ipsecah.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/strlog.h>
#include <sys/tihdr.h>
#include <sys/socket.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/vtrace.h>
#include <sys/debug.h>
#include <sys/atomic.h>
#include <sys/strsun.h>
#include <sys/random.h>
#include <netinet/in.h>
#include <net/if.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <net/pfkeyv2.h>
#include <inet/common.h>
#include <inet/mi.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <inet/nd.h>
#include <inet/ipsec_info.h>
#include <inet/ipsec_impl.h>
#include <inet/sadb.h>
#include <inet/ipsecah.h>
#include <inet/ipsec_impl.h>
#include <inet/ipdrop.h>
#include <sys/taskq.h>
#include <sys/policy.h>
/* EXPORT DELETE START */
#include <sys/iphada.h>
/* EXPORT DELETE END */
#include <sys/strsun.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <sys/kstat.h>
/* Packet dropper for AH drops. */
static ipdropper_t ah_dropper;
static kmutex_t ipsecah_param_lock; /* Protect ipsecah_param_arr[] below. */
/*
* Table of ND variables supported by ipsecah. These are loaded into
* ipsecah_g_nd in ipsecah_init_nd.
* All of these are alterable, within the min/max values given, at run time.
*/
static ipsecahparam_t ipsecah_param_arr[] = {
/* min max value name */
{ 0, 3, 0, "ipsecah_debug"},
{ 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecah_age_interval"},
{ 1, 10, 1, "ipsecah_reap_delay"},
{ 1, SADB_MAX_REPLAY, 64, "ipsecah_replay_size"},
{ 1, 300, 15, "ipsecah_acquire_timeout"},
{ 1, 1800, 90, "ipsecah_larval_timeout"},
/* Default lifetime values for ACQUIRE messages. */
{ 0, 0xffffffffU, 0, "ipsecah_default_soft_bytes"},
{ 0, 0xffffffffU, 0, "ipsecah_default_hard_bytes"},
{ 0, 0xffffffffU, 24000, "ipsecah_default_soft_addtime"},
{ 0, 0xffffffffU, 28800, "ipsecah_default_hard_addtime"},
{ 0, 0xffffffffU, 0, "ipsecah_default_soft_usetime"},
{ 0, 0xffffffffU, 0, "ipsecah_default_hard_usetime"},
{ 0, 1, 0, "ipsecah_log_unknown_spi"},
};
#define ipsecah_debug ipsecah_param_arr[0].ipsecah_param_value
#define ipsecah_age_interval ipsecah_param_arr[1].ipsecah_param_value
#define ipsecah_age_int_max ipsecah_param_arr[1].ipsecah_param_max
#define ipsecah_reap_delay ipsecah_param_arr[2].ipsecah_param_value
#define ipsecah_replay_size ipsecah_param_arr[3].ipsecah_param_value
#define ipsecah_acquire_timeout ipsecah_param_arr[4].ipsecah_param_value
#define ipsecah_larval_timeout ipsecah_param_arr[5].ipsecah_param_value
#define ipsecah_default_soft_bytes ipsecah_param_arr[6].ipsecah_param_value
#define ipsecah_default_hard_bytes ipsecah_param_arr[7].ipsecah_param_value
#define ipsecah_default_soft_addtime ipsecah_param_arr[8].ipsecah_param_value
#define ipsecah_default_hard_addtime ipsecah_param_arr[9].ipsecah_param_value
#define ipsecah_default_soft_usetime ipsecah_param_arr[10].ipsecah_param_value
#define ipsecah_default_hard_usetime ipsecah_param_arr[11].ipsecah_param_value
#define ipsecah_log_unknown_spi ipsecah_param_arr[12].ipsecah_param_value
#define ah0dbg(a) printf a
/* NOTE: != 0 instead of > 0 so lint doesn't complain. */
#define ah1dbg(a) if (ipsecah_debug != 0) printf a
#define ah2dbg(a) if (ipsecah_debug > 1) printf a
#define ah3dbg(a) if (ipsecah_debug > 2) printf a
static IDP ipsecah_g_nd;
/*
* XXX This is broken. Padding should be determined dynamically
* depending on the ICV size and IP version number so that the
* total AH header size is a multiple of 32 bits or 64 bits
* for V4 and V6 respectively. For 96bit ICVs we have no problems.
* Anything different from that, we need to fix our code.
*/
#define IPV4_PADDING_ALIGN 0x04 /* Multiple of 32 bits */
#define IPV6_PADDING_ALIGN 0x04 /* Multiple of 32 bits */
/*
* Helper macro. Avoids a call to msgdsize if there is only one
* mblk in the chain.
*/
#define AH_MSGSIZE(mp) ((mp)->b_cont != NULL ? msgdsize(mp) : MBLKL(mp))
static ipsec_status_t ah_auth_out_done(mblk_t *);
static ipsec_status_t ah_auth_in_done(mblk_t *);
static mblk_t *ah_process_ip_options_v4(mblk_t *, ipsa_t *, int *, uint_t,
boolean_t);
static mblk_t *ah_process_ip_options_v6(mblk_t *, ipsa_t *, int *, uint_t,
boolean_t);
static void ah_getspi(mblk_t *, keysock_in_t *);
static ipsec_status_t ah_inbound_accelerated(mblk_t *, boolean_t, ipsa_t *,
uint32_t);
static ipsec_status_t ah_outbound_accelerated_v4(mblk_t *, ipsa_t *);
static ipsec_status_t ah_outbound_accelerated_v6(mblk_t *, ipsa_t *);
static ipsec_status_t ah_outbound(mblk_t *);
static int ipsecah_open(queue_t *, dev_t *, int, int, cred_t *);
static int ipsecah_close(queue_t *);
static void ipsecah_rput(queue_t *, mblk_t *);
static void ipsecah_wput(queue_t *, mblk_t *);
static void ah_send_acquire(ipsacq_t *, mblk_t *);
static boolean_t ah_register_out(uint32_t, uint32_t, uint_t);
static struct module_info info = {
5136, "ipsecah", 0, INFPSZ, 65536, 1024
};
static struct qinit rinit = {
(pfi_t)ipsecah_rput, NULL, ipsecah_open, ipsecah_close, NULL, &info,
NULL
};
static struct qinit winit = {
(pfi_t)ipsecah_wput, NULL, ipsecah_open, ipsecah_close, NULL, &info,
NULL
};
struct streamtab ipsecahinfo = {
&rinit, &winit, NULL, NULL
};
/*
* Keysock instance of AH. "There can be only one." :)
* Use casptr() on this because I don't set it until KEYSOCK_HELLO comes down.
* Paired up with the ah_pfkey_q is the ah_event, which will age SAs.
*/
static queue_t *ah_pfkey_q;
static timeout_id_t ah_event;
static taskq_t *ah_taskq;
static mblk_t *ah_ip_unbind;
/*
* Stats. This may eventually become a full-blown SNMP MIB once that spec
* stabilizes.
*/
typedef struct
{
kstat_named_t ah_stat_num_aalgs;
kstat_named_t ah_stat_good_auth;
kstat_named_t ah_stat_bad_auth;
kstat_named_t ah_stat_replay_failures;
kstat_named_t ah_stat_replay_early_failures;
kstat_named_t ah_stat_keysock_in;
kstat_named_t ah_stat_out_requests;
kstat_named_t ah_stat_acquire_requests;
kstat_named_t ah_stat_bytes_expired;
kstat_named_t ah_stat_out_discards;
kstat_named_t ah_stat_in_accelerated;
kstat_named_t ah_stat_out_accelerated;
kstat_named_t ah_stat_noaccel;
kstat_named_t ah_stat_crypto_sync;
kstat_named_t ah_stat_crypto_async;
kstat_named_t ah_stat_crypto_failures;
} ah_kstats_t;
#define AH_BUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64++
#define AH_DEBUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64--
static kstat_t *ah_ksp;
static ah_kstats_t *ah_kstats;
static int ah_kstat_update(kstat_t *, int);
static boolean_t
ah_kstat_init(void)
{
ah_ksp = kstat_create("ipsecah", 0, "ah_stat", "net",
KSTAT_TYPE_NAMED, sizeof (*ah_kstats) / sizeof (kstat_named_t),
KSTAT_FLAG_PERSISTENT);
if (ah_ksp == NULL)
return (B_FALSE);
ah_kstats = ah_ksp->ks_data;
ah_ksp->ks_update = ah_kstat_update;
#define K64 KSTAT_DATA_UINT64
#define KI(x) kstat_named_init(&(ah_kstats->ah_stat_##x), #x, K64)
KI(num_aalgs);
KI(good_auth);
KI(bad_auth);
KI(replay_failures);
KI(replay_early_failures);
KI(keysock_in);
KI(out_requests);
KI(acquire_requests);
KI(bytes_expired);
KI(out_discards);
KI(in_accelerated);
KI(out_accelerated);
KI(noaccel);
KI(crypto_sync);
KI(crypto_async);
KI(crypto_failures);
#undef KI
#undef K64
kstat_install(ah_ksp);
return (B_TRUE);
}
static int
ah_kstat_update(kstat_t *kp, int rw)
{
ah_kstats_t *ekp;
if ((kp == NULL) || (kp->ks_data == NULL))
return (EIO);
if (rw == KSTAT_WRITE)
return (EACCES);
ASSERT(kp == ah_ksp);
ekp = (ah_kstats_t *)kp->ks_data;
ASSERT(ekp == ah_kstats);
mutex_enter(&alg_lock);
ekp->ah_stat_num_aalgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_AUTH];
mutex_exit(&alg_lock);
return (0);
}
/*
* Don't have to lock ipsec_age_interval, as only one thread will access it at
* a time, because I control the one function that does a qtimeout() on
* ah_pfkey_q.
*/
/* ARGSUSED */
static void
ah_ager(void *ignoreme)
{
hrtime_t begin = gethrtime();
sadb_ager(&ah_sadb.s_v4, ah_pfkey_q, ah_sadb.s_ip_q,
ipsecah_reap_delay);
sadb_ager(&ah_sadb.s_v6, ah_pfkey_q, ah_sadb.s_ip_q,
ipsecah_reap_delay);
ah_event = sadb_retimeout(begin, ah_pfkey_q, ah_ager,
&ipsecah_age_interval, ipsecah_age_int_max, info.mi_idnum);
}
/*
* Get an AH NDD parameter.
*/
/* ARGSUSED */
static int
ipsecah_param_get(q, mp, cp, cr)
queue_t *q;
mblk_t *mp;
caddr_t cp;
cred_t *cr;
{
ipsecahparam_t *ipsecahpa = (ipsecahparam_t *)cp;
uint_t value;
mutex_enter(&ipsecah_param_lock);
value = ipsecahpa->ipsecah_param_value;
mutex_exit(&ipsecah_param_lock);
(void) mi_mpprintf(mp, "%u", value);
return (0);
}
/*
* This routine sets an NDD variable in a ipsecahparam_t structure.
*/
/* ARGSUSED */
static int
ipsecah_param_set(q, mp, value, cp, cr)
queue_t *q;
mblk_t *mp;
char *value;
caddr_t cp;
cred_t *cr;
{
ulong_t new_value;
ipsecahparam_t *ipsecahpa = (ipsecahparam_t *)cp;
/*
* Fail the request if the new value does not lie within the
* required bounds.
*/
if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
new_value < ipsecahpa->ipsecah_param_min ||
new_value > ipsecahpa->ipsecah_param_max) {
return (EINVAL);
}
/* Set the new value */
mutex_enter(&ipsecah_param_lock);
ipsecahpa->ipsecah_param_value = new_value;
mutex_exit(&ipsecah_param_lock);
return (0);
}
/*
* Using lifetime NDD variables, fill in an extended combination's
* lifetime information.
*/
void
ipsecah_fill_defs(sadb_x_ecomb_t *ecomb)
{
ecomb->sadb_x_ecomb_soft_bytes = ipsecah_default_soft_bytes;
ecomb->sadb_x_ecomb_hard_bytes = ipsecah_default_hard_bytes;
ecomb->sadb_x_ecomb_soft_addtime = ipsecah_default_soft_addtime;
ecomb->sadb_x_ecomb_hard_addtime = ipsecah_default_hard_addtime;
ecomb->sadb_x_ecomb_soft_usetime = ipsecah_default_soft_usetime;
ecomb->sadb_x_ecomb_hard_usetime = ipsecah_default_hard_usetime;
}
/*
* Initialize things for AH at module load time.
*/
boolean_t
ipsecah_ddi_init(void)
{
int count;
ipsecahparam_t *ahp = ipsecah_param_arr;
for (count = A_CNT(ipsecah_param_arr); count-- > 0; ahp++) {
if (ahp->ipsecah_param_name != NULL &&
ahp->ipsecah_param_name[0]) {
if (!nd_load(&ipsecah_g_nd, ahp->ipsecah_param_name,
ipsecah_param_get, ipsecah_param_set,
(caddr_t)ahp)) {
nd_free(&ipsecah_g_nd);
return (B_FALSE);
}
}
}
if (!ah_kstat_init()) {
nd_free(&ipsecah_g_nd);
return (B_FALSE);
}
ah_taskq = taskq_create("ah_taskq", 1, minclsyspri,
IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0);
ah_sadb.s_acquire_timeout = &ipsecah_acquire_timeout;
ah_sadb.s_acqfn = ah_send_acquire;
sadbp_init(&ah_sadb, SADB_SATYPE_AH);
mutex_init(&ipsecah_param_lock, NULL, MUTEX_DEFAULT, 0);
ip_drop_register(&ah_dropper, "IPsec AH");
return (B_TRUE);
}
/*
* Destroy things for AH at module unload time.
*/
void
ipsecah_ddi_destroy(void)
{
ah1dbg(("In ddi_destroy.\n"));
sadbp_destroy(&ah_sadb);
ip_drop_unregister(&ah_dropper);
taskq_destroy(ah_taskq);
mutex_destroy(&ipsecah_param_lock);
nd_free(&ipsecah_g_nd);
kstat_delete(ah_ksp);
}
/*
* AH module open routine. The module should be opened by keysock.
*/
/* ARGSUSED */
static int
ipsecah_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
if (secpolicy_net_config(credp, B_FALSE) != 0) {
ah1dbg(("Non-privileged user trying to open ipsecah.\n"));
return (EPERM);
}
if (q->q_ptr != NULL)
return (0); /* Re-open of an already open instance. */
if (sflag != MODOPEN)
return (EINVAL);
/*
* ASSUMPTIONS (because I'm MT_OCEXCL):
*
* * I'm being pushed on top of IP for all my opens (incl. #1).
* * Only ipsecah_open() can write into ah_sadb.s_ip_q.
* * Because of this, I can check lazily for ah_sadb.s_ip_q.
*
* If these assumptions are wrong, I'm in BIG trouble...
*/
q->q_ptr = q; /* just so I know I'm open */
if (ah_sadb.s_ip_q == NULL) {
struct T_unbind_req *tur;
ah_sadb.s_ip_q = WR(q);
/* Allocate an unbind... */
ah_ip_unbind = allocb(sizeof (struct T_unbind_req), BPRI_HI);
/*
* Send down T_BIND_REQ to bind IPPROTO_AH.
* Handle the ACK here in AH.
*/
qprocson(q);
if (ah_ip_unbind == NULL ||
!sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) {
if (ah_ip_unbind != NULL) {
freeb(ah_ip_unbind);
ah_ip_unbind = NULL;
}
q->q_ptr = NULL;
qprocsoff(q);
return (ENOMEM);
}
ah_ip_unbind->b_datap->db_type = M_PROTO;
tur = (struct T_unbind_req *)ah_ip_unbind->b_rptr;
tur->PRIM_type = T_UNBIND_REQ;
} else {
qprocson(q);
}
/*
* For now, there's not much I can do. I'll be getting a message
* passed down to me from keysock (in my wput), and a T_BIND_ACK
* up from IP (in my rput).
*/
return (0);
}
/*
* AH module close routine.
*/
static int
ipsecah_close(queue_t *q)
{
/*
* If ah_sadb.s_ip_q is attached to this instance, send a
* T_UNBIND_REQ to IP for the instance before doing
* a qprocsoff().
*/
if (WR(q) == ah_sadb.s_ip_q && ah_ip_unbind != NULL) {
putnext(WR(q), ah_ip_unbind);
ah_ip_unbind = NULL;
}
/*
* Clean up q_ptr, if needed.
*/
qprocsoff(q);
/* Keysock queue check is safe, because of OCEXCL perimeter. */
if (q == ah_pfkey_q) {
ah0dbg(("ipsecah_close: Ummm... keysock is closing AH.\n"));
ah_pfkey_q = NULL;
/* Detach qtimeouts. */
(void) quntimeout(q, ah_event);
}
if (WR(q) == ah_sadb.s_ip_q) {
/*
* If the ah_sadb.s_ip_q is attached to this instance, find
* another. The OCEXCL outer perimeter helps us here.
*/
ah_sadb.s_ip_q = NULL;
/*
* Find a replacement queue for ah_sadb.s_ip_q.
*/
if (ah_pfkey_q != NULL && ah_pfkey_q != RD(q)) {
/*
* See if we can use the pfkey_q.
*/
ah_sadb.s_ip_q = WR(ah_pfkey_q);
}
if (ah_sadb.s_ip_q == NULL ||
!sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) {
ah1dbg(("ipsecah: Can't reassign ah_sadb.s_ip_q.\n"));
ah_sadb.s_ip_q = NULL;
} else {
ah_ip_unbind = allocb(sizeof (struct T_unbind_req),
BPRI_HI);
if (ah_ip_unbind != NULL) {
struct T_unbind_req *tur;
ah_ip_unbind->b_datap->db_type = M_PROTO;
tur = (struct T_unbind_req *)
ah_ip_unbind->b_rptr;
tur->PRIM_type = T_UNBIND_REQ;
}
/* If it's NULL, I can't do much here. */
}
}
return (0);
}
/*
* AH module read put routine.
*/
/* ARGSUSED */
static void
ipsecah_rput(queue_t *q, mblk_t *mp)
{
keysock_in_t *ksi;
int *addrtype;
ire_t *ire;
mblk_t *ire_mp, *last_mp;
switch (mp->b_datap->db_type) {
case M_CTL:
/*
* IPsec request of some variety from IP. IPSEC_{IN,OUT}
* are the common cases, but even ICMP error messages from IP
* may rise up here.
*
* Ummmm, actually, this can also be the reflected KEYSOCK_IN
* message, with an IRE_DB_TYPE hung off at the end.
*/
switch (((ipsec_info_t *)(mp->b_rptr))->ipsec_info_type) {
case KEYSOCK_IN:
last_mp = mp;
while (last_mp->b_cont != NULL &&
last_mp->b_cont->b_datap->db_type != IRE_DB_TYPE)
last_mp = last_mp->b_cont;
if (last_mp->b_cont == NULL) {
freemsg(mp);
break; /* Out of switch. */
}
ire_mp = last_mp->b_cont;
last_mp->b_cont = NULL;
ksi = (keysock_in_t *)mp->b_rptr;
if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN)
addrtype = &ksi->ks_in_srctype;
else if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN)
addrtype = &ksi->ks_in_dsttype;
else if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN)
addrtype = &ksi->ks_in_proxytype;
ire = (ire_t *)ire_mp->b_rptr;
*addrtype = sadb_addrset(ire);
freemsg(ire_mp);
if (ah_pfkey_q != NULL) {
/*
* Decrement counter to make up for
* auto-increment in ipsecah_wput().
* I'm running all MT-hot through here, so
* don't worry about perimeters and lateral
* puts.
*/
AH_DEBUMP_STAT(keysock_in);
ipsecah_wput(WR(ah_pfkey_q), mp);
} else {
freemsg(mp);
}
break;
default:
freemsg(mp);
break;
}
break;
case M_PROTO:
case M_PCPROTO:
/* TPI message of some sort. */
switch (*((t_scalar_t *)mp->b_rptr)) {
case T_BIND_ACK:
/* We expect this. */
ah3dbg(("Thank you IP from AH for T_BIND_ACK\n"));
break;
case T_ERROR_ACK:
cmn_err(CE_WARN,
"ipsecah: AH received T_ERROR_ACK from IP.");
break;
case T_OK_ACK:
/* Probably from a (rarely sent) T_UNBIND_REQ. */
break;
default:
ah1dbg(("Unknown M_{,PC}PROTO message.\n"));
}
freemsg(mp);
break;
default:
/* For now, passthru message. */
ah2dbg(("AH got unknown mblk type %d.\n",
mp->b_datap->db_type));
putnext(q, mp);
}
}
/*
* Construct an SADB_REGISTER message with the current algorithms.
*/
static boolean_t
ah_register_out(uint32_t sequence, uint32_t pid, uint_t serial)
{
mblk_t *mp;
boolean_t rc = B_TRUE;
sadb_msg_t *samsg;
sadb_supported_t *sasupp;
sadb_alg_t *saalg;
uint_t allocsize = sizeof (*samsg);
uint_t i, numalgs_snap;
ipsec_alginfo_t **authalgs;
uint_t num_aalgs;
/* Allocate the KEYSOCK_OUT. */
mp = sadb_keysock_out(serial);
if (mp == NULL) {
ah0dbg(("ah_register_out: couldn't allocate mblk.\n"));
return (B_FALSE);
}
/*
* Allocate the PF_KEY message that follows KEYSOCK_OUT.
* The alg reader lock needs to be held while allocating
* the variable part (i.e. the algorithms) of the message.
*/
mutex_enter(&alg_lock);
/*
* Return only valid algorithms, so the number of algorithms
* to send up may be less than the number of algorithm entries
* in the table.
*/
authalgs = ipsec_alglists[IPSEC_ALG_AUTH];
for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
if (authalgs[i] != NULL && ALG_VALID(authalgs[i]))
num_aalgs++;
/*
* Fill SADB_REGISTER message's algorithm descriptors. Hold
* down the lock while filling it.
*/
if (num_aalgs != 0) {
allocsize += (num_aalgs * sizeof (*saalg));
allocsize += sizeof (*sasupp);
}
mp->b_cont = allocb(allocsize, BPRI_HI);
if (mp->b_cont == NULL) {
mutex_exit(&alg_lock);
freemsg(mp);
return (B_FALSE);
}
mp->b_cont->b_wptr += allocsize;
if (num_aalgs != 0) {
saalg = (sadb_alg_t *)(mp->b_cont->b_rptr + sizeof (*samsg) +
sizeof (*sasupp));
ASSERT(((ulong_t)saalg & 0x7) == 0);
numalgs_snap = 0;
for (i = 0;
((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs)); i++) {
if (authalgs[i] == NULL || !ALG_VALID(authalgs[i]))
continue;
saalg->sadb_alg_id = authalgs[i]->alg_id;
saalg->sadb_alg_ivlen = 0;
saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits;
saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits;
saalg->sadb_x_alg_increment =
authalgs[i]->alg_increment;
saalg->sadb_x_alg_defincr = authalgs[i]->alg_ef_default;
numalgs_snap++;
saalg++;
}
ASSERT(numalgs_snap == num_aalgs);
#ifdef DEBUG
/*
* Reality check to make sure I snagged all of the
* algorithms.
*/
for (; i < IPSEC_MAX_ALGS; i++)
if (authalgs[i] != NULL && ALG_VALID(authalgs[i]))
cmn_err(CE_PANIC,
"ah_register_out()! Missed #%d.\n", i);
#endif /* DEBUG */
}
mutex_exit(&alg_lock);
/* Now fill the restof the SADB_REGISTER message. */
samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
samsg->sadb_msg_version = PF_KEY_V2;
samsg->sadb_msg_type = SADB_REGISTER;
samsg->sadb_msg_errno = 0;
samsg->sadb_msg_satype = SADB_SATYPE_AH;
samsg->sadb_msg_len = SADB_8TO64(allocsize);
samsg->sadb_msg_reserved = 0;
/*
* Assume caller has sufficient sequence/pid number info. If it's one
* from me over a new alg., I could give two hoots about sequence.
*/
samsg->sadb_msg_seq = sequence;
samsg->sadb_msg_pid = pid;
if (allocsize > sizeof (*samsg)) {
sasupp = (sadb_supported_t *)(samsg + 1);
sasupp->sadb_supported_len =
SADB_8TO64(allocsize - sizeof (sadb_msg_t));
sasupp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
sasupp->sadb_supported_reserved = 0;
}
if (ah_pfkey_q != NULL)
putnext(ah_pfkey_q, mp);
else {
rc = B_FALSE;
freemsg(mp);
}
return (rc);
}
/*
* Invoked when the algorithm table changes. Causes SADB_REGISTER
* messages continaining the current list of algorithms to be
* sent up to the AH listeners.
*/
void
ipsecah_algs_changed(void)
{
/*
* Time to send a PF_KEY SADB_REGISTER message to AH listeners
* everywhere. (The function itself checks for NULL ah_pfkey_q.)
*/
(void) ah_register_out(0, 0, 0);
}
/*
* Stub function that taskq_dispatch() invokes to take the mblk (in arg)
* and put() it into AH and STREAMS again.
*/
static void
inbound_task(void *arg)
{
ah_t *ah;
mblk_t *mp = (mblk_t *)arg;
ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
int ipsec_rc;
ah2dbg(("in AH inbound_task"));
ah = ipsec_inbound_ah_sa(mp);
if (ah == NULL)
return;
ASSERT(ii->ipsec_in_ah_sa != NULL);
ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func(mp, ah);
if (ipsec_rc != IPSEC_STATUS_SUCCESS)
return;
ip_fanout_proto_again(mp, NULL, NULL, NULL);
}
/*
* Now that weak-key passed, actually ADD the security association, and
* send back a reply ADD message.
*/
static int
ah_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi)
{
isaf_t *primary, *secondary, *inbound;
sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
struct sockaddr_in *dst;
struct sockaddr_in6 *dst6;
boolean_t is_ipv4, clone = B_FALSE, is_inbound = B_FALSE;
uint32_t *dstaddr;
ipsa_t *larval;
ipsacq_t *acqrec;
iacqf_t *acq_bucket;
mblk_t *acq_msgs = NULL;
mblk_t *lpkt;
int rc;
sadb_t *sp;
int outhash;
/*
* Locate the appropriate table(s).
*/
dst = (struct sockaddr_in *)(dstext + 1);
dst6 = (struct sockaddr_in6 *)dst;
is_ipv4 = (dst->sin_family == AF_INET);
if (is_ipv4) {
sp = &ah_sadb.s_v4;
dstaddr = (uint32_t *)(&dst->sin_addr);
outhash = OUTBOUND_HASH_V4(*(ipaddr_t *)dstaddr);
} else {
ASSERT(dst->sin_family == AF_INET6);
sp = &ah_sadb.s_v6;
dstaddr = (uint32_t *)(&dst6->sin6_addr);
outhash = OUTBOUND_HASH_V6(*(in6_addr_t *)dstaddr);
}
inbound = &sp->sdb_if[INBOUND_HASH(assoc->sadb_sa_spi)];
switch (ksi->ks_in_dsttype) {
case KS_IN_ADDR_MBCAST:
clone = B_TRUE; /* All mcast SAs can be bidirectional */
/* FALLTHRU */
case KS_IN_ADDR_ME:
primary = inbound;
secondary = &sp->sdb_of[outhash];
/*
* If the source address is either one of mine, or unspecified
* (which is best summed up by saying "not 'not mine'"),
* then the association is potentially bi-directional,
* in that it can be used for inbound traffic and outbound
* traffic. The best example of such and SA is a multicast
* SA (which allows me to receive the outbound traffic).
*/
if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME)
clone = B_TRUE;
is_inbound = B_TRUE;
break;
case KS_IN_ADDR_NOTME:
primary = &sp->sdb_of[outhash];
secondary = &sp->sdb_if[INBOUND_HASH(assoc->sadb_sa_spi)];
/*
* If the source address literally not mine (either
* unspecified or not mine), then this SA may have an
* address that WILL be mine after some configuration.
* We pay the price for this by making it a bi-directional
* SA.
*/
if (ksi->ks_in_srctype != KS_IN_ADDR_ME)
clone = B_TRUE;
break;
default:
samsg->sadb_x_msg_diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
return (EINVAL);
}
/*
* Find a ACQUIRE list entry if possible. If we've added an SA that
* suits the needs of an ACQUIRE list entry, we can eliminate the
* ACQUIRE list entry and transmit the enqueued packets. Use the
* high-bit of the sequence number to queue it. Key off destination
* addr, and change acqrec's state.
*/
if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) {
acq_bucket = &sp->sdb_acq[outhash];
mutex_enter(&acq_bucket->iacqf_lock);
for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL;
acqrec = acqrec->ipsacq_next) {
mutex_enter(&acqrec->ipsacq_lock);
/*
* Q: I only check sequence. Should I check dst?
* A: Yes, check dest because those are the packets
* that are queued up.
*/
if (acqrec->ipsacq_seq == samsg->sadb_msg_seq &&
IPSA_ARE_ADDR_EQUAL(dstaddr,
acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam))
break;
mutex_exit(&acqrec->ipsacq_lock);
}
if (acqrec != NULL) {
/*
* AHA! I found an ACQUIRE record for this SA.
* Grab the msg list, and free the acquire record.
* I already am holding the lock for this record,
* so all I have to do is free it.
*/
acq_msgs = acqrec->ipsacq_mp;
acqrec->ipsacq_mp = NULL;
mutex_exit(&acqrec->ipsacq_lock);
sadb_destroy_acquire(acqrec);
}
mutex_exit(&acq_bucket->iacqf_lock);
}
/*
* Find PF_KEY message, and see if I'm an update. If so, find entry
* in larval list (if there).
*/
larval = NULL;
if (samsg->sadb_msg_type == SADB_UPDATE) {
mutex_enter(&inbound->isaf_lock);
larval = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi,
ALL_ZEROES_PTR, dstaddr, dst->sin_family);
mutex_exit(&inbound->isaf_lock);
if ((larval == NULL) ||
(larval->ipsa_state != IPSA_STATE_LARVAL)) {
ah0dbg(("Larval update, but larval disappeared.\n"));
return (ESRCH);
} /* Else sadb_common_add unlinks it for me! */
}
lpkt = NULL;
if (larval != NULL)
lpkt = sadb_clear_lpkt(larval);
rc = sadb_common_add(ah_sadb.s_ip_q, ah_pfkey_q, mp, samsg, ksi,
primary, secondary, larval, clone, is_inbound);
/*
* How much more stack will I create with all of these
* ah_inbound_* and ah_outbound_*() calls?
*/
if (rc == 0 && lpkt != NULL)
rc = !taskq_dispatch(ah_taskq, inbound_task,
(void *) lpkt, TQ_NOSLEEP);
if (rc != 0) {
ip_drop_packet(lpkt, B_TRUE, NULL, NULL,
&ipdrops_sadb_inlarval_timeout, &ah_dropper);
}
while (acq_msgs != NULL) {
mblk_t *mp = acq_msgs;
acq_msgs = acq_msgs->b_next;
mp->b_next = NULL;
if (rc == 0) {
ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
ASSERT(ah_sadb.s_ip_q != NULL);
if (ipsec_outbound_sa(mp, IPPROTO_AH)) {
io->ipsec_out_ah_done = B_TRUE;
if (ah_outbound(mp) == IPSEC_STATUS_SUCCESS) {
ipha_t *ipha = (ipha_t *)
mp->b_cont->b_rptr;
if (is_ipv4) {
ip_wput_ipsec_out(NULL, mp,
ipha, NULL, NULL);
} else {
ip6_t *ip6h = (ip6_t *)ipha;
ip_wput_ipsec_out_v6(NULL,
mp, ip6h, NULL, NULL);
}
}
continue;
}
}
AH_BUMP_STAT(out_discards);
ip_drop_packet(mp, B_FALSE, NULL, NULL,
&ipdrops_sadb_acquire_timeout, &ah_dropper);
}
return (rc);
}
/*
* Add new AH security association. This may become a generic AH/ESP
* routine eventually.
*/
static int
ah_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic)
{
sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
sadb_address_t *srcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
sadb_key_t *key = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
struct sockaddr_in *src, *dst;
/* We don't need sockaddr_in6 for now. */
sadb_lifetime_t *soft =
(sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
sadb_lifetime_t *hard =
(sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
ipsec_alginfo_t *aalg;
/* I need certain extensions present for an ADD message. */
if (srcext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
return (EINVAL);
}
if (dstext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
return (EINVAL);
}
if (assoc == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
return (EINVAL);
}
if (key == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_AKEY;
return (EINVAL);
}
src = (struct sockaddr_in *)(srcext + 1);
dst = (struct sockaddr_in *)(dstext + 1);
/* Sundry ADD-specific reality checks. */
/* XXX STATS : Logging/stats here? */
if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) {
*diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
return (EINVAL);
}
if (assoc->sadb_sa_encrypt != SADB_EALG_NONE) {
*diagnostic = SADB_X_DIAGNOSTIC_ENCR_NOTSUPP;
return (EINVAL);
}
if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY)) {
*diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
return (EINVAL);
}
if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0)
return (EINVAL);
if (src->sin_family != dst->sin_family) {
*diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
return (EINVAL);
}
/* Stuff I don't support, for now. XXX Diagnostic? */
if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL ||
ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL)
return (EOPNOTSUPP);
/*
* XXX Policy : I'm not checking identities or sensitivity
* labels at this time, but if I did, I'd do them here, before I sent
* the weak key check up to the algorithm.
*/
/* verify that there is a mapping for the specified algorithm */
mutex_enter(&alg_lock);
aalg = ipsec_alglists[IPSEC_ALG_AUTH][assoc->sadb_sa_auth];
if (aalg == NULL || !ALG_VALID(aalg)) {
mutex_exit(&alg_lock);
ah1dbg(("Couldn't find auth alg #%d.\n", assoc->sadb_sa_auth));
*diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
return (EINVAL);
}
ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
/* sanity check key sizes */
if (!ipsec_valid_key_size(key->sadb_key_bits, aalg)) {
mutex_exit(&alg_lock);
*diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS;
return (EINVAL);
}
/* check key and fix parity if needed */
if (ipsec_check_key(aalg->alg_mech_type, key, B_TRUE,
diagnostic) != 0) {
mutex_exit(&alg_lock);
return (EINVAL);
}
mutex_exit(&alg_lock);
return (ah_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi));
}
/*
* Update a security association. Updates come in two varieties. The first
* is an update of lifetimes on a non-larval SA. The second is an update of
* a larval SA, which ends up looking a lot more like an add.
*/
static int
ah_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic)
{
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
struct sockaddr_in *sin;
if (dstext == NULL) {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
return (EINVAL);
}
sin = (struct sockaddr_in *)(dstext + 1);
return (sadb_update_sa(mp, ksi,
(sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 : &ah_sadb.s_v4,
diagnostic, ah_pfkey_q, ah_add_sa));
}
/*
* Delete a security association. This is REALLY likely to be code common to
* both AH and ESP. Find the association, then unlink it.
*/
static int
ah_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic)
{
sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
sadb_address_t *dstext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
sadb_address_t *srcext =
(sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
struct sockaddr_in *sin;
if (assoc == NULL) {
if (dstext != NULL)
sin = (struct sockaddr_in *)(dstext + 1);
else if (srcext != NULL)
sin = (struct sockaddr_in *)(srcext + 1);
else {
*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
return (EINVAL);
}
return sadb_purge_sa(mp, ksi,
(sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 :
&ah_sadb.s_v4,
diagnostic, ah_pfkey_q, ah_sadb.s_ip_q);
}
return (sadb_del_sa(mp, ksi, &ah_sadb, diagnostic, ah_pfkey_q));
}
/*
* Convert the entire contents of all of AH's SA tables into PF_KEY SADB_DUMP
* messages.
*/
static void
ah_dump(mblk_t *mp, keysock_in_t *ksi)
{
int error;
sadb_msg_t *samsg;
/*
* Dump each fanout, bailing if error is non-zero.
*/
error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v4);
if (error != 0)
goto bail;
error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v6);
bail:
ASSERT(mp->b_cont != NULL);
samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
samsg->sadb_msg_errno = (uint8_t)error;
sadb_pfkey_echo(ah_pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
NULL);
}
/*
* AH parsing of PF_KEY messages. Keysock did most of the really silly
* error cases. What I receive is a fully-formed, syntactically legal
* PF_KEY message. I then need to check semantics...
*
* This code may become common to AH and ESP. Stay tuned.
*
* I also make the assumption that db_ref's are cool. If this assumption
* is wrong, this means that someone other than keysock or me has been
* mucking with PF_KEY messages.
*/
static void
ah_parse_pfkey(mblk_t *mp)
{
mblk_t *msg = mp->b_cont;
sadb_msg_t *samsg;
keysock_in_t *ksi;
int error;
int diagnostic = SADB_X_DIAGNOSTIC_NONE;
ASSERT(msg != NULL);
samsg = (sadb_msg_t *)msg->b_rptr;
ksi = (keysock_in_t *)mp->b_rptr;
/*
* If applicable, convert unspecified AF_INET6 to unspecified
* AF_INET.
*/
sadb_srcaddrfix(ksi);
switch (samsg->sadb_msg_type) {
case SADB_ADD:
error = ah_add_sa(mp, ksi, &diagnostic);
if (error != 0) {
sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic,
ksi->ks_in_serial);
}
/* else ah_add_sa() took care of things. */
break;
case SADB_DELETE:
error = ah_del_sa(mp, ksi, &diagnostic);
if (error != 0) {
sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic,
ksi->ks_in_serial);
}
/* Else ah_del_sa() took care of things. */
break;
case SADB_GET:
error = sadb_get_sa(mp, ksi, &ah_sadb, &diagnostic, ah_pfkey_q);
if (error != 0) {
sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic,
ksi->ks_in_serial);
}
/* Else sadb_get_sa() took care of things. */
break;
case SADB_FLUSH:
sadbp_flush(&ah_sadb);
sadb_pfkey_echo(ah_pfkey_q, mp, samsg, ksi, NULL);
break;
case SADB_REGISTER:
/*
* Hmmm, let's do it! Check for extensions (there should
* be none), extract the fields, call ah_register_out(),
* then either free or report an error.
*
* Keysock takes care of the PF_KEY bookkeeping for this.
*/
if (ah_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid,
ksi->ks_in_serial)) {
freemsg(mp);
} else {
/*
* Only way this path hits is if there is a memory
* failure. It will not return B_FALSE because of
* lack of ah_pfkey_q if I am in wput().
*/
sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic,
ksi->ks_in_serial);
}
break;
case SADB_UPDATE:
/*
* Find a larval, if not there, find a full one and get
* strict.
*/
error = ah_update_sa(mp, ksi, &diagnostic);
if (error != 0) {
sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic,
ksi->ks_in_serial);
}
/* else ah_update_sa() took care of things. */
break;
case SADB_GETSPI:
/*
* Reserve a new larval entry.
*/
ah_getspi(mp, ksi);
break;
case SADB_ACQUIRE:
/*
* Find larval and/or ACQUIRE record and kill it (them), I'm
* most likely an error. Inbound ACQUIRE messages should only
* have the base header.
*/
sadb_in_acquire(samsg, &ah_sadb, ah_pfkey_q);
freemsg(mp);
break;
case SADB_DUMP:
/*
* Dump all entries.
*/
ah_dump(mp, ksi);
/* ah_dump will take care of the return message, etc. */
break;
case SADB_EXPIRE:
/* Should never reach me. */
sadb_pfkey_error(ah_pfkey_q, mp, EOPNOTSUPP, diagnostic,
ksi->ks_in_serial);
break;
default:
sadb_pfkey_error(ah_pfkey_q, mp, EINVAL,
SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial);
break;
}
}
/*
* Handle case where PF_KEY says it can't find a keysock for one of my
* ACQUIRE messages.
*/
static void
ah_keysock_no_socket(mblk_t *mp)
{
sadb_msg_t *samsg;
keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr;
if (mp->b_cont == NULL) {
freemsg(mp);
return;
}
samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
/*
* If keysock can't find any registered, delete the acquire record
* immediately, and handle errors.
*/
if (samsg->sadb_msg_type == SADB_ACQUIRE) {
samsg->sadb_msg_errno = kse->ks_err_errno;
samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
/*
* Use the write-side of the ah_pfkey_q, in case there is
* no ah_sadb.s_ip_q.
*/
sadb_in_acquire(samsg, &ah_sadb, WR(ah_pfkey_q));
}
freemsg(mp);
}
/*
* First-cut reality check for an inbound PF_KEY message.
*/
static boolean_t
ah_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi)
{
int diagnostic;
if (mp->b_cont == NULL) {
freemsg(mp);
return (B_TRUE);
}
if (ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL) {
diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT;
goto badmsg;
}
if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) {
diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT;
goto badmsg;
}
if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL ||
ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) {
diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT;
goto badmsg;
}
if (ksi->ks_in_srctype == KS_IN_ADDR_MBCAST) {
diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC;
goto badmsg;
}
if (ksi->ks_in_dsttype == KS_IN_ADDR_UNSPEC) {
diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
goto badmsg;
}
return (B_FALSE); /* False ==> no failures */
badmsg:
sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic, ksi->ks_in_serial);
return (B_TRUE); /* True ==> failures */
}
/*
* AH module write put routine.
*/
static void
ipsecah_wput(queue_t *q, mblk_t *mp)
{
ipsec_info_t *ii;
keysock_in_t *ksi;
int rc;
struct iocblk *iocp;
ah3dbg(("In ah_wput().\n"));
/* NOTE: Each case must take care of freeing or passing mp. */
switch (mp->b_datap->db_type) {
case M_CTL:
if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) {
/* Not big enough message. */
freemsg(mp);
break;
}
ii = (ipsec_info_t *)mp->b_rptr;
switch (ii->ipsec_info_type) {
case KEYSOCK_OUT_ERR:
ah1dbg(("Got KEYSOCK_OUT_ERR message.\n"));
ah_keysock_no_socket(mp);
break;
case KEYSOCK_IN:
AH_BUMP_STAT(keysock_in);
ah3dbg(("Got KEYSOCK_IN message.\n"));
ksi = (keysock_in_t *)ii;
/*
* Some common reality checks.
*/
if (ah_pfkey_reality_failures(mp, ksi))
return;
/*
* Use 'q' instead of ah_sadb.s_ip_q, since
* it's the write side already, and it'll go
* down to IP. Use ah_pfkey_q because we
* wouldn't get here if that weren't set, and
* the RD(q) has been done already.
*/
if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) {
rc = sadb_addrcheck(q, ah_pfkey_q, mp,
ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC],
ksi->ks_in_serial);
if (rc == KS_IN_ADDR_UNKNOWN)
return;
else
ksi->ks_in_srctype = rc;
}
if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) {
rc = sadb_addrcheck(q, ah_pfkey_q, mp,
ksi->ks_in_extv[SADB_EXT_ADDRESS_DST],
ksi->ks_in_serial);
if (rc == KS_IN_ADDR_UNKNOWN)
return;
else
ksi->ks_in_dsttype = rc;
}
/*
* XXX Proxy may be a different address family.
*/
if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) {
rc = sadb_addrcheck(q, ah_pfkey_q, mp,
ksi->ks_in_extv[SADB_EXT_ADDRESS_PROXY],
ksi->ks_in_serial);
if (rc == KS_IN_ADDR_UNKNOWN)
return;
else
ksi->ks_in_proxytype = rc;
}
ah_parse_pfkey(mp);
break;
case KEYSOCK_HELLO:
sadb_keysock_hello(&ah_pfkey_q, q, mp,
ah_ager, &ah_event, SADB_SATYPE_AH);
break;
default:
ah1dbg(("Got M_CTL from above of 0x%x.\n",
ii->ipsec_info_type));
freemsg(mp);
break;
}
break;
case M_IOCTL:
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case ND_SET:
case ND_GET:
if (nd_getset(q, ipsecah_g_nd, mp)) {
qreply(q, mp);
return;
} else {
iocp->ioc_error = ENOENT;
}
/* FALLTHRU */
default:
/* We really don't support any other ioctls, do we? */
/* Return EINVAL */
if (iocp->ioc_error != ENOENT)
iocp->ioc_error = EINVAL;
iocp->ioc_count = 0;
mp->b_datap->db_type = M_IOCACK;
qreply(q, mp);
return;
}
default:
ah3dbg(("Got default message, type %d, passing to IP.\n",
mp->b_datap->db_type));
putnext(q, mp);
}
}
/*
* Updating use times can be tricky business if the ipsa_haspeer flag is
* set. This function is called once in an SA's lifetime.
*
* Caller has to REFRELE "assoc" which is passed in. This function has
* to REFRELE any peer SA that is obtained.
*/
static void
ah_set_usetime(ipsa_t *assoc, boolean_t inbound)
{
ipsa_t *inassoc, *outassoc;
isaf_t *bucket;
sadb_t *sp;
int outhash;
boolean_t isv6;
/* No peer? No problem! */
if (!assoc->ipsa_haspeer) {
sadb_set_usetime(assoc);
return;
}
/*
* Otherwise, we want to grab both the original assoc and its peer.
* There might be a race for this, but if it's a real race, the times
* will be out-of-synch by at most a second, and since our time
* granularity is a second, this won't be a problem.
*
* If we need tight synchronization on the peer SA, then we need to
* reconsider.
*/
/* Use address family to select IPv6/IPv4 */
isv6 = (assoc->ipsa_addrfam == AF_INET6);
if (isv6) {
sp = &ah_sadb.s_v6;
} else {
sp = &ah_sadb.s_v4;
ASSERT(assoc->ipsa_addrfam == AF_INET);
}
if (inbound) {
inassoc = assoc;
if (isv6)
outhash = OUTBOUND_HASH_V6(*((in6_addr_t *)
&inassoc->ipsa_dstaddr));
else
outhash = OUTBOUND_HASH_V4(*((ipaddr_t *)
&inassoc->ipsa_dstaddr));
bucket = &sp->sdb_of[outhash];
mutex_enter(&bucket->isaf_lock);
outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
inassoc->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (outassoc == NULL) {
/* Q: Do we wish to set haspeer == B_FALSE? */
ah0dbg(("ah_set_usetime: "
"can't find peer for inbound.\n"));
sadb_set_usetime(inassoc);
return;
}
} else {
outassoc = assoc;
bucket = &sp->sdb_if[INBOUND_HASH(outassoc->ipsa_spi)];
mutex_enter(&bucket->isaf_lock);
inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
outassoc->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (inassoc == NULL) {
/* Q: Do we wish to set haspeer == B_FALSE? */
ah0dbg(("ah_set_usetime: "
"can't find peer for outbound.\n"));
sadb_set_usetime(outassoc);
return;
}
}
/* Update usetime on both. */
sadb_set_usetime(inassoc);
sadb_set_usetime(outassoc);
/*
* REFRELE any peer SA.
*
* Because of the multi-line macro nature of IPSA_REFRELE, keep
* them in { }.
*/
if (inbound) {
IPSA_REFRELE(outassoc);
} else {
IPSA_REFRELE(inassoc);
}
}
/*
* Add a number of bytes to what the SA has protected so far. Return
* B_TRUE if the SA can still protect that many bytes.
*
* Caller must REFRELE the passed-in assoc. This function must REFRELE
* any obtained peer SA.
*/
static boolean_t
ah_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound)
{
ipsa_t *inassoc, *outassoc;
isaf_t *bucket;
boolean_t inrc, outrc, isv6;
sadb_t *sp;
int outhash;
/* No peer? No problem! */
if (!assoc->ipsa_haspeer) {
return (sadb_age_bytes(ah_pfkey_q, assoc, bytes,
B_TRUE));
}
/*
* Otherwise, we want to grab both the original assoc and its peer.
* There might be a race for this, but if it's a real race, two
* expire messages may occur. We limit this by only sending the
* expire message on one of the peers, we'll pick the inbound
* arbitrarily.
*
* If we need tight synchronization on the peer SA, then we need to
* reconsider.
*/
/* Pick v4/v6 bucket based on addrfam. */
isv6 = (assoc->ipsa_addrfam == AF_INET6);
if (isv6) {
sp = &ah_sadb.s_v6;
} else {
sp = &ah_sadb.s_v4;
ASSERT(assoc->ipsa_addrfam == AF_INET);
}
if (inbound) {
inassoc = assoc;
if (isv6)
outhash = OUTBOUND_HASH_V6(*((in6_addr_t *)
&inassoc->ipsa_dstaddr));
else
outhash = OUTBOUND_HASH_V4(*((ipaddr_t *)
&inassoc->ipsa_dstaddr));
bucket = &sp->sdb_of[outhash];
mutex_enter(&bucket->isaf_lock);
outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
inassoc->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (outassoc == NULL) {
/* Q: Do we wish to set haspeer == B_FALSE? */
ah0dbg(("ah_age_bytes: "
"can't find peer for inbound.\n"));
return (sadb_age_bytes(ah_pfkey_q, inassoc,
bytes, B_TRUE));
}
} else {
outassoc = assoc;
bucket = &sp->sdb_if[INBOUND_HASH(outassoc->ipsa_spi)];
mutex_enter(&bucket->isaf_lock);
inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
outassoc->ipsa_addrfam);
mutex_exit(&bucket->isaf_lock);
if (inassoc == NULL) {
/* Q: Do we wish to set haspeer == B_FALSE? */
ah0dbg(("ah_age_bytes: "
"can't find peer for outbound.\n"));
return (sadb_age_bytes(ah_pfkey_q, outassoc,
bytes, B_TRUE));
}
}
inrc = sadb_age_bytes(ah_pfkey_q, inassoc, bytes, B_TRUE);
outrc = sadb_age_bytes(ah_pfkey_q, outassoc, bytes, B_FALSE);
/*
* REFRELE any peer SA.
*
* Because of the multi-line macro nature of IPSA_REFRELE, keep
* them in { }.
*/
if (inbound) {
IPSA_REFRELE(outassoc);
} else {
IPSA_REFRELE(inassoc);
}
return (inrc && outrc);
}
/*
* Perform the really difficult work of inserting the proposed situation.
* Called while holding the algorithm lock.
*/
static void
ah_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs)
{
sadb_comb_t *comb = (sadb_comb_t *)(prop + 1);
ipsec_out_t *io;
ipsec_action_t *ap;
ipsec_prot_t *prot;
io = (ipsec_out_t *)acqrec->ipsacq_mp->b_rptr;
ASSERT(MUTEX_HELD(&alg_lock));
ASSERT(io->ipsec_out_type == IPSEC_OUT);
prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t));
*(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */
prop->sadb_prop_replay = ipsecah_replay_size;
/*
* Based upon algorithm properties, and what-not, prioritize a
* proposal, based on the ordering of the ah algorithms in the
* alternatives presented in the policy rule passed down
* through the ipsec_out_t and attached to the acquire record.
*/
for (ap = acqrec->ipsacq_act; ap != NULL;
ap = ap->ipa_next) {
ipsec_alginfo_t *aalg;
if ((ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY) ||
(!ap->ipa_act.ipa_apply.ipp_use_ah))
continue;
prot = &ap->ipa_act.ipa_apply;
ASSERT(prot->ipp_auth_alg > 0);
aalg = ipsec_alglists[IPSEC_ALG_AUTH][prot->ipp_auth_alg];
if (aalg == NULL || !ALG_VALID(aalg))
continue;
/* XXX check aalg for duplicates??.. */
comb->sadb_comb_flags = 0;
comb->sadb_comb_reserved = 0;
comb->sadb_comb_encrypt = 0;
comb->sadb_comb_encrypt_minbits = 0;
comb->sadb_comb_encrypt_maxbits = 0;
comb->sadb_comb_auth = aalg->alg_id;
comb->sadb_comb_auth_minbits = prot->ipp_ah_minbits;
comb->sadb_comb_auth_maxbits = prot->ipp_ah_maxbits;
/*
* The following may be based on algorithm
* properties, but in the meantime, we just pick
* some good, sensible numbers. Key mgmt. can
* (and perhaps should) be the place to finalize
* such decisions.
*/
/*
* No limits on allocations, since we really don't
* support that concept currently.
*/
comb->sadb_comb_soft_allocations = 0;
comb->sadb_comb_hard_allocations = 0;
/*
* These may want to come from policy rule..
*/
comb->sadb_comb_soft_bytes = ipsecah_default_soft_bytes;
comb->sadb_comb_hard_bytes = ipsecah_default_hard_bytes;
comb->sadb_comb_soft_addtime = ipsecah_default_soft_addtime;
comb->sadb_comb_hard_addtime = ipsecah_default_hard_addtime;
comb->sadb_comb_soft_usetime = ipsecah_default_soft_usetime;
comb->sadb_comb_hard_usetime = ipsecah_default_hard_usetime;
prop->sadb_prop_len += SADB_8TO64(sizeof (*comb));
if (--combs == 0)
return; /* out of space.. */
comb++;
}
}
/*
* Prepare and actually send the SADB_ACQUIRE message to PF_KEY.
*/
static void
ah_send_acquire(ipsacq_t *acqrec, mblk_t *extended)
{
mblk_t *pfkeymp, *msgmp;
uint_t allocsize, combs;
sadb_msg_t *samsg;
sadb_prop_t *prop;
uint8_t *cur, *end;
AH_BUMP_STAT(acquire_requests);
ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock));
pfkeymp = sadb_keysock_out(0);
if (pfkeymp == NULL) {
ah1dbg(("ah_send_acquire: 1st allocb() failed.\n"));
/* Just bail. */
goto done;
}
/*
* First, allocate a basic ACQUIRE message. Beyond that,
* you need to extract certificate info from
*/
allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) +
sizeof (sadb_address_t) + sizeof (sadb_prop_t);
switch (acqrec->ipsacq_addrfam) {
case AF_INET:
allocsize += 2 * sizeof (struct sockaddr_in);
break;
case AF_INET6:
allocsize += 2 * sizeof (struct sockaddr_in6);
break;
}
mutex_enter(&alg_lock);
combs = ipsec_nalgs[IPSEC_ALG_AUTH];
allocsize += combs * sizeof (sadb_comb_t);
/*
* XXX If there are:
* certificate IDs
* proxy address
* <Others>
* add additional allocation size.
*/
msgmp = allocb(allocsize, BPRI_HI);
if (msgmp == NULL) {
ah0dbg(("ah_send_acquire: 2nd allocb() failed.\n"));
/* Just bail. */
freemsg(pfkeymp);
pfkeymp = NULL;
goto done;
}
cur = msgmp->b_rptr;
end = cur + allocsize;
samsg = (sadb_msg_t *)cur;
pfkeymp->b_cont = msgmp;
/* Set up ACQUIRE. */
cur = sadb_setup_acquire(cur, end, acqrec);
if (cur == NULL) {
ah0dbg(("sadb_setup_acquire failed.\n"));
/* Just bail. */
freemsg(pfkeymp);
pfkeymp = NULL;
goto done;
}
samsg->sadb_msg_satype = SADB_SATYPE_AH;
/* XXX Insert proxy address information here. */
/* XXX Insert identity information here. */
/* XXXMLS Insert sensitivity information here. */
/* Insert proposal here. */
prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len);
ah_insert_prop(prop, acqrec, combs);
samsg->sadb_msg_len += prop->sadb_prop_len;
msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len);
done:
mutex_exit(&alg_lock);
/*
* Must mutex_exit() before sending PF_KEY message up, in
* order to avoid recursive mutex_enter() if there are no registered
* listeners.
*
* Once I've sent the message, I'm cool anyway.
*/
mutex_exit(&acqrec->ipsacq_lock);
if (ah_pfkey_q != NULL && pfkeymp != NULL) {
if (extended != NULL) {
putnext(ah_pfkey_q, extended);
}
putnext(ah_pfkey_q, pfkeymp);
return;
}
/* NOTE: freemsg() works for extended == NULL. */
freemsg(extended);
freemsg(pfkeymp);
}
/*
* Handle the SADB_GETSPI message. Create a larval SA.
*/
static void
ah_getspi(mblk_t *mp, keysock_in_t *ksi)
{
ipsa_t *newbie, *target;
isaf_t *outbound, *inbound;
int rc, diagnostic;
sadb_sa_t *assoc;
keysock_out_t *kso;
uint32_t newspi;
/*
* Randomly generate a proposed SPI value.
*/
(void) random_get_pseudo_bytes((uint8_t *)&newspi, sizeof (uint32_t));
newbie = sadb_getspi(ksi, newspi, &diagnostic);
if (newbie == NULL) {
sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic,
ksi->ks_in_serial);
return;
} else if (newbie == (ipsa_t *)-1) {
sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic,
ksi->ks_in_serial);
return;
}
/*
* XXX - We may randomly collide. We really should recover from this.
* Unfortunately, that could require spending way-too-much-time
* in here. For now, let the user retry.
*/
if (newbie->ipsa_addrfam == AF_INET6) {
outbound = &ah_sadb.s_v6.sdb_of[
OUTBOUND_HASH_V6(*(uint32_t *)(newbie->ipsa_dstaddr))];
inbound = &ah_sadb.s_v6.sdb_if[INBOUND_HASH(newbie->ipsa_spi)];
} else {
outbound = &ah_sadb.s_v4.sdb_of[
OUTBOUND_HASH_V4(*(uint32_t *)(newbie->ipsa_dstaddr))];
inbound = &ah_sadb.s_v4.sdb_if[INBOUND_HASH(newbie->ipsa_spi)];
}
mutex_enter(&outbound->isaf_lock);
mutex_enter(&inbound->isaf_lock);
/*
* Check for collisions (i.e. did sadb_getspi() return with something
* that already exists?).
*
* Try outbound first. Even though SADB_GETSPI is traditionally
* for inbound SAs, you never know what a user might do.
*/
target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi,
newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam);
if (target == NULL) {
target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi,
newbie->ipsa_srcaddr, newbie->ipsa_dstaddr,
newbie->ipsa_addrfam);
}
/*
* I don't have collisions elsewhere!
* (Nor will I because I'm still holding inbound/outbound locks.)
*/
if (target != NULL) {
rc = EEXIST;
IPSA_REFRELE(target);
} else {
/*
* sadb_insertassoc() also checks for collisions, so
* if there's a colliding larval entry, rc will be set
* to EEXIST.
*/
rc = sadb_insertassoc(newbie, inbound);
(void) drv_getparm(TIME, &newbie->ipsa_hardexpiretime);
newbie->ipsa_hardexpiretime += ipsecah_larval_timeout;
}
/*
* Can exit outbound mutex. Hold inbound until we're done with
* newbie.
*/
mutex_exit(&outbound->isaf_lock);
if (rc != 0) {
mutex_exit(&inbound->isaf_lock);
IPSA_REFRELE(newbie);
sadb_pfkey_error(ah_pfkey_q, mp, rc, SADB_X_DIAGNOSTIC_NONE,
ksi->ks_in_serial);
return;
}
/* Can write here because I'm still holding the bucket lock. */
newbie->ipsa_type = SADB_SATYPE_AH;
/*
* Construct successful return message. We have one thing going
* for us in PF_KEY v2. That's the fact that
* sizeof (sadb_spirange_t) == sizeof (sadb_sa_t)
*/
assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
assoc->sadb_sa_exttype = SADB_EXT_SA;
assoc->sadb_sa_spi = newbie->ipsa_spi;
*((uint64_t *)(&assoc->sadb_sa_replay)) = 0;
mutex_exit(&inbound->isaf_lock);
/* Convert KEYSOCK_IN to KEYSOCK_OUT. */
kso = (keysock_out_t *)ksi;
kso->ks_out_len = sizeof (*kso);
kso->ks_out_serial = ksi->ks_in_serial;
kso->ks_out_type = KEYSOCK_OUT;
/*
* Can safely putnext() to ah_pfkey_q, because this is a turnaround
* from the ah_pfkey_q.
*/
putnext(ah_pfkey_q, mp);
}
/*
* IPv6 sends up the ICMP errors for validation and the removal of the AH
* header.
*/
static ipsec_status_t
ah_icmp_error_v6(mblk_t *ipsec_mp)
{
mblk_t *mp;
ip6_t *ip6h, *oip6h;
uint16_t hdr_length, ah_length;
uint8_t *nexthdrp;
ah_t *ah;
icmp6_t *icmp6;
isaf_t *isaf;
ipsa_t *assoc;
uint8_t *post_ah_ptr;
mp = ipsec_mp->b_cont;
ASSERT(mp->b_datap->db_type == M_CTL);
/*
* Change the type to M_DATA till we finish pullups.
*/
mp->b_datap->db_type = M_DATA;
/*
* Eat the cost of a pullupmsg() for now. It makes the rest of this
* code far less convoluted.
*/
if (!pullupmsg(mp, -1) ||
!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, &hdr_length,
&nexthdrp) ||
mp->b_rptr + hdr_length + sizeof (icmp6_t) + sizeof (ip6_t) +
sizeof (ah_t) > mp->b_wptr) {
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem,
&ah_dropper);
return (IPSEC_STATUS_FAILED);
}
oip6h = (ip6_t *)mp->b_rptr;
icmp6 = (icmp6_t *)((uint8_t *)oip6h + hdr_length);
ip6h = (ip6_t *)(icmp6 + 1);
if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) {
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
&ipdrops_ah_bad_v6_hdrs, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
ah = (ah_t *)((uint8_t *)ip6h + hdr_length);
isaf = &ah_sadb.s_v6.sdb_of[OUTBOUND_HASH_V6(ip6h->ip6_dst)];
mutex_enter(&isaf->isaf_lock);
assoc = ipsec_getassocbyspi(isaf, ah->ah_spi,
(uint32_t *)&ip6h->ip6_src, (uint32_t *)&ip6h->ip6_dst, AF_INET6);
mutex_exit(&isaf->isaf_lock);
if (assoc == NULL) {
IP_AH_BUMP_STAT(lookup_failure);
IP_AH_BUMP_STAT(in_discards);
if (ipsecah_log_unknown_spi) {
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_CONSOLE | SL_WARN | SL_ERROR,
"Bad ICMP message - No association for the "
"attached AH header whose spi is 0x%x, "
"sender is 0x%x\n",
ah->ah_spi, &oip6h->ip6_src, AF_INET6);
}
ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa,
&ah_dropper);
return (IPSEC_STATUS_FAILED);
}
IPSA_REFRELE(assoc);
/*
* There seems to be a valid association. If there is enough of AH
* header remove it, otherwise bail. One could check whether it has
* complete AH header plus 8 bytes but it does not make sense if an
* icmp error is returned for ICMP messages e.g ICMP time exceeded,
* that are being sent up. Let the caller figure out.
*
* NOTE: ah_length is the number of 32 bit words minus 2.
*/
ah_length = (ah->ah_length << 2) + 8;
post_ah_ptr = (uint8_t *)ah + ah_length;
if (post_ah_ptr > mp->b_wptr) {
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
&ipdrops_ah_bad_length, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - ah_length);
*nexthdrp = ah->ah_nexthdr;
ovbcopy(post_ah_ptr, ah,
(size_t)((uintptr_t)mp->b_wptr - (uintptr_t)post_ah_ptr));
mp->b_wptr -= ah_length;
/* Rewhack to be an ICMP error. */
mp->b_datap->db_type = M_CTL;
return (IPSEC_STATUS_SUCCESS);
}
/*
* IP sends up the ICMP errors for validation and the removal of
* the AH header.
*/
static ipsec_status_t
ah_icmp_error_v4(mblk_t *ipsec_mp)
{
mblk_t *mp;
mblk_t *mp1;
icmph_t *icmph;
int iph_hdr_length;
int hdr_length;
isaf_t *hptr;
ipsa_t *assoc;
int ah_length;
ipha_t *ipha;
ipha_t *oipha;
ah_t *ah;
uint32_t length;
int alloc_size;
uint8_t nexthdr;
mp = ipsec_mp->b_cont;
ASSERT(mp->b_datap->db_type == M_CTL);
/*
* Change the type to M_DATA till we finish pullups.
*/
mp->b_datap->db_type = M_DATA;
oipha = ipha = (ipha_t *)mp->b_rptr;
iph_hdr_length = IPH_HDR_LENGTH(ipha);
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
hdr_length = IPH_HDR_LENGTH(ipha);
/*
* See if we have enough to locate the SPI
*/
if ((uchar_t *)ipha + hdr_length + 8 > mp->b_wptr) {
if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 8 -
mp->b_rptr)) {
ipsec_rl_strlog(info.mi_idnum, 0, 0,
SL_WARN | SL_ERROR,
"ICMP error: Small AH header\n");
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
&ipdrops_ah_bad_length, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
ah = (ah_t *)((uint8_t *)ipha + hdr_length);
nexthdr = ah->ah_nexthdr;
hptr = &ah_sadb.s_v4.sdb_of[OUTBOUND_HASH_V4(ipha->ipha_dst)];
mutex_enter(&hptr->isaf_lock);
assoc = ipsec_getassocbyspi(hptr, ah->ah_spi,
(uint32_t *)&ipha->ipha_src, (uint32_t *)&ipha->ipha_dst, AF_INET);
mutex_exit(&hptr->isaf_lock);
if (assoc == NULL) {
IP_AH_BUMP_STAT(lookup_failure);
IP_AH_BUMP_STAT(in_discards);
if (ipsecah_log_unknown_spi) {
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_CONSOLE | SL_WARN | SL_ERROR,
"Bad ICMP message - No association for the "
"attached AH header whose spi is 0x%x, "
"sender is 0x%x\n",
ah->ah_spi, &oipha->ipha_src, AF_INET);
}
ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa,
&ah_dropper);
return (IPSEC_STATUS_FAILED);
}
IPSA_REFRELE(assoc);
/*
* There seems to be a valid association. If there
* is enough of AH header remove it, otherwise remove
* as much as possible and send it back. One could check
* whether it has complete AH header plus 8 bytes but it
* does not make sense if an icmp error is returned for
* ICMP messages e.g ICMP time exceeded, that are being
* sent up. Let the caller figure out.
*
* NOTE: ah_length is the number of 32 bit words minus 2.
*/
ah_length = (ah->ah_length << 2) + 8;
if ((uchar_t *)ipha + hdr_length + ah_length > mp->b_wptr) {
if (mp->b_cont == NULL) {
/*
* There is nothing to pullup. Just remove as
* much as possible. This is a common case for
* IPV4.
*/
ah_length = (mp->b_wptr - ((uchar_t *)ipha +
hdr_length));
goto done;
}
/* Pullup the full ah header */
if (!pullupmsg(mp, (uchar_t *)ah + ah_length - mp->b_rptr)) {
/*
* pullupmsg could have failed if there was not
* enough to pullup or memory allocation failed.
* We tried hard, give up now.
*/
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
&ipdrops_ah_nomem, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
done:
/*
* Remove the AH header and change the protocol.
* Don't update the spi fields in the ipsec_in
* message as we are called just to validate the
* message attached to the ICMP message.
*
* If we never pulled up since all of the message
* is in one single mblk, we can't remove the AH header
* by just setting the b_wptr to the beginning of the
* AH header. We need to allocate a mblk that can hold
* up until the inner IP header and copy them.
*/
alloc_size = iph_hdr_length + sizeof (icmph_t) + hdr_length;
if ((mp1 = allocb(alloc_size, BPRI_LO)) == NULL) {
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem,
&ah_dropper);
return (IPSEC_STATUS_FAILED);
}
/* ICMP errors are M_CTL messages */
mp1->b_datap->db_type = M_CTL;
ipsec_mp->b_cont = mp1;
bcopy(mp->b_rptr, mp1->b_rptr, alloc_size);
mp1->b_wptr += alloc_size;
/*
* Skip whatever we have copied and as much of AH header
* possible. If we still have something left in the original
* message, tag on.
*/
mp->b_rptr = (uchar_t *)ipha + hdr_length + ah_length;
if (mp->b_rptr != mp->b_wptr) {
mp1->b_cont = mp;
} else {
if (mp->b_cont != NULL)
mp1->b_cont = mp->b_cont;
freeb(mp);
}
ipha = (ipha_t *)(mp1->b_rptr + iph_hdr_length + sizeof (icmph_t));
ipha->ipha_protocol = nexthdr;
length = ntohs(ipha->ipha_length);
length -= ah_length;
ipha->ipha_length = htons((uint16_t)length);
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
return (IPSEC_STATUS_SUCCESS);
}
/*
* IP calls this to validate the ICMP errors that
* we got from the network.
*/
ipsec_status_t
ipsecah_icmp_error(mblk_t *mp)
{
ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
if (ii->ipsec_in_v4)
return (ah_icmp_error_v4(mp));
else
return (ah_icmp_error_v6(mp));
}
static int
ah_fix_tlv_options_v6(uint8_t *oi_opt, uint8_t *pi_opt, uint_t ehdrlen,
uint8_t hdr_type, boolean_t copy_always)
{
uint8_t opt_type;
uint_t optlen;
ASSERT(hdr_type == IPPROTO_DSTOPTS || hdr_type == IPPROTO_HOPOPTS);
/*
* Copy the next header and hdr ext. len of the HOP-by-HOP
* and Destination option.
*/
*pi_opt++ = *oi_opt++;
*pi_opt++ = *oi_opt++;
ehdrlen -= 2;
/*
* Now handle all the TLV encoded options.
*/
while (ehdrlen != 0) {
opt_type = *oi_opt;
if (opt_type == IP6OPT_PAD1) {
optlen = 1;
} else {
if (ehdrlen < 2)
goto bad_opt;
optlen = 2 + oi_opt[1];
if (optlen > ehdrlen)
goto bad_opt;
}
if (copy_always || !(opt_type & IP6OPT_MUTABLE)) {
bcopy(oi_opt, pi_opt, optlen);
} else {
if (optlen == 1) {
*pi_opt = 0;
} else {
/*
* Copy the type and data length fields.
* Zero the option data by skipping
* option type and option data len
* fields.
*/
*pi_opt = *oi_opt;
*(pi_opt + 1) = *(oi_opt + 1);
bzero(pi_opt + 2, optlen - 2);
}
}
ehdrlen -= optlen;
oi_opt += optlen;
pi_opt += optlen;
}
return (0);
bad_opt:
return (-1);
}
/*
* Construct a pseudo header for AH, processing all the options.
*
* oip6h is the IPv6 header of the incoming or outgoing packet.
* ip6h is the pointer to the pseudo headers IPV6 header. All
* the space needed for the options have been allocated including
* the AH header.
*
* If copy_always is set, all the options that appear before AH are copied
* blindly without checking for IP6OPT_MUTABLE. This is used by
* ah_auth_out_done(). Please refer to that function for details.
*
* NOTE :
*
* * AH header is never copied in this function even if copy_always
* is set. It just returns the ah_offset - offset of the AH header
* and the caller needs to do the copying. This is done so that we
* don't have pass extra arguments e.g. SA etc. and also,
* it is not needed when ah_auth_out_done is calling this function.
*/
static uint_t
ah_fix_phdr_v6(ip6_t *ip6h, ip6_t *oip6h, boolean_t outbound,
boolean_t copy_always)
{
uint8_t *oi_opt;
uint8_t *pi_opt;
uint8_t nexthdr;
uint8_t *prev_nexthdr;
ip6_hbh_t *hbhhdr;
ip6_dest_t *dsthdr = NULL;
ip6_rthdr0_t *rthdr;
int ehdrlen;
ah_t *ah;
int ret;
/*
* In the outbound case for source route, ULP has already moved
* the first hop, which is now in ip6_dst. We need to re-arrange
* the header to make it look like how it would appear in the
* receiver i.e
*
* Because of ip_massage_options_v6 the header looks like
* this :
*
* ip6_src = S, ip6_dst = I1. followed by I2,I3,D.
*
* When it reaches the receiver, it would look like
*
* ip6_src = S, ip6_dst = D. followed by I1,I2,I3.
*
* NOTE : We assume that there are no problems with the options
* as IP should have already checked this.
*/
oi_opt = (uchar_t *)&oip6h[1];
pi_opt = (uchar_t *)&ip6h[1];
/*
* We set the prev_nexthdr properly in the pseudo header.
* After we finish authentication and come back from the
* algorithm module, pseudo header will become the real
* IP header.
*/
prev_nexthdr = (uint8_t *)&ip6h->ip6_nxt;
nexthdr = oip6h->ip6_nxt;
/* Assume IP has already stripped it */
ASSERT(nexthdr != IPPROTO_FRAGMENT && nexthdr != IPPROTO_RAW);
ah = NULL;
dsthdr = NULL;
for (;;) {
switch (nexthdr) {
case IPPROTO_HOPOPTS:
hbhhdr = (ip6_hbh_t *)oi_opt;
nexthdr = hbhhdr->ip6h_nxt;
ehdrlen = 8 * (hbhhdr->ip6h_len + 1);
ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen,
IPPROTO_HOPOPTS, copy_always);
/*
* Return a zero offset indicating error if there
* was error.
*/
if (ret == -1)
return (0);
hbhhdr = (ip6_hbh_t *)pi_opt;
prev_nexthdr = (uint8_t *)&hbhhdr->ip6h_nxt;
break;
case IPPROTO_ROUTING:
rthdr = (ip6_rthdr0_t *)oi_opt;
nexthdr = rthdr->ip6r0_nxt;
ehdrlen = 8 * (rthdr->ip6r0_len + 1);
if (!copy_always && outbound) {
int i, left;
ip6_rthdr0_t *prthdr;
in6_addr_t *ap, *pap;
left = rthdr->ip6r0_segleft;
prthdr = (ip6_rthdr0_t *)pi_opt;
pap = (in6_addr_t *)(prthdr + 1);
ap = (in6_addr_t *)(rthdr + 1);
/*
* First eight bytes except seg_left
* does not change en route.
*/
bcopy(oi_opt, pi_opt, 8);
prthdr->ip6r0_segleft = 0;
/*
* First address has been moved to
* the destination address of the
* ip header by ip_massage_options_v6.
* And the real destination address is
* in the last address part of the
* option.
*/
*pap = oip6h->ip6_dst;
for (i = 1; i < left - 1; i++)
pap[i] = ap[i - 1];
ip6h->ip6_dst = *(ap + left - 1);
} else {
bcopy(oi_opt, pi_opt, ehdrlen);
}
rthdr = (ip6_rthdr0_t *)pi_opt;
prev_nexthdr = (uint8_t *)&rthdr->ip6r0_nxt;
break;
case IPPROTO_DSTOPTS:
/*
* Destination options are tricky. If there is
* a terminal (e.g. non-IPv6-extension) header
* following the destination options, don't
* reset prev_nexthdr or advance the AH insertion
* point and just treat this as a terminal header.
*
* If this is an inbound packet, just deal with
* it as is.
*/
dsthdr = (ip6_dest_t *)oi_opt;
/*
* XXX I hope common-subexpression elimination
* saves us the double-evaluate.
*/
if (outbound && dsthdr->ip6d_nxt != IPPROTO_ROUTING &&
dsthdr->ip6d_nxt != IPPROTO_HOPOPTS)
goto terminal_hdr;
nexthdr = dsthdr->ip6d_nxt;
ehdrlen = 8 * (dsthdr->ip6d_len + 1);
ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen,
IPPROTO_DSTOPTS, copy_always);
/*
* Return a zero offset indicating error if there
* was error.
*/
if (ret == -1)
return (0);
break;
case IPPROTO_AH:
/*
* Be conservative in what you send. We shouldn't
* see two same-scoped AH's in one packet.
* (Inner-IP-scoped AH will be hit by terminal
* header of IP or IPv6.)
*/
ASSERT(!outbound);
return ((uint_t)(pi_opt - (uint8_t *)ip6h));
default:
ASSERT(outbound);
terminal_hdr:
*prev_nexthdr = IPPROTO_AH;
ah = (ah_t *)pi_opt;
ah->ah_nexthdr = nexthdr;
return ((uint_t)(pi_opt - (uint8_t *)ip6h));
}
pi_opt += ehdrlen;
oi_opt += ehdrlen;
}
/* NOTREACHED */
}
static boolean_t
ah_finish_up(ah_t *phdr_ah, ah_t *inbound_ah, ipsa_t *assoc,
int ah_data_sz, int ah_align_sz)
{
int i;
/*
* Padding :
*
* 1) Authentication data may have to be padded
* before ICV calculation if ICV is not a multiple
* of 64 bits. This padding is arbitrary and transmitted
* with the packet at the end of the authentication data.
* Payload length should include the padding bytes.
*
* 2) Explicit padding of the whole datagram may be
* required by the algorithm which need not be
* transmitted. It is assumed that this will be taken
* care by the algorithm module.
*/
bzero(phdr_ah + 1, ah_data_sz); /* Zero out ICV for pseudo-hdr. */
if (inbound_ah == NULL) {
/* Outbound AH datagram. */
phdr_ah->ah_length = (ah_align_sz >> 2) + 1;
phdr_ah->ah_reserved = 0;
phdr_ah->ah_spi = assoc->ipsa_spi;
phdr_ah->ah_replay =
htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1));
if (phdr_ah->ah_replay == 0 && assoc->ipsa_replay_wsize != 0) {
/*
* XXX We have replay counter wrapping. We probably
* want to nuke this SA (and its peer).
*/
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_ERROR | SL_CONSOLE | SL_WARN,
"Outbound AH SA (0x%x), dst %s has wrapped "
"sequence.\n", phdr_ah->ah_spi,
assoc->ipsa_dstaddr, assoc->ipsa_addrfam);
sadb_replay_delete(assoc);
/* Caller will free phdr_mp and return NULL. */
return (B_FALSE);
}
if (ah_data_sz != ah_align_sz) {
uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) +
ah_data_sz);
for (i = 0; i < (ah_align_sz - ah_data_sz); i++) {
pad[i] = (uchar_t)i; /* Fill the padding */
}
}
} else {
/* Inbound AH datagram. */
phdr_ah->ah_nexthdr = inbound_ah->ah_nexthdr;
phdr_ah->ah_length = inbound_ah->ah_length;
phdr_ah->ah_reserved = 0;
ASSERT(inbound_ah->ah_spi == assoc->ipsa_spi);
phdr_ah->ah_spi = inbound_ah->ah_spi;
phdr_ah->ah_replay = inbound_ah->ah_replay;
if (ah_data_sz != ah_align_sz) {
uchar_t *opad = ((uchar_t *)inbound_ah + sizeof (ah_t) +
ah_data_sz);
uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) +
ah_data_sz);
for (i = 0; i < (ah_align_sz - ah_data_sz); i++) {
pad[i] = opad[i]; /* Copy the padding */
}
}
}
return (B_TRUE);
}
/*
* Called upon failing the inbound ICV check. The message passed as
* argument is freed.
*/
static void
ah_log_bad_auth(mblk_t *ipsec_in)
{
mblk_t *mp = ipsec_in->b_cont->b_cont;
ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr;
boolean_t isv4 = ii->ipsec_in_v4;
ipsa_t *assoc = ii->ipsec_in_ah_sa;
int af;
void *addr;
mp->b_rptr -= ii->ipsec_in_skip_len;
if (isv4) {
ipha_t *ipha = (ipha_t *)mp->b_rptr;
addr = &ipha->ipha_dst;
af = AF_INET;
} else {
ip6_t *ip6h = (ip6_t *)mp->b_rptr;
addr = &ip6h->ip6_dst;
af = AF_INET6;
}
/*
* Log the event. Don't print to the console, block
* potential denial-of-service attack.
*/
AH_BUMP_STAT(bad_auth);
ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
"AH Authentication failed spi %x, dst_addr %s",
assoc->ipsa_spi, addr, af);
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_bad_auth,
&ah_dropper);
}
/*
* Kernel crypto framework callback invoked after completion of async
* crypto requests.
*/
static void
ah_kcf_callback(void *arg, int status)
{
mblk_t *ipsec_mp = (mblk_t *)arg;
ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN);
ASSERT(ipsec_mp->b_cont != NULL);
if (status == CRYPTO_SUCCESS) {
if (is_inbound) {
if (ah_auth_in_done(ipsec_mp) != IPSEC_STATUS_SUCCESS)
return;
/* finish IPsec processing */
ip_fanout_proto_again(ipsec_mp, NULL, NULL, NULL);
} else {
ipha_t *ipha;
if (ah_auth_out_done(ipsec_mp) != IPSEC_STATUS_SUCCESS)
return;
/* finish IPsec processing */
ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
ip_wput_ipsec_out(NULL, ipsec_mp, ipha, NULL,
NULL);
} else {
ip6_t *ip6h = (ip6_t *)ipha;
ip_wput_ipsec_out_v6(NULL, ipsec_mp, ip6h,
NULL, NULL);
}
}
} else if (status == CRYPTO_INVALID_MAC) {
ah_log_bad_auth(ipsec_mp);
} else {
ah1dbg(("ah_kcf_callback: crypto failed with 0x%x\n", status));
AH_BUMP_STAT(crypto_failures);
if (is_inbound)
IP_AH_BUMP_STAT(in_discards);
else
AH_BUMP_STAT(out_discards);
ip_drop_packet(ipsec_mp, is_inbound, NULL, NULL,
&ipdrops_ah_crypto_failed, &ah_dropper);
}
}
/*
* Invoked on kernel crypto failure during inbound and outbound processing.
*/
static void
ah_crypto_failed(mblk_t *mp, boolean_t is_inbound, int kef_rc)
{
ah1dbg(("crypto failed for %s AH with 0x%x\n",
is_inbound ? "inbound" : "outbound", kef_rc));
ip_drop_packet(mp, is_inbound, NULL, NULL, &ipdrops_ah_crypto_failed,
&ah_dropper);
AH_BUMP_STAT(crypto_failures);
if (is_inbound)
IP_AH_BUMP_STAT(in_discards);
else
AH_BUMP_STAT(out_discards);
}
/*
* Helper macros for the ah_submit_req_{inbound,outbound}() functions.
*/
#define AH_INIT_CALLREQ(_cr) { \
(_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_RESTRICTED; \
if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == IPSEC_ALGS_EXEC_ASYNC) \
(_cr)->cr_flag |= CRYPTO_ALWAYS_QUEUE; \
(_cr)->cr_callback_arg = ipsec_mp; \
(_cr)->cr_callback_func = ah_kcf_callback; \
}
#define AH_INIT_CRYPTO_DATA(data, msglen, mblk) { \
(data)->cd_format = CRYPTO_DATA_MBLK; \
(data)->cd_mp = mblk; \
(data)->cd_offset = 0; \
(data)->cd_length = msglen; \
}
#define AH_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \
(mac)->cd_format = CRYPTO_DATA_RAW; \
(mac)->cd_offset = 0; \
(mac)->cd_length = icvlen; \
(mac)->cd_raw.iov_base = icvbuf; \
(mac)->cd_raw.iov_len = icvlen; \
}
/*
* Submit an inbound packet for processing by the crypto framework.
*/
static ipsec_status_t
ah_submit_req_inbound(mblk_t *ipsec_mp, size_t skip_len, uint32_t ah_offset,
ipsa_t *assoc)
{
int kef_rc;
mblk_t *phdr_mp;
crypto_call_req_t call_req;
ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
uint_t icv_len = assoc->ipsa_mac_len;
crypto_ctx_template_t ctx_tmpl;
phdr_mp = ipsec_mp->b_cont;
ASSERT(phdr_mp != NULL);
ASSERT(ii->ipsec_in_type == IPSEC_IN);
/* init arguments for the crypto framework */
AH_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, AH_MSGSIZE(phdr_mp),
phdr_mp);
AH_INIT_CRYPTO_MAC(&ii->ipsec_in_crypto_mac, icv_len,
(char *)phdr_mp->b_cont->b_rptr - skip_len + ah_offset +
sizeof (ah_t));
AH_INIT_CALLREQ(&call_req);
ii->ipsec_in_skip_len = skip_len;
IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, ctx_tmpl);
/* call KEF to do the MAC operation */
kef_rc = crypto_mac_verify(&assoc->ipsa_amech,
&ii->ipsec_in_crypto_data, &assoc->ipsa_kcfauthkey, ctx_tmpl,
&ii->ipsec_in_crypto_mac, &call_req);
switch (kef_rc) {
case CRYPTO_SUCCESS:
AH_BUMP_STAT(crypto_sync);
return (ah_auth_in_done(ipsec_mp));
case CRYPTO_QUEUED:
/* ah_callback() will be invoked on completion */
AH_BUMP_STAT(crypto_async);
return (IPSEC_STATUS_PENDING);
case CRYPTO_INVALID_MAC:
AH_BUMP_STAT(crypto_sync);
ah_log_bad_auth(ipsec_mp);
return (IPSEC_STATUS_FAILED);
}
ah_crypto_failed(ipsec_mp, B_TRUE, kef_rc);
return (IPSEC_STATUS_FAILED);
}
/*
* Submit an outbound packet for processing by the crypto framework.
*/
static ipsec_status_t
ah_submit_req_outbound(mblk_t *ipsec_mp, size_t skip_len, ipsa_t *assoc)
{
int kef_rc;
mblk_t *phdr_mp;
crypto_call_req_t call_req;
ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr;
uint_t icv_len = assoc->ipsa_mac_len;
phdr_mp = ipsec_mp->b_cont;
ASSERT(phdr_mp != NULL);
ASSERT(io->ipsec_out_type == IPSEC_OUT);
/* init arguments for the crypto framework */
AH_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, AH_MSGSIZE(phdr_mp),
phdr_mp);
AH_INIT_CRYPTO_MAC(&io->ipsec_out_crypto_mac, icv_len,
(char *)phdr_mp->b_wptr);
AH_INIT_CALLREQ(&call_req);
io->ipsec_out_skip_len = skip_len;
ASSERT(io->ipsec_out_ah_sa != NULL);
/* call KEF to do the MAC operation */
kef_rc = crypto_mac(&assoc->ipsa_amech, &io->ipsec_out_crypto_data,
&assoc->ipsa_kcfauthkey, assoc->ipsa_authtmpl,
&io->ipsec_out_crypto_mac, &call_req);
switch (kef_rc) {
case CRYPTO_SUCCESS:
AH_BUMP_STAT(crypto_sync);
return (ah_auth_out_done(ipsec_mp));
case CRYPTO_QUEUED:
/* ah_callback() will be invoked on completion */
AH_BUMP_STAT(crypto_async);
return (IPSEC_STATUS_PENDING);
}
ah_crypto_failed(ipsec_mp, B_FALSE, kef_rc);
return (IPSEC_STATUS_FAILED);
}
/*
* This function constructs a pseudo header by looking at the IP header
* and options if any. This is called for both outbound and inbound,
* before computing the ICV.
*/
static mblk_t *
ah_process_ip_options_v6(mblk_t *mp, ipsa_t *assoc, int *length_to_skip,
uint_t ah_data_sz, boolean_t outbound)
{
ip6_t *ip6h;
ip6_t *oip6h;
mblk_t *phdr_mp;
int option_length;
uint_t ah_align_sz;
uint_t ah_offset;
int hdr_size;
/*
* Allocate space for the authentication data also. It is
* useful both during the ICV calculation where we need to
* feed in zeroes and while sending the datagram back to IP
* where we will be using the same space.
*
* We need to allocate space for padding bytes if it is not
* a multiple of IPV6_PADDING_ALIGN.
*
* In addition, we allocate space for the ICV computed by
* the kernel crypto framework, saving us a separate kmem
* allocation down the road.
*/
ah_align_sz = P2ALIGN(ah_data_sz + IPV6_PADDING_ALIGN - 1,
IPV6_PADDING_ALIGN);
ASSERT(ah_align_sz >= ah_data_sz);
hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE);
option_length = hdr_size - IPV6_HDR_LEN;
/* This was not included in ipsec_ah_get_hdr_size_v6() */
hdr_size += (sizeof (ah_t) + ah_align_sz);
if (!outbound && (MBLKL(mp) < hdr_size)) {
/*
* We have post-AH header options in a separate mblk,
* a pullup is required.
*/
if (!pullupmsg(mp, hdr_size))
return (NULL);
}
if ((phdr_mp = allocb(hdr_size + ah_data_sz, BPRI_HI)) == NULL) {
return (NULL);
}
oip6h = (ip6_t *)mp->b_rptr;
/*
* Form the basic IP header first. Zero out the header
* so that the mutable fields are zeroed out.
*/
ip6h = (ip6_t *)phdr_mp->b_rptr;
bzero(ip6h, sizeof (ip6_t));
ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
if (outbound) {
/*
* Include the size of AH and authentication data.
* This is how our recipient would compute the
* authentication data. Look at what we do in the
* inbound case below.
*/
ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) +
sizeof (ah_t) + ah_align_sz);
} else {
ip6h->ip6_plen = oip6h->ip6_plen;
}
ip6h->ip6_src = oip6h->ip6_src;
ip6h->ip6_dst = oip6h->ip6_dst;
*length_to_skip = IPV6_HDR_LEN;
if (option_length == 0) {
/* Form the AH header */
ip6h->ip6_nxt = IPPROTO_AH;
((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt;
ah_offset = *length_to_skip;
} else {
ip6h->ip6_nxt = oip6h->ip6_nxt;
/* option_length does not include the AH header's size */
*length_to_skip += option_length;
ah_offset = ah_fix_phdr_v6(ip6h, oip6h, outbound, B_FALSE);
if (ah_offset == 0) {
ip_drop_packet(phdr_mp, !outbound, NULL, NULL,
&ipdrops_ah_bad_v6_hdrs, &ah_dropper);
return (NULL);
}
}
if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)),
(outbound ? NULL : ((ah_t *)((uint8_t *)oip6h + ah_offset))),
assoc, ah_data_sz, ah_align_sz)) {
freeb(phdr_mp);
/*
* Returning NULL will tell the caller to
* IPSA_REFELE(), free the memory, etc.
*/
return (NULL);
}
phdr_mp->b_wptr = ((uint8_t *)ip6h + ah_offset + sizeof (ah_t) +
ah_align_sz);
if (!outbound)
*length_to_skip += sizeof (ah_t) + ah_align_sz;
return (phdr_mp);
}
/*
* This function constructs a pseudo header by looking at the IP header
* and options if any. This is called for both outbound and inbound,
* before computing the ICV.
*/
static mblk_t *
ah_process_ip_options_v4(mblk_t *mp, ipsa_t *assoc, int *length_to_skip,
uint_t ah_data_sz, boolean_t outbound)
{
ipoptp_t opts;
uint32_t option_length;
ipha_t *ipha;
ipha_t *oipha;
mblk_t *phdr_mp;
int size;
uchar_t *optptr;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
uint32_t v_hlen_tos_len;
int ip_hdr_length;
uint_t ah_align_sz;
uint32_t off;
#ifdef _BIG_ENDIAN
#define V_HLEN (v_hlen_tos_len >> 24)
#else
#define V_HLEN (v_hlen_tos_len & 0xFF)
#endif
oipha = (ipha_t *)mp->b_rptr;
v_hlen_tos_len = ((uint32_t *)oipha)[0];
/*
* Allocate space for the authentication data also. It is
* useful both during the ICV calculation where we need to
* feed in zeroes and while sending the datagram back to IP
* where we will be using the same space.
*
* We need to allocate space for padding bytes if it is not
* a multiple of IPV4_PADDING_ALIGN.
*
* In addition, we allocate space for the ICV computed by
* the kernel crypto framework, saving us a separate kmem
* allocation down the road.
*/
ah_align_sz = P2ALIGN(ah_data_sz + IPV4_PADDING_ALIGN - 1,
IPV4_PADDING_ALIGN);
ASSERT(ah_align_sz >= ah_data_sz);
size = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz +
ah_data_sz;
if (V_HLEN != IP_SIMPLE_HDR_VERSION) {
option_length = oipha->ipha_version_and_hdr_length -
(uint8_t)((IP_VERSION << 4) +
IP_SIMPLE_HDR_LENGTH_IN_WORDS);
option_length <<= 2;
size += option_length;
}
if ((phdr_mp = allocb(size, BPRI_HI)) == NULL) {
return (NULL);
}
/*
* Form the basic IP header first.
*/
ipha = (ipha_t *)phdr_mp->b_rptr;
ipha->ipha_version_and_hdr_length = oipha->ipha_version_and_hdr_length;
ipha->ipha_type_of_service = 0;
if (outbound) {
/*
* Include the size of AH and authentication data.
* This is how our recipient would compute the
* authentication data. Look at what we do in the
* inbound case below.
*/
ipha->ipha_length = ntohs(htons(oipha->ipha_length) +
sizeof (ah_t) + ah_align_sz);
} else {
ipha->ipha_length = oipha->ipha_length;
}
ipha->ipha_ident = oipha->ipha_ident;
ipha->ipha_fragment_offset_and_flags = 0;
ipha->ipha_ttl = 0;
ipha->ipha_protocol = IPPROTO_AH;
ipha->ipha_hdr_checksum = 0;
ipha->ipha_src = oipha->ipha_src;
ipha->ipha_dst = dst = oipha->ipha_dst;
/*
* If there is no option to process return now.
*/
ip_hdr_length = IP_SIMPLE_HDR_LENGTH;
if (V_HLEN == IP_SIMPLE_HDR_VERSION) {
/* Form the AH header */
goto ah_hdr;
}
ip_hdr_length += option_length;
/*
* We have options. In the outbound case for source route,
* ULP has already moved the first hop, which is now in
* ipha_dst. We need the final destination for the calculation
* of authentication data. And also make sure that mutable
* and experimental fields are zeroed out in the IP options.
*/
bcopy(&oipha[1], &ipha[1], option_length);
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
optptr = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
switch (optval) {
case IPOPT_EXTSEC:
case IPOPT_COMSEC:
case IPOPT_RA:
case IPOPT_SDMDD:
case IPOPT_SECURITY:
/*
* These options are Immutable, leave them as-is.
* Note that IPOPT_NOP is also Immutable, but it
* was skipped by ipoptp_next() and thus remains
* intact in the header.
*/
break;
case IPOPT_SSRR:
case IPOPT_LSRR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0)
goto bad_ipv4opt;
/*
* These two are mutable and will be zeroed, but
* first get the final destination.
*/
off = optptr[IPOPT_OFFSET];
/*
* If one of the conditions is true, it means
* end of options and dst already has the right
* value. So, just fall through.
*/
if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
off = optlen - IP_ADDR_LEN;
bcopy(&optptr[off], &dst, IP_ADDR_LEN);
}
/* FALLTHRU */
case IPOPT_RR:
case IPOPT_TS:
case IPOPT_SATID:
default:
/*
* optlen should include from the beginning of an
* option.
* NOTE : Stream Identifier Option (SID): RFC 791
* shows the bit pattern of optlen as 2 and documents
* the length as 4. We assume it to be 2 here.
*/
bzero(optptr, optlen);
break;
}
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
bad_ipv4opt:
ah1dbg(("AH : bad IPv4 option"));
freeb(phdr_mp);
return (NULL);
}
/*
* Don't change ipha_dst for an inbound datagram as it points
* to the right value. Only for the outbound with LSRR/SSRR,
* because of ip_massage_options called by the ULP, ipha_dst
* points to the first hop and we need to use the final
* destination for computing the ICV.
*/
if (outbound)
ipha->ipha_dst = dst;
ah_hdr:
((ah_t *)((uint8_t *)ipha + ip_hdr_length))->ah_nexthdr =
oipha->ipha_protocol;
if (!ah_finish_up(((ah_t *)((uint8_t *)ipha + ip_hdr_length)),
(outbound ? NULL : ((ah_t *)((uint8_t *)oipha + ip_hdr_length))),
assoc, ah_data_sz, ah_align_sz)) {
freeb(phdr_mp);
/*
* Returning NULL will tell the caller to IPSA_REFELE(), free
* the memory, etc.
*/
return (NULL);
}
phdr_mp->b_wptr = ((uchar_t *)ipha + ip_hdr_length +
sizeof (ah_t) + ah_align_sz);
ASSERT(phdr_mp->b_wptr <= phdr_mp->b_datap->db_lim);
if (outbound)
*length_to_skip = ip_hdr_length;
else
*length_to_skip = ip_hdr_length + sizeof (ah_t) + ah_align_sz;
return (phdr_mp);
}
/*
* Authenticate an outbound datagram. This function is called
* whenever IP sends an outbound datagram that needs authentication.
*/
static ipsec_status_t
ah_outbound(mblk_t *ipsec_out)
{
mblk_t *mp;
mblk_t *phdr_mp;
ipsec_out_t *oi;
ipsa_t *assoc;
int length_to_skip;
uint_t ah_align_sz;
uint_t age_bytes;
/*
* Construct the chain of mblks
*
* IPSEC_OUT->PSEUDO_HDR->DATA
*
* one by one.
*/
AH_BUMP_STAT(out_requests);
ASSERT(ipsec_out->b_datap->db_type == M_CTL);
ASSERT(MBLKL(ipsec_out) >= sizeof (ipsec_info_t));
mp = ipsec_out->b_cont;
oi = (ipsec_out_t *)ipsec_out->b_rptr;
ASSERT(mp->b_datap->db_type == M_DATA);
assoc = oi->ipsec_out_ah_sa;
ASSERT(assoc != NULL);
if (assoc->ipsa_usetime == 0)
ah_set_usetime(assoc, B_FALSE);
/*
* Age SA according to number of bytes that will be sent after
* adding the AH header, ICV, and padding to the packet.
*/
if (oi->ipsec_out_v4) {
ipha_t *ipha = (ipha_t *)mp->b_rptr;
ah_align_sz = P2ALIGN(assoc->ipsa_mac_len +
IPV4_PADDING_ALIGN - 1, IPV4_PADDING_ALIGN);
age_bytes = ntohs(ipha->ipha_length) + sizeof (ah_t) +
ah_align_sz;
} else {
ip6_t *ip6h = (ip6_t *)mp->b_rptr;
ah_align_sz = P2ALIGN(assoc->ipsa_mac_len +
IPV6_PADDING_ALIGN - 1, IPV6_PADDING_ALIGN);
age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) +
sizeof (ah_t) + ah_align_sz;
}
if (!ah_age_bytes(assoc, age_bytes, B_FALSE)) {
/* rig things as if ipsec_getassocbyconn() failed */
ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
"AH association 0x%x, dst %s had bytes expire.\n",
ntohl(assoc->ipsa_spi), assoc->ipsa_dstaddr, AF_INET);
freemsg(ipsec_out);
return (IPSEC_STATUS_FAILED);
}
/* EXPORT DELETE START */
if (oi->ipsec_out_is_capab_ill) {
ah3dbg(("ah_outbound: pkt can be accelerated\n"));
if (oi->ipsec_out_v4)
return (ah_outbound_accelerated_v4(ipsec_out, assoc));
else
return (ah_outbound_accelerated_v6(ipsec_out, assoc));
}
AH_BUMP_STAT(noaccel);
/* EXPORT DELETE END */
/*
* Insert pseudo header:
* IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP
*/
if (oi->ipsec_out_v4) {
phdr_mp = ah_process_ip_options_v4(mp, assoc, &length_to_skip,
assoc->ipsa_mac_len, B_TRUE);
} else {
phdr_mp = ah_process_ip_options_v6(mp, assoc, &length_to_skip,
assoc->ipsa_mac_len, B_TRUE);
}
if (phdr_mp == NULL) {
AH_BUMP_STAT(out_discards);
ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL,
&ipdrops_ah_bad_v4_opts, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
ipsec_out->b_cont = phdr_mp;
phdr_mp->b_cont = mp;
mp->b_rptr += length_to_skip;
/*
* At this point ipsec_out points to the IPSEC_OUT, new_mp
* points to an mblk containing the pseudo header (IP header,
* AH header, and ICV with mutable fields zero'ed out).
* mp points to the mblk containing the ULP data. The original
* IP header is kept before the ULP data in mp.
*/
/* submit MAC request to KCF */
return (ah_submit_req_outbound(ipsec_out, length_to_skip, assoc));
}
static ipsec_status_t
ah_inbound(mblk_t *ipsec_in_mp, void *arg)
{
mblk_t *data_mp = ipsec_in_mp->b_cont;
ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr;
ah_t *ah = (ah_t *)arg;
ipsa_t *assoc = ii->ipsec_in_ah_sa;
int length_to_skip;
int ah_length;
mblk_t *phdr_mp;
uint32_t ah_offset;
ASSERT(assoc != NULL);
if (assoc->ipsa_usetime == 0)
ah_set_usetime(assoc, B_TRUE);
/*
* We may wish to check replay in-range-only here as an optimization.
* Include the reality check of ipsa->ipsa_replay >
* ipsa->ipsa_replay_wsize for times when it's the first N packets,
* where N == ipsa->ipsa_replay_wsize.
*
* Another check that may come here later is the "collision" check.
* If legitimate packets flow quickly enough, this won't be a problem,
* but collisions may cause authentication algorithm crunching to
* take place when it doesn't need to.
*/
if (!sadb_replay_peek(assoc, ah->ah_replay)) {
AH_BUMP_STAT(replay_early_failures);
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL,
&ipdrops_ah_early_replay, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
/*
* The offset of the AH header can be computed from its pointer
* within the data mblk, which was pulled up until the AH header
* by ipsec_inbound_ah_sa() during SA selection.
*/
ah_offset = (uchar_t *)ah - data_mp->b_rptr;
/* EXPORT DELETE START */
/*
* Has this packet already been processed by a hardware
* IPsec accelerator?
*/
if (ii->ipsec_in_accelerated) {
ah3dbg(("ah_inbound_v6: pkt processed by ill=%d isv6=%d\n",
ii->ipsec_in_ill_index, !ii->ipsec_in_v4));
return (ah_inbound_accelerated(ipsec_in_mp, ii->ipsec_in_v4,
assoc, ah_offset));
}
AH_BUMP_STAT(noaccel);
/* EXPORT DELETE END */
/*
* We need to pullup until the ICV before we call
* ah_process_ip_options_v6.
*/
ah_length = (ah->ah_length << 2) + 8;
/*
* NOTE : If we want to use any field of IP/AH header, you need
* to re-assign following the pullup.
*/
if (((uchar_t *)ah + ah_length) > data_mp->b_wptr) {
if (!pullupmsg(data_mp, (uchar_t *)ah + ah_length -
data_mp->b_rptr)) {
(void) ipsec_rl_strlog(info.mi_idnum, 0, 0,
SL_WARN | SL_ERROR,
"ah_inbound: Small AH header\n");
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL,
&ipdrops_ah_nomem, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
}
/*
* Insert pseudo header:
* IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP
*/
if (ii->ipsec_in_v4) {
phdr_mp = ah_process_ip_options_v4(data_mp, assoc,
&length_to_skip, assoc->ipsa_mac_len, B_FALSE);
} else {
phdr_mp = ah_process_ip_options_v6(data_mp, assoc,
&length_to_skip, assoc->ipsa_mac_len, B_FALSE);
}
if (phdr_mp == NULL) {
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL,
ii->ipsec_in_v4 ? &ipdrops_ah_bad_v4_opts :
&ipdrops_ah_bad_v6_hdrs, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
ipsec_in_mp->b_cont = phdr_mp;
phdr_mp->b_cont = data_mp;
data_mp->b_rptr += length_to_skip;
/* submit request to KCF */
return (ah_submit_req_inbound(ipsec_in_mp, length_to_skip, ah_offset,
assoc));
}
/* EXPORT DELETE START */
/*
* ah_inbound_accelerated:
* Called from ah_inbound() to process IPsec packets that have been
* accelerated by hardware.
*
* Basically does what ah_auth_in_done() with some changes since
* no pseudo-headers are involved, i.e. the passed message is a
* IPSEC_INFO->DATA.
*
* It is assumed that only packets that have been successfully
* processed by the adapter come here.
*
* 1. get algorithm structure corresponding to association
* 2. calculate pointers to authentication header and ICV
* 3. compare ICV in AH header with ICV in data attributes
* 3.1 if different:
* 3.1.1 generate error
* 3.1.2 discard message
* 3.2 if ICV matches:
* 3.2.1 check replay
* 3.2.2 remove AH header
* 3.2.3 age SA byte
* 3.2.4 send to IP
*/
ipsec_status_t
ah_inbound_accelerated(mblk_t *ipsec_in, boolean_t isv4, ipsa_t *assoc,
uint32_t ah_offset)
{
mblk_t *mp;
ipha_t *ipha;
ah_t *ah;
ipsec_in_t *ii;
uint32_t icv_len;
uint32_t align_len;
uint32_t age_bytes;
ip6_t *ip6h;
uint8_t *in_icv;
mblk_t *hada_mp;
uint32_t next_hdr;
da_ipsec_t *hada;
kstat_named_t *counter;
AH_BUMP_STAT(in_accelerated);
ii = (ipsec_in_t *)ipsec_in->b_rptr;
mp = ipsec_in->b_cont;
hada_mp = ii->ipsec_in_da;
ASSERT(hada_mp != NULL);
hada = (da_ipsec_t *)hada_mp->b_rptr;
/*
* We only support one level of decapsulation in hardware, so
* nuke the pointer.
*/
ii->ipsec_in_da = NULL;
ii->ipsec_in_accelerated = B_FALSE;
/*
* Extract ICV length from attributes M_CTL and sanity check
* its value. We allow the mblk to be smaller than da_ipsec_t
* for a small ICV, as long as the entire ICV fits within the mblk.
* Also ensures that the ICV length computed by Provider
* corresponds to the ICV length of the algorithm specified by the SA.
*/
icv_len = hada->da_icv_len;
if ((icv_len != assoc->ipsa_mac_len) ||
(icv_len > DA_ICV_MAX_LEN) || (MBLKL(hada_mp) <
(sizeof (da_ipsec_t) - DA_ICV_MAX_LEN + icv_len))) {
ah0dbg(("ah_inbound_accelerated: "
"ICV len (%u) incorrect or mblk too small (%u)\n",
icv_len, (uint32_t)(MBLKL(hada_mp))));
counter = &ipdrops_ah_bad_length;
goto ah_in_discard;
}
ASSERT(icv_len != 0);
/* compute the padded AH ICV len */
if (isv4) {
ipha = (ipha_t *)mp->b_rptr;
align_len = (icv_len + IPV4_PADDING_ALIGN - 1) &
-IPV4_PADDING_ALIGN;
} else {
ip6h = (ip6_t *)mp->b_rptr;
align_len = (icv_len + IPV6_PADDING_ALIGN - 1) &
-IPV6_PADDING_ALIGN;
}
ah = (ah_t *)(mp->b_rptr + ah_offset);
in_icv = (uint8_t *)ah + sizeof (ah_t);
/* compare ICV in AH header vs ICV computed by adapter */
if (bcmp(hada->da_icv, in_icv, icv_len)) {
int af;
void *addr;
if (isv4) {
addr = &ipha->ipha_dst;
af = AF_INET;
} else {
addr = &ip6h->ip6_dst;
af = AF_INET6;
}
/*
* Log the event. Don't print to the console, block
* potential denial-of-service attack.
*/
AH_BUMP_STAT(bad_auth);
ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
"AH Authentication failed spi %x, dst_addr %s",
assoc->ipsa_spi, addr, af);
counter = &ipdrops_ah_bad_auth;
goto ah_in_discard;
}
ah3dbg(("AH succeeded, checking replay\n"));
AH_BUMP_STAT(good_auth);
if (!sadb_replay_check(assoc, ah->ah_replay)) {
int af;
void *addr;
if (isv4) {
addr = &ipha->ipha_dst;
af = AF_INET;
} else {
addr = &ip6h->ip6_dst;
af = AF_INET6;
}
/*
* Log the event. As of now we print out an event.
* Do not print the replay failure number, or else
* syslog cannot collate the error messages. Printing
* the replay number that failed (or printing to the
* console) opens a denial-of-service attack.
*/
AH_BUMP_STAT(replay_failures);
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN,
"Replay failed for AH spi %x, dst_addr %s",
assoc->ipsa_spi, addr, af);
counter = &ipdrops_ah_replay;
goto ah_in_discard;
}
/*
* Remove AH header. We do this by copying everything before
* the AH header onto the AH header+ICV.
*/
/* overwrite AH with what was preceeding it (IP header) */
next_hdr = ah->ah_nexthdr;
ovbcopy(mp->b_rptr, mp->b_rptr + sizeof (ah_t) + align_len,
ah_offset);
mp->b_rptr += sizeof (ah_t) + align_len;
if (isv4) {
/* adjust IP header next protocol */
ipha = (ipha_t *)mp->b_rptr;
ipha->ipha_protocol = next_hdr;
age_bytes = ipha->ipha_length;
/* adjust length in IP header */
ipha->ipha_length -= (sizeof (ah_t) + align_len);
/* recalculate checksum */
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
} else {
/* adjust IP header next protocol */
ip6h = (ip6_t *)mp->b_rptr;
ip6h->ip6_nxt = next_hdr;
age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) +
sizeof (ah_t);
/* adjust length in IP header */
ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
(sizeof (ah_t) + align_len));
}
/* age SA */
if (!ah_age_bytes(assoc, age_bytes, B_TRUE)) {
/* The ipsa has hit hard expiration, LOG and AUDIT. */
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN,
"AH Association 0x%x, dst %s had bytes expire.\n",
assoc->ipsa_spi, assoc->ipsa_dstaddr,
AF_INET);
AH_BUMP_STAT(bytes_expired);
counter = &ipdrops_ah_bytes_expire;
goto ah_in_discard;
}
freeb(hada_mp);
return (IPSEC_STATUS_SUCCESS);
ah_in_discard:
IP_AH_BUMP_STAT(in_discards);
freeb(hada_mp);
ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
/*
* ah_outbound_accelerated_v4:
* Called from ah_outbound_v4() and once it is determined that the
* packet is elligible for hardware acceleration.
*
* We proceed as follows:
* 1. allocate and initialize attributes mblk
* 2. mark IPSEC_OUT to indicate that pkt is accelerated
* 3. insert AH header
*/
static ipsec_status_t
ah_outbound_accelerated_v4(mblk_t *ipsec_mp, ipsa_t *assoc)
{
mblk_t *mp, *new_mp;
ipsec_out_t *oi;
uint_t ah_data_sz; /* ICV length, algorithm dependent */
uint_t ah_align_sz; /* ICV length + padding */
uint32_t v_hlen_tos_len; /* from original IP header */
ipha_t *oipha; /* original IP header */
ipha_t *nipha; /* new IP header */
uint_t option_length = 0;
uint_t new_hdr_len; /* new header length */
uint_t iphdr_length;
ah_t *ah_hdr; /* ptr to AH header */
AH_BUMP_STAT(out_accelerated);
oi = (ipsec_out_t *)ipsec_mp->b_rptr;
mp = ipsec_mp->b_cont;
oipha = (ipha_t *)mp->b_rptr;
v_hlen_tos_len = ((uint32_t *)oipha)[0];
/* mark packet as being accelerated in IPSEC_OUT */
ASSERT(oi->ipsec_out_accelerated == B_FALSE);
oi->ipsec_out_accelerated = B_TRUE;
/* calculate authentication data length, i.e. ICV + padding */
ah_data_sz = assoc->ipsa_mac_len;
ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) &
-IPV4_PADDING_ALIGN;
/*
* Insert pseudo header:
* IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP
*/
/* IP + AH + authentication + padding data length */
new_hdr_len = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz;
if (V_HLEN != IP_SIMPLE_HDR_VERSION) {
option_length = oipha->ipha_version_and_hdr_length -
(uint8_t)((IP_VERSION << 4) +
IP_SIMPLE_HDR_LENGTH_IN_WORDS);
option_length <<= 2;
new_hdr_len += option_length;
}
/* allocate pseudo-header mblk */
if ((new_mp = allocb(new_hdr_len, BPRI_HI)) == NULL) {
/* IPsec kstats: bump bean counter here */
ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
&ipdrops_ah_nomem, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
new_mp->b_cont = mp;
ipsec_mp->b_cont = new_mp;
new_mp->b_wptr += new_hdr_len;
/* copy original IP header to new header */
bcopy(mp->b_rptr, new_mp->b_rptr, IP_SIMPLE_HDR_LENGTH +
option_length);
/* update IP header */
nipha = (ipha_t *)new_mp->b_rptr;
nipha->ipha_protocol = IPPROTO_AH;
iphdr_length = ntohs(nipha->ipha_length);
iphdr_length += sizeof (ah_t) + ah_align_sz;
nipha->ipha_length = htons(iphdr_length);
nipha->ipha_hdr_checksum = 0;
nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha);
/* skip original IP header in mp */
mp->b_rptr += IP_SIMPLE_HDR_LENGTH + option_length;
/* initialize AH header */
ah_hdr = (ah_t *)(new_mp->b_rptr + IP_SIMPLE_HDR_LENGTH +
option_length);
ah_hdr->ah_nexthdr = oipha->ipha_protocol;
if (!ah_finish_up(ah_hdr, NULL, assoc, ah_data_sz, ah_align_sz)) {
/* Only way this fails is if outbound replay counter wraps. */
ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
&ipdrops_ah_replay, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
return (IPSEC_STATUS_SUCCESS);
}
/*
* ah_outbound_accelerated_v6:
*
* Called from ah_outbound_v6() once it is determined that the packet
* is eligible for hardware acceleration.
*
* We proceed as follows:
* 1. allocate and initialize attributes mblk
* 2. mark IPSEC_OUT to indicate that pkt is accelerated
* 3. insert AH header
*/
static ipsec_status_t
ah_outbound_accelerated_v6(mblk_t *ipsec_mp, ipsa_t *assoc)
{
mblk_t *mp, *phdr_mp;
ipsec_out_t *oi;
uint_t ah_data_sz; /* ICV length, algorithm dependent */
uint_t ah_align_sz; /* ICV length + padding */
ip6_t *oip6h; /* original IP header */
ip6_t *ip6h; /* new IP header */
uint_t option_length = 0;
uint_t hdr_size;
uint_t ah_offset;
ah_t *ah_hdr; /* ptr to AH header */
AH_BUMP_STAT(out_accelerated);
oi = (ipsec_out_t *)ipsec_mp->b_rptr;
mp = ipsec_mp->b_cont;
oip6h = (ip6_t *)mp->b_rptr;
/* mark packet as being accelerated in IPSEC_OUT */
ASSERT(oi->ipsec_out_accelerated == B_FALSE);
oi->ipsec_out_accelerated = B_TRUE;
/* calculate authentication data length, i.e. ICV + padding */
ah_data_sz = assoc->ipsa_mac_len;
ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) &
-IPV4_PADDING_ALIGN;
ASSERT(ah_align_sz >= ah_data_sz);
hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE);
option_length = hdr_size - IPV6_HDR_LEN;
/* This was not included in ipsec_ah_get_hdr_size_v6() */
hdr_size += (sizeof (ah_t) + ah_align_sz);
if ((phdr_mp = allocb(hdr_size, BPRI_HI)) == NULL) {
ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, &ipdrops_ah_nomem,
&ah_dropper);
return (IPSEC_STATUS_FAILED);
}
phdr_mp->b_wptr += hdr_size;
/*
* Form the basic IP header first. We always assign every bit
* of the v6 basic header, so a separate bzero is unneeded.
*/
ip6h = (ip6_t *)phdr_mp->b_rptr;
ip6h->ip6_vcf = oip6h->ip6_vcf;
ip6h->ip6_hlim = oip6h->ip6_hlim;
ip6h->ip6_src = oip6h->ip6_src;
ip6h->ip6_dst = oip6h->ip6_dst;
/*
* Include the size of AH and authentication data.
* This is how our recipient would compute the
* authentication data. Look at what we do in the
* inbound case below.
*/
ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) + sizeof (ah_t) +
ah_align_sz);
/*
* Insert pseudo header:
* IPSEC_INFO -> [IP6, LLH, ULP] =>
* IPSEC_INFO -> [IP, LLH, AH, ICV] -> ULP
*/
if (option_length == 0) {
/* Form the AH header */
ip6h->ip6_nxt = IPPROTO_AH;
((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt;
ah_offset = IPV6_HDR_LEN;
} else {
ip6h->ip6_nxt = oip6h->ip6_nxt;
/* option_length does not include the AH header's size */
ah_offset = ah_fix_phdr_v6(ip6h, oip6h, B_TRUE, B_FALSE);
if (ah_offset == 0) {
freemsg(phdr_mp);
ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
&ipdrops_ah_bad_v6_hdrs, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
}
phdr_mp->b_cont = mp;
ipsec_mp->b_cont = phdr_mp;
/* skip original IP header in mp */
mp->b_rptr += IPV6_HDR_LEN + option_length;
/* initialize AH header */
ah_hdr = (ah_t *)(phdr_mp->b_rptr + IPV6_HDR_LEN + option_length);
ah_hdr->ah_nexthdr = oip6h->ip6_nxt;
if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)), NULL,
assoc, ah_data_sz, ah_align_sz)) {
/* Only way this fails is if outbound replay counter wraps. */
ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
&ipdrops_ah_replay, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
return (IPSEC_STATUS_SUCCESS);
}
/* EXPORT DELETE END */
/*
* Invoked after processing of an inbound packet by the
* kernel crypto framework. Called by ah_submit_req() for a sync request,
* or by the kcf callback for an async request.
* Returns IPSEC_STATUS_SUCCESS on success, IPSEC_STATUS_FAILED on failure.
* On failure, the mblk chain ipsec_in is freed by this function.
*/
static ipsec_status_t
ah_auth_in_done(mblk_t *ipsec_in)
{
mblk_t *phdr_mp;
ipha_t *ipha;
uint_t ah_offset = 0;
mblk_t *mp;
int align_len;
ah_t *ah;
ipha_t *nipha;
uint32_t length;
ipsec_in_t *ii;
boolean_t isv4;
ip6_t *ip6h;
ip6_t *nip6h;
uint_t icv_len;
ipsa_t *assoc;
kstat_named_t *counter;
ii = (ipsec_in_t *)ipsec_in->b_rptr;
isv4 = ii->ipsec_in_v4;
assoc = ii->ipsec_in_ah_sa;
icv_len = (uint_t)ii->ipsec_in_crypto_mac.cd_raw.iov_len;
phdr_mp = ipsec_in->b_cont;
if (phdr_mp == NULL) {
ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem,
&ah_dropper);
return (IPSEC_STATUS_FAILED);
}
mp = phdr_mp->b_cont;
if (mp == NULL) {
ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem,
&ah_dropper);
return (IPSEC_STATUS_FAILED);
}
mp->b_rptr -= ii->ipsec_in_skip_len;
if (isv4) {
ipha = (ipha_t *)mp->b_rptr;
ah_offset = ipha->ipha_version_and_hdr_length -
(uint8_t)((IP_VERSION << 4));
ah_offset <<= 2;
align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1,
IPV4_PADDING_ALIGN);
} else {
ip6h = (ip6_t *)mp->b_rptr;
ah_offset = ipsec_ah_get_hdr_size_v6(mp, B_TRUE);
ASSERT((mp->b_wptr - mp->b_rptr) >= ah_offset);
align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1,
IPV6_PADDING_ALIGN);
}
ah = (ah_t *)(mp->b_rptr + ah_offset);
/*
* We get here only when authentication passed.
*/
ah3dbg(("AH succeeded, checking replay\n"));
AH_BUMP_STAT(good_auth);
if (!sadb_replay_check(assoc, ah->ah_replay)) {
int af;
void *addr;
if (isv4) {
addr = &ipha->ipha_dst;
af = AF_INET;
} else {
addr = &ip6h->ip6_dst;
af = AF_INET6;
}
/*
* Log the event. As of now we print out an event.
* Do not print the replay failure number, or else
* syslog cannot collate the error messages. Printing
* the replay number that failed (or printing to the
* console) opens a denial-of-service attack.
*/
AH_BUMP_STAT(replay_failures);
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN,
"Replay failed for AH spi %x, dst_addr %s",
assoc->ipsa_spi, addr, af);
counter = &ipdrops_ah_replay;
goto ah_in_discard;
}
/*
* We need to remove the AH header from the original
* datagram. Easy way to do this is to use phdr_mp
* to hold the IP header and the orginal mp to hold
* the rest of it. So, we copy the IP header on to
* phdr_mp, and set the b_rptr in mp past AH header.
*/
if (isv4) {
bcopy(mp->b_rptr, phdr_mp->b_rptr, ah_offset);
phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset;
nipha = (ipha_t *)phdr_mp->b_rptr;
/*
* Assign the right protocol, adjust the length as we
* are removing the AH header and adjust the checksum to
* account for the protocol and length.
*/
nipha->ipha_protocol = ah->ah_nexthdr;
length = ntohs(nipha->ipha_length);
if (!ah_age_bytes(assoc, length, B_TRUE)) {
/* The ipsa has hit hard expiration, LOG and AUDIT. */
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN,
"AH Association 0x%x, dst %s had bytes expire.\n",
assoc->ipsa_spi, assoc->ipsa_dstaddr,
AF_INET);
AH_BUMP_STAT(bytes_expired);
counter = &ipdrops_ah_bytes_expire;
goto ah_in_discard;
}
length -= (sizeof (ah_t) + align_len);
nipha->ipha_length = htons((uint16_t)length);
nipha->ipha_hdr_checksum = 0;
nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha);
/*
* Skip IP,AH and the authentication data in the
* original datagram.
*/
mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len);
} else {
uchar_t *whereptr;
int hdrlen;
uint8_t *nexthdr;
ip6_hbh_t *hbhhdr;
ip6_dest_t *dsthdr;
ip6_rthdr0_t *rthdr;
nip6h = (ip6_t *)phdr_mp->b_rptr;
/*
* Make phdr_mp hold until the AH header and make
* mp hold everything past AH header.
*/
length = ntohs(nip6h->ip6_plen);
if (!ah_age_bytes(assoc, length + sizeof (ip6_t), B_TRUE)) {
/* The ipsa has hit hard expiration, LOG and AUDIT. */
ipsec_assocfailure(info.mi_idnum, 0, 0,
SL_ERROR | SL_WARN,
"AH Association 0x%x, dst %s had bytes "
"expire.\n", assoc->ipsa_spi, &ip6h->ip6_dst,
AF_INET6);
AH_BUMP_STAT(bytes_expired);
counter = &ipdrops_ah_bytes_expire;
goto ah_in_discard;
}
bcopy(ip6h, nip6h, ah_offset);
phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset;
mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len);
/*
* Update the next header field of the header preceding
* AH with the next header field of AH. Start with the
* IPv6 header and proceed with the extension headers
* until we find what we're looking for.
*/
nexthdr = &nip6h->ip6_nxt;
whereptr = (uchar_t *)nip6h;
hdrlen = sizeof (ip6_t);
while (*nexthdr != IPPROTO_AH) {
whereptr += hdrlen;
/* Assume IP has already stripped it */
ASSERT(*nexthdr != IPPROTO_FRAGMENT &&
*nexthdr != IPPROTO_RAW);
switch (*nexthdr) {
case IPPROTO_HOPOPTS:
hbhhdr = (ip6_hbh_t *)whereptr;
nexthdr = &hbhhdr->ip6h_nxt;
hdrlen = 8 * (hbhhdr->ip6h_len + 1);
break;
case IPPROTO_DSTOPTS:
dsthdr = (ip6_dest_t *)whereptr;
nexthdr = &dsthdr->ip6d_nxt;
hdrlen = 8 * (dsthdr->ip6d_len + 1);
break;
case IPPROTO_ROUTING:
rthdr = (ip6_rthdr0_t *)whereptr;
nexthdr = &rthdr->ip6r0_nxt;
hdrlen = 8 * (rthdr->ip6r0_len + 1);
break;
}
}
*nexthdr = ah->ah_nexthdr;
length -= (sizeof (ah_t) + align_len);
nip6h->ip6_plen = htons((uint16_t)length);
}
return (IPSEC_STATUS_SUCCESS);
ah_in_discard:
IP_AH_BUMP_STAT(in_discards);
ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
/*
* Invoked after processing of an outbound packet by the
* kernel crypto framework, either by ah_submit_req() for a request
* executed syncrhonously, or by the KEF callback for a request
* executed asynchronously.
*/
static ipsec_status_t
ah_auth_out_done(mblk_t *ipsec_out)
{
mblk_t *phdr_mp;
mblk_t *mp;
int align_len;
uint32_t hdrs_length;
uchar_t *ptr;
uint32_t length;
boolean_t isv4;
ipsec_out_t *io;
size_t icv_len;
io = (ipsec_out_t *)ipsec_out->b_rptr;
isv4 = io->ipsec_out_v4;
icv_len = io->ipsec_out_crypto_mac.cd_raw.iov_len;
phdr_mp = ipsec_out->b_cont;
if (phdr_mp == NULL) {
ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL,
&ipdrops_ah_nomem, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
mp = phdr_mp->b_cont;
if (mp == NULL) {
ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL,
&ipdrops_ah_nomem, &ah_dropper);
return (IPSEC_STATUS_FAILED);
}
mp->b_rptr -= io->ipsec_out_skip_len;
if (isv4) {
ipha_t *ipha;
ipha_t *nipha;
ipha = (ipha_t *)mp->b_rptr;
hdrs_length = ipha->ipha_version_and_hdr_length -
(uint8_t)((IP_VERSION << 4));
hdrs_length <<= 2;
align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1,
IPV4_PADDING_ALIGN);
/*
* phdr_mp must have the right amount of space for the
* combined IP and AH header. Copy the IP header and
* the ack_data onto AH. Note that the AH header was
* already formed before the ICV calculation and hence
* you don't have to copy it here.
*/
bcopy(mp->b_rptr, phdr_mp->b_rptr, hdrs_length);
ptr = phdr_mp->b_rptr + hdrs_length + sizeof (ah_t);
bcopy(phdr_mp->b_wptr, ptr, icv_len);
/*
* Compute the new header checksum as we are assigning
* IPPROTO_AH and adjusting the length here.
*/
nipha = (ipha_t *)phdr_mp->b_rptr;
nipha->ipha_protocol = IPPROTO_AH;
length = ntohs(nipha->ipha_length);
length += (sizeof (ah_t) + align_len);
nipha->ipha_length = htons((uint16_t)length);
nipha->ipha_hdr_checksum = 0;
nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha);
} else {
ip6_t *ip6h;
ip6_t *nip6h;
uint_t ah_offset;
ip6h = (ip6_t *)mp->b_rptr;
nip6h = (ip6_t *)phdr_mp->b_rptr;
align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1,
IPV6_PADDING_ALIGN);
/*
* phdr_mp must have the right amount of space for the
* combined IP and AH header. Copy the IP header with
* options into the pseudo header. When we constructed
* a pseudo header, we did not copy some of the mutable
* fields. We do it now by calling ah_fix_phdr_v6()
* with the last argument B_TRUE. It returns the
* ah_offset into the pseudo header.
*/
bcopy(ip6h, nip6h, IPV6_HDR_LEN);
ah_offset = ah_fix_phdr_v6(nip6h, ip6h, B_TRUE, B_TRUE);
ASSERT(ah_offset != 0);
/*
* phdr_mp can hold exactly the whole IP header with options
* plus the AH header also. Thus subtracting the AH header's
* size should give exactly how much of the original header
* should be skipped.
*/
hdrs_length = (phdr_mp->b_wptr - phdr_mp->b_rptr) -
sizeof (ah_t) - icv_len;
bcopy(phdr_mp->b_wptr, ((uint8_t *)nip6h + ah_offset +
sizeof (ah_t)), icv_len);
length = ntohs(nip6h->ip6_plen);
length += (sizeof (ah_t) + align_len);
nip6h->ip6_plen = htons((uint16_t)length);
}
/* Skip the original IP header */
mp->b_rptr += hdrs_length;
if (mp->b_rptr == mp->b_wptr) {
phdr_mp->b_cont = mp->b_cont;
freeb(mp);
}
return (IPSEC_STATUS_SUCCESS);
}
/*
* Wrapper to allow IP to trigger an AH strlog message if an error
* condition is found during SA selection.
*/
void
ipsecah_rl_strlog(char level, ushort_t sl, char *fmt, ...)
{
va_list adx;
va_start(adx, fmt);
ipsec_rl_strlog(info.mi_idnum, 0, level, sl, fmt, adx);
va_end(adx);
}
/*
* Wrapper to allow IP to trigger an AH association failure message
* during SA inbound selection.
*/
void
ipsecah_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt,
uint32_t spi, void *addr, int af)
{
if (ipsecah_log_unknown_spi) {
ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi,
addr, af);
}
ip_drop_packet(mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa,
&ah_dropper);
}
/*
* Initialize the AH input and output processing functions.
*/
void
ipsecah_init_funcs(ipsa_t *sa)
{
if (sa->ipsa_output_func == NULL)
sa->ipsa_output_func = ah_outbound;
if (sa->ipsa_input_func == NULL)
sa->ipsa_input_func = ah_inbound;
}