zvol.c revision 3a8a1de4a7950ac5cf7ca65f761e324145e7237b
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* ZFS volume emulation driver.
*
* Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
* Volumes are accessed through the symbolic links named:
*
* /dev/zvol/dsk/<pool_name>/<dataset_name>
* /dev/zvol/rdsk/<pool_name>/<dataset_name>
*
* These links are created by the ZFS-specific devfsadm link generator.
* Volumes are persistent through reboot. No user command needs to be
* run before opening and using a device.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/buf.h>
#include <sys/modctl.h>
#include <sys/open.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/zap.h>
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/dsl_prop.h>
#include <sys/dkio.h>
#include <sys/efi_partition.h>
#include <sys/byteorder.h>
#include <sys/pathname.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/crc32.h>
#include <sys/dirent.h>
#include <sys/policy.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_ioctl.h>
#include <sys/mkdev.h>
#include <sys/zil.h>
#include <sys/refcount.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_rlock.h>
#include "zfs_namecheck.h"
#define ZVOL_OBJ 1ULL
#define ZVOL_ZAP_OBJ 2ULL
static void *zvol_state;
/*
* This lock protects the zvol_state structure from being modified
* while it's being used, e.g. an open that comes in before a create
* finishes. It also protects temporary opens of the dataset so that,
* e.g., an open doesn't get a spurious EBUSY.
*/
static kmutex_t zvol_state_lock;
static uint32_t zvol_minors;
/*
* The in-core state of each volume.
*/
typedef struct zvol_state {
char zv_name[MAXPATHLEN]; /* pool/dd name */
uint64_t zv_volsize; /* amount of space we advertise */
uint64_t zv_volblocksize; /* volume block size */
minor_t zv_minor; /* minor number */
uint8_t zv_min_bs; /* minimum addressable block shift */
uint8_t zv_readonly; /* hard readonly; like write-protect */
objset_t *zv_objset; /* objset handle */
uint32_t zv_mode; /* DS_MODE_* flags at open time */
uint32_t zv_open_count[OTYPCNT]; /* open counts */
uint32_t zv_total_opens; /* total open count */
zilog_t *zv_zilog; /* ZIL handle */
uint64_t zv_txg_assign; /* txg to assign during ZIL replay */
znode_t zv_znode; /* for range locking */
} zvol_state_t;
/*
* zvol maximum transfer in one DMU tx.
*/
int zvol_maxphys = DMU_MAX_ACCESS/2;
static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio);
static void
zvol_size_changed(zvol_state_t *zv, major_t maj)
{
dev_t dev = makedevice(maj, zv->zv_minor);
VERIFY(ddi_prop_update_int64(dev, zfs_dip,
"Size", zv->zv_volsize) == DDI_SUCCESS);
VERIFY(ddi_prop_update_int64(dev, zfs_dip,
"Nblocks", lbtodb(zv->zv_volsize)) == DDI_SUCCESS);
}
int
zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
{
if (volsize == 0)
return (EINVAL);
if (volsize % blocksize != 0)
return (EINVAL);
#ifdef _ILP32
if (volsize - 1 > SPEC_MAXOFFSET_T)
return (EOVERFLOW);
#endif
return (0);
}
int
zvol_check_volblocksize(uint64_t volblocksize)
{
if (volblocksize < SPA_MINBLOCKSIZE ||
volblocksize > SPA_MAXBLOCKSIZE ||
!ISP2(volblocksize))
return (EDOM);
return (0);
}
static void
zvol_readonly_changed_cb(void *arg, uint64_t newval)
{
zvol_state_t *zv = arg;
zv->zv_readonly = (uint8_t)newval;
}
int
zvol_get_stats(objset_t *os, nvlist_t *nv)
{
int error;
dmu_object_info_t doi;
uint64_t val;
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
if (error)
return (error);
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
error = dmu_object_info(os, ZVOL_OBJ, &doi);
if (error == 0) {
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
doi.doi_data_block_size);
}
return (error);
}
/*
* Find a free minor number.
*/
static minor_t
zvol_minor_alloc(void)
{
minor_t minor;
ASSERT(MUTEX_HELD(&zvol_state_lock));
for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++)
if (ddi_get_soft_state(zvol_state, minor) == NULL)
return (minor);
return (0);
}
static zvol_state_t *
zvol_minor_lookup(const char *name)
{
minor_t minor;
zvol_state_t *zv;
ASSERT(MUTEX_HELD(&zvol_state_lock));
for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++) {
zv = ddi_get_soft_state(zvol_state, minor);
if (zv == NULL)
continue;
if (strcmp(zv->zv_name, name) == 0)
break;
}
return (zv);
}
/* ARGSUSED */
void
zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
{
nvlist_t *nvprops = arg;
int error;
uint64_t volblocksize, volsize;
VERIFY(nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
if (nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
/*
* These properites must be removed from the list so the generic
* property setting step won't apply to them.
*/
VERIFY(nvlist_remove_all(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
(void) nvlist_remove_all(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
DMU_OT_NONE, 0, tx);
ASSERT(error == 0);
error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
DMU_OT_NONE, 0, tx);
ASSERT(error == 0);
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
ASSERT(error == 0);
}
/*
* Replay a TX_WRITE ZIL transaction that didn't get committed
* after a system failure
*/
static int
zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
{
objset_t *os = zv->zv_objset;
char *data = (char *)(lr + 1); /* data follows lr_write_t */
uint64_t off = lr->lr_offset;
uint64_t len = lr->lr_length;
dmu_tx_t *tx;
int error;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
error = dmu_tx_assign(tx, zv->zv_txg_assign);
if (error) {
dmu_tx_abort(tx);
} else {
dmu_write(os, ZVOL_OBJ, off, len, data, tx);
dmu_tx_commit(tx);
}
return (error);
}
/* ARGSUSED */
static int
zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
{
return (ENOTSUP);
}
/*
* Callback vectors for replaying records.
* Only TX_WRITE is needed for zvol.
*/
zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
zvol_replay_err, /* 0 no such transaction type */
zvol_replay_err, /* TX_CREATE */
zvol_replay_err, /* TX_MKDIR */
zvol_replay_err, /* TX_MKXATTR */
zvol_replay_err, /* TX_SYMLINK */
zvol_replay_err, /* TX_REMOVE */
zvol_replay_err, /* TX_RMDIR */
zvol_replay_err, /* TX_LINK */
zvol_replay_err, /* TX_RENAME */
zvol_replay_write, /* TX_WRITE */
zvol_replay_err, /* TX_TRUNCATE */
zvol_replay_err, /* TX_SETATTR */
zvol_replay_err, /* TX_ACL */
};
/*
* Create a minor node for the specified volume.
*/
int
zvol_create_minor(const char *name, major_t maj)
{
zvol_state_t *zv;
objset_t *os;
dmu_object_info_t doi;
uint64_t volsize;
minor_t minor = 0;
struct pathname linkpath;
int ds_mode = DS_MODE_PRIMARY;
vnode_t *vp = NULL;
char *devpath;
size_t devpathlen = strlen(ZVOL_FULL_DEV_DIR) + 1 + strlen(name) + 1;
char chrbuf[30], blkbuf[30];
int error;
mutex_enter(&zvol_state_lock);
if ((zv = zvol_minor_lookup(name)) != NULL) {
mutex_exit(&zvol_state_lock);
return (EEXIST);
}
if (strchr(name, '@') != 0)
ds_mode |= DS_MODE_READONLY;
error = dmu_objset_open(name, DMU_OST_ZVOL, ds_mode, &os);
if (error) {
mutex_exit(&zvol_state_lock);
return (error);
}
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
if (error) {
dmu_objset_close(os);
mutex_exit(&zvol_state_lock);
return (error);
}
/*
* If there's an existing /dev/zvol symlink, try to use the
* same minor number we used last time.
*/
devpath = kmem_alloc(devpathlen, KM_SLEEP);
(void) sprintf(devpath, "%s/%s", ZVOL_FULL_DEV_DIR, name);
error = lookupname(devpath, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp);
kmem_free(devpath, devpathlen);
if (error == 0 && vp->v_type != VLNK)
error = EINVAL;
if (error == 0) {
pn_alloc(&linkpath);
error = pn_getsymlink(vp, &linkpath, kcred);
if (error == 0) {
char *ms = strstr(linkpath.pn_path, ZVOL_PSEUDO_DEV);
if (ms != NULL) {
ms += strlen(ZVOL_PSEUDO_DEV);
minor = stoi(&ms);
}
}
pn_free(&linkpath);
}
if (vp != NULL)
VN_RELE(vp);
/*
* If we found a minor but it's already in use, we must pick a new one.
*/
if (minor != 0 && ddi_get_soft_state(zvol_state, minor) != NULL)
minor = 0;
if (minor == 0)
minor = zvol_minor_alloc();
if (minor == 0) {
dmu_objset_close(os);
mutex_exit(&zvol_state_lock);
return (ENXIO);
}
if (ddi_soft_state_zalloc(zvol_state, minor) != DDI_SUCCESS) {
dmu_objset_close(os);
mutex_exit(&zvol_state_lock);
return (EAGAIN);
}
(void) ddi_prop_update_string(minor, zfs_dip, ZVOL_PROP_NAME,
(char *)name);
(void) sprintf(chrbuf, "%uc,raw", minor);
if (ddi_create_minor_node(zfs_dip, chrbuf, S_IFCHR,
minor, DDI_PSEUDO, 0) == DDI_FAILURE) {
ddi_soft_state_free(zvol_state, minor);
dmu_objset_close(os);
mutex_exit(&zvol_state_lock);
return (EAGAIN);
}
(void) sprintf(blkbuf, "%uc", minor);
if (ddi_create_minor_node(zfs_dip, blkbuf, S_IFBLK,
minor, DDI_PSEUDO, 0) == DDI_FAILURE) {
ddi_remove_minor_node(zfs_dip, chrbuf);
ddi_soft_state_free(zvol_state, minor);
dmu_objset_close(os);
mutex_exit(&zvol_state_lock);
return (EAGAIN);
}
zv = ddi_get_soft_state(zvol_state, minor);
(void) strcpy(zv->zv_name, name);
zv->zv_min_bs = DEV_BSHIFT;
zv->zv_minor = minor;
zv->zv_volsize = volsize;
zv->zv_objset = os;
zv->zv_mode = ds_mode;
zv->zv_zilog = zil_open(os, zvol_get_data);
mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
sizeof (rl_t), offsetof(rl_t, r_node));
/* get and cache the blocksize */
error = dmu_object_info(os, ZVOL_OBJ, &doi);
ASSERT(error == 0);
zv->zv_volblocksize = doi.doi_data_block_size;
zil_replay(os, zv, &zv->zv_txg_assign, zvol_replay_vector);
zvol_size_changed(zv, maj);
/* XXX this should handle the possible i/o error */
VERIFY(dsl_prop_register(dmu_objset_ds(zv->zv_objset),
"readonly", zvol_readonly_changed_cb, zv) == 0);
zvol_minors++;
mutex_exit(&zvol_state_lock);
return (0);
}
/*
* Remove minor node for the specified volume.
*/
int
zvol_remove_minor(const char *name)
{
zvol_state_t *zv;
char namebuf[30];
mutex_enter(&zvol_state_lock);
if ((zv = zvol_minor_lookup(name)) == NULL) {
mutex_exit(&zvol_state_lock);
return (ENXIO);
}
if (zv->zv_total_opens != 0) {
mutex_exit(&zvol_state_lock);
return (EBUSY);
}
(void) sprintf(namebuf, "%uc,raw", zv->zv_minor);
ddi_remove_minor_node(zfs_dip, namebuf);
(void) sprintf(namebuf, "%uc", zv->zv_minor);
ddi_remove_minor_node(zfs_dip, namebuf);
VERIFY(dsl_prop_unregister(dmu_objset_ds(zv->zv_objset),
"readonly", zvol_readonly_changed_cb, zv) == 0);
zil_close(zv->zv_zilog);
zv->zv_zilog = NULL;
dmu_objset_close(zv->zv_objset);
zv->zv_objset = NULL;
avl_destroy(&zv->zv_znode.z_range_avl);
mutex_destroy(&zv->zv_znode.z_range_lock);
ddi_soft_state_free(zvol_state, zv->zv_minor);
zvol_minors--;
mutex_exit(&zvol_state_lock);
return (0);
}
int
zvol_set_volsize(const char *name, major_t maj, uint64_t volsize)
{
zvol_state_t *zv;
dmu_tx_t *tx;
int error;
dmu_object_info_t doi;
mutex_enter(&zvol_state_lock);
if ((zv = zvol_minor_lookup(name)) == NULL) {
mutex_exit(&zvol_state_lock);
return (ENXIO);
}
if ((error = dmu_object_info(zv->zv_objset, ZVOL_OBJ, &doi)) != 0 ||
(error = zvol_check_volsize(volsize,
doi.doi_data_block_size)) != 0) {
mutex_exit(&zvol_state_lock);
return (error);
}
if (zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY)) {
mutex_exit(&zvol_state_lock);
return (EROFS);
}
tx = dmu_tx_create(zv->zv_objset);
dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
dmu_tx_hold_free(tx, ZVOL_OBJ, volsize, DMU_OBJECT_END);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
mutex_exit(&zvol_state_lock);
return (error);
}
error = zap_update(zv->zv_objset, ZVOL_ZAP_OBJ, "size", 8, 1,
&volsize, tx);
if (error == 0) {
error = dmu_free_range(zv->zv_objset, ZVOL_OBJ, volsize,
DMU_OBJECT_END, tx);
}
dmu_tx_commit(tx);
if (error == 0) {
zv->zv_volsize = volsize;
zvol_size_changed(zv, maj);
}
mutex_exit(&zvol_state_lock);
return (error);
}
int
zvol_set_volblocksize(const char *name, uint64_t volblocksize)
{
zvol_state_t *zv;
dmu_tx_t *tx;
int error;
mutex_enter(&zvol_state_lock);
if ((zv = zvol_minor_lookup(name)) == NULL) {
mutex_exit(&zvol_state_lock);
return (ENXIO);
}
if (zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY)) {
mutex_exit(&zvol_state_lock);
return (EROFS);
}
tx = dmu_tx_create(zv->zv_objset);
dmu_tx_hold_bonus(tx, ZVOL_OBJ);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
} else {
error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
volblocksize, 0, tx);
if (error == ENOTSUP)
error = EBUSY;
dmu_tx_commit(tx);
}
mutex_exit(&zvol_state_lock);
return (error);
}
/*ARGSUSED*/
int
zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr)
{
minor_t minor = getminor(*devp);
zvol_state_t *zv;
if (minor == 0) /* This is the control device */
return (0);
mutex_enter(&zvol_state_lock);
zv = ddi_get_soft_state(zvol_state, minor);
if (zv == NULL) {
mutex_exit(&zvol_state_lock);
return (ENXIO);
}
ASSERT(zv->zv_objset != NULL);
if ((flag & FWRITE) &&
(zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY))) {
mutex_exit(&zvol_state_lock);
return (EROFS);
}
if (zv->zv_open_count[otyp] == 0 || otyp == OTYP_LYR) {
zv->zv_open_count[otyp]++;
zv->zv_total_opens++;
}
mutex_exit(&zvol_state_lock);
return (0);
}
/*ARGSUSED*/
int
zvol_close(dev_t dev, int flag, int otyp, cred_t *cr)
{
minor_t minor = getminor(dev);
zvol_state_t *zv;
if (minor == 0) /* This is the control device */
return (0);
mutex_enter(&zvol_state_lock);
zv = ddi_get_soft_state(zvol_state, minor);
if (zv == NULL) {
mutex_exit(&zvol_state_lock);
return (ENXIO);
}
/*
* The next statement is a workaround for the following DDI bug:
* 6343604 specfs race: multiple "last-close" of the same device
*/
if (zv->zv_total_opens == 0) {
mutex_exit(&zvol_state_lock);
return (0);
}
/*
* If the open count is zero, this is a spurious close.
* That indicates a bug in the kernel / DDI framework.
*/
ASSERT(zv->zv_open_count[otyp] != 0);
ASSERT(zv->zv_total_opens != 0);
/*
* You may get multiple opens, but only one close.
*/
zv->zv_open_count[otyp]--;
zv->zv_total_opens--;
mutex_exit(&zvol_state_lock);
return (0);
}
static void
zvol_get_done(dmu_buf_t *db, void *vzgd)
{
zgd_t *zgd = (zgd_t *)vzgd;
rl_t *rl = zgd->zgd_rl;
dmu_buf_rele(db, vzgd);
zfs_range_unlock(rl);
zil_add_vdev(zgd->zgd_zilog, DVA_GET_VDEV(BP_IDENTITY(zgd->zgd_bp)));
kmem_free(zgd, sizeof (zgd_t));
}
/*
* Get data to generate a TX_WRITE intent log record.
*/
static int
zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
{
zvol_state_t *zv = arg;
objset_t *os = zv->zv_objset;
dmu_buf_t *db;
rl_t *rl;
zgd_t *zgd;
uint64_t boff; /* block starting offset */
int dlen = lr->lr_length; /* length of user data */
int error;
ASSERT(zio);
ASSERT(dlen != 0);
/*
* Write records come in two flavors: immediate and indirect.
* For small writes it's cheaper to store the data with the
* log record (immediate); for large writes it's cheaper to
* sync the data and get a pointer to it (indirect) so that
* we don't have to write the data twice.
*/
if (buf != NULL) /* immediate write */
return (dmu_read(os, ZVOL_OBJ, lr->lr_offset, dlen, buf));
zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP);
zgd->zgd_zilog = zv->zv_zilog;
zgd->zgd_bp = &lr->lr_blkptr;
/*
* Lock the range of the block to ensure that when the data is
* written out and it's checksum is being calculated that no other
* thread can change the block.
*/
boff = P2ALIGN_TYPED(lr->lr_offset, zv->zv_volblocksize, uint64_t);
rl = zfs_range_lock(&zv->zv_znode, boff, zv->zv_volblocksize,
RL_READER);
zgd->zgd_rl = rl;
VERIFY(0 == dmu_buf_hold(os, ZVOL_OBJ, lr->lr_offset, zgd, &db));
error = dmu_sync(zio, db, &lr->lr_blkptr,
lr->lr_common.lrc_txg, zvol_get_done, zgd);
if (error == 0)
zil_add_vdev(zv->zv_zilog,
DVA_GET_VDEV(BP_IDENTITY(&lr->lr_blkptr)));
/*
* If we get EINPROGRESS, then we need to wait for a
* write IO initiated by dmu_sync() to complete before
* we can release this dbuf. We will finish everything
* up in the zvol_get_done() callback.
*/
if (error == EINPROGRESS)
return (0);
dmu_buf_rele(db, zgd);
zfs_range_unlock(rl);
kmem_free(zgd, sizeof (zgd_t));
return (error);
}
/*
* zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
*
* We store data in the log buffers if it's small enough.
* Otherwise we will later flush the data out via dmu_sync().
*/
ssize_t zvol_immediate_write_sz = 32768;
static void
zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, offset_t off, ssize_t len)
{
uint32_t blocksize = zv->zv_volblocksize;
lr_write_t *lr;
while (len) {
ssize_t nbytes = MIN(len, blocksize - P2PHASE(off, blocksize));
itx_t *itx = zil_itx_create(TX_WRITE, sizeof (*lr));
itx->itx_wr_state =
len > zvol_immediate_write_sz ? WR_INDIRECT : WR_NEED_COPY;
itx->itx_private = zv;
lr = (lr_write_t *)&itx->itx_lr;
lr->lr_foid = ZVOL_OBJ;
lr->lr_offset = off;
lr->lr_length = nbytes;
lr->lr_blkoff = off - P2ALIGN_TYPED(off, blocksize, uint64_t);
BP_ZERO(&lr->lr_blkptr);
(void) zil_itx_assign(zv->zv_zilog, itx, tx);
len -= nbytes;
off += nbytes;
}
}
int
zvol_strategy(buf_t *bp)
{
zvol_state_t *zv = ddi_get_soft_state(zvol_state, getminor(bp->b_edev));
uint64_t off, volsize;
size_t size, resid;
char *addr;
objset_t *os;
rl_t *rl;
int error = 0;
boolean_t reading;
if (zv == NULL) {
bioerror(bp, ENXIO);
biodone(bp);
return (0);
}
if (getminor(bp->b_edev) == 0) {
bioerror(bp, EINVAL);
biodone(bp);
return (0);
}
if ((zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY)) &&
!(bp->b_flags & B_READ)) {
bioerror(bp, EROFS);
biodone(bp);
return (0);
}
off = ldbtob(bp->b_blkno);
volsize = zv->zv_volsize;
os = zv->zv_objset;
ASSERT(os != NULL);
bp_mapin(bp);
addr = bp->b_un.b_addr;
resid = bp->b_bcount;
/*
* There must be no buffer changes when doing a dmu_sync() because
* we can't change the data whilst calculating the checksum.
*/
reading = bp->b_flags & B_READ;
rl = zfs_range_lock(&zv->zv_znode, off, resid,
reading ? RL_READER : RL_WRITER);
while (resid != 0 && off < volsize) {
size = MIN(resid, zvol_maxphys); /* zvol_maxphys per tx */
if (size > volsize - off) /* don't write past the end */
size = volsize - off;
if (reading) {
error = dmu_read(os, ZVOL_OBJ, off, size, addr);
} else {
dmu_tx_t *tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, ZVOL_OBJ, off, size);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
} else {
dmu_write(os, ZVOL_OBJ, off, size, addr, tx);
zvol_log_write(zv, tx, off, size);
dmu_tx_commit(tx);
}
}
if (error)
break;
off += size;
addr += size;
resid -= size;
}
zfs_range_unlock(rl);
if ((bp->b_resid = resid) == bp->b_bcount)
bioerror(bp, off > volsize ? EINVAL : error);
if (!(bp->b_flags & B_ASYNC) && !reading && !zil_disable)
zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
biodone(bp);
return (0);
}
/*
* Set the buffer count to the zvol maximum transfer.
* Using our own routine instead of the default minphys()
* means that for larger writes we write bigger buffers on X86
* (128K instead of 56K) and flush the disk write cache less often
* (every zvol_maxphys - currently 1MB) instead of minphys (currently
* 56K on X86 and 128K on sparc).
*/
void
zvol_minphys(struct buf *bp)
{
if (bp->b_bcount > zvol_maxphys)
bp->b_bcount = zvol_maxphys;
}
/*ARGSUSED*/
int
zvol_read(dev_t dev, uio_t *uio, cred_t *cr)
{
minor_t minor = getminor(dev);
zvol_state_t *zv;
rl_t *rl;
int error = 0;
if (minor == 0) /* This is the control device */
return (ENXIO);
zv = ddi_get_soft_state(zvol_state, minor);
if (zv == NULL)
return (ENXIO);
rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid,
RL_READER);
while (uio->uio_resid > 0) {
uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1);
error = dmu_read_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes);
if (error)
break;
}
zfs_range_unlock(rl);
return (error);
}
/*ARGSUSED*/
int
zvol_write(dev_t dev, uio_t *uio, cred_t *cr)
{
minor_t minor = getminor(dev);
zvol_state_t *zv;
rl_t *rl;
int error = 0;
if (minor == 0) /* This is the control device */
return (ENXIO);
zv = ddi_get_soft_state(zvol_state, minor);
if (zv == NULL)
return (ENXIO);
rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid,
RL_WRITER);
while (uio->uio_resid > 0) {
uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1);
uint64_t off = uio->uio_loffset;
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
break;
}
error = dmu_write_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes, tx);
if (error == 0)
zvol_log_write(zv, tx, off, bytes);
dmu_tx_commit(tx);
if (error)
break;
}
zfs_range_unlock(rl);
return (error);
}
/*
* Dirtbag ioctls to support mkfs(1M) for UFS filesystems. See dkio(7I).
*/
/*ARGSUSED*/
int
zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp)
{
zvol_state_t *zv;
struct dk_cinfo dki;
struct dk_minfo dkm;
dk_efi_t efi;
struct dk_callback *dkc;
struct uuid uuid = EFI_RESERVED;
uint32_t crc;
int error = 0;
mutex_enter(&zvol_state_lock);
zv = ddi_get_soft_state(zvol_state, getminor(dev));
if (zv == NULL) {
mutex_exit(&zvol_state_lock);
return (ENXIO);
}
switch (cmd) {
case DKIOCINFO:
bzero(&dki, sizeof (dki));
(void) strcpy(dki.dki_cname, "zvol");
(void) strcpy(dki.dki_dname, "zvol");
dki.dki_ctype = DKC_UNKNOWN;
dki.dki_maxtransfer = 1 << (SPA_MAXBLOCKSHIFT - zv->zv_min_bs);
mutex_exit(&zvol_state_lock);
if (ddi_copyout(&dki, (void *)arg, sizeof (dki), flag))
error = EFAULT;
return (error);
case DKIOCGMEDIAINFO:
bzero(&dkm, sizeof (dkm));
dkm.dki_lbsize = 1U << zv->zv_min_bs;
dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs;
dkm.dki_media_type = DK_UNKNOWN;
mutex_exit(&zvol_state_lock);
if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag))
error = EFAULT;
return (error);
case DKIOCGETEFI:
if (ddi_copyin((void *)arg, &efi, sizeof (dk_efi_t), flag)) {
mutex_exit(&zvol_state_lock);
return (EFAULT);
}
efi.dki_data = (void *)(uintptr_t)efi.dki_data_64;
/*
* Some clients may attempt to request a PMBR for the
* zvol. Currently this interface will return ENOTTY to
* such requests. These requests could be supported by
* adding a check for lba == 0 and consing up an appropriate
* RMBR.
*/
if (efi.dki_lba == 1) {
efi_gpt_t gpt;
efi_gpe_t gpe;
bzero(&gpt, sizeof (gpt));
bzero(&gpe, sizeof (gpe));
if (efi.dki_length < sizeof (gpt)) {
mutex_exit(&zvol_state_lock);
return (EINVAL);
}
gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE);
gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt));
gpt.efi_gpt_FirstUsableLBA = LE_64(34ULL);
gpt.efi_gpt_LastUsableLBA =
LE_64((zv->zv_volsize >> zv->zv_min_bs) - 1);
gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1);
gpt.efi_gpt_PartitionEntryLBA = LE_64(2ULL);
gpt.efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (gpe));
UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid);
gpe.efi_gpe_StartingLBA = gpt.efi_gpt_FirstUsableLBA;
gpe.efi_gpe_EndingLBA = gpt.efi_gpt_LastUsableLBA;
CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table);
gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table);
gpt.efi_gpt_HeaderCRC32 = LE_32(~crc);
mutex_exit(&zvol_state_lock);
if (ddi_copyout(&gpt, efi.dki_data, sizeof (gpt), flag))
error = EFAULT;
} else if (efi.dki_lba == 2) {
efi_gpe_t gpe;
bzero(&gpe, sizeof (gpe));
if (efi.dki_length < sizeof (gpe)) {
mutex_exit(&zvol_state_lock);
return (EINVAL);
}
UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid);
gpe.efi_gpe_StartingLBA = LE_64(34ULL);
gpe.efi_gpe_EndingLBA =
LE_64((zv->zv_volsize >> zv->zv_min_bs) - 1);
mutex_exit(&zvol_state_lock);
if (ddi_copyout(&gpe, efi.dki_data, sizeof (gpe), flag))
error = EFAULT;
} else {
mutex_exit(&zvol_state_lock);
error = EINVAL;
}
return (error);
case DKIOCFLUSHWRITECACHE:
dkc = (struct dk_callback *)arg;
zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
if ((flag & FKIOCTL) && dkc != NULL && dkc->dkc_callback) {
(*dkc->dkc_callback)(dkc->dkc_cookie, error);
error = 0;
}
break;
case DKIOCGGEOM:
case DKIOCGVTOC:
/* commands using these (like prtvtoc) expect ENOTSUP */
error = ENOTSUP;
break;
default:
error = ENOTTY;
break;
}
mutex_exit(&zvol_state_lock);
return (error);
}
int
zvol_busy(void)
{
return (zvol_minors != 0);
}
void
zvol_init(void)
{
VERIFY(ddi_soft_state_init(&zvol_state, sizeof (zvol_state_t), 1) == 0);
mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
}
void
zvol_fini(void)
{
mutex_destroy(&zvol_state_lock);
ddi_soft_state_fini(&zvol_state);
}