_in_extv;
int rc;
if (extv[SADB_EXT_ADDRESS_SRC] != NULL) {
rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_SRC],
ksi->ks_in_serial, ns);
if (rc == KS_IN_ADDR_UNKNOWN)
return (B_FALSE);
if (rc == KS_IN_ADDR_MBCAST) {
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_BAD_SRC, ksi->ks_in_serial);
return (B_FALSE);
}
ksi->ks_in_srctype = rc;
}
if (extv[SADB_EXT_ADDRESS_DST] != NULL) {
rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_DST],
ksi->ks_in_serial, ns);
if (rc == KS_IN_ADDR_UNKNOWN)
return (B_FALSE);
if (rc == KS_IN_ADDR_UNSPEC) {
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_BAD_DST, ksi->ks_in_serial);
return (B_FALSE);
}
ksi->ks_in_dsttype = rc;
}
/*
* NAT-Traversal addrs are simple enough to not require all of
* the checks in sadb_addrcheck(). Just normalize or reject if not
* AF_INET.
*/
if (extv[SADB_X_EXT_ADDRESS_NATT_LOC] != NULL) {
rc = sadb_addrcheck(pfkey_q, mp,
extv[SADB_X_EXT_ADDRESS_NATT_LOC], ksi->ks_in_serial, ns);
/*
* NATT addresses never use an IRE_LOCAL, so it should
* always be NOTME, or UNSPEC if it's a tunnel-mode SA.
*/
if (rc != KS_IN_ADDR_NOTME &&
!(extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL &&
rc == KS_IN_ADDR_UNSPEC)) {
if (rc != KS_IN_ADDR_UNKNOWN)
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC,
ksi->ks_in_serial);
return (B_FALSE);
}
src = (struct sockaddr_in *)
(((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_LOC]) + 1);
if (src->sin_family != AF_INET) {
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF,
ksi->ks_in_serial);
return (B_FALSE);
}
}
if (extv[SADB_X_EXT_ADDRESS_NATT_REM] != NULL) {
rc = sadb_addrcheck(pfkey_q, mp,
extv[SADB_X_EXT_ADDRESS_NATT_REM], ksi->ks_in_serial, ns);
/*
* NATT addresses never use an IRE_LOCAL, so it should
* always be NOTME, or UNSPEC if it's a tunnel-mode SA.
*/
if (rc != KS_IN_ADDR_NOTME &&
!(extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL &&
rc == KS_IN_ADDR_UNSPEC)) {
if (rc != KS_IN_ADDR_UNKNOWN)
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM,
ksi->ks_in_serial);
return (B_FALSE);
}
src = (struct sockaddr_in *)
(((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_REM]) + 1);
if (src->sin_family != AF_INET) {
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF,
ksi->ks_in_serial);
return (B_FALSE);
}
}
if (extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL) {
if (extv[SADB_X_EXT_ADDRESS_INNER_DST] == NULL) {
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_MISSING_INNER_DST,
ksi->ks_in_serial);
return (B_FALSE);
}
if (sadb_addrcheck(pfkey_q, mp,
extv[SADB_X_EXT_ADDRESS_INNER_DST], ksi->ks_in_serial, ns)
== KS_IN_ADDR_UNKNOWN ||
sadb_addrcheck(pfkey_q, mp,
extv[SADB_X_EXT_ADDRESS_INNER_SRC], ksi->ks_in_serial, ns)
== KS_IN_ADDR_UNKNOWN)
return (B_FALSE);
isrc = (struct sockaddr_in *)
(((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC]) +
1);
idst = (struct sockaddr_in6 *)
(((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST]) +
1);
if (isrc->sin_family != idst->sin6_family) {
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH,
ksi->ks_in_serial);
return (B_FALSE);
}
} else if (extv[SADB_X_EXT_ADDRESS_INNER_DST] != NULL) {
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_MISSING_INNER_SRC,
ksi->ks_in_serial);
return (B_FALSE);
} else {
isrc = NULL; /* For inner/outer port check below. */
}
dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST];
srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC];
if (dstext == NULL || srcext == NULL)
return (B_TRUE);
dst = (struct sockaddr_in6 *)(dstext + 1);
src = (struct sockaddr_in *)(srcext + 1);
if (isrc != NULL &&
(isrc->sin_port != 0 || idst->sin6_port != 0) &&
(src->sin_port != 0 || dst->sin6_port != 0)) {
/* Can't set inner and outer ports in one SA. */
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_DUAL_PORT_SETS,
ksi->ks_in_serial);
return (B_FALSE);
}
if (dst->sin6_family == src->sin_family)
return (B_TRUE);
if (srcext->sadb_address_proto != dstext->sadb_address_proto) {
if (srcext->sadb_address_proto == 0) {
srcext->sadb_address_proto = dstext->sadb_address_proto;
} else if (dstext->sadb_address_proto == 0) {
dstext->sadb_address_proto = srcext->sadb_address_proto;
} else {
/* Inequal protocols, neither were 0. Report error. */
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_PROTO_MISMATCH,
ksi->ks_in_serial);
return (B_FALSE);
}
}
/*
* With the exception of an unspec IPv6 source and an IPv4
* destination, address families MUST me matched.
*/
if (src->sin_family == AF_INET ||
ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC) {
sadb_pfkey_error(pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_AF_MISMATCH, ksi->ks_in_serial);
return (B_FALSE);
}
/*
* Convert "src" to AF_INET INADDR_ANY. We rely on sin_port being
* in the same place for sockaddr_in and sockaddr_in6.
*/
sport = src->sin_port;
bzero(src, sizeof (*src));
src->sin_family = AF_INET;
src->sin_port = sport;
return (B_TRUE);
}
/*
* Set the results in "addrtype", given an IRE as requested by
* sadb_addrcheck().
*/
int
sadb_addrset(ire_t *ire)
{
if ((ire->ire_type & IRE_BROADCAST) ||
(ire->ire_ipversion == IPV4_VERSION && CLASSD(ire->ire_addr)) ||
(ire->ire_ipversion == IPV6_VERSION &&
IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))))
return (KS_IN_ADDR_MBCAST);
if (ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK))
return (KS_IN_ADDR_ME);
return (KS_IN_ADDR_NOTME);
}
/*
* Walker callback function to delete sa's based on src/dst address.
* Assumes that we're called with *head locked, no other locks held;
* Conveniently, and not coincidentally, this is both what sadb_walker
* gives us and also what sadb_unlinkassoc expects.
*/
struct sadb_purge_state
{
uint32_t *src;
uint32_t *dst;
sa_family_t af;
boolean_t inbnd;
char *sidstr;
char *didstr;
uint16_t sidtype;
uint16_t didtype;
uint32_t kmproto;
mblk_t *mq;
};
static void
sadb_purge_cb(isaf_t *head, ipsa_t *entry, void *cookie)
{
struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie;
ASSERT(MUTEX_HELD(&head->isaf_lock));
mutex_enter(&entry->ipsa_lock);
if ((entry->ipsa_state == IPSA_STATE_LARVAL) ||
(ps->src != NULL &&
!IPSA_ARE_ADDR_EQUAL(entry->ipsa_srcaddr, ps->src, ps->af)) ||
(ps->dst != NULL &&
!IPSA_ARE_ADDR_EQUAL(entry->ipsa_dstaddr, ps->dst, ps->af)) ||
(ps->didstr != NULL &&
(entry->ipsa_dst_cid != NULL) &&
!(ps->didtype == entry->ipsa_dst_cid->ipsid_type &&
strcmp(ps->didstr, entry->ipsa_dst_cid->ipsid_cid) == 0)) ||
(ps->sidstr != NULL &&
(entry->ipsa_src_cid != NULL) &&
!(ps->sidtype == entry->ipsa_src_cid->ipsid_type &&
strcmp(ps->sidstr, entry->ipsa_src_cid->ipsid_cid) == 0)) ||
(ps->kmproto <= SADB_X_KMP_MAX && ps->kmproto != entry->ipsa_kmp)) {
mutex_exit(&entry->ipsa_lock);
return;
}
entry->ipsa_state = IPSA_STATE_DEAD;
(void) sadb_torch_assoc(head, entry, ps->inbnd, &ps->mq);
}
/*
* Common code to purge an SA with a matching src or dst address.
* Don't kill larval SA's in such a purge.
*/
int
sadb_purge_sa(mblk_t *mp, keysock_in_t *ksi, sadb_t *sp, queue_t *pfkey_q,
queue_t *ip_q)
{
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
sadb_address_t *srcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
sadb_ident_t *dstid =
(sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST];
sadb_ident_t *srcid =
(sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC];
sadb_x_kmc_t *kmc =
(sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE];
struct sockaddr_in *src, *dst;
struct sockaddr_in6 *src6, *dst6;
struct sadb_purge_state ps;
/*
* Don't worry about IPv6 v4-mapped addresses, sadb_addrcheck()
* takes care of them.
*/
/* enforced by caller */
ASSERT((dstext != NULL) || (srcext != NULL));
ps.src = NULL;
ps.dst = NULL;
#ifdef DEBUG
ps.af = (sa_family_t)-1;
#endif
ps.mq = NULL;
ps.sidstr = NULL;
ps.didstr = NULL;
ps.kmproto = SADB_X_KMP_MAX + 1;
if (dstext != NULL) {
dst = (struct sockaddr_in *)(dstext + 1);
ps.af = dst->sin_family;
if (dst->sin_family == AF_INET6) {
dst6 = (struct sockaddr_in6 *)dst;
ps.dst = (uint32_t *)&dst6->sin6_addr;
} else {
ps.dst = (uint32_t *)&dst->sin_addr;
}
}
if (srcext != NULL) {
src = (struct sockaddr_in *)(srcext + 1);
ps.af = src->sin_family;
if (src->sin_family == AF_INET6) {
src6 = (struct sockaddr_in6 *)(srcext + 1);
ps.src = (uint32_t *)&src6->sin6_addr;
} else {
ps.src = (uint32_t *)&src->sin_addr;
}
ASSERT(dstext == NULL || src->sin_family == dst->sin_family);
}
ASSERT(ps.af != (sa_family_t)-1);
if (dstid != NULL) {
/*
* NOTE: May need to copy string in the future
* if the inbound keysock message disappears for some strange
* reason.
*/
ps.didstr = (char *)(dstid + 1);
ps.didtype = dstid->sadb_ident_type;
}
if (srcid != NULL) {
/*
* NOTE: May need to copy string in the future
* if the inbound keysock message disappears for some strange
* reason.
*/
ps.sidstr = (char *)(srcid + 1);
ps.sidtype = srcid->sadb_ident_type;
}
if (kmc != NULL)
ps.kmproto = kmc->sadb_x_kmc_proto;
/*
* This is simple, crude, and effective.
* Unimplemented optimizations (TBD):
* - we can limit how many places we search based on where we
* think the SA is filed.
* - if we get a dst address, we can hash based on dst addr to find
* the correct bucket in the outbound table.
*/
ps.inbnd = B_TRUE;
sadb_walker(sp->sdb_if, sp->sdb_hashsize, sadb_purge_cb, &ps);
ps.inbnd = B_FALSE;
sadb_walker(sp->sdb_of, sp->sdb_hashsize, sadb_purge_cb, &ps);
if (ps.mq != NULL)
sadb_drain_torchq(ip_q, ps.mq);
ASSERT(mp->b_cont != NULL);
sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
NULL);
return (0);
}
/*
* Common code to delete/get an SA.
*/
int
sadb_delget_sa(mblk_t *mp, keysock_in_t *ksi, sadbp_t *spp,
int *diagnostic, queue_t *pfkey_q, boolean_t delete)
{
sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
sadb_address_t *srcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
struct sockaddr_in *src, *dst;
struct sockaddr_in6 *src6, *dst6;
sadb_t *sp;
ipsa_t *outbound_target, *inbound_target;
isaf_t *inbound, *outbound;
uint32_t *srcaddr, *dstaddr;
mblk_t *torchq = NULL;
sa_family_t af;
if (dstext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
return (EINVAL);
}
if (assoc == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
return (EINVAL);
}
/*
* Don't worry about IPv6 v4-mapped addresses, sadb_addrcheck()
* takes care of them.
*/
dst = (struct sockaddr_in *)(dstext + 1);
af = dst->sin_family;
if (af == AF_INET6) {
sp = &spp->s_v6;
dst6 = (struct sockaddr_in6 *)dst;
dstaddr = (uint32_t *)&dst6->sin6_addr;
if (srcext != NULL) {
src6 = (struct sockaddr_in6 *)(srcext + 1);
srcaddr = (uint32_t *)&src6->sin6_addr;
ASSERT(src6->sin6_family == AF_INET6);
} else {
srcaddr = ALL_ZEROES_PTR;
}
outbound = OUTBOUND_BUCKET_V6(sp, *(uint32_t *)dstaddr);
} else {
sp = &spp->s_v4;
dstaddr = (uint32_t *)&dst->sin_addr;
if (srcext != NULL) {
src = (struct sockaddr_in *)(srcext + 1);
srcaddr = (uint32_t *)&src->sin_addr;
ASSERT(src->sin_family == AF_INET);
} else {
srcaddr = ALL_ZEROES_PTR;
}
outbound = OUTBOUND_BUCKET_V4(sp, *(uint32_t *)dstaddr);
}
inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi);
/* Lock down both buckets. */
mutex_enter(&outbound->isaf_lock);
mutex_enter(&inbound->isaf_lock);
/* Try outbound first. */
outbound_target = ipsec_getassocbyspi(outbound, assoc->sadb_sa_spi,
srcaddr, dstaddr, af);
if (outbound_target == NULL || outbound_target->ipsa_haspeer) {
inbound_target = ipsec_getassocbyspi(inbound,
assoc->sadb_sa_spi, srcaddr, dstaddr, af);
} else {
inbound_target = NULL;
}
if (outbound_target == NULL && inbound_target == NULL) {
mutex_exit(&inbound->isaf_lock);
mutex_exit(&outbound->isaf_lock);
return (ESRCH);
}
if (delete) {
/* At this point, I have one or two SAs to be deleted. */
if (outbound_target != NULL) {
mutex_enter(&outbound_target->ipsa_lock);
outbound_target->ipsa_state = IPSA_STATE_DEAD;
(void) sadb_torch_assoc(outbound, outbound_target,
B_FALSE, &torchq);
}
if (inbound_target != NULL) {
mutex_enter(&inbound_target->ipsa_lock);
inbound_target->ipsa_state = IPSA_STATE_DEAD;
(void) sadb_torch_assoc(inbound, inbound_target,
B_TRUE, &torchq);
}
}
mutex_exit(&inbound->isaf_lock);
mutex_exit(&outbound->isaf_lock);
if (torchq != NULL)
sadb_drain_torchq(spp->s_ip_q, torchq);
/*
* Because of the multi-line macro nature of IPSA_REFRELE, keep
* them in { }.
*/
ASSERT(mp->b_cont != NULL);
sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
(outbound_target != NULL ? outbound_target : inbound_target));
if (outbound_target != NULL) {
IPSA_REFRELE(outbound_target);
}
if (inbound_target != NULL) {
IPSA_REFRELE(inbound_target);
}
return (0);
}
/*
* Initialize the mechanism parameters associated with an SA.
* These parameters can be shared by multiple packets, which saves
* us from the overhead of consulting the algorithm table for
* each packet.
*/
static void
sadb_init_alginfo(ipsa_t *sa)
{
ipsec_alginfo_t *alg;
ipsec_stack_t *ipss = sa->ipsa_netstack->netstack_ipsec;
mutex_enter(&ipss->ipsec_alg_lock);
if (sa->ipsa_encrkey != NULL) {
alg = ipss->ipsec_alglists[IPSEC_ALG_ENCR][sa->ipsa_encr_alg];
if (alg != NULL && ALG_VALID(alg)) {
sa->ipsa_emech.cm_type = alg->alg_mech_type;
sa->ipsa_emech.cm_param = NULL;
sa->ipsa_emech.cm_param_len = 0;
sa->ipsa_iv_len = alg->alg_datalen;
} else
sa->ipsa_emech.cm_type = CRYPTO_MECHANISM_INVALID;
}
if (sa->ipsa_authkey != NULL) {
alg = ipss->ipsec_alglists[IPSEC_ALG_AUTH][sa->ipsa_auth_alg];
if (alg != NULL && ALG_VALID(alg)) {
sa->ipsa_amech.cm_type = alg->alg_mech_type;
sa->ipsa_amech.cm_param = (char *)&sa->ipsa_mac_len;
sa->ipsa_amech.cm_param_len = sizeof (size_t);
sa->ipsa_mac_len = (size_t)alg->alg_datalen;
} else
sa->ipsa_amech.cm_type = CRYPTO_MECHANISM_INVALID;
}
mutex_exit(&ipss->ipsec_alg_lock);
}
/*
* Perform NAT-traversal cached checksum offset calculations here.
*/
static void
sadb_nat_calculations(ipsa_t *newbie, sadb_address_t *natt_loc_ext,
sadb_address_t *natt_rem_ext, uint32_t *src_addr_ptr,
uint32_t *dst_addr_ptr)
{
struct sockaddr_in *natt_loc, *natt_rem;
uint32_t *natt_loc_ptr = NULL, *natt_rem_ptr = NULL;
uint32_t running_sum = 0;
#define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16)
if (natt_rem_ext != NULL) {
uint32_t l_src;
uint32_t l_rem;
natt_rem = (struct sockaddr_in *)(natt_rem_ext + 1);
/* Ensured by sadb_addrfix(). */
ASSERT(natt_rem->sin_family == AF_INET);
natt_rem_ptr = (uint32_t *)(&natt_rem->sin_addr);
newbie->ipsa_remote_port = natt_rem->sin_port;
l_src = *src_addr_ptr;
l_rem = *natt_rem_ptr;
/* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */
newbie->ipsa_natt_addr_rem[0] = *natt_rem_ptr;
l_src = ntohl(l_src);
DOWN_SUM(l_src);
DOWN_SUM(l_src);
l_rem = ntohl(l_rem);
DOWN_SUM(l_rem);
DOWN_SUM(l_rem);
/*
* We're 1's complement for checksums, so check for wraparound
* here.
*/
if (l_rem > l_src)
l_src--;
running_sum += l_src - l_rem;
DOWN_SUM(running_sum);
DOWN_SUM(running_sum);
}
if (natt_loc_ext != NULL) {
uint32_t l_dst;
uint32_t l_loc;
natt_loc = (struct sockaddr_in *)(natt_loc_ext + 1);
/* Ensured by sadb_addrfix(). */
ASSERT(natt_loc->sin_family == AF_INET);
natt_loc_ptr = (uint32_t *)&natt_loc->sin_addr;
/* TODO - future port flexibility beyond 4500. */
l_dst = *dst_addr_ptr;
l_loc = *natt_loc_ptr;
/* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */
newbie->ipsa_natt_addr_loc[0] = *natt_loc_ptr;
l_loc = ntohl(l_loc);
DOWN_SUM(l_loc);
DOWN_SUM(l_loc);
l_dst = ntohl(l_dst);
DOWN_SUM(l_dst);
DOWN_SUM(l_dst);
/*
* We're 1's complement for checksums, so check for wraparound
* here.
*/
if (l_loc > l_dst)
l_dst--;
running_sum += l_dst - l_loc;
DOWN_SUM(running_sum);
DOWN_SUM(running_sum);
}
newbie->ipsa_inbound_cksum = running_sum;
#undef DOWN_SUM
}
/*
* This function is called from consumers that need to insert a fully-grown
* security association into its tables. This function takes into account that
* SAs can be "inbound", "outbound", or "both". The "primary" and "secondary"
* hash bucket parameters are set in order of what the SA will be most of the
* time. (For example, an SA with an unspecified source, and a multicast
* destination will primarily be an outbound SA. OTOH, if that destination
* is unicast for this node, then the SA will primarily be inbound.)
*
* It takes a lot of parameters because even if clone is B_FALSE, this needs
* to check both buckets for purposes of collision.
*
* Return 0 upon success. Return various errnos (ENOMEM, EEXIST) for
* various error conditions. We may need to set samsg->sadb_x_msg_diagnostic
* with additional diagnostic information because there is at least one EINVAL
* case here.
*/
int
sadb_common_add(queue_t *ip_q, queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg,
keysock_in_t *ksi, isaf_t *primary, isaf_t *secondary,
ipsa_t *newbie, boolean_t clone, boolean_t is_inbound, int *diagnostic,
netstack_t *ns)
{
ipsa_t *newbie_clone = NULL, *scratch;
sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
sadb_address_t *srcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
sadb_address_t *isrcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC];
sadb_address_t *idstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST];
sadb_x_kmc_t *kmcext =
(sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE];
sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
#if 0
/*
* XXXMLS - When Trusted Solaris or Multi-Level Secure functionality
* comes to ON, examine these if 0'ed fragments. Look for XXXMLS.
*/
sadb_sens_t *sens = (sadb_sens_t *);
#endif
struct sockaddr_in *src, *dst, *isrc, *idst;
struct sockaddr_in6 *src6, *dst6, *isrc6, *idst6;
sadb_lifetime_t *soft =
(sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
sadb_lifetime_t *hard =
(sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
sa_family_t af;
int error = 0;
boolean_t isupdate = (newbie != NULL);
uint32_t *src_addr_ptr, *dst_addr_ptr, *isrc_addr_ptr, *idst_addr_ptr;
mblk_t *ctl_mp = NULL;
ipsec_stack_t *ipss = ns->netstack_ipsec;
src = (struct sockaddr_in *)(srcext + 1);
src6 = (struct sockaddr_in6 *)(srcext + 1);
dst = (struct sockaddr_in *)(dstext + 1);
dst6 = (struct sockaddr_in6 *)(dstext + 1);
if (isrcext != NULL) {
isrc = (struct sockaddr_in *)(isrcext + 1);
isrc6 = (struct sockaddr_in6 *)(isrcext + 1);
ASSERT(idstext != NULL);
idst = (struct sockaddr_in *)(idstext + 1);
idst6 = (struct sockaddr_in6 *)(idstext + 1);
} else {
isrc = NULL;
isrc6 = NULL;
}
af = src->sin_family;
if (af == AF_INET) {
src_addr_ptr = (uint32_t *)&src->sin_addr;
dst_addr_ptr = (uint32_t *)&dst->sin_addr;
} else {
ASSERT(af == AF_INET6);
src_addr_ptr = (uint32_t *)&src6->sin6_addr;
dst_addr_ptr = (uint32_t *)&dst6->sin6_addr;
}
if (!isupdate) {
newbie = sadb_makelarvalassoc(assoc->sadb_sa_spi,
src_addr_ptr, dst_addr_ptr, af, ns);
if (newbie == NULL)
return (ENOMEM);
}
mutex_enter(&newbie->ipsa_lock);
if (isrc != NULL) {
if (isrc->sin_family == AF_INET) {
if (srcext->sadb_address_proto != IPPROTO_ENCAP) {
if (srcext->sadb_address_proto != 0) {
/*
* Mismatched outer-packet protocol
* and inner-packet address family.
*/
mutex_exit(&newbie->ipsa_lock);
error = EPROTOTYPE;
goto error;
} else {
/* Fill in with explicit protocol. */
srcext->sadb_address_proto =
IPPROTO_ENCAP;
dstext->sadb_address_proto =
IPPROTO_ENCAP;
}
}
isrc_addr_ptr = (uint32_t *)&isrc->sin_addr;
idst_addr_ptr = (uint32_t *)&idst->sin_addr;
} else {
ASSERT(isrc->sin_family == AF_INET6);
if (srcext->sadb_address_proto != IPPROTO_IPV6) {
if (srcext->sadb_address_proto != 0) {
/*
* Mismatched outer-packet protocol
* and inner-packet address family.
*/
mutex_exit(&newbie->ipsa_lock);
error = EPROTOTYPE;
goto error;
} else {
/* Fill in with explicit protocol. */
srcext->sadb_address_proto =
IPPROTO_IPV6;
dstext->sadb_address_proto =
IPPROTO_IPV6;
}
}
isrc_addr_ptr = (uint32_t *)&isrc6->sin6_addr;
idst_addr_ptr = (uint32_t *)&idst6->sin6_addr;
}
newbie->ipsa_innerfam = isrc->sin_family;
IPSA_COPY_ADDR(newbie->ipsa_innersrc, isrc_addr_ptr,
newbie->ipsa_innerfam);
IPSA_COPY_ADDR(newbie->ipsa_innerdst, idst_addr_ptr,
newbie->ipsa_innerfam);
newbie->ipsa_innersrcpfx = isrcext->sadb_address_prefixlen;
newbie->ipsa_innerdstpfx = idstext->sadb_address_prefixlen;
/* Unique value uses inner-ports for Tunnel Mode... */
newbie->ipsa_unique_id = SA_UNIQUE_ID(isrc->sin_port,
idst->sin_port, dstext->sadb_address_proto,
idstext->sadb_address_proto);
newbie->ipsa_unique_mask = SA_UNIQUE_MASK(isrc->sin_port,
idst->sin_port, dstext->sadb_address_proto,
idstext->sadb_address_proto);
} else {
/* ... and outer-ports for Transport Mode. */
newbie->ipsa_unique_id = SA_UNIQUE_ID(src->sin_port,
dst->sin_port, dstext->sadb_address_proto, 0);
newbie->ipsa_unique_mask = SA_UNIQUE_MASK(src->sin_port,
dst->sin_port, dstext->sadb_address_proto, 0);
}
if (newbie->ipsa_unique_mask != (uint64_t)0)
newbie->ipsa_flags |= IPSA_F_UNIQUE;
sadb_nat_calculations(newbie,
(sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC],
(sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM],
src_addr_ptr, dst_addr_ptr);
newbie->ipsa_type = samsg->sadb_msg_satype;
ASSERT(assoc->sadb_sa_state == SADB_SASTATE_MATURE);
newbie->ipsa_auth_alg = assoc->sadb_sa_auth;
newbie->ipsa_encr_alg = assoc->sadb_sa_encrypt;
/*
* Use |= because we set unique fields above. UNIQUE is filtered
* out before we reach here so it's not like we're sabotaging anything.
* ASSERT we're either 0 or UNIQUE for good measure, though.
*/
ASSERT((newbie->ipsa_flags & IPSA_F_UNIQUE) == newbie->ipsa_flags);
newbie->ipsa_flags |= assoc->sadb_sa_flags;
if ((newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_LOC &&
ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC] == NULL) ||
(newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_REM &&
ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM] == NULL) ||
(newbie->ipsa_flags & SADB_X_SAFLAGS_TUNNEL &&
ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC] == NULL)) {
mutex_exit(&newbie->ipsa_lock);
*diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
error = EINVAL;
goto error;
}
/*
* If unspecified source address, force replay_wsize to 0.
* This is because an SA that has multiple sources of secure
* traffic cannot enforce a replay counter w/o synchronizing the
* senders.
*/
if (ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC)
newbie->ipsa_replay_wsize = assoc->sadb_sa_replay;
else
newbie->ipsa_replay_wsize = 0;
(void) drv_getparm(TIME, &newbie->ipsa_addtime);
if (kmcext != NULL) {
newbie->ipsa_kmp = kmcext->sadb_x_kmc_proto;
newbie->ipsa_kmc = kmcext->sadb_x_kmc_cookie;
}
/*
* XXX CURRENT lifetime checks MAY BE needed for an UPDATE.
* The spec says that one can update current lifetimes, but
* that seems impractical, especially in the larval-to-mature
* update that this function performs.
*/
if (soft != NULL) {
newbie->ipsa_softaddlt = soft->sadb_lifetime_addtime;
newbie->ipsa_softuselt = soft->sadb_lifetime_usetime;
newbie->ipsa_softbyteslt = soft->sadb_lifetime_bytes;
newbie->ipsa_softalloc = soft->sadb_lifetime_allocations;
SET_EXPIRE(newbie, softaddlt, softexpiretime);
}
if (hard != NULL) {
newbie->ipsa_hardaddlt = hard->sadb_lifetime_addtime;
newbie->ipsa_harduselt = hard->sadb_lifetime_usetime;
newbie->ipsa_hardbyteslt = hard->sadb_lifetime_bytes;
newbie->ipsa_hardalloc = hard->sadb_lifetime_allocations;
SET_EXPIRE(newbie, hardaddlt, hardexpiretime);
}
newbie->ipsa_authtmpl = NULL;
newbie->ipsa_encrtmpl = NULL;
if (akey != NULL) {
newbie->ipsa_authkeybits = akey->sadb_key_bits;
newbie->ipsa_authkeylen = SADB_1TO8(akey->sadb_key_bits);
/* In case we have to round up to the next byte... */
if ((akey->sadb_key_bits & 0x7) != 0)
newbie->ipsa_authkeylen++;
newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen,
KM_NOSLEEP);
if (newbie->ipsa_authkey == NULL) {
error = ENOMEM;
mutex_exit(&newbie->ipsa_lock);
goto error;
}
bcopy(akey + 1, newbie->ipsa_authkey, newbie->ipsa_authkeylen);
bzero(akey + 1, newbie->ipsa_authkeylen);
/*
* Pre-initialize the kernel crypto framework key
* structure.
*/
newbie->ipsa_kcfauthkey.ck_format = CRYPTO_KEY_RAW;
newbie->ipsa_kcfauthkey.ck_length = newbie->ipsa_authkeybits;
newbie->ipsa_kcfauthkey.ck_data = newbie->ipsa_authkey;
mutex_enter(&ipss->ipsec_alg_lock);
error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_AUTH);
mutex_exit(&ipss->ipsec_alg_lock);
if (error != 0) {
mutex_exit(&newbie->ipsa_lock);
goto error;
}
}
if (ekey != NULL) {
newbie->ipsa_encrkeybits = ekey->sadb_key_bits;
newbie->ipsa_encrkeylen = SADB_1TO8(ekey->sadb_key_bits);
/* In case we have to round up to the next byte... */
if ((ekey->sadb_key_bits & 0x7) != 0)
newbie->ipsa_encrkeylen++;
newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen,
KM_NOSLEEP);
if (newbie->ipsa_encrkey == NULL) {
error = ENOMEM;
mutex_exit(&newbie->ipsa_lock);
goto error;
}
bcopy(ekey + 1, newbie->ipsa_encrkey, newbie->ipsa_encrkeylen);
/* XXX is this safe w.r.t db_ref, etc? */
bzero(ekey + 1, newbie->ipsa_encrkeylen);
/*
* Pre-initialize the kernel crypto framework key
* structure.
*/
newbie->ipsa_kcfencrkey.ck_format = CRYPTO_KEY_RAW;
newbie->ipsa_kcfencrkey.ck_length = newbie->ipsa_encrkeybits;
newbie->ipsa_kcfencrkey.ck_data = newbie->ipsa_encrkey;
mutex_enter(&ipss->ipsec_alg_lock);
error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_ENCR);
mutex_exit(&ipss->ipsec_alg_lock);
if (error != 0) {
mutex_exit(&newbie->ipsa_lock);
goto error;
}
}
sadb_init_alginfo(newbie);
/*
* Ptrs to processing functions.
*/
if (newbie->ipsa_type == SADB_SATYPE_ESP)
ipsecesp_init_funcs(newbie);
else
ipsecah_init_funcs(newbie);
ASSERT(newbie->ipsa_output_func != NULL &&
newbie->ipsa_input_func != NULL);
/*
* Certificate ID stuff.
*/
if (ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC] != NULL) {
sadb_ident_t *id =
(sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC];
/*
* Can assume strlen() will return okay because ext_check() in
* keysock.c prepares the string for us.
*/
newbie->ipsa_src_cid = ipsid_lookup(id->sadb_ident_type,
(char *)(id+1), ns);
if (newbie->ipsa_src_cid == NULL) {
error = ENOMEM;
mutex_exit(&newbie->ipsa_lock);
goto error;
}
}
if (ksi->ks_in_extv[SADB_EXT_IDENTITY_DST] != NULL) {
sadb_ident_t *id =
(sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST];
/*
* Can assume strlen() will return okay because ext_check() in
* keysock.c prepares the string for us.
*/
newbie->ipsa_dst_cid = ipsid_lookup(id->sadb_ident_type,
(char *)(id+1), ns);
if (newbie->ipsa_dst_cid == NULL) {
error = ENOMEM;
mutex_exit(&newbie->ipsa_lock);
goto error;
}
}
#if 0
/* XXXMLS SENSITIVITY handling code. */
if (sens != NULL) {
int i;
uint64_t *bitmap = (uint64_t *)(sens + 1);
newbie->ipsa_dpd = sens->sadb_sens_dpd;
newbie->ipsa_senslevel = sens->sadb_sens_sens_level;
newbie->ipsa_integlevel = sens->sadb_sens_integ_level;
newbie->ipsa_senslen = SADB_64TO8(sens->sadb_sens_sens_len);
newbie->ipsa_integlen = SADB_64TO8(sens->sadb_sens_integ_len);
newbie->ipsa_integ = kmem_alloc(newbie->ipsa_integlen,
KM_NOSLEEP);
if (newbie->ipsa_integ == NULL) {
error = ENOMEM;
mutex_exit(&newbie->ipsa_lock);
goto error;
}
newbie->ipsa_sens = kmem_alloc(newbie->ipsa_senslen,
KM_NOSLEEP);
if (newbie->ipsa_sens == NULL) {
error = ENOMEM;
mutex_exit(&newbie->ipsa_lock);
goto error;
}
for (i = 0; i < sens->sadb_sens_sens_len; i++) {
newbie->ipsa_sens[i] = *bitmap;
bitmap++;
}
for (i = 0; i < sens->sadb_sens_integ_len; i++) {
newbie->ipsa_integ[i] = *bitmap;
bitmap++;
}
}
#endif
/* now that the SA has been updated, set its new state */
newbie->ipsa_state = assoc->sadb_sa_state;
/*
* The less locks I hold when doing an insertion and possible cloning,
* the better!
*/
mutex_exit(&newbie->ipsa_lock);
if (clone) {
newbie_clone = sadb_cloneassoc(newbie);
if (newbie_clone == NULL) {
error = ENOMEM;
goto error;
}
newbie->ipsa_haspeer = B_TRUE;
newbie_clone->ipsa_haspeer = B_TRUE;
}
/*
* Enter the bucket locks. The order of entry is outbound,
* inbound. We map "primary" and "secondary" into outbound and inbound
* based on the destination address type. If the destination address
* type is for a node that isn't mine (or potentially mine), the
* "primary" bucket is the outbound one.
*/
if (ksi->ks_in_dsttype == KS_IN_ADDR_NOTME) {
/* primary == outbound */
mutex_enter(&primary->isaf_lock);
mutex_enter(&secondary->isaf_lock);
} else {
/* primary == inbound */
mutex_enter(&secondary->isaf_lock);
mutex_enter(&primary->isaf_lock);
}
IPSECHW_DEBUG(IPSECHW_SADB, ("sadb_common_add: spi = 0x%x\n",
newbie->ipsa_spi));
/*
* sadb_insertassoc() doesn't increment the reference
* count. We therefore have to increment the
* reference count one more time to reflect the
* pointers of the table that reference this SA.
*/
IPSA_REFHOLD(newbie);
if (isupdate) {
/*
* Unlink from larval holding cell in the "inbound" fanout.
*/
ASSERT(newbie->ipsa_linklock == &primary->isaf_lock ||
newbie->ipsa_linklock == &secondary->isaf_lock);
sadb_unlinkassoc(newbie);
}
mutex_enter(&newbie->ipsa_lock);
error = sadb_insertassoc(newbie, primary);
if (error == 0) {
ctl_mp = sadb_fmt_sa_req(DL_CO_SET, newbie->ipsa_type, newbie,
is_inbound);
}
mutex_exit(&newbie->ipsa_lock);
if (error != 0) {
/*
* Since sadb_insertassoc() failed, we must decrement the
* refcount again so the cleanup code will actually free
* the offending SA.
*/
IPSA_REFRELE(newbie);
goto error_unlock;
}
if (newbie_clone != NULL) {
mutex_enter(&newbie_clone->ipsa_lock);
error = sadb_insertassoc(newbie_clone, secondary);
mutex_exit(&newbie_clone->ipsa_lock);
if (error != 0) {
/* Collision in secondary table. */
sadb_unlinkassoc(newbie); /* This does REFRELE. */
goto error_unlock;
}
IPSA_REFHOLD(newbie_clone);
} else {
ASSERT(primary != secondary);
scratch = ipsec_getassocbyspi(secondary, newbie->ipsa_spi,
ALL_ZEROES_PTR, newbie->ipsa_dstaddr, af);
if (scratch != NULL) {
/* Collision in secondary table. */
sadb_unlinkassoc(newbie); /* This does REFRELE. */
/* Set the error, since ipsec_getassocbyspi() can't. */
error = EEXIST;
goto error_unlock;
}
}
/* OKAY! So let's do some reality check assertions. */
ASSERT(!MUTEX_HELD(&newbie->ipsa_lock));
ASSERT(newbie_clone == NULL || (!MUTEX_HELD(&newbie_clone->ipsa_lock)));
/*
* If hardware acceleration could happen, send it.
*/
if (ctl_mp != NULL) {
putnext(ip_q, ctl_mp);
ctl_mp = NULL;
}
error_unlock:
/*
* We can exit the locks in any order. Only entrance needs to
* follow any protocol.
*/
mutex_exit(&secondary->isaf_lock);
mutex_exit(&primary->isaf_lock);
/* Common error point for this routine. */
error:
if (newbie != NULL) {
IPSA_REFRELE(newbie);
}
if (newbie_clone != NULL) {
IPSA_REFRELE(newbie_clone);
}
if (ctl_mp != NULL)
freemsg(ctl_mp);
if (error == 0) {
/*
* Construct favorable PF_KEY return message and send to
* keysock. (Q: Do I need to pass "newbie"? If I do,
* make sure to REFHOLD, call, then REFRELE.)
*/
sadb_pfkey_echo(pfkey_q, mp, samsg, ksi, NULL);
}
return (error);
}
/*
* Set the time of first use for a security association. Update any
* expiration times as a result.
*/
void
sadb_set_usetime(ipsa_t *assoc)
{
mutex_enter(&assoc->ipsa_lock);
/*
* Caller does check usetime before calling me usually, and
* double-checking is better than a mutex_enter/exit hit.
*/
if (assoc->ipsa_usetime == 0) {
/*
* This is redundant for outbound SA's, as
* ipsec_getassocbyconn() sets the IPSA_F_USED flag already.
* Inbound SAs, however, have no such protection.
*/
assoc->ipsa_flags |= IPSA_F_USED;
(void) drv_getparm(TIME, &assoc->ipsa_usetime);
/*
* After setting the use time, see if we have a use lifetime
* that would cause the actual SA expiration time to shorten.
*/
UPDATE_EXPIRE(assoc, softuselt, softexpiretime);
UPDATE_EXPIRE(assoc, harduselt, hardexpiretime);
}
mutex_exit(&assoc->ipsa_lock);
}
/*
* Send up a PF_KEY expire message for this association.
*/
static void
sadb_expire_assoc(queue_t *pfkey_q, ipsa_t *assoc)
{
mblk_t *mp, *mp1;
int alloclen, af;
sadb_msg_t *samsg;
sadb_lifetime_t *current, *expire;
sadb_sa_t *saext;
uint8_t *end;
boolean_t tunnel_mode;
ASSERT(MUTEX_HELD(&assoc->ipsa_lock));
/* Don't bother sending if there's no queue. */
if (pfkey_q == NULL)
return;
mp = sadb_keysock_out(0);
if (mp == NULL) {
/* cmn_err(CE_WARN, */
/* "sadb_expire_assoc: Can't allocate KEYSOCK_OUT.\n"); */
return;
}
alloclen = sizeof (*samsg) + sizeof (*current) + sizeof (*expire) +
2 * sizeof (sadb_address_t) + sizeof (*saext);
af = assoc->ipsa_addrfam;
switch (af) {
case AF_INET:
alloclen += 2 * sizeof (struct sockaddr_in);
break;
case AF_INET6:
alloclen += 2 * sizeof (struct sockaddr_in6);
break;
default:
/* Won't happen unless there's a kernel bug. */
freeb(mp);
cmn_err(CE_WARN,
"sadb_expire_assoc: Unknown address length.\n");
return;
}
tunnel_mode = (assoc->ipsa_flags & IPSA_F_TUNNEL);
if (tunnel_mode) {
alloclen += 2 * sizeof (sadb_address_t);
switch (assoc->ipsa_innerfam) {
case AF_INET:
alloclen += 2 * sizeof (struct sockaddr_in);
break;
case AF_INET6:
alloclen += 2 * sizeof (struct sockaddr_in6);
break;
default:
/* Won't happen unless there's a kernel bug. */
freeb(mp);
cmn_err(CE_WARN, "sadb_expire_assoc: "
"Unknown inner address length.\n");
return;
}
}
mp->b_cont = allocb(alloclen, BPRI_HI);
if (mp->b_cont == NULL) {
freeb(mp);
/* cmn_err(CE_WARN, */
/* "sadb_expire_assoc: Can't allocate message.\n"); */
return;
}
mp1 = mp;
mp = mp->b_cont;
end = mp->b_wptr + alloclen;
samsg = (sadb_msg_t *)mp->b_wptr;
mp->b_wptr += sizeof (*samsg);
samsg->sadb_msg_version = PF_KEY_V2;
samsg->sadb_msg_type = SADB_EXPIRE;
samsg->sadb_msg_errno = 0;
samsg->sadb_msg_satype = assoc->ipsa_type;
samsg->sadb_msg_len = SADB_8TO64(alloclen);
samsg->sadb_msg_reserved = 0;
samsg->sadb_msg_seq = 0;
samsg->sadb_msg_pid = 0;
saext = (sadb_sa_t *)mp->b_wptr;
mp->b_wptr += sizeof (*saext);
saext->sadb_sa_len = SADB_8TO64(sizeof (*saext));
saext->sadb_sa_exttype = SADB_EXT_SA;
saext->sadb_sa_spi = assoc->ipsa_spi;
saext->sadb_sa_replay = assoc->ipsa_replay_wsize;
saext->sadb_sa_state = assoc->ipsa_state;
saext->sadb_sa_auth = assoc->ipsa_auth_alg;
saext->sadb_sa_encrypt = assoc->ipsa_encr_alg;
saext->sadb_sa_flags = assoc->ipsa_flags;
current = (sadb_lifetime_t *)mp->b_wptr;
mp->b_wptr += sizeof (sadb_lifetime_t);
current->sadb_lifetime_len = SADB_8TO64(sizeof (*current));
current->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
current->sadb_lifetime_allocations = assoc->ipsa_alloc;
current->sadb_lifetime_bytes = assoc->ipsa_bytes;
current->sadb_lifetime_addtime = assoc->ipsa_addtime;
current->sadb_lifetime_usetime = assoc->ipsa_usetime;
expire = (sadb_lifetime_t *)mp->b_wptr;
mp->b_wptr += sizeof (*expire);
expire->sadb_lifetime_len = SADB_8TO64(sizeof (*expire));
if (assoc->ipsa_state == IPSA_STATE_DEAD) {
expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
expire->sadb_lifetime_allocations = assoc->ipsa_hardalloc;
expire->sadb_lifetime_bytes = assoc->ipsa_hardbyteslt;
expire->sadb_lifetime_addtime = assoc->ipsa_hardaddlt;
expire->sadb_lifetime_usetime = assoc->ipsa_harduselt;
} else {
ASSERT(assoc->ipsa_state == IPSA_STATE_DYING);
expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
expire->sadb_lifetime_allocations = assoc->ipsa_softalloc;
expire->sadb_lifetime_bytes = assoc->ipsa_softbyteslt;
expire->sadb_lifetime_addtime = assoc->ipsa_softaddlt;
expire->sadb_lifetime_usetime = assoc->ipsa_softuselt;
}
mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_SRC,
af, assoc->ipsa_srcaddr, tunnel_mode ? 0 : SA_SRCPORT(assoc),
SA_PROTO(assoc), 0);
ASSERT(mp->b_wptr != NULL);
mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_DST,
af, assoc->ipsa_dstaddr, tunnel_mode ? 0 : SA_DSTPORT(assoc),
SA_PROTO(assoc), 0);
ASSERT(mp->b_wptr != NULL);
if (tunnel_mode) {
mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end,
SADB_X_EXT_ADDRESS_INNER_SRC, assoc->ipsa_innerfam,
assoc->ipsa_innersrc, SA_SRCPORT(assoc), SA_IPROTO(assoc),
assoc->ipsa_innersrcpfx);
ASSERT(mp->b_wptr != NULL);
mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end,
SADB_X_EXT_ADDRESS_INNER_DST, assoc->ipsa_innerfam,
assoc->ipsa_innerdst, SA_DSTPORT(assoc), SA_IPROTO(assoc),
assoc->ipsa_innerdstpfx);
ASSERT(mp->b_wptr != NULL);
}
/* Can just putnext, we're ready to go! */
putnext(pfkey_q, mp1);
}
/*
* "Age" the SA with the number of bytes that was used to protect traffic.
* Send an SADB_EXPIRE message if appropriate. Return B_TRUE if there was
* enough "charge" left in the SA to protect the data. Return B_FALSE
* otherwise. (If B_FALSE is returned, the association either was, or became
* DEAD.)
*/
boolean_t
sadb_age_bytes(queue_t *pfkey_q, ipsa_t *assoc, uint64_t bytes,
boolean_t sendmsg)
{
boolean_t rc = B_TRUE;
uint64_t newtotal;
mutex_enter(&assoc->ipsa_lock);
newtotal = assoc->ipsa_bytes + bytes;
if (assoc->ipsa_hardbyteslt != 0 &&
newtotal >= assoc->ipsa_hardbyteslt) {
if (assoc->ipsa_state < IPSA_STATE_DEAD) {
/*
* Send EXPIRE message to PF_KEY. May wish to pawn
* this off on another non-interrupt thread. Also
* unlink this SA immediately.
*/
assoc->ipsa_state = IPSA_STATE_DEAD;
if (sendmsg)
sadb_expire_assoc(pfkey_q, assoc);
/*
* Set non-zero expiration time so sadb_age_assoc()
* will work when reaping.
*/
assoc->ipsa_hardexpiretime = (time_t)1;
} /* Else someone beat me to it! */
rc = B_FALSE;
} else if (assoc->ipsa_softbyteslt != 0 &&
(newtotal >= assoc->ipsa_softbyteslt)) {
if (assoc->ipsa_state < IPSA_STATE_DYING) {
/*
* Send EXPIRE message to PF_KEY. May wish to pawn
* this off on another non-interrupt thread.
*/
assoc->ipsa_state = IPSA_STATE_DYING;
assoc->ipsa_bytes = newtotal;
if (sendmsg)
sadb_expire_assoc(pfkey_q, assoc);
} /* Else someone beat me to it! */
}
if (rc == B_TRUE)
assoc->ipsa_bytes = newtotal;
mutex_exit(&assoc->ipsa_lock);
return (rc);
}
/*
* Push one or more DL_CO_DELETE messages queued up by
* sadb_torch_assoc down to the underlying driver now that it's a
* convenient time for it (i.e., ipsa bucket locks not held).
*/
static void
sadb_drain_torchq(queue_t *q, mblk_t *mp)
{
while (mp != NULL) {
mblk_t *next = mp->b_next;
mp->b_next = NULL;
if (q != NULL)
putnext(q, mp);
else
freemsg(mp);
mp = next;
}
}
/*
* "Torch" an individual SA. Returns NULL, so it can be tail-called from
* sadb_age_assoc().
*
* If SA is hardware-accelerated, and we can't allocate the mblk
* containing the DL_CO_DELETE, just return; it will remain in the
* table and be swept up by sadb_ager() in a subsequent pass.
*/
static ipsa_t *
sadb_torch_assoc(isaf_t *head, ipsa_t *sa, boolean_t inbnd, mblk_t **mq)
{
mblk_t *mp;
ASSERT(MUTEX_HELD(&head->isaf_lock));
ASSERT(MUTEX_HELD(&sa->ipsa_lock));
ASSERT(sa->ipsa_state == IPSA_STATE_DEAD);
/*
* Force cached SAs to be revalidated..
*/
head->isaf_gen++;
if (sa->ipsa_flags & IPSA_F_HW) {
mp = sadb_fmt_sa_req(DL_CO_DELETE, sa->ipsa_type, sa, inbnd);
if (mp == NULL) {
mutex_exit(&sa->ipsa_lock);
return (NULL);
}
mp->b_next = *mq;
*mq = mp;
}
mutex_exit(&sa->ipsa_lock);
sadb_unlinkassoc(sa);
return (NULL);
}
/*
* Return "assoc" iff haspeer is true and I send an expire. This allows
* the consumers' aging functions to tidy up an expired SA's peer.
*/
static ipsa_t *
sadb_age_assoc(isaf_t *head, queue_t *pfkey_q, ipsa_t *assoc,
time_t current, int reap_delay, boolean_t inbnd, mblk_t **mq)
{
ipsa_t *retval = NULL;
ASSERT(MUTEX_HELD(&head->isaf_lock));
mutex_enter(&assoc->ipsa_lock);
if ((assoc->ipsa_state == IPSA_STATE_LARVAL) &&
(assoc->ipsa_hardexpiretime <= current)) {
assoc->ipsa_state = IPSA_STATE_DEAD;
return (sadb_torch_assoc(head, assoc, inbnd, mq));
}
/*
* Check lifetimes. Fortunately, SA setup is done
* such that there are only two times to look at,
* softexpiretime, and hardexpiretime.
*
* Check hard first.
*/
if (assoc->ipsa_hardexpiretime != 0 &&
assoc->ipsa_hardexpiretime <= current) {
if (assoc->ipsa_state == IPSA_STATE_DEAD)
return (sadb_torch_assoc(head, assoc, inbnd, mq));
/*
* Send SADB_EXPIRE with hard lifetime, delay for unlinking.
*/
assoc->ipsa_state = IPSA_STATE_DEAD;
if (assoc->ipsa_haspeer) {
/*
* If I return assoc, I have to bump up its
* reference count to keep with the ipsa_t reference
* count semantics.
*/
IPSA_REFHOLD(assoc);
retval = assoc;
}
sadb_expire_assoc(pfkey_q, assoc);
assoc->ipsa_hardexpiretime = current + reap_delay;
} else if (assoc->ipsa_softexpiretime != 0 &&
assoc->ipsa_softexpiretime <= current &&
assoc->ipsa_state < IPSA_STATE_DYING) {
/*
* Send EXPIRE message to PF_KEY. May wish to pawn
* this off on another non-interrupt thread.
*/
assoc->ipsa_state = IPSA_STATE_DYING;
if (assoc->ipsa_haspeer) {
/*
* If I return assoc, I have to bump up its
* reference count to keep with the ipsa_t reference
* count semantics.
*/
IPSA_REFHOLD(assoc);
retval = assoc;
}
sadb_expire_assoc(pfkey_q, assoc);
}
mutex_exit(&assoc->ipsa_lock);
return (retval);
}
/*
* Called by a consumer protocol to do ther dirty work of reaping dead
* Security Associations.
*/
void
sadb_ager(sadb_t *sp, queue_t *pfkey_q, queue_t *ip_q, int reap_delay,
netstack_t *ns)
{
int i;
isaf_t *bucket;
ipsa_t *assoc, *spare;
iacqf_t *acqlist;
ipsacq_t *acqrec, *spareacq;
struct templist {
ipsa_t *ipsa;
struct templist *next;
} *haspeerlist = NULL, *newbie;
time_t current;
int outhash;
mblk_t *mq = NULL;
/*
* Do my dirty work. This includes aging real entries, aging
* larvals, and aging outstanding ACQUIREs.
*
* I hope I don't tie up resources for too long.
*/
/* Snapshot current time now. */
(void) drv_getparm(TIME, &current);
/* Age acquires. */
for (i = 0; i < sp->sdb_hashsize; i++) {
acqlist = &sp->sdb_acq[i];
mutex_enter(&acqlist->iacqf_lock);
for (acqrec = acqlist->iacqf_ipsacq; acqrec != NULL;
acqrec = spareacq) {
spareacq = acqrec->ipsacq_next;
if (current > acqrec->ipsacq_expire)
sadb_destroy_acquire(acqrec, ns);
}
mutex_exit(&acqlist->iacqf_lock);
}
/* Age inbound associations. */
for (i = 0; i < sp->sdb_hashsize; i++) {
bucket = &(sp->sdb_if[i]);
mutex_enter(&bucket->isaf_lock);
for (assoc = bucket->isaf_ipsa; assoc != NULL;
assoc = spare) {
spare = assoc->ipsa_next;
if (sadb_age_assoc(bucket, pfkey_q, assoc, current,
reap_delay, B_TRUE, &mq) != NULL) {
/*
* sadb_age_assoc() increments the refcnt,
* effectively doing an IPSA_REFHOLD().
*/
newbie = kmem_alloc(sizeof (*newbie),
KM_NOSLEEP);
if (newbie == NULL) {
/*
* Don't forget to REFRELE().
*/
IPSA_REFRELE(assoc);
continue; /* for loop... */
}
newbie->next = haspeerlist;
newbie->ipsa = assoc;
haspeerlist = newbie;
}
}
mutex_exit(&bucket->isaf_lock);
}
if (mq != NULL) {
sadb_drain_torchq(ip_q, mq);
mq = NULL;
}
/*
* Haspeer cases will contain both IPv4 and IPv6. This code
* is address independent.
*/
while (haspeerlist != NULL) {
/* "spare" contains the SA that has a peer. */
spare = haspeerlist->ipsa;
newbie = haspeerlist;
haspeerlist = newbie->next;
kmem_free(newbie, sizeof (*newbie));
/*
* Pick peer bucket based on addrfam.
*/
if (spare->ipsa_addrfam == AF_INET6) {
outhash = OUTBOUND_HASH_V6(sp,
*((in6_addr_t *)&spare->ipsa_dstaddr));
} else {
outhash = OUTBOUND_HASH_V4(sp,
*((ipaddr_t *)&spare->ipsa_dstaddr));
}
bucket = &(sp->sdb_of[outhash]);
mutex_enter(&bucket->isaf_lock);
assoc = ipsec_getassocbyspi(bucket, spare->ipsa_spi,
spare->ipsa_srcaddr, spare->ipsa_dstaddr,
spare->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (assoc != NULL) {
mutex_enter(&assoc->ipsa_lock);
mutex_enter(&spare->ipsa_lock);
assoc->ipsa_state = spare->ipsa_state;
if (assoc->ipsa_state == IPSA_STATE_DEAD)
assoc->ipsa_hardexpiretime = 1;
mutex_exit(&spare->ipsa_lock);
mutex_exit(&assoc->ipsa_lock);
IPSA_REFRELE(assoc);
}
IPSA_REFRELE(spare);
}
/* Age outbound associations. */
for (i = 0; i < sp->sdb_hashsize; i++) {
bucket = &(sp->sdb_of[i]);
mutex_enter(&bucket->isaf_lock);
for (assoc = bucket->isaf_ipsa; assoc != NULL;
assoc = spare) {
spare = assoc->ipsa_next;
if (sadb_age_assoc(bucket, pfkey_q, assoc, current,
reap_delay, B_FALSE, &mq) != NULL) {
/*
* sadb_age_assoc() increments the refcnt,
* effectively doing an IPSA_REFHOLD().
*/
newbie = kmem_alloc(sizeof (*newbie),
KM_NOSLEEP);
if (newbie == NULL) {
/*
* Don't forget to REFRELE().
*/
IPSA_REFRELE(assoc);
continue; /* for loop... */
}
newbie->next = haspeerlist;
newbie->ipsa = assoc;
haspeerlist = newbie;
}
}
mutex_exit(&bucket->isaf_lock);
}
if (mq != NULL) {
sadb_drain_torchq(ip_q, mq);
mq = NULL;
}
/*
* Haspeer cases will contain both IPv4 and IPv6. This code
* is address independent.
*/
while (haspeerlist != NULL) {
/* "spare" contains the SA that has a peer. */
spare = haspeerlist->ipsa;
newbie = haspeerlist;
haspeerlist = newbie->next;
kmem_free(newbie, sizeof (*newbie));
/*
* Pick peer bucket based on addrfam.
*/
bucket = INBOUND_BUCKET(sp, spare->ipsa_spi);
mutex_enter(&bucket->isaf_lock);
assoc = ipsec_getassocbyspi(bucket, spare->ipsa_spi,
spare->ipsa_srcaddr, spare->ipsa_dstaddr,
spare->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (assoc != NULL) {
mutex_enter(&assoc->ipsa_lock);
mutex_enter(&spare->ipsa_lock);
assoc->ipsa_state = spare->ipsa_state;
if (assoc->ipsa_state == IPSA_STATE_DEAD)
assoc->ipsa_hardexpiretime = 1;
mutex_exit(&spare->ipsa_lock);
mutex_exit(&assoc->ipsa_lock);
IPSA_REFRELE(assoc);
}
IPSA_REFRELE(spare);
}
/*
* Run a GC pass to clean out dead identities.
*/
ipsid_gc(ns);
}
/*
* Figure out when to reschedule the ager.
*/
timeout_id_t
sadb_retimeout(hrtime_t begin, queue_t *pfkey_q, void (*ager)(void *),
void *agerarg, uint_t *intp, uint_t intmax, short mid)
{
hrtime_t end = gethrtime();
uint_t interval = *intp;
/*
* See how long this took. If it took too long, increase the
* aging interval.
*/
if ((end - begin) > interval * 1000000) {
if (interval >= intmax) {
/* XXX Rate limit this? Or recommend flush? */
(void) strlog(mid, 0, 0, SL_ERROR | SL_WARN,
"Too many SA's to age out in %d msec.\n",
intmax);
} else {
/* Double by shifting by one bit. */
interval <<= 1;
interval = min(interval, intmax);
}
} else if ((end - begin) <= interval * 500000 &&
interval > SADB_AGE_INTERVAL_DEFAULT) {
/*
* If I took less than half of the interval, then I should
* ratchet the interval back down. Never automatically
* shift below the default aging interval.
*
* NOTE:This even overrides manual setting of the age
* interval using NDD.
*/
/* Halve by shifting one bit. */
interval >>= 1;
interval = max(interval, SADB_AGE_INTERVAL_DEFAULT);
}
*intp = interval;
return (qtimeout(pfkey_q, ager, agerarg,
interval * drv_usectohz(1000)));
}
/*
* Update the lifetime values of an SA. This is the path an SADB_UPDATE
* message takes when updating a MATURE or DYING SA.
*/
static void
sadb_update_lifetimes(ipsa_t *assoc, sadb_lifetime_t *hard,
sadb_lifetime_t *soft)
{
mutex_enter(&assoc->ipsa_lock);
assoc->ipsa_state = IPSA_STATE_MATURE;
/*
* XXX RFC 2367 mentions how an SADB_EXT_LIFETIME_CURRENT can be
* passed in during an update message. We currently don't handle
* these.
*/
if (hard != NULL) {
if (hard->sadb_lifetime_bytes != 0)
assoc->ipsa_hardbyteslt = hard->sadb_lifetime_bytes;
if (hard->sadb_lifetime_usetime != 0)
assoc->ipsa_harduselt = hard->sadb_lifetime_usetime;
if (hard->sadb_lifetime_addtime != 0)
assoc->ipsa_hardaddlt = hard->sadb_lifetime_addtime;
if (assoc->ipsa_hardaddlt != 0) {
assoc->ipsa_hardexpiretime =
assoc->ipsa_addtime + assoc->ipsa_hardaddlt;
}
if (assoc->ipsa_harduselt != 0) {
if (assoc->ipsa_hardexpiretime != 0) {
assoc->ipsa_hardexpiretime =
min(assoc->ipsa_hardexpiretime,
assoc->ipsa_usetime +
assoc->ipsa_harduselt);
} else {
assoc->ipsa_hardexpiretime =
assoc->ipsa_usetime + assoc->ipsa_harduselt;
}
}
if (hard->sadb_lifetime_allocations != 0)
assoc->ipsa_hardalloc = hard->sadb_lifetime_allocations;
}
if (soft != NULL) {
if (soft->sadb_lifetime_bytes != 0)
assoc->ipsa_softbyteslt = soft->sadb_lifetime_bytes;
if (soft->sadb_lifetime_usetime != 0)
assoc->ipsa_softuselt = soft->sadb_lifetime_usetime;
if (soft->sadb_lifetime_addtime != 0)
assoc->ipsa_softaddlt = soft->sadb_lifetime_addtime;
if (assoc->ipsa_softaddlt != 0) {
assoc->ipsa_softexpiretime =
assoc->ipsa_addtime + assoc->ipsa_softaddlt;
}
if (assoc->ipsa_softuselt != 0) {
if (assoc->ipsa_softexpiretime != 0) {
assoc->ipsa_softexpiretime =
min(assoc->ipsa_softexpiretime,
assoc->ipsa_usetime +
assoc->ipsa_softuselt);
} else {
assoc->ipsa_softexpiretime =
assoc->ipsa_usetime + assoc->ipsa_softuselt;
}
}
if (soft->sadb_lifetime_allocations != 0)
assoc->ipsa_softalloc = soft->sadb_lifetime_allocations;
}
mutex_exit(&assoc->ipsa_lock);
}
/*
* Common code to update an SA.
*/
int
sadb_update_sa(mblk_t *mp, keysock_in_t *ksi,
sadb_t *sp, int *diagnostic, queue_t *pfkey_q,
int (*add_sa_func)(mblk_t *, keysock_in_t *, int *, netstack_t *),
netstack_t *ns)
{
sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
sadb_address_t *srcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
sadb_x_kmc_t *kmcext =
(sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE];
sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
struct sockaddr_in *src, *dst;
struct sockaddr_in6 *src6, *dst6;
sadb_lifetime_t *soft =
(sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
sadb_lifetime_t *hard =
(sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
isaf_t *inbound, *outbound;
ipsa_t *outbound_target = NULL, *inbound_target = NULL;
int error = 0;
uint32_t *srcaddr, *dstaddr;
sa_family_t af;
uint32_t kmp = 0, kmc = 0;
/* I need certain extensions present for either UPDATE message. */
if (srcext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
return (EINVAL);
}
if (dstext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
return (EINVAL);
}
if (assoc == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
return (EINVAL);
}
if (kmcext != NULL) {
kmp = kmcext->sadb_x_kmc_proto;
kmc = kmcext->sadb_x_kmc_cookie;
}
dst = (struct sockaddr_in *)(dstext + 1);
src = (struct sockaddr_in *)(srcext + 1);
af = dst->sin_family;
if (af == AF_INET6) {
dst6 = (struct sockaddr_in6 *)dst;
src6 = (struct sockaddr_in6 *)src;
srcaddr = (uint32_t *)&src6->sin6_addr;
dstaddr = (uint32_t *)&dst6->sin6_addr;
outbound = OUTBOUND_BUCKET_V6(sp, *(uint32_t *)dstaddr);
} else {
srcaddr = (uint32_t *)&src->sin_addr;
dstaddr = (uint32_t *)&dst->sin_addr;
outbound = OUTBOUND_BUCKET_V4(sp, *(uint32_t *)dstaddr);
}
inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi);
/* Lock down both buckets. */
mutex_enter(&outbound->isaf_lock);
mutex_enter(&inbound->isaf_lock);
/* Try outbound first. */
outbound_target = ipsec_getassocbyspi(outbound, assoc->sadb_sa_spi,
srcaddr, dstaddr, af);
inbound_target = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi,
srcaddr, dstaddr, af);
mutex_exit(&inbound->isaf_lock);
mutex_exit(&outbound->isaf_lock);
if (outbound_target == NULL) {
if (inbound_target == NULL) {
return (ESRCH);
} else if (inbound_target->ipsa_state == IPSA_STATE_LARVAL) {
/*
* REFRELE the target and let the add_sa_func()
* deal with updating a larval SA.
*/
IPSA_REFRELE(inbound_target);
return (add_sa_func(mp, ksi, diagnostic, ns));
}
}
/*
* Reality checks for updates of active associations.
* Sundry first-pass UPDATE-specific reality checks.
* Have to do the checks here, because it's after the add_sa code.
* XXX STATS : logging/stats here?
*/
if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) {
*diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
error = EINVAL;
goto bail;
}
if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY |
SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM)) {
*diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
error = EINVAL;
goto bail;
}
if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL) {
error = EOPNOTSUPP;
goto bail;
}
if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0) {
error = EINVAL;
goto bail;
}
ASSERT(src->sin_family == dst->sin_family);
if (akey != NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_AKEY_PRESENT;
error = EINVAL;
goto bail;
}
if (ekey != NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT;
error = EINVAL;
goto bail;
}
if (outbound_target != NULL) {
if (outbound_target->ipsa_state == IPSA_STATE_DEAD) {
error = ESRCH; /* DEAD == Not there, in this case. */
goto bail;
}
if ((kmp != 0) &&
((outbound_target->ipsa_kmp != 0) ||
(outbound_target->ipsa_kmp != kmp))) {
*diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP;
error = EINVAL;
goto bail;
}
if ((kmc != 0) &&
((outbound_target->ipsa_kmc != 0) ||
(outbound_target->ipsa_kmc != kmc))) {
*diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC;
error = EINVAL;
goto bail;
}
}
if (inbound_target != NULL) {
if (inbound_target->ipsa_state == IPSA_STATE_DEAD) {
error = ESRCH; /* DEAD == Not there, in this case. */
goto bail;
}
if ((kmp != 0) &&
((inbound_target->ipsa_kmp != 0) ||
(inbound_target->ipsa_kmp != kmp))) {
*diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP;
error = EINVAL;
goto bail;
}
if ((kmc != 0) &&
((inbound_target->ipsa_kmc != 0) ||
(inbound_target->ipsa_kmc != kmc))) {
*diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC;
error = EINVAL;
goto bail;
}
}
if (outbound_target != NULL) {
sadb_update_lifetimes(outbound_target, hard, soft);
if (kmp != 0)
outbound_target->ipsa_kmp = kmp;
if (kmc != 0)
outbound_target->ipsa_kmc = kmc;
}
if (inbound_target != NULL) {
sadb_update_lifetimes(inbound_target, hard, soft);
if (kmp != 0)
inbound_target->ipsa_kmp = kmp;
if (kmc != 0)
inbound_target->ipsa_kmc = kmc;
}
sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr,
ksi, (outbound_target == NULL) ? inbound_target : outbound_target);
bail:
/*
* Because of the multi-line macro nature of IPSA_REFRELE, keep
* them in { }.
*/
if (outbound_target != NULL) {
IPSA_REFRELE(outbound_target);
}
if (inbound_target != NULL) {
IPSA_REFRELE(inbound_target);
}
return (error);
}
/*
* The following functions deal with ACQUIRE LISTS. An ACQUIRE list is
* a list of outstanding SADB_ACQUIRE messages. If ipsec_getassocbyconn() fails
* for an outbound datagram, that datagram is queued up on an ACQUIRE record,
* and an SADB_ACQUIRE message is sent up. Presumably, a user-space key
* management daemon will process the ACQUIRE, use a SADB_GETSPI to reserve
* an SPI value and a larval SA, then SADB_UPDATE the larval SA, and ADD the
* other direction's SA.
*/
/*
* Check the ACQUIRE lists. If there's an existing ACQUIRE record,
* grab it, lock it, and return it. Otherwise return NULL.
*/
static ipsacq_t *
sadb_checkacquire(iacqf_t *bucket, ipsec_action_t *ap, ipsec_policy_t *pp,
uint32_t *src, uint32_t *dst, uint32_t *isrc, uint32_t *idst,
uint64_t unique_id)
{
ipsacq_t *walker;
sa_family_t fam;
uint32_t blank_address[4] = {0, 0, 0, 0};
if (isrc == NULL) {
ASSERT(idst == NULL);
isrc = idst = blank_address;
}
/*
* Scan list for duplicates. Check for UNIQUE, src/dest, policy.
*
* XXX May need search for duplicates based on other things too!
*/
for (walker = bucket->iacqf_ipsacq; walker != NULL;
walker = walker->ipsacq_next) {
mutex_enter(&walker->ipsacq_lock);
fam = walker->ipsacq_addrfam;
if (IPSA_ARE_ADDR_EQUAL(dst, walker->ipsacq_dstaddr, fam) &&
IPSA_ARE_ADDR_EQUAL(src, walker->ipsacq_srcaddr, fam) &&
ip_addr_match((uint8_t *)isrc, walker->ipsacq_innersrcpfx,
(in6_addr_t *)walker->ipsacq_innersrc) &&
ip_addr_match((uint8_t *)idst, walker->ipsacq_innerdstpfx,
(in6_addr_t *)walker->ipsacq_innerdst) &&
(ap == walker->ipsacq_act) &&
(pp == walker->ipsacq_policy) &&
/* XXX do deep compares of ap/pp? */
(unique_id == walker->ipsacq_unique_id))
break; /* everything matched */
mutex_exit(&walker->ipsacq_lock);
}
return (walker);
}
/*
* For this mblk, insert a new acquire record. Assume bucket contains addrs
* of all of the same length. Give up (and drop) if memory
* cannot be allocated for a new one; otherwise, invoke callback to
* send the acquire up..
*
* In cases where we need both AH and ESP, add the SA to the ESP ACQUIRE
* list. The ah_add_sa_finish() routines can look at the packet's ipsec_out_t
* and handle this case specially.
*/
void
sadb_acquire(mblk_t *mp, ipsec_out_t *io, boolean_t need_ah, boolean_t need_esp)
{
sadbp_t *spp;
sadb_t *sp;
ipsacq_t *newbie;
iacqf_t *bucket;
mblk_t *datamp = mp->b_cont;
mblk_t *extended;
ipha_t *ipha = (ipha_t *)datamp->b_rptr;
ip6_t *ip6h = (ip6_t *)datamp->b_rptr;
uint32_t *src, *dst, *isrc, *idst;
ipsec_policy_t *pp = io->ipsec_out_policy;
ipsec_action_t *ap = io->ipsec_out_act;
sa_family_t af;
int hashoffset;
uint32_t seq;
uint64_t unique_id = 0;
ipsec_selector_t sel;
boolean_t tunnel_mode = io->ipsec_out_tunnel;
netstack_t *ns = io->ipsec_out_ns;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT((pp != NULL) || (ap != NULL));
ASSERT(need_ah != NULL || need_esp != NULL);
/* Assign sadb pointers */
if (need_esp) { /* ESP for AH+ESP */
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
spp = &espstack->esp_sadb;
} else {
ipsecah_stack_t *ahstack = ns->netstack_ipsecah;
spp = &ahstack->ah_sadb;
}
sp = io->ipsec_out_v4 ? &spp->s_v4 : &spp->s_v6;
if (ap == NULL)
ap = pp->ipsp_act;
ASSERT(ap != NULL);
if (ap->ipa_act.ipa_apply.ipp_use_unique || tunnel_mode)
unique_id = SA_FORM_UNIQUE_ID(io);
/*
* Set up an ACQUIRE record.
*
* Immediately, make sure the ACQUIRE sequence number doesn't slip
* below the lowest point allowed in the kernel. (In other words,
* make sure the high bit on the sequence number is set.)
*/
seq = keysock_next_seq(ns) | IACQF_LOWEST_SEQ;
if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
src = (uint32_t *)&ipha->ipha_src;
dst = (uint32_t *)&ipha->ipha_dst;
af = AF_INET;
hashoffset = OUTBOUND_HASH_V4(sp, ipha->ipha_dst);
ASSERT(io->ipsec_out_v4 == B_TRUE);
} else {
ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
src = (uint32_t *)&ip6h->ip6_src;
dst = (uint32_t *)&ip6h->ip6_dst;
af = AF_INET6;
hashoffset = OUTBOUND_HASH_V6(sp, ip6h->ip6_dst);
ASSERT(io->ipsec_out_v4 == B_FALSE);
}
if (tunnel_mode) {
/* Snag inner addresses. */
isrc = io->ipsec_out_insrc;
idst = io->ipsec_out_indst;
} else {
isrc = idst = NULL;
}
/*
* Check buckets to see if there is an existing entry. If so,
* grab it. sadb_checkacquire locks newbie if found.
*/
bucket = &(sp->sdb_acq[hashoffset]);
mutex_enter(&bucket->iacqf_lock);
newbie = sadb_checkacquire(bucket, ap, pp, src, dst, isrc, idst,
unique_id);
if (newbie == NULL) {
/*
* Otherwise, allocate a new one.
*/
newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
if (newbie == NULL) {
mutex_exit(&bucket->iacqf_lock);
ip_drop_packet(mp, B_FALSE, NULL, NULL,
DROPPER(ipss, ipds_sadb_acquire_nomem),
&ipss->ipsec_sadb_dropper);
return;
}
newbie->ipsacq_policy = pp;
if (pp != NULL) {
IPPOL_REFHOLD(pp);
}
IPACT_REFHOLD(ap);
newbie->ipsacq_act = ap;
newbie->ipsacq_linklock = &bucket->iacqf_lock;
newbie->ipsacq_next = bucket->iacqf_ipsacq;
newbie->ipsacq_ptpn = &bucket->iacqf_ipsacq;
if (newbie->ipsacq_next != NULL)
newbie->ipsacq_next->ipsacq_ptpn = &newbie->ipsacq_next;
bucket->iacqf_ipsacq = newbie;
mutex_init(&newbie->ipsacq_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_enter(&newbie->ipsacq_lock);
}
mutex_exit(&bucket->iacqf_lock);
/*
* This assert looks silly for now, but we may need to enter newbie's
* mutex during a search.
*/
ASSERT(MUTEX_HELD(&newbie->ipsacq_lock));
mp->b_next = NULL;
/* Queue up packet. Use b_next. */
if (newbie->ipsacq_numpackets == 0) {
/* First one. */
newbie->ipsacq_mp = mp;
newbie->ipsacq_numpackets = 1;
(void) drv_getparm(TIME, &newbie->ipsacq_expire);
/*
* Extended ACQUIRE with both AH+ESP will use ESP's timeout
* value.
*/
newbie->ipsacq_expire += *spp->s_acquire_timeout;
newbie->ipsacq_seq = seq;
newbie->ipsacq_addrfam = af;
newbie->ipsacq_srcport = io->ipsec_out_src_port;
newbie->ipsacq_dstport = io->ipsec_out_dst_port;
newbie->ipsacq_icmp_type = io->ipsec_out_icmp_type;
newbie->ipsacq_icmp_code = io->ipsec_out_icmp_code;
if (tunnel_mode) {
newbie->ipsacq_inneraddrfam = io->ipsec_out_inaf;
newbie->ipsacq_proto = io->ipsec_out_inaf == AF_INET6 ?
IPPROTO_IPV6 : IPPROTO_ENCAP;
newbie->ipsacq_innersrcpfx = io->ipsec_out_insrcpfx;
newbie->ipsacq_innerdstpfx = io->ipsec_out_indstpfx;
IPSA_COPY_ADDR(newbie->ipsacq_innersrc,
io->ipsec_out_insrc, io->ipsec_out_inaf);
IPSA_COPY_ADDR(newbie->ipsacq_innerdst,
io->ipsec_out_indst, io->ipsec_out_inaf);
} else {
newbie->ipsacq_proto = io->ipsec_out_proto;
}
newbie->ipsacq_unique_id = unique_id;
} else {
/* Scan to the end of the list & insert. */
mblk_t *lastone = newbie->ipsacq_mp;
while (lastone->b_next != NULL)
lastone = lastone->b_next;
lastone->b_next = mp;
if (newbie->ipsacq_numpackets++ == ipsacq_maxpackets) {
newbie->ipsacq_numpackets = ipsacq_maxpackets;
lastone = newbie->ipsacq_mp;
newbie->ipsacq_mp = lastone->b_next;
lastone->b_next = NULL;
ip_drop_packet(lastone, B_FALSE, NULL, NULL,
DROPPER(ipss, ipds_sadb_acquire_toofull),
&ipss->ipsec_sadb_dropper);
} else {
IP_ACQUIRE_STAT(ipss, qhiwater,
newbie->ipsacq_numpackets);
}
}
/*
* Reset addresses. Set them to the most recently added mblk chain,
* so that the address pointers in the acquire record will point
* at an mblk still attached to the acquire list.
*/
newbie->ipsacq_srcaddr = src;
newbie->ipsacq_dstaddr = dst;
/*
* If the acquire record has more than one queued packet, we've
* already sent an ACQUIRE, and don't need to repeat ourself.
*/
if (newbie->ipsacq_seq != seq || newbie->ipsacq_numpackets > 1) {
/* I have an acquire outstanding already! */
mutex_exit(&newbie->ipsacq_lock);
return;
}
if (keysock_extended_reg(ns)) {
/*
* Construct an extended ACQUIRE. There are logging
* opportunities here in failure cases.
*/
(void) memset(&sel, 0, sizeof (sel));
sel.ips_isv4 = io->ipsec_out_v4;
if (tunnel_mode) {
sel.ips_protocol = (io->ipsec_out_inaf == AF_INET) ?
IPPROTO_ENCAP : IPPROTO_IPV6;
} else {
sel.ips_protocol = io->ipsec_out_proto;
sel.ips_local_port = io->ipsec_out_src_port;
sel.ips_remote_port = io->ipsec_out_dst_port;
}
sel.ips_icmp_type = io->ipsec_out_icmp_type;
sel.ips_icmp_code = io->ipsec_out_icmp_code;
sel.ips_is_icmp_inv_acq = 0;
if (af == AF_INET) {
sel.ips_local_addr_v4 = ipha->ipha_src;
sel.ips_remote_addr_v4 = ipha->ipha_dst;
} else {
sel.ips_local_addr_v6 = ip6h->ip6_src;
sel.ips_remote_addr_v6 = ip6h->ip6_dst;
}
extended = sadb_keysock_out(0);
if (extended != NULL) {
extended->b_cont = sadb_extended_acquire(&sel, pp, ap,
tunnel_mode, seq, 0, ns);
if (extended->b_cont == NULL) {
freeb(extended);
extended = NULL;
}
}
} else
extended = NULL;
/*
* Send an ACQUIRE message (and possible an extended ACQUIRE) based on
* this new record. The send-acquire callback assumes that acqrec is
* already locked.
*/
(*spp->s_acqfn)(newbie, extended, ns);
}
/*
* Unlink and free an acquire record.
*/
void
sadb_destroy_acquire(ipsacq_t *acqrec, netstack_t *ns)
{
mblk_t *mp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT(MUTEX_HELD(acqrec->ipsacq_linklock));
if (acqrec->ipsacq_policy != NULL) {
IPPOL_REFRELE(acqrec->ipsacq_policy, ns);
}
if (acqrec->ipsacq_act != NULL) {
IPACT_REFRELE(acqrec->ipsacq_act);
}
/* Unlink */
*(acqrec->ipsacq_ptpn) = acqrec->ipsacq_next;
if (acqrec->ipsacq_next != NULL)
acqrec->ipsacq_next->ipsacq_ptpn = acqrec->ipsacq_ptpn;
/*
* Free hanging mp's.
*
* XXX Instead of freemsg(), perhaps use IPSEC_REQ_FAILED.
*/
mutex_enter(&acqrec->ipsacq_lock);
while (acqrec->ipsacq_mp != NULL) {
mp = acqrec->ipsacq_mp;
acqrec->ipsacq_mp = mp->b_next;
mp->b_next = NULL;
ip_drop_packet(mp, B_FALSE, NULL, NULL,
DROPPER(ipss, ipds_sadb_acquire_timeout),
&ipss->ipsec_sadb_dropper);
}
mutex_exit(&acqrec->ipsacq_lock);
/* Free */
mutex_destroy(&acqrec->ipsacq_lock);
kmem_free(acqrec, sizeof (*acqrec));
}
/*
* Destroy an acquire list fanout.
*/
static void
sadb_destroy_acqlist(iacqf_t **listp, uint_t numentries, boolean_t forever,
netstack_t *ns)
{
int i;
iacqf_t *list = *listp;
if (list == NULL)
return;
for (i = 0; i < numentries; i++) {
mutex_enter(&(list[i].iacqf_lock));
while (list[i].iacqf_ipsacq != NULL)
sadb_destroy_acquire(list[i].iacqf_ipsacq, ns);
mutex_exit(&(list[i].iacqf_lock));
if (forever)
mutex_destroy(&(list[i].iacqf_lock));
}
if (forever) {
*listp = NULL;
kmem_free(list, numentries * sizeof (*list));
}
}
/*
* Create an algorithm descriptor for an extended ACQUIRE. Filter crypto
* framework's view of reality vs. IPsec's. EF's wins, BTW.
*/
static uint8_t *
sadb_new_algdesc(uint8_t *start, uint8_t *limit,
sadb_x_ecomb_t *ecomb, uint8_t satype, uint8_t algtype,
uint8_t alg, uint16_t minbits, uint16_t maxbits, ipsec_stack_t *ipss)
{
uint8_t *cur = start;
ipsec_alginfo_t *algp;
sadb_x_algdesc_t *algdesc = (sadb_x_algdesc_t *)cur;
cur += sizeof (*algdesc);
if (cur >= limit)
return (NULL);
ecomb->sadb_x_ecomb_numalgs++;
/*
* Normalize vs. crypto framework's limits. This way, you can specify
* a stronger policy, and when the framework loads a stronger version,
* you can just keep plowing w/o rewhacking your SPD.
*/
mutex_enter(&ipss->ipsec_alg_lock);
algp = ipss->ipsec_alglists[(algtype == SADB_X_ALGTYPE_AUTH) ?
IPSEC_ALG_AUTH : IPSEC_ALG_ENCR][alg];
if (minbits < algp->alg_ef_minbits)
minbits = algp->alg_ef_minbits;
if (maxbits > algp->alg_ef_maxbits)
maxbits = algp->alg_ef_maxbits;
mutex_exit(&ipss->ipsec_alg_lock);
algdesc->sadb_x_algdesc_satype = satype;
algdesc->sadb_x_algdesc_algtype = algtype;
algdesc->sadb_x_algdesc_alg = alg;
algdesc->sadb_x_algdesc_minbits = minbits;
algdesc->sadb_x_algdesc_maxbits = maxbits;
algdesc->sadb_x_algdesc_reserved = 0;
return (cur);
}
/*
* Convert the given ipsec_action_t into an ecomb starting at *ecomb
* which must fit before *limit
*
* return NULL if we ran out of room or a pointer to the end of the ecomb.
*/
static uint8_t *
sadb_action_to_ecomb(uint8_t *start, uint8_t *limit, ipsec_action_t *act,
netstack_t *ns)
{
uint8_t *cur = start;
sadb_x_ecomb_t *ecomb = (sadb_x_ecomb_t *)cur;
ipsec_prot_t *ipp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
cur += sizeof (*ecomb);
if (cur >= limit)
return (NULL);
ASSERT(act->ipa_act.ipa_type == IPSEC_ACT_APPLY);
ipp = &act->ipa_act.ipa_apply;
ecomb->sadb_x_ecomb_numalgs = 0;
ecomb->sadb_x_ecomb_reserved = 0;
ecomb->sadb_x_ecomb_reserved2 = 0;
/*
* No limits on allocations, since we really don't support that
* concept currently.
*/
ecomb->sadb_x_ecomb_soft_allocations = 0;
ecomb->sadb_x_ecomb_hard_allocations = 0;
/*
* XXX TBD: Policy or global parameters will eventually be
* able to fill in some of these.
*/
ecomb->sadb_x_ecomb_flags = 0;
ecomb->sadb_x_ecomb_soft_bytes = 0;
ecomb->sadb_x_ecomb_hard_bytes = 0;
ecomb->sadb_x_ecomb_soft_addtime = 0;
ecomb->sadb_x_ecomb_hard_addtime = 0;
ecomb->sadb_x_ecomb_soft_usetime = 0;
ecomb->sadb_x_ecomb_hard_usetime = 0;
if (ipp->ipp_use_ah) {
cur = sadb_new_algdesc(cur, limit, ecomb,
SADB_SATYPE_AH, SADB_X_ALGTYPE_AUTH, ipp->ipp_auth_alg,
ipp->ipp_ah_minbits, ipp->ipp_ah_maxbits, ipss);
if (cur == NULL)
return (NULL);
ipsecah_fill_defs(ecomb, ns);
}
if (ipp->ipp_use_esp) {
if (ipp->ipp_use_espa) {
cur = sadb_new_algdesc(cur, limit, ecomb,
SADB_SATYPE_ESP, SADB_X_ALGTYPE_AUTH,
ipp->ipp_esp_auth_alg,
ipp->ipp_espa_minbits,
ipp->ipp_espa_maxbits, ipss);
if (cur == NULL)
return (NULL);
}
cur = sadb_new_algdesc(cur, limit, ecomb,
SADB_SATYPE_ESP, SADB_X_ALGTYPE_CRYPT,
ipp->ipp_encr_alg,
ipp->ipp_espe_minbits,
ipp->ipp_espe_maxbits, ipss);
if (cur == NULL)
return (NULL);
/* Fill in lifetimes if and only if AH didn't already... */
if (!ipp->ipp_use_ah)
ipsecesp_fill_defs(ecomb, ns);
}
return (cur);
}
/*
* Construct an extended ACQUIRE message based on a selector and the resulting
* IPsec action.
*
* NOTE: This is used by both inverse ACQUIRE and actual ACQUIRE
* generation. As a consequence, expect this function to evolve
* rapidly.
*/
static mblk_t *
sadb_extended_acquire(ipsec_selector_t *sel, ipsec_policy_t *pol,
ipsec_action_t *act, boolean_t tunnel_mode, uint32_t seq, uint32_t pid,
netstack_t *ns)
{
mblk_t *mp;
sadb_msg_t *samsg;
uint8_t *start, *cur, *end;
uint32_t *saddrptr, *daddrptr;
sa_family_t af;
sadb_prop_t *eprop;
ipsec_action_t *ap, *an;
ipsec_selkey_t *ipsl;
uint8_t proto, pfxlen;
uint16_t lport, rport;
uint32_t kmp, kmc;
/*
* Find the action we want sooner rather than later..
*/
an = NULL;
if (pol == NULL) {
ap = act;
} else {
ap = pol->ipsp_act;
if (ap != NULL)
an = ap->ipa_next;
}
/*
* Just take a swag for the allocation for now. We can always
* alter it later.
*/
#define SADB_EXTENDED_ACQUIRE_SIZE 2048
mp = allocb(SADB_EXTENDED_ACQUIRE_SIZE, BPRI_HI);
if (mp == NULL)
return (NULL);
start = mp->b_rptr;
end = start + SADB_EXTENDED_ACQUIRE_SIZE;
cur = start;
samsg = (sadb_msg_t *)cur;
cur += sizeof (*samsg);
samsg->sadb_msg_version = PF_KEY_V2;
samsg->sadb_msg_type = SADB_ACQUIRE;
samsg->sadb_msg_errno = 0;
samsg->sadb_msg_reserved = 0;
samsg->sadb_msg_satype = 0;
samsg->sadb_msg_seq = seq;
samsg->sadb_msg_pid = pid;
if (tunnel_mode) {
/*
* Form inner address extensions based NOT on the inner
* selectors (i.e. the packet data), but on the policy's
* selector key (i.e. the policy's selector information).
*
* NOTE: The position of IPv4 and IPv6 addresses is the
* same in ipsec_selkey_t (unless the compiler does very
* strange things with unions, consult your local C language
* lawyer for details).
*/
ipsl = &(pol->ipsp_sel->ipsl_key);
if (ipsl->ipsl_valid & IPSL_IPV4) {
af = AF_INET;
ASSERT(sel->ips_protocol == IPPROTO_ENCAP);
ASSERT(!(ipsl->ipsl_valid & IPSL_IPV6));
} else {
af = AF_INET6;
ASSERT(sel->ips_protocol == IPPROTO_IPV6);
ASSERT(ipsl->ipsl_valid & IPSL_IPV6);
}
if (ipsl->ipsl_valid & IPSL_LOCAL_ADDR) {
saddrptr = (uint32_t *)(&ipsl->ipsl_local);
pfxlen = ipsl->ipsl_local_pfxlen;
} else {
saddrptr = (uint32_t *)(&ipv6_all_zeros);
pfxlen = 0;
}
/* XXX What about ICMP type/code? */
lport = (ipsl->ipsl_valid & IPSL_LOCAL_PORT) ?
ipsl->ipsl_lport : 0;
proto = (ipsl->ipsl_valid & IPSL_PROTOCOL) ?
ipsl->ipsl_proto : 0;
cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC,
af, saddrptr, lport, proto, pfxlen);
if (cur == NULL) {
freeb(mp);
return (NULL);
}
if (ipsl->ipsl_valid & IPSL_REMOTE_ADDR) {
daddrptr = (uint32_t *)(&ipsl->ipsl_remote);
pfxlen = ipsl->ipsl_remote_pfxlen;
} else {
daddrptr = (uint32_t *)(&ipv6_all_zeros);
pfxlen = 0;
}
/* XXX What about ICMP type/code? */
rport = (ipsl->ipsl_valid & IPSL_REMOTE_PORT) ?
ipsl->ipsl_rport : 0;
cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST,
af, daddrptr, rport, proto, pfxlen);
if (cur == NULL) {
freeb(mp);
return (NULL);
}
/*
* TODO - if we go to 3408's dream of transport mode IP-in-IP
* _with_ inner-packet address selectors, we'll need to further
* distinguish tunnel mode here. For now, having inner
* addresses and/or ports is sufficient.
*
* Meanwhile, whack proto/ports to reflect IP-in-IP for the
* outer addresses.
*/
proto = sel->ips_protocol; /* Either _ENCAP or _IPV6 */
lport = rport = 0;
} else if ((ap != NULL) && (!ap->ipa_want_unique)) {
proto = 0;
lport = 0;
rport = 0;
if (pol != NULL) {
ipsl = &(pol->ipsp_sel->ipsl_key);
if (ipsl->ipsl_valid & IPSL_PROTOCOL)
proto = ipsl->ipsl_proto;
if (ipsl->ipsl_valid & IPSL_REMOTE_PORT)
rport = ipsl->ipsl_rport;
if (ipsl->ipsl_valid & IPSL_LOCAL_PORT)
lport = ipsl->ipsl_lport;
}
} else {
proto = sel->ips_protocol;
lport = sel->ips_local_port;
rport = sel->ips_remote_port;
}
af = sel->ips_isv4 ? AF_INET : AF_INET6;
/*
* NOTE: The position of IPv4 and IPv6 addresses is the same in
* ipsec_selector_t.
*/
cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af,
(uint32_t *)(&sel->ips_local_addr_v6), lport, proto, 0);
if (cur == NULL) {
freeb(mp);
return (NULL);
}
cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af,
(uint32_t *)(&sel->ips_remote_addr_v6), rport, proto, 0);
if (cur == NULL) {
freeb(mp);
return (NULL);
}
/*
* This section will change a lot as policy evolves.
* For now, it'll be relatively simple.
*/
eprop = (sadb_prop_t *)cur;
cur += sizeof (*eprop);
if (cur > end) {
/* no space left */
freeb(mp);
return (NULL);
}
eprop->sadb_prop_exttype = SADB_X_EXT_EPROP;
eprop->sadb_x_prop_ereserved = 0;
eprop->sadb_x_prop_numecombs = 0;
eprop->sadb_prop_replay = 32; /* default */
kmc = kmp = 0;
for (; ap != NULL; ap = an) {
an = (pol != NULL) ? ap->ipa_next : NULL;
/*
* Skip non-IPsec policies
*/
if (ap->ipa_act.ipa_type != IPSEC_ACT_APPLY)
continue;
if (ap->ipa_act.ipa_apply.ipp_km_proto)
kmp = ap->ipa_act.ipa_apply.ipp_km_proto;
if (ap->ipa_act.ipa_apply.ipp_km_cookie)
kmc = ap->ipa_act.ipa_apply.ipp_km_cookie;
if (ap->ipa_act.ipa_apply.ipp_replay_depth) {
eprop->sadb_prop_replay =
ap->ipa_act.ipa_apply.ipp_replay_depth;
}
cur = sadb_action_to_ecomb(cur, end, ap, ns);
if (cur == NULL) { /* no space */
freeb(mp);
return (NULL);
}
eprop->sadb_x_prop_numecombs++;
}
if (eprop->sadb_x_prop_numecombs == 0) {
/*
* This will happen if we fail to find a policy
* allowing for IPsec processing.
* Construct an error message.
*/
samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
samsg->sadb_msg_errno = ENOENT;
samsg->sadb_x_msg_diagnostic = 0;
return (mp);
}
if ((kmp != 0) || (kmc != 0)) {
cur = sadb_make_kmc_ext(cur, end, kmp, kmc);
if (cur == NULL) {
freeb(mp);
return (NULL);
}
}
eprop->sadb_prop_len = SADB_8TO64(cur - (uint8_t *)eprop);
samsg->sadb_msg_len = SADB_8TO64(cur - start);
mp->b_wptr = cur;
return (mp);
}
/*
* Generic setup of an RFC 2367 ACQUIRE message. Caller sets satype.
*
* NOTE: This function acquires alg_lock as a side-effect if-and-only-if we
* succeed (i.e. return non-NULL). Caller MUST release it. This is to
* maximize code consolidation while preventing algorithm changes from messing
* with the callers finishing touches on the ACQUIRE itself.
*/
mblk_t *
sadb_setup_acquire(ipsacq_t *acqrec, uint8_t satype, ipsec_stack_t *ipss)
{
uint_t allocsize;
mblk_t *pfkeymp, *msgmp;
sa_family_t af;
uint8_t *cur, *end;
sadb_msg_t *samsg;
uint16_t sport_typecode;
uint16_t dport_typecode;
uint8_t check_proto;
boolean_t tunnel_mode = (acqrec->ipsacq_inneraddrfam != 0);
ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock));
pfkeymp = sadb_keysock_out(0);
if (pfkeymp == NULL)
return (NULL);
/*
* First, allocate a basic ACQUIRE message
*/
allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) +
sizeof (sadb_address_t) + sizeof (sadb_prop_t);
/* Make sure there's enough to cover both AF_INET and AF_INET6. */
allocsize += 2 * sizeof (struct sockaddr_in6);
mutex_enter(&ipss->ipsec_alg_lock);
/* NOTE: The lock is now held through to this function's return. */
allocsize += ipss->ipsec_nalgs[IPSEC_ALG_AUTH] *
ipss->ipsec_nalgs[IPSEC_ALG_ENCR] * sizeof (sadb_comb_t);
if (tunnel_mode) {
/* Tunnel mode! */
allocsize += 2 * sizeof (sadb_address_t);
/* Enough to cover both AF_INET and AF_INET6. */
allocsize += 2 * sizeof (struct sockaddr_in6);
}
msgmp = allocb(allocsize, BPRI_HI);
if (msgmp == NULL) {
freeb(pfkeymp);
mutex_exit(&ipss->ipsec_alg_lock);
return (NULL);
}
pfkeymp->b_cont = msgmp;
cur = msgmp->b_rptr;
end = cur + allocsize;
samsg = (sadb_msg_t *)cur;
cur += sizeof (sadb_msg_t);
af = acqrec->ipsacq_addrfam;
switch (af) {
case AF_INET:
check_proto = IPPROTO_ICMP;
break;
case AF_INET6:
check_proto = IPPROTO_ICMPV6;
break;
default:
/* This should never happen unless we have kernel bugs. */
cmn_err(CE_WARN,
"sadb_setup_acquire: corrupt ACQUIRE record.\n");
ASSERT(0);
mutex_exit(&ipss->ipsec_alg_lock);
return (NULL);
}
samsg->sadb_msg_version = PF_KEY_V2;
samsg->sadb_msg_type = SADB_ACQUIRE;
samsg->sadb_msg_satype = satype;
samsg->sadb_msg_errno = 0;
samsg->sadb_msg_pid = 0;
samsg->sadb_msg_reserved = 0;
samsg->sadb_msg_seq = acqrec->ipsacq_seq;
ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock));
if ((acqrec->ipsacq_proto == check_proto) || tunnel_mode) {
sport_typecode = dport_typecode = 0;
} else {
sport_typecode = acqrec->ipsacq_srcport;
dport_typecode = acqrec->ipsacq_dstport;
}
cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af,
acqrec->ipsacq_srcaddr, sport_typecode, acqrec->ipsacq_proto, 0);
cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af,
acqrec->ipsacq_dstaddr, dport_typecode, acqrec->ipsacq_proto, 0);
if (tunnel_mode) {
sport_typecode = acqrec->ipsacq_srcport;
dport_typecode = acqrec->ipsacq_dstport;
cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC,
acqrec->ipsacq_inneraddrfam, acqrec->ipsacq_innersrc,
sport_typecode, acqrec->ipsacq_inner_proto,
acqrec->ipsacq_innersrcpfx);
cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST,
acqrec->ipsacq_inneraddrfam, acqrec->ipsacq_innerdst,
dport_typecode, acqrec->ipsacq_inner_proto,
acqrec->ipsacq_innerdstpfx);
}
/* XXX Insert identity information here. */
/* XXXMLS Insert sensitivity information here. */
if (cur != NULL)
samsg->sadb_msg_len = SADB_8TO64(cur - msgmp->b_rptr);
else
mutex_exit(&ipss->ipsec_alg_lock);
return (pfkeymp);
}
/*
* Given an SADB_GETSPI message, find an appropriately ranged SA and
* allocate an SA. If there are message improprieties, return (ipsa_t *)-1.
* If there was a memory allocation error, return NULL. (Assume NULL !=
* (ipsa_t *)-1).
*
* master_spi is passed in host order.
*/
ipsa_t *
sadb_getspi(keysock_in_t *ksi, uint32_t master_spi, int *diagnostic,
netstack_t *ns)
{
sadb_address_t *src =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC],
*dst = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
sadb_spirange_t *range =
(sadb_spirange_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
struct sockaddr_in *ssa, *dsa;
struct sockaddr_in6 *ssa6, *dsa6;
uint32_t *srcaddr, *dstaddr;
sa_family_t af;
uint32_t add, min, max;
if (src == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
return ((ipsa_t *)-1);
}
if (dst == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
return ((ipsa_t *)-1);
}
if (range == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_RANGE;
return ((ipsa_t *)-1);
}
min = ntohl(range->sadb_spirange_min);
max = ntohl(range->sadb_spirange_max);
dsa = (struct sockaddr_in *)(dst + 1);
dsa6 = (struct sockaddr_in6 *)dsa;
ssa = (struct sockaddr_in *)(src + 1);
ssa6 = (struct sockaddr_in6 *)ssa;
ASSERT(dsa->sin_family == ssa->sin_family);
srcaddr = ALL_ZEROES_PTR;
af = dsa->sin_family;
switch (af) {
case AF_INET:
if (src != NULL)
srcaddr = (uint32_t *)(&ssa->sin_addr);
dstaddr = (uint32_t *)(&dsa->sin_addr);
break;
case AF_INET6:
if (src != NULL)
srcaddr = (uint32_t *)(&ssa6->sin6_addr);
dstaddr = (uint32_t *)(&dsa6->sin6_addr);
break;
default:
*diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF;
return ((ipsa_t *)-1);
}
if (master_spi < min || master_spi > max) {
/* Return a random value in the range. */
(void) random_get_pseudo_bytes((uint8_t *)&add, sizeof (add));
master_spi = min + (add % (max - min + 1));
}
/*
* Since master_spi is passed in host order, we need to htonl() it
* for the purposes of creating a new SA.
*/
return (sadb_makelarvalassoc(htonl(master_spi), srcaddr, dstaddr, af,
ns));
}
/*
*
* Locate an ACQUIRE and nuke it. If I have an samsg that's larger than the
* base header, just ignore it. Otherwise, lock down the whole ACQUIRE list
* and scan for the sequence number in question. I may wish to accept an
* address pair with it, for easier searching.
*
* Caller frees the message, so we don't have to here.
*
* NOTE: The ip_q parameter may be used in the future for ACQUIRE
* failures.
*/
/* ARGSUSED */
void
sadb_in_acquire(sadb_msg_t *samsg, sadbp_t *sp, queue_t *ip_q, netstack_t *ns)
{
int i;
ipsacq_t *acqrec;
iacqf_t *bucket;
/*
* I only accept the base header for this!
* Though to be honest, requiring the dst address would help
* immensely.
*
* XXX There are already cases where I can get the dst address.
*/
if (samsg->sadb_msg_len > SADB_8TO64(sizeof (*samsg)))
return;
/*
* Using the samsg->sadb_msg_seq, find the ACQUIRE record, delete it,
* (and in the future send a message to IP with the appropriate error
* number).
*
* Q: Do I want to reject if pid != 0?
*/
for (i = 0; i < sp->s_v4.sdb_hashsize; i++) {
bucket = &sp->s_v4.sdb_acq[i];
mutex_enter(&bucket->iacqf_lock);
for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL;
acqrec = acqrec->ipsacq_next) {
if (samsg->sadb_msg_seq == acqrec->ipsacq_seq)
break; /* for acqrec... loop. */
}
if (acqrec != NULL)
break; /* for i = 0... loop. */
mutex_exit(&bucket->iacqf_lock);
}
if (acqrec == NULL) {
for (i = 0; i < sp->s_v6.sdb_hashsize; i++) {
bucket = &sp->s_v6.sdb_acq[i];
mutex_enter(&bucket->iacqf_lock);
for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL;
acqrec = acqrec->ipsacq_next) {
if (samsg->sadb_msg_seq == acqrec->ipsacq_seq)
break; /* for acqrec... loop. */
}
if (acqrec != NULL)
break; /* for i = 0... loop. */
mutex_exit(&bucket->iacqf_lock);
}
}
if (acqrec == NULL)
return;
/*
* What do I do with the errno and IP? I may need mp's services a
* little more. See sadb_destroy_acquire() for future directions
* beyond free the mblk chain on the acquire record.
*/
ASSERT(&bucket->iacqf_lock == acqrec->ipsacq_linklock);
sadb_destroy_acquire(acqrec, ns);
/* Have to exit mutex here, because of breaking out of for loop. */
mutex_exit(&bucket->iacqf_lock);
}
/*
* The following functions work with the replay windows of an SA. They assume
* the ipsa->ipsa_replay_arr is an array of uint64_t, and that the bit vector
* represents the highest sequence number packet received, and back
* (ipsa->ipsa_replay_wsize) packets.
*/
/*
* Is the replay bit set?
*/
static boolean_t
ipsa_is_replay_set(ipsa_t *ipsa, uint32_t offset)
{
uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63);
return ((bit & ipsa->ipsa_replay_arr[offset >> 6]) ? B_TRUE : B_FALSE);
}
/*
* Shift the bits of the replay window over.
*/
static void
ipsa_shift_replay(ipsa_t *ipsa, uint32_t shift)
{
int i;
int jump = ((shift - 1) >> 6) + 1;
if (shift == 0)
return;
for (i = (ipsa->ipsa_replay_wsize - 1) >> 6; i >= 0; i--) {
if (i + jump <= (ipsa->ipsa_replay_wsize - 1) >> 6) {
ipsa->ipsa_replay_arr[i + jump] |=
ipsa->ipsa_replay_arr[i] >> (64 - (shift & 63));
}
ipsa->ipsa_replay_arr[i] <<= shift;
}
}
/*
* Set a bit in the bit vector.
*/
static void
ipsa_set_replay(ipsa_t *ipsa, uint32_t offset)
{
uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63);
ipsa->ipsa_replay_arr[offset >> 6] |= bit;
}
#define SADB_MAX_REPLAY_VALUE 0xffffffff
/*
* Assume caller has NOT done ntohl() already on seq. Check to see
* if replay sequence number "seq" has been seen already.
*/
boolean_t
sadb_replay_check(ipsa_t *ipsa, uint32_t seq)
{
boolean_t rc;
uint32_t diff;
if (ipsa->ipsa_replay_wsize == 0)
return (B_TRUE);
/*
* NOTE: I've already checked for 0 on the wire in sadb_replay_peek().
*/
/* Convert sequence number into host order before holding the mutex. */
seq = ntohl(seq);
mutex_enter(&ipsa->ipsa_lock);
/* Initialize inbound SA's ipsa_replay field to last one received. */
if (ipsa->ipsa_replay == 0)
ipsa->ipsa_replay = 1;
if (seq > ipsa->ipsa_replay) {
/*
* I have received a new "highest value received". Shift
* the replay window over.
*/
diff = seq - ipsa->ipsa_replay;
if (diff < ipsa->ipsa_replay_wsize) {
/* In replay window, shift bits over. */
ipsa_shift_replay(ipsa, diff);
} else {
/* WAY FAR AHEAD, clear bits and start again. */
bzero(ipsa->ipsa_replay_arr,
sizeof (ipsa->ipsa_replay_arr));
}
ipsa_set_replay(ipsa, 0);
ipsa->ipsa_replay = seq;
rc = B_TRUE;
goto done;
}
diff = ipsa->ipsa_replay - seq;
if (diff >= ipsa->ipsa_replay_wsize || ipsa_is_replay_set(ipsa, diff)) {
rc = B_FALSE;
goto done;
}
/* Set this packet as seen. */
ipsa_set_replay(ipsa, diff);
rc = B_TRUE;
done:
mutex_exit(&ipsa->ipsa_lock);
return (rc);
}
/*
* "Peek" and see if we should even bother going through the effort of
* running an authentication check on the sequence number passed in.
* this takes into account packets that are below the replay window,
* and collisions with already replayed packets. Return B_TRUE if it
* is okay to proceed, B_FALSE if this packet should be dropped immediately.
* Assume same byte-ordering as sadb_replay_check.
*/
boolean_t
sadb_replay_peek(ipsa_t *ipsa, uint32_t seq)
{
boolean_t rc = B_FALSE;
uint32_t diff;
if (ipsa->ipsa_replay_wsize == 0)
return (B_TRUE);
/*
* 0 is 0, regardless of byte order... :)
*
* If I get 0 on the wire (and there is a replay window) then the
* sender most likely wrapped. This ipsa may need to be marked or
* something.
*/
if (seq == 0)
return (B_FALSE);
seq = ntohl(seq);
mutex_enter(&ipsa->ipsa_lock);
if (seq < ipsa->ipsa_replay - ipsa->ipsa_replay_wsize &&
ipsa->ipsa_replay >= ipsa->ipsa_replay_wsize)
goto done;
/*
* If I've hit 0xffffffff, then quite honestly, I don't need to
* bother with formalities. I'm not accepting any more packets
* on this SA.
*/
if (ipsa->ipsa_replay == SADB_MAX_REPLAY_VALUE) {
/*
* Since we're already holding the lock, update the
* expire time ala. sadb_replay_delete() and return.
*/
ipsa->ipsa_hardexpiretime = (time_t)1;
goto done;
}
if (seq <= ipsa->ipsa_replay) {
/*
* This seq is in the replay window. I'm not below it,
* because I already checked for that above!
*/
diff = ipsa->ipsa_replay - seq;
if (ipsa_is_replay_set(ipsa, diff))
goto done;
}
/* Else return B_TRUE, I'm going to advance the window. */
rc = B_TRUE;
done:
mutex_exit(&ipsa->ipsa_lock);
return (rc);
}
/*
* Delete a single SA.
*
* For now, use the quick-and-dirty trick of making the association's
* hard-expire lifetime (time_t)1, ensuring deletion by the *_ager().
*/
void
sadb_replay_delete(ipsa_t *assoc)
{
mutex_enter(&assoc->ipsa_lock);
assoc->ipsa_hardexpiretime = (time_t)1;
mutex_exit(&assoc->ipsa_lock);
}
/*
* Given a queue that presumably points to IP, send a T_BIND_REQ for _proto_
* down. The caller will handle the T_BIND_ACK locally.
*/
boolean_t
sadb_t_bind_req(queue_t *q, int proto)
{
struct T_bind_req *tbr;
mblk_t *mp;
mp = allocb(sizeof (struct T_bind_req) + 1, BPRI_HI);
if (mp == NULL) {
/* cmn_err(CE_WARN, */
/* "sadb_t_bind_req(%d): couldn't allocate mblk\n", proto); */
return (B_FALSE);
}
mp->b_datap->db_type = M_PCPROTO;
tbr = (struct T_bind_req *)mp->b_rptr;
mp->b_wptr += sizeof (struct T_bind_req);
tbr->PRIM_type = T_BIND_REQ;
tbr->ADDR_length = 0;
tbr->ADDR_offset = 0;
tbr->CONIND_number = 0;
*mp->b_wptr = (uint8_t)proto;
mp->b_wptr++;
putnext(q, mp);
return (B_TRUE);
}
/*
* Special front-end to ipsec_rl_strlog() dealing with SA failure.
* this is designed to take only a format string with "* %x * %s *", so
* that "spi" is printed first, then "addr" is converted using inet_pton().
*
* This is abstracted out to save the stack space for only when inet_pton()
* is called. Make sure "spi" is in network order; it usually is when this
* would get called.
*/
void
ipsec_assocfailure(short mid, short sid, char level, ushort_t sl, char *fmt,
uint32_t spi, void *addr, int af, netstack_t *ns)
{
char buf[INET6_ADDRSTRLEN];
ASSERT(af == AF_INET6 || af == AF_INET);
ipsec_rl_strlog(ns, mid, sid, level, sl, fmt, ntohl(spi),
inet_ntop(af, addr, buf, sizeof (buf)));
}
/*
* Fills in a reference to the policy, if any, from the conn, in *ppp
* Releases a reference to the passed conn_t.
*/
static void
ipsec_conn_pol(ipsec_selector_t *sel, conn_t *connp, ipsec_policy_t **ppp)
{
ipsec_policy_t *pp;
ipsec_latch_t *ipl = connp->conn_latch;
if ((ipl != NULL) && (ipl->ipl_out_policy != NULL)) {
pp = ipl->ipl_out_policy;
IPPOL_REFHOLD(pp);
} else {
pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel,
connp->conn_netstack);
}
*ppp = pp;
CONN_DEC_REF(connp);
}
/*
* The following functions scan through active conn_t structures
* and return a reference to the best-matching policy it can find.
* Caller must release the reference.
*/
static void
ipsec_udp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst)
{
connf_t *connfp;
conn_t *connp = NULL;
ipsec_selector_t portonly;
bzero((void*)&portonly, sizeof (portonly));
if (sel->ips_local_port == 0)
return;
connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(sel->ips_local_port,
ipst)];
mutex_enter(&connfp->connf_lock);
if (sel->ips_isv4) {
connp = connfp->connf_head;
while (connp != NULL) {
if (IPCL_UDP_MATCH(connp, sel->ips_local_port,
sel->ips_local_addr_v4, sel->ips_remote_port,
sel->ips_remote_addr_v4))
break;
connp = connp->conn_next;
}
if (connp == NULL) {
/* Try port-only match in IPv6. */
portonly.ips_local_port = sel->ips_local_port;
sel = &portonly;
}
}
if (connp == NULL) {
connp = connfp->connf_head;
while (connp != NULL) {
if (IPCL_UDP_MATCH_V6(connp, sel->ips_local_port,
sel->ips_local_addr_v6, sel->ips_remote_port,
sel->ips_remote_addr_v6))
break;
connp = connp->conn_next;
}
if (connp == NULL) {
mutex_exit(&connfp->connf_lock);
return;
}
}
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
ipsec_conn_pol(sel, connp, ppp);
}
static conn_t *
ipsec_find_listen_conn(uint16_t *pptr, ipsec_selector_t *sel, ip_stack_t *ipst)
{
connf_t *connfp;
conn_t *connp = NULL;
const in6_addr_t *v6addrmatch = &sel->ips_local_addr_v6;
if (sel->ips_local_port == 0)
return (NULL);
connfp = &ipst->ips_ipcl_bind_fanout[IPCL_BIND_HASH(sel->ips_local_port,
ipst)];
mutex_enter(&connfp->connf_lock);
if (sel->ips_isv4) {
connp = connfp->connf_head;
while (connp != NULL) {
if (IPCL_BIND_MATCH(connp, IPPROTO_TCP,
sel->ips_local_addr_v4, pptr[1]))
break;
connp = connp->conn_next;
}
if (connp == NULL) {
/* Match to all-zeroes. */
v6addrmatch = &ipv6_all_zeros;
}
}
if (connp == NULL) {
connp = connfp->connf_head;
while (connp != NULL) {
if (IPCL_BIND_MATCH_V6(connp, IPPROTO_TCP,
*v6addrmatch, pptr[1]))
break;
connp = connp->conn_next;
}
if (connp == NULL) {
mutex_exit(&connfp->connf_lock);
return (NULL);
}
}
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
return (connp);
}
static void
ipsec_tcp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst)
{
connf_t *connfp;
conn_t *connp;
uint32_t ports;
uint16_t *pptr = (uint16_t *)&ports;
/*
* Find TCP state in the following order:
* 1.) Connected conns.
* 2.) Listeners.
*
* Even though #2 will be the common case for inbound traffic, only
* following this order insures correctness.
*/
if (sel->ips_local_port == 0)
return;
/*
* 0 should be fport, 1 should be lport. SRC is the local one here.
* See ipsec_construct_inverse_acquire() for details.
*/
pptr[0] = sel->ips_remote_port;
pptr[1] = sel->ips_local_port;
connfp = &ipst->ips_ipcl_conn_fanout[
IPCL_CONN_HASH(sel->ips_remote_addr_v4, ports, ipst)];
mutex_enter(&connfp->connf_lock);
connp = connfp->connf_head;
if (sel->ips_isv4) {
while (connp != NULL) {
if (IPCL_CONN_MATCH(connp, IPPROTO_TCP,
sel->ips_remote_addr_v4, sel->ips_local_addr_v4,
ports))
break;
connp = connp->conn_next;
}
} else {
while (connp != NULL) {
if (IPCL_CONN_MATCH_V6(connp, IPPROTO_TCP,
sel->ips_remote_addr_v6, sel->ips_local_addr_v6,
ports))
break;
connp = connp->conn_next;
}
}
if (connp != NULL) {
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
} else {
mutex_exit(&connfp->connf_lock);
/* Try the listen hash. */
if ((connp = ipsec_find_listen_conn(pptr, sel, ipst)) == NULL)
return;
}
ipsec_conn_pol(sel, connp, ppp);
}
static void
ipsec_sctp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp,
ip_stack_t *ipst)
{
conn_t *connp;
uint32_t ports;
uint16_t *pptr = (uint16_t *)&ports;
/*
* Find SCP state in the following order:
* 1.) Connected conns.
* 2.) Listeners.
*
* Even though #2 will be the common case for inbound traffic, only
* following this order insures correctness.
*/
if (sel->ips_local_port == 0)
return;
/*
* 0 should be fport, 1 should be lport. SRC is the local one here.
* See ipsec_construct_inverse_acquire() for details.
*/
pptr[0] = sel->ips_remote_port;
pptr[1] = sel->ips_local_port;
if (sel->ips_isv4) {
in6_addr_t src, dst;
IN6_IPADDR_TO_V4MAPPED(sel->ips_remote_addr_v4, &dst);
IN6_IPADDR_TO_V4MAPPED(sel->ips_local_addr_v4, &src);
connp = sctp_find_conn(&dst, &src, ports, ALL_ZONES,
ipst->ips_netstack->netstack_sctp);
} else {
connp = sctp_find_conn(&sel->ips_remote_addr_v6,
&sel->ips_local_addr_v6, ports, ALL_ZONES,
ipst->ips_netstack->netstack_sctp);
}
if (connp == NULL)
return;
ipsec_conn_pol(sel, connp, ppp);
}
/*
* Fill in a query for the SPD (in "sel") using two PF_KEY address extensions.
* Returns 0 or errno, and always sets *diagnostic to something appropriate
* to PF_KEY.
*
* NOTE: For right now, this function (and ipsec_selector_t for that matter),
* ignore prefix lengths in the address extension. Since we match on first-
* entered policies, this shouldn't matter. Also, since we normalize prefix-
* set addresses to mask out the lower bits, we should get a suitable search
* key for the SPD anyway. This is the function to change if the assumption
* about suitable search keys is wrong.
*/
static int
ipsec_get_inverse_acquire_sel(ipsec_selector_t *sel, sadb_address_t *srcext,
sadb_address_t *dstext, int *diagnostic)
{
struct sockaddr_in *src, *dst;
struct sockaddr_in6 *src6, *dst6;
*diagnostic = 0;
bzero(sel, sizeof (*sel));
sel->ips_protocol = srcext->sadb_address_proto;
dst = (struct sockaddr_in *)(dstext + 1);
if (dst->sin_family == AF_INET6) {
dst6 = (struct sockaddr_in6 *)dst;
src6 = (struct sockaddr_in6 *)(srcext + 1);
if (src6->sin6_family != AF_INET6) {
*diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
return (EINVAL);
}
sel->ips_remote_addr_v6 = dst6->sin6_addr;
sel->ips_local_addr_v6 = src6->sin6_addr;
if (sel->ips_protocol == IPPROTO_ICMPV6) {
sel->ips_is_icmp_inv_acq = 1;
} else {
sel->ips_remote_port = dst6->sin6_port;
sel->ips_local_port = src6->sin6_port;
}
sel->ips_isv4 = B_FALSE;
} else {
src = (struct sockaddr_in *)(srcext + 1);
if (src->sin_family != AF_INET) {
*diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
return (EINVAL);
}
sel->ips_remote_addr_v4 = dst->sin_addr.s_addr;
sel->ips_local_addr_v4 = src->sin_addr.s_addr;
if (sel->ips_protocol == IPPROTO_ICMP) {
sel->ips_is_icmp_inv_acq = 1;
} else {
sel->ips_remote_port = dst->sin_port;
sel->ips_local_port = src->sin_port;
}
sel->ips_isv4 = B_TRUE;
}
return (0);
}
/*
* We have encapsulation.
* - Lookup tun_t by address and look for an associated
* tunnel policy
* - If there are inner selectors
* - check ITPF_P_TUNNEL and ITPF_P_ACTIVE
* - Look up tunnel policy based on selectors
* - Else
* - Sanity check the negotation
* - If appropriate, fall through to global policy
*/
static int
ipsec_tun_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp,
sadb_address_t *innsrcext, sadb_address_t *inndstext, ipsec_tun_pol_t *itp,
int *diagnostic, netstack_t *ns)
{
int err;
ipsec_policy_head_t *polhead;
/* Check for inner selectors and act appropriately */
if (innsrcext != NULL) {
/* Inner selectors present */
ASSERT(inndstext != NULL);
if ((itp == NULL) ||
(itp->itp_flags & (ITPF_P_ACTIVE | ITPF_P_TUNNEL)) !=
(ITPF_P_ACTIVE | ITPF_P_TUNNEL)) {
/*
* If inner packet selectors, we must have negotiate
* tunnel and active policy. If the tunnel has
* transport-mode policy set on it, or has no policy,
* fail.
*/
return (ENOENT);
} else {
/*
* Reset "sel" to indicate inner selectors. Pass
* inner PF_KEY address extensions for this to happen.
*/
err = ipsec_get_inverse_acquire_sel(sel,
innsrcext, inndstext, diagnostic);
if (err != 0) {
ITP_REFRELE(itp, ns);
return (err);
}
/*
* Now look for a tunnel policy based on those inner
* selectors. (Common code is below.)
*/
}
} else {
/* No inner selectors present */
if ((itp == NULL) || !(itp->itp_flags & ITPF_P_ACTIVE)) {
/*
* Transport mode negotiation with no tunnel policy
* configured - return to indicate a global policy
* check is needed.
*/
if (itp != NULL) {
ITP_REFRELE(itp, ns);
}
return (0);
} else if (itp->itp_flags & ITPF_P_TUNNEL) {
/* Tunnel mode set with no inner selectors. */
ITP_REFRELE(itp, ns);
return (ENOENT);
}
/*
* Else, this is a tunnel policy configured with ifconfig(1m)
* or "negotiate transport" with ipsecconf(1m). We have an
* itp with policy set based on any match, so don't bother
* changing fields in "sel".
*/
}
ASSERT(itp != NULL);
polhead = itp->itp_policy;
ASSERT(polhead != NULL);
rw_enter(&polhead->iph_lock, RW_READER);
*ppp = ipsec_find_policy_head(NULL, polhead,
IPSEC_TYPE_INBOUND, sel, ns);
rw_exit(&polhead->iph_lock);
ITP_REFRELE(itp, ns);
/*
* Don't default to global if we didn't find a matching policy entry.
* Instead, send ENOENT, just like if we hit a transport-mode tunnel.
*/
if (*ppp == NULL)
return (ENOENT);
return (0);
}
static void
ipsec_oth_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp,
ip_stack_t *ipst)
{
boolean_t isv4 = sel->ips_isv4;
connf_t *connfp;
conn_t *connp;
if (isv4) {
connfp = &ipst->ips_ipcl_proto_fanout[sel->ips_protocol];
} else {
connfp = &ipst->ips_ipcl_proto_fanout_v6[sel->ips_protocol];
}
mutex_enter(&connfp->connf_lock);
for (connp = connfp->connf_head; connp != NULL;
connp = connp->conn_next) {
if (!((isv4 && !((connp->conn_src == 0 ||
connp->conn_src == sel->ips_local_addr_v4) &&
(connp->conn_rem == 0 ||
connp->conn_rem == sel->ips_remote_addr_v4))) ||
(!isv4 && !((IN6_IS_ADDR_UNSPECIFIED(&connp->conn_srcv6) ||
IN6_ARE_ADDR_EQUAL(&connp->conn_srcv6,
&sel->ips_local_addr_v6)) &&
(IN6_IS_ADDR_UNSPECIFIED(&connp->conn_remv6) ||
IN6_ARE_ADDR_EQUAL(&connp->conn_remv6,
&sel->ips_remote_addr_v6)))))) {
break;
}
}
if (connp == NULL) {
mutex_exit(&connfp->connf_lock);
return;
}
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
ipsec_conn_pol(sel, connp, ppp);
}
/*
* Construct an inverse ACQUIRE reply based on:
*
* 1.) Current global policy.
* 2.) An conn_t match depending on what all was passed in the extv[].
* 3.) A tunnel's policy head.
* ...
* N.) Other stuff TBD (e.g. identities)
*
* If there is an error, set sadb_msg_errno and sadb_x_msg_diagnostic
* in this function so the caller can extract them where appropriately.
*
* The SRC address is the local one - just like an outbound ACQUIRE message.
*/
mblk_t *
ipsec_construct_inverse_acquire(sadb_msg_t *samsg, sadb_ext_t *extv[],
netstack_t *ns)
{
int err;
int diagnostic;
sadb_address_t *srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC],
*dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST],
*innsrcext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC],
*inndstext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST];
struct sockaddr_in6 *src, *dst;
struct sockaddr_in6 *isrc, *idst;
ipsec_tun_pol_t *itp = NULL;
ipsec_policy_t *pp = NULL;
ipsec_selector_t sel, isel;
mblk_t *retmp;
ip_stack_t *ipst = ns->netstack_ip;
ipsec_stack_t *ipss = ns->netstack_ipsec;
/* Normalize addresses */
if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)srcext, 0, ns)
== KS_IN_ADDR_UNKNOWN) {
err = EINVAL;
diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC;
goto bail;
}
src = (struct sockaddr_in6 *)(srcext + 1);
if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)dstext, 0, ns)
== KS_IN_ADDR_UNKNOWN) {
err = EINVAL;
diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
goto bail;
}
dst = (struct sockaddr_in6 *)(dstext + 1);
if (src->sin6_family != dst->sin6_family) {
err = EINVAL;
diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
goto bail;
}
/* Check for tunnel mode and act appropriately */
if (innsrcext != NULL) {
if (inndstext == NULL) {
err = EINVAL;
diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST;
goto bail;
}
if (sadb_addrcheck(NULL, (mblk_t *)samsg,
(sadb_ext_t *)innsrcext, 0, ns) == KS_IN_ADDR_UNKNOWN) {
err = EINVAL;
diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_SRC;
goto bail;
}
isrc = (struct sockaddr_in6 *)(innsrcext + 1);
if (sadb_addrcheck(NULL, (mblk_t *)samsg,
(sadb_ext_t *)inndstext, 0, ns) == KS_IN_ADDR_UNKNOWN) {
err = EINVAL;
diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_DST;
goto bail;
}
idst = (struct sockaddr_in6 *)(inndstext + 1);
if (isrc->sin6_family != idst->sin6_family) {
err = EINVAL;
diagnostic = SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH;
goto bail;
}
if (isrc->sin6_family != AF_INET &&
isrc->sin6_family != AF_INET6) {
err = EINVAL;
diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_SRC_AF;
goto bail;
}
} else if (inndstext != NULL) {
err = EINVAL;
diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC;
goto bail;
}
/* Get selectors first, based on outer addresses */
err = ipsec_get_inverse_acquire_sel(&sel, srcext, dstext, &diagnostic);
if (err != 0)
goto bail;
/* Check for tunnel mode mismatches. */
if (innsrcext != NULL &&
((isrc->sin6_family == AF_INET &&
sel.ips_protocol != IPPROTO_ENCAP && sel.ips_protocol != 0) ||
(isrc->sin6_family == AF_INET6 &&
sel.ips_protocol != IPPROTO_IPV6 &&
sel.ips_protocol != 0))) {
err = EPROTOTYPE;
goto bail;
}
/*
* Okay, we have the addresses and other selector information.
* Let's first find a conn...
*/
pp = NULL;
switch (sel.ips_protocol) {
case IPPROTO_TCP:
ipsec_tcp_pol(&sel, &pp, ipst);
break;
case IPPROTO_UDP:
ipsec_udp_pol(&sel, &pp, ipst);
break;
case IPPROTO_SCTP:
ipsec_sctp_pol(&sel, &pp, ipst);
break;
case IPPROTO_ENCAP:
case IPPROTO_IPV6:
rw_enter(&ipss->ipsec_itp_get_byaddr_rw_lock, RW_READER);
/*
* Assume sel.ips_remote_addr_* has the right address at
* that exact position.
*/
itp = ipss->ipsec_itp_get_byaddr(
(uint32_t *)(&sel.ips_local_addr_v6),
(uint32_t *)(&sel.ips_remote_addr_v6),
src->sin6_family, ns);
rw_exit(&ipss->ipsec_itp_get_byaddr_rw_lock);
if (innsrcext == NULL) {
/*
* Transport-mode tunnel, make sure we fake out isel
* to contain something based on the outer protocol.
*/
bzero(&isel, sizeof (isel));
isel.ips_isv4 = (sel.ips_protocol == IPPROTO_ENCAP);
} /* Else isel is initialized by ipsec_tun_pol(). */
err = ipsec_tun_pol(&isel, &pp, innsrcext, inndstext, itp,
&diagnostic, ns);
/*
* NOTE: isel isn't used for now, but in RFC 430x IPsec, it
* may be.
*/
if (err != 0)
goto bail;
break;
default:
ipsec_oth_pol(&sel, &pp, ipst);
break;
}
/*
* If we didn't find a matching conn_t or other policy head, take a
* look in the global policy.
*/
if (pp == NULL) {
pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, NULL, NULL, &sel,
ns);
if (pp == NULL) {
/* There's no global policy. */
err = ENOENT;
diagnostic = 0;
goto bail;
}
}
/*
* Now that we have a policy entry/widget, construct an ACQUIRE
* message based on that, fix fields where appropriate,
* and return the message.
*/
retmp = sadb_extended_acquire(&sel, pp, NULL,
(itp != NULL && (itp->itp_flags & ITPF_P_TUNNEL)),
samsg->sadb_msg_seq, samsg->sadb_msg_pid, ns);
if (pp != NULL) {
IPPOL_REFRELE(pp, ns);
}
if (retmp != NULL) {
return (retmp);
} else {
err = ENOMEM;
diagnostic = 0;
}
bail:
samsg->sadb_msg_errno = (uint8_t)err;
samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic;
return (NULL);
}
/*
* ipsa_lpkt is a one-element queue, only manipulated by casptr within
* the next two functions.
*
* These functions loop calling casptr() until the swap "happens",
* turning a compare-and-swap op into an atomic swap operation.
*/
/*
* sadb_set_lpkt: Atomically swap in a value to ipsa->ipsa_lpkt and
* freemsg the previous value. free clue: freemsg(NULL) is safe.
*/
void
sadb_set_lpkt(ipsa_t *ipsa, mblk_t *npkt, netstack_t *ns)
{
mblk_t *opkt;
ipsec_stack_t *ipss = ns->netstack_ipsec;
membar_producer();
do
opkt = ipsa->ipsa_lpkt;
while (casptr(&ipsa->ipsa_lpkt, opkt, npkt) != opkt);
ip_drop_packet(opkt, B_TRUE, NULL, NULL,
DROPPER(ipss, ipds_sadb_inlarval_replace),
&ipss->ipsec_sadb_dropper);
}
/*
* sadb_clear_lpkt: Atomically clear ipsa->ipsa_lpkt and return the
* previous value.
*/
mblk_t *
sadb_clear_lpkt(ipsa_t *ipsa)
{
mblk_t *opkt;
do
opkt = ipsa->ipsa_lpkt;
while (casptr(&ipsa->ipsa_lpkt, opkt, NULL) != opkt);
return (opkt);
}
/*
* Walker callback used by sadb_alg_update() to free/create crypto
* context template when a crypto software provider is removed or
* added.
*/
struct sadb_update_alg_state {
ipsec_algtype_t alg_type;
uint8_t alg_id;
boolean_t is_added;
};
static void
sadb_alg_update_cb(isaf_t *head, ipsa_t *entry, void *cookie)
{
struct sadb_update_alg_state *update_state =
(struct sadb_update_alg_state *)cookie;
crypto_ctx_template_t *ctx_tmpl = NULL;
ASSERT(MUTEX_HELD(&head->isaf_lock));
if (entry->ipsa_state == IPSA_STATE_LARVAL)
return;
mutex_enter(&entry->ipsa_lock);
switch (update_state->alg_type) {
case IPSEC_ALG_AUTH:
if (entry->ipsa_auth_alg == update_state->alg_id)
ctx_tmpl = &entry->ipsa_authtmpl;
break;
case IPSEC_ALG_ENCR:
if (entry->ipsa_encr_alg == update_state->alg_id)
ctx_tmpl = &entry->ipsa_encrtmpl;
break;
default:
ctx_tmpl = NULL;
}
if (ctx_tmpl == NULL) {
mutex_exit(&entry->ipsa_lock);
return;
}
/*
* The context template of the SA may be affected by the change
* of crypto provider.
*/
if (update_state->is_added) {
/* create the context template if not already done */
if (*ctx_tmpl == NULL) {
(void) ipsec_create_ctx_tmpl(entry,
update_state->alg_type);
}
} else {
/*
* The crypto provider was removed. If the context template
* exists but it is no longer valid, free it.
*/
if (*ctx_tmpl != NULL)
ipsec_destroy_ctx_tmpl(entry, update_state->alg_type);
}
mutex_exit(&entry->ipsa_lock);
}
/*
* Invoked by IP when an software crypto provider has been updated.
* The type and id of the corresponding algorithm is passed as argument.
* is_added is B_TRUE if the provider was added, B_FALSE if it was
* removed. The function updates the SADB and free/creates the
* context templates associated with SAs if needed.
*/
#define SADB_ALG_UPDATE_WALK(sadb, table) \
sadb_walker((sadb).table, (sadb).sdb_hashsize, sadb_alg_update_cb, \
&update_state)
void
sadb_alg_update(ipsec_algtype_t alg_type, uint8_t alg_id, boolean_t is_added,
netstack_t *ns)
{
struct sadb_update_alg_state update_state;
ipsecah_stack_t *ahstack = ns->netstack_ipsecah;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
update_state.alg_type = alg_type;
update_state.alg_id = alg_id;
update_state.is_added = is_added;
if (alg_type == IPSEC_ALG_AUTH) {
/* walk the AH tables only for auth. algorithm changes */
SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_of);
SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_if);
SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_of);
SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_if);
}
/* walk the ESP tables */
SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_of);
SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_if);
SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_of);
SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_if);
}
/*
* Creates a context template for the specified SA. This function
* is called when an SA is created and when a context template needs
* to be created due to a change of software provider.
*/
int
ipsec_create_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type)
{
ipsec_alginfo_t *alg;
crypto_mechanism_t mech;
crypto_key_t *key;
crypto_ctx_template_t *sa_tmpl;
int rv;
ipsec_stack_t *ipss = sa->ipsa_netstack->netstack_ipsec;
ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
ASSERT(MUTEX_HELD(&sa->ipsa_lock));
/* get pointers to the algorithm info, context template, and key */
switch (alg_type) {
case IPSEC_ALG_AUTH:
key = &sa->ipsa_kcfauthkey;
sa_tmpl = &sa->ipsa_authtmpl;
alg = ipss->ipsec_alglists[alg_type][sa->ipsa_auth_alg];
break;
case IPSEC_ALG_ENCR:
key = &sa->ipsa_kcfencrkey;
sa_tmpl = &sa->ipsa_encrtmpl;
alg = ipss->ipsec_alglists[alg_type][sa->ipsa_encr_alg];
break;
default:
alg = NULL;
}
if (alg == NULL || !ALG_VALID(alg))
return (EINVAL);
/* initialize the mech info structure for the framework */
ASSERT(alg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
mech.cm_type = alg->alg_mech_type;
mech.cm_param = NULL;
mech.cm_param_len = 0;
/* create a new context template */
rv = crypto_create_ctx_template(&mech, key, sa_tmpl, KM_NOSLEEP);
/*
* CRYPTO_MECH_NOT_SUPPORTED can be returned if only hardware
* providers are available for that mechanism. In that case
* we don't fail, and will generate the context template from
* the framework callback when a software provider for that
* mechanism registers.
*
* The context template is assigned the special value
* IPSEC_CTX_TMPL_ALLOC if the allocation failed due to a
* lack of memory. No attempt will be made to use
* the context template if it is set to this value.
*/
if (rv == CRYPTO_HOST_MEMORY) {
*sa_tmpl = IPSEC_CTX_TMPL_ALLOC;
} else if (rv != CRYPTO_SUCCESS) {
*sa_tmpl = NULL;
if (rv != CRYPTO_MECH_NOT_SUPPORTED)
return (EINVAL);
}
return (0);
}
/*
* Destroy the context template of the specified algorithm type
* of the specified SA. Must be called while holding the SA lock.
*/
void
ipsec_destroy_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type)
{
ASSERT(MUTEX_HELD(&sa->ipsa_lock));
if (alg_type == IPSEC_ALG_AUTH) {
if (sa->ipsa_authtmpl == IPSEC_CTX_TMPL_ALLOC)
sa->ipsa_authtmpl = NULL;
else if (sa->ipsa_authtmpl != NULL) {
crypto_destroy_ctx_template(sa->ipsa_authtmpl);
sa->ipsa_authtmpl = NULL;
}
} else {
ASSERT(alg_type == IPSEC_ALG_ENCR);
if (sa->ipsa_encrtmpl == IPSEC_CTX_TMPL_ALLOC)
sa->ipsa_encrtmpl = NULL;
else if (sa->ipsa_encrtmpl != NULL) {
crypto_destroy_ctx_template(sa->ipsa_encrtmpl);
sa->ipsa_encrtmpl = NULL;
}
}
}
/*
* Use the kernel crypto framework to check the validity of a key received
* via keysock. Returns 0 if the key is OK, -1 otherwise.
*/
int
ipsec_check_key(crypto_mech_type_t mech_type, sadb_key_t *sadb_key,
boolean_t is_auth, int *diag)
{
crypto_mechanism_t mech;
crypto_key_t crypto_key;
int crypto_rc;
mech.cm_type = mech_type;
mech.cm_param = NULL;
mech.cm_param_len = 0;
crypto_key.ck_format = CRYPTO_KEY_RAW;
crypto_key.ck_data = sadb_key + 1;
crypto_key.ck_length = sadb_key->sadb_key_bits;
crypto_rc = crypto_key_check(&mech, &crypto_key);
switch (crypto_rc) {
case CRYPTO_SUCCESS:
return (0);
case CRYPTO_MECHANISM_INVALID:
case CRYPTO_MECH_NOT_SUPPORTED:
*diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AALG :
SADB_X_DIAGNOSTIC_BAD_EALG;
break;
case CRYPTO_KEY_SIZE_RANGE:
*diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AKEYBITS :
SADB_X_DIAGNOSTIC_BAD_EKEYBITS;
break;
case CRYPTO_WEAK_KEY:
*diag = is_auth ? SADB_X_DIAGNOSTIC_WEAK_AKEY :
SADB_X_DIAGNOSTIC_WEAK_EKEY;
break;
}
return (-1);
}
/* ARGSUSED */
static void
sadb_clear_timeouts_walker(isaf_t *head, ipsa_t *ipsa, void *q)
{
if (!(ipsa->ipsa_flags & IPSA_F_NATT))
return;
mutex_enter(&ipsa->ipsa_lock);
if (ipsa->ipsa_natt_q != q) {
mutex_exit(&ipsa->ipsa_lock);
return;
}
(void) quntimeout(ipsa->ipsa_natt_q, ipsa->ipsa_natt_ka_timer);
ipsa->ipsa_natt_ka_timer = 0;
ipsa->ipsa_natt_q = NULL;
mutex_exit(&ipsa->ipsa_lock);
}
/*
* Is only to be used on a nattymod queue.
*/
void
sadb_clear_timeouts(queue_t *q, netstack_t *ns)
{
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
sadb_t *sp = &espstack->esp_sadb.s_v4;
sadb_walker(sp->sdb_if, sp->sdb_hashsize,
sadb_clear_timeouts_walker, q);
}