ipsecesp.c revision 1a5e258f5471356ca102c7176637cdce45bac147
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/strlog.h>
#include <sys/tihdr.h>
#include <sys/socket.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/kmem.h>
#include <sys/zone.h>
#include <sys/sysmacros.h>
#include <sys/cmn_err.h>
#include <sys/vtrace.h>
#include <sys/debug.h>
#include <sys/atomic.h>
#include <sys/strsun.h>
#include <sys/random.h>
#include <netinet/in.h>
#include <net/if.h>
#include <netinet/ip6.h>
#include <net/pfkeyv2.h>
#include <net/pfpolicy.h>
#include <inet/common.h>
#include <inet/mi.h>
#include <inet/nd.h>
#include <inet/ip.h>
#include <inet/ip_impl.h>
#include <inet/ip6.h>
#include <inet/ip_if.h>
#include <inet/ip_ndp.h>
#include <inet/sadb.h>
#include <inet/ipsec_info.h>
#include <inet/ipsec_impl.h>
#include <inet/ipsecesp.h>
#include <inet/ipdrop.h>
#include <inet/tcp.h>
#include <sys/kstat.h>
#include <sys/policy.h>
#include <sys/strsun.h>
#include <sys/strsubr.h>
#include <inet/udp_impl.h>
#include <sys/taskq.h>
#include <sys/note.h>
#include <sys/tsol/tnet.h>
/*
* Table of ND variables supported by ipsecesp. These are loaded into
* ipsecesp_g_nd in ipsecesp_init_nd.
* All of these are alterable, within the min/max values given, at run time.
*/
static ipsecespparam_t lcl_param_arr[] = {
/* min max value name */
{ 0, 3, 0, "ipsecesp_debug"},
{ 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecesp_age_interval"},
{ 1, 10, 1, "ipsecesp_reap_delay"},
{ 1, SADB_MAX_REPLAY, 64, "ipsecesp_replay_size"},
{ 1, 300, 15, "ipsecesp_acquire_timeout"},
{ 1, 1800, 90, "ipsecesp_larval_timeout"},
/* Default lifetime values for ACQUIRE messages. */
{ 0, 0xffffffffU, 0, "ipsecesp_default_soft_bytes"},
{ 0, 0xffffffffU, 0, "ipsecesp_default_hard_bytes"},
{ 0, 0xffffffffU, 24000, "ipsecesp_default_soft_addtime"},
{ 0, 0xffffffffU, 28800, "ipsecesp_default_hard_addtime"},
{ 0, 0xffffffffU, 0, "ipsecesp_default_soft_usetime"},
{ 0, 0xffffffffU, 0, "ipsecesp_default_hard_usetime"},
{ 0, 1, 0, "ipsecesp_log_unknown_spi"},
{ 0, 2, 1, "ipsecesp_padding_check"},
{ 0, 600, 20, "ipsecesp_nat_keepalive_interval"},
};
#define ipsecesp_debug ipsecesp_params[0].ipsecesp_param_value
#define ipsecesp_age_interval ipsecesp_params[1].ipsecesp_param_value
#define ipsecesp_age_int_max ipsecesp_params[1].ipsecesp_param_max
#define ipsecesp_reap_delay ipsecesp_params[2].ipsecesp_param_value
#define ipsecesp_replay_size ipsecesp_params[3].ipsecesp_param_value
#define ipsecesp_acquire_timeout \
ipsecesp_params[4].ipsecesp_param_value
#define ipsecesp_larval_timeout \
ipsecesp_params[5].ipsecesp_param_value
#define ipsecesp_default_soft_bytes \
ipsecesp_params[6].ipsecesp_param_value
#define ipsecesp_default_hard_bytes \
ipsecesp_params[7].ipsecesp_param_value
#define ipsecesp_default_soft_addtime \
ipsecesp_params[8].ipsecesp_param_value
#define ipsecesp_default_hard_addtime \
ipsecesp_params[9].ipsecesp_param_value
#define ipsecesp_default_soft_usetime \
ipsecesp_params[10].ipsecesp_param_value
#define ipsecesp_default_hard_usetime \
ipsecesp_params[11].ipsecesp_param_value
#define ipsecesp_log_unknown_spi \
ipsecesp_params[12].ipsecesp_param_value
#define ipsecesp_padding_check \
ipsecesp_params[13].ipsecesp_param_value
/* For ipsecesp_nat_keepalive_interval, see ipsecesp.h. */
#define esp0dbg(a) printf a
/* NOTE: != 0 instead of > 0 so lint doesn't complain. */
#define esp1dbg(espstack, a) if (espstack->ipsecesp_debug != 0) printf a
#define esp2dbg(espstack, a) if (espstack->ipsecesp_debug > 1) printf a
#define esp3dbg(espstack, a) if (espstack->ipsecesp_debug > 2) printf a
static int ipsecesp_open(queue_t *, dev_t *, int, int, cred_t *);
static int ipsecesp_close(queue_t *);
static void ipsecesp_wput(queue_t *, mblk_t *);
static void *ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns);
static void ipsecesp_stack_fini(netstackid_t stackid, void *arg);
static void esp_send_acquire(ipsacq_t *, mblk_t *, netstack_t *);
static void esp_prepare_udp(netstack_t *, mblk_t *, ipha_t *);
static void esp_outbound_finish(mblk_t *, ip_xmit_attr_t *);
static void esp_inbound_restart(mblk_t *, ip_recv_attr_t *);
static boolean_t esp_register_out(uint32_t, uint32_t, uint_t,
ipsecesp_stack_t *, cred_t *);
static boolean_t esp_strip_header(mblk_t *, boolean_t, uint32_t,
kstat_named_t **, ipsecesp_stack_t *);
static mblk_t *esp_submit_req_inbound(mblk_t *, ip_recv_attr_t *,
ipsa_t *, uint_t);
static mblk_t *esp_submit_req_outbound(mblk_t *, ip_xmit_attr_t *,
ipsa_t *, uchar_t *, uint_t);
/* Setable in /etc/system */
uint32_t esp_hash_size = IPSEC_DEFAULT_HASH_SIZE;
static struct module_info info = {
5137, "ipsecesp", 0, INFPSZ, 65536, 1024
};
static struct qinit rinit = {
(pfi_t)putnext, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
NULL
};
static struct qinit winit = {
(pfi_t)ipsecesp_wput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
NULL
};
struct streamtab ipsecespinfo = {
&rinit, &winit, NULL, NULL
};
static taskq_t *esp_taskq;
/*
* OTOH, this one is set at open/close, and I'm D_MTQPAIR for now.
*
* Question: Do I need this, given that all instance's esps->esps_wq point
* to IP?
*
* Answer: Yes, because I need to know which queue is BOUND to
* IPPROTO_ESP
*/
/*
* Stats. This may eventually become a full-blown SNMP MIB once that spec
* stabilizes.
*/
typedef struct esp_kstats_s {
kstat_named_t esp_stat_num_aalgs;
kstat_named_t esp_stat_good_auth;
kstat_named_t esp_stat_bad_auth;
kstat_named_t esp_stat_bad_padding;
kstat_named_t esp_stat_replay_failures;
kstat_named_t esp_stat_replay_early_failures;
kstat_named_t esp_stat_keysock_in;
kstat_named_t esp_stat_out_requests;
kstat_named_t esp_stat_acquire_requests;
kstat_named_t esp_stat_bytes_expired;
kstat_named_t esp_stat_out_discards;
kstat_named_t esp_stat_crypto_sync;
kstat_named_t esp_stat_crypto_async;
kstat_named_t esp_stat_crypto_failures;
kstat_named_t esp_stat_num_ealgs;
kstat_named_t esp_stat_bad_decrypt;
kstat_named_t esp_stat_sa_port_renumbers;
} esp_kstats_t;
/*
* espstack->esp_kstats is equal to espstack->esp_ksp->ks_data if
* kstat_create_netstack for espstack->esp_ksp succeeds, but when it
* fails, it will be NULL. Note this is done for all stack instances,
* so it *could* fail. hence a non-NULL checking is done for
* ESP_BUMP_STAT and ESP_DEBUMP_STAT
*/
#define ESP_BUMP_STAT(espstack, x) \
do { \
if (espstack->esp_kstats != NULL) \
(espstack->esp_kstats->esp_stat_ ## x).value.ui64++; \
_NOTE(CONSTCOND) \
} while (0)
#define ESP_DEBUMP_STAT(espstack, x) \
do { \
if (espstack->esp_kstats != NULL) \
(espstack->esp_kstats->esp_stat_ ## x).value.ui64--; \
_NOTE(CONSTCOND) \
} while (0)
static int esp_kstat_update(kstat_t *, int);
static boolean_t
esp_kstat_init(ipsecesp_stack_t *espstack, netstackid_t stackid)
{
espstack->esp_ksp = kstat_create_netstack("ipsecesp", 0, "esp_stat",
"net", KSTAT_TYPE_NAMED,
sizeof (esp_kstats_t) / sizeof (kstat_named_t),
KSTAT_FLAG_PERSISTENT, stackid);
if (espstack->esp_ksp == NULL || espstack->esp_ksp->ks_data == NULL)
return (B_FALSE);
espstack->esp_kstats = espstack->esp_ksp->ks_data;
espstack->esp_ksp->ks_update = esp_kstat_update;
espstack->esp_ksp->ks_private = (void *)(uintptr_t)stackid;
#define K64 KSTAT_DATA_UINT64
#define KI(x) kstat_named_init(&(espstack->esp_kstats->esp_stat_##x), #x, K64)
KI(num_aalgs);
KI(num_ealgs);
KI(good_auth);
KI(bad_auth);
KI(bad_padding);
KI(replay_failures);
KI(replay_early_failures);
KI(keysock_in);
KI(out_requests);
KI(acquire_requests);
KI(bytes_expired);
KI(out_discards);
KI(crypto_sync);
KI(crypto_async);
KI(crypto_failures);
KI(bad_decrypt);
KI(sa_port_renumbers);
#undef KI
#undef K64
kstat_install(espstack->esp_ksp);
return (B_TRUE);
}
static int
esp_kstat_update(kstat_t *kp, int rw)
{
esp_kstats_t *ekp;
netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
netstack_t *ns;
ipsec_stack_t *ipss;
if ((kp == NULL) || (kp->ks_data == NULL))
return (EIO);
if (rw == KSTAT_WRITE)
return (EACCES);
ns = netstack_find_by_stackid(stackid);
if (ns == NULL)
return (-1);
ipss = ns->netstack_ipsec;
if (ipss == NULL) {
netstack_rele(ns);
return (-1);
}
ekp = (esp_kstats_t *)kp->ks_data;
mutex_enter(&ipss->ipsec_alg_lock);
ekp->esp_stat_num_aalgs.value.ui64 =
ipss->ipsec_nalgs[IPSEC_ALG_AUTH];
ekp->esp_stat_num_ealgs.value.ui64 =
ipss->ipsec_nalgs[IPSEC_ALG_ENCR];
mutex_exit(&ipss->ipsec_alg_lock);
netstack_rele(ns);
return (0);
}
#ifdef DEBUG
/*
* Debug routine, useful to see pre-encryption data.
*/
static char *
dump_msg(mblk_t *mp)
{
char tmp_str[3], tmp_line[256];
while (mp != NULL) {
unsigned char *ptr;
printf("mblk address 0x%p, length %ld, db_ref %d "
"type %d, base 0x%p, lim 0x%p\n",
(void *) mp, (long)(mp->b_wptr - mp->b_rptr),
mp->b_datap->db_ref, mp->b_datap->db_type,
(void *)mp->b_datap->db_base, (void *)mp->b_datap->db_lim);
ptr = mp->b_rptr;
tmp_line[0] = '\0';
while (ptr < mp->b_wptr) {
uint_t diff;
diff = (ptr - mp->b_rptr);
if (!(diff & 0x1f)) {
if (strlen(tmp_line) > 0) {
printf("bytes: %s\n", tmp_line);
tmp_line[0] = '\0';
}
}
if (!(diff & 0x3))
(void) strcat(tmp_line, " ");
(void) sprintf(tmp_str, "%02x", *ptr);
(void) strcat(tmp_line, tmp_str);
ptr++;
}
if (strlen(tmp_line) > 0)
printf("bytes: %s\n", tmp_line);
mp = mp->b_cont;
}
return ("\n");
}
#else /* DEBUG */
static char *
dump_msg(mblk_t *mp)
{
printf("Find value of mp %p.\n", mp);
return ("\n");
}
#endif /* DEBUG */
/*
* Don't have to lock age_interval, as only one thread will access it at
* a time, because I control the one function that does with timeout().
*/
static void
esp_ager(void *arg)
{
ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
netstack_t *ns = espstack->ipsecesp_netstack;
hrtime_t begin = gethrtime();
sadb_ager(&espstack->esp_sadb.s_v4, espstack->esp_pfkey_q,
espstack->ipsecesp_reap_delay, ns);
sadb_ager(&espstack->esp_sadb.s_v6, espstack->esp_pfkey_q,
espstack->ipsecesp_reap_delay, ns);
espstack->esp_event = sadb_retimeout(begin, espstack->esp_pfkey_q,
esp_ager, espstack,
&espstack->ipsecesp_age_interval, espstack->ipsecesp_age_int_max,
info.mi_idnum);
}
/*
* Get an ESP NDD parameter.
*/
/* ARGSUSED */
static int
ipsecesp_param_get(q, mp, cp, cr)
queue_t *q;
mblk_t *mp;
caddr_t cp;
cred_t *cr;
{
ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp;
uint_t value;
ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
mutex_enter(&espstack->ipsecesp_param_lock);
value = ipsecesppa->ipsecesp_param_value;
mutex_exit(&espstack->ipsecesp_param_lock);
(void) mi_mpprintf(mp, "%u", value);
return (0);
}
/*
* This routine sets an NDD variable in a ipsecespparam_t structure.
*/
/* ARGSUSED */
static int
ipsecesp_param_set(q, mp, value, cp, cr)
queue_t *q;
mblk_t *mp;
char *value;
caddr_t cp;
cred_t *cr;
{
ulong_t new_value;
ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp;
ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
/*
* Fail the request if the new value does not lie within the
* required bounds.
*/
if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
new_value < ipsecesppa->ipsecesp_param_min ||
new_value > ipsecesppa->ipsecesp_param_max) {
return (EINVAL);
}
/* Set the new value */
mutex_enter(&espstack->ipsecesp_param_lock);
ipsecesppa->ipsecesp_param_value = new_value;
mutex_exit(&espstack->ipsecesp_param_lock);
return (0);
}
/*
* Using lifetime NDD variables, fill in an extended combination's
* lifetime information.
*/
void
ipsecesp_fill_defs(sadb_x_ecomb_t *ecomb, netstack_t *ns)
{
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ecomb->sadb_x_ecomb_soft_bytes = espstack->ipsecesp_default_soft_bytes;
ecomb->sadb_x_ecomb_hard_bytes = espstack->ipsecesp_default_hard_bytes;
ecomb->sadb_x_ecomb_soft_addtime =
espstack->ipsecesp_default_soft_addtime;
ecomb->sadb_x_ecomb_hard_addtime =
espstack->ipsecesp_default_hard_addtime;
ecomb->sadb_x_ecomb_soft_usetime =
espstack->ipsecesp_default_soft_usetime;
ecomb->sadb_x_ecomb_hard_usetime =
espstack->ipsecesp_default_hard_usetime;
}
/*
* Initialize things for ESP at module load time.
*/
boolean_t
ipsecesp_ddi_init(void)
{
esp_taskq = taskq_create("esp_taskq", 1, minclsyspri,
IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0);
/*
* We want to be informed each time a stack is created or
* destroyed in the kernel, so we can maintain the
* set of ipsecesp_stack_t's.
*/
netstack_register(NS_IPSECESP, ipsecesp_stack_init, NULL,
ipsecesp_stack_fini);
return (B_TRUE);
}
/*
* Walk through the param array specified registering each element with the
* named dispatch handler.
*/
static boolean_t
ipsecesp_param_register(IDP *ndp, ipsecespparam_t *espp, int cnt)
{
for (; cnt-- > 0; espp++) {
if (espp->ipsecesp_param_name != NULL &&
espp->ipsecesp_param_name[0]) {
if (!nd_load(ndp,
espp->ipsecesp_param_name,
ipsecesp_param_get, ipsecesp_param_set,
(caddr_t)espp)) {
nd_free(ndp);
return (B_FALSE);
}
}
}
return (B_TRUE);
}
/*
* Initialize things for ESP for each stack instance
*/
static void *
ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns)
{
ipsecesp_stack_t *espstack;
ipsecespparam_t *espp;
espstack = (ipsecesp_stack_t *)kmem_zalloc(sizeof (*espstack),
KM_SLEEP);
espstack->ipsecesp_netstack = ns;
espp = (ipsecespparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
espstack->ipsecesp_params = espp;
bcopy(lcl_param_arr, espp, sizeof (lcl_param_arr));
(void) ipsecesp_param_register(&espstack->ipsecesp_g_nd, espp,
A_CNT(lcl_param_arr));
(void) esp_kstat_init(espstack, stackid);
espstack->esp_sadb.s_acquire_timeout =
&espstack->ipsecesp_acquire_timeout;
espstack->esp_sadb.s_acqfn = esp_send_acquire;
sadbp_init("ESP", &espstack->esp_sadb, SADB_SATYPE_ESP, esp_hash_size,
espstack->ipsecesp_netstack);
mutex_init(&espstack->ipsecesp_param_lock, NULL, MUTEX_DEFAULT, 0);
ip_drop_register(&espstack->esp_dropper, "IPsec ESP");
return (espstack);
}
/*
* Destroy things for ESP at module unload time.
*/
void
ipsecesp_ddi_destroy(void)
{
netstack_unregister(NS_IPSECESP);
taskq_destroy(esp_taskq);
}
/*
* Destroy things for ESP for one stack instance
*/
static void
ipsecesp_stack_fini(netstackid_t stackid, void *arg)
{
ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
if (espstack->esp_pfkey_q != NULL) {
(void) quntimeout(espstack->esp_pfkey_q, espstack->esp_event);
}
espstack->esp_sadb.s_acqfn = NULL;
espstack->esp_sadb.s_acquire_timeout = NULL;
sadbp_destroy(&espstack->esp_sadb, espstack->ipsecesp_netstack);
ip_drop_unregister(&espstack->esp_dropper);
mutex_destroy(&espstack->ipsecesp_param_lock);
nd_free(&espstack->ipsecesp_g_nd);
kmem_free(espstack->ipsecesp_params, sizeof (lcl_param_arr));
espstack->ipsecesp_params = NULL;
kstat_delete_netstack(espstack->esp_ksp, stackid);
espstack->esp_ksp = NULL;
espstack->esp_kstats = NULL;
kmem_free(espstack, sizeof (*espstack));
}
/*
* ESP module open routine, which is here for keysock plumbing.
* Keysock is pushed over {AH,ESP} which is an artifact from the Bad Old
* Days of export control, and fears that ESP would not be allowed
* to be shipped at all by default. Eventually, keysock should
* either access AH and ESP via modstubs or krtld dependencies, or
* perhaps be folded in with AH and ESP into a single IPsec/netsec
* module ("netsec" if PF_KEY provides more than AH/ESP keying tables).
*/
/* ARGSUSED */
static int
ipsecesp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
netstack_t *ns;
ipsecesp_stack_t *espstack;
if (secpolicy_ip_config(credp, B_FALSE) != 0)
return (EPERM);
if (q->q_ptr != NULL)
return (0); /* Re-open of an already open instance. */
if (sflag != MODOPEN)
return (EINVAL);
ns = netstack_find_by_cred(credp);
ASSERT(ns != NULL);
espstack = ns->netstack_ipsecesp;
ASSERT(espstack != NULL);
q->q_ptr = espstack;
WR(q)->q_ptr = q->q_ptr;
qprocson(q);
return (0);
}
/*
* ESP module close routine.
*/
static int
ipsecesp_close(queue_t *q)
{
ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
/*
* Clean up q_ptr, if needed.
*/
qprocsoff(q);
/* Keysock queue check is safe, because of OCEXCL perimeter. */
if (q == espstack->esp_pfkey_q) {
esp1dbg(espstack,
("ipsecesp_close: Ummm... keysock is closing ESP.\n"));
espstack->esp_pfkey_q = NULL;
/* Detach qtimeouts. */
(void) quntimeout(q, espstack->esp_event);
}
netstack_rele(espstack->ipsecesp_netstack);
return (0);
}
/*
* Add a number of bytes to what the SA has protected so far. Return
* B_TRUE if the SA can still protect that many bytes.
*
* Caller must REFRELE the passed-in assoc. This function must REFRELE
* any obtained peer SA.
*/
static boolean_t
esp_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound)
{
ipsa_t *inassoc, *outassoc;
isaf_t *bucket;
boolean_t inrc, outrc, isv6;
sadb_t *sp;
int outhash;
netstack_t *ns = assoc->ipsa_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
/* No peer? No problem! */
if (!assoc->ipsa_haspeer) {
return (sadb_age_bytes(espstack->esp_pfkey_q, assoc, bytes,
B_TRUE));
}
/*
* Otherwise, we want to grab both the original assoc and its peer.
* There might be a race for this, but if it's a real race, two
* expire messages may occur. We limit this by only sending the
* expire message on one of the peers, we'll pick the inbound
* arbitrarily.
*
* If we need tight synchronization on the peer SA, then we need to
* reconsider.
*/
/* Use address length to select IPv6/IPv4 */
isv6 = (assoc->ipsa_addrfam == AF_INET6);
sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
if (inbound) {
inassoc = assoc;
if (isv6) {
outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
&inassoc->ipsa_dstaddr));
} else {
outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
&inassoc->ipsa_dstaddr));
}
bucket = &sp->sdb_of[outhash];
mutex_enter(&bucket->isaf_lock);
outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
inassoc->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (outassoc == NULL) {
/* Q: Do we wish to set haspeer == B_FALSE? */
esp0dbg(("esp_age_bytes: "
"can't find peer for inbound.\n"));
return (sadb_age_bytes(espstack->esp_pfkey_q, inassoc,
bytes, B_TRUE));
}
} else {
outassoc = assoc;
bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
mutex_enter(&bucket->isaf_lock);
inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
outassoc->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (inassoc == NULL) {
/* Q: Do we wish to set haspeer == B_FALSE? */
esp0dbg(("esp_age_bytes: "
"can't find peer for outbound.\n"));
return (sadb_age_bytes(espstack->esp_pfkey_q, outassoc,
bytes, B_TRUE));
}
}
inrc = sadb_age_bytes(espstack->esp_pfkey_q, inassoc, bytes, B_TRUE);
outrc = sadb_age_bytes(espstack->esp_pfkey_q, outassoc, bytes, B_FALSE);
/*
* REFRELE any peer SA.
*
* Because of the multi-line macro nature of IPSA_REFRELE, keep
* them in { }.
*/
if (inbound) {
IPSA_REFRELE(outassoc);
} else {
IPSA_REFRELE(inassoc);
}
return (inrc && outrc);
}
/*
* Do incoming NAT-T manipulations for packet.
* Returns NULL if the mblk chain is consumed.
*/
static mblk_t *
esp_fix_natt_checksums(mblk_t *data_mp, ipsa_t *assoc)
{
ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
tcpha_t *tcpha;
udpha_t *udpha;
/* Initialize to our inbound cksum adjustment... */
uint32_t sum = assoc->ipsa_inbound_cksum;
switch (ipha->ipha_protocol) {
case IPPROTO_TCP:
tcpha = (tcpha_t *)(data_mp->b_rptr +
IPH_HDR_LENGTH(ipha));
#define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16)
sum += ~ntohs(tcpha->tha_sum) & 0xFFFF;
DOWN_SUM(sum);
DOWN_SUM(sum);
tcpha->tha_sum = ~htons(sum);
break;
case IPPROTO_UDP:
udpha = (udpha_t *)(data_mp->b_rptr + IPH_HDR_LENGTH(ipha));
if (udpha->uha_checksum != 0) {
/* Adujst if the inbound one was not zero. */
sum += ~ntohs(udpha->uha_checksum) & 0xFFFF;
DOWN_SUM(sum);
DOWN_SUM(sum);
udpha->uha_checksum = ~htons(sum);
if (udpha->uha_checksum == 0)
udpha->uha_checksum = 0xFFFF;
}
#undef DOWN_SUM
break;
case IPPROTO_IP:
/*
* This case is only an issue for self-encapsulated
* packets. So for now, fall through.
*/
break;
}
return (data_mp);
}
/*
* Strip ESP header, check padding, and fix IP header.
* Returns B_TRUE on success, B_FALSE if an error occured.
*/
static boolean_t
esp_strip_header(mblk_t *data_mp, boolean_t isv4, uint32_t ivlen,
kstat_named_t **counter, ipsecesp_stack_t *espstack)
{
ipha_t *ipha;
ip6_t *ip6h;
uint_t divpoint;
mblk_t *scratch;
uint8_t nexthdr, padlen;
uint8_t lastpad;
ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
uint8_t *lastbyte;
/*
* Strip ESP data and fix IP header.
*
* XXX In case the beginning of esp_inbound() changes to not do a
* pullup, this part of the code can remain unchanged.
*/
if (isv4) {
ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ipha_t));
ipha = (ipha_t *)data_mp->b_rptr;
ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (esph_t) +
IPH_HDR_LENGTH(ipha));
divpoint = IPH_HDR_LENGTH(ipha);
} else {
ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ip6_t));
ip6h = (ip6_t *)data_mp->b_rptr;
divpoint = ip_hdr_length_v6(data_mp, ip6h);
}
scratch = data_mp;
while (scratch->b_cont != NULL)
scratch = scratch->b_cont;
ASSERT((scratch->b_wptr - scratch->b_rptr) >= 3);
/*
* "Next header" and padding length are the last two bytes in the
* ESP-protected datagram, thus the explicit - 1 and - 2.
* lastpad is the last byte of the padding, which can be used for
* a quick check to see if the padding is correct.
*/
lastbyte = scratch->b_wptr - 1;
nexthdr = *lastbyte--;
padlen = *lastbyte--;
if (isv4) {
/* Fix part of the IP header. */
ipha->ipha_protocol = nexthdr;
/*
* Reality check the padlen. The explicit - 2 is for the
* padding length and the next-header bytes.
*/
if (padlen >= ntohs(ipha->ipha_length) - sizeof (ipha_t) - 2 -
sizeof (esph_t) - ivlen) {
ESP_BUMP_STAT(espstack, bad_decrypt);
ipsec_rl_strlog(espstack->ipsecesp_netstack,
info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN,
"Corrupt ESP packet (padlen too big).\n");
esp1dbg(espstack, ("padlen (%d) is greater than:\n",
padlen));
esp1dbg(espstack, ("pkt len(%d) - ip hdr - esp "
"hdr - ivlen(%d) = %d.\n",
ntohs(ipha->ipha_length), ivlen,
(int)(ntohs(ipha->ipha_length) - sizeof (ipha_t) -
2 - sizeof (esph_t) - ivlen)));
*counter = DROPPER(ipss, ipds_esp_bad_padlen);
return (B_FALSE);
}
/*
* Fix the rest of the header. The explicit - 2 is for the
* padding length and the next-header bytes.
*/
ipha->ipha_length = htons(ntohs(ipha->ipha_length) - padlen -
2 - sizeof (esph_t) - ivlen);
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
} else {
if (ip6h->ip6_nxt == IPPROTO_ESP) {
ip6h->ip6_nxt = nexthdr;
} else {
ip_pkt_t ipp;
bzero(&ipp, sizeof (ipp));
(void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
NULL);
if (ipp.ipp_dstopts != NULL) {
ipp.ipp_dstopts->ip6d_nxt = nexthdr;
} else if (ipp.ipp_rthdr != NULL) {
ipp.ipp_rthdr->ip6r_nxt = nexthdr;
} else if (ipp.ipp_hopopts != NULL) {
ipp.ipp_hopopts->ip6h_nxt = nexthdr;
} else {
/* Panic a DEBUG kernel. */
ASSERT(ipp.ipp_hopopts != NULL);
/* Otherwise, pretend it's IP + ESP. */
cmn_err(CE_WARN, "ESP IPv6 headers wrong.\n");
ip6h->ip6_nxt = nexthdr;
}
}
if (padlen >= ntohs(ip6h->ip6_plen) - 2 - sizeof (esph_t) -
ivlen) {
ESP_BUMP_STAT(espstack, bad_decrypt);
ipsec_rl_strlog(espstack->ipsecesp_netstack,
info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN,
"Corrupt ESP packet (v6 padlen too big).\n");
esp1dbg(espstack, ("padlen (%d) is greater than:\n",
padlen));
esp1dbg(espstack,
("pkt len(%u) - ip hdr - esp hdr - ivlen(%d) = "
"%u.\n", (unsigned)(ntohs(ip6h->ip6_plen)
+ sizeof (ip6_t)), ivlen,
(unsigned)(ntohs(ip6h->ip6_plen) - 2 -
sizeof (esph_t) - ivlen)));
*counter = DROPPER(ipss, ipds_esp_bad_padlen);
return (B_FALSE);
}
/*
* Fix the rest of the header. The explicit - 2 is for the
* padding length and the next-header bytes. IPv6 is nice,
* because there's no hdr checksum!
*/
ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - padlen -
2 - sizeof (esph_t) - ivlen);
}
if (espstack->ipsecesp_padding_check > 0 && padlen > 0) {
/*
* Weak padding check: compare last-byte to length, they
* should be equal.
*/
lastpad = *lastbyte--;
if (padlen != lastpad) {
ipsec_rl_strlog(espstack->ipsecesp_netstack,
info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
"Corrupt ESP packet (lastpad != padlen).\n");
esp1dbg(espstack,
("lastpad (%d) not equal to padlen (%d):\n",
lastpad, padlen));
ESP_BUMP_STAT(espstack, bad_padding);
*counter = DROPPER(ipss, ipds_esp_bad_padding);
return (B_FALSE);
}
/*
* Strong padding check: Check all pad bytes to see that
* they're ascending. Go backwards using a descending counter
* to verify. padlen == 1 is checked by previous block, so
* only bother if we've more than 1 byte of padding.
* Consequently, start the check one byte before the location
* of "lastpad".
*/
if (espstack->ipsecesp_padding_check > 1) {
/*
* This assert may have to become an if and a pullup
* if we start accepting multi-dblk mblks. For now,
* though, any packet here will have been pulled up in
* esp_inbound.
*/
ASSERT(MBLKL(scratch) >= lastpad + 3);
/*
* Use "--lastpad" because we already checked the very
* last pad byte previously.
*/
while (--lastpad != 0) {
if (lastpad != *lastbyte) {
ipsec_rl_strlog(
espstack->ipsecesp_netstack,
info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN, "Corrupt ESP "
"packet (bad padding).\n");
esp1dbg(espstack,
("padding not in correct"
" format:\n"));
ESP_BUMP_STAT(espstack, bad_padding);
*counter = DROPPER(ipss,
ipds_esp_bad_padding);
return (B_FALSE);
}
lastbyte--;
}
}
}
/* Trim off the padding. */
ASSERT(data_mp->b_cont == NULL);
data_mp->b_wptr -= (padlen + 2);
/*
* Remove the ESP header.
*
* The above assertions about data_mp's size will make this work.
*
* XXX Question: If I send up and get back a contiguous mblk,
* would it be quicker to bcopy over, or keep doing the dupb stuff?
* I go with copying for now.
*/
if (IS_P2ALIGNED(data_mp->b_rptr, sizeof (uint32_t)) &&
IS_P2ALIGNED(ivlen, sizeof (uint32_t))) {
uint8_t *start = data_mp->b_rptr;
uint32_t *src, *dst;
src = (uint32_t *)(start + divpoint);
dst = (uint32_t *)(start + divpoint + sizeof (esph_t) + ivlen);
ASSERT(IS_P2ALIGNED(dst, sizeof (uint32_t)) &&
IS_P2ALIGNED(src, sizeof (uint32_t)));
do {
src--;
dst--;
*dst = *src;
} while (src != (uint32_t *)start);
data_mp->b_rptr = (uchar_t *)dst;
} else {
uint8_t *start = data_mp->b_rptr;
uint8_t *src, *dst;
src = start + divpoint;
dst = src + sizeof (esph_t) + ivlen;
do {
src--;
dst--;
*dst = *src;
} while (src != start);
data_mp->b_rptr = dst;
}
esp2dbg(espstack, ("data_mp after inbound ESP adjustment:\n"));
esp2dbg(espstack, (dump_msg(data_mp)));
return (B_TRUE);
}
/*
* Updating use times can be tricky business if the ipsa_haspeer flag is
* set. This function is called once in an SA's lifetime.
*
* Caller has to REFRELE "assoc" which is passed in. This function has
* to REFRELE any peer SA that is obtained.
*/
static void
esp_set_usetime(ipsa_t *assoc, boolean_t inbound)
{
ipsa_t *inassoc, *outassoc;
isaf_t *bucket;
sadb_t *sp;
int outhash;
boolean_t isv6;
netstack_t *ns = assoc->ipsa_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
/* No peer? No problem! */
if (!assoc->ipsa_haspeer) {
sadb_set_usetime(assoc);
return;
}
/*
* Otherwise, we want to grab both the original assoc and its peer.
* There might be a race for this, but if it's a real race, the times
* will be out-of-synch by at most a second, and since our time
* granularity is a second, this won't be a problem.
*
* If we need tight synchronization on the peer SA, then we need to
* reconsider.
*/
/* Use address length to select IPv6/IPv4 */
isv6 = (assoc->ipsa_addrfam == AF_INET6);
sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
if (inbound) {
inassoc = assoc;
if (isv6) {
outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
&inassoc->ipsa_dstaddr));
} else {
outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
&inassoc->ipsa_dstaddr));
}
bucket = &sp->sdb_of[outhash];
mutex_enter(&bucket->isaf_lock);
outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
inassoc->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (outassoc == NULL) {
/* Q: Do we wish to set haspeer == B_FALSE? */
esp0dbg(("esp_set_usetime: "
"can't find peer for inbound.\n"));
sadb_set_usetime(inassoc);
return;
}
} else {
outassoc = assoc;
bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
mutex_enter(&bucket->isaf_lock);
inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
outassoc->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (inassoc == NULL) {
/* Q: Do we wish to set haspeer == B_FALSE? */
esp0dbg(("esp_set_usetime: "
"can't find peer for outbound.\n"));
sadb_set_usetime(outassoc);
return;
}
}
/* Update usetime on both. */
sadb_set_usetime(inassoc);
sadb_set_usetime(outassoc);
/*
* REFRELE any peer SA.
*
* Because of the multi-line macro nature of IPSA_REFRELE, keep
* them in { }.
*/
if (inbound) {
IPSA_REFRELE(outassoc);
} else {
IPSA_REFRELE(inassoc);
}
}
/*
* Handle ESP inbound data for IPv4 and IPv6.
* On success returns B_TRUE, on failure returns B_FALSE and frees the
* mblk chain data_mp.
*/
mblk_t *
esp_inbound(mblk_t *data_mp, void *arg, ip_recv_attr_t *ira)
{
esph_t *esph = (esph_t *)arg;
ipsa_t *ipsa = ira->ira_ipsec_esp_sa;
netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
/*
* We may wish to check replay in-range-only here as an optimization.
* Include the reality check of ipsa->ipsa_replay >
* ipsa->ipsa_replay_wsize for times when it's the first N packets,
* where N == ipsa->ipsa_replay_wsize.
*
* Another check that may come here later is the "collision" check.
* If legitimate packets flow quickly enough, this won't be a problem,
* but collisions may cause authentication algorithm crunching to
* take place when it doesn't need to.
*/
if (!sadb_replay_peek(ipsa, esph->esph_replay)) {
ESP_BUMP_STAT(espstack, replay_early_failures);
IP_ESP_BUMP_STAT(ipss, in_discards);
ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
DROPPER(ipss, ipds_esp_early_replay),
&espstack->esp_dropper);
BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
return (NULL);
}
/*
* Adjust the IP header's payload length to reflect the removal
* of the ICV.
*/
if (!(ira->ira_flags & IRAF_IS_IPV4)) {
ip6_t *ip6h = (ip6_t *)data_mp->b_rptr;
ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
ipsa->ipsa_mac_len);
} else {
ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
ipha->ipha_length = htons(ntohs(ipha->ipha_length) -
ipsa->ipsa_mac_len);
}
/* submit the request to the crypto framework */
return (esp_submit_req_inbound(data_mp, ira, ipsa,
(uint8_t *)esph - data_mp->b_rptr));
}
/*
* Perform the really difficult work of inserting the proposed situation.
* Called while holding the algorithm lock.
*/
static void
esp_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs,
netstack_t *ns)
{
sadb_comb_t *comb = (sadb_comb_t *)(prop + 1);
ipsec_action_t *ap;
ipsec_prot_t *prot;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t));
*(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */
prop->sadb_prop_replay = espstack->ipsecesp_replay_size;
/*
* Based upon algorithm properties, and what-not, prioritize a
* proposal, based on the ordering of the ESP algorithms in the
* alternatives in the policy rule or socket that was placed
* in the acquire record.
*
* For each action in policy list
* Add combination. If I've hit limit, return.
*/
for (ap = acqrec->ipsacq_act; ap != NULL;
ap = ap->ipa_next) {
ipsec_alginfo_t *ealg = NULL;
ipsec_alginfo_t *aalg = NULL;
if (ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY)
continue;
prot = &ap->ipa_act.ipa_apply;
if (!(prot->ipp_use_esp))
continue;
if (prot->ipp_esp_auth_alg != 0) {
aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH]
[prot->ipp_esp_auth_alg];
if (aalg == NULL || !ALG_VALID(aalg))
continue;
}
ASSERT(prot->ipp_encr_alg > 0);
ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR]
[prot->ipp_encr_alg];
if (ealg == NULL || !ALG_VALID(ealg))
continue;
comb->sadb_comb_flags = 0;
comb->sadb_comb_reserved = 0;
comb->sadb_comb_encrypt = ealg->alg_id;
comb->sadb_comb_encrypt_minbits =
MAX(prot->ipp_espe_minbits, ealg->alg_ef_minbits);
comb->sadb_comb_encrypt_maxbits =
MIN(prot->ipp_espe_maxbits, ealg->alg_ef_maxbits);
if (aalg == NULL) {
comb->sadb_comb_auth = 0;
comb->sadb_comb_auth_minbits = 0;
comb->sadb_comb_auth_maxbits = 0;
} else {
comb->sadb_comb_auth = aalg->alg_id;
comb->sadb_comb_auth_minbits =
MAX(prot->ipp_espa_minbits, aalg->alg_ef_minbits);
comb->sadb_comb_auth_maxbits =
MIN(prot->ipp_espa_maxbits, aalg->alg_ef_maxbits);
}
/*
* The following may be based on algorithm
* properties, but in the meantime, we just pick
* some good, sensible numbers. Key mgmt. can
* (and perhaps should) be the place to finalize
* such decisions.
*/
/*
* No limits on allocations, since we really don't
* support that concept currently.
*/
comb->sadb_comb_soft_allocations = 0;
comb->sadb_comb_hard_allocations = 0;
/*
* These may want to come from policy rule..
*/
comb->sadb_comb_soft_bytes =
espstack->ipsecesp_default_soft_bytes;
comb->sadb_comb_hard_bytes =
espstack->ipsecesp_default_hard_bytes;
comb->sadb_comb_soft_addtime =
espstack->ipsecesp_default_soft_addtime;
comb->sadb_comb_hard_addtime =
espstack->ipsecesp_default_hard_addtime;
comb->sadb_comb_soft_usetime =
espstack->ipsecesp_default_soft_usetime;
comb->sadb_comb_hard_usetime =
espstack->ipsecesp_default_hard_usetime;
prop->sadb_prop_len += SADB_8TO64(sizeof (*comb));
if (--combs == 0)
break; /* out of space.. */
comb++;
}
}
/*
* Prepare and actually send the SADB_ACQUIRE message to PF_KEY.
*/
static void
esp_send_acquire(ipsacq_t *acqrec, mblk_t *extended, netstack_t *ns)
{
uint_t combs;
sadb_msg_t *samsg;
sadb_prop_t *prop;
mblk_t *pfkeymp, *msgmp;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ESP_BUMP_STAT(espstack, acquire_requests);
if (espstack->esp_pfkey_q == NULL) {
mutex_exit(&acqrec->ipsacq_lock);
return;
}
/* Set up ACQUIRE. */
pfkeymp = sadb_setup_acquire(acqrec, SADB_SATYPE_ESP,
ns->netstack_ipsec);
if (pfkeymp == NULL) {
esp0dbg(("sadb_setup_acquire failed.\n"));
mutex_exit(&acqrec->ipsacq_lock);
return;
}
ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
combs = ipss->ipsec_nalgs[IPSEC_ALG_AUTH] *
ipss->ipsec_nalgs[IPSEC_ALG_ENCR];
msgmp = pfkeymp->b_cont;
samsg = (sadb_msg_t *)(msgmp->b_rptr);
/* Insert proposal here. */
prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len);
esp_insert_prop(prop, acqrec, combs, ns);
samsg->sadb_msg_len += prop->sadb_prop_len;
msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len);
mutex_exit(&ipss->ipsec_alg_lock);
/*
* Must mutex_exit() before sending PF_KEY message up, in
* order to avoid recursive mutex_enter() if there are no registered
* listeners.
*
* Once I've sent the message, I'm cool anyway.
*/
mutex_exit(&acqrec->ipsacq_lock);
if (extended != NULL) {
putnext(espstack->esp_pfkey_q, extended);
}
putnext(espstack->esp_pfkey_q, pfkeymp);
}
/* XXX refactor me */
/*
* Handle the SADB_GETSPI message. Create a larval SA.
*/
static void
esp_getspi(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
{
ipsa_t *newbie, *target;
isaf_t *outbound, *inbound;
int rc, diagnostic;
sadb_sa_t *assoc;
keysock_out_t *kso;
uint32_t newspi;
/*
* Randomly generate a proposed SPI value
*/
if (cl_inet_getspi != NULL) {
cl_inet_getspi(espstack->ipsecesp_netstack->netstack_stackid,
IPPROTO_ESP, (uint8_t *)&newspi, sizeof (uint32_t), NULL);
} else {
(void) random_get_pseudo_bytes((uint8_t *)&newspi,
sizeof (uint32_t));
}
newbie = sadb_getspi(ksi, newspi, &diagnostic,
espstack->ipsecesp_netstack, IPPROTO_ESP);
if (newbie == NULL) {
sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM, diagnostic,
ksi->ks_in_serial);
return;
} else if (newbie == (ipsa_t *)-1) {
sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
ksi->ks_in_serial);
return;
}
/*
* XXX - We may randomly collide. We really should recover from this.
* Unfortunately, that could require spending way-too-much-time
* in here. For now, let the user retry.
*/
if (newbie->ipsa_addrfam == AF_INET6) {
outbound = OUTBOUND_BUCKET_V6(&espstack->esp_sadb.s_v6,
*(uint32_t *)(newbie->ipsa_dstaddr));
inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v6,
newbie->ipsa_spi);
} else {
ASSERT(newbie->ipsa_addrfam == AF_INET);
outbound = OUTBOUND_BUCKET_V4(&espstack->esp_sadb.s_v4,
*(uint32_t *)(newbie->ipsa_dstaddr));
inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v4,
newbie->ipsa_spi);
}
mutex_enter(&outbound->isaf_lock);
mutex_enter(&inbound->isaf_lock);
/*
* Check for collisions (i.e. did sadb_getspi() return with something
* that already exists?).
*
* Try outbound first. Even though SADB_GETSPI is traditionally
* for inbound SAs, you never know what a user might do.
*/
target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi,
newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam);
if (target == NULL) {
target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi,
newbie->ipsa_srcaddr, newbie->ipsa_dstaddr,
newbie->ipsa_addrfam);
}
/*
* I don't have collisions elsewhere!
* (Nor will I because I'm still holding inbound/outbound locks.)
*/
if (target != NULL) {
rc = EEXIST;
IPSA_REFRELE(target);
} else {
/*
* sadb_insertassoc() also checks for collisions, so
* if there's a colliding entry, rc will be set
* to EEXIST.
*/
rc = sadb_insertassoc(newbie, inbound);
newbie->ipsa_hardexpiretime = gethrestime_sec();
newbie->ipsa_hardexpiretime +=
espstack->ipsecesp_larval_timeout;
}
/*
* Can exit outbound mutex. Hold inbound until we're done
* with newbie.
*/
mutex_exit(&outbound->isaf_lock);
if (rc != 0) {
mutex_exit(&inbound->isaf_lock);
IPSA_REFRELE(newbie);
sadb_pfkey_error(espstack->esp_pfkey_q, mp, rc,
SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
return;
}
/* Can write here because I'm still holding the bucket lock. */
newbie->ipsa_type = SADB_SATYPE_ESP;
/*
* Construct successful return message. We have one thing going
* for us in PF_KEY v2. That's the fact that
* sizeof (sadb_spirange_t) == sizeof (sadb_sa_t)
*/
assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
assoc->sadb_sa_exttype = SADB_EXT_SA;
assoc->sadb_sa_spi = newbie->ipsa_spi;
*((uint64_t *)(&assoc->sadb_sa_replay)) = 0;
mutex_exit(&inbound->isaf_lock);
/* Convert KEYSOCK_IN to KEYSOCK_OUT. */
kso = (keysock_out_t *)ksi;
kso->ks_out_len = sizeof (*kso);
kso->ks_out_serial = ksi->ks_in_serial;
kso->ks_out_type = KEYSOCK_OUT;
/*
* Can safely putnext() to esp_pfkey_q, because this is a turnaround
* from the esp_pfkey_q.
*/
putnext(espstack->esp_pfkey_q, mp);
}
/*
* Insert the ESP header into a packet. Duplicate an mblk, and insert a newly
* allocated mblk with the ESP header in between the two.
*/
static boolean_t
esp_insert_esp(mblk_t *mp, mblk_t *esp_mp, uint_t divpoint,
ipsecesp_stack_t *espstack)
{
mblk_t *split_mp = mp;
uint_t wheretodiv = divpoint;
while ((split_mp->b_wptr - split_mp->b_rptr) < wheretodiv) {
wheretodiv -= (split_mp->b_wptr - split_mp->b_rptr);
split_mp = split_mp->b_cont;
ASSERT(split_mp != NULL);
}
if (split_mp->b_wptr - split_mp->b_rptr != wheretodiv) {
mblk_t *scratch;
/* "scratch" is the 2nd half, split_mp is the first. */
scratch = dupb(split_mp);
if (scratch == NULL) {
esp1dbg(espstack,
("esp_insert_esp: can't allocate scratch.\n"));
return (B_FALSE);
}
/* NOTE: dupb() doesn't set b_cont appropriately. */
scratch->b_cont = split_mp->b_cont;
scratch->b_rptr += wheretodiv;
split_mp->b_wptr = split_mp->b_rptr + wheretodiv;
split_mp->b_cont = scratch;
}
/*
* At this point, split_mp is exactly "wheretodiv" bytes long, and
* holds the end of the pre-ESP part of the datagram.
*/
esp_mp->b_cont = split_mp->b_cont;
split_mp->b_cont = esp_mp;
return (B_TRUE);
}
/*
* Section 7 of RFC 3947 says:
*
* 7. Recovering from the Expiring NAT Mappings
*
* There are cases where NAT box decides to remove mappings that are still
* alive (for example, when the keepalive interval is too long, or when the
* NAT box is rebooted). To recover from this, ends that are NOT behind
* NAT SHOULD use the last valid UDP encapsulated IKE or IPsec packet from
* the other end to determine which IP and port addresses should be used.
* The host behind dynamic NAT MUST NOT do this, as otherwise it opens a
* DoS attack possibility because the IP address or port of the other host
* will not change (it is not behind NAT).
*
* Keepalives cannot be used for these purposes, as they are not
* authenticated, but any IKE authenticated IKE packet or ESP packet can be
* used to detect whether the IP address or the port has changed.
*
* The following function will check an SA and its explicitly-set pair to see
* if the NAT-T remote port matches the received packet (which must have
* passed ESP authentication, see esp_in_done() for the caller context). If
* there is a mismatch, the SAs are updated. It is not important if we race
* with a transmitting thread, as if there is a transmitting thread, it will
* merely emit a packet that will most-likely be dropped.
*
* "ports" are ordered src,dst, and assoc is an inbound SA, where src should
* match ipsa_remote_nat_port and dst should match ipsa_local_nat_port.
*/
#ifdef _LITTLE_ENDIAN
#define FIRST_16(x) ((x) & 0xFFFF)
#define NEXT_16(x) (((x) >> 16) & 0xFFFF)
#else
#define FIRST_16(x) (((x) >> 16) & 0xFFFF)
#define NEXT_16(x) ((x) & 0xFFFF)
#endif
static void
esp_port_freshness(uint32_t ports, ipsa_t *assoc)
{
uint16_t remote = FIRST_16(ports);
uint16_t local = NEXT_16(ports);
ipsa_t *outbound_peer;
isaf_t *bucket;
ipsecesp_stack_t *espstack = assoc->ipsa_netstack->netstack_ipsecesp;
/* We found a conn_t, therefore local != 0. */
ASSERT(local != 0);
/* Assume an IPv4 SA. */
ASSERT(assoc->ipsa_addrfam == AF_INET);
/*
* On-the-wire rport == 0 means something's very wrong.
* An unpaired SA is also useless to us.
* If we are behind the NAT, don't bother.
* A zero local NAT port defaults to 4500, so check that too.
* And, of course, if the ports already match, we don't need to
* bother.
*/
if (remote == 0 || assoc->ipsa_otherspi == 0 ||
(assoc->ipsa_flags & IPSA_F_BEHIND_NAT) ||
(assoc->ipsa_remote_nat_port == 0 &&
remote == htons(IPPORT_IKE_NATT)) ||
remote == assoc->ipsa_remote_nat_port)
return;
/* Try and snag the peer. NOTE: Assume IPv4 for now. */
bucket = OUTBOUND_BUCKET_V4(&(espstack->esp_sadb.s_v4),
assoc->ipsa_srcaddr[0]);
mutex_enter(&bucket->isaf_lock);
outbound_peer = ipsec_getassocbyspi(bucket, assoc->ipsa_otherspi,
assoc->ipsa_dstaddr, assoc->ipsa_srcaddr, AF_INET);
mutex_exit(&bucket->isaf_lock);
/* We probably lost a race to a deleting or expiring thread. */
if (outbound_peer == NULL)
return;
/*
* Hold the mutexes for both SAs so we don't race another inbound
* thread. A lock-entry order shouldn't matter, since all other
* per-ipsa locks are individually held-then-released.
*
* Luckily, this has nothing to do with the remote-NAT address,
* so we don't have to re-scribble the cached-checksum differential.
*/
mutex_enter(&outbound_peer->ipsa_lock);
mutex_enter(&assoc->ipsa_lock);
outbound_peer->ipsa_remote_nat_port = assoc->ipsa_remote_nat_port =
remote;
mutex_exit(&assoc->ipsa_lock);
mutex_exit(&outbound_peer->ipsa_lock);
IPSA_REFRELE(outbound_peer);
ESP_BUMP_STAT(espstack, sa_port_renumbers);
}
/*
* Finish processing of an inbound ESP packet after processing by the
* crypto framework.
* - Remove the ESP header.
* - Send packet back to IP.
* If authentication was performed on the packet, this function is called
* only if the authentication succeeded.
* On success returns B_TRUE, on failure returns B_FALSE and frees the
* mblk chain data_mp.
*/
static mblk_t *
esp_in_done(mblk_t *data_mp, ip_recv_attr_t *ira, ipsec_crypto_t *ic)
{
ipsa_t *assoc;
uint_t espstart;
uint32_t ivlen = 0;
uint_t processed_len;
esph_t *esph;
kstat_named_t *counter;
boolean_t is_natt;
netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
assoc = ira->ira_ipsec_esp_sa;
ASSERT(assoc != NULL);
is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
/* get the pointer to the ESP header */
if (assoc->ipsa_encr_alg == SADB_EALG_NULL) {
/* authentication-only ESP */
espstart = ic->ic_crypto_data.cd_offset;
processed_len = ic->ic_crypto_data.cd_length;
} else {
/* encryption present */
ivlen = assoc->ipsa_iv_len;
if (assoc->ipsa_auth_alg == SADB_AALG_NONE) {
/* encryption-only ESP */
espstart = ic->ic_crypto_data.cd_offset -
sizeof (esph_t) - assoc->ipsa_iv_len;
processed_len = ic->ic_crypto_data.cd_length +
ivlen;
} else {
/* encryption with authentication */
espstart = ic->ic_crypto_dual_data.dd_offset1;
processed_len = ic->ic_crypto_dual_data.dd_len2 +
ivlen;
}
}
esph = (esph_t *)(data_mp->b_rptr + espstart);
if (assoc->ipsa_auth_alg != IPSA_AALG_NONE ||
(assoc->ipsa_flags & IPSA_F_COMBINED)) {
/*
* Authentication passed if we reach this point.
* Packets with authentication will have the ICV
* after the crypto data. Adjust b_wptr before
* making padlen checks.
*/
ESP_BUMP_STAT(espstack, good_auth);
data_mp->b_wptr -= assoc->ipsa_mac_len;
/*
* Check replay window here!
* For right now, assume keysock will set the replay window
* size to zero for SAs that have an unspecified sender.
* This may change...
*/
if (!sadb_replay_check(assoc, esph->esph_replay)) {
/*
* Log the event. As of now we print out an event.
* Do not print the replay failure number, or else
* syslog cannot collate the error messages. Printing
* the replay number that failed opens a denial-of-
* service attack.
*/
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN,
"Replay failed for ESP spi 0x%x, dst %s.\n",
assoc->ipsa_spi, assoc->ipsa_dstaddr,
assoc->ipsa_addrfam, espstack->ipsecesp_netstack);
ESP_BUMP_STAT(espstack, replay_failures);
counter = DROPPER(ipss, ipds_esp_replay);
goto drop_and_bail;
}
if (is_natt) {
ASSERT(ira->ira_flags & IRAF_ESP_UDP_PORTS);
ASSERT(ira->ira_esp_udp_ports != 0);
esp_port_freshness(ira->ira_esp_udp_ports, assoc);
}
}
esp_set_usetime(assoc, B_TRUE);
if (!esp_age_bytes(assoc, processed_len, B_TRUE)) {
/* The ipsa has hit hard expiration, LOG and AUDIT. */
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN,
"ESP association 0x%x, dst %s had bytes expire.\n",
assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
espstack->ipsecesp_netstack);
ESP_BUMP_STAT(espstack, bytes_expired);
counter = DROPPER(ipss, ipds_esp_bytes_expire);
goto drop_and_bail;
}
/*
* Remove ESP header and padding from packet. I hope the compiler
* spews "branch, predict taken" code for this.
*/
if (esp_strip_header(data_mp, (ira->ira_flags & IRAF_IS_IPV4),
ivlen, &counter, espstack)) {
if (is_system_labeled() && assoc->ipsa_tsl != NULL) {
if (!ip_recv_attr_replace_label(ira, assoc->ipsa_tsl)) {
ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
DROPPER(ipss, ipds_ah_nomem),
&espstack->esp_dropper);
BUMP_MIB(ira->ira_ill->ill_ip_mib,
ipIfStatsInDiscards);
return (NULL);
}
}
if (is_natt)
return (esp_fix_natt_checksums(data_mp, assoc));
if (assoc->ipsa_state == IPSA_STATE_IDLE) {
/*
* Cluster buffering case. Tell caller that we're
* handling the packet.
*/
sadb_buf_pkt(assoc, data_mp, ira);
return (NULL);
}
return (data_mp);
}
esp1dbg(espstack, ("esp_in_done: esp_strip_header() failed\n"));
drop_and_bail:
IP_ESP_BUMP_STAT(ipss, in_discards);
ip_drop_packet(data_mp, B_TRUE, ira->ira_ill, counter,
&espstack->esp_dropper);
BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
return (NULL);
}
/*
* Called upon failing the inbound ICV check. The message passed as
* argument is freed.
*/
static void
esp_log_bad_auth(mblk_t *mp, ip_recv_attr_t *ira)
{
ipsa_t *assoc = ira->ira_ipsec_esp_sa;
netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
/*
* Log the event. Don't print to the console, block
* potential denial-of-service attack.
*/
ESP_BUMP_STAT(espstack, bad_auth);
ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
"ESP Authentication failed for spi 0x%x, dst %s.\n",
assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
espstack->ipsecesp_netstack);
IP_ESP_BUMP_STAT(ipss, in_discards);
ip_drop_packet(mp, B_TRUE, ira->ira_ill,
DROPPER(ipss, ipds_esp_bad_auth),
&espstack->esp_dropper);
}
/*
* Invoked for outbound packets after ESP processing. If the packet
* also requires AH, performs the AH SA selection and AH processing.
* Returns B_TRUE if the AH processing was not needed or if it was
* performed successfully. Returns B_FALSE and consumes the passed mblk
* if AH processing was required but could not be performed.
*
* Returns data_mp unless data_mp was consumed/queued.
*/
static mblk_t *
esp_do_outbound_ah(mblk_t *data_mp, ip_xmit_attr_t *ixa)
{
ipsec_action_t *ap;
ap = ixa->ixa_ipsec_action;
if (ap == NULL) {
ipsec_policy_t *pp = ixa->ixa_ipsec_policy;
ap = pp->ipsp_act;
}
if (!ap->ipa_want_ah)
return (data_mp);
/*
* Normally the AH SA would have already been put in place
* but it could have been flushed so we need to look for it.
*/
if (ixa->ixa_ipsec_ah_sa == NULL) {
if (!ipsec_outbound_sa(data_mp, ixa, IPPROTO_AH)) {
sadb_acquire(data_mp, ixa, B_TRUE, B_FALSE);
return (NULL);
}
}
ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
data_mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(data_mp, ixa);
return (data_mp);
}
/*
* Kernel crypto framework callback invoked after completion of async
* crypto requests for outbound packets.
*/
static void
esp_kcf_callback_outbound(void *arg, int status)
{
mblk_t *mp = (mblk_t *)arg;
mblk_t *async_mp;
netstack_t *ns;
ipsec_stack_t *ipss;
ipsecesp_stack_t *espstack;
mblk_t *data_mp;
ip_xmit_attr_t ixas;
ipsec_crypto_t *ic;
ill_t *ill;
/*
* First remove the ipsec_crypto_t mblk
* Note that we need to ipsec_free_crypto_data(mp) once done with ic.
*/
async_mp = ipsec_remove_crypto_data(mp, &ic);
ASSERT(async_mp != NULL);
/*
* Extract the ip_xmit_attr_t from the first mblk.
* Verifies that the netstack and ill is still around; could
* have vanished while kEf was doing its work.
* On succesful return we have a nce_t and the ill/ipst can't
* disappear until we do the nce_refrele in ixa_cleanup.
*/
data_mp = async_mp->b_cont;
async_mp->b_cont = NULL;
if (!ip_xmit_attr_from_mblk(async_mp, &ixas)) {
/* Disappeared on us - no ill/ipst for MIB */
/* We have nowhere to do stats since ixa_ipst could be NULL */
if (ixas.ixa_nce != NULL) {
ill = ixas.ixa_nce->nce_ill;
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
ip_drop_output("ipIfStatsOutDiscards", data_mp, ill);
}
freemsg(data_mp);
goto done;
}
ns = ixas.ixa_ipst->ips_netstack;
espstack = ns->netstack_ipsecesp;
ipss = ns->netstack_ipsec;
ill = ixas.ixa_nce->nce_ill;
if (status == CRYPTO_SUCCESS) {
/*
* If a ICV was computed, it was stored by the
* crypto framework at the end of the packet.
*/
ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
esp_set_usetime(ixas.ixa_ipsec_esp_sa, B_FALSE);
/* NAT-T packet. */
if (IPH_HDR_VERSION(ipha) == IP_VERSION &&
ipha->ipha_protocol == IPPROTO_UDP)
esp_prepare_udp(ns, data_mp, ipha);
/* do AH processing if needed */
data_mp = esp_do_outbound_ah(data_mp, &ixas);
if (data_mp == NULL)
goto done;
(void) ip_output_post_ipsec(data_mp, &ixas);
} else {
/* Outbound shouldn't see invalid MAC */
ASSERT(status != CRYPTO_INVALID_MAC);
esp1dbg(espstack,
("esp_kcf_callback_outbound: crypto failed with 0x%x\n",
status));
ESP_BUMP_STAT(espstack, crypto_failures);
ESP_BUMP_STAT(espstack, out_discards);
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_esp_crypto_failed),
&espstack->esp_dropper);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
}
done:
ixa_cleanup(&ixas);
(void) ipsec_free_crypto_data(mp);
}
/*
* Kernel crypto framework callback invoked after completion of async
* crypto requests for inbound packets.
*/
static void
esp_kcf_callback_inbound(void *arg, int status)
{
mblk_t *mp = (mblk_t *)arg;
mblk_t *async_mp;
netstack_t *ns;
ipsecesp_stack_t *espstack;
ipsec_stack_t *ipss;
mblk_t *data_mp;
ip_recv_attr_t iras;
ipsec_crypto_t *ic;
/*
* First remove the ipsec_crypto_t mblk
* Note that we need to ipsec_free_crypto_data(mp) once done with ic.
*/
async_mp = ipsec_remove_crypto_data(mp, &ic);
ASSERT(async_mp != NULL);
/*
* Extract the ip_recv_attr_t from the first mblk.
* Verifies that the netstack and ill is still around; could
* have vanished while kEf was doing its work.
*/
data_mp = async_mp->b_cont;
async_mp->b_cont = NULL;
if (!ip_recv_attr_from_mblk(async_mp, &iras)) {
/* The ill or ip_stack_t disappeared on us */
ip_drop_input("ip_recv_attr_from_mblk", data_mp, NULL);
freemsg(data_mp);
goto done;
}
ns = iras.ira_ill->ill_ipst->ips_netstack;
espstack = ns->netstack_ipsecesp;
ipss = ns->netstack_ipsec;
if (status == CRYPTO_SUCCESS) {
data_mp = esp_in_done(data_mp, &iras, ic);
if (data_mp == NULL)
goto done;
/* finish IPsec processing */
ip_input_post_ipsec(data_mp, &iras);
} else if (status == CRYPTO_INVALID_MAC) {
esp_log_bad_auth(data_mp, &iras);
} else {
esp1dbg(espstack,
("esp_kcf_callback: crypto failed with 0x%x\n",
status));
ESP_BUMP_STAT(espstack, crypto_failures);
IP_ESP_BUMP_STAT(ipss, in_discards);
ip_drop_packet(data_mp, B_TRUE, iras.ira_ill,
DROPPER(ipss, ipds_esp_crypto_failed),
&espstack->esp_dropper);
BUMP_MIB(iras.ira_ill->ill_ip_mib, ipIfStatsInDiscards);
}
done:
ira_cleanup(&iras, B_TRUE);
(void) ipsec_free_crypto_data(mp);
}
/*
* Invoked on crypto framework failure during inbound and outbound processing.
*/
static void
esp_crypto_failed(mblk_t *data_mp, boolean_t is_inbound, int kef_rc,
ill_t *ill, ipsecesp_stack_t *espstack)
{
ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
esp1dbg(espstack, ("crypto failed for %s ESP with 0x%x\n",
is_inbound ? "inbound" : "outbound", kef_rc));
ip_drop_packet(data_mp, is_inbound, ill,
DROPPER(ipss, ipds_esp_crypto_failed),
&espstack->esp_dropper);
ESP_BUMP_STAT(espstack, crypto_failures);
if (is_inbound)
IP_ESP_BUMP_STAT(ipss, in_discards);
else
ESP_BUMP_STAT(espstack, out_discards);
}
/*
* A statement-equivalent macro, _cr MUST point to a modifiable
* crypto_call_req_t.
*/
#define ESP_INIT_CALLREQ(_cr, _mp, _callback) \
(_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_ALWAYS_QUEUE; \
(_cr)->cr_callback_arg = (_mp); \
(_cr)->cr_callback_func = (_callback)
#define ESP_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \
(mac)->cd_format = CRYPTO_DATA_RAW; \
(mac)->cd_offset = 0; \
(mac)->cd_length = icvlen; \
(mac)->cd_raw.iov_base = (char *)icvbuf; \
(mac)->cd_raw.iov_len = icvlen; \
}
#define ESP_INIT_CRYPTO_DATA(data, mp, off, len) { \
if (MBLKL(mp) >= (len) + (off)) { \
(data)->cd_format = CRYPTO_DATA_RAW; \
(data)->cd_raw.iov_base = (char *)(mp)->b_rptr; \
(data)->cd_raw.iov_len = MBLKL(mp); \
(data)->cd_offset = off; \
} else { \
(data)->cd_format = CRYPTO_DATA_MBLK; \
(data)->cd_mp = mp; \
(data)->cd_offset = off; \
} \
(data)->cd_length = len; \
}
#define ESP_INIT_CRYPTO_DUAL_DATA(data, mp, off1, len1, off2, len2) { \
(data)->dd_format = CRYPTO_DATA_MBLK; \
(data)->dd_mp = mp; \
(data)->dd_len1 = len1; \
(data)->dd_offset1 = off1; \
(data)->dd_len2 = len2; \
(data)->dd_offset2 = off2; \
}
/*
* Returns data_mp if successfully completed the request. Returns
* NULL if it failed (and increments InDiscards) or if it is pending.
*/
static mblk_t *
esp_submit_req_inbound(mblk_t *esp_mp, ip_recv_attr_t *ira,
ipsa_t *assoc, uint_t esph_offset)
{
uint_t auth_offset, msg_len, auth_len;
crypto_call_req_t call_req, *callrp;
mblk_t *mp;
esph_t *esph_ptr;
int kef_rc;
uint_t icv_len = assoc->ipsa_mac_len;
crypto_ctx_template_t auth_ctx_tmpl;
boolean_t do_auth, do_encr, force;
uint_t encr_offset, encr_len;
uint_t iv_len = assoc->ipsa_iv_len;
crypto_ctx_template_t encr_ctx_tmpl;
ipsec_crypto_t *ic, icstack;
uchar_t *iv_ptr;
netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
force = (assoc->ipsa_flags & IPSA_F_ASYNC);
#ifdef IPSEC_LATENCY_TEST
kef_rc = CRYPTO_SUCCESS;
#else
kef_rc = CRYPTO_FAILED;
#endif
/*
* An inbound packet is of the form:
* [IP,options,ESP,IV,data,ICV,pad]
*/
esph_ptr = (esph_t *)(esp_mp->b_rptr + esph_offset);
iv_ptr = (uchar_t *)(esph_ptr + 1);
/* Packet length starting at IP header ending after ESP ICV. */
msg_len = MBLKL(esp_mp);
encr_offset = esph_offset + sizeof (esph_t) + iv_len;
encr_len = msg_len - encr_offset;
/*
* Counter mode algs need a nonce. This is setup in sadb_common_add().
* If for some reason we are using a SA which does not have a nonce
* then we must fail here.
*/
if ((assoc->ipsa_flags & IPSA_F_COUNTERMODE) &&
(assoc->ipsa_nonce == NULL)) {
ip_drop_packet(esp_mp, B_TRUE, ira->ira_ill,
DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
return (NULL);
}
if (force) {
/* We are doing asynch; allocate mblks to hold state */
if ((mp = ip_recv_attr_to_mblk(ira)) == NULL ||
(mp = ipsec_add_crypto_data(mp, &ic)) == NULL) {
BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", esp_mp,
ira->ira_ill);
return (NULL);
}
linkb(mp, esp_mp);
callrp = &call_req;
ESP_INIT_CALLREQ(callrp, mp, esp_kcf_callback_inbound);
} else {
/*
* If we know we are going to do sync then ipsec_crypto_t
* should be on the stack.
*/
ic = &icstack;
bzero(ic, sizeof (*ic));
callrp = NULL;
}
if (do_auth) {
/* authentication context template */
IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
auth_ctx_tmpl);
/* ICV to be verified */
ESP_INIT_CRYPTO_MAC(&ic->ic_crypto_mac,
icv_len, esp_mp->b_wptr - icv_len);
/* authentication starts at the ESP header */
auth_offset = esph_offset;
auth_len = msg_len - auth_offset - icv_len;
if (!do_encr) {
/* authentication only */
/* initialize input data argument */
ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
esp_mp, auth_offset, auth_len);
/* call the crypto framework */
kef_rc = crypto_mac_verify(&assoc->ipsa_amech,
&ic->ic_crypto_data,
&assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
&ic->ic_crypto_mac, callrp);
}
}
if (do_encr) {
/* encryption template */
IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
encr_ctx_tmpl);
/* Call the nonce update function. Also passes in IV */
(assoc->ipsa_noncefunc)(assoc, (uchar_t *)esph_ptr, encr_len,
iv_ptr, &ic->ic_cmm, &ic->ic_crypto_data);
if (!do_auth) {
/* decryption only */
/* initialize input data argument */
ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
esp_mp, encr_offset, encr_len);
/* call the crypto framework */
kef_rc = crypto_decrypt((crypto_mechanism_t *)
&ic->ic_cmm, &ic->ic_crypto_data,
&assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
NULL, callrp);
}
}
if (do_auth && do_encr) {
/* dual operation */
/* initialize input data argument */
ESP_INIT_CRYPTO_DUAL_DATA(&ic->ic_crypto_dual_data,
esp_mp, auth_offset, auth_len,
encr_offset, encr_len - icv_len);
/* specify IV */
ic->ic_crypto_dual_data.dd_miscdata = (char *)iv_ptr;
/* call the framework */
kef_rc = crypto_mac_verify_decrypt(&assoc->ipsa_amech,
&assoc->ipsa_emech, &ic->ic_crypto_dual_data,
&assoc->ipsa_kcfauthkey, &assoc->ipsa_kcfencrkey,
auth_ctx_tmpl, encr_ctx_tmpl, &ic->ic_crypto_mac,
NULL, callrp);
}
switch (kef_rc) {
case CRYPTO_SUCCESS:
ESP_BUMP_STAT(espstack, crypto_sync);
esp_mp = esp_in_done(esp_mp, ira, ic);
if (force) {
/* Free mp after we are done with ic */
mp = ipsec_free_crypto_data(mp);
(void) ip_recv_attr_free_mblk(mp);
}
return (esp_mp);
case CRYPTO_QUEUED:
/* esp_kcf_callback_inbound() will be invoked on completion */
ESP_BUMP_STAT(espstack, crypto_async);
return (NULL);
case CRYPTO_INVALID_MAC:
if (force) {
mp = ipsec_free_crypto_data(mp);
esp_mp = ip_recv_attr_free_mblk(mp);
}
ESP_BUMP_STAT(espstack, crypto_sync);
BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
esp_log_bad_auth(esp_mp, ira);
/* esp_mp was passed to ip_drop_packet */
return (NULL);
}
if (force) {
mp = ipsec_free_crypto_data(mp);
esp_mp = ip_recv_attr_free_mblk(mp);
}
BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
esp_crypto_failed(esp_mp, B_TRUE, kef_rc, ira->ira_ill, espstack);
/* esp_mp was passed to ip_drop_packet */
return (NULL);
}
/*
* Compute the IP and UDP checksums -- common code for both keepalives and
* actual ESP-in-UDP packets. Be flexible with multiple mblks because ESP
* uses mblk-insertion to insert the UDP header.
* TODO - If there is an easy way to prep a packet for HW checksums, make
* it happen here.
* Note that this is used before both before calling ip_output_simple and
* in the esp datapath. The former could use IXAF_SET_ULP_CKSUM but not the
* latter.
*/
static void
esp_prepare_udp(netstack_t *ns, mblk_t *mp, ipha_t *ipha)
{
int offset;
uint32_t cksum;
uint16_t *arr;
mblk_t *udpmp = mp;
uint_t hlen = IPH_HDR_LENGTH(ipha);
ASSERT(MBLKL(mp) >= sizeof (ipha_t));
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
if (ns->netstack_udp->us_do_checksum) {
ASSERT(MBLKL(udpmp) >= sizeof (udpha_t));
/* arr points to the IP header. */
arr = (uint16_t *)ipha;
IP_STAT(ns->netstack_ip, ip_out_sw_cksum);
IP_STAT_UPDATE(ns->netstack_ip, ip_out_sw_cksum_bytes,
ntohs(htons(ipha->ipha_length) - hlen));
/* arr[6-9] are the IP addresses. */
cksum = IP_UDP_CSUM_COMP + arr[6] + arr[7] + arr[8] + arr[9] +
ntohs(htons(ipha->ipha_length) - hlen);
cksum = IP_CSUM(mp, hlen, cksum);
offset = hlen + UDP_CHECKSUM_OFFSET;
while (offset >= MBLKL(udpmp)) {
offset -= MBLKL(udpmp);
udpmp = udpmp->b_cont;
}
/* arr points to the UDP header's checksum field. */
arr = (uint16_t *)(udpmp->b_rptr + offset);
*arr = cksum;
}
}
/*
* taskq handler so we can send the NAT-T keepalive on a separate thread.
*/
static void
actually_send_keepalive(void *arg)
{
mblk_t *mp = (mblk_t *)arg;
ip_xmit_attr_t ixas;
netstack_t *ns;
netstackid_t stackid;
stackid = (netstackid_t)(uintptr_t)mp->b_prev;
mp->b_prev = NULL;
ns = netstack_find_by_stackid(stackid);
if (ns == NULL) {
/* Disappeared */
ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
freemsg(mp);
return;
}
bzero(&ixas, sizeof (ixas));
ixas.ixa_zoneid = ALL_ZONES;
ixas.ixa_cred = kcred;
ixas.ixa_cpid = NOPID;
ixas.ixa_tsl = NULL;
ixas.ixa_ipst = ns->netstack_ip;
/* No ULP checksum; done by esp_prepare_udp */
ixas.ixa_flags = (IXAF_IS_IPV4 | IXAF_NO_IPSEC | IXAF_VERIFY_SOURCE);
(void) ip_output_simple(mp, &ixas);
ixa_cleanup(&ixas);
netstack_rele(ns);
}
/*
* Send a one-byte UDP NAT-T keepalive.
*/
void
ipsecesp_send_keepalive(ipsa_t *assoc)
{
mblk_t *mp;
ipha_t *ipha;
udpha_t *udpha;
netstack_t *ns = assoc->ipsa_netstack;
ASSERT(MUTEX_NOT_HELD(&assoc->ipsa_lock));
mp = allocb(sizeof (ipha_t) + sizeof (udpha_t) + 1, BPRI_HI);
if (mp == NULL)
return;
ipha = (ipha_t *)mp->b_rptr;
ipha->ipha_version_and_hdr_length = IP_SIMPLE_HDR_VERSION;
ipha->ipha_type_of_service = 0;
ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (udpha_t) + 1);
/* Use the low-16 of the SPI so we have some clue where it came from. */
ipha->ipha_ident = *(((uint16_t *)(&assoc->ipsa_spi)) + 1);
ipha->ipha_fragment_offset_and_flags = 0; /* Too small to fragment! */
ipha->ipha_ttl = 0xFF;
ipha->ipha_protocol = IPPROTO_UDP;
ipha->ipha_hdr_checksum = 0;
ipha->ipha_src = assoc->ipsa_srcaddr[0];
ipha->ipha_dst = assoc->ipsa_dstaddr[0];
udpha = (udpha_t *)(ipha + 1);
udpha->uha_src_port = (assoc->ipsa_local_nat_port != 0) ?
assoc->ipsa_local_nat_port : htons(IPPORT_IKE_NATT);
udpha->uha_dst_port = (assoc->ipsa_remote_nat_port != 0) ?
assoc->ipsa_remote_nat_port : htons(IPPORT_IKE_NATT);
udpha->uha_length = htons(sizeof (udpha_t) + 1);
udpha->uha_checksum = 0;
mp->b_wptr = (uint8_t *)(udpha + 1);
*(mp->b_wptr++) = 0xFF;
esp_prepare_udp(ns, mp, ipha);
/*
* We're holding an isaf_t bucket lock, so pawn off the actual
* packet transmission to another thread. Just in case syncq
* processing causes a same-bucket packet to be processed.
*/
mp->b_prev = (mblk_t *)(uintptr_t)ns->netstack_stackid;
if (taskq_dispatch(esp_taskq, actually_send_keepalive, mp,
TQ_NOSLEEP) == 0) {
/* Assume no memory if taskq_dispatch() fails. */
mp->b_prev = NULL;
ip_drop_packet(mp, B_FALSE, NULL,
DROPPER(ns->netstack_ipsec, ipds_esp_nomem),
&ns->netstack_ipsecesp->esp_dropper);
}
}
/*
* Returns mp if successfully completed the request. Returns
* NULL if it failed (and increments InDiscards) or if it is pending.
*/
static mblk_t *
esp_submit_req_outbound(mblk_t *data_mp, ip_xmit_attr_t *ixa, ipsa_t *assoc,
uchar_t *icv_buf, uint_t payload_len)
{
uint_t auth_len;
crypto_call_req_t call_req, *callrp;
mblk_t *esp_mp;
esph_t *esph_ptr;
mblk_t *mp;
int kef_rc = CRYPTO_FAILED;
uint_t icv_len = assoc->ipsa_mac_len;
crypto_ctx_template_t auth_ctx_tmpl;
boolean_t do_auth, do_encr, force;
uint_t iv_len = assoc->ipsa_iv_len;
crypto_ctx_template_t encr_ctx_tmpl;
boolean_t is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
size_t esph_offset = (is_natt ? UDPH_SIZE : 0);
netstack_t *ns = ixa->ixa_ipst->ips_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_crypto_t *ic, icstack;
uchar_t *iv_ptr;
crypto_data_t *cd_ptr = NULL;
ill_t *ill = ixa->ixa_nce->nce_ill;
ipsec_stack_t *ipss = ns->netstack_ipsec;
esp3dbg(espstack, ("esp_submit_req_outbound:%s",
is_natt ? "natt" : "not natt"));
do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
force = (assoc->ipsa_flags & IPSA_F_ASYNC);
#ifdef IPSEC_LATENCY_TEST
kef_rc = CRYPTO_SUCCESS;
#else
kef_rc = CRYPTO_FAILED;
#endif
/*
* Outbound IPsec packets are of the form:
* [IP,options] -> [ESP,IV] -> [data] -> [pad,ICV]
* unless it's NATT, then it's
* [IP,options] -> [udp][ESP,IV] -> [data] -> [pad,ICV]
* Get a pointer to the mblk containing the ESP header.
*/
ASSERT(data_mp->b_cont != NULL);
esp_mp = data_mp->b_cont;
esph_ptr = (esph_t *)(esp_mp->b_rptr + esph_offset);
iv_ptr = (uchar_t *)(esph_ptr + 1);
/*
* Combined mode algs need a nonce. This is setup in sadb_common_add().
* If for some reason we are using a SA which does not have a nonce
* then we must fail here.
*/
if ((assoc->ipsa_flags & IPSA_F_COUNTERMODE) &&
(assoc->ipsa_nonce == NULL)) {
ip_drop_packet(data_mp, B_FALSE, NULL,
DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
return (NULL);
}
if (force) {
/* We are doing asynch; allocate mblks to hold state */
if ((mp = ip_xmit_attr_to_mblk(ixa)) == NULL ||
(mp = ipsec_add_crypto_data(mp, &ic)) == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
ip_drop_output("ipIfStatsOutDiscards", data_mp, ill);
freemsg(data_mp);
return (NULL);
}
linkb(mp, data_mp);
callrp = &call_req;
ESP_INIT_CALLREQ(callrp, mp, esp_kcf_callback_outbound);
} else {
/*
* If we know we are going to do sync then ipsec_crypto_t
* should be on the stack.
*/
ic = &icstack;
bzero(ic, sizeof (*ic));
callrp = NULL;
}
if (do_auth) {
/* authentication context template */
IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
auth_ctx_tmpl);
/* where to store the computed mac */
ESP_INIT_CRYPTO_MAC(&ic->ic_crypto_mac,
icv_len, icv_buf);
/* authentication starts at the ESP header */
auth_len = payload_len + iv_len + sizeof (esph_t);
if (!do_encr) {
/* authentication only */
/* initialize input data argument */
ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
esp_mp, esph_offset, auth_len);
/* call the crypto framework */
kef_rc = crypto_mac(&assoc->ipsa_amech,
&ic->ic_crypto_data,
&assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
&ic->ic_crypto_mac, callrp);
}
}
if (do_encr) {
/* encryption context template */
IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
encr_ctx_tmpl);
/* Call the nonce update function. */
(assoc->ipsa_noncefunc)(assoc, (uchar_t *)esph_ptr, payload_len,
iv_ptr, &ic->ic_cmm, &ic->ic_crypto_data);
if (!do_auth) {
/* encryption only, skip mblk that contains ESP hdr */
/* initialize input data argument */
ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
esp_mp->b_cont, 0, payload_len);
/*
* For combined mode ciphers, the ciphertext is the same
* size as the clear text, the ICV should follow the
* ciphertext. To convince the kcf to allow in-line
* encryption, with an ICV, use ipsec_out_crypto_mac
* to point to the same buffer as the data. The calling
* function need to ensure the buffer is large enough to
* include the ICV.
*
* The IV is already written to the packet buffer, the
* nonce setup function copied it to the params struct
* for the cipher to use.
*/
if (assoc->ipsa_flags & IPSA_F_COMBINED) {
bcopy(&ic->ic_crypto_data,
&ic->ic_crypto_mac,
sizeof (crypto_data_t));
ic->ic_crypto_mac.cd_length =
payload_len + icv_len;
cd_ptr = &ic->ic_crypto_mac;
}
/* call the crypto framework */
kef_rc = crypto_encrypt((crypto_mechanism_t *)
&ic->ic_cmm, &ic->ic_crypto_data,
&assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
cd_ptr, callrp);
}
}
if (do_auth && do_encr) {
/*
* Encryption and authentication:
* Pass the pointer to the mblk chain starting at the ESP
* header to the framework. Skip the ESP header mblk
* for encryption, which is reflected by an encryption
* offset equal to the length of that mblk. Start
* the authentication at the ESP header, i.e. use an
* authentication offset of zero.
*/
ESP_INIT_CRYPTO_DUAL_DATA(&ic->ic_crypto_dual_data,
esp_mp, MBLKL(esp_mp), payload_len, esph_offset, auth_len);
/* specify IV */
ic->ic_crypto_dual_data.dd_miscdata = (char *)iv_ptr;
/* call the framework */
kef_rc = crypto_encrypt_mac(&assoc->ipsa_emech,
&assoc->ipsa_amech, NULL,
&assoc->ipsa_kcfencrkey, &assoc->ipsa_kcfauthkey,
encr_ctx_tmpl, auth_ctx_tmpl,
&ic->ic_crypto_dual_data,
&ic->ic_crypto_mac, callrp);
}
switch (kef_rc) {
case CRYPTO_SUCCESS:
ESP_BUMP_STAT(espstack, crypto_sync);
esp_set_usetime(assoc, B_FALSE);
if (force) {
mp = ipsec_free_crypto_data(mp);
data_mp = ip_xmit_attr_free_mblk(mp);
}
if (is_natt)
esp_prepare_udp(ns, data_mp, (ipha_t *)data_mp->b_rptr);
return (data_mp);
case CRYPTO_QUEUED:
/* esp_kcf_callback_outbound() will be invoked on completion */
ESP_BUMP_STAT(espstack, crypto_async);
return (NULL);
}
if (force) {
mp = ipsec_free_crypto_data(mp);
data_mp = ip_xmit_attr_free_mblk(mp);
}
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
esp_crypto_failed(data_mp, B_FALSE, kef_rc, NULL, espstack);
/* data_mp was passed to ip_drop_packet */
return (NULL);
}
/*
* Handle outbound IPsec processing for IPv4 and IPv6
*
* Returns data_mp if successfully completed the request. Returns
* NULL if it failed (and increments InDiscards) or if it is pending.
*/
static mblk_t *
esp_outbound(mblk_t *data_mp, ip_xmit_attr_t *ixa)
{
mblk_t *espmp, *tailmp;
ipha_t *ipha;
ip6_t *ip6h;
esph_t *esph_ptr, *iv_ptr;
uint_t af;
uint8_t *nhp;
uintptr_t divpoint, datalen, adj, padlen, i, alloclen;
uintptr_t esplen = sizeof (esph_t);
uint8_t protocol;
ipsa_t *assoc;
uint_t iv_len, block_size, mac_len = 0;
uchar_t *icv_buf;
udpha_t *udpha;
boolean_t is_natt = B_FALSE;
netstack_t *ns = ixa->ixa_ipst->ips_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ill_t *ill = ixa->ixa_nce->nce_ill;
boolean_t need_refrele = B_FALSE;
ESP_BUMP_STAT(espstack, out_requests);
/*
* <sigh> We have to copy the message here, because TCP (for example)
* keeps a dupb() of the message lying around for retransmission.
* Since ESP changes the whole of the datagram, we have to create our
* own copy lest we clobber TCP's data. Since we have to copy anyway,
* we might as well make use of msgpullup() and get the mblk into one
* contiguous piece!
*/
tailmp = msgpullup(data_mp, -1);
if (tailmp == NULL) {
esp0dbg(("esp_outbound: msgpullup() failed, "
"dropping packet.\n"));
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_esp_nomem),
&espstack->esp_dropper);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
return (NULL);
}
freemsg(data_mp);
data_mp = tailmp;
assoc = ixa->ixa_ipsec_esp_sa;
ASSERT(assoc != NULL);
/*
* Get the outer IP header in shape to escape this system..
*/
if (is_system_labeled() && (assoc->ipsa_otsl != NULL)) {
/*
* Need to update packet with any CIPSO option and update
* ixa_tsl to capture the new label.
* We allocate a separate ixa for that purpose.
*/
ixa = ip_xmit_attr_duplicate(ixa);
if (ixa == NULL) {
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_esp_nomem),
&espstack->esp_dropper);
return (NULL);
}
need_refrele = B_TRUE;
label_hold(assoc->ipsa_otsl);
ip_xmit_attr_replace_tsl(ixa, assoc->ipsa_otsl);
data_mp = sadb_whack_label(data_mp, assoc, ixa,
DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
if (data_mp == NULL) {
/* Packet dropped by sadb_whack_label */
ixa_refrele(ixa);
return (NULL);
}
}
/*
* Reality check....
*/
ipha = (ipha_t *)data_mp->b_rptr; /* So we can call esp_acquire(). */
if (ixa->ixa_flags & IXAF_IS_IPV4) {
ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
af = AF_INET;
divpoint = IPH_HDR_LENGTH(ipha);
datalen = ntohs(ipha->ipha_length) - divpoint;
nhp = (uint8_t *)&ipha->ipha_protocol;
} else {
ip_pkt_t ipp;
ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
af = AF_INET6;
ip6h = (ip6_t *)ipha;
bzero(&ipp, sizeof (ipp));
divpoint = ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp, NULL);
if (ipp.ipp_dstopts != NULL &&
ipp.ipp_dstopts->ip6d_nxt != IPPROTO_ROUTING) {
/*
* Destination options are tricky. If we get in here,
* then we have a terminal header following the
* destination options. We need to adjust backwards
* so we insert ESP BEFORE the destination options
* bag. (So that the dstopts get encrypted!)
*
* Since this is for outbound packets only, we know
* that non-terminal destination options only precede
* routing headers.
*/
divpoint -= ipp.ipp_dstoptslen;
}
datalen = ntohs(ip6h->ip6_plen) + sizeof (ip6_t) - divpoint;
if (ipp.ipp_rthdr != NULL) {
nhp = &ipp.ipp_rthdr->ip6r_nxt;
} else if (ipp.ipp_hopopts != NULL) {
nhp = &ipp.ipp_hopopts->ip6h_nxt;
} else {
ASSERT(divpoint == sizeof (ip6_t));
/* It's probably IP + ESP. */
nhp = &ip6h->ip6_nxt;
}
}
mac_len = assoc->ipsa_mac_len;
if (assoc->ipsa_flags & IPSA_F_NATT) {
/* wedge in UDP header */
is_natt = B_TRUE;
esplen += UDPH_SIZE;
}
/*
* Set up ESP header and encryption padding for ENCR PI request.
*/
/* Determine the padding length. Pad to 4-bytes for no-encryption. */
if (assoc->ipsa_encr_alg != SADB_EALG_NULL) {
iv_len = assoc->ipsa_iv_len;
block_size = assoc->ipsa_datalen;
/*
* Pad the data to the length of the cipher block size.
* Include the two additional bytes (hence the - 2) for the
* padding length and the next header. Take this into account
* when calculating the actual length of the padding.
*/
ASSERT(ISP2(iv_len));
padlen = ((unsigned)(block_size - datalen - 2)) &
(block_size - 1);
} else {
iv_len = 0;
padlen = ((unsigned)(sizeof (uint32_t) - datalen - 2)) &
(sizeof (uint32_t) - 1);
}
/* Allocate ESP header and IV. */
esplen += iv_len;
/*
* Update association byte-count lifetimes. Don't forget to take
* into account the padding length and next-header (hence the + 2).
*
* Use the amount of data fed into the "encryption algorithm". This
* is the IV, the data length, the padding length, and the final two
* bytes (padlen, and next-header).
*
*/
if (!esp_age_bytes(assoc, datalen + padlen + iv_len + 2, B_FALSE)) {
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_esp_bytes_expire),
&espstack->esp_dropper);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
if (need_refrele)
ixa_refrele(ixa);
return (NULL);
}
espmp = allocb(esplen, BPRI_HI);
if (espmp == NULL) {
ESP_BUMP_STAT(espstack, out_discards);
esp1dbg(espstack, ("esp_outbound: can't allocate espmp.\n"));
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_esp_nomem),
&espstack->esp_dropper);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
if (need_refrele)
ixa_refrele(ixa);
return (NULL);
}
espmp->b_wptr += esplen;
esph_ptr = (esph_t *)espmp->b_rptr;
if (is_natt) {
esp3dbg(espstack, ("esp_outbound: NATT"));
udpha = (udpha_t *)espmp->b_rptr;
udpha->uha_src_port = (assoc->ipsa_local_nat_port != 0) ?
assoc->ipsa_local_nat_port : htons(IPPORT_IKE_NATT);
udpha->uha_dst_port = (assoc->ipsa_remote_nat_port != 0) ?
assoc->ipsa_remote_nat_port : htons(IPPORT_IKE_NATT);
/*
* Set the checksum to 0, so that the esp_prepare_udp() call
* can do the right thing.
*/
udpha->uha_checksum = 0;
esph_ptr = (esph_t *)(udpha + 1);
}
esph_ptr->esph_spi = assoc->ipsa_spi;
esph_ptr->esph_replay = htonl(atomic_inc_32_nv(&assoc->ipsa_replay));
if (esph_ptr->esph_replay == 0 && assoc->ipsa_replay_wsize != 0) {
/*
* XXX We have replay counter wrapping.
* We probably want to nuke this SA (and its peer).
*/
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_ERROR | SL_CONSOLE | SL_WARN,
"Outbound ESP SA (0x%x, %s) has wrapped sequence.\n",
esph_ptr->esph_spi, assoc->ipsa_dstaddr, af,
espstack->ipsecesp_netstack);
ESP_BUMP_STAT(espstack, out_discards);
sadb_replay_delete(assoc);
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_esp_replay),
&espstack->esp_dropper);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
if (need_refrele)
ixa_refrele(ixa);
return (NULL);
}
iv_ptr = (esph_ptr + 1);
/*
* iv_ptr points to the mblk which will contain the IV once we have
* written it there. This mblk will be part of a mblk chain that
* will make up the packet.
*
* For counter mode algorithms, the IV is a 64 bit quantity, it
* must NEVER repeat in the lifetime of the SA, otherwise an
* attacker who had recorded enough packets might be able to
* determine some clear text.
*
* To ensure this does not happen, the IV is stored in the SA and
* incremented for each packet, the IV is then copied into the
* "packet" for transmission to the receiving system. The IV will
* also be copied into the nonce, when the packet is encrypted.
*
* CBC mode algorithms use a random IV for each packet. We do not
* require the highest quality random bits, but for best security
* with CBC mode ciphers, the value must be unlikely to repeat and
* must not be known in advance to an adversary capable of influencing
* the clear text.
*/
if (!update_iv((uint8_t *)iv_ptr, espstack->esp_pfkey_q, assoc,
espstack)) {
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_esp_iv_wrap), &espstack->esp_dropper);
if (need_refrele)
ixa_refrele(ixa);
return (NULL);
}
/* Fix the IP header. */
alloclen = padlen + 2 + mac_len;
adj = alloclen + (espmp->b_wptr - espmp->b_rptr);
protocol = *nhp;
if (ixa->ixa_flags & IXAF_IS_IPV4) {
ipha->ipha_length = htons(ntohs(ipha->ipha_length) + adj);
if (is_natt) {
*nhp = IPPROTO_UDP;
udpha->uha_length = htons(ntohs(ipha->ipha_length) -
IPH_HDR_LENGTH(ipha));
} else {
*nhp = IPPROTO_ESP;
}
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
} else {
ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) + adj);
*nhp = IPPROTO_ESP;
}
/* I've got the two ESP mblks, now insert them. */
esp2dbg(espstack, ("data_mp before outbound ESP adjustment:\n"));
esp2dbg(espstack, (dump_msg(data_mp)));
if (!esp_insert_esp(data_mp, espmp, divpoint, espstack)) {
ESP_BUMP_STAT(espstack, out_discards);
/* NOTE: esp_insert_esp() only fails if there's no memory. */
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_esp_nomem),
&espstack->esp_dropper);
freeb(espmp);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
if (need_refrele)
ixa_refrele(ixa);
return (NULL);
}
/* Append padding (and leave room for ICV). */
for (tailmp = data_mp; tailmp->b_cont != NULL; tailmp = tailmp->b_cont)
;
if (tailmp->b_wptr + alloclen > tailmp->b_datap->db_lim) {
tailmp->b_cont = allocb(alloclen, BPRI_HI);
if (tailmp->b_cont == NULL) {
ESP_BUMP_STAT(espstack, out_discards);
esp0dbg(("esp_outbound: Can't allocate tailmp.\n"));
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_esp_nomem),
&espstack->esp_dropper);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
if (need_refrele)
ixa_refrele(ixa);
return (NULL);
}
tailmp = tailmp->b_cont;
}
/*
* If there's padding, N bytes of padding must be of the form 0x1,
* 0x2, 0x3... 0xN.
*/
for (i = 0; i < padlen; ) {
i++;
*tailmp->b_wptr++ = i;
}
*tailmp->b_wptr++ = i;
*tailmp->b_wptr++ = protocol;
esp2dbg(espstack, ("data_Mp before encryption:\n"));
esp2dbg(espstack, (dump_msg(data_mp)));
/*
* Okay. I've set up the pre-encryption ESP. Let's do it!
*/
if (mac_len > 0) {
ASSERT(tailmp->b_wptr + mac_len <= tailmp->b_datap->db_lim);
icv_buf = tailmp->b_wptr;
tailmp->b_wptr += mac_len;
} else {
icv_buf = NULL;
}
data_mp = esp_submit_req_outbound(data_mp, ixa, assoc, icv_buf,
datalen + padlen + 2);
if (need_refrele)
ixa_refrele(ixa);
return (data_mp);
}
/*
* IP calls this to validate the ICMP errors that
* we got from the network.
*/
mblk_t *
ipsecesp_icmp_error(mblk_t *data_mp, ip_recv_attr_t *ira)
{
netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
/*
* Unless we get an entire packet back, this function is useless.
* Why?
*
* 1.) Partial packets are useless, because the "next header"
* is at the end of the decrypted ESP packet. Without the
* whole packet, this is useless.
*
* 2.) If we every use a stateful cipher, such as a stream or a
* one-time pad, we can't do anything.
*
* Since the chances of us getting an entire packet back are very
* very small, we discard here.
*/
IP_ESP_BUMP_STAT(ipss, in_discards);
ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
DROPPER(ipss, ipds_esp_icmp),
&espstack->esp_dropper);
return (NULL);
}
/*
* Construct an SADB_REGISTER message with the current algorithms.
* This function gets called when 'ipsecalgs -s' is run or when
* in.iked (or other KMD) starts.
*/
static boolean_t
esp_register_out(uint32_t sequence, uint32_t pid, uint_t serial,
ipsecesp_stack_t *espstack, cred_t *cr)
{
mblk_t *pfkey_msg_mp, *keysock_out_mp;
sadb_msg_t *samsg;
sadb_supported_t *sasupp_auth = NULL;
sadb_supported_t *sasupp_encr = NULL;
sadb_alg_t *saalg;
uint_t allocsize = sizeof (*samsg);
uint_t i, numalgs_snap;
int current_aalgs;
ipsec_alginfo_t **authalgs;
uint_t num_aalgs;
int current_ealgs;
ipsec_alginfo_t **encralgs;
uint_t num_ealgs;
ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
sadb_sens_t *sens;
size_t sens_len = 0;
sadb_ext_t *nextext;
ts_label_t *sens_tsl = NULL;
/* Allocate the KEYSOCK_OUT. */
keysock_out_mp = sadb_keysock_out(serial);
if (keysock_out_mp == NULL) {
esp0dbg(("esp_register_out: couldn't allocate mblk.\n"));
return (B_FALSE);
}
if (is_system_labeled() && (cr != NULL)) {
sens_tsl = crgetlabel(cr);
if (sens_tsl != NULL) {
sens_len = sadb_sens_len_from_label(sens_tsl);
allocsize += sens_len;
}
}
/*
* Allocate the PF_KEY message that follows KEYSOCK_OUT.
*/
mutex_enter(&ipss->ipsec_alg_lock);
/*
* Fill SADB_REGISTER message's algorithm descriptors. Hold
* down the lock while filling it.
*
* Return only valid algorithms, so the number of algorithms
* to send up may be less than the number of algorithm entries
* in the table.
*/
authalgs = ipss->ipsec_alglists[IPSEC_ALG_AUTH];
for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
if (authalgs[i] != NULL && ALG_VALID(authalgs[i]))
num_aalgs++;
if (num_aalgs != 0) {
allocsize += (num_aalgs * sizeof (*saalg));
allocsize += sizeof (*sasupp_auth);
}
encralgs = ipss->ipsec_alglists[IPSEC_ALG_ENCR];
for (num_ealgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
if (encralgs[i] != NULL && ALG_VALID(encralgs[i]))
num_ealgs++;
if (num_ealgs != 0) {
allocsize += (num_ealgs * sizeof (*saalg));
allocsize += sizeof (*sasupp_encr);
}
keysock_out_mp->b_cont = allocb(allocsize, BPRI_HI);
if (keysock_out_mp->b_cont == NULL) {
mutex_exit(&ipss->ipsec_alg_lock);
freemsg(keysock_out_mp);
return (B_FALSE);
}
pfkey_msg_mp = keysock_out_mp->b_cont;
pfkey_msg_mp->b_wptr += allocsize;
nextext = (sadb_ext_t *)(pfkey_msg_mp->b_rptr + sizeof (*samsg));
if (num_aalgs != 0) {
sasupp_auth = (sadb_supported_t *)nextext;
saalg = (sadb_alg_t *)(sasupp_auth + 1);
ASSERT(((ulong_t)saalg & 0x7) == 0);
numalgs_snap = 0;
for (i = 0;
((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs));
i++) {
if (authalgs[i] == NULL || !ALG_VALID(authalgs[i]))
continue;
saalg->sadb_alg_id = authalgs[i]->alg_id;
saalg->sadb_alg_ivlen = 0;
saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits;
saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits;
saalg->sadb_x_alg_increment =
authalgs[i]->alg_increment;
saalg->sadb_x_alg_saltbits = SADB_8TO1(
authalgs[i]->alg_saltlen);
numalgs_snap++;
saalg++;
}
ASSERT(numalgs_snap == num_aalgs);
#ifdef DEBUG
/*
* Reality check to make sure I snagged all of the
* algorithms.
*/
for (; i < IPSEC_MAX_ALGS; i++) {
if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) {
cmn_err(CE_PANIC, "esp_register_out()! "
"Missed aalg #%d.\n", i);
}
}
#endif /* DEBUG */
nextext = (sadb_ext_t *)saalg;
}
if (num_ealgs != 0) {
sasupp_encr = (sadb_supported_t *)nextext;
saalg = (sadb_alg_t *)(sasupp_encr + 1);
numalgs_snap = 0;
for (i = 0;
((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_ealgs)); i++) {
if (encralgs[i] == NULL || !ALG_VALID(encralgs[i]))
continue;
saalg->sadb_alg_id = encralgs[i]->alg_id;
saalg->sadb_alg_ivlen = encralgs[i]->alg_ivlen;
saalg->sadb_alg_minbits = encralgs[i]->alg_ef_minbits;
saalg->sadb_alg_maxbits = encralgs[i]->alg_ef_maxbits;
/*
* We could advertise the ICV length, except there
* is not a value in sadb_x_algb to do this.
* saalg->sadb_alg_maclen = encralgs[i]->alg_maclen;
*/
saalg->sadb_x_alg_increment =
encralgs[i]->alg_increment;
saalg->sadb_x_alg_saltbits =
SADB_8TO1(encralgs[i]->alg_saltlen);
numalgs_snap++;
saalg++;
}
ASSERT(numalgs_snap == num_ealgs);
#ifdef DEBUG
/*
* Reality check to make sure I snagged all of the
* algorithms.
*/
for (; i < IPSEC_MAX_ALGS; i++) {
if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) {
cmn_err(CE_PANIC, "esp_register_out()! "
"Missed ealg #%d.\n", i);
}
}
#endif /* DEBUG */
nextext = (sadb_ext_t *)saalg;
}
current_aalgs = num_aalgs;
current_ealgs = num_ealgs;
mutex_exit(&ipss->ipsec_alg_lock);
if (sens_tsl != NULL) {
sens = (sadb_sens_t *)nextext;
sadb_sens_from_label(sens, SADB_EXT_SENSITIVITY,
sens_tsl, sens_len);
nextext = (sadb_ext_t *)(((uint8_t *)sens) + sens_len);
}
/* Now fill the rest of the SADB_REGISTER message. */
samsg = (sadb_msg_t *)pfkey_msg_mp->b_rptr;
samsg->sadb_msg_version = PF_KEY_V2;
samsg->sadb_msg_type = SADB_REGISTER;
samsg->sadb_msg_errno = 0;
samsg->sadb_msg_satype = SADB_SATYPE_ESP;
samsg->sadb_msg_len = SADB_8TO64(allocsize);
samsg->sadb_msg_reserved = 0;
/*
* Assume caller has sufficient sequence/pid number info. If it's one
* from me over a new alg., I could give two hoots about sequence.
*/
samsg->sadb_msg_seq = sequence;
samsg->sadb_msg_pid = pid;
if (sasupp_auth != NULL) {
sasupp_auth->sadb_supported_len = SADB_8TO64(
sizeof (*sasupp_auth) + sizeof (*saalg) * current_aalgs);
sasupp_auth->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
sasupp_auth->sadb_supported_reserved = 0;
}
if (sasupp_encr != NULL) {
sasupp_encr->sadb_supported_len = SADB_8TO64(
sizeof (*sasupp_encr) + sizeof (*saalg) * current_ealgs);
sasupp_encr->sadb_supported_exttype =
SADB_EXT_SUPPORTED_ENCRYPT;
sasupp_encr->sadb_supported_reserved = 0;
}
if (espstack->esp_pfkey_q != NULL)
putnext(espstack->esp_pfkey_q, keysock_out_mp);
else {
freemsg(keysock_out_mp);
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Invoked when the algorithm table changes. Causes SADB_REGISTER
* messages continaining the current list of algorithms to be
* sent up to the ESP listeners.
*/
void
ipsecesp_algs_changed(netstack_t *ns)
{
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
/*
* Time to send a PF_KEY SADB_REGISTER message to ESP listeners
* everywhere. (The function itself checks for NULL esp_pfkey_q.)
*/
(void) esp_register_out(0, 0, 0, espstack, NULL);
}
/*
* Stub function that taskq_dispatch() invokes to take the mblk (in arg)
* and send() it into ESP and IP again.
*/
static void
inbound_task(void *arg)
{
mblk_t *mp = (mblk_t *)arg;
mblk_t *async_mp;
ip_recv_attr_t iras;
async_mp = mp;
mp = async_mp->b_cont;
async_mp->b_cont = NULL;
if (!ip_recv_attr_from_mblk(async_mp, &iras)) {
/* The ill or ip_stack_t disappeared on us */
ip_drop_input("ip_recv_attr_from_mblk", mp, NULL);
freemsg(mp);
goto done;
}
esp_inbound_restart(mp, &iras);
done:
ira_cleanup(&iras, B_TRUE);
}
/*
* Restart ESP after the SA has been added.
*/
static void
esp_inbound_restart(mblk_t *mp, ip_recv_attr_t *ira)
{
esph_t *esph;
netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
esp2dbg(espstack, ("in ESP inbound_task"));
ASSERT(espstack != NULL);
mp = ipsec_inbound_esp_sa(mp, ira, &esph);
if (mp == NULL)
return;
ASSERT(esph != NULL);
ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
ASSERT(ira->ira_ipsec_esp_sa != NULL);
mp = ira->ira_ipsec_esp_sa->ipsa_input_func(mp, esph, ira);
if (mp == NULL) {
/*
* Either it failed or is pending. In the former case
* ipIfStatsInDiscards was increased.
*/
return;
}
ip_input_post_ipsec(mp, ira);
}
/*
* Now that weak-key passed, actually ADD the security association, and
* send back a reply ADD message.
*/
static int
esp_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi,
int *diagnostic, ipsecesp_stack_t *espstack)
{
isaf_t *primary = NULL, *secondary;
boolean_t clone = B_FALSE, is_inbound = B_FALSE;
ipsa_t *larval = NULL;
ipsacq_t *acqrec;
iacqf_t *acq_bucket;
mblk_t *acq_msgs = NULL;
int rc;
mblk_t *lpkt;
int error;
ipsa_query_t sq;
ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
/*
* Locate the appropriate table(s).
*/
sq.spp = &espstack->esp_sadb; /* XXX */
error = sadb_form_query(ksi, IPSA_Q_SA|IPSA_Q_DST,
IPSA_Q_SA|IPSA_Q_DST|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND,
&sq, diagnostic);
if (error)
return (error);
/*
* Use the direction flags provided by the KMD to determine
* if the inbound or outbound table should be the primary
* for this SA. If these flags were absent then make this
* decision based on the addresses.
*/
if (sq.assoc->sadb_sa_flags & IPSA_F_INBOUND) {
primary = sq.inbound;
secondary = sq.outbound;
is_inbound = B_TRUE;
if (sq.assoc->sadb_sa_flags & IPSA_F_OUTBOUND)
clone = B_TRUE;
} else if (sq.assoc->sadb_sa_flags & IPSA_F_OUTBOUND) {
primary = sq.outbound;
secondary = sq.inbound;
}
if (primary == NULL) {
/*
* The KMD did not set a direction flag, determine which
* table to insert the SA into based on addresses.
*/
switch (ksi->ks_in_dsttype) {
case KS_IN_ADDR_MBCAST:
clone = B_TRUE; /* All mcast SAs can be bidirectional */
sq.assoc->sadb_sa_flags |= IPSA_F_OUTBOUND;
/* FALLTHRU */
/*
* If the source address is either one of mine, or unspecified
* (which is best summed up by saying "not 'not mine'"),
* then the association is potentially bi-directional,
* in that it can be used for inbound traffic and outbound
* traffic. The best example of such an SA is a multicast
* SA (which allows me to receive the outbound traffic).
*/
case KS_IN_ADDR_ME:
sq.assoc->sadb_sa_flags |= IPSA_F_INBOUND;
primary = sq.inbound;
secondary = sq.outbound;
if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME)
clone = B_TRUE;
is_inbound = B_TRUE;
break;
/*
* If the source address literally not mine (either
* unspecified or not mine), then this SA may have an
* address that WILL be mine after some configuration.
* We pay the price for this by making it a bi-directional
* SA.
*/
case KS_IN_ADDR_NOTME:
sq.assoc->sadb_sa_flags |= IPSA_F_OUTBOUND;
primary = sq.outbound;
secondary = sq.inbound;
if (ksi->ks_in_srctype != KS_IN_ADDR_ME) {
sq.assoc->sadb_sa_flags |= IPSA_F_INBOUND;
clone = B_TRUE;
}
break;
default:
*diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
return (EINVAL);
}
}
/*
* Find a ACQUIRE list entry if possible. If we've added an SA that
* suits the needs of an ACQUIRE list entry, we can eliminate the
* ACQUIRE list entry and transmit the enqueued packets. Use the
* high-bit of the sequence number to queue it. Key off destination
* addr, and change acqrec's state.
*/
if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) {
acq_bucket = &(sq.sp->sdb_acq[sq.outhash]);
mutex_enter(&acq_bucket->iacqf_lock);
for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL;
acqrec = acqrec->ipsacq_next) {
mutex_enter(&acqrec->ipsacq_lock);
/*
* Q: I only check sequence. Should I check dst?
* A: Yes, check dest because those are the packets
* that are queued up.
*/
if (acqrec->ipsacq_seq == samsg->sadb_msg_seq &&
IPSA_ARE_ADDR_EQUAL(sq.dstaddr,
acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam))
break;
mutex_exit(&acqrec->ipsacq_lock);
}
if (acqrec != NULL) {
/*
* AHA! I found an ACQUIRE record for this SA.
* Grab the msg list, and free the acquire record.
* I already am holding the lock for this record,
* so all I have to do is free it.
*/
acq_msgs = acqrec->ipsacq_mp;
acqrec->ipsacq_mp = NULL;
mutex_exit(&acqrec->ipsacq_lock);
sadb_destroy_acquire(acqrec,
espstack->ipsecesp_netstack);
}
mutex_exit(&acq_bucket->iacqf_lock);
}
/*
* Find PF_KEY message, and see if I'm an update. If so, find entry
* in larval list (if there).
*/
if (samsg->sadb_msg_type == SADB_UPDATE) {
mutex_enter(&sq.inbound->isaf_lock);
larval = ipsec_getassocbyspi(sq.inbound, sq.assoc->sadb_sa_spi,
ALL_ZEROES_PTR, sq.dstaddr, sq.dst->sin_family);
mutex_exit(&sq.inbound->isaf_lock);
if ((larval == NULL) ||
(larval->ipsa_state != IPSA_STATE_LARVAL)) {
*diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND;
if (larval != NULL) {
IPSA_REFRELE(larval);
}
esp0dbg(("Larval update, but larval disappeared.\n"));
return (ESRCH);
} /* Else sadb_common_add unlinks it for me! */
}
if (larval != NULL) {
/*
* Hold again, because sadb_common_add() consumes a reference,
* and we don't want to clear_lpkt() without a reference.
*/
IPSA_REFHOLD(larval);
}
rc = sadb_common_add(espstack->esp_pfkey_q,
mp, samsg, ksi, primary, secondary, larval, clone, is_inbound,
diagnostic, espstack->ipsecesp_netstack, &espstack->esp_sadb);
if (larval != NULL) {
if (rc == 0) {
lpkt = sadb_clear_lpkt(larval);
if (lpkt != NULL) {
rc = !taskq_dispatch(esp_taskq, inbound_task,
lpkt, TQ_NOSLEEP);
}
}
IPSA_REFRELE(larval);
}
/*
* How much more stack will I create with all of these
* esp_outbound() calls?
*/
/* Handle the packets queued waiting for the SA */
while (acq_msgs != NULL) {
mblk_t *asyncmp;
mblk_t *data_mp;
ip_xmit_attr_t ixas;
ill_t *ill;
asyncmp = acq_msgs;
acq_msgs = acq_msgs->b_next;
asyncmp->b_next = NULL;
/*
* Extract the ip_xmit_attr_t from the first mblk.
* Verifies that the netstack and ill is still around; could
* have vanished while iked was doing its work.
* On succesful return we have a nce_t and the ill/ipst can't
* disappear until we do the nce_refrele in ixa_cleanup.
*/
data_mp = asyncmp->b_cont;
asyncmp->b_cont = NULL;
if (!ip_xmit_attr_from_mblk(asyncmp, &ixas)) {
ESP_BUMP_STAT(espstack, out_discards);
ip_drop_packet(data_mp, B_FALSE, NULL,
DROPPER(ipss, ipds_sadb_acquire_timeout),
&espstack->esp_dropper);
} else if (rc != 0) {
ill = ixas.ixa_nce->nce_ill;
ESP_BUMP_STAT(espstack, out_discards);
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_sadb_acquire_timeout),
&espstack->esp_dropper);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
} else {
esp_outbound_finish(data_mp, &ixas);
}
ixa_cleanup(&ixas);
}
return (rc);
}
/*
* Process one of the queued messages (from ipsacq_mp) once the SA
* has been added.
*/
static void
esp_outbound_finish(mblk_t *data_mp, ip_xmit_attr_t *ixa)
{
netstack_t *ns = ixa->ixa_ipst->ips_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
ill_t *ill = ixa->ixa_nce->nce_ill;
if (!ipsec_outbound_sa(data_mp, ixa, IPPROTO_ESP)) {
ESP_BUMP_STAT(espstack, out_discards);
ip_drop_packet(data_mp, B_FALSE, ill,
DROPPER(ipss, ipds_sadb_acquire_timeout),
&espstack->esp_dropper);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
return;
}
data_mp = esp_outbound(data_mp, ixa);
if (data_mp == NULL)
return;
/* do AH processing if needed */
data_mp = esp_do_outbound_ah(data_mp, ixa);
if (data_mp == NULL)
return;
(void) ip_output_post_ipsec(data_mp, ixa);
}
/*
* Add new ESP security association. This may become a generic AH/ESP
* routine eventually.
*/
static int
esp_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic, netstack_t *ns)
{
sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
sadb_address_t *srcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
sadb_address_t *isrcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC];
sadb_address_t *idstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST];
sadb_address_t *nttext_loc =
(sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC];
sadb_address_t *nttext_rem =
(sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM];
sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
struct sockaddr_in *src, *dst;
struct sockaddr_in *natt_loc, *natt_rem;
struct sockaddr_in6 *natt_loc6, *natt_rem6;
sadb_lifetime_t *soft =
(sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
sadb_lifetime_t *hard =
(sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
sadb_lifetime_t *idle =
(sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE];
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
/* I need certain extensions present for an ADD message. */
if (srcext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
return (EINVAL);
}
if (dstext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
return (EINVAL);
}
if (isrcext == NULL && idstext != NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC;
return (EINVAL);
}
if (isrcext != NULL && idstext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST;
return (EINVAL);
}
if (assoc == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
return (EINVAL);
}
if (ekey == NULL && assoc->sadb_sa_encrypt != SADB_EALG_NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_EKEY;
return (EINVAL);
}
src = (struct sockaddr_in *)(srcext + 1);
dst = (struct sockaddr_in *)(dstext + 1);
natt_loc = (struct sockaddr_in *)(nttext_loc + 1);
natt_loc6 = (struct sockaddr_in6 *)(nttext_loc + 1);
natt_rem = (struct sockaddr_in *)(nttext_rem + 1);
natt_rem6 = (struct sockaddr_in6 *)(nttext_rem + 1);
/* Sundry ADD-specific reality checks. */
/* XXX STATS : Logging/stats here? */
if ((assoc->sadb_sa_state != SADB_SASTATE_MATURE) &&
(assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE_ELSEWHERE)) {
*diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
return (EINVAL);
}
if (assoc->sadb_sa_encrypt == SADB_EALG_NONE) {
*diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
return (EINVAL);
}
#ifndef IPSEC_LATENCY_TEST
if (assoc->sadb_sa_encrypt == SADB_EALG_NULL &&
assoc->sadb_sa_auth == SADB_AALG_NONE) {
*diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
return (EINVAL);
}
#endif
if (assoc->sadb_sa_flags & ~espstack->esp_sadb.s_addflags) {
*diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
return (EINVAL);
}
if ((*diagnostic = sadb_hardsoftchk(hard, soft, idle)) != 0) {
return (EINVAL);
}
ASSERT(src->sin_family == dst->sin_family);
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_LOC) {
if (nttext_loc == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC;
return (EINVAL);
}
if (natt_loc->sin_family == AF_INET6 &&
!IN6_IS_ADDR_V4MAPPED(&natt_loc6->sin6_addr)) {
*diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC;
return (EINVAL);
}
}
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_REM) {
if (nttext_rem == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM;
return (EINVAL);
}
if (natt_rem->sin_family == AF_INET6 &&
!IN6_IS_ADDR_V4MAPPED(&natt_rem6->sin6_addr)) {
*diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM;
return (EINVAL);
}
}
/* Stuff I don't support, for now. XXX Diagnostic? */
if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL)
return (EOPNOTSUPP);
if ((*diagnostic = sadb_labelchk(ksi)) != 0)
return (EINVAL);
/*
* XXX Policy : I'm not checking identities at this time,
* but if I did, I'd do them here, before I sent
* the weak key check up to the algorithm.
*/
mutex_enter(&ipss->ipsec_alg_lock);
/*
* First locate the authentication algorithm.
*/
#ifdef IPSEC_LATENCY_TEST
if (akey != NULL && assoc->sadb_sa_auth != SADB_AALG_NONE) {
#else
if (akey != NULL) {
#endif
ipsec_alginfo_t *aalg;
aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH]
[assoc->sadb_sa_auth];
if (aalg == NULL || !ALG_VALID(aalg)) {
mutex_exit(&ipss->ipsec_alg_lock);
esp1dbg(espstack, ("Couldn't find auth alg #%d.\n",
assoc->sadb_sa_auth));
*diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
return (EINVAL);
}
/*
* Sanity check key sizes.
* Note: It's not possible to use SADB_AALG_NONE because
* this auth_alg is not defined with ALG_FLAG_VALID. If this
* ever changes, the same check for SADB_AALG_NONE and
* a auth_key != NULL should be made here ( see below).
*/
if (!ipsec_valid_key_size(akey->sadb_key_bits, aalg)) {
mutex_exit(&ipss->ipsec_alg_lock);
*diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS;
return (EINVAL);
}
ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
/* check key and fix parity if needed */
if (ipsec_check_key(aalg->alg_mech_type, akey, B_TRUE,
diagnostic) != 0) {
mutex_exit(&ipss->ipsec_alg_lock);
return (EINVAL);
}
}
/*
* Then locate the encryption algorithm.
*/
if (ekey != NULL) {
uint_t keybits;
ipsec_alginfo_t *ealg;
ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR]
[assoc->sadb_sa_encrypt];
if (ealg == NULL || !ALG_VALID(ealg)) {
mutex_exit(&ipss->ipsec_alg_lock);
esp1dbg(espstack, ("Couldn't find encr alg #%d.\n",
assoc->sadb_sa_encrypt));
*diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
return (EINVAL);
}
/*
* Sanity check key sizes. If the encryption algorithm is
* SADB_EALG_NULL but the encryption key is NOT
* NULL then complain.
*
* The keying material includes salt bits if required by
* algorithm and optionally the Initial IV, check the
* length of whats left.
*/
keybits = ekey->sadb_key_bits;
keybits -= ekey->sadb_key_reserved;
keybits -= SADB_8TO1(ealg->alg_saltlen);
if ((assoc->sadb_sa_encrypt == SADB_EALG_NULL) ||
(!ipsec_valid_key_size(keybits, ealg))) {
mutex_exit(&ipss->ipsec_alg_lock);
*diagnostic = SADB_X_DIAGNOSTIC_BAD_EKEYBITS;
return (EINVAL);
}
ASSERT(ealg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
/* check key */
if (ipsec_check_key(ealg->alg_mech_type, ekey, B_FALSE,
diagnostic) != 0) {
mutex_exit(&ipss->ipsec_alg_lock);
return (EINVAL);
}
}
mutex_exit(&ipss->ipsec_alg_lock);
return (esp_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
diagnostic, espstack));
}
/*
* Update a security association. Updates come in two varieties. The first
* is an update of lifetimes on a non-larval SA. The second is an update of
* a larval SA, which ends up looking a lot more like an add.
*/
static int
esp_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
ipsecesp_stack_t *espstack, uint8_t sadb_msg_type)
{
sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
mblk_t *buf_pkt;
int rcode;
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
if (dstext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
return (EINVAL);
}
rcode = sadb_update_sa(mp, ksi, &buf_pkt, &espstack->esp_sadb,
diagnostic, espstack->esp_pfkey_q, esp_add_sa,
espstack->ipsecesp_netstack, sadb_msg_type);
if ((assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE) ||
(rcode != 0)) {
return (rcode);
}
HANDLE_BUF_PKT(esp_taskq, espstack->ipsecesp_netstack->netstack_ipsec,
espstack->esp_dropper, buf_pkt);
return (rcode);
}
/* XXX refactor me */
/*
* Delete a security association. This is REALLY likely to be code common to
* both AH and ESP. Find the association, then unlink it.
*/
static int
esp_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
ipsecesp_stack_t *espstack, uint8_t sadb_msg_type)
{
sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
sadb_address_t *srcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
struct sockaddr_in *sin;
if (assoc == NULL) {
if (dstext != NULL) {
sin = (struct sockaddr_in *)(dstext + 1);
} else if (srcext != NULL) {
sin = (struct sockaddr_in *)(srcext + 1);
} else {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
return (EINVAL);
}
return (sadb_purge_sa(mp, ksi,
(sin->sin_family == AF_INET6) ? &espstack->esp_sadb.s_v6 :
&espstack->esp_sadb.s_v4, diagnostic,
espstack->esp_pfkey_q));
}
return (sadb_delget_sa(mp, ksi, &espstack->esp_sadb, diagnostic,
espstack->esp_pfkey_q, sadb_msg_type));
}
/* XXX refactor me */
/*
* Convert the entire contents of all of ESP's SA tables into PF_KEY SADB_DUMP
* messages.
*/
static void
esp_dump(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
{
int error;
sadb_msg_t *samsg;
/*
* Dump each fanout, bailing if error is non-zero.
*/
error = sadb_dump(espstack->esp_pfkey_q, mp, ksi,
&espstack->esp_sadb.s_v4);
if (error != 0)
goto bail;
error = sadb_dump(espstack->esp_pfkey_q, mp, ksi,
&espstack->esp_sadb.s_v6);
bail:
ASSERT(mp->b_cont != NULL);
samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
samsg->sadb_msg_errno = (uint8_t)error;
sadb_pfkey_echo(espstack->esp_pfkey_q, mp,
(sadb_msg_t *)mp->b_cont->b_rptr, ksi, NULL);
}
/*
* First-cut reality check for an inbound PF_KEY message.
*/
static boolean_t
esp_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi,
ipsecesp_stack_t *espstack)
{
int diagnostic;
if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) {
diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT;
goto badmsg;
}
if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL ||
ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) {
diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT;
goto badmsg;
}
return (B_FALSE); /* False ==> no failures */
badmsg:
sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
ksi->ks_in_serial);
return (B_TRUE); /* True ==> failures */
}
/*
* ESP parsing of PF_KEY messages. Keysock did most of the really silly
* error cases. What I receive is a fully-formed, syntactically legal
* PF_KEY message. I then need to check semantics...
*
* This code may become common to AH and ESP. Stay tuned.
*
* I also make the assumption that db_ref's are cool. If this assumption
* is wrong, this means that someone other than keysock or me has been
* mucking with PF_KEY messages.
*/
static void
esp_parse_pfkey(mblk_t *mp, ipsecesp_stack_t *espstack)
{
mblk_t *msg = mp->b_cont;
sadb_msg_t *samsg;
keysock_in_t *ksi;
int error;
int diagnostic = SADB_X_DIAGNOSTIC_NONE;
ASSERT(msg != NULL);
samsg = (sadb_msg_t *)msg->b_rptr;
ksi = (keysock_in_t *)mp->b_rptr;
/*
* If applicable, convert unspecified AF_INET6 to unspecified
* AF_INET. And do other address reality checks.
*/
if (!sadb_addrfix(ksi, espstack->esp_pfkey_q, mp,
espstack->ipsecesp_netstack) ||
esp_pfkey_reality_failures(mp, ksi, espstack)) {
return;
}
switch (samsg->sadb_msg_type) {
case SADB_ADD:
error = esp_add_sa(mp, ksi, &diagnostic,
espstack->ipsecesp_netstack);
if (error != 0) {
sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
diagnostic, ksi->ks_in_serial);
}
/* else esp_add_sa() took care of things. */
break;
case SADB_DELETE:
case SADB_X_DELPAIR:
case SADB_X_DELPAIR_STATE:
error = esp_del_sa(mp, ksi, &diagnostic, espstack,
samsg->sadb_msg_type);
if (error != 0) {
sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
diagnostic, ksi->ks_in_serial);
}
/* Else esp_del_sa() took care of things. */
break;
case SADB_GET:
error = sadb_delget_sa(mp, ksi, &espstack->esp_sadb,
&diagnostic, espstack->esp_pfkey_q, samsg->sadb_msg_type);
if (error != 0) {
sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
diagnostic, ksi->ks_in_serial);
}
/* Else sadb_get_sa() took care of things. */
break;
case SADB_FLUSH:
sadbp_flush(&espstack->esp_sadb, espstack->ipsecesp_netstack);
sadb_pfkey_echo(espstack->esp_pfkey_q, mp, samsg, ksi, NULL);
break;
case SADB_REGISTER:
/*
* Hmmm, let's do it! Check for extensions (there should
* be none), extract the fields, call esp_register_out(),
* then either free or report an error.
*
* Keysock takes care of the PF_KEY bookkeeping for this.
*/
if (esp_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid,
ksi->ks_in_serial, espstack, msg_getcred(mp, NULL))) {
freemsg(mp);
} else {
/*
* Only way this path hits is if there is a memory
* failure. It will not return B_FALSE because of
* lack of esp_pfkey_q if I am in wput().
*/
sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM,
diagnostic, ksi->ks_in_serial);
}
break;
case SADB_UPDATE:
case SADB_X_UPDATEPAIR:
/*
* Find a larval, if not there, find a full one and get
* strict.
*/
error = esp_update_sa(mp, ksi, &diagnostic, espstack,
samsg->sadb_msg_type);
if (error != 0) {
sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
diagnostic, ksi->ks_in_serial);
}
/* else esp_update_sa() took care of things. */
break;
case SADB_GETSPI:
/*
* Reserve a new larval entry.
*/
esp_getspi(mp, ksi, espstack);
break;
case SADB_ACQUIRE:
/*
* Find larval and/or ACQUIRE record and kill it (them), I'm
* most likely an error. Inbound ACQUIRE messages should only
* have the base header.
*/
sadb_in_acquire(samsg, &espstack->esp_sadb,
espstack->esp_pfkey_q, espstack->ipsecesp_netstack);
freemsg(mp);
break;
case SADB_DUMP:
/*
* Dump all entries.
*/
esp_dump(mp, ksi, espstack);
/* esp_dump will take care of the return message, etc. */
break;
case SADB_EXPIRE:
/* Should never reach me. */
sadb_pfkey_error(espstack->esp_pfkey_q, mp, EOPNOTSUPP,
diagnostic, ksi->ks_in_serial);
break;
default:
sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial);
break;
}
}
/*
* Handle case where PF_KEY says it can't find a keysock for one of my
* ACQUIRE messages.
*/
static void
esp_keysock_no_socket(mblk_t *mp, ipsecesp_stack_t *espstack)
{
sadb_msg_t *samsg;
keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr;
if (mp->b_cont == NULL) {
freemsg(mp);
return;
}
samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
/*
* If keysock can't find any registered, delete the acquire record
* immediately, and handle errors.
*/
if (samsg->sadb_msg_type == SADB_ACQUIRE) {
samsg->sadb_msg_errno = kse->ks_err_errno;
samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
/*
* Use the write-side of the esp_pfkey_q
*/
sadb_in_acquire(samsg, &espstack->esp_sadb,
WR(espstack->esp_pfkey_q), espstack->ipsecesp_netstack);
}
freemsg(mp);
}
/*
* ESP module write put routine.
*/
static void
ipsecesp_wput(queue_t *q, mblk_t *mp)
{
ipsec_info_t *ii;
struct iocblk *iocp;
ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
esp3dbg(espstack, ("In esp_wput().\n"));
/* NOTE: Each case must take care of freeing or passing mp. */
switch (mp->b_datap->db_type) {
case M_CTL:
if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) {
/* Not big enough message. */
freemsg(mp);
break;
}
ii = (ipsec_info_t *)mp->b_rptr;
switch (ii->ipsec_info_type) {
case KEYSOCK_OUT_ERR:
esp1dbg(espstack, ("Got KEYSOCK_OUT_ERR message.\n"));
esp_keysock_no_socket(mp, espstack);
break;
case KEYSOCK_IN:
ESP_BUMP_STAT(espstack, keysock_in);
esp3dbg(espstack, ("Got KEYSOCK_IN message.\n"));
/* Parse the message. */
esp_parse_pfkey(mp, espstack);
break;
case KEYSOCK_HELLO:
sadb_keysock_hello(&espstack->esp_pfkey_q, q, mp,
esp_ager, (void *)espstack, &espstack->esp_event,
SADB_SATYPE_ESP);
break;
default:
esp2dbg(espstack, ("Got M_CTL from above of 0x%x.\n",
ii->ipsec_info_type));
freemsg(mp);
break;
}
break;
case M_IOCTL:
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case ND_SET:
case ND_GET:
if (nd_getset(q, espstack->ipsecesp_g_nd, mp)) {
qreply(q, mp);
return;
} else {
iocp->ioc_error = ENOENT;
}
/* FALLTHRU */
default:
/* We really don't support any other ioctls, do we? */
/* Return EINVAL */
if (iocp->ioc_error != ENOENT)
iocp->ioc_error = EINVAL;
iocp->ioc_count = 0;
mp->b_datap->db_type = M_IOCACK;
qreply(q, mp);
return;
}
default:
esp3dbg(espstack,
("Got default message, type %d, passing to IP.\n",
mp->b_datap->db_type));
putnext(q, mp);
}
}
/*
* Wrapper to allow IP to trigger an ESP association failure message
* during inbound SA selection.
*/
void
ipsecesp_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt,
uint32_t spi, void *addr, int af, ip_recv_attr_t *ira)
{
netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
ipsec_stack_t *ipss = ns->netstack_ipsec;
if (espstack->ipsecesp_log_unknown_spi) {
ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi,
addr, af, espstack->ipsecesp_netstack);
}
ip_drop_packet(mp, B_TRUE, ira->ira_ill,
DROPPER(ipss, ipds_esp_no_sa),
&espstack->esp_dropper);
}
/*
* Initialize the ESP input and output processing functions.
*/
void
ipsecesp_init_funcs(ipsa_t *sa)
{
if (sa->ipsa_output_func == NULL)
sa->ipsa_output_func = esp_outbound;
if (sa->ipsa_input_func == NULL)
sa->ipsa_input_func = esp_inbound;
}