ip.h revision 3efde6d032b3bcd6957e912c3f2a59253f28a9dc
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1990 Mentat Inc. */
#ifndef _INET_IP_H
#define _INET_IP_H
#ifdef __cplusplus
extern "C" {
#endif
#include <sys/isa_defs.h>
#include <sys/types.h>
#include <inet/mib2.h>
#include <inet/nd.h>
#include <sys/atomic.h>
#include <net/if_dl.h>
#include <net/if.h>
#include <netinet/ip.h>
#include <netinet/igmp.h>
#include <sys/neti.h>
#include <sys/hook.h>
#include <sys/hook_event.h>
#include <sys/hook_impl.h>
#include <inet/ip_stack.h>
#ifdef _KERNEL
#include <netinet/ip6.h>
#include <sys/avl.h>
#include <sys/list.h>
#include <sys/vmem.h>
#include <sys/squeue.h>
#include <net/route.h>
#include <sys/systm.h>
#include <sys/multidata.h>
#include <sys/list.h>
#include <net/radix.h>
#include <sys/modhash.h>
#ifdef DEBUG
#define CONN_DEBUG
#endif
#define IP_DEBUG
/*
* The mt-streams(9F) flags for the IP module; put here so that other
* "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set
* of flags.
*/
#define IP_DEVMTFLAGS D_MP
#endif /* _KERNEL */
#define IP_MOD_NAME "ip"
#define IP_DEV_NAME "/dev/ip"
#define IP6_DEV_NAME "/dev/ip6"
#define UDP_MOD_NAME "udp"
#define UDP_DEV_NAME "/dev/udp"
#define UDP6_DEV_NAME "/dev/udp6"
#define TCP_MOD_NAME "tcp"
#define TCP_DEV_NAME "/dev/tcp"
#define TCP6_DEV_NAME "/dev/tcp6"
#define SCTP_MOD_NAME "sctp"
#ifndef _IPADDR_T
#define _IPADDR_T
typedef uint32_t ipaddr_t;
#endif
/* Number of bits in an address */
#define IP_ABITS 32
#define IPV6_ABITS 128
#define IP_HOST_MASK (ipaddr_t)0xffffffffU
#define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF)
#define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum)
#define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum)
#define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff)
#define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum)
/*
* Flag to IP write side to indicate that the appln has sent in a pre-built
* IP header. Stored in ipha_ident (which is otherwise zero).
*/
#define IP_HDR_INCLUDED 0xFFFF
#define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64)
#define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t))
#define IPV4_ADDR_LEN 4
#define IP_ADDR_LEN IPV4_ADDR_LEN
#define IP_ARP_PROTO_TYPE 0x0800
#define IPV4_VERSION 4
#define IP_VERSION IPV4_VERSION
#define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5
#define IP_SIMPLE_HDR_LENGTH 20
#define IP_MAX_HDR_LENGTH 60
#define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH)
#define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */
/*
* XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the
* 2 files should be cleaned up to remove all redundant definitions.
*/
#define IP_MAXPACKET 65535
#define IP_SIMPLE_HDR_VERSION \
((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS)
#define UDPH_SIZE 8
/* Leave room for ip_newroute to tack on the src and target addresses */
#define OK_RESOLVER_MP(mp) \
((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN))
/*
* Constants and type definitions to support IP IOCTL commands
*/
#define IP_IOCTL (('i'<<8)|'p')
#define IP_IOC_IRE_DELETE 4
#define IP_IOC_IRE_DELETE_NO_REPLY 5
#define IP_IOC_IRE_ADVISE_NO_REPLY 6
#define IP_IOC_RTS_REQUEST 7
/* Common definitions used by IP IOCTL data structures */
typedef struct ipllcmd_s {
uint_t ipllc_cmd;
uint_t ipllc_name_offset;
uint_t ipllc_name_length;
} ipllc_t;
/* IP IRE Change Command Structure. */
typedef struct ipic_s {
ipllc_t ipic_ipllc;
uint_t ipic_ire_type;
uint_t ipic_max_frag;
uint_t ipic_addr_offset;
uint_t ipic_addr_length;
uint_t ipic_mask_offset;
uint_t ipic_mask_length;
uint_t ipic_src_addr_offset;
uint_t ipic_src_addr_length;
uint_t ipic_ll_hdr_offset;
uint_t ipic_ll_hdr_length;
uint_t ipic_gateway_addr_offset;
uint_t ipic_gateway_addr_length;
clock_t ipic_rtt;
uint32_t ipic_ssthresh;
clock_t ipic_rtt_sd;
uchar_t ipic_ire_marks;
} ipic_t;
#define ipic_cmd ipic_ipllc.ipllc_cmd
#define ipic_ll_name_length ipic_ipllc.ipllc_name_length
#define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset
/* IP IRE Delete Command Structure. */
typedef struct ipid_s {
ipllc_t ipid_ipllc;
uint_t ipid_ire_type;
uint_t ipid_addr_offset;
uint_t ipid_addr_length;
uint_t ipid_mask_offset;
uint_t ipid_mask_length;
} ipid_t;
#define ipid_cmd ipid_ipllc.ipllc_cmd
#ifdef _KERNEL
/*
* Temporary state for ip options parser.
*/
typedef struct ipoptp_s
{
uint8_t *ipoptp_next; /* next option to look at */
uint8_t *ipoptp_end; /* end of options */
uint8_t *ipoptp_cur; /* start of current option */
uint8_t ipoptp_len; /* length of current option */
uint32_t ipoptp_flags;
} ipoptp_t;
/*
* Flag(s) for ipoptp_flags
*/
#define IPOPTP_ERROR 0x00000001
#endif /* _KERNEL */
/* Controls forwarding of IP packets, set via ndd */
#define IP_FORWARD_NEVER 0
#define IP_FORWARD_ALWAYS 1
#define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS)
#define IPH_HDR_LENGTH(ipha) \
((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2)
#define IPH_HDR_VERSION(ipha) \
((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4)
#ifdef _KERNEL
/*
* IP reassembly macros. We hide starting and ending offsets in b_next and
* b_prev of messages on the reassembly queue. The messages are chained using
* b_cont. These macros are used in ip_reassemble() so we don't have to see
* the ugly casts and assignments.
* Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent
* them.
*/
#define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next))
#define IP_REASS_SET_START(mp, u) \
((mp)->b_next = (mblk_t *)(uintptr_t)(u))
#define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev))
#define IP_REASS_SET_END(mp, u) \
((mp)->b_prev = (mblk_t *)(uintptr_t)(u))
#define IP_REASS_COMPLETE 0x1
#define IP_REASS_PARTIAL 0x2
#define IP_REASS_FAILED 0x4
/*
* Test to determine whether this is a module instance of IP or a
* driver instance of IP.
*/
#define CONN_Q(q) (WR(q)->q_next == NULL)
#define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr)
#define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp)
#define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp)
#define Q_TO_ICMP(q) (Q_TO_CONN((q))->conn_icmp)
#define Q_TO_RTS(q) (Q_TO_CONN((q))->conn_rts)
/*
* The following two macros are used by IP to get the appropriate
* wq and rq for a conn. If it is a TCP conn, then we need
* tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq
* from a conn directly if it knows that the conn is not TCP.
*/
#define CONNP_TO_WQ(connp) \
(IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq)
#define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp))
#define GRAB_CONN_LOCK(q) { \
if (q != NULL && CONN_Q(q)) \
mutex_enter(&(Q_TO_CONN(q))->conn_lock); \
}
#define RELEASE_CONN_LOCK(q) { \
if (q != NULL && CONN_Q(q)) \
mutex_exit(&(Q_TO_CONN(q))->conn_lock); \
}
/* "Congestion controlled" protocol */
#define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP)
/*
* Complete the pending operation. Usually an ioctl. Can also
* be a bind or option management request that got enqueued
* in an ipsq_t. Called on completion of the operation.
*/
#define CONN_OPER_PENDING_DONE(connp) { \
mutex_enter(&(connp)->conn_lock); \
(connp)->conn_oper_pending_ill = NULL; \
cv_broadcast(&(connp)->conn_refcv); \
mutex_exit(&(connp)->conn_lock); \
CONN_DEC_REF(connp); \
}
/*
* Flags for the various ip_fanout_* routines.
*/
#define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */
#define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */
#define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */
#define IP_FF_RAWIP 0x08 /* Use rawip mib variable */
#define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */
#define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */
#define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */
#define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */
#define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */
#define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */
/*
* Following flags are used by IPQoS to determine if policy processing is
* required.
*/
#define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */
#define IP6_IN_LLMCAST 0x1000 /* Multicast */
#define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */
#define IP_FF_SCTP_CSUM_ERR 0x4000 /* sctp pkt has failed chksum */
#ifndef IRE_DB_TYPE
#define IRE_DB_TYPE M_SIG
#endif
#ifndef IRE_DB_REQ_TYPE
#define IRE_DB_REQ_TYPE M_PCSIG
#endif
#ifndef IRE_ARPRESOLVE_TYPE
#define IRE_ARPRESOLVE_TYPE M_EVENT
#endif
/*
* Values for squeue switch:
*/
#define IP_SQUEUE_ENTER_NODRAIN 1
#define IP_SQUEUE_ENTER 2
/*
* This is part of the interface between Transport provider and
* IP which can be used to set policy information. This is usually
* accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that
* only IPSEC_POLICY_SET is there when it is found in the chain.
* The information contained is an struct ipsec_req_t. On success
* or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned.
* IPSEC_POLICY_SET is never returned.
*/
#define IPSEC_POLICY_SET M_SETOPTS
#define IRE_IS_LOCAL(ire) ((ire != NULL) && \
((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK)))
#define IRE_IS_TARGET(ire) ((ire != NULL) && \
((ire)->ire_type != IRE_BROADCAST))
/* IP Fragmentation Reassembly Header */
typedef struct ipf_s {
struct ipf_s *ipf_hash_next;
struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */
uint32_t ipf_ident; /* Ident to match. */
uint8_t ipf_protocol; /* Protocol to match. */
uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */
time_t ipf_timestamp; /* Reassembly start time. */
mblk_t *ipf_mp; /* mblk we live in. */
mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */
int ipf_hole_cnt; /* Number of holes (hard-case). */
int ipf_end; /* Tail end offset (0 -> hard-case). */
uint_t ipf_gen; /* Frag queue generation */
size_t ipf_count; /* Count of bytes used by frag */
uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */
in6_addr_t ipf_v6src; /* IPv6 source address */
in6_addr_t ipf_v6dst; /* IPv6 dest address */
uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */
uint8_t ipf_ecn; /* ECN info for the fragments */
uint8_t ipf_num_dups; /* Number of times dup frags recvd */
uint16_t ipf_checksum_flags; /* Hardware checksum flags */
uint32_t ipf_checksum; /* Partial checksum of fragment data */
} ipf_t;
/*
* IPv4 Fragments
*/
#define IS_V4_FRAGMENT(ipha_fragment_offset_and_flags) \
(((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) || \
((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0))
#define ipf_src V4_PART_OF_V6(ipf_v6src)
#define ipf_dst V4_PART_OF_V6(ipf_v6dst)
typedef enum {
IB_PKT = 0x01,
OB_PKT = 0x02
} ip_pkt_t;
#define UPDATE_IB_PKT_COUNT(ire)\
{ \
(ire)->ire_ib_pkt_count++; \
if ((ire)->ire_ipif != NULL) { \
/* \
* forwarding packet \
*/ \
if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \
atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\
else \
atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\
} \
}
#define UPDATE_OB_PKT_COUNT(ire)\
{ \
(ire)->ire_ob_pkt_count++;\
if ((ire)->ire_ipif != NULL) { \
atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \
} \
}
#define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \
{ \
switch (ipha->ipha_protocol) { \
case IPPROTO_UDP: \
ip_udp_input(q, mp, ipha, ire, recv_ill); \
break; \
default: \
ip_proto_input(q, mp, ipha, ire, recv_ill, 0); \
break; \
} \
}
/*
* NCE_EXPIRED is TRUE when we have a non-permanent nce that was
* found to be REACHABLE more than ip_ire_arp_interval ms ago.
* This macro is used to age existing nce_t entries. The
* nce's will get cleaned up in the following circumstances:
* - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim
* when memory is low,
* - ip_arp_news, when updates are received.
* - if the nce is NCE_EXPIRED(), it will deleted, so that a new
* arp request will need to be triggered from an ND_INITIAL nce.
*
* Note that the nce state transition follows the pattern:
* ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE
* after which the nce is deleted when it has expired.
*
* nce_last is the timestamp that indicates when the nce_res_mp in the
* nce_t was last updated to a valid link-layer address. nce_last gets
* modified/updated :
* - when the nce is created
* - every time we get a sane arp response for the nce.
*/
#define NCE_EXPIRED(nce, ipst) (nce->nce_last > 0 && \
((nce->nce_flags & NCE_F_PERMANENT) == 0) && \
((TICK_TO_MSEC(lbolt64) - nce->nce_last) > \
(ipst)->ips_ip_ire_arp_interval))
#endif /* _KERNEL */
/* ICMP types */
#define ICMP_ECHO_REPLY 0
#define ICMP_DEST_UNREACHABLE 3
#define ICMP_SOURCE_QUENCH 4
#define ICMP_REDIRECT 5
#define ICMP_ECHO_REQUEST 8
#define ICMP_ROUTER_ADVERTISEMENT 9
#define ICMP_ROUTER_SOLICITATION 10
#define ICMP_TIME_EXCEEDED 11
#define ICMP_PARAM_PROBLEM 12
#define ICMP_TIME_STAMP_REQUEST 13
#define ICMP_TIME_STAMP_REPLY 14
#define ICMP_INFO_REQUEST 15
#define ICMP_INFO_REPLY 16
#define ICMP_ADDRESS_MASK_REQUEST 17
#define ICMP_ADDRESS_MASK_REPLY 18
/* ICMP_TIME_EXCEEDED codes */
#define ICMP_TTL_EXCEEDED 0
#define ICMP_REASSEMBLY_TIME_EXCEEDED 1
/* ICMP_DEST_UNREACHABLE codes */
#define ICMP_NET_UNREACHABLE 0
#define ICMP_HOST_UNREACHABLE 1
#define ICMP_PROTOCOL_UNREACHABLE 2
#define ICMP_PORT_UNREACHABLE 3
#define ICMP_FRAGMENTATION_NEEDED 4
#define ICMP_SOURCE_ROUTE_FAILED 5
#define ICMP_DEST_NET_UNKNOWN 6
#define ICMP_DEST_HOST_UNKNOWN 7
#define ICMP_SRC_HOST_ISOLATED 8
#define ICMP_DEST_NET_UNREACH_ADMIN 9
#define ICMP_DEST_HOST_UNREACH_ADMIN 10
#define ICMP_DEST_NET_UNREACH_TOS 11
#define ICMP_DEST_HOST_UNREACH_TOS 12
/* ICMP Header Structure */
typedef struct icmph_s {
uint8_t icmph_type;
uint8_t icmph_code;
uint16_t icmph_checksum;
union {
struct { /* ECHO request/response structure */
uint16_t u_echo_ident;
uint16_t u_echo_seqnum;
} u_echo;
struct { /* Destination unreachable structure */
uint16_t u_du_zero;
uint16_t u_du_mtu;
} u_du;
struct { /* Parameter problem structure */
uint8_t u_pp_ptr;
uint8_t u_pp_rsvd[3];
} u_pp;
struct { /* Redirect structure */
ipaddr_t u_rd_gateway;
} u_rd;
} icmph_u;
} icmph_t;
#define icmph_echo_ident icmph_u.u_echo.u_echo_ident
#define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum
#define icmph_du_zero icmph_u.u_du.u_du_zero
#define icmph_du_mtu icmph_u.u_du.u_du_mtu
#define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr
#define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway
#define ICMPH_SIZE 8
/*
* Minimum length of transport layer header included in an ICMP error
* message for it to be considered valid.
*/
#define ICMP_MIN_TP_HDR_LEN 8
/* Aligned IP header */
typedef struct ipha_s {
uint8_t ipha_version_and_hdr_length;
uint8_t ipha_type_of_service;
uint16_t ipha_length;
uint16_t ipha_ident;
uint16_t ipha_fragment_offset_and_flags;
uint8_t ipha_ttl;
uint8_t ipha_protocol;
uint16_t ipha_hdr_checksum;
ipaddr_t ipha_src;
ipaddr_t ipha_dst;
} ipha_t;
/*
* IP Flags
*
* Some of these constant names are copied for the DTrace IP provider in
* usr/src/lib/libdtrace/common/{ip.d.in, ip.sed.in}, which should be kept
* in sync.
*/
#define IPH_DF 0x4000 /* Don't fragment */
#define IPH_MF 0x2000 /* More fragments to come */
#define IPH_OFFSET 0x1FFF /* Where the offset lives */
#define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */
/* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */
#define IPH_ECN_NECT 0x0 /* Not ECN-Capable Transport */
#define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */
#define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */
#define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */
struct ill_s;
typedef boolean_t ip_v6intfid_func_t(struct ill_s *, in6_addr_t *);
typedef boolean_t ip_v6mapinfo_func_t(uint_t, uint8_t *, uint8_t *, uint32_t *,
in6_addr_t *);
typedef boolean_t ip_v4mapinfo_func_t(uint_t, uint8_t *, uint8_t *, uint32_t *,
ipaddr_t *);
/* IP Mac info structure */
typedef struct ip_m_s {
t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */
int ip_m_type; /* From <net/if_types.h> */
ip_v4mapinfo_func_t *ip_m_v4mapinfo;
ip_v6mapinfo_func_t *ip_m_v6mapinfo;
ip_v6intfid_func_t *ip_m_v6intfid;
} ip_m_t;
/*
* The following functions attempt to reduce the link layer dependency
* of the IP stack. The current set of link specific operations are:
* a. map from IPv4 class D (224.0/4) multicast address range to the link
* layer multicast address range.
* b. map from IPv6 multicast address range (ff00::/8) to the link
* layer multicast address range.
* c. derive the default IPv6 interface identifier from the interface.
* d. derive the default IPv6 destination interface identifier from
* the interface (point-to-point only).
*/
#define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \
(((ip_m)->ip_m_v4mapinfo != NULL) && \
(*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr))
#define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \
(((ip_m)->ip_m_v6mapinfo != NULL) && \
(*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr))
#define MEDIA_V6INTFID(ip_m, ill, v6ptr) \
(((ip_m)->ip_m_v6intfid != NULL) && \
(*(ip_m)->ip_m_v6intfid)(ill, v6ptr))
#define MEDIA_V6DESTINTFID(ip_m, ill, v6ptr) \
(((ip_m)->ip_m_v6destintfid != NULL) && \
(*(ip_m)->ip_m_v6destintfid)(ill, v6ptr))
/* Router entry types */
#define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */
#define IRE_DEFAULT 0x0002 /* Route entry for default gateway */
#define IRE_LOCAL 0x0004 /* Route entry for local address */
#define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */
#define IRE_PREFIX 0x0010 /* Route entry for prefix routes */
#define IRE_CACHE 0x0020 /* Cached Route entry */
#define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */
/* net without any address mapping. */
#define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */
/* net with resolver. */
#define IRE_HOST 0x0100 /* Host route entry */
#define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */
#define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER)
#define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST)
#define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \
IRE_LOOPBACK)
#define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET)
/*
* If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of
* the bucket should delete this IRE from this bucket.
*/
#define IRE_MARK_CONDEMNED 0x0001
/*
* An IRE with IRE_MARK_TESTHIDDEN is used by in.mpathd for test traffic. It
* can only be looked up by requesting MATCH_IRE_MARK_TESTHIDDEN.
*/
#define IRE_MARK_TESTHIDDEN 0x0004
/*
* An IRE with IRE_MARK_NOADD is created in ip_newroute_ipif when the outgoing
* interface is specified by e.g. IP_PKTINFO. The IRE is not added to the IRE
* cache table.
*/
#define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */
/*
* IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used
* either for forwarding a packet or has not been used for sending
* traffic on TCP connections terminated on this system. In both
* cases, this IRE is the first to go when IRE is being cleaned up.
*/
#define IRE_MARK_TEMPORARY 0x0010
/*
* IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with
* this mark, additional atomic checks need to be performed. For eg: by the
* time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the
* usesrc grouping could have changed in which case we want to fail adding
* the IRE_CACHE entry
*/
#define IRE_MARK_USESRC_CHECK 0x0020
/*
* IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the
* routing table lookup for the destination is bypassed and the packet is
* sent directly to the specified nexthop. The associated IRE_CACHE entries
* should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up
* in regular ire cache lookups.
*/
#define IRE_MARK_PRIVATE_ADDR 0x0040
/*
* When we send an ARP resolution query for the nexthop gateway's ire,
* we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk
* chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag
* indicates that information from ARP has not been transferred to a
* permanent IRE_CACHE entry. The flag is reset only when the
* information is successfully transferred to an ire_cache entry (in
* ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior
* to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will
* require that the resources (incomplete ire_cache and/or nce) must
* be cleaned up. The free callback routine (ire_freemblk()) checks
* for IRE_MARK_UNCACHED to see if any resources that are pinned down
* will need to be cleaned up or not.
*/
#define IRE_MARK_UNCACHED 0x0080
/*
* The comment below (and for other netstack_t references) refers
* to the fact that we only do netstack_hold in particular cases,
* such as the references from open streams (ill_t and conn_t's
* pointers). Internally within IP we rely on IP's ability to cleanup e.g.
* ire_t's when an ill goes away.
*/
typedef struct ire_expire_arg_s {
int iea_flush_flag;
ip_stack_t *iea_ipst; /* Does not have a netstack_hold */
} ire_expire_arg_t;
/* Flags with ire_expire routine */
#define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */
#define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */
#define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */
/* Arguments to ire_flush_cache() */
#define IRE_FLUSH_DELETE 0
#define IRE_FLUSH_ADD 1
/*
* Open/close synchronization flags.
* These are kept in a separate field in the conn and the synchronization
* depends on the atomic 32 bit access to that field.
*/
#define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */
#define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */
#define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */
#define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */
#define CONN_QUIESCED 0x10 /* conn is now quiescent */
/* Used to check connection state flags before caching the IRE */
#define CONN_CACHE_IRE(connp) \
(!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED)))
/*
* Parameter to ip_output giving the identity of the caller.
* IP_WSRV means the packet was enqueued in the STREAMS queue
* due to flow control and is now being reprocessed in the context of
* the STREAMS service procedure, consequent to flow control relief.
* IRE_SEND means the packet is being reprocessed consequent to an
* ire cache creation and addition and this may or may not be happening
* in the service procedure context. Anything other than the above 2
* cases is identified as IP_WPUT. Most commonly this is the case of
* packets coming down from the application.
*/
#ifdef _KERNEL
#define IP_WSRV 1 /* Called from ip_wsrv */
#define IP_WPUT 2 /* Called from ip_wput */
#define IRE_SEND 3 /* Called from ire_send */
/*
* Extra structures need for per-src-addr filtering (IGMPv3/MLDv2)
*/
#define MAX_FILTER_SIZE 64
typedef struct slist_s {
int sl_numsrc;
in6_addr_t sl_addr[MAX_FILTER_SIZE];
} slist_t;
/*
* Following struct is used to maintain retransmission state for
* a multicast group. One rtx_state_t struct is an in-line field
* of the ilm_t struct; the slist_ts in the rtx_state_t struct are
* alloc'd as needed.
*/
typedef struct rtx_state_s {
uint_t rtx_timer; /* retrans timer */
int rtx_cnt; /* retrans count */
int rtx_fmode_cnt; /* retrans count for fmode change */
slist_t *rtx_allow;
slist_t *rtx_block;
} rtx_state_t;
/*
* Used to construct list of multicast address records that will be
* sent in a single listener report.
*/
typedef struct mrec_s {
struct mrec_s *mrec_next;
uint8_t mrec_type;
uint8_t mrec_auxlen; /* currently unused */
in6_addr_t mrec_group;
slist_t mrec_srcs;
} mrec_t;
/* Group membership list per upper conn */
/*
* XXX add ilg info for ifaddr/ifindex.
* XXX can we make ilg survive an ifconfig unplumb + plumb
* by setting the ipif/ill to NULL and recover that later?
*
* ilg_ipif is used by IPv4 as multicast groups are joined using an interface
* address (ipif).
* ilg_ill is used by IPv6 as multicast groups are joined using an interface
* index (phyint->phyint_ifindex).
* ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6.
*
* ilg records the state of multicast memberships of a socket end point.
* ilm records the state of multicast memberships with the driver and is
* maintained per interface.
*
* There is no direct link between a given ilg and ilm. If the
* application has joined a group G with ifindex I, we will have
* an ilg with ilg_v6group and ilg_ill. There will be a corresponding
* ilm with ilm_ill/ilm_v6addr recording the multicast membership.
* To delete the membership:
*
* a) Search for ilg matching on G and I with ilg_v6group
* and ilg_ill. Delete ilg_ill.
* b) Search the corresponding ilm matching on G and I with
* ilm_v6addr and ilm_ill. Delete ilm.
*
* For IPv4 the only difference is that we look using ipifs, not ills.
*/
/*
* The ilg_t and ilm_t members are protected by ipsq. They can be changed only
* by a thread executing in the ipsq. In other words add/delete of a
* multicast group has to execute in the ipsq.
*/
#define ILG_DELETED 0x1 /* ilg_flags */
typedef struct ilg_s {
in6_addr_t ilg_v6group;
struct ipif_s *ilg_ipif; /* Logical interface we are member on */
struct ill_s *ilg_ill; /* Used by IPv6 */
uint_t ilg_flags;
mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
slist_t *ilg_filter;
} ilg_t;
/*
* Multicast address list entry for ill.
* ilm_ipif is used by IPv4 as multicast groups are joined using ipif.
* ilm_ill is used by IPv6 as multicast groups are joined using ill.
* ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6.
*
* The comment below (and for other netstack_t references) refers
* to the fact that we only do netstack_hold in particular cases,
* such as the references from open streams (ill_t and conn_t's
* pointers). Internally within IP we rely on IP's ability to cleanup e.g.
* ire_t's when an ill goes away.
*/
#define ILM_DELETED 0x1 /* ilm_flags */
typedef struct ilm_s {
in6_addr_t ilm_v6addr;
int ilm_refcnt;
uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */
struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */
struct ilm_s *ilm_next; /* Linked list for each ill */
uint_t ilm_state; /* state of the membership */
struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */
uint_t ilm_flags;
boolean_t ilm_notify_driver; /* Need to notify the driver */
zoneid_t ilm_zoneid;
int ilm_no_ilg_cnt; /* number of joins w/ no ilg */
mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
slist_t *ilm_filter; /* source filter list */
slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */
rtx_state_t ilm_rtx; /* SCR retransmission state */
ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */
} ilm_t;
#define ilm_addr V4_PART_OF_V6(ilm_v6addr)
typedef struct ilm_walker {
struct ill_s *ilw_ill; /* associated ill */
struct ill_s *ilw_ipmp_ill; /* associated ipmp ill (if any) */
struct ill_s *ilw_walk_ill; /* current ill being walked */
} ilm_walker_t;
/*
* Soft reference to an IPsec SA.
*
* On relative terms, conn's can be persistent (living as long as the
* processes which create them), while SA's are ephemeral (dying when
* they hit their time-based or byte-based lifetimes).
*
* We could hold a hard reference to an SA from an ipsec_latch_t,
* but this would cause expired SA's to linger for a potentially
* unbounded time.
*
* Instead, we remember the hash bucket number and bucket generation
* in addition to the pointer. The bucket generation is incremented on
* each deletion.
*/
typedef struct ipsa_ref_s
{
struct ipsa_s *ipsr_sa;
struct isaf_s *ipsr_bucket;
uint64_t ipsr_gen;
} ipsa_ref_t;
/*
* IPsec "latching" state.
*
* In the presence of IPsec policy, fully-bound conn's bind a connection
* to more than just the 5-tuple, but also a specific IPsec action and
* identity-pair.
*
* As an optimization, we also cache soft references to IPsec SA's
* here so that we can fast-path around most of the work needed for
* outbound IPsec SA selection.
*
* Were it not for TCP's detached connections, this state would be
* in-line in conn_t; instead, this is in a separate structure so it
* can be handed off to TCP when a connection is detached.
*/
typedef struct ipsec_latch_s
{
kmutex_t ipl_lock;
uint32_t ipl_refcnt;
uint64_t ipl_unique;
struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */
struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */
struct ipsec_action_s *ipl_in_action; /* latched action (in) */
struct ipsec_action_s *ipl_out_action; /* latched action (out) */
cred_t *ipl_local_id;
struct ipsid_s *ipl_local_cid;
struct ipsid_s *ipl_remote_cid;
unsigned int
ipl_out_action_latched : 1,
ipl_in_action_latched : 1,
ipl_out_policy_latched : 1,
ipl_in_policy_latched : 1,
ipl_ids_latched : 1,
ipl_pad_to_bit_31 : 27;
ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */
} ipsec_latch_t;
#define IPLATCH_REFHOLD(ipl) { \
atomic_add_32(&(ipl)->ipl_refcnt, 1); \
ASSERT((ipl)->ipl_refcnt != 0); \
}
#define IPLATCH_REFRELE(ipl, ns) { \
ASSERT((ipl)->ipl_refcnt != 0); \
membar_exit(); \
if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \
iplatch_free(ipl, ns); \
}
/*
* peer identity structure.
*/
typedef struct conn_s conn_t;
/*
* The old IP client structure "ipc_t" is gone. All the data is stored in the
* connection structure "conn_t" now. The mapping of old and new fields looks
* like this:
*
* ipc_ulp conn_ulp
* ipc_rq conn_rq
* ipc_wq conn_wq
*
* ipc_laddr conn_src
* ipc_faddr conn_rem
* ipc_v6laddr conn_srcv6
* ipc_v6faddr conn_remv6
*
* ipc_lport conn_lport
* ipc_fport conn_fport
* ipc_ports conn_ports
*
* ipc_policy conn_policy
* ipc_latch conn_latch
*
* ipc_irc_lock conn_lock
* ipc_ire_cache conn_ire_cache
*
* ipc_state_flags conn_state_flags
* ipc_outgoing_ill conn_outgoing_ill
*
* ipc_dontroute conn_dontroute
* ipc_loopback conn_loopback
* ipc_broadcast conn_broadcast
* ipc_reuseaddr conn_reuseaddr
*
* ipc_multicast_loop conn_multicast_loop
* ipc_multi_router conn_multi_router
* ipc_draining conn_draining
*
* ipc_did_putbq conn_did_putbq
* ipc_unspec_src conn_unspec_src
* ipc_policy_cached conn_policy_cached
*
* ipc_in_enforce_policy conn_in_enforce_policy
* ipc_out_enforce_policy conn_out_enforce_policy
* ipc_af_isv6 conn_af_isv6
* ipc_pkt_isv6 conn_pkt_isv6
*
* ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo
*
* ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit
* ipc_ipv6_recvhopopts conn_ipv6_recvhopopts
* ipc_ipv6_recvdstopts conn_ipv6_recvdstopts
*
* ipc_ipv6_recvrthdr conn_ipv6_recvrthdr
* ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts
* ipc_fully_bound conn_fully_bound
*
* ipc_recvif conn_recvif
*
* ipc_recvslla conn_recvslla
* ipc_acking_unbind conn_acking_unbind
* ipc_pad_to_bit_31 conn_pad_to_bit_31
*
* ipc_proto conn_proto
* ipc_incoming_ill conn_incoming_ill
* ipc_pending_ill conn_pending_ill
* ipc_unbind_mp conn_unbind_mp
* ipc_ilg conn_ilg
* ipc_ilg_allocated conn_ilg_allocated
* ipc_ilg_inuse conn_ilg_inuse
* ipc_ilg_walker_cnt conn_ilg_walker_cnt
* ipc_refcv conn_refcv
* ipc_multicast_ipif conn_multicast_ipif
* ipc_multicast_ill conn_multicast_ill
* ipc_drain_next conn_drain_next
* ipc_drain_prev conn_drain_prev
* ipc_idl conn_idl
*/
/*
* This is used to match an inbound/outbound datagram with policy.
*/
typedef struct ipsec_selector {
in6_addr_t ips_local_addr_v6;
in6_addr_t ips_remote_addr_v6;
uint16_t ips_local_port;
uint16_t ips_remote_port;
uint8_t ips_icmp_type;
uint8_t ips_icmp_code;
uint8_t ips_protocol;
uint8_t ips_isv4 : 1,
ips_is_icmp_inv_acq: 1;
} ipsec_selector_t;
/*
* Note that we put v4 addresses in the *first* 32-bit word of the
* selector rather than the last to simplify the prefix match/mask code
* in spd.c
*/
#define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0]
#define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0]
/* Values used in IP by IPSEC Code */
#define IPSEC_OUTBOUND B_TRUE
#define IPSEC_INBOUND B_FALSE
/*
* There are two variants in policy failures. The packet may come in
* secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not
* have the desired level of protection (IPSEC_POLICY_MISMATCH).
*/
#define IPSEC_POLICY_NOT_NEEDED 0
#define IPSEC_POLICY_MISMATCH 1
#define IPSEC_POLICY_AUTH_NOT_NEEDED 2
#define IPSEC_POLICY_ENCR_NOT_NEEDED 3
#define IPSEC_POLICY_SE_NOT_NEEDED 4
#define IPSEC_POLICY_MAX 5 /* Always max + 1. */
/*
* Folowing macro is used whenever the code does not know whether there
* is a M_CTL present in the front and it needs to examine the actual mp
* i.e the IP header. As a M_CTL message could be in the front, this
* extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL
* mp is not present, both first_mp and mp point to the same message.
*/
#define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \
(first_mp) = (mp); \
if ((mp)->b_datap->db_type == M_CTL) { \
(mp) = (mp)->b_cont; \
(mctl_present) = B_TRUE; \
} else { \
(mctl_present) = B_FALSE; \
}
/*
* Check with IPSEC inbound policy if
*
* 1) per-socket policy is present - indicated by conn_in_enforce_policy.
* 2) Or if we have not cached policy on the conn and the global policy is
* non-empty.
*/
#define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \
((connp)->conn_in_enforce_policy || \
(!((connp)->conn_policy_cached) && \
(ipss)->ipsec_inbound_v4_policy_present))
#define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \
((connp)->conn_in_enforce_policy || \
(!(connp)->conn_policy_cached && \
(ipss)->ipsec_inbound_v6_policy_present))
#define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \
((connp)->conn_out_enforce_policy || \
(!((connp)->conn_policy_cached) && \
(ipss)->ipsec_outbound_v4_policy_present))
#define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \
((connp)->conn_out_enforce_policy || \
(!(connp)->conn_policy_cached && \
(ipss)->ipsec_outbound_v6_policy_present))
/*
* Information cached in IRE for upper layer protocol (ULP).
*
* Notice that ire_max_frag is not included in the iulp_t structure, which
* it may seem that it should. But ire_max_frag cannot really be cached. It
* is fixed for each interface. For MTU found by PMTUd, we may want to cache
* it. But currently, we do not do that.
*/
typedef struct iulp_s {
boolean_t iulp_set; /* Is any metric set? */
uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */
clock_t iulp_rtt; /* Guestimate in millisecs. */
clock_t iulp_rtt_sd; /* Cached value of RTT variance. */
uint32_t iulp_spipe; /* Send pipe size. */
uint32_t iulp_rpipe; /* Receive pipe size. */
uint32_t iulp_rtomax; /* Max round trip timeout. */
uint32_t iulp_sack; /* Use SACK option (TCP)? */
uint32_t
iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */
iulp_wscale_ok : 1, /* Use window scale option (TCP)? */
iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */
iulp_pmtud_ok : 1, /* Enable PMTUd? */
iulp_not_used : 28;
} iulp_t;
/* Zero iulp_t. */
extern const iulp_t ire_uinfo_null;
/*
* The conn drain list structure (idl_t).
* The list is protected by idl_lock. Each conn_t inserted in the list
* points back at this idl_t using conn_idl. IP primes the draining of the
* conns queued in these lists, by qenabling the 1st conn of each list. This
* occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance
* of ip_wsrv successively qenables the next conn in the list.
* idl_lock protects all other members of idl_t and conn_drain_next
* and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED
* flag of the conn_t and conn_idl.
*
* The conn drain list, idl_t, itself is part of tx cookie list structure.
* A tx cookie list points to a blocked Tx ring and contains the list of
* all conn's that are blocked due to the flow-controlled Tx ring (via
* the idl drain list). Note that a link can have multiple Tx rings. The
* drain list will store the conn's blocked due to Tx ring being flow
* controlled.
*/
typedef uintptr_t ip_mac_tx_cookie_t;
typedef struct idl_s idl_t;
typedef struct idl_tx_list_s idl_tx_list_t;
struct idl_tx_list_s {
ip_mac_tx_cookie_t txl_cookie;
kmutex_t txl_lock; /* Lock for this list */
idl_t *txl_drain_list;
int txl_drain_index;
};
struct idl_s {
conn_t *idl_conn; /* Head of drain list */
kmutex_t idl_lock; /* Lock for this list */
conn_t *idl_conn_draining; /* conn that is draining */
uint32_t
idl_repeat : 1, /* Last conn must re-enable */
/* drain list again */
idl_unused : 31;
idl_tx_list_t *idl_itl;
};
#define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock))
/*
* Interface route structure which holds the necessary information to recreate
* routes that are tied to an interface (namely where ire_ipif != NULL).
* These routes which were initially created via a routing socket or via the
* SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be
* traditional interface routes. When an interface comes back up after being
* marked down, this information will be used to recreate the routes. These
* are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp).
*/
typedef struct ifrt_s {
ushort_t ifrt_type; /* Type of IRE */
in6_addr_t ifrt_v6addr; /* Address IRE represents. */
in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */
in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */
in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */
uint32_t ifrt_flags; /* flags related to route */
uint_t ifrt_max_frag; /* MTU (next hop or path). */
iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */
} ifrt_t;
#define ifrt_addr V4_PART_OF_V6(ifrt_v6addr)
#define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr)
#define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr)
#define ifrt_mask V4_PART_OF_V6(ifrt_v6mask)
/* Number of IP addresses that can be hosted on a physical interface */
#define MAX_ADDRS_PER_IF 8192
/*
* Number of Source addresses to be considered for source address
* selection. Used by ipif_select_source[_v6].
*/
#define MAX_IPIF_SELECT_SOURCE 50
#ifdef IP_DEBUG
/*
* Trace refholds and refreles for debugging.
*/
#define TR_STACK_DEPTH 14
typedef struct tr_buf_s {
int tr_depth;
clock_t tr_time;
pc_t tr_stack[TR_STACK_DEPTH];
} tr_buf_t;
typedef struct th_trace_s {
int th_refcnt;
uint_t th_trace_lastref;
kthread_t *th_id;
#define TR_BUF_MAX 38
tr_buf_t th_trbuf[TR_BUF_MAX];
} th_trace_t;
typedef struct th_hash_s {
list_node_t thh_link;
mod_hash_t *thh_hash;
ip_stack_t *thh_ipst;
} th_hash_t;
#endif
/* The following are ipif_state_flags */
#define IPIF_CONDEMNED 0x1 /* The ipif is being removed */
#define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */
#define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */
#define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */
/* IP interface structure, one per local address */
typedef struct ipif_s {
struct ipif_s *ipif_next;
struct ill_s *ipif_ill; /* Back pointer to our ill */
int ipif_id; /* Logical unit number */
uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */
in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */
in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */
in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */
in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */
in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */
in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */
uint64_t ipif_flags; /* Interface flags. */
uint_t ipif_metric; /* BSD if metric, for compatibility. */
uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */
mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */
/* prevent awkward out of mem */
/* condition later */
mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */
/* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */
/* on this interface so that they */
/* can survive ifconfig down. */
kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */
mrec_t *ipif_igmp_rpt; /* List of group memberships which */
/* will be reported on. Used when */
/* handling an igmp timeout. */
/*
* The packet counts in the ipif contain the sum of the
* packet counts in dead IREs that were affiliated with
* this ipif.
*/
uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */
uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */
uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */
/* Exclusive bit fields, protected by ipsq_t */
unsigned int
ipif_multicast_up : 1, /* ipif_multicast_up() successful */
ipif_was_up : 1, /* ipif was up before */
ipif_addr_ready : 1, /* DAD is done */
ipif_was_dup : 1, /* DAD had failed */
ipif_joined_allhosts : 1, /* allhosts joined */
ipif_added_nce : 1, /* nce added for local address */
ipif_pad_to_31 : 26;
uint_t ipif_seqid; /* unique index across all ills */
uint_t ipif_state_flags; /* See IPIF_* flag defs above */
uint_t ipif_refcnt; /* active consistent reader cnt */
/* Number of ire's and ilm's referencing this ipif */
uint_t ipif_ire_cnt;
uint_t ipif_ilm_cnt;
uint_t ipif_saved_ire_cnt;
zoneid_t ipif_zoneid; /* zone ID number */
timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */
boolean_t ipif_trace_disable; /* True when alloc fails */
/*
* For an IPMP interface, ipif_bound_ill tracks the ill whose hardware
* information this ipif is associated with via ARP/NDP. We can use
* an ill pointer (rather than an index) because only ills that are
* part of a group will be pointed to, and an ill cannot disappear
* while it's in a group.
*/
struct ill_s *ipif_bound_ill;
struct ipif_s *ipif_bound_next; /* bound ipif chain */
boolean_t ipif_bound; /* B_TRUE if we successfully bound */
} ipif_t;
/*
* IPIF_FREE_OK() means that there are no incoming references
* to the ipif. Incoming refs would prevent the ipif from being freed.
*/
#define IPIF_FREE_OK(ipif) \
((ipif)->ipif_ire_cnt == 0 && (ipif)->ipif_ilm_cnt == 0)
/*
* IPIF_DOWN_OK() determines whether the incoming pointer reference counts
* would permit the ipif to be considered quiescent. In order for
* an ipif or ill to be considered quiescent, the ire and nce references
* to that ipif/ill must be zero.
*
* We do not require the ilm references to go to zero for quiescence
* because the quiescence checks are done to ensure that
* outgoing packets do not use addresses from the ipif/ill after it
* has been marked down, and incoming packets to addresses on a
* queiscent interface are rejected. This implies that all the
* ire/nce's using that source address need to be deleted and future
* creation of any ires using that source address must be prevented.
* Similarly incoming unicast packets destined to the 'down' address
* will not be accepted once that ire is gone. However incoming
* multicast packets are not destined to the downed address.
* They are only related to the ill in question. Furthermore
* the current API behavior allows applications to join or leave
* multicast groups, i.e., IP_ADD_MEMBERSHIP / LEAVE_MEMBERSHIP, using a
* down address. Therefore the ilm references are not included in
* the _DOWN_OK macros.
*/
#define IPIF_DOWN_OK(ipif) ((ipif)->ipif_ire_cnt == 0)
/*
* The following table lists the protection levels of the various members
* of the ipif_t. The following notation is used.
*
* Write once - Written to only once at the time of bringing up
* the interface and can be safely read after the bringup without any lock.
*
* ipsq - Need to execute in the ipsq to perform the indicated access.
*
* ill_lock - Need to hold this mutex to perform the indicated access.
*
* ill_g_lock - Need to hold this rw lock as reader/writer for read access or
* write access respectively.
*
* down ill - Written to only when the ill is down (i.e all ipifs are down)
* up ill - Read only when the ill is up (i.e. at least 1 ipif is up)
*
* Table of ipif_t members and their protection
*
* ipif_next ipsq + ill_lock + ipsq OR ill_lock OR
* ill_g_lock ill_g_lock
* ipif_ill ipsq + down ipif write once
* ipif_id ipsq + down ipif write once
* ipif_mtu ipsq
* ipif_v6lcl_addr ipsq + down ipif up ipif
* ipif_v6src_addr ipsq + down ipif up ipif
* ipif_v6subnet ipsq + down ipif up ipif
* ipif_v6net_mask ipsq + down ipif up ipif
*
* ipif_v6brd_addr
* ipif_v6pp_dst_addr
* ipif_flags ill_lock ill_lock
* ipif_metric
* ipif_ire_type ipsq + down ill up ill
*
* ipif_arp_del_mp ipsq ipsq
* ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock
* ipif_igmp_rpt ipsq ipsq
*
* ipif_fo_pkt_count Approx
* ipif_ib_pkt_count Approx
* ipif_ob_pkt_count Approx
*
* bit fields ill_lock ill_lock
*
* ipif_seqid ipsq Write once
*
* ipif_state_flags ill_lock ill_lock
* ipif_refcnt ill_lock ill_lock
* ipif_ire_cnt ill_lock ill_lock
* ipif_ilm_cnt ill_lock ill_lock
* ipif_saved_ire_cnt
*
* ipif_bound_ill ipsq + ipmp_lock ipsq OR ipmp_lock
* ipif_bound_next ipsq ipsq
* ipif_bound ipsq ipsq
*/
#define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1))
#ifdef DEBUG
#define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif)
#define ILL_TRACE_REF(ill) ill_trace_ref(ill)
#define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif)
#define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill)
#else
#define IPIF_TRACE_REF(ipif)
#define ILL_TRACE_REF(ill)
#define IPIF_UNTRACE_REF(ipif)
#define ILL_UNTRACE_REF(ill)
#endif
/* IPv4 compatibility macros */
#define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr)
#define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr)
#define ipif_subnet V4_PART_OF_V6(ipif_v6subnet)
#define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask)
#define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr)
#define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr)
/* Macros for easy backreferences to the ill. */
#define ipif_wq ipif_ill->ill_wq
#define ipif_rq ipif_ill->ill_rq
#define ipif_net_type ipif_ill->ill_net_type
#define ipif_ipif_up_count ipif_ill->ill_ipif_up_count
#define ipif_type ipif_ill->ill_type
#define ipif_isv6 ipif_ill->ill_isv6
#define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */
/*
* mode value for ip_ioctl_finish for finishing an ioctl
*/
#define CONN_CLOSE 1 /* No mi_copy */
#define COPYOUT 2 /* do an mi_copyout if needed */
#define NO_COPYOUT 3 /* do an mi_copy_done */
#define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT)
/*
* The IP-MT design revolves around the serialization objects ipsq_t (IPSQ)
* and ipxop_t (exclusive operation or "xop"). Becoming "writer" on an IPSQ
* ensures that no other threads can become "writer" on any IPSQs sharing that
* IPSQ's xop until the writer thread is done.
*
* Each phyint points to one IPSQ that remains fixed over the phyint's life.
* Each IPSQ points to one xop that can change over the IPSQ's life. If a
* phyint is *not* in an IPMP group, then its IPSQ will refer to the IPSQ's
* "own" xop (ipsq_ownxop). If a phyint *is* part of an IPMP group, then its
* IPSQ will refer to the "group" xop, which is shorthand for the xop of the
* IPSQ of the IPMP meta-interface's phyint. Thus, all phyints that are part
* of the same IPMP group will have their IPSQ's point to the group xop, and
* thus becoming "writer" on any phyint in the group will prevent any other
* writer on any other phyint in the group. All IPSQs sharing the same xop
* are chained together through ipsq_next (in the degenerate common case,
* ipsq_next simply refers to itself). Note that the group xop is guaranteed
* to exist at least as long as there are members in the group, since the IPMP
* meta-interface can only be destroyed if the group is empty.
*
* Incoming exclusive operation requests are enqueued on the IPSQ they arrived
* on rather than the xop. This makes switching xop's (as would happen when a
* phyint leaves an IPMP group) simple, because after the phyint leaves the
* group, any operations enqueued on its IPSQ can be safely processed with
* respect to its new xop, and any operations enqueued on the IPSQs of its
* former group can be processed with respect to their existing group xop.
* Even so, switching xops is a subtle dance; see ipsq_dq() for details.
*
* An IPSQ's "own" xop is embedded within the IPSQ itself since they have have
* identical lifetimes, and because doing so simplifies pointer management.
* While each phyint and IPSQ point to each other, it is not possible to free
* the IPSQ when the phyint is freed, since we may still *inside* the IPSQ
* when the phyint is being freed. Thus, ipsq_phyint is set to NULL when the
* phyint is freed, and the IPSQ free is later done in ipsq_exit().
*
* ipsq_t synchronization: read write
*
* ipsq_xopq_mphead ipx_lock ipx_lock
* ipsq_xopq_mptail ipx_lock ipx_lock
* ipsq_xop_switch_mp ipsq_lock ipsq_lock
* ipsq_phyint write once write once
* ipsq_next RW_READER ill_g_lock RW_WRITER ill_g_lock
* ipsq_xop ipsq_lock or ipsq ipsq_lock + ipsq
* ipsq_swxop ipsq ipsq
* ipsq_ownxop see ipxop_t see ipxop_t
* ipsq_ipst write once write once
*
* ipxop_t synchronization: read write
*
* ipx_writer ipx_lock ipx_lock
* ipx_xop_queued ipx_lock ipx_lock
* ipx_mphead ipx_lock ipx_lock
* ipx_mptail ipx_lock ipx_lock
* ipx_ipsq write once write once
* ips_ipsq_queued ipx_lock ipx_lock
* ipx_waitfor ipsq or ipx_lock ipsq + ipx_lock
* ipx_reentry_cnt ipsq or ipx_lock ipsq + ipx_lock
* ipx_current_done ipsq ipsq
* ipx_current_ioctl ipsq ipsq
* ipx_current_ipif ipsq or ipx_lock ipsq + ipx_lock
* ipx_pending_ipif ipsq or ipx_lock ipsq + ipx_lock
* ipx_pending_mp ipsq or ipx_lock ipsq + ipx_lock
* ipx_forced ipsq ipsq
* ipx_depth ipsq ipsq
* ipx_stack ipsq ipsq
*/
typedef struct ipxop_s {
kmutex_t ipx_lock; /* see above */
kthread_t *ipx_writer; /* current owner */
mblk_t *ipx_mphead; /* messages tied to this op */
mblk_t *ipx_mptail;
struct ipsq_s *ipx_ipsq; /* associated ipsq */
boolean_t ipx_ipsq_queued; /* ipsq using xop has queued op */
int ipx_waitfor; /* waiting; values encoded below */
int ipx_reentry_cnt;
boolean_t ipx_current_done; /* is the current operation done? */
int ipx_current_ioctl; /* current ioctl, or 0 if no ioctl */
ipif_t *ipx_current_ipif; /* ipif for current op */
ipif_t *ipx_pending_ipif; /* ipif for ipsq_pending_mp */
mblk_t *ipx_pending_mp; /* current ioctl mp while waiting */
boolean_t ipx_forced; /* debugging aid */
#ifdef DEBUG
int ipx_depth; /* debugging aid */
#define IPX_STACK_DEPTH 15
pc_t ipx_stack[IPX_STACK_DEPTH]; /* debugging aid */
#endif
} ipxop_t;
typedef struct ipsq_s {
kmutex_t ipsq_lock; /* see above */
mblk_t *ipsq_switch_mp; /* op to handle right after switch */
mblk_t *ipsq_xopq_mphead; /* list of excl ops (mostly ioctls) */
mblk_t *ipsq_xopq_mptail;
struct phyint *ipsq_phyint; /* associated phyint */
struct ipsq_s *ipsq_next; /* next ipsq sharing ipsq_xop */
struct ipxop_s *ipsq_xop; /* current xop synchronization info */
struct ipxop_s *ipsq_swxop; /* switch xop to on ipsq_exit() */
struct ipxop_s ipsq_ownxop; /* our own xop (may not be in-use) */
ip_stack_t *ipsq_ipst; /* does not have a netstack_hold */
} ipsq_t;
/*
* ipx_waitfor values:
*/
enum {
IPIF_DOWN = 1, /* ipif_down() waiting for refcnts to drop */
ILL_DOWN, /* ill_down() waiting for refcnts to drop */
IPIF_FREE, /* ipif_free() waiting for refcnts to drop */
ILL_FREE /* ill unplumb waiting for refcnts to drop */
};
/* Operation types for ipsq_try_enter() */
#define CUR_OP 0 /* request writer within current operation */
#define NEW_OP 1 /* request writer for a new operation */
#define SWITCH_OP 2 /* request writer once IPSQ XOP switches */
/*
* Kstats tracked on each IPMP meta-interface. Order here must match
* ipmp_kstats[] in ip/ipmp.c.
*/
enum {
IPMP_KSTAT_OBYTES, IPMP_KSTAT_OBYTES64, IPMP_KSTAT_RBYTES,
IPMP_KSTAT_RBYTES64, IPMP_KSTAT_OPACKETS, IPMP_KSTAT_OPACKETS64,
IPMP_KSTAT_OERRORS, IPMP_KSTAT_IPACKETS, IPMP_KSTAT_IPACKETS64,
IPMP_KSTAT_IERRORS, IPMP_KSTAT_MULTIRCV, IPMP_KSTAT_MULTIXMT,
IPMP_KSTAT_BRDCSTRCV, IPMP_KSTAT_BRDCSTXMT, IPMP_KSTAT_LINK_UP,
IPMP_KSTAT_MAX /* keep last */
};
/*
* phyint represents state that is common to both IPv4 and IPv6 interfaces.
* There is a separate ill_t representing IPv4 and IPv6 which has a
* backpointer to the phyint structure for accessing common state.
*/
typedef struct phyint {
struct ill_s *phyint_illv4;
struct ill_s *phyint_illv6;
uint_t phyint_ifindex; /* SIOCSLIFINDEX */
uint64_t phyint_flags;
avl_node_t phyint_avl_by_index; /* avl tree by index */
avl_node_t phyint_avl_by_name; /* avl tree by name */
kmutex_t phyint_lock;
struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */
struct ipmp_grp_s *phyint_grp; /* associated IPMP group */
char phyint_name[LIFNAMSIZ]; /* physical interface name */
uint64_t phyint_kstats0[IPMP_KSTAT_MAX]; /* baseline kstats */
} phyint_t;
#define CACHE_ALIGN_SIZE 64
#define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\
CACHE_ALIGN_SIZE)
struct _phyint_list_s_ {
avl_tree_t phyint_list_avl_by_index; /* avl tree by index */
avl_tree_t phyint_list_avl_by_name; /* avl tree by name */
};
typedef union phyint_list_u {
struct _phyint_list_s_ phyint_list_s;
char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)];
} phyint_list_t;
#define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index
#define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name
/*
* Fragmentation hash bucket
*/
typedef struct ipfb_s {
struct ipf_s *ipfb_ipf; /* List of ... */
size_t ipfb_count; /* Count of bytes used by frag(s) */
kmutex_t ipfb_lock; /* Protect all ipf in list */
uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */
} ipfb_t;
/*
* IRE bucket structure. Usually there is an array of such structures,
* each pointing to a linked list of ires. irb_refcnt counts the number
* of walkers of a given hash bucket. Usually the reference count is
* bumped up if the walker wants no IRES to be DELETED while walking the
* list. Bumping up does not PREVENT ADDITION. This allows walking a given
* hash bucket without stumbling up on a free pointer.
*
* irb_t structures in ip_ftable are dynamically allocated and freed.
* In order to identify the irb_t structures that can be safely kmem_free'd
* we need to ensure that
* - the irb_refcnt is quiescent, indicating no other walkers,
* - no other threads or ire's are holding references to the irb,
* i.e., irb_nire == 0,
* - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0
*/
typedef struct irb {
struct ire_s *irb_ire; /* First ire in this bucket */
/* Should be first in this struct */
krwlock_t irb_lock; /* Protect this bucket */
uint_t irb_refcnt; /* Protected by irb_lock */
uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */
#define IRB_MARK_CONDEMNED 0x0001
#define IRB_MARK_FTABLE 0x0002
uint_t irb_ire_cnt; /* Num of active IRE in this bucket */
uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */
struct ire_s *irb_rr_origin; /* origin for round-robin */
int irb_nire; /* Num of ftable ire's that ref irb */
ip_stack_t *irb_ipst; /* Does not have a netstack_hold */
} irb_t;
#define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb))
/* The following are return values of ip_xmit_v4() */
typedef enum {
SEND_PASSED = 0, /* sent packet out on wire */
SEND_FAILED, /* sending of packet failed */
LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */
LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */
} ipxmit_state_t;
#define IP_V4_G_HEAD 0
#define IP_V6_G_HEAD 1
#define MAX_G_HEADS 2
/*
* unpadded ill_if structure
*/
struct _ill_if_s_ {
union ill_if_u *illif_next;
union ill_if_u *illif_prev;
avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */
vmem_t *illif_ppa_arena; /* ppa index space */
uint16_t illif_mcast_v1; /* hints for */
uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */
int illif_name_len; /* name length */
char illif_name[LIFNAMSIZ]; /* name of interface type */
};
/* cache aligned ill_if structure */
typedef union ill_if_u {
struct _ill_if_s_ ill_if_s;
char illif_filler[CACHE_ALIGN(_ill_if_s_)];
} ill_if_t;
#define illif_next ill_if_s.illif_next
#define illif_prev ill_if_s.illif_prev
#define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa
#define illif_ppa_arena ill_if_s.illif_ppa_arena
#define illif_mcast_v1 ill_if_s.illif_mcast_v1
#define illif_mcast_v2 ill_if_s.illif_mcast_v2
#define illif_name ill_if_s.illif_name
#define illif_name_len ill_if_s.illif_name_len
typedef struct ill_walk_context_s {
int ctx_current_list; /* current list being searched */
int ctx_last_list; /* last list to search */
} ill_walk_context_t;
/*
* ill_g_heads structure, one for IPV4 and one for IPV6
*/
struct _ill_g_head_s_ {
ill_if_t *ill_g_list_head;
ill_if_t *ill_g_list_tail;
};
typedef union ill_g_head_u {
struct _ill_g_head_s_ ill_g_head_s;
char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)];
} ill_g_head_t;
#define ill_g_list_head ill_g_head_s.ill_g_list_head
#define ill_g_list_tail ill_g_head_s.ill_g_list_tail
#define IP_V4_ILL_G_LIST(ipst) \
(ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head
#define IP_V6_ILL_G_LIST(ipst) \
(ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head
#define IP_VX_ILL_G_LIST(i, ipst) \
(ipst)->ips_ill_g_heads[i].ill_g_list_head
#define ILL_START_WALK_V4(ctx_ptr, ipst) \
ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst)
#define ILL_START_WALK_V6(ctx_ptr, ipst) \
ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst)
#define ILL_START_WALK_ALL(ctx_ptr, ipst) \
ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst)
/*
* Capabilities, possible flags for ill_capabilities.
*/
#define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */
#define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */
#define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */
#define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */
#define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */
#define ILL_CAPAB_DLD 0x20 /* DLD capabilities */
#define ILL_CAPAB_DLD_POLL 0x40 /* Polling */
#define ILL_CAPAB_DLD_DIRECT 0x80 /* Direct function call */
#define ILL_CAPAB_DLD_LSO 0x100 /* Large Segment Offload */
/*
* Per-ill Multidata Transmit capabilities.
*/
typedef struct ill_mdt_capab_s ill_mdt_capab_t;
/*
* Per-ill IPsec capabilities.
*/
typedef struct ill_ipsec_capab_s ill_ipsec_capab_t;
/*
* Per-ill Hardware Checksumming capbilities.
*/
typedef struct ill_hcksum_capab_s ill_hcksum_capab_t;
/*
* Per-ill Zero-copy capabilities.
*/
typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t;
/*
* DLD capbilities.
*/
typedef struct ill_dld_capab_s ill_dld_capab_t;
/*
* Per-ill polling resource map.
*/
typedef struct ill_rx_ring ill_rx_ring_t;
/*
* Per-ill Large Segment Offload capabilities.
*/
typedef struct ill_lso_capab_s ill_lso_capab_t;
/* The following are ill_state_flags */
#define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */
#define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */
#define ILL_CHANGING 0x04 /* ILL not globally visible */
#define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */
/* Is this an ILL whose source address is used by other ILL's ? */
#define IS_USESRC_ILL(ill) \
(((ill)->ill_usesrc_ifindex == 0) && \
((ill)->ill_usesrc_grp_next != NULL))
/* Is this a client/consumer of the usesrc ILL ? */
#define IS_USESRC_CLI_ILL(ill) \
(((ill)->ill_usesrc_ifindex != 0) && \
((ill)->ill_usesrc_grp_next != NULL))
/* Is this an virtual network interface (vni) ILL ? */
#define IS_VNI(ill) \
(((ill) != NULL) && \
(((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \
PHYI_VIRTUAL))
/* Is this a loopback ILL? */
#define IS_LOOPBACK(ill) \
((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK)
/* Is this an IPMP meta-interface ILL? */
#define IS_IPMP(ill) \
((ill)->ill_phyint->phyint_flags & PHYI_IPMP)
/* Is this ILL under an IPMP meta-interface? (aka "in a group?") */
#define IS_UNDER_IPMP(ill) \
((ill)->ill_grp != NULL && !IS_IPMP(ill))
/* Is ill1 in the same illgrp as ill2? */
#define IS_IN_SAME_ILLGRP(ill1, ill2) \
((ill1)->ill_grp != NULL && ((ill1)->ill_grp == (ill2)->ill_grp))
/* Is ill1 on the same LAN as ill2? */
#define IS_ON_SAME_LAN(ill1, ill2) \
((ill1) == (ill2) || IS_IN_SAME_ILLGRP(ill1, ill2))
#define ILL_OTHER(ill) \
((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \
(ill)->ill_phyint->phyint_illv6)
/*
* IPMP group ILL state structure -- up to two per IPMP group (V4 and V6).
* Created when the V4 and/or V6 IPMP meta-interface is I_PLINK'd. It is
* guaranteed to persist while there are interfaces of that type in the group.
* In general, most fields are accessed outside of the IPSQ (e.g., in the
* datapath), and thus use locks in addition to the IPSQ for protection.
*
* synchronization: read write
*
* ig_if ipsq or ill_g_lock ipsq and ill_g_lock
* ig_actif ipsq or ipmp_lock ipsq and ipmp_lock
* ig_nactif ipsq or ipmp_lock ipsq and ipmp_lock
* ig_next_ill ipsq or ipmp_lock ipsq and ipmp_lock
* ig_ipmp_ill write once write once
* ig_cast_ill ipsq or ipmp_lock ipsq and ipmp_lock
* ig_arpent ipsq ipsq
* ig_mtu ipsq ipsq
*/
typedef struct ipmp_illgrp_s {
list_t ig_if; /* list of all interfaces */
list_t ig_actif; /* list of active interfaces */
uint_t ig_nactif; /* number of active interfaces */
struct ill_s *ig_next_ill; /* next active interface to use */
struct ill_s *ig_ipmp_ill; /* backpointer to IPMP meta-interface */
struct ill_s *ig_cast_ill; /* nominated ill for multi/broadcast */
list_t ig_arpent; /* list of ARP entries */
uint_t ig_mtu; /* ig_ipmp_ill->ill_max_mtu */
} ipmp_illgrp_t;
/*
* IPMP group state structure -- one per IPMP group. Created when the
* IPMP meta-interface is plumbed; it is guaranteed to persist while there
* are interfaces in it.
*
* ipmp_grp_t synchronization: read write
*
* gr_name ipmp_lock ipmp_lock
* gr_ifname write once write once
* gr_mactype ipmp_lock ipmp_lock
* gr_phyint write once write once
* gr_nif ipmp_lock ipmp_lock
* gr_nactif ipsq ipsq
* gr_v4 ipmp_lock ipmp_lock
* gr_v6 ipmp_lock ipmp_lock
* gr_nv4 ipmp_lock ipmp_lock
* gr_nv6 ipmp_lock ipmp_lock
* gr_pendv4 ipmp_lock ipmp_lock
* gr_pendv6 ipmp_lock ipmp_lock
* gr_linkdownmp ipsq ipsq
* gr_ksp ipmp_lock ipmp_lock
* gr_kstats0 atomic atomic
*/
typedef struct ipmp_grp_s {
char gr_name[LIFGRNAMSIZ]; /* group name */
char gr_ifname[LIFNAMSIZ]; /* interface name */
t_uscalar_t gr_mactype; /* DLPI mactype of group */
phyint_t *gr_phyint; /* IPMP group phyint */
uint_t gr_nif; /* number of interfaces in group */
uint_t gr_nactif; /* number of active interfaces */
ipmp_illgrp_t *gr_v4; /* V4 group information */
ipmp_illgrp_t *gr_v6; /* V6 group information */
uint_t gr_nv4; /* number of ills in V4 group */
uint_t gr_nv6; /* number of ills in V6 group */
uint_t gr_pendv4; /* number of pending ills in V4 group */
uint_t gr_pendv6; /* number of pending ills in V6 group */
mblk_t *gr_linkdownmp; /* message used to bring link down */
kstat_t *gr_ksp; /* group kstat pointer */
uint64_t gr_kstats0[IPMP_KSTAT_MAX]; /* baseline group kstats */
} ipmp_grp_t;
/*
* IPMP ARP entry -- one per SIOCS*ARP entry tied to the group. Used to keep
* ARP up-to-date as the active set of interfaces in the group changes.
*/
typedef struct ipmp_arpent_s {
mblk_t *ia_area_mp; /* AR_ENTRY_ADD pointer */
ipaddr_t ia_ipaddr; /* IP address for this entry */
boolean_t ia_proxyarp; /* proxy ARP entry? */
boolean_t ia_notified; /* ARP notified about this entry? */
list_node_t ia_node; /* next ARP entry in list */
} ipmp_arpent_t;
/*
* IP Lower level Structure.
* Instance data structure in ip_open when there is a device below us.
*/
typedef struct ill_s {
ill_if_t *ill_ifptr; /* pointer to interface type */
queue_t *ill_rq; /* Read queue. */
queue_t *ill_wq; /* Write queue. */
int ill_error; /* Error value sent up by device. */
ipif_t *ill_ipif; /* Interface chain for this ILL. */
uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */
uint_t ill_max_frag; /* Max IDU from DLPI. */
char *ill_name; /* Our name. */
uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */
uint_t ill_name_length; /* Name length, incl. terminator. */
char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */
uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */
/*
* Physical Point of Attachment num. If DLPI style 1 provider
* then this is derived from the devname.
*/
uint_t ill_ppa;
t_uscalar_t ill_sap;
t_scalar_t ill_sap_length; /* Including sign (for position) */
uint_t ill_phys_addr_length; /* Excluding the sap. */
uint_t ill_bcast_addr_length; /* Only set when the DL provider */
/* supports broadcast. */
t_uscalar_t ill_mactype;
uint8_t *ill_frag_ptr; /* Reassembly state. */
timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */
ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */
ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */
ilm_t *ill_ilm; /* Multicast membership for ill */
uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */
int ill_mcast_type; /* type of router which is querier */
/* on this interface */
uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */
uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */
uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */
uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */
uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */
int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */
mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */
/*
* All non-NULL cells between 'ill_first_mp_to_free' and
* 'ill_last_mp_to_free' are freed in ill_delete.
*/
#define ill_first_mp_to_free ill_bcast_mp
mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */
mblk_t *ill_resolver_mp; /* Resolver template. */
mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */
mblk_t *ill_promiscoff_mp; /* for ill_leave_allmulti() */
mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */
mblk_t *ill_ardeact_mp; /* deact mp from ipmp_ill_activate() */
mblk_t *ill_replumb_mp; /* replumb mp from ill_replumb() */
mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */
#define ill_last_mp_to_free ill_phys_addr_mp
cred_t *ill_credp; /* opener's credentials */
uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */
uint_t ill_state_flags; /* see ILL_* flags above */
/* Following bit fields protected by ipsq_t */
uint_t
ill_needs_attach : 1,
ill_reserved : 1,
ill_isv6 : 1,
ill_dlpi_style_set : 1,
ill_ifname_pending : 1,
ill_join_allmulti : 1,
ill_logical_down : 1,
ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */
ill_promisc_on_phys : 1, /* phys interface in promisc mode */
ill_dl_up : 1,
ill_up_ipifs : 1,
ill_note_link : 1, /* supports link-up notification */
ill_capab_reneg : 1, /* capability renegotiation to be done */
ill_dld_capab_inprog : 1, /* direct dld capab call in prog */
ill_need_recover_multicast : 1,
ill_pad_to_bit_31 : 17;
/* Following bit fields protected by ill_lock */
uint_t
ill_fragtimer_executing : 1,
ill_fragtimer_needrestart : 1,
ill_ilm_cleanup_reqd : 1,
ill_arp_closing : 1,
ill_arp_bringup_pending : 1,
ill_arp_extend : 1, /* ARP has DAD extensions */
ill_pad_bit_31 : 26;
/*
* Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'.
*/
int ill_arp_muxid; /* muxid returned from plink for arp */
int ill_ip_muxid; /* muxid returned from plink for ip */
/* Used for IP frag reassembly throttling on a per ILL basis. */
uint_t ill_ipf_gen; /* Generation of next fragment queue */
uint_t ill_frag_count; /* Count of all reassembly mblk bytes */
uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */
clock_t ill_last_frag_clean_time; /* time when frag's were pruned */
int ill_type; /* From <net/if_types.h> */
uint_t ill_dlpi_multicast_state; /* See below IDS_* */
uint_t ill_dlpi_fastpath_state; /* See below IDS_* */
/*
* Capabilities related fields.
*/
uint_t ill_dlpi_capab_state; /* State of capability query, IDCS_* */
uint_t ill_capab_pending_cnt;
uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */
ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */
ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */
ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */
ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */
ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */
ill_dld_capab_t *ill_dld_capab; /* DLD capabilities */
ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */
mblk_t *ill_capab_reset_mp; /* Preallocated mblk for capab reset */
/*
* New fields for IPv6
*/
uint8_t ill_max_hops; /* Maximum hops for any logical interface */
uint_t ill_max_mtu; /* Maximum MTU for any logical interface */
uint_t ill_user_mtu; /* User-specified MTU via SIOCSLIFLNKINFO */
uint32_t ill_reachable_time; /* Value for ND algorithm in msec */
uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */
uint_t ill_max_buf; /* Max # of req to buffer for ND */
in6_addr_t ill_token;
uint_t ill_token_length;
uint32_t ill_xmit_count; /* ndp max multicast xmits */
mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */
mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */
/*
* Following two mblks are allocated common to all
* the ipifs when the first interface is coming up.
* It is sent up to arp when the last ipif is coming
* down.
*/
mblk_t *ill_arp_down_mp;
mblk_t *ill_arp_del_mapping_mp;
/*
* Used for implementing IFF_NOARP. As IFF_NOARP is used
* to turn off for all the logicals, it is here instead
* of the ipif.
*/
mblk_t *ill_arp_on_mp;
phyint_t *ill_phyint;
uint64_t ill_flags;
kmutex_t ill_lock; /* Please see table below */
/*
* The ill_nd_lla* fields handle the link layer address option
* from neighbor discovery. This is used for external IPv6
* address resolution.
*/
mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */
uint8_t *ill_nd_lla; /* Link Layer Address */
uint_t ill_nd_lla_len; /* Link Layer Address length */
/*
* We now have 3 phys_addr_req's sent down. This field keeps track
* of which one is pending.
*/
t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */
/*
* Used to save errors that occur during plumbing
*/
uint_t ill_ifname_pending_err;
avl_node_t ill_avl_byppa; /* avl node based on ppa */
void *ill_fastpath_list; /* both ire and nce hang off this */
uint_t ill_refcnt; /* active refcnt by threads */
uint_t ill_ire_cnt; /* ires associated with this ill */
kcondvar_t ill_cv;
uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */
uint_t ill_nce_cnt; /* nces associated with this ill */
uint_t ill_waiters; /* threads waiting in ipsq_enter */
/*
* Contains the upper read queue pointer of the module immediately
* beneath IP. This field allows IP to validate sub-capability
* acknowledgments coming up from downstream.
*/
queue_t *ill_lmod_rq; /* read queue pointer of module below */
uint_t ill_lmod_cnt; /* number of modules beneath IP */
ip_m_t *ill_media; /* media specific params/functions */
t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */
uint_t ill_usesrc_ifindex; /* use src addr from this ILL */
struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */
boolean_t ill_trace_disable; /* True when alloc fails */
zoneid_t ill_zoneid;
ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */
uint32_t ill_dhcpinit; /* IP_DHCPINIT_IFs for ill */
void *ill_flownotify_mh; /* Tx flow ctl, mac cb handle */
uint_t ill_ilm_cnt; /* ilms referencing this ill */
uint_t ill_ipallmulti_cnt; /* ip_join_allmulti() calls */
/*
* IPMP fields.
*/
ipmp_illgrp_t *ill_grp; /* IPMP group information */
list_node_t ill_actnode; /* next active ill in group */
list_node_t ill_grpnode; /* next ill in group */
ipif_t *ill_src_ipif; /* source address selection rotor */
ipif_t *ill_move_ipif; /* ipif awaiting move to new ill */
boolean_t ill_nom_cast; /* nominated for mcast/bcast */
uint_t ill_bound_cnt; /* # of data addresses bound to ill */
ipif_t *ill_bound_ipif; /* ipif chain bound to ill */
timeout_id_t ill_refresh_tid; /* ill refresh retry timeout id */
} ill_t;
/*
* ILL_FREE_OK() means that there are no incoming pointer references
* to the ill.
*/
#define ILL_FREE_OK(ill) \
((ill)->ill_ire_cnt == 0 && (ill)->ill_ilm_cnt == 0 && \
(ill)->ill_nce_cnt == 0)
/*
* An ipif/ill can be marked down only when the ire and nce references
* to that ipif/ill goes to zero. ILL_DOWN_OK() is a necessary condition
* quiescence checks. See comments above IPIF_DOWN_OK for details
* on why ires and nces are selectively considered for this macro.
*/
#define ILL_DOWN_OK(ill) (ill->ill_ire_cnt == 0 && ill->ill_nce_cnt == 0)
/*
* The following table lists the protection levels of the various members
* of the ill_t. Same notation as that used for ipif_t above is used.
*
* Write Read
*
* ill_ifptr ill_g_lock + s Write once
* ill_rq ipsq Write once
* ill_wq ipsq Write once
*
* ill_error ipsq None
* ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq
* ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq
* ill_max_frag ipsq Write once
*
* ill_name ill_g_lock + ipsq Write once
* ill_name_length ill_g_lock + ipsq Write once
* ill_ndd_name ipsq Write once
* ill_net_type ipsq Write once
* ill_ppa ill_g_lock + ipsq Write once
* ill_sap ipsq + down ill Write once
* ill_sap_length ipsq + down ill Write once
* ill_phys_addr_length ipsq + down ill Write once
*
* ill_bcast_addr_length ipsq ipsq
* ill_mactype ipsq ipsq
* ill_frag_ptr ipsq ipsq
*
* ill_frag_timer_id ill_lock ill_lock
* ill_frag_hash_tbl ipsq up ill
* ill_ilm ipsq + ill_lock ill_lock
* ill_mcast_type ill_lock ill_lock
* ill_mcast_v1_time ill_lock ill_lock
* ill_mcast_v2_time ill_lock ill_lock
* ill_mcast_v1_tset ill_lock ill_lock
* ill_mcast_v2_tset ill_lock ill_lock
* ill_mcast_rv ill_lock ill_lock
* ill_mcast_qi ill_lock ill_lock
* ill_pending_mp ill_lock ill_lock
*
* ill_bcast_mp ipsq ipsq
* ill_resolver_mp ipsq only when ill is up
* ill_down_mp ipsq ipsq
* ill_dlpi_deferred ill_lock ill_lock
* ill_dlpi_pending ill_lock ill_lock
* ill_phys_addr_mp ipsq + down ill only when ill is up
* ill_phys_addr ipsq + down ill only when ill is up
*
* ill_state_flags ill_lock ill_lock
* exclusive bit flags ipsq_t ipsq_t
* shared bit flags ill_lock ill_lock
*
* ill_arp_muxid ipsq Not atomic
* ill_ip_muxid ipsq Not atomic
*
* ill_ipf_gen Not atomic
* ill_frag_count atomics atomics
* ill_type ipsq + down ill only when ill is up
* ill_dlpi_multicast_state ill_lock ill_lock
* ill_dlpi_fastpath_state ill_lock ill_lock
* ill_dlpi_capab_state ipsq ipsq
* ill_max_hops ipsq Not atomic
*
* ill_max_mtu
*
* ill_user_mtu ipsq + ill_lock ill_lock
* ill_reachable_time ipsq + ill_lock ill_lock
* ill_reachable_retrans_time ipsq + ill_lock ill_lock
* ill_max_buf ipsq + ill_lock ill_lock
*
* Next 2 fields need ill_lock because of the get ioctls. They should not
* report partially updated results without executing in the ipsq.
* ill_token ipsq + ill_lock ill_lock
* ill_token_length ipsq + ill_lock ill_lock
* ill_xmit_count ipsq + down ill write once
* ill_ip6_mib ipsq + down ill only when ill is up
* ill_icmp6_mib ipsq + down ill only when ill is up
* ill_arp_down_mp ipsq ipsq
* ill_arp_del_mapping_mp ipsq ipsq
* ill_arp_on_mp ipsq ipsq
*
* ill_phyint ipsq, ill_g_lock, ill_lock Any of them
* ill_flags ill_lock ill_lock
* ill_nd_lla_mp ipsq + down ill only when ill is up
* ill_nd_lla ipsq + down ill only when ill is up
* ill_nd_lla_len ipsq + down ill only when ill is up
* ill_phys_addr_pend ipsq + down ill only when ill is up
* ill_ifname_pending_err ipsq ipsq
* ill_avl_byppa ipsq, ill_g_lock write once
*
* ill_fastpath_list ill_lock ill_lock
* ill_refcnt ill_lock ill_lock
* ill_ire_cnt ill_lock ill_lock
* ill_cv ill_lock ill_lock
* ill_ilm_walker_cnt ill_lock ill_lock
* ill_nce_cnt ill_lock ill_lock
* ill_ilm_cnt ill_lock ill_lock
* ill_src_ipif ill_g_lock ill_g_lock
* ill_trace ill_lock ill_lock
* ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock
* ill_dhcpinit atomics atomics
* ill_flownotify_mh write once write once
* ill_capab_pending_cnt ipsq ipsq
*
* ill_bound_cnt ipsq ipsq
* ill_bound_ipif ipsq ipsq
* ill_actnode ipsq + ipmp_lock ipsq OR ipmp_lock
* ill_grpnode ipsq + ill_g_lock ipsq OR ill_g_lock
* ill_src_ipif ill_g_lock ill_g_lock
* ill_move_ipif ipsq ipsq
* ill_nom_cast ipsq ipsq OR advisory
* ill_refresh_tid ill_lock ill_lock
* ill_grp (for IPMP ill) write once write once
* ill_grp (for underlying ill) ipsq + ill_g_lock ipsq OR ill_g_lock
*
* NOTE: It's OK to make heuristic decisions on an underlying interface
* by using IS_UNDER_IPMP() or comparing ill_grp's raw pointer value.
*/
/*
* For ioctl restart mechanism see ip_reprocess_ioctl()
*/
struct ip_ioctl_cmd_s;
typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *,
struct ip_ioctl_cmd_s *, void *);
typedef struct ip_ioctl_cmd_s {
int ipi_cmd;
size_t ipi_copyin_size;
uint_t ipi_flags;
uint_t ipi_cmd_type;
ifunc_t ipi_func;
ifunc_t ipi_func_restart;
} ip_ioctl_cmd_t;
/*
* ipi_cmd_type:
*
* IF_CMD 1 old style ifreq cmd
* LIF_CMD 2 new style lifreq cmd
* TUN_CMD 3 tunnel related
* ARP_CMD 4 arpreq cmd
* XARP_CMD 5 xarpreq cmd
* MSFILT_CMD 6 multicast source filter cmd
* MISC_CMD 7 misc cmd (not a more specific one above)
*/
enum { IF_CMD = 1, LIF_CMD, TUN_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD };
#define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */
/* Flag values in ipi_flags */
#define IPI_PRIV 0x1 /* Root only command */
#define IPI_MODOK 0x2 /* Permitted on mod instance of IP */
#define IPI_WR 0x4 /* Need to grab writer access */
#define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */
/* unused 0x10 */
#define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */
#define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */
extern ip_ioctl_cmd_t ip_ndx_ioctl_table[];
extern ip_ioctl_cmd_t ip_misc_ioctl_table[];
extern int ip_ndx_ioctl_count;
extern int ip_misc_ioctl_count;
/* Passed down by ARP to IP during I_PLINK/I_PUNLINK */
typedef struct ipmx_s {
char ipmx_name[LIFNAMSIZ]; /* if name */
uint_t
ipmx_arpdev_stream : 1, /* This is the arp stream */
ipmx_notused : 31;
} ipmx_t;
/*
* State for detecting if a driver supports certain features.
* Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state.
* Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state.
*/
#define IDS_UNKNOWN 0 /* No DLPI request sent */
#define IDS_INPROGRESS 1 /* DLPI request sent */
#define IDS_OK 2 /* DLPI request completed successfully */
#define IDS_FAILED 3 /* DLPI request failed */
/* Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. */
enum {
IDCS_UNKNOWN,
IDCS_PROBE_SENT,
IDCS_OK,
IDCS_RESET_SENT,
IDCS_RENEG,
IDCS_FAILED
};
/* Named Dispatch Parameter Management Structure */
typedef struct ipparam_s {
uint_t ip_param_min;
uint_t ip_param_max;
uint_t ip_param_value;
char *ip_param_name;
} ipparam_t;
/* Extended NDP Management Structure */
typedef struct ipndp_s {
ndgetf_t ip_ndp_getf;
ndsetf_t ip_ndp_setf;
caddr_t ip_ndp_data;
char *ip_ndp_name;
} ipndp_t;
/*
* The kernel stores security attributes of all gateways in a database made
* up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the
* security-related credentials of the gateway. More than one gateways may
* share entries in the database.
*
* The tsol_gc_t structure represents the gateway to credential association,
* and refers to an entry in the database. One or more tsol_gc_t entities are
* grouped together to form one or more tsol_gcgrp_t, each representing the
* list of security attributes specific to the gateway. A gateway may be
* associated with at most one credentials group.
*/
struct tsol_gcgrp_s;
extern uchar_t ip6opt_ls; /* TX IPv6 enabler */
/*
* Gateway security credential record.
*/
typedef struct tsol_gcdb_s {
uint_t gcdb_refcnt; /* reference count */
struct rtsa_s gcdb_attr; /* security attributes */
#define gcdb_mask gcdb_attr.rtsa_mask
#define gcdb_doi gcdb_attr.rtsa_doi
#define gcdb_slrange gcdb_attr.rtsa_slrange
} tsol_gcdb_t;
/*
* Gateway to credential association.
*/
typedef struct tsol_gc_s {
uint_t gc_refcnt; /* reference count */
struct tsol_gcgrp_s *gc_grp; /* pointer to group */
struct tsol_gc_s *gc_prev; /* previous in list */
struct tsol_gc_s *gc_next; /* next in list */
tsol_gcdb_t *gc_db; /* pointer to actual credentials */
} tsol_gc_t;
/*
* Gateway credentials group address.
*/
typedef struct tsol_gcgrp_addr_s {
int ga_af; /* address family */
in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */
} tsol_gcgrp_addr_t;
/*
* Gateway credentials group.
*/
typedef struct tsol_gcgrp_s {
uint_t gcgrp_refcnt; /* reference count */
krwlock_t gcgrp_rwlock; /* lock to protect following */
uint_t gcgrp_count; /* number of credentials */
tsol_gc_t *gcgrp_head; /* first credential in list */
tsol_gc_t *gcgrp_tail; /* last credential in list */
tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */
} tsol_gcgrp_t;
extern kmutex_t gcgrp_lock;
#define GC_REFRELE(p) { \
ASSERT((p)->gc_grp != NULL); \
rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \
ASSERT((p)->gc_refcnt > 0); \
if (--((p)->gc_refcnt) == 0) \
gc_inactive(p); \
else \
rw_exit(&(p)->gc_grp->gcgrp_rwlock); \
}
#define GCGRP_REFHOLD(p) { \
mutex_enter(&gcgrp_lock); \
++((p)->gcgrp_refcnt); \
ASSERT((p)->gcgrp_refcnt != 0); \
mutex_exit(&gcgrp_lock); \
}
#define GCGRP_REFRELE(p) { \
mutex_enter(&gcgrp_lock); \
ASSERT((p)->gcgrp_refcnt > 0); \
if (--((p)->gcgrp_refcnt) == 0) \
gcgrp_inactive(p); \
ASSERT(MUTEX_HELD(&gcgrp_lock)); \
mutex_exit(&gcgrp_lock); \
}
/*
* IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr
*/
struct tsol_tnrhc;
typedef struct tsol_ire_gw_secattr_s {
kmutex_t igsa_lock; /* lock to protect following */
struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */
tsol_gc_t *igsa_gc; /* for prefix IREs */
tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */
} tsol_ire_gw_secattr_t;
/*
* Following are the macros to increment/decrement the reference
* count of the IREs and IRBs (ire bucket).
*
* 1) We bump up the reference count of an IRE to make sure that
* it does not get deleted and freed while we are using it.
* Typically all the lookup functions hold the bucket lock,
* and look for the IRE. If it finds an IRE, it bumps up the
* reference count before dropping the lock. Sometimes we *may* want
* to bump up the reference count after we *looked* up i.e without
* holding the bucket lock. So, the IRE_REFHOLD macro does not assert
* on the bucket lock being held. Any thread trying to delete from
* the hash bucket can still do so but cannot free the IRE if
* ire_refcnt is not 0.
*
* 2) We bump up the reference count on the bucket where the IRE resides
* (IRB), when we want to prevent the IREs getting deleted from a given
* hash bucket. This makes life easier for ire_walk type functions which
* wants to walk the IRE list, call a function, but needs to drop
* the bucket lock to prevent recursive rw_enters. While the
* lock is dropped, the list could be changed by other threads or
* the same thread could end up deleting the ire or the ire pointed by
* ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as
* a delete will still remove the ire from the bucket while we have
* dropped the lock and hence the ire_next would be NULL. Thus, we
* need a mechanism to prevent deletions from a given bucket.
*
* To prevent deletions, we bump up the reference count on the
* bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED
* both on the ire's ire_marks and the bucket's irb_marks. When the
* reference count on the bucket drops to zero, all the CONDEMNED ires
* are deleted. We don't have to bump up the reference count on the
* bucket if we are walking the bucket and never have to drop the bucket
* lock. Note that IRB_REFHOLD does not prevent addition of new ires
* in the list. It is okay because addition of new ires will not cause
* ire_next to point to freed memory. We do IRB_REFHOLD only when
* all of the 3 conditions are true :
*
* 1) The code needs to walk the IRE bucket from start to end.
* 2) It may have to drop the bucket lock sometimes while doing (1)
* 3) It does not want any ires to be deleted meanwhile.
*/
/*
* Bump up the reference count on the IRE. We cannot assert that the
* bucket lock is being held as it is legal to bump up the reference
* count after the first lookup has returned the IRE without
* holding the lock. Currently ip_wput does this for caching IRE_CACHEs.
*/
#ifdef DEBUG
#define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire);
#define IRE_TRACE_REF(ire) ire_trace_ref(ire);
#else
#define IRE_UNTRACE_REF(ire)
#define IRE_TRACE_REF(ire)
#endif
#define IRE_REFHOLD_NOTR(ire) { \
atomic_add_32(&(ire)->ire_refcnt, 1); \
ASSERT((ire)->ire_refcnt != 0); \
}
#define IRE_REFHOLD(ire) { \
IRE_REFHOLD_NOTR(ire); \
IRE_TRACE_REF(ire); \
}
#define IRE_REFHOLD_LOCKED(ire) { \
IRE_TRACE_REF(ire); \
(ire)->ire_refcnt++; \
}
/*
* Decrement the reference count on the IRE.
* In architectures e.g sun4u, where atomic_add_32_nv is just
* a cas, we need to maintain the right memory barrier semantics
* as that of mutex_exit i.e all the loads and stores should complete
* before the cas is executed. membar_exit() does that here.
*
* NOTE : This macro is used only in places where we want performance.
* To avoid bloating the code, we use the function "ire_refrele"
* which essentially calls the macro.
*/
#define IRE_REFRELE_NOTR(ire) { \
ASSERT((ire)->ire_refcnt != 0); \
membar_exit(); \
if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \
ire_inactive(ire); \
}
#define IRE_REFRELE(ire) { \
if (ire->ire_bucket != NULL) { \
IRE_UNTRACE_REF(ire); \
} \
IRE_REFRELE_NOTR(ire); \
}
/*
* Bump up the reference count on the hash bucket - IRB to
* prevent ires from being deleted in this bucket.
*/
#define IRB_REFHOLD(irb) { \
rw_enter(&(irb)->irb_lock, RW_WRITER); \
(irb)->irb_refcnt++; \
ASSERT((irb)->irb_refcnt != 0); \
rw_exit(&(irb)->irb_lock); \
}
#define IRB_REFHOLD_LOCKED(irb) { \
ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \
(irb)->irb_refcnt++; \
ASSERT((irb)->irb_refcnt != 0); \
}
void irb_refrele_ftable(irb_t *);
/*
* Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t
* is statically allocated, so that when the irb_refcnt goes to 0,
* we simply clean up the ire list and continue.
*/
#define IRB_REFRELE(irb) { \
if ((irb)->irb_marks & IRB_MARK_FTABLE) { \
irb_refrele_ftable((irb)); \
} else { \
rw_enter(&(irb)->irb_lock, RW_WRITER); \
ASSERT((irb)->irb_refcnt != 0); \
if (--(irb)->irb_refcnt == 0 && \
((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \
ire_t *ire_list; \
\
ire_list = ire_unlink(irb); \
rw_exit(&(irb)->irb_lock); \
ASSERT(ire_list != NULL); \
ire_cleanup(ire_list); \
} else { \
rw_exit(&(irb)->irb_lock); \
} \
} \
}
extern struct kmem_cache *rt_entry_cache;
/*
* Lock the fast path mp for access, since the fp_mp can be deleted
* due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST
*/
#define LOCK_IRE_FP_MP(ire) { \
if ((ire)->ire_type == IRE_BROADCAST) \
mutex_enter(&ire->ire_nce->nce_lock); \
}
#define UNLOCK_IRE_FP_MP(ire) { \
if ((ire)->ire_type == IRE_BROADCAST) \
mutex_exit(&ire->ire_nce->nce_lock); \
}
typedef struct ire4 {
ipaddr_t ire4_src_addr; /* Source address to use. */
ipaddr_t ire4_mask; /* Mask for matching this IRE. */
ipaddr_t ire4_addr; /* Address this IRE represents. */
ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */
ipaddr_t ire4_cmask; /* Mask from parent prefix route */
} ire4_t;
typedef struct ire6 {
in6_addr_t ire6_src_addr; /* Source address to use. */
in6_addr_t ire6_mask; /* Mask for matching this IRE. */
in6_addr_t ire6_addr; /* Address this IRE represents. */
in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */
in6_addr_t ire6_cmask; /* Mask from parent prefix route */
} ire6_t;
typedef union ire_addr {
ire6_t ire6_u;
ire4_t ire4_u;
} ire_addr_u_t;
/* Internet Routing Entry */
typedef struct ire_s {
struct ire_s *ire_next; /* The hash chain must be first. */
struct ire_s **ire_ptpn; /* Pointer to previous next. */
uint32_t ire_refcnt; /* Number of references */
mblk_t *ire_mp; /* Non-null if allocated as mblk */
queue_t *ire_rfq; /* recv from this queue */
queue_t *ire_stq; /* send to this queue */
union {
uint_t *max_fragp; /* Used only during ire creation */
uint_t max_frag; /* MTU (next hop or path). */
} imf_u;
#define ire_max_frag imf_u.max_frag
#define ire_max_fragp imf_u.max_fragp
uint32_t ire_frag_flag; /* IPH_DF or zero. */
uint32_t ire_ident; /* Per IRE IP ident. */
uint32_t ire_tire_mark; /* Used for reclaim of unused. */
uchar_t ire_ipversion; /* IPv4/IPv6 version */
uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */
ushort_t ire_type; /* Type of IRE */
uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */
uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */
uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */
time_t ire_create_time; /* Time (in secs) IRE was created. */
uint32_t ire_phandle; /* Associate prefix IREs to cache */
uint32_t ire_ihandle; /* Associate interface IREs to cache */
ipif_t *ire_ipif; /* the interface that this ire uses */
uint32_t ire_flags; /* flags related to route (RTF_*) */
uint_t ire_ipsec_overhead; /* IPSEC overhead */
/*
* Neighbor Cache Entry for IPv6; arp info for IPv4
*/
struct nce_s *ire_nce;
uint_t ire_masklen; /* # bits in ire_mask{,_v6} */
ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */
irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */
iulp_t ire_uinfo; /* Upper layer protocol info. */
/*
* Protects ire_uinfo, ire_max_frag, and ire_frag_flag.
*/
kmutex_t ire_lock;
uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */
uint_t ire_ipif_ifindex; /* ifindex associated with ipif */
clock_t ire_last_used_time; /* Last used time */
tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */
zoneid_t ire_zoneid; /* for local address discrimination */
/*
* ire's that are embedded inside mblk_t and sent to the external
* resolver use the ire_stq_ifindex to track the ifindex of the
* ire_stq, so that the ill (if it exists) can be correctly recovered
* for cleanup in the esbfree routine when arp failure occurs.
* Similarly, the ire_stackid is used to recover the ip_stack_t.
*/
uint_t ire_stq_ifindex;
netstackid_t ire_stackid;
uint_t ire_defense_count; /* number of ARP conflicts */
uint_t ire_defense_time; /* last time defended (secs) */
boolean_t ire_trace_disable; /* True when alloc fails */
ip_stack_t *ire_ipst; /* Does not have a netstack_hold */
} ire_t;
/* IPv4 compatibility macros */
#define ire_src_addr ire_u.ire4_u.ire4_src_addr
#define ire_mask ire_u.ire4_u.ire4_mask
#define ire_addr ire_u.ire4_u.ire4_addr
#define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr
#define ire_cmask ire_u.ire4_u.ire4_cmask
#define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr
#define ire_mask_v6 ire_u.ire6_u.ire6_mask
#define ire_addr_v6 ire_u.ire6_u.ire6_addr
#define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr
#define ire_cmask_v6 ire_u.ire6_u.ire6_cmask
/* Convenient typedefs for sockaddrs */
typedef struct sockaddr_in sin_t;
typedef struct sockaddr_in6 sin6_t;
/* Address structure used for internal bind with IP */
typedef struct ipa_conn_s {
ipaddr_t ac_laddr;
ipaddr_t ac_faddr;
uint16_t ac_fport;
uint16_t ac_lport;
} ipa_conn_t;
typedef struct ipa6_conn_s {
in6_addr_t ac6_laddr;
in6_addr_t ac6_faddr;
uint16_t ac6_fport;
uint16_t ac6_lport;
} ipa6_conn_t;
/*
* Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's
* bind handler.
*/
typedef struct ipa_conn_extended_s {
uint64_t acx_flags;
ipa_conn_t acx_conn;
} ipa_conn_x_t;
typedef struct ipa6_conn_extended_s {
uint64_t ac6x_flags;
ipa6_conn_t ac6x_conn;
} ipa6_conn_x_t;
/* flag values for ipa_conn_x_t and ipa6_conn_x_t. */
#define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */
/* Name/Value Descriptor. */
typedef struct nv_s {
uint64_t nv_value;
char *nv_name;
} nv_t;
#define ILL_FRAG_HASH(s, i) \
((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT)
/*
* The MAX number of allowed fragmented packets per hash bucket
* calculation is based on the most common mtu size of 1500. This limit
* will work well for other mtu sizes as well.
*/
#define COMMON_IP_MTU 1500
#define MAX_FRAG_MIN 10
#define MAX_FRAG_PKTS(ipst) \
MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \
(COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT))))
/*
* Maximum dups allowed per packet.
*/
extern uint_t ip_max_frag_dups;
/*
* Per-packet information for received packets and transmitted.
* Used by the transport protocols when converting between the packet
* and ancillary data and socket options.
*
* Note: This private data structure and related IPPF_* constant
* definitions are exposed to enable compilation of some debugging tools
* like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be
* a temporary hack and long term alternate interfaces should be defined
* to support the needs of such tools and private definitions moved to
* private headers.
*/
struct ip6_pkt_s {
uint_t ipp_fields; /* Which fields are valid */
uint_t ipp_sticky_ignored; /* sticky fields to ignore */
uint_t ipp_ifindex; /* pktinfo ifindex */
in6_addr_t ipp_addr; /* pktinfo src/dst addr */
uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */
uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */
uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */
uint_t ipp_hopoptslen;
uint_t ipp_rtdstoptslen;
uint_t ipp_rthdrlen;
uint_t ipp_dstoptslen;
uint_t ipp_pathmtulen;
uint_t ipp_fraghdrlen;
ip6_hbh_t *ipp_hopopts;
ip6_dest_t *ipp_rtdstopts;
ip6_rthdr_t *ipp_rthdr;
ip6_dest_t *ipp_dstopts;
ip6_frag_t *ipp_fraghdr;
struct ip6_mtuinfo *ipp_pathmtu;
in6_addr_t ipp_nexthop; /* Transmit only */
uint8_t ipp_tclass;
int8_t ipp_use_min_mtu;
};
typedef struct ip6_pkt_s ip6_pkt_t;
extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */
/*
* This struct is used by ULP_opt_set() functions to return value of IPv4
* ancillary options. Currently this is only used by udp and icmp and only
* IP_PKTINFO option is supported.
*/
typedef struct ip4_pkt_s {
uint_t ip4_ill_index; /* interface index */
ipaddr_t ip4_addr; /* source address */
} ip4_pkt_t;
/*
* Used by ULP's to pass options info to ip_output
* currently only IP_PKTINFO is supported.
*/
typedef struct ip_opt_info_s {
uint_t ip_opt_ill_index;
uint_t ip_opt_flags;
} ip_opt_info_t;
/*
* value for ip_opt_flags
*/
#define IP_VERIFY_SRC 0x1
/*
* This structure is used to convey information from IP and the ULP.
* Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options.
* The type of information field is set to IN_PKTINFO (i.e inbound pkt info)
*/
typedef struct ip_pktinfo {
uint32_t ip_pkt_ulp_type; /* type of info sent */
uint32_t ip_pkt_flags; /* what is sent up by IP */
uint32_t ip_pkt_ifindex; /* inbound interface index */
struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */
struct in_addr ip_pkt_match_addr; /* matched address */
} ip_pktinfo_t;
/*
* flags to tell UDP what IP is sending; in_pkt_flags
*/
#define IPF_RECVIF 0x01 /* inbound interface index */
#define IPF_RECVSLLA 0x02 /* source link layer address */
/*
* Inbound interface index + matched address.
* Used only by IPV4.
*/
#define IPF_RECVADDR 0x04
/* ipp_fields values */
#define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */
#define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */
#define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */
#define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */
#define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */
#define IPPF_HOPLIMIT 0x0020
#define IPPF_HOPOPTS 0x0040
#define IPPF_RTHDR 0x0080
#define IPPF_RTDSTOPTS 0x0100
#define IPPF_DSTOPTS 0x0200
#define IPPF_NEXTHOP 0x0400
#define IPPF_PATHMTU 0x0800
#define IPPF_TCLASS 0x1000
#define IPPF_DONTFRAG 0x2000
#define IPPF_USE_MIN_MTU 0x04000
#define IPPF_MULTICAST_HOPS 0x08000
#define IPPF_UNICAST_HOPS 0x10000
#define IPPF_FRAGHDR 0x20000
#define IPPF_HAS_IP6I \
(IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \
IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \
IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS)
#define TCP_PORTS_OFFSET 0
#define UDP_PORTS_OFFSET 0
/*
* lookups return the ill/ipif only if the flags are clear OR Iam writer.
* ill / ipif lookup functions increment the refcnt on the ill / ipif only
* after calling these macros. This ensures that the refcnt on the ipif or
* ill will eventually drop down to zero.
*/
#define ILL_LOOKUP_FAILED 1 /* Used as error code */
#define IPIF_LOOKUP_FAILED 2 /* Used as error code */
#define ILL_CAN_LOOKUP(ill) \
(!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \
IAM_WRITER_ILL(ill))
#define ILL_CAN_WAIT(ill, q) \
(((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED)))
#define ILL_CAN_LOOKUP_WALKER(ill) \
(!((ill)->ill_state_flags & ILL_CONDEMNED))
#define IPIF_CAN_LOOKUP(ipif) \
(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \
IAM_WRITER_IPIF(ipif))
/*
* If the parameter 'q' is NULL, the caller is not interested in wait and
* restart of the operation if the ILL or IPIF cannot be looked up when it is
* marked as 'CHANGING'. Typically a thread that tries to send out data will
* end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and
* in this case 'q' is NULL
*/
#define IPIF_CAN_WAIT(ipif, q) \
(((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED)))
#define IPIF_CAN_LOOKUP_WALKER(ipif) \
(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \
IAM_WRITER_IPIF(ipif))
#define ILL_UNMARK_CHANGING(ill) \
(ill)->ill_state_flags &= ~ILL_CHANGING;
/* Macros used to assert that this thread is a writer */
#define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_xop->ipx_writer == curthread)
#define IAM_WRITER_ILL(ill) IAM_WRITER_IPSQ((ill)->ill_phyint->phyint_ipsq)
#define IAM_WRITER_IPIF(ipif) IAM_WRITER_ILL((ipif)->ipif_ill)
/*
* Grab ill locks in the proper order. The order is highest addressed
* ill is locked first.
*/
#define GRAB_ILL_LOCKS(ill_1, ill_2) \
{ \
if ((ill_1) > (ill_2)) { \
if (ill_1 != NULL) \
mutex_enter(&(ill_1)->ill_lock); \
if (ill_2 != NULL) \
mutex_enter(&(ill_2)->ill_lock); \
} else { \
if (ill_2 != NULL) \
mutex_enter(&(ill_2)->ill_lock); \
if (ill_1 != NULL && ill_1 != ill_2) \
mutex_enter(&(ill_1)->ill_lock); \
} \
}
#define RELEASE_ILL_LOCKS(ill_1, ill_2) \
{ \
if (ill_1 != NULL) \
mutex_exit(&(ill_1)->ill_lock); \
if (ill_2 != NULL && ill_2 != ill_1) \
mutex_exit(&(ill_2)->ill_lock); \
}
/* Get the other protocol instance ill */
#define ILL_OTHER(ill) \
((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \
(ill)->ill_phyint->phyint_illv6)
/* ioctl command info: Ioctl properties extracted and stored in here */
typedef struct cmd_info_s
{
ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */
sin_t *ci_sin; /* the sin struct passed down */
sin6_t *ci_sin6; /* the sin6_t struct passed down */
struct lifreq *ci_lifr; /* the lifreq struct passed down */
} cmd_info_t;
/*
* List of AH and ESP IPsec acceleration capable ills
*/
typedef struct ipsec_capab_ill_s {
uint_t ill_index;
boolean_t ill_isv6;
struct ipsec_capab_ill_s *next;
} ipsec_capab_ill_t;
extern struct kmem_cache *ire_cache;
extern ipaddr_t ip_g_all_ones;
extern uint_t ip_loopback_mtu; /* /etc/system */
extern vmem_t *ip_minor_arena_sa;
extern vmem_t *ip_minor_arena_la;
/*
* ip_g_forward controls IP forwarding. It takes two values:
* 0: IP_FORWARD_NEVER Don't forward packets ever.
* 1: IP_FORWARD_ALWAYS Forward packets for elsewhere.
*
* RFC1122 says there must be a configuration switch to control forwarding,
* but that the default MUST be to not forward packets ever. Implicit
* control based on configuration of multiple interfaces MUST NOT be
* implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability
* and, in fact, it was the default. That capability is now provided in the
* /etc/rc2.d/S69inet script.
*/
#define ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value
#define ips_ip_g_resp_to_echo_bcast ips_param_arr[1].ip_param_value
#define ips_ip_g_resp_to_echo_mcast ips_param_arr[2].ip_param_value
#define ips_ip_g_resp_to_timestamp ips_param_arr[3].ip_param_value
#define ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value
#define ips_ip_g_send_redirects ips_param_arr[5].ip_param_value
#define ips_ip_g_forward_directed_bcast ips_param_arr[6].ip_param_value
#define ips_ip_mrtdebug ips_param_arr[7].ip_param_value
#define ips_ip_timer_interval ips_param_arr[8].ip_param_value
#define ips_ip_ire_arp_interval ips_param_arr[9].ip_param_value
#define ips_ip_ire_redir_interval ips_param_arr[10].ip_param_value
#define ips_ip_def_ttl ips_param_arr[11].ip_param_value
#define ips_ip_forward_src_routed ips_param_arr[12].ip_param_value
#define ips_ip_wroff_extra ips_param_arr[13].ip_param_value
#define ips_ip_ire_pathmtu_interval ips_param_arr[14].ip_param_value
#define ips_ip_icmp_return ips_param_arr[15].ip_param_value
#define ips_ip_path_mtu_discovery ips_param_arr[16].ip_param_value
#define ips_ip_ignore_delete_time ips_param_arr[17].ip_param_value
#define ips_ip_ignore_redirect ips_param_arr[18].ip_param_value
#define ips_ip_output_queue ips_param_arr[19].ip_param_value
#define ips_ip_broadcast_ttl ips_param_arr[20].ip_param_value
#define ips_ip_icmp_err_interval ips_param_arr[21].ip_param_value
#define ips_ip_icmp_err_burst ips_param_arr[22].ip_param_value
#define ips_ip_reass_queue_bytes ips_param_arr[23].ip_param_value
#define ips_ip_strict_dst_multihoming ips_param_arr[24].ip_param_value
#define ips_ip_addrs_per_if ips_param_arr[25].ip_param_value
#define ips_ipsec_override_persocket_policy ips_param_arr[26].ip_param_value
#define ips_icmp_accept_clear_messages ips_param_arr[27].ip_param_value
#define ips_igmp_accept_clear_messages ips_param_arr[28].ip_param_value
/* IPv6 configuration knobs */
#define ips_delay_first_probe_time ips_param_arr[29].ip_param_value
#define ips_max_unicast_solicit ips_param_arr[30].ip_param_value
#define ips_ipv6_def_hops ips_param_arr[31].ip_param_value
#define ips_ipv6_icmp_return ips_param_arr[32].ip_param_value
#define ips_ipv6_forward_src_routed ips_param_arr[33].ip_param_value
#define ips_ipv6_resp_echo_mcast ips_param_arr[34].ip_param_value
#define ips_ipv6_send_redirects ips_param_arr[35].ip_param_value
#define ips_ipv6_ignore_redirect ips_param_arr[36].ip_param_value
#define ips_ipv6_strict_dst_multihoming ips_param_arr[37].ip_param_value
#define ips_ip_ire_reclaim_fraction ips_param_arr[38].ip_param_value
#define ips_ipsec_policy_log_interval ips_param_arr[39].ip_param_value
#define ips_pim_accept_clear_messages ips_param_arr[40].ip_param_value
#define ips_ip_ndp_unsolicit_interval ips_param_arr[41].ip_param_value
#define ips_ip_ndp_unsolicit_count ips_param_arr[42].ip_param_value
#define ips_ipv6_ignore_home_address_opt ips_param_arr[43].ip_param_value
/* Misc IP configuration knobs */
#define ips_ip_policy_mask ips_param_arr[44].ip_param_value
#define ips_ip_multirt_resolution_interval ips_param_arr[45].ip_param_value
#define ips_ip_multirt_ttl ips_param_arr[46].ip_param_value
#define ips_ip_multidata_outbound ips_param_arr[47].ip_param_value
#define ips_ip_ndp_defense_interval ips_param_arr[48].ip_param_value
#define ips_ip_max_temp_idle ips_param_arr[49].ip_param_value
#define ips_ip_max_temp_defend ips_param_arr[50].ip_param_value
#define ips_ip_max_defend ips_param_arr[51].ip_param_value
#define ips_ip_defend_interval ips_param_arr[52].ip_param_value
#define ips_ip_dup_recovery ips_param_arr[53].ip_param_value
#define ips_ip_restrict_interzone_loopback ips_param_arr[54].ip_param_value
#define ips_ip_lso_outbound ips_param_arr[55].ip_param_value
#define ips_igmp_max_version ips_param_arr[56].ip_param_value
#define ips_mld_max_version ips_param_arr[57].ip_param_value
#define ips_ip_pmtu_min ips_param_arr[58].ip_param_value
#define ips_ipv6_drop_inbound_icmpv6 ips_param_arr[59].ip_param_value
extern int dohwcksum; /* use h/w cksum if supported by the h/w */
#ifdef ZC_TEST
extern int noswcksum;
#endif
extern char ipif_loopback_name[];
extern nv_t *ire_nv_tbl;
extern struct module_info ip_mod_info;
#define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \
((ipst)->ips_ip4_physical_in_event.he_interested)
#define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \
((ipst)->ips_ip6_physical_in_event.he_interested)
#define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \
((ipst)->ips_ip4_physical_out_event.he_interested)
#define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \
((ipst)->ips_ip6_physical_out_event.he_interested)
#define HOOKS4_INTERESTED_FORWARDING(ipst) \
((ipst)->ips_ip4_forwarding_event.he_interested)
#define HOOKS6_INTERESTED_FORWARDING(ipst) \
((ipst)->ips_ip6_forwarding_event.he_interested)
#define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \
((ipst)->ips_ip4_loopback_in_event.he_interested)
#define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \
((ipst)->ips_ip6_loopback_in_event.he_interested)
#define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \
((ipst)->ips_ip4_loopback_out_event.he_interested)
#define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \
((ipst)->ips_ip6_loopback_out_event.he_interested)
/*
* Hooks macros used inside of ip
*/
#define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \
\
if ((_hook).he_interested) { \
hook_pkt_event_t info; \
\
_NOTE(CONSTCOND) \
ASSERT((_ilp != NULL) || (_olp != NULL)); \
\
FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \
FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \
info.hpe_protocol = ipst->ips_ipv4_net_data; \
info.hpe_hdr = _iph; \
info.hpe_mp = &(_fm); \
info.hpe_mb = _m; \
info.hpe_flags = _llm; \
if (hook_run(ipst->ips_ipv4_net_data->netd_hooks, \
_event, (hook_data_t)&info) != 0) { \
ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
(_hook).he_name, (void *)_fm, (void *)_m)); \
freemsg(_fm); \
_fm = NULL; \
_iph = NULL; \
_m = NULL; \
} else { \
_iph = info.hpe_hdr; \
_m = info.hpe_mb; \
} \
}
#define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \
\
if ((_hook).he_interested) { \
hook_pkt_event_t info; \
\
_NOTE(CONSTCOND) \
ASSERT((_ilp != NULL) || (_olp != NULL)); \
\
FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \
FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \
info.hpe_protocol = ipst->ips_ipv6_net_data; \
info.hpe_hdr = _iph; \
info.hpe_mp = &(_fm); \
info.hpe_mb = _m; \
info.hpe_flags = _llm; \
if (hook_run(ipst->ips_ipv6_net_data->netd_hooks, \
_event, (hook_data_t)&info) != 0) { \
ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
(_hook).he_name, (void *)_fm, (void *)_m)); \
freemsg(_fm); \
_fm = NULL; \
_iph = NULL; \
_m = NULL; \
} else { \
_iph = info.hpe_hdr; \
_m = info.hpe_mb; \
} \
}
#define FW_SET_ILL_INDEX(fp, ill) \
_NOTE(CONSTCOND) \
if ((ill) == NULL || (ill)->ill_phyint == NULL) { \
(fp) = 0; \
_NOTE(CONSTCOND) \
} else if (IS_UNDER_IPMP(ill)) { \
(fp) = ipmp_ill_get_ipmp_ifindex(ill); \
} else { \
(fp) = (ill)->ill_phyint->phyint_ifindex; \
}
/*
* Network byte order macros
*/
#ifdef _BIG_ENDIAN
#define N_IN_CLASSA_NET IN_CLASSA_NET
#define N_IN_CLASSD_NET IN_CLASSD_NET
#define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP
#define N_IN_LOOPBACK_NET (ipaddr_t)0x7f000000U
#else /* _BIG_ENDIAN */
#define N_IN_CLASSA_NET (ipaddr_t)0x000000ffU
#define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U
#define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U
#define N_IN_LOOPBACK_NET (ipaddr_t)0x0000007fU
#endif /* _BIG_ENDIAN */
#define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP)
#define CLASSE(addr) (((addr) & N_IN_CLASSD_NET) == N_IN_CLASSD_NET)
#define IP_LOOPBACK_ADDR(addr) \
(((addr) & N_IN_CLASSA_NET == N_IN_LOOPBACK_NET))
#ifdef DEBUG
/* IPsec HW acceleration debugging support */
#define IPSECHW_CAPAB 0x0001 /* capability negotiation */
#define IPSECHW_SADB 0x0002 /* SADB exchange */
#define IPSECHW_PKT 0x0004 /* general packet flow */
#define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */
#define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */
#define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; }
#define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; }
extern uint32_t ipsechw_debug;
#else
#define IPSECHW_DEBUG(f, x) {}
#define IPSECHW_CALL(f, r, x) {}
#endif
extern int ip_debug;
extern uint_t ip_thread_data;
extern krwlock_t ip_thread_rwlock;
extern list_t ip_thread_list;
#ifdef IP_DEBUG
#include <sys/debug.h>
#include <sys/promif.h>
#define ip0dbg(a) printf a
#define ip1dbg(a) if (ip_debug > 2) printf a
#define ip2dbg(a) if (ip_debug > 3) printf a
#define ip3dbg(a) if (ip_debug > 4) printf a
#else
#define ip0dbg(a) /* */
#define ip1dbg(a) /* */
#define ip2dbg(a) /* */
#define ip3dbg(a) /* */
#endif /* IP_DEBUG */
/* Default MAC-layer address string length for mac_colon_addr */
#define MAC_STR_LEN 128
struct ipsec_out_s;
struct mac_header_info_s;
extern void ill_frag_timer(void *);
extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *);
extern ill_t *ill_next(ill_walk_context_t *, ill_t *);
extern void ill_frag_timer_start(ill_t *);
extern void ill_nic_event_dispatch(ill_t *, lif_if_t, nic_event_t,
nic_event_data_t, size_t);
extern mblk_t *ip_carve_mp(mblk_t **, ssize_t);
extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
extern mblk_t *ip_dlnotify_alloc(uint_t, uint_t);
extern char *ip_dot_addr(ipaddr_t, char *);
extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t);
extern void ip_lwput(queue_t *, mblk_t *);
extern boolean_t icmp_err_rate_limit(ip_stack_t *);
extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t,
ip_stack_t *);
extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t,
ip_stack_t *);
extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *);
cred_t *ip_best_cred(mblk_t *, conn_t *);
extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *);
extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *);
extern int ip_bind_laddr_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t,
uint16_t, boolean_t);
extern int ip_proto_bind_laddr_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t,
uint16_t, boolean_t);
extern int ip_proto_bind_connected_v4(conn_t *, mblk_t **,
uint8_t, ipaddr_t *, uint16_t, ipaddr_t, uint16_t, boolean_t, boolean_t,
cred_t *);
extern int ip_bind_connected_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t *,
uint16_t, ipaddr_t, uint16_t, boolean_t, boolean_t, cred_t *);
extern uint_t ip_cksum(mblk_t *, int, uint32_t);
extern int ip_close(queue_t *, int);
extern uint16_t ip_csum_hdr(ipha_t *);
extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t,
ip_stack_t *);
extern void ip_ire_g_fini(void);
extern void ip_ire_g_init(void);
extern void ip_ire_fini(ip_stack_t *);
extern void ip_ire_init(ip_stack_t *);
extern int ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
extern int ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *,
size_t);
extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t,
int, int, mblk_t *);
extern void ip_rput(queue_t *, mblk_t *);
extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *,
struct mac_header_info_s *);
extern mblk_t *ip_accept_tcp(ill_t *, ill_rx_ring_t *, squeue_t *,
mblk_t *, mblk_t **, uint_t *cnt);
extern void ip_rput_dlpi(queue_t *, mblk_t *);
extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *);
extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *,
mib2_ipIfStatsEntry_t *);
extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *,
mib2_ipv6IfIcmpEntry_t *);
extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *,
uint32_t);
extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *);
extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *);
extern void ip_setpktversion(conn_t *, boolean_t, boolean_t, ip_stack_t *);
extern void ip_trash_ire_reclaim(void *);
extern void ip_trash_timer_expire(void *);
extern void ip_wput(queue_t *, mblk_t *);
extern void ip_output(void *, mblk_t *, void *, int);
extern void ip_output_options(void *, mblk_t *, void *, int,
ip_opt_info_t *);
extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int,
zoneid_t);
extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *,
int, zoneid_t);
extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t);
extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *);
extern void ip_wsrv(queue_t *);
extern char *ip_nv_lookup(nv_t *, int);
extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *);
extern ipaddr_t ip_net_mask(ipaddr_t);
extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t,
ip_stack_t *);
extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *,
boolean_t, conn_t *);
extern int ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *);
extern struct qinit iprinitv6;
extern struct qinit ipwinitv6;
extern void ipmp_init(ip_stack_t *);
extern void ipmp_destroy(ip_stack_t *);
extern ipmp_grp_t *ipmp_grp_create(const char *, phyint_t *);
extern void ipmp_grp_destroy(ipmp_grp_t *);
extern void ipmp_grp_info(const ipmp_grp_t *, lifgroupinfo_t *);
extern int ipmp_grp_rename(ipmp_grp_t *, const char *);
extern ipmp_grp_t *ipmp_grp_lookup(const char *, ip_stack_t *);
extern int ipmp_grp_vet_phyint(ipmp_grp_t *, phyint_t *);
extern ipmp_illgrp_t *ipmp_illgrp_create(ill_t *);
extern void ipmp_illgrp_destroy(ipmp_illgrp_t *);
extern ill_t *ipmp_illgrp_add_ipif(ipmp_illgrp_t *, ipif_t *);
extern void ipmp_illgrp_del_ipif(ipmp_illgrp_t *, ipif_t *);
extern ill_t *ipmp_illgrp_next_ill(ipmp_illgrp_t *);
extern ill_t *ipmp_illgrp_hold_next_ill(ipmp_illgrp_t *);
extern ill_t *ipmp_illgrp_cast_ill(ipmp_illgrp_t *);
extern ill_t *ipmp_illgrp_hold_cast_ill(ipmp_illgrp_t *);
extern ill_t *ipmp_illgrp_ipmp_ill(ipmp_illgrp_t *);
extern void ipmp_illgrp_refresh_mtu(ipmp_illgrp_t *);
extern ipmp_arpent_t *ipmp_illgrp_create_arpent(ipmp_illgrp_t *, mblk_t *,
boolean_t);
extern void ipmp_illgrp_destroy_arpent(ipmp_illgrp_t *, ipmp_arpent_t *);
extern ipmp_arpent_t *ipmp_illgrp_lookup_arpent(ipmp_illgrp_t *, ipaddr_t *);
extern void ipmp_illgrp_refresh_arpent(ipmp_illgrp_t *);
extern void ipmp_illgrp_mark_arpent(ipmp_illgrp_t *, ipmp_arpent_t *);
extern ill_t *ipmp_illgrp_find_ill(ipmp_illgrp_t *, uchar_t *, uint_t);
extern void ipmp_illgrp_link_grp(ipmp_illgrp_t *, ipmp_grp_t *);
extern int ipmp_illgrp_unlink_grp(ipmp_illgrp_t *);
extern uint_t ipmp_ill_get_ipmp_ifindex(const ill_t *);
extern void ipmp_ill_join_illgrp(ill_t *, ipmp_illgrp_t *);
extern void ipmp_ill_leave_illgrp(ill_t *);
extern ill_t *ipmp_ill_hold_ipmp_ill(ill_t *);
extern boolean_t ipmp_ill_is_active(ill_t *);
extern void ipmp_ill_refresh_active(ill_t *);
extern void ipmp_phyint_join_grp(phyint_t *, ipmp_grp_t *);
extern void ipmp_phyint_leave_grp(phyint_t *);
extern void ipmp_phyint_refresh_active(phyint_t *);
extern ill_t *ipmp_ipif_bound_ill(const ipif_t *);
extern ill_t *ipmp_ipif_hold_bound_ill(const ipif_t *);
extern boolean_t ipmp_ipif_is_dataaddr(const ipif_t *);
extern boolean_t ipmp_ipif_is_stubaddr(const ipif_t *);
extern void conn_drain_insert(conn_t *, idl_tx_list_t *);
extern int conn_ipsec_length(conn_t *);
extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *,
ire_t *);
extern ipaddr_t ip_get_dst(ipha_t *);
extern int ipsec_out_extra_length(mblk_t *);
extern int ipsec_in_extra_length(mblk_t *);
extern mblk_t *ipsec_in_alloc(boolean_t, netstack_t *);
extern boolean_t ipsec_in_is_secure(mblk_t *);
extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t);
extern void ipsec_out_to_in(mblk_t *);
extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *);
extern void ire_cleanup(ire_t *);
extern void ire_inactive(ire_t *);
extern boolean_t irb_inactive(irb_t *);
extern ire_t *ire_unlink(irb_t *);
#ifdef DEBUG
extern boolean_t th_trace_ref(const void *, ip_stack_t *);
extern void th_trace_unref(const void *);
extern void th_trace_cleanup(const void *, boolean_t);
extern void ire_trace_ref(ire_t *);
extern void ire_untrace_ref(ire_t *);
#endif
extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *);
extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *);
extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *);
extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *);
extern uint8_t ipoptp_next(ipoptp_t *);
extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *);
extern int ip_opt_get_user(const ipha_t *, uchar_t *);
extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int);
extern int ip_snmp_get(queue_t *q, mblk_t *mctl, int level);
extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int);
extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
extern void ip_quiesce_conn(conn_t *);
extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *);
extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *);
extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *,
uint_t);
extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *,
uint_t);
extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t);
extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *);
extern void conn_ioctl_cleanup(conn_t *);
extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *);
struct tcp_stack;
extern void ip_xmit_reset_serialize(mblk_t *, int, zoneid_t, struct tcp_stack *,
conn_t *);
struct multidata_s;
struct pdesc_s;
extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *);
extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *);
extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *);
extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *,
ill_lso_capab_t *);
extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t);
extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *,
const mblk_t *);
extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *,
uint32_t, uint32_t, uint32_t, uint32_t);
extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *,
uint_t);
extern void ip_unbind(conn_t *connp);
extern void tnet_init(void);
extern void tnet_fini(void);
/* Hooks for CGTP (multirt routes) filtering module */
#define CGTP_FILTER_REV_1 1
#define CGTP_FILTER_REV_2 2
#define CGTP_FILTER_REV_3 3
#define CGTP_FILTER_REV CGTP_FILTER_REV_3
/* cfo_filter and cfo_filter_v6 hooks return values */
#define CGTP_IP_PKT_NOT_CGTP 0
#define CGTP_IP_PKT_PREMIUM 1
#define CGTP_IP_PKT_DUPLICATE 2
/* Version 3 of the filter interface */
typedef struct cgtp_filter_ops {
int cfo_filter_rev; /* CGTP_FILTER_REV_3 */
int (*cfo_change_state)(netstackid_t, int);
int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t,
ipaddr_t, ipaddr_t);
int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t);
int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *,
in6_addr_t *, in6_addr_t *);
int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *);
int (*cfo_filter)(netstackid_t, uint_t, mblk_t *);
int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *,
ip6_frag_t *);
} cgtp_filter_ops_t;
#define CGTP_MCAST_SUCCESS 1
/*
* The separate CGTP module needs this global symbol so that it
* can check the version and determine whether to use the old or the new
* version of the filtering interface.
*/
extern int ip_cgtp_filter_rev;
extern int ip_cgtp_filter_supported(void);
extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *);
extern int ip_cgtp_filter_unregister(netstackid_t);
extern int ip_cgtp_filter_is_registered(netstackid_t);
/* Flags for ire_multirt_lookup() */
#define MULTIRT_USESTAMP 0x0001
#define MULTIRT_SETSTAMP 0x0002
#define MULTIRT_CACHEGW 0x0004
/* Debug stuff for multirt route resolution. */
#if defined(DEBUG) && !defined(__lint)
/* Our "don't send, rather drop" flag. */
#define MULTIRT_DEBUG_FLAG 0x8000
#define MULTIRT_TRACE(x) ip2dbg(x)
#define MULTIRT_DEBUG_TAG(mblk) \
do { \
ASSERT(mblk != NULL); \
MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \
__FILE__, __LINE__, \
(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
(mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \
} while (0)
#define MULTIRT_DEBUG_UNTAG(mblk) \
do { \
ASSERT(mblk != NULL); \
MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \
__FILE__, __LINE__, \
(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
(mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \
} while (0)
#define MULTIRT_DEBUG_TAGGED(mblk) \
(((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE)
#else
#define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL)
#define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL)
#define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE
#endif
/*
* IP observability hook support
*/
/*
* ipobs_hooktype_t describes the hook types supported
* by the ip module. IPOBS_HOOK_LOCAL refers to packets
* which are looped back internally within the ip module.
*/
typedef enum ipobs_hook_type {
IPOBS_HOOK_LOCAL,
IPOBS_HOOK_OUTBOUND,
IPOBS_HOOK_INBOUND
} ipobs_hook_type_t;
typedef void ipobs_cbfunc_t(mblk_t *);
typedef struct ipobs_cb {
ipobs_cbfunc_t *ipobs_cbfunc;
list_node_t ipobs_cbnext;
} ipobs_cb_t;
/*
* This structure holds the data passed back from the ip module to
* observability consumers.
*
* ihd_mp Pointer to the IP packet.
* ihd_zsrc Source zoneid; set to ALL_ZONES when unknown.
* ihd_zdst Destination zoneid; set to ALL_ZONES when unknown.
* ihd_htype IPobs hook type, see above for the defined types.
* ihd_ipver IP version of the packet.
* ihd_ifindex Interface index that the packet was received/sent over.
* For local packets, this is the index of the interface
* associated with the local destination address.
* ihd_grifindex IPMP group interface index (zero unless ihd_ifindex
* is an IPMP underlying interface).
* ihd_stack Netstack the packet is from.
*/
typedef struct ipobs_hook_data {
mblk_t *ihd_mp;
zoneid_t ihd_zsrc;
zoneid_t ihd_zdst;
ipobs_hook_type_t ihd_htype;
uint16_t ihd_ipver;
uint64_t ihd_ifindex;
uint64_t ihd_grifindex;
netstack_t *ihd_stack;
} ipobs_hook_data_t;
/*
* Per-ILL Multidata Transmit capabilities.
*/
struct ill_mdt_capab_s {
uint_t ill_mdt_version; /* interface version */
uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */
uint_t ill_mdt_hdr_head; /* leading header fragment extra space */
uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */
uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */
uint_t ill_mdt_span_limit; /* maximum payload span per packet */
};
struct ill_hcksum_capab_s {
uint_t ill_hcksum_version; /* interface version */
uint_t ill_hcksum_txflags; /* capabilities on transmit */
};
struct ill_zerocopy_capab_s {
uint_t ill_zerocopy_version; /* interface version */
uint_t ill_zerocopy_flags; /* capabilities */
};
struct ill_lso_capab_s {
uint_t ill_lso_on; /* on/off switch for LSO on this ILL */
uint_t ill_lso_flags; /* capabilities */
uint_t ill_lso_max; /* maximum size of payload */
};
/*
* rr_ring_state cycles in the order shown below from RR_FREE through
* RR_FREE_IN_PROG and back to RR_FREE.
*/
typedef enum {
RR_FREE, /* Free slot */
RR_SQUEUE_UNBOUND, /* Ring's squeue is unbound */
RR_SQUEUE_BIND_INPROG, /* Ring's squeue bind in progress */
RR_SQUEUE_BOUND, /* Ring's squeue bound to cpu */
RR_FREE_INPROG /* Ring is being freed */
} ip_ring_state_t;
#define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */
#define ILL_POLLING 0x01 /* Polling in use */
/*
* These functions pointer types are exported by the mac/dls layer.
* we need to duplicate the definitions here because we cannot
* include mac/dls header files here.
*/
typedef void (*ip_mac_intr_disable_t)(void *);
typedef void (*ip_mac_intr_enable_t)(void *);
typedef ip_mac_tx_cookie_t (*ip_dld_tx_t)(void *, mblk_t *,
uint64_t, uint16_t);
typedef void (*ip_flow_enable_t)(void *, ip_mac_tx_cookie_t);
typedef void *(*ip_dld_callb_t)(void *,
ip_flow_enable_t, void *);
typedef boolean_t (*ip_dld_fctl_t)(void *, ip_mac_tx_cookie_t);
typedef int (*ip_capab_func_t)(void *, uint_t,
void *, uint_t);
/*
* POLLING README
* sq_get_pkts() is called to pick packets from softring in poll mode. It
* calls rr_rx to get the chain and process it with rr_ip_accept.
* rr_rx = mac_soft_ring_poll() to pick packets
* rr_ip_accept = ip_accept_tcp() to process packets
*/
/*
* XXX: With protocol, service specific squeues, they will have
* specific acceptor functions.
*/
typedef mblk_t *(*ip_mac_rx_t)(void *, size_t);
typedef mblk_t *(*ip_accept_t)(ill_t *, ill_rx_ring_t *,
squeue_t *, mblk_t *, mblk_t **, uint_t *);
/*
* rr_intr_enable, rr_intr_disable, rr_rx_handle, rr_rx:
* May be accessed while in the squeue AND after checking that SQS_POLL_CAPAB
* is set.
*
* rr_ring_state: Protected by ill_lock.
*/
struct ill_rx_ring {
ip_mac_intr_disable_t rr_intr_disable; /* Interrupt disabling func */
ip_mac_intr_enable_t rr_intr_enable; /* Interrupt enabling func */
void *rr_intr_handle; /* Handle interrupt funcs */
ip_mac_rx_t rr_rx; /* Driver receive function */
ip_accept_t rr_ip_accept; /* IP accept function */
void *rr_rx_handle; /* Handle for Rx ring */
squeue_t *rr_sqp; /* Squeue the ring is bound to */
ill_t *rr_ill; /* back pointer to ill */
ip_ring_state_t rr_ring_state; /* State of this ring */
};
/*
* IP - DLD direct function call capability
* Suffixes, df - dld function, dh - dld handle,
* cf - client (IP) function, ch - client handle
*/
typedef struct ill_dld_direct_s { /* DLD provided driver Tx */
ip_dld_tx_t idd_tx_df; /* str_mdata_fastpath_put */
void *idd_tx_dh; /* dld_str_t *dsp */
ip_dld_callb_t idd_tx_cb_df; /* mac_tx_srs_notify */
void *idd_tx_cb_dh; /* mac_client_handle_t *mch */
ip_dld_fctl_t idd_tx_fctl_df; /* mac_tx_is_flow_blocked */
void *idd_tx_fctl_dh; /* mac_client_handle */
} ill_dld_direct_t;
/* IP - DLD polling capability */
typedef struct ill_dld_poll_s {
ill_rx_ring_t idp_ring_tbl[ILL_MAX_RINGS];
} ill_dld_poll_t;
/* Describes ill->ill_dld_capab */
struct ill_dld_capab_s {
ip_capab_func_t idc_capab_df; /* dld_capab_func */
void *idc_capab_dh; /* dld_str_t *dsp */
ill_dld_direct_t idc_direct;
ill_dld_poll_t idc_poll;
};
/*
* IP squeues exports
*/
extern boolean_t ip_squeue_fanout;
#define IP_SQUEUE_GET(hint) ip_squeue_random(hint)
extern void ip_squeue_init(void (*)(squeue_t *));
extern squeue_t *ip_squeue_random(uint_t);
extern squeue_t *ip_squeue_get(ill_rx_ring_t *);
extern squeue_t *ip_squeue_getfree(pri_t);
extern int ip_squeue_cpu_move(squeue_t *, processorid_t);
extern void *ip_squeue_add_ring(ill_t *, void *);
extern void ip_squeue_bind_ring(ill_t *, ill_rx_ring_t *, processorid_t);
extern void ip_squeue_clean_ring(ill_t *, ill_rx_ring_t *);
extern void ip_squeue_quiesce_ring(ill_t *, ill_rx_ring_t *);
extern void ip_squeue_restart_ring(ill_t *, ill_rx_ring_t *);
extern void ip_squeue_clean_all(ill_t *);
extern void tcp_wput(queue_t *, mblk_t *);
extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t,
struct ip6_mtuinfo *, netstack_t *);
extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *);
extern void ipobs_register_hook(netstack_t *, ipobs_cbfunc_t *);
extern void ipobs_unregister_hook(netstack_t *, ipobs_cbfunc_t *);
extern void ipobs_hook(mblk_t *, int, zoneid_t, zoneid_t, const ill_t *, int,
uint32_t, ip_stack_t *);
typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *);
/*
* Squeue tags. Tags only need to be unique when the callback function is the
* same to distinguish between different calls, but we use unique tags for
* convenience anyway.
*/
#define SQTAG_IP_INPUT 1
#define SQTAG_TCP_INPUT_ICMP_ERR 2
#define SQTAG_TCP6_INPUT_ICMP_ERR 3
#define SQTAG_IP_TCP_INPUT 4
#define SQTAG_IP6_TCP_INPUT 5
#define SQTAG_IP_TCP_CLOSE 6
#define SQTAG_TCP_OUTPUT 7
#define SQTAG_TCP_TIMER 8
#define SQTAG_TCP_TIMEWAIT 9
#define SQTAG_TCP_ACCEPT_FINISH 10
#define SQTAG_TCP_ACCEPT_FINISH_Q0 11
#define SQTAG_TCP_ACCEPT_PENDING 12
#define SQTAG_TCP_LISTEN_DISCON 13
#define SQTAG_TCP_CONN_REQ_1 14
#define SQTAG_TCP_EAGER_BLOWOFF 15
#define SQTAG_TCP_EAGER_CLEANUP 16
#define SQTAG_TCP_EAGER_CLEANUP_Q0 17
#define SQTAG_TCP_CONN_IND 18
#define SQTAG_TCP_RSRV 19
#define SQTAG_TCP_ABORT_BUCKET 20
#define SQTAG_TCP_REINPUT 21
#define SQTAG_TCP_REINPUT_EAGER 22
#define SQTAG_TCP_INPUT_MCTL 23
#define SQTAG_TCP_RPUTOTHER 24
#define SQTAG_IP_PROTO_AGAIN 25
#define SQTAG_IP_FANOUT_TCP 26
#define SQTAG_IPSQ_CLEAN_RING 27
#define SQTAG_TCP_WPUT_OTHER 28
#define SQTAG_TCP_CONN_REQ_UNBOUND 29
#define SQTAG_TCP_SEND_PENDING 30
#define SQTAG_BIND_RETRY 31
#define SQTAG_UDP_FANOUT 32
#define SQTAG_UDP_INPUT 33
#define SQTAG_UDP_WPUT 34
#define SQTAG_UDP_OUTPUT 35
#define SQTAG_TCP_KSSL_INPUT 36
#define SQTAG_TCP_DROP_Q0 37
#define SQTAG_TCP_CONN_REQ_2 38
#define SQTAG_IP_INPUT_RX_RING 39
#define SQTAG_SQUEUE_CHANGE 40
#define SQTAG_CONNECT_FINISH 41
#define SQTAG_SYNCHRONOUS_OP 42
#define SQTAG_TCP_SHUTDOWN_OUTPUT 43
#define SQTAG_XMIT_EARLY_RESET 44
#define NOT_OVER_IP(ip_wq) \
(ip_wq->q_next != NULL || \
(ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \
strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \
IP_MOD_NAME) != 0 || \
ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID)
#define PROTO_FLOW_CNTRLD(connp) (connp->conn_flow_cntrld)
#endif /* _KERNEL */
#ifdef __cplusplus
}
#endif
#endif /* _INET_IP_H */